Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 #include <linux/debugfs.h>
47
48 #include <asm/tlbflush.h>
49 #include <asm/div64.h>
50
51 #include <linux/swapops.h>
52 #include <linux/balloon_compaction.h>
53
54 #include "internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/vmscan.h>
58
59 struct scan_control {
60 /* Incremented by the number of inactive pages that were scanned */
61 unsigned long nr_scanned;
62
63 /* Number of pages freed so far during a call to shrink_zones() */
64 unsigned long nr_reclaimed;
65
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 unsigned long hibernation_mode;
70
71 /* This context's GFP mask */
72 gfp_t gfp_mask;
73
74 int may_writepage;
75
76 /* Can mapped pages be reclaimed? */
77 int may_unmap;
78
79 /* Can pages be swapped as part of reclaim? */
80 int may_swap;
81
82 int order;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 /*
88 * The memory cgroup that hit its limit and as a result is the
89 * primary target of this reclaim invocation.
90 */
91 struct mem_cgroup *target_mem_cgroup;
92
93 /*
94 * Nodemask of nodes allowed by the caller. If NULL, all nodes
95 * are scanned.
96 */
97 nodemask_t *nodemask;
98 };
99
100 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
101
102 #ifdef ARCH_HAS_PREFETCH
103 #define prefetch_prev_lru_page(_page, _base, _field) \
104 do { \
105 if ((_page)->lru.prev != _base) { \
106 struct page *prev; \
107 \
108 prev = lru_to_page(&(_page->lru)); \
109 prefetch(&prev->_field); \
110 } \
111 } while (0)
112 #else
113 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
114 #endif
115
116 #ifdef ARCH_HAS_PREFETCHW
117 #define prefetchw_prev_lru_page(_page, _base, _field) \
118 do { \
119 if ((_page)->lru.prev != _base) { \
120 struct page *prev; \
121 \
122 prev = lru_to_page(&(_page->lru)); \
123 prefetchw(&prev->_field); \
124 } \
125 } while (0)
126 #else
127 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
128 #endif
129
130 /*
131 * From 0 .. 100. Higher means more swappy.
132 */
133 int vm_swappiness = 60;
134 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
135
136 static LIST_HEAD(shrinker_list);
137 static DECLARE_RWSEM(shrinker_rwsem);
138
139 #ifdef CONFIG_MEMCG
140 static bool global_reclaim(struct scan_control *sc)
141 {
142 return !sc->target_mem_cgroup;
143 }
144 #else
145 static bool global_reclaim(struct scan_control *sc)
146 {
147 return true;
148 }
149 #endif
150
151 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
152 {
153 if (!mem_cgroup_disabled())
154 return mem_cgroup_get_lru_size(lruvec, lru);
155
156 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
157 }
158
159 struct dentry *debug_file;
160
161 static int debug_shrinker_show(struct seq_file *s, void *unused)
162 {
163 struct shrinker *shrinker;
164 struct shrink_control sc;
165
166 sc.gfp_mask = -1;
167 sc.nr_to_scan = 0;
168
169 down_read(&shrinker_rwsem);
170 list_for_each_entry(shrinker, &shrinker_list, list) {
171 int num_objs;
172
173 num_objs = shrinker->shrink(shrinker, &sc);
174 seq_printf(s, "%pf %d\n", shrinker->shrink, num_objs);
175 }
176 up_read(&shrinker_rwsem);
177 return 0;
178 }
179
180 static int debug_shrinker_open(struct inode *inode, struct file *file)
181 {
182 return single_open(file, debug_shrinker_show, inode->i_private);
183 }
184
185 static const struct file_operations debug_shrinker_fops = {
186 .open = debug_shrinker_open,
187 .read = seq_read,
188 .llseek = seq_lseek,
189 .release = single_release,
190 };
191
192 /*
193 * Add a shrinker callback to be called from the vm
194 */
195 void register_shrinker(struct shrinker *shrinker)
196 {
197 atomic_long_set(&shrinker->nr_in_batch, 0);
198 down_write(&shrinker_rwsem);
199 list_add_tail(&shrinker->list, &shrinker_list);
200 up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(register_shrinker);
203
204 static int __init add_shrinker_debug(void)
205 {
206 debugfs_create_file("shrinker", 0644, NULL, NULL,
207 &debug_shrinker_fops);
208 return 0;
209 }
210
211 late_initcall(add_shrinker_debug);
212
213 /*
214 * Remove one
215 */
216 void unregister_shrinker(struct shrinker *shrinker)
217 {
218 down_write(&shrinker_rwsem);
219 list_del(&shrinker->list);
220 up_write(&shrinker_rwsem);
221 }
222 EXPORT_SYMBOL(unregister_shrinker);
223
224 static inline int do_shrinker_shrink(struct shrinker *shrinker,
225 struct shrink_control *sc,
226 unsigned long nr_to_scan)
227 {
228 sc->nr_to_scan = nr_to_scan;
229 return (*shrinker->shrink)(shrinker, sc);
230 }
231
232 #define SHRINK_BATCH 128
233 /*
234 * Call the shrink functions to age shrinkable caches
235 *
236 * Here we assume it costs one seek to replace a lru page and that it also
237 * takes a seek to recreate a cache object. With this in mind we age equal
238 * percentages of the lru and ageable caches. This should balance the seeks
239 * generated by these structures.
240 *
241 * If the vm encountered mapped pages on the LRU it increase the pressure on
242 * slab to avoid swapping.
243 *
244 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
245 *
246 * `lru_pages' represents the number of on-LRU pages in all the zones which
247 * are eligible for the caller's allocation attempt. It is used for balancing
248 * slab reclaim versus page reclaim.
249 *
250 * Returns the number of slab objects which we shrunk.
251 */
252 unsigned long shrink_slab(struct shrink_control *shrink,
253 unsigned long nr_pages_scanned,
254 unsigned long lru_pages)
255 {
256 struct shrinker *shrinker;
257 unsigned long ret = 0;
258
259 if (nr_pages_scanned == 0)
260 nr_pages_scanned = SWAP_CLUSTER_MAX;
261
262 if (!down_read_trylock(&shrinker_rwsem)) {
263 /* Assume we'll be able to shrink next time */
264 ret = 1;
265 goto out;
266 }
267
268 list_for_each_entry(shrinker, &shrinker_list, list) {
269 unsigned long long delta;
270 long total_scan;
271 long max_pass;
272 int shrink_ret = 0;
273 long nr;
274 long new_nr;
275 long batch_size = shrinker->batch ? shrinker->batch
276 : SHRINK_BATCH;
277
278 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
279 if (max_pass <= 0)
280 continue;
281
282 /*
283 * copy the current shrinker scan count into a local variable
284 * and zero it so that other concurrent shrinker invocations
285 * don't also do this scanning work.
286 */
287 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
288
289 total_scan = nr;
290 delta = (4 * nr_pages_scanned) / shrinker->seeks;
291 delta *= max_pass;
292 do_div(delta, lru_pages + 1);
293 total_scan += delta;
294 if (total_scan < 0) {
295 printk(KERN_ERR "shrink_slab: %pF negative objects to "
296 "delete nr=%ld\n",
297 shrinker->shrink, total_scan);
298 total_scan = max_pass;
299 }
300
301 /*
302 * We need to avoid excessive windup on filesystem shrinkers
303 * due to large numbers of GFP_NOFS allocations causing the
304 * shrinkers to return -1 all the time. This results in a large
305 * nr being built up so when a shrink that can do some work
306 * comes along it empties the entire cache due to nr >>>
307 * max_pass. This is bad for sustaining a working set in
308 * memory.
309 *
310 * Hence only allow the shrinker to scan the entire cache when
311 * a large delta change is calculated directly.
312 */
313 if (delta < max_pass / 4)
314 total_scan = min(total_scan, max_pass / 2);
315
316 /*
317 * Avoid risking looping forever due to too large nr value:
318 * never try to free more than twice the estimate number of
319 * freeable entries.
320 */
321 if (total_scan > max_pass * 2)
322 total_scan = max_pass * 2;
323
324 trace_mm_shrink_slab_start(shrinker, shrink, nr,
325 nr_pages_scanned, lru_pages,
326 max_pass, delta, total_scan);
327
328 while (total_scan >= batch_size) {
329 int nr_before;
330
331 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
332 shrink_ret = do_shrinker_shrink(shrinker, shrink,
333 batch_size);
334 if (shrink_ret == -1)
335 break;
336 if (shrink_ret < nr_before)
337 ret += nr_before - shrink_ret;
338 count_vm_events(SLABS_SCANNED, batch_size);
339 total_scan -= batch_size;
340
341 cond_resched();
342 }
343
344 /*
345 * move the unused scan count back into the shrinker in a
346 * manner that handles concurrent updates. If we exhausted the
347 * scan, there is no need to do an update.
348 */
349 if (total_scan > 0)
350 new_nr = atomic_long_add_return(total_scan,
351 &shrinker->nr_in_batch);
352 else
353 new_nr = atomic_long_read(&shrinker->nr_in_batch);
354
355 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
356 }
357 up_read(&shrinker_rwsem);
358 out:
359 cond_resched();
360 return ret;
361 }
362
363 static inline int is_page_cache_freeable(struct page *page)
364 {
365 /*
366 * A freeable page cache page is referenced only by the caller
367 * that isolated the page, the page cache radix tree and
368 * optional buffer heads at page->private.
369 */
370 return page_count(page) - page_has_private(page) == 2;
371 }
372
373 static int may_write_to_queue(struct backing_dev_info *bdi,
374 struct scan_control *sc)
375 {
376 if (current->flags & PF_SWAPWRITE)
377 return 1;
378 if (!bdi_write_congested(bdi))
379 return 1;
380 if (bdi == current->backing_dev_info)
381 return 1;
382 return 0;
383 }
384
385 /*
386 * We detected a synchronous write error writing a page out. Probably
387 * -ENOSPC. We need to propagate that into the address_space for a subsequent
388 * fsync(), msync() or close().
389 *
390 * The tricky part is that after writepage we cannot touch the mapping: nothing
391 * prevents it from being freed up. But we have a ref on the page and once
392 * that page is locked, the mapping is pinned.
393 *
394 * We're allowed to run sleeping lock_page() here because we know the caller has
395 * __GFP_FS.
396 */
397 static void handle_write_error(struct address_space *mapping,
398 struct page *page, int error)
399 {
400 lock_page(page);
401 if (page_mapping(page) == mapping)
402 mapping_set_error(mapping, error);
403 unlock_page(page);
404 }
405
406 /* possible outcome of pageout() */
407 typedef enum {
408 /* failed to write page out, page is locked */
409 PAGE_KEEP,
410 /* move page to the active list, page is locked */
411 PAGE_ACTIVATE,
412 /* page has been sent to the disk successfully, page is unlocked */
413 PAGE_SUCCESS,
414 /* page is clean and locked */
415 PAGE_CLEAN,
416 } pageout_t;
417
418 /*
419 * pageout is called by shrink_page_list() for each dirty page.
420 * Calls ->writepage().
421 */
422 static pageout_t pageout(struct page *page, struct address_space *mapping,
423 struct scan_control *sc)
424 {
425 /*
426 * If the page is dirty, only perform writeback if that write
427 * will be non-blocking. To prevent this allocation from being
428 * stalled by pagecache activity. But note that there may be
429 * stalls if we need to run get_block(). We could test
430 * PagePrivate for that.
431 *
432 * If this process is currently in __generic_file_aio_write() against
433 * this page's queue, we can perform writeback even if that
434 * will block.
435 *
436 * If the page is swapcache, write it back even if that would
437 * block, for some throttling. This happens by accident, because
438 * swap_backing_dev_info is bust: it doesn't reflect the
439 * congestion state of the swapdevs. Easy to fix, if needed.
440 */
441 if (!is_page_cache_freeable(page))
442 return PAGE_KEEP;
443 if (!mapping) {
444 /*
445 * Some data journaling orphaned pages can have
446 * page->mapping == NULL while being dirty with clean buffers.
447 */
448 if (page_has_private(page)) {
449 if (try_to_free_buffers(page)) {
450 ClearPageDirty(page);
451 printk("%s: orphaned page\n", __func__);
452 return PAGE_CLEAN;
453 }
454 }
455 return PAGE_KEEP;
456 }
457 if (mapping->a_ops->writepage == NULL)
458 return PAGE_ACTIVATE;
459 if (!may_write_to_queue(mapping->backing_dev_info, sc))
460 return PAGE_KEEP;
461
462 if (clear_page_dirty_for_io(page)) {
463 int res;
464 struct writeback_control wbc = {
465 .sync_mode = WB_SYNC_NONE,
466 .nr_to_write = SWAP_CLUSTER_MAX,
467 .range_start = 0,
468 .range_end = LLONG_MAX,
469 .for_reclaim = 1,
470 };
471
472 SetPageReclaim(page);
473 res = mapping->a_ops->writepage(page, &wbc);
474 if (res < 0)
475 handle_write_error(mapping, page, res);
476 if (res == AOP_WRITEPAGE_ACTIVATE) {
477 ClearPageReclaim(page);
478 return PAGE_ACTIVATE;
479 }
480
481 if (!PageWriteback(page)) {
482 /* synchronous write or broken a_ops? */
483 ClearPageReclaim(page);
484 }
485 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
486 inc_zone_page_state(page, NR_VMSCAN_WRITE);
487 return PAGE_SUCCESS;
488 }
489
490 return PAGE_CLEAN;
491 }
492
493 /*
494 * Same as remove_mapping, but if the page is removed from the mapping, it
495 * gets returned with a refcount of 0.
496 */
497 static int __remove_mapping(struct address_space *mapping, struct page *page)
498 {
499 BUG_ON(!PageLocked(page));
500 BUG_ON(mapping != page_mapping(page));
501
502 spin_lock_irq(&mapping->tree_lock);
503 /*
504 * The non racy check for a busy page.
505 *
506 * Must be careful with the order of the tests. When someone has
507 * a ref to the page, it may be possible that they dirty it then
508 * drop the reference. So if PageDirty is tested before page_count
509 * here, then the following race may occur:
510 *
511 * get_user_pages(&page);
512 * [user mapping goes away]
513 * write_to(page);
514 * !PageDirty(page) [good]
515 * SetPageDirty(page);
516 * put_page(page);
517 * !page_count(page) [good, discard it]
518 *
519 * [oops, our write_to data is lost]
520 *
521 * Reversing the order of the tests ensures such a situation cannot
522 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
523 * load is not satisfied before that of page->_count.
524 *
525 * Note that if SetPageDirty is always performed via set_page_dirty,
526 * and thus under tree_lock, then this ordering is not required.
527 */
528 if (!page_freeze_refs(page, 2))
529 goto cannot_free;
530 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
531 if (unlikely(PageDirty(page))) {
532 page_unfreeze_refs(page, 2);
533 goto cannot_free;
534 }
535
536 if (PageSwapCache(page)) {
537 swp_entry_t swap = { .val = page_private(page) };
538 __delete_from_swap_cache(page);
539 spin_unlock_irq(&mapping->tree_lock);
540 swapcache_free(swap, page);
541 } else {
542 void (*freepage)(struct page *);
543
544 freepage = mapping->a_ops->freepage;
545
546 __delete_from_page_cache(page);
547 spin_unlock_irq(&mapping->tree_lock);
548 mem_cgroup_uncharge_cache_page(page);
549
550 if (freepage != NULL)
551 freepage(page);
552 }
553
554 return 1;
555
556 cannot_free:
557 spin_unlock_irq(&mapping->tree_lock);
558 return 0;
559 }
560
561 /*
562 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
563 * someone else has a ref on the page, abort and return 0. If it was
564 * successfully detached, return 1. Assumes the caller has a single ref on
565 * this page.
566 */
567 int remove_mapping(struct address_space *mapping, struct page *page)
568 {
569 if (__remove_mapping(mapping, page)) {
570 /*
571 * Unfreezing the refcount with 1 rather than 2 effectively
572 * drops the pagecache ref for us without requiring another
573 * atomic operation.
574 */
575 page_unfreeze_refs(page, 1);
576 return 1;
577 }
578 return 0;
579 }
580
581 /**
582 * putback_lru_page - put previously isolated page onto appropriate LRU list
583 * @page: page to be put back to appropriate lru list
584 *
585 * Add previously isolated @page to appropriate LRU list.
586 * Page may still be unevictable for other reasons.
587 *
588 * lru_lock must not be held, interrupts must be enabled.
589 */
590 void putback_lru_page(struct page *page)
591 {
592 int lru;
593 int active = !!TestClearPageActive(page);
594 int was_unevictable = PageUnevictable(page);
595
596 VM_BUG_ON(PageLRU(page));
597
598 redo:
599 ClearPageUnevictable(page);
600
601 if (page_evictable(page)) {
602 /*
603 * For evictable pages, we can use the cache.
604 * In event of a race, worst case is we end up with an
605 * unevictable page on [in]active list.
606 * We know how to handle that.
607 */
608 lru = active + page_lru_base_type(page);
609 lru_cache_add_lru(page, lru);
610 } else {
611 /*
612 * Put unevictable pages directly on zone's unevictable
613 * list.
614 */
615 lru = LRU_UNEVICTABLE;
616 add_page_to_unevictable_list(page);
617 /*
618 * When racing with an mlock or AS_UNEVICTABLE clearing
619 * (page is unlocked) make sure that if the other thread
620 * does not observe our setting of PG_lru and fails
621 * isolation/check_move_unevictable_pages,
622 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
623 * the page back to the evictable list.
624 *
625 * The other side is TestClearPageMlocked() or shmem_lock().
626 */
627 smp_mb();
628 }
629
630 /*
631 * page's status can change while we move it among lru. If an evictable
632 * page is on unevictable list, it never be freed. To avoid that,
633 * check after we added it to the list, again.
634 */
635 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
636 if (!isolate_lru_page(page)) {
637 put_page(page);
638 goto redo;
639 }
640 /* This means someone else dropped this page from LRU
641 * So, it will be freed or putback to LRU again. There is
642 * nothing to do here.
643 */
644 }
645
646 if (was_unevictable && lru != LRU_UNEVICTABLE)
647 count_vm_event(UNEVICTABLE_PGRESCUED);
648 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
649 count_vm_event(UNEVICTABLE_PGCULLED);
650
651 put_page(page); /* drop ref from isolate */
652 }
653
654 enum page_references {
655 PAGEREF_RECLAIM,
656 PAGEREF_RECLAIM_CLEAN,
657 PAGEREF_KEEP,
658 PAGEREF_ACTIVATE,
659 };
660
661 static enum page_references page_check_references(struct page *page,
662 struct scan_control *sc)
663 {
664 int referenced_ptes, referenced_page;
665 unsigned long vm_flags;
666
667 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
668 &vm_flags);
669 referenced_page = TestClearPageReferenced(page);
670
671 /*
672 * Mlock lost the isolation race with us. Let try_to_unmap()
673 * move the page to the unevictable list.
674 */
675 if (vm_flags & VM_LOCKED)
676 return PAGEREF_RECLAIM;
677
678 if (referenced_ptes) {
679 if (PageSwapBacked(page))
680 return PAGEREF_ACTIVATE;
681 /*
682 * All mapped pages start out with page table
683 * references from the instantiating fault, so we need
684 * to look twice if a mapped file page is used more
685 * than once.
686 *
687 * Mark it and spare it for another trip around the
688 * inactive list. Another page table reference will
689 * lead to its activation.
690 *
691 * Note: the mark is set for activated pages as well
692 * so that recently deactivated but used pages are
693 * quickly recovered.
694 */
695 SetPageReferenced(page);
696
697 if (referenced_page || referenced_ptes > 1)
698 return PAGEREF_ACTIVATE;
699
700 /*
701 * Activate file-backed executable pages after first usage.
702 */
703 if (vm_flags & VM_EXEC)
704 return PAGEREF_ACTIVATE;
705
706 return PAGEREF_KEEP;
707 }
708
709 /* Reclaim if clean, defer dirty pages to writeback */
710 if (referenced_page && !PageSwapBacked(page))
711 return PAGEREF_RECLAIM_CLEAN;
712
713 return PAGEREF_RECLAIM;
714 }
715
716 /*
717 * shrink_page_list() returns the number of reclaimed pages
718 */
719 static unsigned long shrink_page_list(struct list_head *page_list,
720 struct zone *zone,
721 struct scan_control *sc,
722 enum ttu_flags ttu_flags,
723 unsigned long *ret_nr_dirty,
724 unsigned long *ret_nr_writeback,
725 bool force_reclaim)
726 {
727 LIST_HEAD(ret_pages);
728 LIST_HEAD(free_pages);
729 int pgactivate = 0;
730 unsigned long nr_dirty = 0;
731 unsigned long nr_congested = 0;
732 unsigned long nr_reclaimed = 0;
733 unsigned long nr_writeback = 0;
734
735 cond_resched();
736
737 mem_cgroup_uncharge_start();
738 while (!list_empty(page_list)) {
739 struct address_space *mapping;
740 struct page *page;
741 int may_enter_fs;
742 enum page_references references = PAGEREF_RECLAIM_CLEAN;
743
744 cond_resched();
745
746 page = lru_to_page(page_list);
747 list_del(&page->lru);
748
749 if (!trylock_page(page))
750 goto keep;
751
752 VM_BUG_ON(PageActive(page));
753 VM_BUG_ON(page_zone(page) != zone);
754
755 sc->nr_scanned++;
756
757 if (unlikely(!page_evictable(page)))
758 goto cull_mlocked;
759
760 if (!sc->may_unmap && page_mapped(page))
761 goto keep_locked;
762
763 /* Double the slab pressure for mapped and swapcache pages */
764 if (page_mapped(page) || PageSwapCache(page))
765 sc->nr_scanned++;
766
767 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
768 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
769
770 if (PageWriteback(page)) {
771 /*
772 * memcg doesn't have any dirty pages throttling so we
773 * could easily OOM just because too many pages are in
774 * writeback and there is nothing else to reclaim.
775 *
776 * Check __GFP_IO, certainly because a loop driver
777 * thread might enter reclaim, and deadlock if it waits
778 * on a page for which it is needed to do the write
779 * (loop masks off __GFP_IO|__GFP_FS for this reason);
780 * but more thought would probably show more reasons.
781 *
782 * Don't require __GFP_FS, since we're not going into
783 * the FS, just waiting on its writeback completion.
784 * Worryingly, ext4 gfs2 and xfs allocate pages with
785 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
786 * testing may_enter_fs here is liable to OOM on them.
787 */
788 if (global_reclaim(sc) ||
789 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
790 /*
791 * This is slightly racy - end_page_writeback()
792 * might have just cleared PageReclaim, then
793 * setting PageReclaim here end up interpreted
794 * as PageReadahead - but that does not matter
795 * enough to care. What we do want is for this
796 * page to have PageReclaim set next time memcg
797 * reclaim reaches the tests above, so it will
798 * then wait_on_page_writeback() to avoid OOM;
799 * and it's also appropriate in global reclaim.
800 */
801 SetPageReclaim(page);
802 nr_writeback++;
803 goto keep_locked;
804 }
805 wait_on_page_writeback(page);
806 }
807
808 if (!force_reclaim)
809 references = page_check_references(page, sc);
810
811 switch (references) {
812 case PAGEREF_ACTIVATE:
813 goto activate_locked;
814 case PAGEREF_KEEP:
815 goto keep_locked;
816 case PAGEREF_RECLAIM:
817 case PAGEREF_RECLAIM_CLEAN:
818 ; /* try to reclaim the page below */
819 }
820
821 /*
822 * Anonymous process memory has backing store?
823 * Try to allocate it some swap space here.
824 */
825 if (PageAnon(page) && !PageSwapCache(page)) {
826 if (!(sc->gfp_mask & __GFP_IO))
827 goto keep_locked;
828 if (!add_to_swap(page, page_list))
829 goto activate_locked;
830 may_enter_fs = 1;
831 }
832
833 mapping = page_mapping(page);
834
835 /*
836 * The page is mapped into the page tables of one or more
837 * processes. Try to unmap it here.
838 */
839 if (page_mapped(page) && mapping) {
840 switch (try_to_unmap(page, ttu_flags)) {
841 case SWAP_FAIL:
842 goto activate_locked;
843 case SWAP_AGAIN:
844 goto keep_locked;
845 case SWAP_MLOCK:
846 goto cull_mlocked;
847 case SWAP_SUCCESS:
848 ; /* try to free the page below */
849 }
850 }
851
852 if (PageDirty(page)) {
853 nr_dirty++;
854
855 /*
856 * Only kswapd can writeback filesystem pages to
857 * avoid risk of stack overflow but do not writeback
858 * unless under significant pressure.
859 */
860 if (page_is_file_cache(page) &&
861 (!current_is_kswapd() ||
862 sc->priority >= DEF_PRIORITY - 2)) {
863 /*
864 * Immediately reclaim when written back.
865 * Similar in principal to deactivate_page()
866 * except we already have the page isolated
867 * and know it's dirty
868 */
869 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
870 SetPageReclaim(page);
871
872 goto keep_locked;
873 }
874
875 if (references == PAGEREF_RECLAIM_CLEAN)
876 goto keep_locked;
877 if (!may_enter_fs)
878 goto keep_locked;
879 if (!sc->may_writepage)
880 goto keep_locked;
881
882 /* Page is dirty, try to write it out here */
883 switch (pageout(page, mapping, sc)) {
884 case PAGE_KEEP:
885 nr_congested++;
886 goto keep_locked;
887 case PAGE_ACTIVATE:
888 goto activate_locked;
889 case PAGE_SUCCESS:
890 if (PageWriteback(page))
891 goto keep;
892 if (PageDirty(page))
893 goto keep;
894
895 /*
896 * A synchronous write - probably a ramdisk. Go
897 * ahead and try to reclaim the page.
898 */
899 if (!trylock_page(page))
900 goto keep;
901 if (PageDirty(page) || PageWriteback(page))
902 goto keep_locked;
903 mapping = page_mapping(page);
904 case PAGE_CLEAN:
905 ; /* try to free the page below */
906 }
907 }
908
909 /*
910 * If the page has buffers, try to free the buffer mappings
911 * associated with this page. If we succeed we try to free
912 * the page as well.
913 *
914 * We do this even if the page is PageDirty().
915 * try_to_release_page() does not perform I/O, but it is
916 * possible for a page to have PageDirty set, but it is actually
917 * clean (all its buffers are clean). This happens if the
918 * buffers were written out directly, with submit_bh(). ext3
919 * will do this, as well as the blockdev mapping.
920 * try_to_release_page() will discover that cleanness and will
921 * drop the buffers and mark the page clean - it can be freed.
922 *
923 * Rarely, pages can have buffers and no ->mapping. These are
924 * the pages which were not successfully invalidated in
925 * truncate_complete_page(). We try to drop those buffers here
926 * and if that worked, and the page is no longer mapped into
927 * process address space (page_count == 1) it can be freed.
928 * Otherwise, leave the page on the LRU so it is swappable.
929 */
930 if (page_has_private(page)) {
931 if (!try_to_release_page(page, sc->gfp_mask))
932 goto activate_locked;
933 if (!mapping && page_count(page) == 1) {
934 unlock_page(page);
935 if (put_page_testzero(page))
936 goto free_it;
937 else {
938 /*
939 * rare race with speculative reference.
940 * the speculative reference will free
941 * this page shortly, so we may
942 * increment nr_reclaimed here (and
943 * leave it off the LRU).
944 */
945 nr_reclaimed++;
946 continue;
947 }
948 }
949 }
950
951 if (!mapping || !__remove_mapping(mapping, page))
952 goto keep_locked;
953
954 /*
955 * At this point, we have no other references and there is
956 * no way to pick any more up (removed from LRU, removed
957 * from pagecache). Can use non-atomic bitops now (and
958 * we obviously don't have to worry about waking up a process
959 * waiting on the page lock, because there are no references.
960 */
961 __clear_page_locked(page);
962 free_it:
963 nr_reclaimed++;
964
965 /*
966 * Is there need to periodically free_page_list? It would
967 * appear not as the counts should be low
968 */
969 list_add(&page->lru, &free_pages);
970 continue;
971
972 cull_mlocked:
973 if (PageSwapCache(page))
974 try_to_free_swap(page);
975 unlock_page(page);
976 putback_lru_page(page);
977 continue;
978
979 activate_locked:
980 /* Not a candidate for swapping, so reclaim swap space. */
981 if (PageSwapCache(page) && vm_swap_full())
982 try_to_free_swap(page);
983 VM_BUG_ON(PageActive(page));
984 SetPageActive(page);
985 pgactivate++;
986 keep_locked:
987 unlock_page(page);
988 keep:
989 list_add(&page->lru, &ret_pages);
990 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
991 }
992
993 /*
994 * Tag a zone as congested if all the dirty pages encountered were
995 * backed by a congested BDI. In this case, reclaimers should just
996 * back off and wait for congestion to clear because further reclaim
997 * will encounter the same problem
998 */
999 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1000 zone_set_flag(zone, ZONE_CONGESTED);
1001
1002 free_hot_cold_page_list(&free_pages, 1);
1003
1004 list_splice(&ret_pages, page_list);
1005 count_vm_events(PGACTIVATE, pgactivate);
1006 mem_cgroup_uncharge_end();
1007 *ret_nr_dirty += nr_dirty;
1008 *ret_nr_writeback += nr_writeback;
1009 return nr_reclaimed;
1010 }
1011
1012 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1013 struct list_head *page_list)
1014 {
1015 struct scan_control sc = {
1016 .gfp_mask = GFP_KERNEL,
1017 .priority = DEF_PRIORITY,
1018 .may_unmap = 1,
1019 };
1020 unsigned long ret, dummy1, dummy2;
1021 struct page *page, *next;
1022 LIST_HEAD(clean_pages);
1023
1024 list_for_each_entry_safe(page, next, page_list, lru) {
1025 if (page_is_file_cache(page) && !PageDirty(page) &&
1026 !isolated_balloon_page(page)) {
1027 ClearPageActive(page);
1028 list_move(&page->lru, &clean_pages);
1029 }
1030 }
1031
1032 ret = shrink_page_list(&clean_pages, zone, &sc,
1033 TTU_UNMAP|TTU_IGNORE_ACCESS,
1034 &dummy1, &dummy2, true);
1035 list_splice(&clean_pages, page_list);
1036 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1037 return ret;
1038 }
1039
1040 /*
1041 * Attempt to remove the specified page from its LRU. Only take this page
1042 * if it is of the appropriate PageActive status. Pages which are being
1043 * freed elsewhere are also ignored.
1044 *
1045 * page: page to consider
1046 * mode: one of the LRU isolation modes defined above
1047 *
1048 * returns 0 on success, -ve errno on failure.
1049 */
1050 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1051 {
1052 int ret = -EINVAL;
1053
1054 /* Only take pages on the LRU. */
1055 if (!PageLRU(page))
1056 return ret;
1057
1058 /* Compaction should not handle unevictable pages but CMA can do so */
1059 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1060 return ret;
1061
1062 ret = -EBUSY;
1063
1064 /*
1065 * To minimise LRU disruption, the caller can indicate that it only
1066 * wants to isolate pages it will be able to operate on without
1067 * blocking - clean pages for the most part.
1068 *
1069 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1070 * is used by reclaim when it is cannot write to backing storage
1071 *
1072 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1073 * that it is possible to migrate without blocking
1074 */
1075 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1076 /* All the caller can do on PageWriteback is block */
1077 if (PageWriteback(page))
1078 return ret;
1079
1080 if (PageDirty(page)) {
1081 struct address_space *mapping;
1082
1083 /* ISOLATE_CLEAN means only clean pages */
1084 if (mode & ISOLATE_CLEAN)
1085 return ret;
1086
1087 /*
1088 * Only pages without mappings or that have a
1089 * ->migratepage callback are possible to migrate
1090 * without blocking
1091 */
1092 mapping = page_mapping(page);
1093 if (mapping && !mapping->a_ops->migratepage)
1094 return ret;
1095 }
1096 }
1097
1098 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1099 return ret;
1100
1101 if (likely(get_page_unless_zero(page))) {
1102 /*
1103 * Be careful not to clear PageLRU until after we're
1104 * sure the page is not being freed elsewhere -- the
1105 * page release code relies on it.
1106 */
1107 ClearPageLRU(page);
1108 ret = 0;
1109 }
1110
1111 return ret;
1112 }
1113
1114 /*
1115 * zone->lru_lock is heavily contended. Some of the functions that
1116 * shrink the lists perform better by taking out a batch of pages
1117 * and working on them outside the LRU lock.
1118 *
1119 * For pagecache intensive workloads, this function is the hottest
1120 * spot in the kernel (apart from copy_*_user functions).
1121 *
1122 * Appropriate locks must be held before calling this function.
1123 *
1124 * @nr_to_scan: The number of pages to look through on the list.
1125 * @lruvec: The LRU vector to pull pages from.
1126 * @dst: The temp list to put pages on to.
1127 * @nr_scanned: The number of pages that were scanned.
1128 * @sc: The scan_control struct for this reclaim session
1129 * @mode: One of the LRU isolation modes
1130 * @lru: LRU list id for isolating
1131 *
1132 * returns how many pages were moved onto *@dst.
1133 */
1134 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1135 struct lruvec *lruvec, struct list_head *dst,
1136 unsigned long *nr_scanned, struct scan_control *sc,
1137 isolate_mode_t mode, enum lru_list lru)
1138 {
1139 struct list_head *src = &lruvec->lists[lru];
1140 unsigned long nr_taken = 0;
1141 unsigned long scan;
1142
1143 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1144 struct page *page;
1145 int nr_pages;
1146
1147 page = lru_to_page(src);
1148 prefetchw_prev_lru_page(page, src, flags);
1149
1150 VM_BUG_ON(!PageLRU(page));
1151
1152 switch (__isolate_lru_page(page, mode)) {
1153 case 0:
1154 nr_pages = hpage_nr_pages(page);
1155 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1156 list_move(&page->lru, dst);
1157 nr_taken += nr_pages;
1158 break;
1159
1160 case -EBUSY:
1161 /* else it is being freed elsewhere */
1162 list_move(&page->lru, src);
1163 continue;
1164
1165 default:
1166 BUG();
1167 }
1168 }
1169
1170 *nr_scanned = scan;
1171 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1172 nr_taken, mode, is_file_lru(lru));
1173 return nr_taken;
1174 }
1175
1176 /**
1177 * isolate_lru_page - tries to isolate a page from its LRU list
1178 * @page: page to isolate from its LRU list
1179 *
1180 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1181 * vmstat statistic corresponding to whatever LRU list the page was on.
1182 *
1183 * Returns 0 if the page was removed from an LRU list.
1184 * Returns -EBUSY if the page was not on an LRU list.
1185 *
1186 * The returned page will have PageLRU() cleared. If it was found on
1187 * the active list, it will have PageActive set. If it was found on
1188 * the unevictable list, it will have the PageUnevictable bit set. That flag
1189 * may need to be cleared by the caller before letting the page go.
1190 *
1191 * The vmstat statistic corresponding to the list on which the page was
1192 * found will be decremented.
1193 *
1194 * Restrictions:
1195 * (1) Must be called with an elevated refcount on the page. This is a
1196 * fundamentnal difference from isolate_lru_pages (which is called
1197 * without a stable reference).
1198 * (2) the lru_lock must not be held.
1199 * (3) interrupts must be enabled.
1200 */
1201 int isolate_lru_page(struct page *page)
1202 {
1203 int ret = -EBUSY;
1204
1205 VM_BUG_ON(!page_count(page));
1206
1207 if (PageLRU(page)) {
1208 struct zone *zone = page_zone(page);
1209 struct lruvec *lruvec;
1210
1211 spin_lock_irq(&zone->lru_lock);
1212 lruvec = mem_cgroup_page_lruvec(page, zone);
1213 if (PageLRU(page)) {
1214 int lru = page_lru(page);
1215 get_page(page);
1216 ClearPageLRU(page);
1217 del_page_from_lru_list(page, lruvec, lru);
1218 ret = 0;
1219 }
1220 spin_unlock_irq(&zone->lru_lock);
1221 }
1222 return ret;
1223 }
1224
1225 /*
1226 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1227 * then get resheduled. When there are massive number of tasks doing page
1228 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1229 * the LRU list will go small and be scanned faster than necessary, leading to
1230 * unnecessary swapping, thrashing and OOM.
1231 */
1232 static int too_many_isolated(struct zone *zone, int file,
1233 struct scan_control *sc)
1234 {
1235 unsigned long inactive, isolated;
1236
1237 if (current_is_kswapd() || sc->hibernation_mode)
1238 return 0;
1239
1240 if (!global_reclaim(sc))
1241 return 0;
1242
1243 if (file) {
1244 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1245 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1246 } else {
1247 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1248 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1249 }
1250
1251 /*
1252 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1253 * won't get blocked by normal direct-reclaimers, forming a circular
1254 * deadlock.
1255 */
1256 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1257 inactive >>= 3;
1258
1259 return isolated > inactive;
1260 }
1261
1262 static noinline_for_stack void
1263 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1264 {
1265 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1266 struct zone *zone = lruvec_zone(lruvec);
1267 LIST_HEAD(pages_to_free);
1268
1269 /*
1270 * Put back any unfreeable pages.
1271 */
1272 while (!list_empty(page_list)) {
1273 struct page *page = lru_to_page(page_list);
1274 int lru;
1275
1276 VM_BUG_ON(PageLRU(page));
1277 list_del(&page->lru);
1278 if (unlikely(!page_evictable(page))) {
1279 spin_unlock_irq(&zone->lru_lock);
1280 putback_lru_page(page);
1281 spin_lock_irq(&zone->lru_lock);
1282 continue;
1283 }
1284
1285 lruvec = mem_cgroup_page_lruvec(page, zone);
1286
1287 SetPageLRU(page);
1288 lru = page_lru(page);
1289 add_page_to_lru_list(page, lruvec, lru);
1290
1291 if (is_active_lru(lru)) {
1292 int file = is_file_lru(lru);
1293 int numpages = hpage_nr_pages(page);
1294 reclaim_stat->recent_rotated[file] += numpages;
1295 }
1296 if (put_page_testzero(page)) {
1297 __ClearPageLRU(page);
1298 __ClearPageActive(page);
1299 del_page_from_lru_list(page, lruvec, lru);
1300
1301 if (unlikely(PageCompound(page))) {
1302 spin_unlock_irq(&zone->lru_lock);
1303 (*get_compound_page_dtor(page))(page);
1304 spin_lock_irq(&zone->lru_lock);
1305 } else
1306 list_add(&page->lru, &pages_to_free);
1307 }
1308 }
1309
1310 /*
1311 * To save our caller's stack, now use input list for pages to free.
1312 */
1313 list_splice(&pages_to_free, page_list);
1314 }
1315
1316 /*
1317 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1318 * of reclaimed pages
1319 */
1320 static noinline_for_stack unsigned long
1321 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1322 struct scan_control *sc, enum lru_list lru)
1323 {
1324 LIST_HEAD(page_list);
1325 unsigned long nr_scanned;
1326 unsigned long nr_reclaimed = 0;
1327 unsigned long nr_taken;
1328 unsigned long nr_dirty = 0;
1329 unsigned long nr_writeback = 0;
1330 isolate_mode_t isolate_mode = 0;
1331 int file = is_file_lru(lru);
1332 struct zone *zone = lruvec_zone(lruvec);
1333 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1334
1335 while (unlikely(too_many_isolated(zone, file, sc))) {
1336 congestion_wait(BLK_RW_ASYNC, HZ/10);
1337
1338 /* We are about to die and free our memory. Return now. */
1339 if (fatal_signal_pending(current))
1340 return SWAP_CLUSTER_MAX;
1341 }
1342
1343 lru_add_drain();
1344
1345 if (!sc->may_unmap)
1346 isolate_mode |= ISOLATE_UNMAPPED;
1347 if (!sc->may_writepage)
1348 isolate_mode |= ISOLATE_CLEAN;
1349
1350 spin_lock_irq(&zone->lru_lock);
1351
1352 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1353 &nr_scanned, sc, isolate_mode, lru);
1354
1355 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1356 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1357
1358 if (global_reclaim(sc)) {
1359 zone->pages_scanned += nr_scanned;
1360 if (current_is_kswapd())
1361 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1362 else
1363 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1364 }
1365 spin_unlock_irq(&zone->lru_lock);
1366
1367 if (nr_taken == 0)
1368 return 0;
1369
1370 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1371 &nr_dirty, &nr_writeback, false);
1372
1373 spin_lock_irq(&zone->lru_lock);
1374
1375 reclaim_stat->recent_scanned[file] += nr_taken;
1376
1377 if (global_reclaim(sc)) {
1378 if (current_is_kswapd())
1379 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1380 nr_reclaimed);
1381 else
1382 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1383 nr_reclaimed);
1384 }
1385
1386 putback_inactive_pages(lruvec, &page_list);
1387
1388 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1389
1390 spin_unlock_irq(&zone->lru_lock);
1391
1392 free_hot_cold_page_list(&page_list, 1);
1393
1394 /*
1395 * If reclaim is isolating dirty pages under writeback, it implies
1396 * that the long-lived page allocation rate is exceeding the page
1397 * laundering rate. Either the global limits are not being effective
1398 * at throttling processes due to the page distribution throughout
1399 * zones or there is heavy usage of a slow backing device. The
1400 * only option is to throttle from reclaim context which is not ideal
1401 * as there is no guarantee the dirtying process is throttled in the
1402 * same way balance_dirty_pages() manages.
1403 *
1404 * This scales the number of dirty pages that must be under writeback
1405 * before throttling depending on priority. It is a simple backoff
1406 * function that has the most effect in the range DEF_PRIORITY to
1407 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1408 * in trouble and reclaim is considered to be in trouble.
1409 *
1410 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1411 * DEF_PRIORITY-1 50% must be PageWriteback
1412 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1413 * ...
1414 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1415 * isolated page is PageWriteback
1416 */
1417 if (nr_writeback && nr_writeback >=
1418 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1419 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1420
1421 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1422 zone_idx(zone),
1423 nr_scanned, nr_reclaimed,
1424 sc->priority,
1425 trace_shrink_flags(file));
1426 return nr_reclaimed;
1427 }
1428
1429 /*
1430 * This moves pages from the active list to the inactive list.
1431 *
1432 * We move them the other way if the page is referenced by one or more
1433 * processes, from rmap.
1434 *
1435 * If the pages are mostly unmapped, the processing is fast and it is
1436 * appropriate to hold zone->lru_lock across the whole operation. But if
1437 * the pages are mapped, the processing is slow (page_referenced()) so we
1438 * should drop zone->lru_lock around each page. It's impossible to balance
1439 * this, so instead we remove the pages from the LRU while processing them.
1440 * It is safe to rely on PG_active against the non-LRU pages in here because
1441 * nobody will play with that bit on a non-LRU page.
1442 *
1443 * The downside is that we have to touch page->_count against each page.
1444 * But we had to alter page->flags anyway.
1445 */
1446
1447 static void move_active_pages_to_lru(struct lruvec *lruvec,
1448 struct list_head *list,
1449 struct list_head *pages_to_free,
1450 enum lru_list lru)
1451 {
1452 struct zone *zone = lruvec_zone(lruvec);
1453 unsigned long pgmoved = 0;
1454 struct page *page;
1455 int nr_pages;
1456
1457 while (!list_empty(list)) {
1458 page = lru_to_page(list);
1459 lruvec = mem_cgroup_page_lruvec(page, zone);
1460
1461 VM_BUG_ON(PageLRU(page));
1462 SetPageLRU(page);
1463
1464 nr_pages = hpage_nr_pages(page);
1465 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1466 list_move(&page->lru, &lruvec->lists[lru]);
1467 pgmoved += nr_pages;
1468
1469 if (put_page_testzero(page)) {
1470 __ClearPageLRU(page);
1471 __ClearPageActive(page);
1472 del_page_from_lru_list(page, lruvec, lru);
1473
1474 if (unlikely(PageCompound(page))) {
1475 spin_unlock_irq(&zone->lru_lock);
1476 (*get_compound_page_dtor(page))(page);
1477 spin_lock_irq(&zone->lru_lock);
1478 } else
1479 list_add(&page->lru, pages_to_free);
1480 }
1481 }
1482 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1483 if (!is_active_lru(lru))
1484 __count_vm_events(PGDEACTIVATE, pgmoved);
1485 }
1486
1487 static void shrink_active_list(unsigned long nr_to_scan,
1488 struct lruvec *lruvec,
1489 struct scan_control *sc,
1490 enum lru_list lru)
1491 {
1492 unsigned long nr_taken;
1493 unsigned long nr_scanned;
1494 unsigned long vm_flags;
1495 LIST_HEAD(l_hold); /* The pages which were snipped off */
1496 LIST_HEAD(l_active);
1497 LIST_HEAD(l_inactive);
1498 struct page *page;
1499 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1500 unsigned long nr_rotated = 0;
1501 isolate_mode_t isolate_mode = 0;
1502 int file = is_file_lru(lru);
1503 struct zone *zone = lruvec_zone(lruvec);
1504
1505 lru_add_drain();
1506
1507 if (!sc->may_unmap)
1508 isolate_mode |= ISOLATE_UNMAPPED;
1509 if (!sc->may_writepage)
1510 isolate_mode |= ISOLATE_CLEAN;
1511
1512 spin_lock_irq(&zone->lru_lock);
1513
1514 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1515 &nr_scanned, sc, isolate_mode, lru);
1516 if (global_reclaim(sc))
1517 zone->pages_scanned += nr_scanned;
1518
1519 reclaim_stat->recent_scanned[file] += nr_taken;
1520
1521 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1522 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1523 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1524 spin_unlock_irq(&zone->lru_lock);
1525
1526 while (!list_empty(&l_hold)) {
1527 cond_resched();
1528 page = lru_to_page(&l_hold);
1529 list_del(&page->lru);
1530
1531 if (unlikely(!page_evictable(page))) {
1532 putback_lru_page(page);
1533 continue;
1534 }
1535
1536 if (unlikely(buffer_heads_over_limit)) {
1537 if (page_has_private(page) && trylock_page(page)) {
1538 if (page_has_private(page))
1539 try_to_release_page(page, 0);
1540 unlock_page(page);
1541 }
1542 }
1543
1544 if (page_referenced(page, 0, sc->target_mem_cgroup,
1545 &vm_flags)) {
1546 nr_rotated += hpage_nr_pages(page);
1547 /*
1548 * Identify referenced, file-backed active pages and
1549 * give them one more trip around the active list. So
1550 * that executable code get better chances to stay in
1551 * memory under moderate memory pressure. Anon pages
1552 * are not likely to be evicted by use-once streaming
1553 * IO, plus JVM can create lots of anon VM_EXEC pages,
1554 * so we ignore them here.
1555 */
1556 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1557 list_add(&page->lru, &l_active);
1558 continue;
1559 }
1560 }
1561
1562 ClearPageActive(page); /* we are de-activating */
1563 list_add(&page->lru, &l_inactive);
1564 }
1565
1566 /*
1567 * Move pages back to the lru list.
1568 */
1569 spin_lock_irq(&zone->lru_lock);
1570 /*
1571 * Count referenced pages from currently used mappings as rotated,
1572 * even though only some of them are actually re-activated. This
1573 * helps balance scan pressure between file and anonymous pages in
1574 * get_scan_ratio.
1575 */
1576 reclaim_stat->recent_rotated[file] += nr_rotated;
1577
1578 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1579 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1580 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1581 spin_unlock_irq(&zone->lru_lock);
1582
1583 free_hot_cold_page_list(&l_hold, 1);
1584 }
1585
1586 #ifdef CONFIG_SWAP
1587 static int inactive_anon_is_low_global(struct zone *zone)
1588 {
1589 unsigned long active, inactive;
1590
1591 active = zone_page_state(zone, NR_ACTIVE_ANON);
1592 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1593
1594 if (inactive * zone->inactive_ratio < active)
1595 return 1;
1596
1597 return 0;
1598 }
1599
1600 /**
1601 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1602 * @lruvec: LRU vector to check
1603 *
1604 * Returns true if the zone does not have enough inactive anon pages,
1605 * meaning some active anon pages need to be deactivated.
1606 */
1607 static int inactive_anon_is_low(struct lruvec *lruvec)
1608 {
1609 /*
1610 * If we don't have swap space, anonymous page deactivation
1611 * is pointless.
1612 */
1613 if (!total_swap_pages)
1614 return 0;
1615
1616 if (!mem_cgroup_disabled())
1617 return mem_cgroup_inactive_anon_is_low(lruvec);
1618
1619 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1620 }
1621 #else
1622 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1623 {
1624 return 0;
1625 }
1626 #endif
1627
1628 /**
1629 * inactive_file_is_low - check if file pages need to be deactivated
1630 * @lruvec: LRU vector to check
1631 *
1632 * When the system is doing streaming IO, memory pressure here
1633 * ensures that active file pages get deactivated, until more
1634 * than half of the file pages are on the inactive list.
1635 *
1636 * Once we get to that situation, protect the system's working
1637 * set from being evicted by disabling active file page aging.
1638 *
1639 * This uses a different ratio than the anonymous pages, because
1640 * the page cache uses a use-once replacement algorithm.
1641 */
1642 static int inactive_file_is_low(struct lruvec *lruvec)
1643 {
1644 unsigned long inactive;
1645 unsigned long active;
1646
1647 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1648 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1649
1650 return active > inactive;
1651 }
1652
1653 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1654 {
1655 if (is_file_lru(lru))
1656 return inactive_file_is_low(lruvec);
1657 else
1658 return inactive_anon_is_low(lruvec);
1659 }
1660
1661 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1662 struct lruvec *lruvec, struct scan_control *sc)
1663 {
1664 if (is_active_lru(lru)) {
1665 if (inactive_list_is_low(lruvec, lru))
1666 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1667 return 0;
1668 }
1669
1670 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1671 }
1672
1673 static int vmscan_swappiness(struct scan_control *sc)
1674 {
1675 if (global_reclaim(sc))
1676 return vm_swappiness;
1677 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1678 }
1679
1680 enum scan_balance {
1681 SCAN_EQUAL,
1682 SCAN_FRACT,
1683 SCAN_ANON,
1684 SCAN_FILE,
1685 };
1686
1687
1688 #ifdef CONFIG_ZRAM
1689 static int vmscan_swap_file_ratio = 1;
1690 module_param_named(swap_file_ratio, vmscan_swap_file_ratio, int, S_IRUGO | S_IWUSR);
1691
1692 #if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1693
1694 // vmscan debug
1695 static int vmscan_swap_sum = 200;
1696 module_param_named(swap_sum, vmscan_swap_sum, int, S_IRUGO | S_IWUSR);
1697
1698
1699 static int vmscan_scan_file_sum = 0;
1700 static int vmscan_scan_anon_sum = 0;
1701 static int vmscan_recent_scanned_anon = 0;
1702 static int vmscan_recent_scanned_file = 0;
1703 static int vmscan_recent_rotated_anon = 0;
1704 static int vmscan_recent_rotated_file = 0;
1705 module_param_named(scan_file_sum, vmscan_scan_file_sum, int, S_IRUGO);
1706 module_param_named(scan_anon_sum, vmscan_scan_anon_sum, int, S_IRUGO);
1707 module_param_named(recent_scanned_anon, vmscan_recent_scanned_anon, int, S_IRUGO);
1708 module_param_named(recent_scanned_file, vmscan_recent_scanned_file, int, S_IRUGO);
1709 module_param_named(recent_rotated_anon, vmscan_recent_rotated_anon, int, S_IRUGO);
1710 module_param_named(recent_rotated_file, vmscan_recent_rotated_file, int, S_IRUGO);
1711 #endif // CONFIG_ZRAM
1712
1713
1714 #if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1715 //#define LOGTAG "VMSCAN"
1716 static unsigned long t=0;
1717 static unsigned long history[2] = {0};
1718 extern int lowmem_minfree[9];
1719 #endif
1720
1721 #endif // CONFIG_ZRAM
1722
1723 /*
1724 * Determine how aggressively the anon and file LRU lists should be
1725 * scanned. The relative value of each set of LRU lists is determined
1726 * by looking at the fraction of the pages scanned we did rotate back
1727 * onto the active list instead of evict.
1728 *
1729 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1730 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1731 */
1732 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1733 unsigned long *nr)
1734 {
1735 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1736 u64 fraction[2];
1737 u64 denominator = 0; /* gcc */
1738 struct zone *zone = lruvec_zone(lruvec);
1739 unsigned long anon_prio, file_prio;
1740 enum scan_balance scan_balance;
1741 unsigned long anon, file, free;
1742 bool force_scan = false;
1743 unsigned long ap, fp;
1744 enum lru_list lru;
1745 #if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1746 int cpu;
1747 unsigned long SwapinCount, SwapoutCount, cached;
1748 bool bThrashing = false;
1749 #endif
1750
1751 /*
1752 * If the zone or memcg is small, nr[l] can be 0. This
1753 * results in no scanning on this priority and a potential
1754 * priority drop. Global direct reclaim can go to the next
1755 * zone and tends to have no problems. Global kswapd is for
1756 * zone balancing and it needs to scan a minimum amount. When
1757 * reclaiming for a memcg, a priority drop can cause high
1758 * latencies, so it's better to scan a minimum amount there as
1759 * well.
1760 */
1761 if (current_is_kswapd() && zone->all_unreclaimable)
1762 force_scan = true;
1763 if (!global_reclaim(sc))
1764 force_scan = true;
1765
1766 /* If we have no swap space, do not bother scanning anon pages. */
1767 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1768 scan_balance = SCAN_FILE;
1769 goto out;
1770 }
1771
1772 /*
1773 * Global reclaim will swap to prevent OOM even with no
1774 * swappiness, but memcg users want to use this knob to
1775 * disable swapping for individual groups completely when
1776 * using the memory controller's swap limit feature would be
1777 * too expensive.
1778 */
1779 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1780 scan_balance = SCAN_FILE;
1781 goto out;
1782 }
1783
1784 /*
1785 * Do not apply any pressure balancing cleverness when the
1786 * system is close to OOM, scan both anon and file equally
1787 * (unless the swappiness setting disagrees with swapping).
1788 */
1789 if (!sc->priority && vmscan_swappiness(sc)) {
1790 scan_balance = SCAN_EQUAL;
1791 goto out;
1792 }
1793
1794 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1795 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1796 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1797 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1798
1799 /*
1800 * If it's foreseeable that reclaiming the file cache won't be
1801 * enough to get the zone back into a desirable shape, we have
1802 * to swap. Better start now and leave the - probably heavily
1803 * thrashing - remaining file pages alone.
1804 */
1805 if (global_reclaim(sc)) {
1806 free = zone_page_state(zone, NR_FREE_PAGES);
1807 if (unlikely(file + free <= high_wmark_pages(zone))) {
1808 scan_balance = SCAN_ANON;
1809 goto out;
1810 }
1811 }
1812
1813 /*
1814 * There is enough inactive page cache, do not reclaim
1815 * anything from the anonymous working set right now.
1816 */
1817 if (!inactive_file_is_low(lruvec)) {
1818 scan_balance = SCAN_FILE;
1819 goto out;
1820 }
1821
1822 scan_balance = SCAN_FRACT;
1823
1824 /*
1825 * With swappiness at 100, anonymous and file have the same priority.
1826 * This scanning priority is essentially the inverse of IO cost.
1827 */
1828 anon_prio = vmscan_swappiness(sc);
1829 file_prio = 200 - anon_prio;
1830
1831 /*
1832 * With swappiness at 100, anonymous and file have the same priority.
1833 * This scanning priority is essentially the inverse of IO cost.
1834 */
1835 #if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1836 if (vmscan_swap_file_ratio) {
1837
1838 if(t == 0)
1839 t = jiffies;
1840
1841 if (time_after(jiffies, t + 1 * HZ)) {
1842
1843 for_each_online_cpu(cpu) {
1844 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
1845 SwapinCount += this->event[PSWPIN];
1846 SwapoutCount += this->event[PSWPOUT];
1847 }
1848
1849 if( ((SwapinCount-history[0] + SwapoutCount - history[1]) / (jiffies-t) * HZ) > 3000){
1850 bThrashing = true;
1851 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "!!! thrashing !!!\n");
1852 }else{
1853 bThrashing = false;
1854 //xlog_printk(ANDROID_LOG_WARN, LOGTAG, "!!! NO thrashing !!!\n");
1855 }
1856 history[0] = SwapinCount;
1857 history[1] = SwapoutCount;
1858
1859
1860 t=jiffies;
1861 }
1862
1863
1864 if(!bThrashing){
1865 anon_prio = (vmscan_swappiness(sc) * anon) / (anon + file + 1);
1866 file_prio = (vmscan_swap_sum - vmscan_swappiness(sc)) * file / (anon + file + 1);
1867 //xlog_printk(ANDROID_LOG_DEBUG, LOGTAG, "1 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1868
1869 } else {
1870 cached = global_page_state(NR_FILE_PAGES) - global_page_state(NR_SHMEM) - total_swapcache_pages();
1871 if(cached > lowmem_minfree[2]) {
1872 anon_prio = vmscan_swappiness(sc);
1873 file_prio = vmscan_swap_sum - vmscan_swappiness(sc);
1874 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "2 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1875 } else {
1876 anon_prio = (vmscan_swappiness(sc) * anon) / (anon + file + 1);
1877 file_prio = (vmscan_swap_sum - vmscan_swappiness(sc)) * file / (anon + file + 1);
1878 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "3 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1879 }
1880 }
1881
1882 } else {
1883 anon_prio = vmscan_swappiness(sc);
1884 file_prio = vmscan_swap_sum - vmscan_swappiness(sc);
1885 }
1886 #elif defined(CONFIG_ZRAM) // CONFIG_ZRAM
1887 if (vmscan_swap_file_ratio) {
1888 anon_prio = anon_prio * anon / (anon + file + 1);
1889 file_prio = file_prio * file / (anon + file + 1);
1890 }
1891 #endif // CONFIG_ZRAM
1892
1893
1894
1895 /*
1896 * OK, so we have swap space and a fair amount of page cache
1897 * pages. We use the recently rotated / recently scanned
1898 * ratios to determine how valuable each cache is.
1899 *
1900 * Because workloads change over time (and to avoid overflow)
1901 * we keep these statistics as a floating average, which ends
1902 * up weighing recent references more than old ones.
1903 *
1904 * anon in [0], file in [1]
1905 */
1906 spin_lock_irq(&zone->lru_lock);
1907 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1908 reclaim_stat->recent_scanned[0] /= 2;
1909 reclaim_stat->recent_rotated[0] /= 2;
1910 }
1911
1912 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1913 reclaim_stat->recent_scanned[1] /= 2;
1914 reclaim_stat->recent_rotated[1] /= 2;
1915 }
1916
1917 /*
1918 * The amount of pressure on anon vs file pages is inversely
1919 * proportional to the fraction of recently scanned pages on
1920 * each list that were recently referenced and in active use.
1921 */
1922 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1923 ap /= reclaim_stat->recent_rotated[0] + 1;
1924
1925 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1926 fp /= reclaim_stat->recent_rotated[1] + 1;
1927 spin_unlock_irq(&zone->lru_lock);
1928
1929 fraction[0] = ap;
1930 fraction[1] = fp;
1931 denominator = ap + fp + 1;
1932 out:
1933 for_each_evictable_lru(lru) {
1934 int file = is_file_lru(lru);
1935 unsigned long size;
1936 unsigned long scan;
1937
1938 size = get_lru_size(lruvec, lru);
1939 scan = size >> sc->priority;
1940
1941 if (!scan && force_scan)
1942 scan = min(size, SWAP_CLUSTER_MAX);
1943
1944 switch (scan_balance) {
1945 case SCAN_EQUAL:
1946 /* Scan lists relative to size */
1947 break;
1948 case SCAN_FRACT:
1949 /*
1950 * Scan types proportional to swappiness and
1951 * their relative recent reclaim efficiency.
1952 */
1953 scan = div64_u64(scan * fraction[file], denominator);
1954 break;
1955 case SCAN_FILE:
1956 case SCAN_ANON:
1957 /* Scan one type exclusively */
1958 if ((scan_balance == SCAN_FILE) != file)
1959 scan = 0;
1960 break;
1961 default:
1962 /* Look ma, no brain */
1963 BUG();
1964 }
1965 nr[lru] = scan;
1966 }
1967 }
1968
1969 /*
1970 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1971 */
1972 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1973 {
1974 unsigned long nr[NR_LRU_LISTS];
1975 unsigned long nr_to_scan;
1976 enum lru_list lru;
1977 unsigned long nr_reclaimed = 0;
1978 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1979 struct blk_plug plug;
1980
1981 get_scan_count(lruvec, sc, nr);
1982
1983 blk_start_plug(&plug);
1984 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1985 nr[LRU_INACTIVE_FILE]) {
1986 for_each_evictable_lru(lru) {
1987 if (nr[lru]) {
1988 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1989 nr[lru] -= nr_to_scan;
1990
1991 nr_reclaimed += shrink_list(lru, nr_to_scan,
1992 lruvec, sc);
1993 }
1994 }
1995 /*
1996 * On large memory systems, scan >> priority can become
1997 * really large. This is fine for the starting priority;
1998 * we want to put equal scanning pressure on each zone.
1999 * However, if the VM has a harder time of freeing pages,
2000 * with multiple processes reclaiming pages, the total
2001 * freeing target can get unreasonably large.
2002 */
2003 if (nr_reclaimed >= nr_to_reclaim &&
2004 sc->priority < DEF_PRIORITY)
2005 break;
2006 }
2007 blk_finish_plug(&plug);
2008 sc->nr_reclaimed += nr_reclaimed;
2009
2010 /*
2011 * Even if we did not try to evict anon pages at all, we want to
2012 * rebalance the anon lru active/inactive ratio.
2013 */
2014 if (inactive_anon_is_low(lruvec))
2015 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2016 sc, LRU_ACTIVE_ANON);
2017
2018 throttle_vm_writeout(sc->gfp_mask);
2019 }
2020
2021 /* Use reclaim/compaction for costly allocs or under memory pressure */
2022 static bool in_reclaim_compaction(struct scan_control *sc)
2023 {
2024 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2025 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2026 sc->priority < DEF_PRIORITY - 2))
2027 return true;
2028
2029 return false;
2030 }
2031
2032 /*
2033 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2034 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2035 * true if more pages should be reclaimed such that when the page allocator
2036 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2037 * It will give up earlier than that if there is difficulty reclaiming pages.
2038 */
2039 static inline bool should_continue_reclaim(struct zone *zone,
2040 unsigned long nr_reclaimed,
2041 unsigned long nr_scanned,
2042 struct scan_control *sc)
2043 {
2044 unsigned long pages_for_compaction;
2045 unsigned long inactive_lru_pages;
2046
2047 /* If not in reclaim/compaction mode, stop */
2048 if (!in_reclaim_compaction(sc))
2049 return false;
2050
2051 /* Consider stopping depending on scan and reclaim activity */
2052 if (sc->gfp_mask & __GFP_REPEAT) {
2053 /*
2054 * For __GFP_REPEAT allocations, stop reclaiming if the
2055 * full LRU list has been scanned and we are still failing
2056 * to reclaim pages. This full LRU scan is potentially
2057 * expensive but a __GFP_REPEAT caller really wants to succeed
2058 */
2059 if (!nr_reclaimed && !nr_scanned)
2060 return false;
2061 } else {
2062 /*
2063 * For non-__GFP_REPEAT allocations which can presumably
2064 * fail without consequence, stop if we failed to reclaim
2065 * any pages from the last SWAP_CLUSTER_MAX number of
2066 * pages that were scanned. This will return to the
2067 * caller faster at the risk reclaim/compaction and
2068 * the resulting allocation attempt fails
2069 */
2070 if (!nr_reclaimed)
2071 return false;
2072 }
2073
2074 /*
2075 * If we have not reclaimed enough pages for compaction and the
2076 * inactive lists are large enough, continue reclaiming
2077 */
2078 pages_for_compaction = (2UL << sc->order);
2079 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2080 if (get_nr_swap_pages() > 0)
2081 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2082 if (sc->nr_reclaimed < pages_for_compaction &&
2083 inactive_lru_pages > pages_for_compaction)
2084 return true;
2085
2086 /* If compaction would go ahead or the allocation would succeed, stop */
2087 switch (compaction_suitable(zone, sc->order)) {
2088 case COMPACT_PARTIAL:
2089 case COMPACT_CONTINUE:
2090 return false;
2091 default:
2092 return true;
2093 }
2094 }
2095
2096 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2097 {
2098 unsigned long nr_reclaimed, nr_scanned;
2099
2100 do {
2101 struct mem_cgroup *root = sc->target_mem_cgroup;
2102 struct mem_cgroup_reclaim_cookie reclaim = {
2103 .zone = zone,
2104 .priority = sc->priority,
2105 };
2106 struct mem_cgroup *memcg;
2107
2108 nr_reclaimed = sc->nr_reclaimed;
2109 nr_scanned = sc->nr_scanned;
2110
2111 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2112 do {
2113 struct lruvec *lruvec;
2114
2115 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2116
2117 shrink_lruvec(lruvec, sc);
2118
2119 /*
2120 * Direct reclaim and kswapd have to scan all memory
2121 * cgroups to fulfill the overall scan target for the
2122 * zone.
2123 *
2124 * Limit reclaim, on the other hand, only cares about
2125 * nr_to_reclaim pages to be reclaimed and it will
2126 * retry with decreasing priority if one round over the
2127 * whole hierarchy is not sufficient.
2128 */
2129 if (!global_reclaim(sc) &&
2130 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2131 mem_cgroup_iter_break(root, memcg);
2132 break;
2133 }
2134 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2135 } while (memcg);
2136
2137 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2138 sc->nr_scanned - nr_scanned,
2139 sc->nr_reclaimed - nr_reclaimed);
2140
2141 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2142 sc->nr_scanned - nr_scanned, sc));
2143 }
2144
2145 /* Returns true if compaction should go ahead for a high-order request */
2146 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2147 {
2148 unsigned long balance_gap, watermark;
2149 bool watermark_ok;
2150
2151 /* Do not consider compaction for orders reclaim is meant to satisfy */
2152 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2153 return false;
2154
2155 /*
2156 * Compaction takes time to run and there are potentially other
2157 * callers using the pages just freed. Continue reclaiming until
2158 * there is a buffer of free pages available to give compaction
2159 * a reasonable chance of completing and allocating the page
2160 */
2161 balance_gap = min(low_wmark_pages(zone),
2162 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2163 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2164 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2165 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2166
2167 /*
2168 * If compaction is deferred, reclaim up to a point where
2169 * compaction will have a chance of success when re-enabled
2170 */
2171 if (compaction_deferred(zone, sc->order))
2172 return watermark_ok;
2173
2174 /* If compaction is not ready to start, keep reclaiming */
2175 if (!compaction_suitable(zone, sc->order))
2176 return false;
2177
2178 return watermark_ok;
2179 }
2180
2181 /*
2182 * This is the direct reclaim path, for page-allocating processes. We only
2183 * try to reclaim pages from zones which will satisfy the caller's allocation
2184 * request.
2185 *
2186 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2187 * Because:
2188 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2189 * allocation or
2190 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2191 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2192 * zone defense algorithm.
2193 *
2194 * If a zone is deemed to be full of pinned pages then just give it a light
2195 * scan then give up on it.
2196 *
2197 * This function returns true if a zone is being reclaimed for a costly
2198 * high-order allocation and compaction is ready to begin. This indicates to
2199 * the caller that it should consider retrying the allocation instead of
2200 * further reclaim.
2201 */
2202 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2203 {
2204 struct zoneref *z;
2205 struct zone *zone;
2206 unsigned long nr_soft_reclaimed;
2207 unsigned long nr_soft_scanned;
2208 bool aborted_reclaim = false;
2209
2210 /*
2211 * If the number of buffer_heads in the machine exceeds the maximum
2212 * allowed level, force direct reclaim to scan the highmem zone as
2213 * highmem pages could be pinning lowmem pages storing buffer_heads
2214 */
2215 if (buffer_heads_over_limit)
2216 sc->gfp_mask |= __GFP_HIGHMEM;
2217
2218 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2219 gfp_zone(sc->gfp_mask), sc->nodemask) {
2220 if (!populated_zone(zone))
2221 continue;
2222 /*
2223 * Take care memory controller reclaiming has small influence
2224 * to global LRU.
2225 */
2226 if (global_reclaim(sc)) {
2227 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2228 continue;
2229 if (zone->all_unreclaimable &&
2230 sc->priority != DEF_PRIORITY)
2231 continue; /* Let kswapd poll it */
2232 if (IS_ENABLED(CONFIG_COMPACTION) && !sc->hibernation_mode) {
2233 /*
2234 * If we already have plenty of memory free for
2235 * compaction in this zone, don't free any more.
2236 * Even though compaction is invoked for any
2237 * non-zero order, only frequent costly order
2238 * reclamation is disruptive enough to become a
2239 * noticeable problem, like transparent huge
2240 * page allocations.
2241 */
2242 if (compaction_ready(zone, sc)) {
2243 aborted_reclaim = true;
2244 continue;
2245 }
2246 }
2247 /*
2248 * This steals pages from memory cgroups over softlimit
2249 * and returns the number of reclaimed pages and
2250 * scanned pages. This works for global memory pressure
2251 * and balancing, not for a memcg's limit.
2252 */
2253 nr_soft_scanned = 0;
2254 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2255 sc->order, sc->gfp_mask,
2256 &nr_soft_scanned);
2257 sc->nr_reclaimed += nr_soft_reclaimed;
2258 sc->nr_scanned += nr_soft_scanned;
2259 /* need some check for avoid more shrink_zone() */
2260 }
2261
2262 shrink_zone(zone, sc);
2263 }
2264
2265 return aborted_reclaim;
2266 }
2267
2268 static unsigned long zone_reclaimable_pages(struct zone *zone)
2269 {
2270 int nr;
2271
2272 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2273 zone_page_state(zone, NR_INACTIVE_FILE);
2274
2275 if (get_nr_swap_pages() > 0)
2276 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2277 zone_page_state(zone, NR_INACTIVE_ANON);
2278
2279 return nr;
2280 }
2281
2282 static bool zone_reclaimable(struct zone *zone)
2283 {
2284 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2285 }
2286
2287 /* All zones in zonelist are unreclaimable? */
2288 static bool all_unreclaimable(struct zonelist *zonelist,
2289 struct scan_control *sc)
2290 {
2291 struct zoneref *z;
2292 struct zone *zone;
2293
2294 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2295 gfp_zone(sc->gfp_mask), sc->nodemask) {
2296 if (!populated_zone(zone))
2297 continue;
2298 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2299 continue;
2300 if (!zone->all_unreclaimable)
2301 return false;
2302 }
2303
2304 return true;
2305 }
2306
2307 /*
2308 * This is the main entry point to direct page reclaim.
2309 *
2310 * If a full scan of the inactive list fails to free enough memory then we
2311 * are "out of memory" and something needs to be killed.
2312 *
2313 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2314 * high - the zone may be full of dirty or under-writeback pages, which this
2315 * caller can't do much about. We kick the writeback threads and take explicit
2316 * naps in the hope that some of these pages can be written. But if the
2317 * allocating task holds filesystem locks which prevent writeout this might not
2318 * work, and the allocation attempt will fail.
2319 *
2320 * returns: 0, if no pages reclaimed
2321 * else, the number of pages reclaimed
2322 */
2323 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2324 struct scan_control *sc,
2325 struct shrink_control *shrink)
2326 {
2327 unsigned long total_scanned = 0;
2328 struct reclaim_state *reclaim_state = current->reclaim_state;
2329 struct zoneref *z;
2330 struct zone *zone;
2331 unsigned long writeback_threshold;
2332 bool aborted_reclaim;
2333
2334 #ifdef CONFIG_FREEZER
2335 if (unlikely(pm_freezing && !sc->hibernation_mode))
2336 return 0;
2337 #endif
2338
2339 delayacct_freepages_start();
2340
2341 if (global_reclaim(sc))
2342 count_vm_event(ALLOCSTALL);
2343
2344 do {
2345 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2346 sc->priority);
2347 sc->nr_scanned = 0;
2348 aborted_reclaim = shrink_zones(zonelist, sc);
2349
2350 /*
2351 * Don't shrink slabs when reclaiming memory from
2352 * over limit cgroups
2353 */
2354 if (global_reclaim(sc)) {
2355 unsigned long lru_pages = 0;
2356 for_each_zone_zonelist(zone, z, zonelist,
2357 gfp_zone(sc->gfp_mask)) {
2358 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2359 continue;
2360
2361 lru_pages += zone_reclaimable_pages(zone);
2362 }
2363
2364 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2365 if (reclaim_state) {
2366 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2367 reclaim_state->reclaimed_slab = 0;
2368 }
2369 }
2370 total_scanned += sc->nr_scanned;
2371 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2372 goto out;
2373
2374 /*
2375 * If we're getting trouble reclaiming, start doing
2376 * writepage even in laptop mode.
2377 */
2378 if (sc->priority < DEF_PRIORITY - 2)
2379 sc->may_writepage = 1;
2380
2381 /*
2382 * Try to write back as many pages as we just scanned. This
2383 * tends to cause slow streaming writers to write data to the
2384 * disk smoothly, at the dirtying rate, which is nice. But
2385 * that's undesirable in laptop mode, where we *want* lumpy
2386 * writeout. So in laptop mode, write out the whole world.
2387 */
2388 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2389 if (total_scanned > writeback_threshold) {
2390 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2391 WB_REASON_TRY_TO_FREE_PAGES);
2392 sc->may_writepage = 1;
2393 }
2394
2395 /* Take a nap, wait for some writeback to complete */
2396 if (!sc->hibernation_mode && sc->nr_scanned &&
2397 sc->priority < DEF_PRIORITY - 2) {
2398 struct zone *preferred_zone;
2399
2400 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2401 &cpuset_current_mems_allowed,
2402 &preferred_zone);
2403 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2404 }
2405 } while (--sc->priority >= 0);
2406
2407 out:
2408 delayacct_freepages_end();
2409
2410 if (sc->nr_reclaimed)
2411 return sc->nr_reclaimed;
2412
2413 /*
2414 * As hibernation is going on, kswapd is freezed so that it can't mark
2415 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2416 * check.
2417 */
2418 if (oom_killer_disabled)
2419 return 0;
2420
2421 /* Aborted reclaim to try compaction? don't OOM, then */
2422 if (aborted_reclaim)
2423 return 1;
2424
2425 /* top priority shrink_zones still had more to do? don't OOM, then */
2426 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2427 return 1;
2428
2429 return 0;
2430 }
2431
2432 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2433 {
2434 struct zone *zone;
2435 unsigned long pfmemalloc_reserve = 0;
2436 unsigned long free_pages = 0;
2437 int i;
2438 bool wmark_ok;
2439
2440 for (i = 0; i <= ZONE_NORMAL; i++) {
2441 zone = &pgdat->node_zones[i];
2442 if (!populated_zone(zone))
2443 continue;
2444
2445 pfmemalloc_reserve += min_wmark_pages(zone);
2446 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2447 }
2448
2449 /* If there are no reserves (unexpected config) then do not throttle */
2450 if (!pfmemalloc_reserve)
2451 return true;
2452
2453 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2454
2455 /* kswapd must be awake if processes are being throttled */
2456 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2457 pgdat->classzone_idx = min(pgdat->classzone_idx,
2458 (enum zone_type)ZONE_NORMAL);
2459 wake_up_interruptible(&pgdat->kswapd_wait);
2460 }
2461
2462 return wmark_ok;
2463 }
2464
2465 /*
2466 * Throttle direct reclaimers if backing storage is backed by the network
2467 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2468 * depleted. kswapd will continue to make progress and wake the processes
2469 * when the low watermark is reached.
2470 *
2471 * Returns true if a fatal signal was delivered during throttling. If this
2472 * happens, the page allocator should not consider triggering the OOM killer.
2473 */
2474 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2475 nodemask_t *nodemask)
2476 {
2477 struct zoneref *z;
2478 struct zone *zone;
2479 pg_data_t *pgdat = NULL;
2480
2481 /*
2482 * Kernel threads should not be throttled as they may be indirectly
2483 * responsible for cleaning pages necessary for reclaim to make forward
2484 * progress. kjournald for example may enter direct reclaim while
2485 * committing a transaction where throttling it could forcing other
2486 * processes to block on log_wait_commit().
2487 */
2488 if (current->flags & PF_KTHREAD)
2489 goto out;
2490
2491 /*
2492 * If a fatal signal is pending, this process should not throttle.
2493 * It should return quickly so it can exit and free its memory
2494 */
2495 if (fatal_signal_pending(current))
2496 goto out;
2497
2498 /*
2499 * Check if the pfmemalloc reserves are ok by finding the first node
2500 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2501 * GFP_KERNEL will be required for allocating network buffers when
2502 * swapping over the network so ZONE_HIGHMEM is unusable.
2503 *
2504 * Throttling is based on the first usable node and throttled processes
2505 * wait on a queue until kswapd makes progress and wakes them. There
2506 * is an affinity then between processes waking up and where reclaim
2507 * progress has been made assuming the process wakes on the same node.
2508 * More importantly, processes running on remote nodes will not compete
2509 * for remote pfmemalloc reserves and processes on different nodes
2510 * should make reasonable progress.
2511 */
2512 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2513 gfp_mask, nodemask) {
2514 if (zone_idx(zone) > ZONE_NORMAL)
2515 continue;
2516
2517 /* Throttle based on the first usable node */
2518 pgdat = zone->zone_pgdat;
2519 if (pfmemalloc_watermark_ok(pgdat))
2520 goto out;
2521 break;
2522 }
2523
2524 /* If no zone was usable by the allocation flags then do not throttle */
2525 if (!pgdat)
2526 goto out;
2527
2528 /* Account for the throttling */
2529 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2530
2531 /*
2532 * If the caller cannot enter the filesystem, it's possible that it
2533 * is due to the caller holding an FS lock or performing a journal
2534 * transaction in the case of a filesystem like ext[3|4]. In this case,
2535 * it is not safe to block on pfmemalloc_wait as kswapd could be
2536 * blocked waiting on the same lock. Instead, throttle for up to a
2537 * second before continuing.
2538 */
2539 if (!(gfp_mask & __GFP_FS)) {
2540 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2541 pfmemalloc_watermark_ok(pgdat), HZ);
2542
2543 goto check_pending;
2544 }
2545
2546 /* Throttle until kswapd wakes the process */
2547 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2548 pfmemalloc_watermark_ok(pgdat));
2549
2550 check_pending:
2551 if (fatal_signal_pending(current))
2552 return true;
2553
2554 out:
2555 return false;
2556 }
2557
2558 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2559 gfp_t gfp_mask, nodemask_t *nodemask)
2560 {
2561 unsigned long nr_reclaimed;
2562 struct scan_control sc = {
2563 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2564 .may_writepage = !laptop_mode,
2565 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2566 .may_unmap = 1,
2567 .may_swap = 1,
2568 .order = order,
2569 .priority = DEF_PRIORITY,
2570 .target_mem_cgroup = NULL,
2571 .nodemask = nodemask,
2572 };
2573 struct shrink_control shrink = {
2574 .gfp_mask = sc.gfp_mask,
2575 };
2576
2577 /*
2578 * Do not enter reclaim if fatal signal was delivered while throttled.
2579 * 1 is returned so that the page allocator does not OOM kill at this
2580 * point.
2581 */
2582 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2583 return 1;
2584
2585 trace_mm_vmscan_direct_reclaim_begin(order,
2586 sc.may_writepage,
2587 gfp_mask);
2588
2589 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2590
2591 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2592
2593 return nr_reclaimed;
2594 }
2595
2596 #ifdef CONFIG_MEMCG
2597
2598 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2599 gfp_t gfp_mask, bool noswap,
2600 struct zone *zone,
2601 unsigned long *nr_scanned)
2602 {
2603 struct scan_control sc = {
2604 .nr_scanned = 0,
2605 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2606 .may_writepage = !laptop_mode,
2607 .may_unmap = 1,
2608 .may_swap = !noswap,
2609 .order = 0,
2610 .priority = 0,
2611 .target_mem_cgroup = memcg,
2612 };
2613 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2614
2615 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2616 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2617
2618 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2619 sc.may_writepage,
2620 sc.gfp_mask);
2621
2622 /*
2623 * NOTE: Although we can get the priority field, using it
2624 * here is not a good idea, since it limits the pages we can scan.
2625 * if we don't reclaim here, the shrink_zone from balance_pgdat
2626 * will pick up pages from other mem cgroup's as well. We hack
2627 * the priority and make it zero.
2628 */
2629 shrink_lruvec(lruvec, &sc);
2630
2631 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2632
2633 *nr_scanned = sc.nr_scanned;
2634 return sc.nr_reclaimed;
2635 }
2636
2637 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2638 gfp_t gfp_mask,
2639 bool noswap)
2640 {
2641 struct zonelist *zonelist;
2642 unsigned long nr_reclaimed;
2643 int nid;
2644 struct scan_control sc = {
2645 .may_writepage = !laptop_mode,
2646 .may_unmap = 1,
2647 .may_swap = !noswap,
2648 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2649 .order = 0,
2650 .priority = DEF_PRIORITY,
2651 .target_mem_cgroup = memcg,
2652 .nodemask = NULL, /* we don't care the placement */
2653 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2654 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2655 };
2656 struct shrink_control shrink = {
2657 .gfp_mask = sc.gfp_mask,
2658 };
2659
2660 /*
2661 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2662 * take care of from where we get pages. So the node where we start the
2663 * scan does not need to be the current node.
2664 */
2665 nid = mem_cgroup_select_victim_node(memcg);
2666
2667 zonelist = NODE_DATA(nid)->node_zonelists;
2668
2669 trace_mm_vmscan_memcg_reclaim_begin(0,
2670 sc.may_writepage,
2671 sc.gfp_mask);
2672
2673 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2674
2675 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2676
2677 return nr_reclaimed;
2678 }
2679 #endif
2680
2681 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2682 {
2683 struct mem_cgroup *memcg;
2684
2685 if (!total_swap_pages)
2686 return;
2687
2688 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2689 do {
2690 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2691
2692 if (inactive_anon_is_low(lruvec))
2693 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2694 sc, LRU_ACTIVE_ANON);
2695
2696 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2697 } while (memcg);
2698 }
2699
2700 static bool zone_balanced(struct zone *zone, int order,
2701 unsigned long balance_gap, int classzone_idx)
2702 {
2703 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2704 balance_gap, classzone_idx, 0))
2705 return false;
2706
2707 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2708 !compaction_suitable(zone, order))
2709 return false;
2710
2711 return true;
2712 }
2713
2714 /*
2715 * pgdat_balanced() is used when checking if a node is balanced.
2716 *
2717 * For order-0, all zones must be balanced!
2718 *
2719 * For high-order allocations only zones that meet watermarks and are in a
2720 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2721 * total of balanced pages must be at least 25% of the zones allowed by
2722 * classzone_idx for the node to be considered balanced. Forcing all zones to
2723 * be balanced for high orders can cause excessive reclaim when there are
2724 * imbalanced zones.
2725 * The choice of 25% is due to
2726 * o a 16M DMA zone that is balanced will not balance a zone on any
2727 * reasonable sized machine
2728 * o On all other machines, the top zone must be at least a reasonable
2729 * percentage of the middle zones. For example, on 32-bit x86, highmem
2730 * would need to be at least 256M for it to be balance a whole node.
2731 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2732 * to balance a node on its own. These seemed like reasonable ratios.
2733 */
2734 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2735 {
2736 unsigned long managed_pages = 0;
2737 unsigned long balanced_pages = 0;
2738 int i;
2739
2740 /* Check the watermark levels */
2741 for (i = 0; i <= classzone_idx; i++) {
2742 struct zone *zone = pgdat->node_zones + i;
2743
2744 if (!populated_zone(zone))
2745 continue;
2746
2747 managed_pages += zone->managed_pages;
2748
2749 /*
2750 * A special case here:
2751 *
2752 * balance_pgdat() skips over all_unreclaimable after
2753 * DEF_PRIORITY. Effectively, it considers them balanced so
2754 * they must be considered balanced here as well!
2755 */
2756 if (zone->all_unreclaimable) {
2757 balanced_pages += zone->managed_pages;
2758 continue;
2759 }
2760
2761 if (zone_balanced(zone, order, 0, i))
2762 balanced_pages += zone->managed_pages;
2763 else if (!order)
2764 return false;
2765 }
2766
2767 if (order)
2768 return balanced_pages >= (managed_pages >> 2);
2769 else
2770 return true;
2771 }
2772
2773 /*
2774 * Prepare kswapd for sleeping. This verifies that there are no processes
2775 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2776 *
2777 * Returns true if kswapd is ready to sleep
2778 */
2779 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2780 int classzone_idx)
2781 {
2782 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2783 if (remaining)
2784 return false;
2785
2786 /*
2787 * The throttled processes are normally woken up in balance_pgdat() as
2788 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2789 * race between when kswapd checks the watermarks and a process gets
2790 * throttled. There is also a potential race if processes get
2791 * throttled, kswapd wakes, a large process exits thereby balancing the
2792 * zones, which causes kswapd to exit balance_pgdat() before reaching
2793 * the wake up checks. If kswapd is going to sleep, no process should
2794 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2795 * the wake up is premature, processes will wake kswapd and get
2796 * throttled again. The difference from wake ups in balance_pgdat() is
2797 * that here we are under prepare_to_wait().
2798 */
2799 if (waitqueue_active(&pgdat->pfmemalloc_wait))
2800 wake_up_all(&pgdat->pfmemalloc_wait);
2801
2802 return pgdat_balanced(pgdat, order, classzone_idx);
2803 }
2804
2805 /*
2806 * For kswapd, balance_pgdat() will work across all this node's zones until
2807 * they are all at high_wmark_pages(zone).
2808 *
2809 * Returns the final order kswapd was reclaiming at
2810 *
2811 * There is special handling here for zones which are full of pinned pages.
2812 * This can happen if the pages are all mlocked, or if they are all used by
2813 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2814 * What we do is to detect the case where all pages in the zone have been
2815 * scanned twice and there has been zero successful reclaim. Mark the zone as
2816 * dead and from now on, only perform a short scan. Basically we're polling
2817 * the zone for when the problem goes away.
2818 *
2819 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2820 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2821 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2822 * lower zones regardless of the number of free pages in the lower zones. This
2823 * interoperates with the page allocator fallback scheme to ensure that aging
2824 * of pages is balanced across the zones.
2825 */
2826 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2827 int *classzone_idx)
2828 {
2829 bool pgdat_is_balanced = false;
2830 int i;
2831 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2832 struct reclaim_state *reclaim_state = current->reclaim_state;
2833 unsigned long nr_soft_reclaimed;
2834 unsigned long nr_soft_scanned;
2835 struct scan_control sc = {
2836 .gfp_mask = GFP_KERNEL,
2837 .may_unmap = 1,
2838 .may_swap = 1,
2839 /*
2840 * kswapd doesn't want to be bailed out while reclaim. because
2841 * we want to put equal scanning pressure on each zone.
2842 */
2843 .nr_to_reclaim = ULONG_MAX,
2844 .order = order,
2845 .target_mem_cgroup = NULL,
2846 };
2847 struct shrink_control shrink = {
2848 .gfp_mask = sc.gfp_mask,
2849 };
2850 loop_again:
2851 sc.priority = DEF_PRIORITY;
2852 sc.nr_reclaimed = 0;
2853 sc.may_writepage = !laptop_mode;
2854 count_vm_event(PAGEOUTRUN);
2855
2856 do {
2857 unsigned long lru_pages = 0;
2858
2859 /*
2860 * Scan in the highmem->dma direction for the highest
2861 * zone which needs scanning
2862 */
2863 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2864 struct zone *zone = pgdat->node_zones + i;
2865
2866 if (!populated_zone(zone))
2867 continue;
2868
2869 if (zone->all_unreclaimable &&
2870 sc.priority != DEF_PRIORITY)
2871 continue;
2872
2873 /*
2874 * Do some background aging of the anon list, to give
2875 * pages a chance to be referenced before reclaiming.
2876 */
2877 age_active_anon(zone, &sc);
2878
2879 /*
2880 * If the number of buffer_heads in the machine
2881 * exceeds the maximum allowed level and this node
2882 * has a highmem zone, force kswapd to reclaim from
2883 * it to relieve lowmem pressure.
2884 */
2885 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2886 end_zone = i;
2887 break;
2888 }
2889
2890 if (!zone_balanced(zone, order, 0, 0)) {
2891 end_zone = i;
2892 break;
2893 } else {
2894 /* If balanced, clear the congested flag */
2895 zone_clear_flag(zone, ZONE_CONGESTED);
2896 }
2897 }
2898
2899 if (i < 0) {
2900 pgdat_is_balanced = true;
2901 goto out;
2902 }
2903
2904 for (i = 0; i <= end_zone; i++) {
2905 struct zone *zone = pgdat->node_zones + i;
2906
2907 lru_pages += zone_reclaimable_pages(zone);
2908 }
2909
2910 /*
2911 * Now scan the zone in the dma->highmem direction, stopping
2912 * at the last zone which needs scanning.
2913 *
2914 * We do this because the page allocator works in the opposite
2915 * direction. This prevents the page allocator from allocating
2916 * pages behind kswapd's direction of progress, which would
2917 * cause too much scanning of the lower zones.
2918 */
2919 for (i = 0; i <= end_zone; i++) {
2920 struct zone *zone = pgdat->node_zones + i;
2921 int nr_slab, testorder;
2922 unsigned long balance_gap;
2923
2924 if (!populated_zone(zone))
2925 continue;
2926
2927 if (zone->all_unreclaimable &&
2928 sc.priority != DEF_PRIORITY)
2929 continue;
2930
2931 sc.nr_scanned = 0;
2932
2933 nr_soft_scanned = 0;
2934 /*
2935 * Call soft limit reclaim before calling shrink_zone.
2936 */
2937 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2938 order, sc.gfp_mask,
2939 &nr_soft_scanned);
2940 sc.nr_reclaimed += nr_soft_reclaimed;
2941
2942 /*
2943 * We put equal pressure on every zone, unless
2944 * one zone has way too many pages free
2945 * already. The "too many pages" is defined
2946 * as the high wmark plus a "gap" where the
2947 * gap is either the low watermark or 1%
2948 * of the zone, whichever is smaller.
2949 */
2950 balance_gap = min(low_wmark_pages(zone),
2951 (zone->managed_pages +
2952 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2953 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2954 /*
2955 * Kswapd reclaims only single pages with compaction
2956 * enabled. Trying too hard to reclaim until contiguous
2957 * free pages have become available can hurt performance
2958 * by evicting too much useful data from memory.
2959 * Do not reclaim more than needed for compaction.
2960 */
2961 testorder = order;
2962 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2963 compaction_suitable(zone, order) !=
2964 COMPACT_SKIPPED)
2965 testorder = 0;
2966
2967 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2968 !zone_balanced(zone, testorder,
2969 balance_gap, end_zone)) {
2970 shrink_zone(zone, &sc);
2971
2972 reclaim_state->reclaimed_slab = 0;
2973 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2974 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2975
2976 if (nr_slab == 0 && !zone_reclaimable(zone))
2977 zone->all_unreclaimable = 1;
2978 }
2979
2980 /*
2981 * If we're getting trouble reclaiming, start doing
2982 * writepage even in laptop mode.
2983 */
2984 if (sc.priority < DEF_PRIORITY - 2)
2985 sc.may_writepage = 1;
2986
2987 if (zone->all_unreclaimable) {
2988 if (end_zone && end_zone == i)
2989 end_zone--;
2990 continue;
2991 }
2992
2993 if (zone_balanced(zone, testorder, 0, end_zone))
2994 /*
2995 * If a zone reaches its high watermark,
2996 * consider it to be no longer congested. It's
2997 * possible there are dirty pages backed by
2998 * congested BDIs but as pressure is relieved,
2999 * speculatively avoid congestion waits
3000 */
3001 zone_clear_flag(zone, ZONE_CONGESTED);
3002 }
3003
3004 /*
3005 * If the low watermark is met there is no need for processes
3006 * to be throttled on pfmemalloc_wait as they should not be
3007 * able to safely make forward progress. Wake them
3008 */
3009 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3010 pfmemalloc_watermark_ok(pgdat))
3011 wake_up(&pgdat->pfmemalloc_wait);
3012
3013 if (pgdat_balanced(pgdat, order, *classzone_idx)) {
3014 pgdat_is_balanced = true;
3015 break; /* kswapd: all done */
3016 }
3017
3018 /*
3019 * We do this so kswapd doesn't build up large priorities for
3020 * example when it is freeing in parallel with allocators. It
3021 * matches the direct reclaim path behaviour in terms of impact
3022 * on zone->*_priority.
3023 */
3024 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
3025 break;
3026 } while (--sc.priority >= 0);
3027
3028 out:
3029 if (!pgdat_is_balanced) {
3030 cond_resched();
3031
3032 try_to_freeze();
3033
3034 /*
3035 * Fragmentation may mean that the system cannot be
3036 * rebalanced for high-order allocations in all zones.
3037 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
3038 * it means the zones have been fully scanned and are still
3039 * not balanced. For high-order allocations, there is
3040 * little point trying all over again as kswapd may
3041 * infinite loop.
3042 *
3043 * Instead, recheck all watermarks at order-0 as they
3044 * are the most important. If watermarks are ok, kswapd will go
3045 * back to sleep. High-order users can still perform direct
3046 * reclaim if they wish.
3047 */
3048 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
3049 order = sc.order = 0;
3050
3051 goto loop_again;
3052 }
3053
3054 /*
3055 * If kswapd was reclaiming at a higher order, it has the option of
3056 * sleeping without all zones being balanced. Before it does, it must
3057 * ensure that the watermarks for order-0 on *all* zones are met and
3058 * that the congestion flags are cleared. The congestion flag must
3059 * be cleared as kswapd is the only mechanism that clears the flag
3060 * and it is potentially going to sleep here.
3061 */
3062 if (order) {
3063 int zones_need_compaction = 1;
3064
3065 for (i = 0; i <= end_zone; i++) {
3066 struct zone *zone = pgdat->node_zones + i;
3067
3068 if (!populated_zone(zone))
3069 continue;
3070
3071 /* Check if the memory needs to be defragmented. */
3072 if (zone_watermark_ok(zone, order,
3073 low_wmark_pages(zone), *classzone_idx, 0))
3074 zones_need_compaction = 0;
3075 }
3076
3077 if (zones_need_compaction)
3078 compact_pgdat(pgdat, order);
3079 }
3080
3081 /*
3082 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3083 * makes a decision on the order we were last reclaiming at. However,
3084 * if another caller entered the allocator slow path while kswapd
3085 * was awake, order will remain at the higher level
3086 */
3087 *classzone_idx = end_zone;
3088 return order;
3089 }
3090
3091 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3092 {
3093 long remaining = 0;
3094 DEFINE_WAIT(wait);
3095
3096 if (freezing(current) || kthread_should_stop())
3097 return;
3098
3099 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3100
3101 /* Try to sleep for a short interval */
3102 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3103 remaining = schedule_timeout(HZ/10);
3104 finish_wait(&pgdat->kswapd_wait, &wait);
3105 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3106 }
3107
3108 /*
3109 * After a short sleep, check if it was a premature sleep. If not, then
3110 * go fully to sleep until explicitly woken up.
3111 */
3112 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3113 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3114
3115 /*
3116 * vmstat counters are not perfectly accurate and the estimated
3117 * value for counters such as NR_FREE_PAGES can deviate from the
3118 * true value by nr_online_cpus * threshold. To avoid the zone
3119 * watermarks being breached while under pressure, we reduce the
3120 * per-cpu vmstat threshold while kswapd is awake and restore
3121 * them before going back to sleep.
3122 */
3123 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3124
3125 /*
3126 * Compaction records what page blocks it recently failed to
3127 * isolate pages from and skips them in the future scanning.
3128 * When kswapd is going to sleep, it is reasonable to assume
3129 * that pages and compaction may succeed so reset the cache.
3130 */
3131 reset_isolation_suitable(pgdat);
3132
3133 if (!kthread_should_stop())
3134 schedule();
3135
3136 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3137 } else {
3138 if (remaining)
3139 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3140 else
3141 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3142 }
3143 finish_wait(&pgdat->kswapd_wait, &wait);
3144 }
3145
3146 /*
3147 * The background pageout daemon, started as a kernel thread
3148 * from the init process.
3149 *
3150 * This basically trickles out pages so that we have _some_
3151 * free memory available even if there is no other activity
3152 * that frees anything up. This is needed for things like routing
3153 * etc, where we otherwise might have all activity going on in
3154 * asynchronous contexts that cannot page things out.
3155 *
3156 * If there are applications that are active memory-allocators
3157 * (most normal use), this basically shouldn't matter.
3158 */
3159 static int kswapd(void *p)
3160 {
3161 unsigned long order, new_order;
3162 unsigned balanced_order;
3163 int classzone_idx, new_classzone_idx;
3164 int balanced_classzone_idx;
3165 pg_data_t *pgdat = (pg_data_t*)p;
3166 struct task_struct *tsk = current;
3167
3168 struct reclaim_state reclaim_state = {
3169 .reclaimed_slab = 0,
3170 };
3171 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3172
3173 lockdep_set_current_reclaim_state(GFP_KERNEL);
3174
3175 if (!cpumask_empty(cpumask))
3176 set_cpus_allowed_ptr(tsk, cpumask);
3177 current->reclaim_state = &reclaim_state;
3178
3179 /*
3180 * Tell the memory management that we're a "memory allocator",
3181 * and that if we need more memory we should get access to it
3182 * regardless (see "__alloc_pages()"). "kswapd" should
3183 * never get caught in the normal page freeing logic.
3184 *
3185 * (Kswapd normally doesn't need memory anyway, but sometimes
3186 * you need a small amount of memory in order to be able to
3187 * page out something else, and this flag essentially protects
3188 * us from recursively trying to free more memory as we're
3189 * trying to free the first piece of memory in the first place).
3190 */
3191 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3192 set_freezable();
3193
3194 order = new_order = 0;
3195 balanced_order = 0;
3196 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3197 balanced_classzone_idx = classzone_idx;
3198 for ( ; ; ) {
3199 bool ret;
3200
3201 /*
3202 * If the last balance_pgdat was unsuccessful it's unlikely a
3203 * new request of a similar or harder type will succeed soon
3204 * so consider going to sleep on the basis we reclaimed at
3205 */
3206 if (balanced_classzone_idx >= new_classzone_idx &&
3207 balanced_order == new_order) {
3208 new_order = pgdat->kswapd_max_order;
3209 new_classzone_idx = pgdat->classzone_idx;
3210 pgdat->kswapd_max_order = 0;
3211 pgdat->classzone_idx = pgdat->nr_zones - 1;
3212 }
3213
3214 if (order < new_order || classzone_idx > new_classzone_idx) {
3215 /*
3216 * Don't sleep if someone wants a larger 'order'
3217 * allocation or has tigher zone constraints
3218 */
3219 order = new_order;
3220 classzone_idx = new_classzone_idx;
3221 } else {
3222 kswapd_try_to_sleep(pgdat, balanced_order,
3223 balanced_classzone_idx);
3224 order = pgdat->kswapd_max_order;
3225 classzone_idx = pgdat->classzone_idx;
3226 new_order = order;
3227 new_classzone_idx = classzone_idx;
3228 pgdat->kswapd_max_order = 0;
3229 pgdat->classzone_idx = pgdat->nr_zones - 1;
3230 }
3231
3232 ret = try_to_freeze();
3233 if (kthread_should_stop())
3234 break;
3235
3236 /*
3237 * We can speed up thawing tasks if we don't call balance_pgdat
3238 * after returning from the refrigerator
3239 */
3240 if (!ret) {
3241 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3242 balanced_classzone_idx = classzone_idx;
3243 balanced_order = balance_pgdat(pgdat, order,
3244 &balanced_classzone_idx);
3245 }
3246 }
3247
3248 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3249 current->reclaim_state = NULL;
3250 lockdep_clear_current_reclaim_state();
3251
3252 return 0;
3253 }
3254
3255 /*
3256 * A zone is low on free memory, so wake its kswapd task to service it.
3257 */
3258 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3259 {
3260 pg_data_t *pgdat;
3261
3262 if (!populated_zone(zone))
3263 return;
3264
3265 #ifdef CONFIG_FREEZER
3266 if (pm_freezing)
3267 return;
3268 #endif
3269
3270 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3271 return;
3272 pgdat = zone->zone_pgdat;
3273 if (pgdat->kswapd_max_order < order) {
3274 pgdat->kswapd_max_order = order;
3275 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3276 }
3277 if (!waitqueue_active(&pgdat->kswapd_wait))
3278 return;
3279 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3280 return;
3281
3282 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3283 wake_up_interruptible(&pgdat->kswapd_wait);
3284 }
3285
3286 #ifdef CONFIG_HIBERNATION
3287 /*
3288 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3289 * freed pages.
3290 *
3291 * Rather than trying to age LRUs the aim is to preserve the overall
3292 * LRU order by reclaiming preferentially
3293 * inactive > active > active referenced > active mapped
3294 */
3295 unsigned long shrink_memory_mask(unsigned long nr_to_reclaim, gfp_t mask)
3296 {
3297 struct reclaim_state reclaim_state;
3298 struct scan_control sc = {
3299 .gfp_mask = mask,
3300 .may_swap = 1,
3301 .may_unmap = 1,
3302 .may_writepage = 1,
3303 .nr_to_reclaim = nr_to_reclaim,
3304 .hibernation_mode = 1,
3305 .order = 0,
3306 .priority = DEF_PRIORITY,
3307 };
3308 struct shrink_control shrink = {
3309 .gfp_mask = sc.gfp_mask,
3310 };
3311 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3312 struct task_struct *p = current;
3313 unsigned long nr_reclaimed;
3314
3315 p->flags |= PF_MEMALLOC;
3316 lockdep_set_current_reclaim_state(sc.gfp_mask);
3317 reclaim_state.reclaimed_slab = 0;
3318 p->reclaim_state = &reclaim_state;
3319
3320 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3321
3322 p->reclaim_state = NULL;
3323 lockdep_clear_current_reclaim_state();
3324 p->flags &= ~PF_MEMALLOC;
3325
3326 return nr_reclaimed;
3327 }
3328 EXPORT_SYMBOL_GPL(shrink_memory_mask);
3329
3330 #ifdef CONFIG_MTKPASR
3331 extern void shrink_mtkpasr_all(void);
3332 #else
3333 #define shrink_mtkpasr_all() do {} while (0)
3334 #endif
3335 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3336 {
3337 shrink_mtkpasr_all();
3338 return shrink_memory_mask(nr_to_reclaim, GFP_HIGHUSER_MOVABLE);
3339 }
3340 EXPORT_SYMBOL_GPL(shrink_all_memory);
3341 #endif /* CONFIG_HIBERNATION */
3342
3343 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3344 not required for correctness. So if the last cpu in a node goes
3345 away, we get changed to run anywhere: as the first one comes back,
3346 restore their cpu bindings. */
3347 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3348 void *hcpu)
3349 {
3350 int nid;
3351
3352 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3353 for_each_node_state(nid, N_MEMORY) {
3354 pg_data_t *pgdat = NODE_DATA(nid);
3355 const struct cpumask *mask;
3356
3357 mask = cpumask_of_node(pgdat->node_id);
3358
3359 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3360 /* One of our CPUs online: restore mask */
3361 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3362 }
3363 }
3364 return NOTIFY_OK;
3365 }
3366
3367 /*
3368 * This kswapd start function will be called by init and node-hot-add.
3369 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3370 */
3371 int kswapd_run(int nid)
3372 {
3373 pg_data_t *pgdat = NODE_DATA(nid);
3374 int ret = 0;
3375
3376 if (pgdat->kswapd)
3377 return 0;
3378
3379 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3380 if (IS_ERR(pgdat->kswapd)) {
3381 /* failure at boot is fatal */
3382 BUG_ON(system_state == SYSTEM_BOOTING);
3383 pr_err("Failed to start kswapd on node %d\n", nid);
3384 ret = PTR_ERR(pgdat->kswapd);
3385 pgdat->kswapd = NULL;
3386 }
3387 return ret;
3388 }
3389
3390 /*
3391 * Called by memory hotplug when all memory in a node is offlined. Caller must
3392 * hold lock_memory_hotplug().
3393 */
3394 void kswapd_stop(int nid)
3395 {
3396 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3397
3398 if (kswapd) {
3399 kthread_stop(kswapd);
3400 NODE_DATA(nid)->kswapd = NULL;
3401 }
3402 }
3403
3404 static int __init kswapd_init(void)
3405 {
3406 int nid;
3407
3408 swap_setup();
3409 for_each_node_state(nid, N_MEMORY)
3410 kswapd_run(nid);
3411 hotcpu_notifier(cpu_callback, 0);
3412 return 0;
3413 }
3414
3415 module_init(kswapd_init)
3416
3417 #ifdef CONFIG_NUMA
3418 /*
3419 * Zone reclaim mode
3420 *
3421 * If non-zero call zone_reclaim when the number of free pages falls below
3422 * the watermarks.
3423 */
3424 int zone_reclaim_mode __read_mostly;
3425
3426 #define RECLAIM_OFF 0
3427 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3428 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3429 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3430
3431 /*
3432 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3433 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3434 * a zone.
3435 */
3436 #define ZONE_RECLAIM_PRIORITY 4
3437
3438 /*
3439 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3440 * occur.
3441 */
3442 int sysctl_min_unmapped_ratio = 1;
3443
3444 /*
3445 * If the number of slab pages in a zone grows beyond this percentage then
3446 * slab reclaim needs to occur.
3447 */
3448 int sysctl_min_slab_ratio = 5;
3449
3450 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3451 {
3452 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3453 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3454 zone_page_state(zone, NR_ACTIVE_FILE);
3455
3456 /*
3457 * It's possible for there to be more file mapped pages than
3458 * accounted for by the pages on the file LRU lists because
3459 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3460 */
3461 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3462 }
3463
3464 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3465 static long zone_pagecache_reclaimable(struct zone *zone)
3466 {
3467 long nr_pagecache_reclaimable;
3468 long delta = 0;
3469
3470 /*
3471 * If RECLAIM_SWAP is set, then all file pages are considered
3472 * potentially reclaimable. Otherwise, we have to worry about
3473 * pages like swapcache and zone_unmapped_file_pages() provides
3474 * a better estimate
3475 */
3476 if (zone_reclaim_mode & RECLAIM_SWAP)
3477 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3478 else
3479 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3480
3481 /* If we can't clean pages, remove dirty pages from consideration */
3482 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3483 delta += zone_page_state(zone, NR_FILE_DIRTY);
3484
3485 /* Watch for any possible underflows due to delta */
3486 if (unlikely(delta > nr_pagecache_reclaimable))
3487 delta = nr_pagecache_reclaimable;
3488
3489 return nr_pagecache_reclaimable - delta;
3490 }
3491
3492 /*
3493 * Try to free up some pages from this zone through reclaim.
3494 */
3495 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3496 {
3497 /* Minimum pages needed in order to stay on node */
3498 const unsigned long nr_pages = 1 << order;
3499 struct task_struct *p = current;
3500 struct reclaim_state reclaim_state;
3501 struct scan_control sc = {
3502 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3503 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3504 .may_swap = 1,
3505 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3506 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3507 .order = order,
3508 .priority = ZONE_RECLAIM_PRIORITY,
3509 };
3510 struct shrink_control shrink = {
3511 .gfp_mask = sc.gfp_mask,
3512 };
3513 unsigned long nr_slab_pages0, nr_slab_pages1;
3514
3515 cond_resched();
3516 /*
3517 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3518 * and we also need to be able to write out pages for RECLAIM_WRITE
3519 * and RECLAIM_SWAP.
3520 */
3521 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3522 lockdep_set_current_reclaim_state(gfp_mask);
3523 reclaim_state.reclaimed_slab = 0;
3524 p->reclaim_state = &reclaim_state;
3525
3526 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3527 /*
3528 * Free memory by calling shrink zone with increasing
3529 * priorities until we have enough memory freed.
3530 */
3531 do {
3532 shrink_zone(zone, &sc);
3533 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3534 }
3535
3536 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3537 if (nr_slab_pages0 > zone->min_slab_pages) {
3538 /*
3539 * shrink_slab() does not currently allow us to determine how
3540 * many pages were freed in this zone. So we take the current
3541 * number of slab pages and shake the slab until it is reduced
3542 * by the same nr_pages that we used for reclaiming unmapped
3543 * pages.
3544 *
3545 * Note that shrink_slab will free memory on all zones and may
3546 * take a long time.
3547 */
3548 for (;;) {
3549 unsigned long lru_pages = zone_reclaimable_pages(zone);
3550
3551 /* No reclaimable slab or very low memory pressure */
3552 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3553 break;
3554
3555 /* Freed enough memory */
3556 nr_slab_pages1 = zone_page_state(zone,
3557 NR_SLAB_RECLAIMABLE);
3558 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3559 break;
3560 }
3561
3562 /*
3563 * Update nr_reclaimed by the number of slab pages we
3564 * reclaimed from this zone.
3565 */
3566 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3567 if (nr_slab_pages1 < nr_slab_pages0)
3568 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3569 }
3570
3571 p->reclaim_state = NULL;
3572 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3573 lockdep_clear_current_reclaim_state();
3574 return sc.nr_reclaimed >= nr_pages;
3575 }
3576
3577 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3578 {
3579 int node_id;
3580 int ret;
3581
3582 /*
3583 * Zone reclaim reclaims unmapped file backed pages and
3584 * slab pages if we are over the defined limits.
3585 *
3586 * A small portion of unmapped file backed pages is needed for
3587 * file I/O otherwise pages read by file I/O will be immediately
3588 * thrown out if the zone is overallocated. So we do not reclaim
3589 * if less than a specified percentage of the zone is used by
3590 * unmapped file backed pages.
3591 */
3592 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3593 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3594 return ZONE_RECLAIM_FULL;
3595
3596 if (zone->all_unreclaimable)
3597 return ZONE_RECLAIM_FULL;
3598
3599 /*
3600 * Do not scan if the allocation should not be delayed.
3601 */
3602 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3603 return ZONE_RECLAIM_NOSCAN;
3604
3605 /*
3606 * Only run zone reclaim on the local zone or on zones that do not
3607 * have associated processors. This will favor the local processor
3608 * over remote processors and spread off node memory allocations
3609 * as wide as possible.
3610 */
3611 node_id = zone_to_nid(zone);
3612 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3613 return ZONE_RECLAIM_NOSCAN;
3614
3615 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3616 return ZONE_RECLAIM_NOSCAN;
3617
3618 ret = __zone_reclaim(zone, gfp_mask, order);
3619 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3620
3621 if (!ret)
3622 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3623
3624 return ret;
3625 }
3626 #endif
3627
3628 /*
3629 * page_evictable - test whether a page is evictable
3630 * @page: the page to test
3631 *
3632 * Test whether page is evictable--i.e., should be placed on active/inactive
3633 * lists vs unevictable list.
3634 *
3635 * Reasons page might not be evictable:
3636 * (1) page's mapping marked unevictable
3637 * (2) page is part of an mlocked VMA
3638 *
3639 */
3640 int page_evictable(struct page *page)
3641 {
3642 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3643 }
3644
3645 #ifdef CONFIG_SHMEM
3646 /**
3647 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3648 * @pages: array of pages to check
3649 * @nr_pages: number of pages to check
3650 *
3651 * Checks pages for evictability and moves them to the appropriate lru list.
3652 *
3653 * This function is only used for SysV IPC SHM_UNLOCK.
3654 */
3655 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3656 {
3657 struct lruvec *lruvec;
3658 struct zone *zone = NULL;
3659 int pgscanned = 0;
3660 int pgrescued = 0;
3661 int i;
3662
3663 for (i = 0; i < nr_pages; i++) {
3664 struct page *page = pages[i];
3665 struct zone *pagezone;
3666
3667 pgscanned++;
3668 pagezone = page_zone(page);
3669 if (pagezone != zone) {
3670 if (zone)
3671 spin_unlock_irq(&zone->lru_lock);
3672 zone = pagezone;
3673 spin_lock_irq(&zone->lru_lock);
3674 }
3675 lruvec = mem_cgroup_page_lruvec(page, zone);
3676
3677 if (!PageLRU(page) || !PageUnevictable(page))
3678 continue;
3679
3680 if (page_evictable(page)) {
3681 enum lru_list lru = page_lru_base_type(page);
3682
3683 VM_BUG_ON(PageActive(page));
3684 ClearPageUnevictable(page);
3685 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3686 add_page_to_lru_list(page, lruvec, lru);
3687 pgrescued++;
3688 }
3689 }
3690
3691 if (zone) {
3692 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3693 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3694 spin_unlock_irq(&zone->lru_lock);
3695 }
3696 }
3697 #endif /* CONFIG_SHMEM */
3698
3699 static void warn_scan_unevictable_pages(void)
3700 {
3701 printk_once(KERN_WARNING
3702 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3703 "disabled for lack of a legitimate use case. If you have "
3704 "one, please send an email to linux-mm@kvack.org.\n",
3705 current->comm);
3706 }
3707
3708 /*
3709 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3710 * all nodes' unevictable lists for evictable pages
3711 */
3712 unsigned long scan_unevictable_pages;
3713
3714 int scan_unevictable_handler(struct ctl_table *table, int write,
3715 void __user *buffer,
3716 size_t *length, loff_t *ppos)
3717 {
3718 warn_scan_unevictable_pages();
3719 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3720 scan_unevictable_pages = 0;
3721 return 0;
3722 }
3723
3724 #ifdef CONFIG_NUMA
3725 /*
3726 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3727 * a specified node's per zone unevictable lists for evictable pages.
3728 */
3729
3730 static ssize_t read_scan_unevictable_node(struct device *dev,
3731 struct device_attribute *attr,
3732 char *buf)
3733 {
3734 warn_scan_unevictable_pages();
3735 return sprintf(buf, "0\n"); /* always zero; should fit... */
3736 }
3737
3738 static ssize_t write_scan_unevictable_node(struct device *dev,
3739 struct device_attribute *attr,
3740 const char *buf, size_t count)
3741 {
3742 warn_scan_unevictable_pages();
3743 return 1;
3744 }
3745
3746
3747 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3748 read_scan_unevictable_node,
3749 write_scan_unevictable_node);
3750
3751 int scan_unevictable_register_node(struct node *node)
3752 {
3753 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3754 }
3755
3756 void scan_unevictable_unregister_node(struct node *node)
3757 {
3758 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3759 }
3760 #endif
3761
3762 #ifdef CONFIG_MTKPASR
3763 void try_to_shrink_slab(void)
3764 {
3765 struct shrinker *shrinker;
3766 struct shrink_control shrink = {
3767 .gfp_mask = GFP_KERNEL|__GFP_HIGHMEM,
3768 };
3769
3770 if (!down_read_trylock(&shrinker_rwsem)) {
3771 return;
3772 }
3773
3774 list_for_each_entry(shrinker, &shrinker_list, list) {
3775 int num_objs;
3776 int shrink_ret = 0;
3777 int retry = 2;
3778
3779 num_objs = do_shrinker_shrink(shrinker, &shrink, 0);
3780 if (num_objs <= 0)
3781 continue;
3782
3783 do {
3784 /* To shrink */
3785 shrink_ret = do_shrinker_shrink(shrinker, &shrink, num_objs);
3786 if (shrink_ret == -1)
3787 break;
3788 /* Check empty */
3789 num_objs = do_shrinker_shrink(shrinker, &shrink, 0);
3790 if (num_objs <= 0)
3791 break;
3792 } while (--retry);
3793 }
3794
3795 up_read(&shrinker_rwsem);
3796 }
3797
3798 extern void free_hot_cold_page(struct page *page, int cold);
3799 /* Isolate pages for PASR */
3800 #ifdef CONFIG_MTKPASR_ALLEXTCOMP
3801 int mtkpasr_isolate_page(struct page *page, int check_swap)
3802 #else
3803 int mtkpasr_isolate_page(struct page *page)
3804 #endif
3805 {
3806 struct zone *zone = page_zone(page);
3807 struct lruvec *lruvec;
3808 unsigned long flags;
3809 isolate_mode_t mode = ISOLATE_ASYNC_MIGRATE;
3810
3811 /* Lock this zone - USE trylock version! */
3812 if (!spin_trylock_irqsave(&zone->lru_lock, flags)) {
3813 printk(KERN_ALERT"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
3814 printk(KERN_ALERT"[%s][%d] Failed to lock this zone!\n",__FUNCTION__,__LINE__);
3815 printk(KERN_ALERT"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
3816 return -EAGAIN;
3817 }
3818
3819 #ifdef CONFIG_MTKPASR_ALLEXTCOMP
3820 /* Check whether we should handle SwapBacked, SwapCache pages */
3821 if (check_swap) {
3822 if (PageSwapBacked(page) || PageSwapCache(page)) {
3823 spin_unlock_irqrestore(&zone->lru_lock, flags);
3824 return -EACCES;
3825 }
3826 }
3827 #endif
3828
3829 /* Try to isolate this page */
3830 if (__isolate_lru_page(page, mode) != 0) {
3831 spin_unlock_irqrestore(&zone->lru_lock, flags);
3832 return -EACCES;
3833 }
3834
3835 /* Successfully isolated */
3836 lruvec = mem_cgroup_page_lruvec(page, zone);
3837 del_page_from_lru_list(page, lruvec, page_lru(page));
3838
3839 /* Unlock this zone */
3840 spin_unlock_irqrestore(&zone->lru_lock, flags);
3841
3842 return 0;
3843 }
3844
3845 /* Drop page (in File/Anon LRUs) (Imitate the behavior of shrink_page_list) */
3846 /* If returns error, caller needs to putback page by itself. */
3847 int mtkpasr_drop_page(struct page *page)
3848 {
3849 int ret;
3850 unsigned long vm_flags = 0x0;
3851 bool active = false;
3852 struct address_space *mapping;
3853 enum ttu_flags unmap_flags = TTU_UNMAP;
3854
3855 /* Suitable scan control */
3856 struct scan_control sc = {
3857 .gfp_mask = GFP_KERNEL,
3858 .order = PAGE_ALLOC_COSTLY_ORDER + 1,
3859 //.reclaim_mode = RECLAIM_MODE_SINGLE|RECLAIM_MODE_SYNC, // We only handle "SwapBacked" pages in this reclaim_mode!
3860 };
3861
3862 /* Try to isolate this page */
3863 #ifdef CONFIG_MTKPASR_ALLEXTCOMP
3864 ret = mtkpasr_isolate_page(page, 0x1);
3865 #else
3866 ret = mtkpasr_isolate_page(page);
3867 #endif
3868 if (ret) {
3869 return ret;
3870 }
3871
3872 /* Check whether it is evictable! */
3873 if (unlikely(!page_evictable(page))) {
3874 putback_lru_page(page);
3875 return -EACCES;
3876 }
3877
3878 /* If it is Active, reference and deactivate it */
3879 if (PageActive(page)) {
3880 active = TestClearPageActive(page);
3881 }
3882
3883 /* If we fail to lock this page, ignore it */
3884 if (!trylock_page(page)) {
3885 goto putback;
3886 }
3887
3888 /* If page is in writeback, we don't handle it here! */
3889 if (PageWriteback(page)) {
3890 goto unlock;
3891 }
3892
3893 /*
3894 * Anonymous process memory has backing store?
3895 * Try to allocate it some swap space here.
3896 */
3897 if (PageAnon(page) && !PageSwapCache(page)) {
3898 /* Check whether we have enough free memory */
3899 if (vm_swap_full()) {
3900 goto unlock;
3901 }
3902
3903 /* Ok! It is safe to add this page to swap. */
3904 if (!add_to_swap(page, NULL)){
3905 goto unlock;
3906 }
3907 }
3908
3909 /* We don't handle dirty file cache here (Related devices may be suspended) */
3910 if (page_is_file_cache(page)) {
3911 /* How do we handle pages in VM_EXEC vmas? */
3912 if ((vm_flags & VM_EXEC)) {
3913 goto unlock;
3914 }
3915 /* We don't handle dirty file pages! */
3916 if (PageDirty(page)) {
3917 #ifdef CONFIG_MTKPASR_DEBUG
3918 printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d]\n\n\n\n\n\n",__FUNCTION__,__LINE__);
3919 #endif
3920 goto unlock;
3921 }
3922 }
3923
3924 /*
3925 * The page is mapped into the page tables of one or more
3926 * processes. Try to unmap it here.
3927 */
3928 mapping = page_mapping(page);
3929 if (page_mapped(page) && mapping) {
3930 #if 0
3931 /* Indicate unmap action for SwapBacked pages */
3932 if (PageSwapBacked(page)) {
3933 unmap_flags |= TTU_IGNORE_ACCESS;
3934 }
3935 #endif
3936 /* To unmap */
3937 switch (try_to_unmap(page, unmap_flags)) {
3938 case SWAP_SUCCESS:
3939 /* try to free the page below */
3940 break;
3941 case SWAP_FAIL:
3942 goto restore_swap;
3943 case SWAP_AGAIN:
3944 goto restore_swap;
3945 case SWAP_MLOCK:
3946 goto restore_swap;
3947
3948 }
3949 }
3950
3951 /* Check whether it is dirtied.
3952 * We have filtered out dirty file pages above. (IMPORTANT!)
3953 * "VM_BUG_ON(!PageSwapBacked(page))"
3954 * */
3955 if (PageDirty(page)) {
3956 /* Page is dirty, try to write it out here */
3957 /* It's ok for zram swap! */
3958 /* Should we need to apply GFP_IOFS? */
3959 switch (pageout(page, mapping, &sc)) {
3960 case PAGE_SUCCESS:
3961 if (PageWriteback(page)) {
3962 goto putback;
3963 }
3964 if (PageDirty(page)) {
3965 goto putback;
3966 }
3967
3968 /*
3969 * A synchronous write - probably a ramdisk. Go
3970 * ahead and try to reclaim the page.
3971 */
3972 if (!trylock_page(page)) {
3973 goto putback;
3974 }
3975 if (PageDirty(page) || PageWriteback(page)) {
3976 goto unlock;
3977 }
3978 mapping = page_mapping(page);
3979 case PAGE_CLEAN:
3980 /* try to free the page below */
3981 break;
3982 default:
3983 #ifdef CONFIG_MTKPASR_DEBUG
3984 /*printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d]\n\n\n\n\n\n",__FUNCTION__,__LINE__);*/
3985 #endif
3986 goto restore_unmap;
3987 }
3988 }
3989
3990 /* Release buffer */
3991 if (page_has_private(page)) {
3992 if (!try_to_release_page(page, sc.gfp_mask)) {
3993 goto unlock;
3994 }
3995 if (!mapping && page_count(page) == 1) {
3996 unlock_page(page);
3997 if (put_page_testzero(page)) {
3998 goto freeit;
3999 } else {
4000 /* Race! TOCHECK */
4001 printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d] RACE!!\n\n\n\n\n\n",__FUNCTION__,__LINE__);
4002 goto notask;
4003 }
4004 }
4005 }
4006 if (!mapping || !__remove_mapping(mapping, page)) {
4007 goto unlock;
4008 }
4009
4010 __clear_page_locked(page);
4011
4012 freeit:
4013 free_hot_cold_page(page, 0);
4014 return 0;
4015
4016 restore_unmap:
4017 /* Do something */
4018
4019 restore_swap:
4020 if (PageSwapCache(page))
4021 try_to_free_swap(page);
4022
4023 unlock:
4024 unlock_page(page);
4025
4026 putback:
4027 /* Activate it again if needed! */
4028 if (active)
4029 SetPageActive(page);
4030
4031 /* We don't putback them to corresponding LRUs, because we want to do more tasks outside this function!
4032 putback_lru_page(page); */
4033
4034 /* Failedly dropped pages. Do migration! */
4035 return -EBUSY;
4036
4037 notask:
4038 return 0;
4039 }
4040 #endif