Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
6fa3eb70 46#include <linux/debugfs.h>
1da177e4
LT
47
48#include <asm/tlbflush.h>
49#include <asm/div64.h>
50
51#include <linux/swapops.h>
009dfd44 52#include <linux/balloon_compaction.h>
1da177e4 53
0f8053a5
NP
54#include "internal.h"
55
33906bc5
MG
56#define CREATE_TRACE_POINTS
57#include <trace/events/vmscan.h>
58
1da177e4 59struct scan_control {
1da177e4
LT
60 /* Incremented by the number of inactive pages that were scanned */
61 unsigned long nr_scanned;
62
a79311c1
RR
63 /* Number of pages freed so far during a call to shrink_zones() */
64 unsigned long nr_reclaimed;
65
22fba335
KM
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
7b51755c
KM
69 unsigned long hibernation_mode;
70
1da177e4 71 /* This context's GFP mask */
6daa0e28 72 gfp_t gfp_mask;
1da177e4
LT
73
74 int may_writepage;
75
a6dc60f8
JW
76 /* Can mapped pages be reclaimed? */
77 int may_unmap;
f1fd1067 78
2e2e4259
KM
79 /* Can pages be swapped as part of reclaim? */
80 int may_swap;
81
5ad333eb 82 int order;
66e1707b 83
9e3b2f8c
KK
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
f16015fb
JW
87 /*
88 * The memory cgroup that hit its limit and as a result is the
89 * primary target of this reclaim invocation.
90 */
91 struct mem_cgroup *target_mem_cgroup;
66e1707b 92
327c0e96
KH
93 /*
94 * Nodemask of nodes allowed by the caller. If NULL, all nodes
95 * are scanned.
96 */
97 nodemask_t *nodemask;
1da177e4
LT
98};
99
1da177e4
LT
100#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
101
102#ifdef ARCH_HAS_PREFETCH
103#define prefetch_prev_lru_page(_page, _base, _field) \
104 do { \
105 if ((_page)->lru.prev != _base) { \
106 struct page *prev; \
107 \
108 prev = lru_to_page(&(_page->lru)); \
109 prefetch(&prev->_field); \
110 } \
111 } while (0)
112#else
113#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
114#endif
115
116#ifdef ARCH_HAS_PREFETCHW
117#define prefetchw_prev_lru_page(_page, _base, _field) \
118 do { \
119 if ((_page)->lru.prev != _base) { \
120 struct page *prev; \
121 \
122 prev = lru_to_page(&(_page->lru)); \
123 prefetchw(&prev->_field); \
124 } \
125 } while (0)
126#else
127#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
128#endif
129
130/*
131 * From 0 .. 100. Higher means more swappy.
132 */
133int vm_swappiness = 60;
b21e0b90 134unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
135
136static LIST_HEAD(shrinker_list);
137static DECLARE_RWSEM(shrinker_rwsem);
138
c255a458 139#ifdef CONFIG_MEMCG
89b5fae5
JW
140static bool global_reclaim(struct scan_control *sc)
141{
f16015fb 142 return !sc->target_mem_cgroup;
89b5fae5 143}
91a45470 144#else
89b5fae5
JW
145static bool global_reclaim(struct scan_control *sc)
146{
147 return true;
148}
91a45470
KH
149#endif
150
4d7dcca2 151static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 152{
c3c787e8 153 if (!mem_cgroup_disabled())
4d7dcca2 154 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 155
074291fe 156 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
157}
158
6fa3eb70
S
159struct dentry *debug_file;
160
161static int debug_shrinker_show(struct seq_file *s, void *unused)
162{
163 struct shrinker *shrinker;
164 struct shrink_control sc;
165
166 sc.gfp_mask = -1;
167 sc.nr_to_scan = 0;
168
169 down_read(&shrinker_rwsem);
170 list_for_each_entry(shrinker, &shrinker_list, list) {
171 int num_objs;
172
173 num_objs = shrinker->shrink(shrinker, &sc);
174 seq_printf(s, "%pf %d\n", shrinker->shrink, num_objs);
175 }
176 up_read(&shrinker_rwsem);
177 return 0;
178}
179
180static int debug_shrinker_open(struct inode *inode, struct file *file)
181{
182 return single_open(file, debug_shrinker_show, inode->i_private);
183}
184
185static const struct file_operations debug_shrinker_fops = {
186 .open = debug_shrinker_open,
187 .read = seq_read,
188 .llseek = seq_lseek,
189 .release = single_release,
190};
191
1da177e4
LT
192/*
193 * Add a shrinker callback to be called from the vm
194 */
8e1f936b 195void register_shrinker(struct shrinker *shrinker)
1da177e4 196{
83aeeada 197 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
198 down_write(&shrinker_rwsem);
199 list_add_tail(&shrinker->list, &shrinker_list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(register_shrinker);
1da177e4 203
6fa3eb70
S
204static int __init add_shrinker_debug(void)
205{
206 debugfs_create_file("shrinker", 0644, NULL, NULL,
207 &debug_shrinker_fops);
208 return 0;
209}
210
211late_initcall(add_shrinker_debug);
212
1da177e4
LT
213/*
214 * Remove one
215 */
8e1f936b 216void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
217{
218 down_write(&shrinker_rwsem);
219 list_del(&shrinker->list);
220 up_write(&shrinker_rwsem);
1da177e4 221}
8e1f936b 222EXPORT_SYMBOL(unregister_shrinker);
1da177e4 223
1495f230
YH
224static inline int do_shrinker_shrink(struct shrinker *shrinker,
225 struct shrink_control *sc,
226 unsigned long nr_to_scan)
227{
228 sc->nr_to_scan = nr_to_scan;
229 return (*shrinker->shrink)(shrinker, sc);
230}
231
1da177e4
LT
232#define SHRINK_BATCH 128
233/*
234 * Call the shrink functions to age shrinkable caches
235 *
236 * Here we assume it costs one seek to replace a lru page and that it also
237 * takes a seek to recreate a cache object. With this in mind we age equal
238 * percentages of the lru and ageable caches. This should balance the seeks
239 * generated by these structures.
240 *
183ff22b 241 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
242 * slab to avoid swapping.
243 *
244 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
245 *
246 * `lru_pages' represents the number of on-LRU pages in all the zones which
247 * are eligible for the caller's allocation attempt. It is used for balancing
248 * slab reclaim versus page reclaim.
b15e0905
AM
249 *
250 * Returns the number of slab objects which we shrunk.
1da177e4 251 */
a09ed5e0 252unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 253 unsigned long nr_pages_scanned,
a09ed5e0 254 unsigned long lru_pages)
1da177e4
LT
255{
256 struct shrinker *shrinker;
69e05944 257 unsigned long ret = 0;
1da177e4 258
1495f230
YH
259 if (nr_pages_scanned == 0)
260 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 261
f06590bd
MK
262 if (!down_read_trylock(&shrinker_rwsem)) {
263 /* Assume we'll be able to shrink next time */
264 ret = 1;
265 goto out;
266 }
1da177e4
LT
267
268 list_for_each_entry(shrinker, &shrinker_list, list) {
269 unsigned long long delta;
635697c6
KK
270 long total_scan;
271 long max_pass;
09576073 272 int shrink_ret = 0;
acf92b48
DC
273 long nr;
274 long new_nr;
e9299f50
DC
275 long batch_size = shrinker->batch ? shrinker->batch
276 : SHRINK_BATCH;
1da177e4 277
635697c6
KK
278 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
279 if (max_pass <= 0)
280 continue;
281
acf92b48
DC
282 /*
283 * copy the current shrinker scan count into a local variable
284 * and zero it so that other concurrent shrinker invocations
285 * don't also do this scanning work.
286 */
83aeeada 287 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
288
289 total_scan = nr;
1495f230 290 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 291 delta *= max_pass;
1da177e4 292 do_div(delta, lru_pages + 1);
acf92b48
DC
293 total_scan += delta;
294 if (total_scan < 0) {
88c3bd70
DR
295 printk(KERN_ERR "shrink_slab: %pF negative objects to "
296 "delete nr=%ld\n",
acf92b48
DC
297 shrinker->shrink, total_scan);
298 total_scan = max_pass;
ea164d73
AA
299 }
300
3567b59a
DC
301 /*
302 * We need to avoid excessive windup on filesystem shrinkers
303 * due to large numbers of GFP_NOFS allocations causing the
304 * shrinkers to return -1 all the time. This results in a large
305 * nr being built up so when a shrink that can do some work
306 * comes along it empties the entire cache due to nr >>>
307 * max_pass. This is bad for sustaining a working set in
308 * memory.
309 *
310 * Hence only allow the shrinker to scan the entire cache when
311 * a large delta change is calculated directly.
312 */
313 if (delta < max_pass / 4)
314 total_scan = min(total_scan, max_pass / 2);
315
ea164d73
AA
316 /*
317 * Avoid risking looping forever due to too large nr value:
318 * never try to free more than twice the estimate number of
319 * freeable entries.
320 */
acf92b48
DC
321 if (total_scan > max_pass * 2)
322 total_scan = max_pass * 2;
1da177e4 323
acf92b48 324 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
325 nr_pages_scanned, lru_pages,
326 max_pass, delta, total_scan);
327
e9299f50 328 while (total_scan >= batch_size) {
b15e0905 329 int nr_before;
1da177e4 330
1495f230
YH
331 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
332 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 333 batch_size);
1da177e4
LT
334 if (shrink_ret == -1)
335 break;
b15e0905
AM
336 if (shrink_ret < nr_before)
337 ret += nr_before - shrink_ret;
e9299f50
DC
338 count_vm_events(SLABS_SCANNED, batch_size);
339 total_scan -= batch_size;
1da177e4
LT
340
341 cond_resched();
342 }
343
acf92b48
DC
344 /*
345 * move the unused scan count back into the shrinker in a
346 * manner that handles concurrent updates. If we exhausted the
347 * scan, there is no need to do an update.
348 */
83aeeada
KK
349 if (total_scan > 0)
350 new_nr = atomic_long_add_return(total_scan,
351 &shrinker->nr_in_batch);
352 else
353 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
354
355 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
356 }
357 up_read(&shrinker_rwsem);
f06590bd
MK
358out:
359 cond_resched();
b15e0905 360 return ret;
1da177e4
LT
361}
362
1da177e4
LT
363static inline int is_page_cache_freeable(struct page *page)
364{
ceddc3a5
JW
365 /*
366 * A freeable page cache page is referenced only by the caller
367 * that isolated the page, the page cache radix tree and
368 * optional buffer heads at page->private.
369 */
edcf4748 370 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
371}
372
7d3579e8
KM
373static int may_write_to_queue(struct backing_dev_info *bdi,
374 struct scan_control *sc)
1da177e4 375{
930d9152 376 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
377 return 1;
378 if (!bdi_write_congested(bdi))
379 return 1;
380 if (bdi == current->backing_dev_info)
381 return 1;
382 return 0;
383}
384
385/*
386 * We detected a synchronous write error writing a page out. Probably
387 * -ENOSPC. We need to propagate that into the address_space for a subsequent
388 * fsync(), msync() or close().
389 *
390 * The tricky part is that after writepage we cannot touch the mapping: nothing
391 * prevents it from being freed up. But we have a ref on the page and once
392 * that page is locked, the mapping is pinned.
393 *
394 * We're allowed to run sleeping lock_page() here because we know the caller has
395 * __GFP_FS.
396 */
397static void handle_write_error(struct address_space *mapping,
398 struct page *page, int error)
399{
7eaceacc 400 lock_page(page);
3e9f45bd
GC
401 if (page_mapping(page) == mapping)
402 mapping_set_error(mapping, error);
1da177e4
LT
403 unlock_page(page);
404}
405
04e62a29
CL
406/* possible outcome of pageout() */
407typedef enum {
408 /* failed to write page out, page is locked */
409 PAGE_KEEP,
410 /* move page to the active list, page is locked */
411 PAGE_ACTIVATE,
412 /* page has been sent to the disk successfully, page is unlocked */
413 PAGE_SUCCESS,
414 /* page is clean and locked */
415 PAGE_CLEAN,
416} pageout_t;
417
1da177e4 418/*
1742f19f
AM
419 * pageout is called by shrink_page_list() for each dirty page.
420 * Calls ->writepage().
1da177e4 421 */
c661b078 422static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 423 struct scan_control *sc)
1da177e4
LT
424{
425 /*
426 * If the page is dirty, only perform writeback if that write
427 * will be non-blocking. To prevent this allocation from being
428 * stalled by pagecache activity. But note that there may be
429 * stalls if we need to run get_block(). We could test
430 * PagePrivate for that.
431 *
6aceb53b 432 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
433 * this page's queue, we can perform writeback even if that
434 * will block.
435 *
436 * If the page is swapcache, write it back even if that would
437 * block, for some throttling. This happens by accident, because
438 * swap_backing_dev_info is bust: it doesn't reflect the
439 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
440 */
441 if (!is_page_cache_freeable(page))
442 return PAGE_KEEP;
443 if (!mapping) {
444 /*
445 * Some data journaling orphaned pages can have
446 * page->mapping == NULL while being dirty with clean buffers.
447 */
266cf658 448 if (page_has_private(page)) {
1da177e4
LT
449 if (try_to_free_buffers(page)) {
450 ClearPageDirty(page);
d40cee24 451 printk("%s: orphaned page\n", __func__);
1da177e4
LT
452 return PAGE_CLEAN;
453 }
454 }
455 return PAGE_KEEP;
456 }
457 if (mapping->a_ops->writepage == NULL)
458 return PAGE_ACTIVATE;
0e093d99 459 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
460 return PAGE_KEEP;
461
462 if (clear_page_dirty_for_io(page)) {
463 int res;
464 struct writeback_control wbc = {
465 .sync_mode = WB_SYNC_NONE,
466 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
467 .range_start = 0,
468 .range_end = LLONG_MAX,
1da177e4
LT
469 .for_reclaim = 1,
470 };
471
472 SetPageReclaim(page);
473 res = mapping->a_ops->writepage(page, &wbc);
474 if (res < 0)
475 handle_write_error(mapping, page, res);
994fc28c 476 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
477 ClearPageReclaim(page);
478 return PAGE_ACTIVATE;
479 }
c661b078 480
1da177e4
LT
481 if (!PageWriteback(page)) {
482 /* synchronous write or broken a_ops? */
483 ClearPageReclaim(page);
484 }
23b9da55 485 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 486 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
487 return PAGE_SUCCESS;
488 }
489
490 return PAGE_CLEAN;
491}
492
a649fd92 493/*
e286781d
NP
494 * Same as remove_mapping, but if the page is removed from the mapping, it
495 * gets returned with a refcount of 0.
a649fd92 496 */
e286781d 497static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 498{
28e4d965
NP
499 BUG_ON(!PageLocked(page));
500 BUG_ON(mapping != page_mapping(page));
49d2e9cc 501
19fd6231 502 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 503 /*
0fd0e6b0
NP
504 * The non racy check for a busy page.
505 *
506 * Must be careful with the order of the tests. When someone has
507 * a ref to the page, it may be possible that they dirty it then
508 * drop the reference. So if PageDirty is tested before page_count
509 * here, then the following race may occur:
510 *
511 * get_user_pages(&page);
512 * [user mapping goes away]
513 * write_to(page);
514 * !PageDirty(page) [good]
515 * SetPageDirty(page);
516 * put_page(page);
517 * !page_count(page) [good, discard it]
518 *
519 * [oops, our write_to data is lost]
520 *
521 * Reversing the order of the tests ensures such a situation cannot
522 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
523 * load is not satisfied before that of page->_count.
524 *
525 * Note that if SetPageDirty is always performed via set_page_dirty,
526 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 527 */
e286781d 528 if (!page_freeze_refs(page, 2))
49d2e9cc 529 goto cannot_free;
e286781d
NP
530 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
531 if (unlikely(PageDirty(page))) {
532 page_unfreeze_refs(page, 2);
49d2e9cc 533 goto cannot_free;
e286781d 534 }
49d2e9cc
CL
535
536 if (PageSwapCache(page)) {
537 swp_entry_t swap = { .val = page_private(page) };
538 __delete_from_swap_cache(page);
19fd6231 539 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 540 swapcache_free(swap, page);
e286781d 541 } else {
6072d13c
LT
542 void (*freepage)(struct page *);
543
544 freepage = mapping->a_ops->freepage;
545
e64a782f 546 __delete_from_page_cache(page);
19fd6231 547 spin_unlock_irq(&mapping->tree_lock);
e767e056 548 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
549
550 if (freepage != NULL)
551 freepage(page);
49d2e9cc
CL
552 }
553
49d2e9cc
CL
554 return 1;
555
556cannot_free:
19fd6231 557 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
558 return 0;
559}
560
e286781d
NP
561/*
562 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
563 * someone else has a ref on the page, abort and return 0. If it was
564 * successfully detached, return 1. Assumes the caller has a single ref on
565 * this page.
566 */
567int remove_mapping(struct address_space *mapping, struct page *page)
568{
569 if (__remove_mapping(mapping, page)) {
570 /*
571 * Unfreezing the refcount with 1 rather than 2 effectively
572 * drops the pagecache ref for us without requiring another
573 * atomic operation.
574 */
575 page_unfreeze_refs(page, 1);
576 return 1;
577 }
578 return 0;
579}
580
894bc310
LS
581/**
582 * putback_lru_page - put previously isolated page onto appropriate LRU list
583 * @page: page to be put back to appropriate lru list
584 *
585 * Add previously isolated @page to appropriate LRU list.
586 * Page may still be unevictable for other reasons.
587 *
588 * lru_lock must not be held, interrupts must be enabled.
589 */
894bc310
LS
590void putback_lru_page(struct page *page)
591{
592 int lru;
593 int active = !!TestClearPageActive(page);
bbfd28ee 594 int was_unevictable = PageUnevictable(page);
894bc310
LS
595
596 VM_BUG_ON(PageLRU(page));
597
598redo:
599 ClearPageUnevictable(page);
600
39b5f29a 601 if (page_evictable(page)) {
894bc310
LS
602 /*
603 * For evictable pages, we can use the cache.
604 * In event of a race, worst case is we end up with an
605 * unevictable page on [in]active list.
606 * We know how to handle that.
607 */
401a8e1c 608 lru = active + page_lru_base_type(page);
894bc310
LS
609 lru_cache_add_lru(page, lru);
610 } else {
611 /*
612 * Put unevictable pages directly on zone's unevictable
613 * list.
614 */
615 lru = LRU_UNEVICTABLE;
616 add_page_to_unevictable_list(page);
6a7b9548 617 /*
21ee9f39
MK
618 * When racing with an mlock or AS_UNEVICTABLE clearing
619 * (page is unlocked) make sure that if the other thread
620 * does not observe our setting of PG_lru and fails
24513264 621 * isolation/check_move_unevictable_pages,
21ee9f39 622 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
623 * the page back to the evictable list.
624 *
21ee9f39 625 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
626 */
627 smp_mb();
894bc310 628 }
894bc310
LS
629
630 /*
631 * page's status can change while we move it among lru. If an evictable
632 * page is on unevictable list, it never be freed. To avoid that,
633 * check after we added it to the list, again.
634 */
39b5f29a 635 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
894bc310
LS
636 if (!isolate_lru_page(page)) {
637 put_page(page);
638 goto redo;
639 }
640 /* This means someone else dropped this page from LRU
641 * So, it will be freed or putback to LRU again. There is
642 * nothing to do here.
643 */
644 }
645
bbfd28ee
LS
646 if (was_unevictable && lru != LRU_UNEVICTABLE)
647 count_vm_event(UNEVICTABLE_PGRESCUED);
648 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
649 count_vm_event(UNEVICTABLE_PGCULLED);
650
894bc310
LS
651 put_page(page); /* drop ref from isolate */
652}
653
dfc8d636
JW
654enum page_references {
655 PAGEREF_RECLAIM,
656 PAGEREF_RECLAIM_CLEAN,
64574746 657 PAGEREF_KEEP,
dfc8d636
JW
658 PAGEREF_ACTIVATE,
659};
660
661static enum page_references page_check_references(struct page *page,
662 struct scan_control *sc)
663{
64574746 664 int referenced_ptes, referenced_page;
dfc8d636 665 unsigned long vm_flags;
dfc8d636 666
c3ac9a8a
JW
667 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
668 &vm_flags);
64574746 669 referenced_page = TestClearPageReferenced(page);
dfc8d636 670
dfc8d636
JW
671 /*
672 * Mlock lost the isolation race with us. Let try_to_unmap()
673 * move the page to the unevictable list.
674 */
675 if (vm_flags & VM_LOCKED)
676 return PAGEREF_RECLAIM;
677
64574746 678 if (referenced_ptes) {
e4898273 679 if (PageSwapBacked(page))
64574746
JW
680 return PAGEREF_ACTIVATE;
681 /*
682 * All mapped pages start out with page table
683 * references from the instantiating fault, so we need
684 * to look twice if a mapped file page is used more
685 * than once.
686 *
687 * Mark it and spare it for another trip around the
688 * inactive list. Another page table reference will
689 * lead to its activation.
690 *
691 * Note: the mark is set for activated pages as well
692 * so that recently deactivated but used pages are
693 * quickly recovered.
694 */
695 SetPageReferenced(page);
696
34dbc67a 697 if (referenced_page || referenced_ptes > 1)
64574746
JW
698 return PAGEREF_ACTIVATE;
699
c909e993
KK
700 /*
701 * Activate file-backed executable pages after first usage.
702 */
703 if (vm_flags & VM_EXEC)
704 return PAGEREF_ACTIVATE;
705
64574746
JW
706 return PAGEREF_KEEP;
707 }
dfc8d636
JW
708
709 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 710 if (referenced_page && !PageSwapBacked(page))
64574746
JW
711 return PAGEREF_RECLAIM_CLEAN;
712
713 return PAGEREF_RECLAIM;
dfc8d636
JW
714}
715
1da177e4 716/*
1742f19f 717 * shrink_page_list() returns the number of reclaimed pages
1da177e4 718 */
1742f19f 719static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 720 struct zone *zone,
f84f6e2b 721 struct scan_control *sc,
02c6de8d 722 enum ttu_flags ttu_flags,
92df3a72 723 unsigned long *ret_nr_dirty,
02c6de8d
MK
724 unsigned long *ret_nr_writeback,
725 bool force_reclaim)
1da177e4
LT
726{
727 LIST_HEAD(ret_pages);
abe4c3b5 728 LIST_HEAD(free_pages);
1da177e4 729 int pgactivate = 0;
0e093d99
MG
730 unsigned long nr_dirty = 0;
731 unsigned long nr_congested = 0;
05ff5137 732 unsigned long nr_reclaimed = 0;
92df3a72 733 unsigned long nr_writeback = 0;
1da177e4
LT
734
735 cond_resched();
736
69980e31 737 mem_cgroup_uncharge_start();
1da177e4
LT
738 while (!list_empty(page_list)) {
739 struct address_space *mapping;
740 struct page *page;
741 int may_enter_fs;
02c6de8d 742 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1da177e4
LT
743
744 cond_resched();
745
746 page = lru_to_page(page_list);
747 list_del(&page->lru);
748
529ae9aa 749 if (!trylock_page(page))
1da177e4
LT
750 goto keep;
751
725d704e 752 VM_BUG_ON(PageActive(page));
6a18adb3 753 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
754
755 sc->nr_scanned++;
80e43426 756
39b5f29a 757 if (unlikely(!page_evictable(page)))
b291f000 758 goto cull_mlocked;
894bc310 759
a6dc60f8 760 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
761 goto keep_locked;
762
1da177e4
LT
763 /* Double the slab pressure for mapped and swapcache pages */
764 if (page_mapped(page) || PageSwapCache(page))
765 sc->nr_scanned++;
766
c661b078
AW
767 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
768 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
769
770 if (PageWriteback(page)) {
e62e384e
MH
771 /*
772 * memcg doesn't have any dirty pages throttling so we
773 * could easily OOM just because too many pages are in
c3b94f44 774 * writeback and there is nothing else to reclaim.
e62e384e 775 *
c3b94f44 776 * Check __GFP_IO, certainly because a loop driver
e62e384e
MH
777 * thread might enter reclaim, and deadlock if it waits
778 * on a page for which it is needed to do the write
779 * (loop masks off __GFP_IO|__GFP_FS for this reason);
780 * but more thought would probably show more reasons.
c3b94f44
HD
781 *
782 * Don't require __GFP_FS, since we're not going into
783 * the FS, just waiting on its writeback completion.
784 * Worryingly, ext4 gfs2 and xfs allocate pages with
785 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
786 * testing may_enter_fs here is liable to OOM on them.
e62e384e 787 */
c3b94f44
HD
788 if (global_reclaim(sc) ||
789 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
790 /*
791 * This is slightly racy - end_page_writeback()
792 * might have just cleared PageReclaim, then
793 * setting PageReclaim here end up interpreted
794 * as PageReadahead - but that does not matter
795 * enough to care. What we do want is for this
796 * page to have PageReclaim set next time memcg
797 * reclaim reaches the tests above, so it will
798 * then wait_on_page_writeback() to avoid OOM;
799 * and it's also appropriate in global reclaim.
800 */
801 SetPageReclaim(page);
e62e384e 802 nr_writeback++;
c3b94f44 803 goto keep_locked;
e62e384e 804 }
c3b94f44 805 wait_on_page_writeback(page);
c661b078 806 }
1da177e4 807
02c6de8d
MK
808 if (!force_reclaim)
809 references = page_check_references(page, sc);
810
dfc8d636
JW
811 switch (references) {
812 case PAGEREF_ACTIVATE:
1da177e4 813 goto activate_locked;
64574746
JW
814 case PAGEREF_KEEP:
815 goto keep_locked;
dfc8d636
JW
816 case PAGEREF_RECLAIM:
817 case PAGEREF_RECLAIM_CLEAN:
818 ; /* try to reclaim the page below */
819 }
1da177e4 820
1da177e4
LT
821 /*
822 * Anonymous process memory has backing store?
823 * Try to allocate it some swap space here.
824 */
b291f000 825 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
826 if (!(sc->gfp_mask & __GFP_IO))
827 goto keep_locked;
5bc7b8ac 828 if (!add_to_swap(page, page_list))
1da177e4 829 goto activate_locked;
63eb6b93 830 may_enter_fs = 1;
b291f000 831 }
1da177e4
LT
832
833 mapping = page_mapping(page);
1da177e4
LT
834
835 /*
836 * The page is mapped into the page tables of one or more
837 * processes. Try to unmap it here.
838 */
839 if (page_mapped(page) && mapping) {
02c6de8d 840 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
841 case SWAP_FAIL:
842 goto activate_locked;
843 case SWAP_AGAIN:
844 goto keep_locked;
b291f000
NP
845 case SWAP_MLOCK:
846 goto cull_mlocked;
1da177e4
LT
847 case SWAP_SUCCESS:
848 ; /* try to free the page below */
849 }
850 }
851
852 if (PageDirty(page)) {
0e093d99
MG
853 nr_dirty++;
854
ee72886d
MG
855 /*
856 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
857 * avoid risk of stack overflow but do not writeback
858 * unless under significant pressure.
ee72886d 859 */
f84f6e2b 860 if (page_is_file_cache(page) &&
9e3b2f8c
KK
861 (!current_is_kswapd() ||
862 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
863 /*
864 * Immediately reclaim when written back.
865 * Similar in principal to deactivate_page()
866 * except we already have the page isolated
867 * and know it's dirty
868 */
869 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
870 SetPageReclaim(page);
871
ee72886d
MG
872 goto keep_locked;
873 }
874
dfc8d636 875 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 876 goto keep_locked;
4dd4b920 877 if (!may_enter_fs)
1da177e4 878 goto keep_locked;
52a8363e 879 if (!sc->may_writepage)
1da177e4
LT
880 goto keep_locked;
881
882 /* Page is dirty, try to write it out here */
7d3579e8 883 switch (pageout(page, mapping, sc)) {
1da177e4 884 case PAGE_KEEP:
0e093d99 885 nr_congested++;
1da177e4
LT
886 goto keep_locked;
887 case PAGE_ACTIVATE:
888 goto activate_locked;
889 case PAGE_SUCCESS:
7d3579e8 890 if (PageWriteback(page))
41ac1999 891 goto keep;
7d3579e8 892 if (PageDirty(page))
1da177e4 893 goto keep;
7d3579e8 894
1da177e4
LT
895 /*
896 * A synchronous write - probably a ramdisk. Go
897 * ahead and try to reclaim the page.
898 */
529ae9aa 899 if (!trylock_page(page))
1da177e4
LT
900 goto keep;
901 if (PageDirty(page) || PageWriteback(page))
902 goto keep_locked;
903 mapping = page_mapping(page);
904 case PAGE_CLEAN:
905 ; /* try to free the page below */
906 }
907 }
908
909 /*
910 * If the page has buffers, try to free the buffer mappings
911 * associated with this page. If we succeed we try to free
912 * the page as well.
913 *
914 * We do this even if the page is PageDirty().
915 * try_to_release_page() does not perform I/O, but it is
916 * possible for a page to have PageDirty set, but it is actually
917 * clean (all its buffers are clean). This happens if the
918 * buffers were written out directly, with submit_bh(). ext3
894bc310 919 * will do this, as well as the blockdev mapping.
1da177e4
LT
920 * try_to_release_page() will discover that cleanness and will
921 * drop the buffers and mark the page clean - it can be freed.
922 *
923 * Rarely, pages can have buffers and no ->mapping. These are
924 * the pages which were not successfully invalidated in
925 * truncate_complete_page(). We try to drop those buffers here
926 * and if that worked, and the page is no longer mapped into
927 * process address space (page_count == 1) it can be freed.
928 * Otherwise, leave the page on the LRU so it is swappable.
929 */
266cf658 930 if (page_has_private(page)) {
1da177e4
LT
931 if (!try_to_release_page(page, sc->gfp_mask))
932 goto activate_locked;
e286781d
NP
933 if (!mapping && page_count(page) == 1) {
934 unlock_page(page);
935 if (put_page_testzero(page))
936 goto free_it;
937 else {
938 /*
939 * rare race with speculative reference.
940 * the speculative reference will free
941 * this page shortly, so we may
942 * increment nr_reclaimed here (and
943 * leave it off the LRU).
944 */
945 nr_reclaimed++;
946 continue;
947 }
948 }
1da177e4
LT
949 }
950
e286781d 951 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 952 goto keep_locked;
1da177e4 953
a978d6f5
NP
954 /*
955 * At this point, we have no other references and there is
956 * no way to pick any more up (removed from LRU, removed
957 * from pagecache). Can use non-atomic bitops now (and
958 * we obviously don't have to worry about waking up a process
959 * waiting on the page lock, because there are no references.
960 */
961 __clear_page_locked(page);
e286781d 962free_it:
05ff5137 963 nr_reclaimed++;
abe4c3b5
MG
964
965 /*
966 * Is there need to periodically free_page_list? It would
967 * appear not as the counts should be low
968 */
969 list_add(&page->lru, &free_pages);
1da177e4
LT
970 continue;
971
b291f000 972cull_mlocked:
63d6c5ad
HD
973 if (PageSwapCache(page))
974 try_to_free_swap(page);
b291f000
NP
975 unlock_page(page);
976 putback_lru_page(page);
977 continue;
978
1da177e4 979activate_locked:
68a22394
RR
980 /* Not a candidate for swapping, so reclaim swap space. */
981 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 982 try_to_free_swap(page);
894bc310 983 VM_BUG_ON(PageActive(page));
1da177e4
LT
984 SetPageActive(page);
985 pgactivate++;
986keep_locked:
987 unlock_page(page);
988keep:
989 list_add(&page->lru, &ret_pages);
b291f000 990 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 991 }
abe4c3b5 992
0e093d99
MG
993 /*
994 * Tag a zone as congested if all the dirty pages encountered were
995 * backed by a congested BDI. In this case, reclaimers should just
996 * back off and wait for congestion to clear because further reclaim
997 * will encounter the same problem
998 */
89b5fae5 999 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 1000 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 1001
cc59850e 1002 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1003
1da177e4 1004 list_splice(&ret_pages, page_list);
f8891e5e 1005 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1006 mem_cgroup_uncharge_end();
92df3a72
MG
1007 *ret_nr_dirty += nr_dirty;
1008 *ret_nr_writeback += nr_writeback;
05ff5137 1009 return nr_reclaimed;
1da177e4
LT
1010}
1011
02c6de8d
MK
1012unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1013 struct list_head *page_list)
1014{
1015 struct scan_control sc = {
1016 .gfp_mask = GFP_KERNEL,
1017 .priority = DEF_PRIORITY,
1018 .may_unmap = 1,
1019 };
1020 unsigned long ret, dummy1, dummy2;
1021 struct page *page, *next;
1022 LIST_HEAD(clean_pages);
1023
1024 list_for_each_entry_safe(page, next, page_list, lru) {
009dfd44
RA
1025 if (page_is_file_cache(page) && !PageDirty(page) &&
1026 !isolated_balloon_page(page)) {
02c6de8d
MK
1027 ClearPageActive(page);
1028 list_move(&page->lru, &clean_pages);
1029 }
1030 }
1031
1032 ret = shrink_page_list(&clean_pages, zone, &sc,
1033 TTU_UNMAP|TTU_IGNORE_ACCESS,
1034 &dummy1, &dummy2, true);
1035 list_splice(&clean_pages, page_list);
1036 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1037 return ret;
1038}
1039
5ad333eb
AW
1040/*
1041 * Attempt to remove the specified page from its LRU. Only take this page
1042 * if it is of the appropriate PageActive status. Pages which are being
1043 * freed elsewhere are also ignored.
1044 *
1045 * page: page to consider
1046 * mode: one of the LRU isolation modes defined above
1047 *
1048 * returns 0 on success, -ve errno on failure.
1049 */
f3fd4a61 1050int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1051{
1052 int ret = -EINVAL;
1053
1054 /* Only take pages on the LRU. */
1055 if (!PageLRU(page))
1056 return ret;
1057
e46a2879
MK
1058 /* Compaction should not handle unevictable pages but CMA can do so */
1059 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1060 return ret;
1061
5ad333eb 1062 ret = -EBUSY;
08e552c6 1063
c8244935
MG
1064 /*
1065 * To minimise LRU disruption, the caller can indicate that it only
1066 * wants to isolate pages it will be able to operate on without
1067 * blocking - clean pages for the most part.
1068 *
1069 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1070 * is used by reclaim when it is cannot write to backing storage
1071 *
1072 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1073 * that it is possible to migrate without blocking
1074 */
1075 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1076 /* All the caller can do on PageWriteback is block */
1077 if (PageWriteback(page))
1078 return ret;
1079
1080 if (PageDirty(page)) {
1081 struct address_space *mapping;
1082
1083 /* ISOLATE_CLEAN means only clean pages */
1084 if (mode & ISOLATE_CLEAN)
1085 return ret;
1086
1087 /*
1088 * Only pages without mappings or that have a
1089 * ->migratepage callback are possible to migrate
1090 * without blocking
1091 */
1092 mapping = page_mapping(page);
1093 if (mapping && !mapping->a_ops->migratepage)
1094 return ret;
1095 }
1096 }
39deaf85 1097
f80c0673
MK
1098 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1099 return ret;
1100
5ad333eb
AW
1101 if (likely(get_page_unless_zero(page))) {
1102 /*
1103 * Be careful not to clear PageLRU until after we're
1104 * sure the page is not being freed elsewhere -- the
1105 * page release code relies on it.
1106 */
1107 ClearPageLRU(page);
1108 ret = 0;
1109 }
1110
1111 return ret;
1112}
1113
1da177e4
LT
1114/*
1115 * zone->lru_lock is heavily contended. Some of the functions that
1116 * shrink the lists perform better by taking out a batch of pages
1117 * and working on them outside the LRU lock.
1118 *
1119 * For pagecache intensive workloads, this function is the hottest
1120 * spot in the kernel (apart from copy_*_user functions).
1121 *
1122 * Appropriate locks must be held before calling this function.
1123 *
1124 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1125 * @lruvec: The LRU vector to pull pages from.
1da177e4 1126 * @dst: The temp list to put pages on to.
f626012d 1127 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1128 * @sc: The scan_control struct for this reclaim session
5ad333eb 1129 * @mode: One of the LRU isolation modes
3cb99451 1130 * @lru: LRU list id for isolating
1da177e4
LT
1131 *
1132 * returns how many pages were moved onto *@dst.
1133 */
69e05944 1134static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1135 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1136 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1137 isolate_mode_t mode, enum lru_list lru)
1da177e4 1138{
75b00af7 1139 struct list_head *src = &lruvec->lists[lru];
69e05944 1140 unsigned long nr_taken = 0;
c9b02d97 1141 unsigned long scan;
1da177e4 1142
c9b02d97 1143 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1144 struct page *page;
fa9add64 1145 int nr_pages;
5ad333eb 1146
1da177e4
LT
1147 page = lru_to_page(src);
1148 prefetchw_prev_lru_page(page, src, flags);
1149
725d704e 1150 VM_BUG_ON(!PageLRU(page));
8d438f96 1151
f3fd4a61 1152 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1153 case 0:
fa9add64
HD
1154 nr_pages = hpage_nr_pages(page);
1155 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1156 list_move(&page->lru, dst);
fa9add64 1157 nr_taken += nr_pages;
5ad333eb
AW
1158 break;
1159
1160 case -EBUSY:
1161 /* else it is being freed elsewhere */
1162 list_move(&page->lru, src);
1163 continue;
46453a6e 1164
5ad333eb
AW
1165 default:
1166 BUG();
1167 }
1da177e4
LT
1168 }
1169
f626012d 1170 *nr_scanned = scan;
75b00af7
HD
1171 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1172 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1173 return nr_taken;
1174}
1175
62695a84
NP
1176/**
1177 * isolate_lru_page - tries to isolate a page from its LRU list
1178 * @page: page to isolate from its LRU list
1179 *
1180 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1181 * vmstat statistic corresponding to whatever LRU list the page was on.
1182 *
1183 * Returns 0 if the page was removed from an LRU list.
1184 * Returns -EBUSY if the page was not on an LRU list.
1185 *
1186 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1187 * the active list, it will have PageActive set. If it was found on
1188 * the unevictable list, it will have the PageUnevictable bit set. That flag
1189 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1190 *
1191 * The vmstat statistic corresponding to the list on which the page was
1192 * found will be decremented.
1193 *
1194 * Restrictions:
1195 * (1) Must be called with an elevated refcount on the page. This is a
1196 * fundamentnal difference from isolate_lru_pages (which is called
1197 * without a stable reference).
1198 * (2) the lru_lock must not be held.
1199 * (3) interrupts must be enabled.
1200 */
1201int isolate_lru_page(struct page *page)
1202{
1203 int ret = -EBUSY;
1204
0c917313
KK
1205 VM_BUG_ON(!page_count(page));
1206
62695a84
NP
1207 if (PageLRU(page)) {
1208 struct zone *zone = page_zone(page);
fa9add64 1209 struct lruvec *lruvec;
62695a84
NP
1210
1211 spin_lock_irq(&zone->lru_lock);
fa9add64 1212 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1213 if (PageLRU(page)) {
894bc310 1214 int lru = page_lru(page);
0c917313 1215 get_page(page);
62695a84 1216 ClearPageLRU(page);
fa9add64
HD
1217 del_page_from_lru_list(page, lruvec, lru);
1218 ret = 0;
62695a84
NP
1219 }
1220 spin_unlock_irq(&zone->lru_lock);
1221 }
1222 return ret;
1223}
1224
35cd7815 1225/*
d37dd5dc
FW
1226 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1227 * then get resheduled. When there are massive number of tasks doing page
1228 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1229 * the LRU list will go small and be scanned faster than necessary, leading to
1230 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1231 */
1232static int too_many_isolated(struct zone *zone, int file,
1233 struct scan_control *sc)
1234{
1235 unsigned long inactive, isolated;
1236
6fa3eb70 1237 if (current_is_kswapd() || sc->hibernation_mode)
35cd7815
RR
1238 return 0;
1239
89b5fae5 1240 if (!global_reclaim(sc))
35cd7815
RR
1241 return 0;
1242
1243 if (file) {
1244 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1245 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1246 } else {
1247 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1248 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1249 }
1250
3cf23841
FW
1251 /*
1252 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1253 * won't get blocked by normal direct-reclaimers, forming a circular
1254 * deadlock.
1255 */
1256 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1257 inactive >>= 3;
1258
35cd7815
RR
1259 return isolated > inactive;
1260}
1261
66635629 1262static noinline_for_stack void
75b00af7 1263putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1264{
27ac81d8
KK
1265 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1266 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1267 LIST_HEAD(pages_to_free);
66635629 1268
66635629
MG
1269 /*
1270 * Put back any unfreeable pages.
1271 */
66635629 1272 while (!list_empty(page_list)) {
3f79768f 1273 struct page *page = lru_to_page(page_list);
66635629 1274 int lru;
3f79768f 1275
66635629
MG
1276 VM_BUG_ON(PageLRU(page));
1277 list_del(&page->lru);
39b5f29a 1278 if (unlikely(!page_evictable(page))) {
66635629
MG
1279 spin_unlock_irq(&zone->lru_lock);
1280 putback_lru_page(page);
1281 spin_lock_irq(&zone->lru_lock);
1282 continue;
1283 }
fa9add64
HD
1284
1285 lruvec = mem_cgroup_page_lruvec(page, zone);
1286
7a608572 1287 SetPageLRU(page);
66635629 1288 lru = page_lru(page);
fa9add64
HD
1289 add_page_to_lru_list(page, lruvec, lru);
1290
66635629
MG
1291 if (is_active_lru(lru)) {
1292 int file = is_file_lru(lru);
9992af10
RR
1293 int numpages = hpage_nr_pages(page);
1294 reclaim_stat->recent_rotated[file] += numpages;
66635629 1295 }
2bcf8879
HD
1296 if (put_page_testzero(page)) {
1297 __ClearPageLRU(page);
1298 __ClearPageActive(page);
fa9add64 1299 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1300
1301 if (unlikely(PageCompound(page))) {
1302 spin_unlock_irq(&zone->lru_lock);
1303 (*get_compound_page_dtor(page))(page);
1304 spin_lock_irq(&zone->lru_lock);
1305 } else
1306 list_add(&page->lru, &pages_to_free);
66635629
MG
1307 }
1308 }
66635629 1309
3f79768f
HD
1310 /*
1311 * To save our caller's stack, now use input list for pages to free.
1312 */
1313 list_splice(&pages_to_free, page_list);
66635629
MG
1314}
1315
1da177e4 1316/*
1742f19f
AM
1317 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1318 * of reclaimed pages
1da177e4 1319 */
66635629 1320static noinline_for_stack unsigned long
1a93be0e 1321shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1322 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1323{
1324 LIST_HEAD(page_list);
e247dbce 1325 unsigned long nr_scanned;
05ff5137 1326 unsigned long nr_reclaimed = 0;
e247dbce 1327 unsigned long nr_taken;
92df3a72
MG
1328 unsigned long nr_dirty = 0;
1329 unsigned long nr_writeback = 0;
f3fd4a61 1330 isolate_mode_t isolate_mode = 0;
3cb99451 1331 int file = is_file_lru(lru);
1a93be0e
KK
1332 struct zone *zone = lruvec_zone(lruvec);
1333 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1334
35cd7815 1335 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1336 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1337
1338 /* We are about to die and free our memory. Return now. */
1339 if (fatal_signal_pending(current))
1340 return SWAP_CLUSTER_MAX;
1341 }
1342
1da177e4 1343 lru_add_drain();
f80c0673
MK
1344
1345 if (!sc->may_unmap)
61317289 1346 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1347 if (!sc->may_writepage)
61317289 1348 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1349
1da177e4 1350 spin_lock_irq(&zone->lru_lock);
b35ea17b 1351
5dc35979
KK
1352 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1353 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1354
1355 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1356 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1357
89b5fae5 1358 if (global_reclaim(sc)) {
e247dbce
KM
1359 zone->pages_scanned += nr_scanned;
1360 if (current_is_kswapd())
75b00af7 1361 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1362 else
75b00af7 1363 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1364 }
d563c050 1365 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1366
d563c050 1367 if (nr_taken == 0)
66635629 1368 return 0;
5ad333eb 1369
02c6de8d
MK
1370 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1371 &nr_dirty, &nr_writeback, false);
c661b078 1372
3f79768f
HD
1373 spin_lock_irq(&zone->lru_lock);
1374
95d918fc 1375 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1376
904249aa
YH
1377 if (global_reclaim(sc)) {
1378 if (current_is_kswapd())
1379 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1380 nr_reclaimed);
1381 else
1382 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1383 nr_reclaimed);
1384 }
a74609fa 1385
27ac81d8 1386 putback_inactive_pages(lruvec, &page_list);
3f79768f 1387
95d918fc 1388 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1389
1390 spin_unlock_irq(&zone->lru_lock);
1391
1392 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1393
92df3a72
MG
1394 /*
1395 * If reclaim is isolating dirty pages under writeback, it implies
1396 * that the long-lived page allocation rate is exceeding the page
1397 * laundering rate. Either the global limits are not being effective
1398 * at throttling processes due to the page distribution throughout
1399 * zones or there is heavy usage of a slow backing device. The
1400 * only option is to throttle from reclaim context which is not ideal
1401 * as there is no guarantee the dirtying process is throttled in the
1402 * same way balance_dirty_pages() manages.
1403 *
1404 * This scales the number of dirty pages that must be under writeback
1405 * before throttling depending on priority. It is a simple backoff
1406 * function that has the most effect in the range DEF_PRIORITY to
1407 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1408 * in trouble and reclaim is considered to be in trouble.
1409 *
1410 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1411 * DEF_PRIORITY-1 50% must be PageWriteback
1412 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1413 * ...
1414 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1415 * isolated page is PageWriteback
1416 */
9e3b2f8c
KK
1417 if (nr_writeback && nr_writeback >=
1418 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1419 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1420
e11da5b4
MG
1421 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1422 zone_idx(zone),
1423 nr_scanned, nr_reclaimed,
9e3b2f8c 1424 sc->priority,
23b9da55 1425 trace_shrink_flags(file));
05ff5137 1426 return nr_reclaimed;
1da177e4
LT
1427}
1428
1429/*
1430 * This moves pages from the active list to the inactive list.
1431 *
1432 * We move them the other way if the page is referenced by one or more
1433 * processes, from rmap.
1434 *
1435 * If the pages are mostly unmapped, the processing is fast and it is
1436 * appropriate to hold zone->lru_lock across the whole operation. But if
1437 * the pages are mapped, the processing is slow (page_referenced()) so we
1438 * should drop zone->lru_lock around each page. It's impossible to balance
1439 * this, so instead we remove the pages from the LRU while processing them.
1440 * It is safe to rely on PG_active against the non-LRU pages in here because
1441 * nobody will play with that bit on a non-LRU page.
1442 *
1443 * The downside is that we have to touch page->_count against each page.
1444 * But we had to alter page->flags anyway.
1445 */
1cfb419b 1446
fa9add64 1447static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1448 struct list_head *list,
2bcf8879 1449 struct list_head *pages_to_free,
3eb4140f
WF
1450 enum lru_list lru)
1451{
fa9add64 1452 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1453 unsigned long pgmoved = 0;
3eb4140f 1454 struct page *page;
fa9add64 1455 int nr_pages;
3eb4140f 1456
3eb4140f
WF
1457 while (!list_empty(list)) {
1458 page = lru_to_page(list);
fa9add64 1459 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1460
1461 VM_BUG_ON(PageLRU(page));
1462 SetPageLRU(page);
1463
fa9add64
HD
1464 nr_pages = hpage_nr_pages(page);
1465 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1466 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1467 pgmoved += nr_pages;
3eb4140f 1468
2bcf8879
HD
1469 if (put_page_testzero(page)) {
1470 __ClearPageLRU(page);
1471 __ClearPageActive(page);
fa9add64 1472 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1473
1474 if (unlikely(PageCompound(page))) {
1475 spin_unlock_irq(&zone->lru_lock);
1476 (*get_compound_page_dtor(page))(page);
1477 spin_lock_irq(&zone->lru_lock);
1478 } else
1479 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1480 }
1481 }
1482 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1483 if (!is_active_lru(lru))
1484 __count_vm_events(PGDEACTIVATE, pgmoved);
1485}
1cfb419b 1486
f626012d 1487static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1488 struct lruvec *lruvec,
f16015fb 1489 struct scan_control *sc,
9e3b2f8c 1490 enum lru_list lru)
1da177e4 1491{
44c241f1 1492 unsigned long nr_taken;
f626012d 1493 unsigned long nr_scanned;
6fe6b7e3 1494 unsigned long vm_flags;
1da177e4 1495 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1496 LIST_HEAD(l_active);
b69408e8 1497 LIST_HEAD(l_inactive);
1da177e4 1498 struct page *page;
1a93be0e 1499 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1500 unsigned long nr_rotated = 0;
f3fd4a61 1501 isolate_mode_t isolate_mode = 0;
3cb99451 1502 int file = is_file_lru(lru);
1a93be0e 1503 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1504
1505 lru_add_drain();
f80c0673
MK
1506
1507 if (!sc->may_unmap)
61317289 1508 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1509 if (!sc->may_writepage)
61317289 1510 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1511
1da177e4 1512 spin_lock_irq(&zone->lru_lock);
925b7673 1513
5dc35979
KK
1514 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1515 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1516 if (global_reclaim(sc))
f626012d 1517 zone->pages_scanned += nr_scanned;
89b5fae5 1518
b7c46d15 1519 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1520
f626012d 1521 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1522 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1523 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1524 spin_unlock_irq(&zone->lru_lock);
1525
1da177e4
LT
1526 while (!list_empty(&l_hold)) {
1527 cond_resched();
1528 page = lru_to_page(&l_hold);
1529 list_del(&page->lru);
7e9cd484 1530
39b5f29a 1531 if (unlikely(!page_evictable(page))) {
894bc310
LS
1532 putback_lru_page(page);
1533 continue;
1534 }
1535
cc715d99
MG
1536 if (unlikely(buffer_heads_over_limit)) {
1537 if (page_has_private(page) && trylock_page(page)) {
1538 if (page_has_private(page))
1539 try_to_release_page(page, 0);
1540 unlock_page(page);
1541 }
1542 }
1543
c3ac9a8a
JW
1544 if (page_referenced(page, 0, sc->target_mem_cgroup,
1545 &vm_flags)) {
9992af10 1546 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1547 /*
1548 * Identify referenced, file-backed active pages and
1549 * give them one more trip around the active list. So
1550 * that executable code get better chances to stay in
1551 * memory under moderate memory pressure. Anon pages
1552 * are not likely to be evicted by use-once streaming
1553 * IO, plus JVM can create lots of anon VM_EXEC pages,
1554 * so we ignore them here.
1555 */
41e20983 1556 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1557 list_add(&page->lru, &l_active);
1558 continue;
1559 }
1560 }
7e9cd484 1561
5205e56e 1562 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1563 list_add(&page->lru, &l_inactive);
1564 }
1565
b555749a 1566 /*
8cab4754 1567 * Move pages back to the lru list.
b555749a 1568 */
2a1dc509 1569 spin_lock_irq(&zone->lru_lock);
556adecb 1570 /*
8cab4754
WF
1571 * Count referenced pages from currently used mappings as rotated,
1572 * even though only some of them are actually re-activated. This
1573 * helps balance scan pressure between file and anonymous pages in
1574 * get_scan_ratio.
7e9cd484 1575 */
b7c46d15 1576 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1577
fa9add64
HD
1578 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1579 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1580 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1581 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1582
1583 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1584}
1585
74e3f3c3 1586#ifdef CONFIG_SWAP
14797e23 1587static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1588{
1589 unsigned long active, inactive;
1590
1591 active = zone_page_state(zone, NR_ACTIVE_ANON);
1592 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1593
1594 if (inactive * zone->inactive_ratio < active)
1595 return 1;
1596
1597 return 0;
1598}
1599
14797e23
KM
1600/**
1601 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1602 * @lruvec: LRU vector to check
14797e23
KM
1603 *
1604 * Returns true if the zone does not have enough inactive anon pages,
1605 * meaning some active anon pages need to be deactivated.
1606 */
c56d5c7d 1607static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1608{
74e3f3c3
MK
1609 /*
1610 * If we don't have swap space, anonymous page deactivation
1611 * is pointless.
1612 */
1613 if (!total_swap_pages)
1614 return 0;
1615
c3c787e8 1616 if (!mem_cgroup_disabled())
c56d5c7d 1617 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1618
c56d5c7d 1619 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1620}
74e3f3c3 1621#else
c56d5c7d 1622static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1623{
1624 return 0;
1625}
1626#endif
14797e23 1627
56e49d21
RR
1628/**
1629 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1630 * @lruvec: LRU vector to check
56e49d21
RR
1631 *
1632 * When the system is doing streaming IO, memory pressure here
1633 * ensures that active file pages get deactivated, until more
1634 * than half of the file pages are on the inactive list.
1635 *
1636 * Once we get to that situation, protect the system's working
1637 * set from being evicted by disabling active file page aging.
1638 *
1639 * This uses a different ratio than the anonymous pages, because
1640 * the page cache uses a use-once replacement algorithm.
1641 */
c56d5c7d 1642static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1643{
e3790144
JW
1644 unsigned long inactive;
1645 unsigned long active;
1646
1647 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1648 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1649
e3790144 1650 return active > inactive;
56e49d21
RR
1651}
1652
75b00af7 1653static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1654{
75b00af7 1655 if (is_file_lru(lru))
c56d5c7d 1656 return inactive_file_is_low(lruvec);
b39415b2 1657 else
c56d5c7d 1658 return inactive_anon_is_low(lruvec);
b39415b2
RR
1659}
1660
4f98a2fe 1661static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1662 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1663{
b39415b2 1664 if (is_active_lru(lru)) {
75b00af7 1665 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1666 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1667 return 0;
1668 }
1669
1a93be0e 1670 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1671}
1672
3d58ab5c 1673static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1674{
89b5fae5 1675 if (global_reclaim(sc))
1f4c025b 1676 return vm_swappiness;
3d58ab5c 1677 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1678}
1679
9a265114
JW
1680enum scan_balance {
1681 SCAN_EQUAL,
1682 SCAN_FRACT,
1683 SCAN_ANON,
1684 SCAN_FILE,
1685};
1686
6fa3eb70
S
1687
1688#ifdef CONFIG_ZRAM
1689static int vmscan_swap_file_ratio = 1;
1690module_param_named(swap_file_ratio, vmscan_swap_file_ratio, int, S_IRUGO | S_IWUSR);
1691
1692#if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1693
1694// vmscan debug
1695static int vmscan_swap_sum = 200;
1696module_param_named(swap_sum, vmscan_swap_sum, int, S_IRUGO | S_IWUSR);
1697
1698
1699static int vmscan_scan_file_sum = 0;
1700static int vmscan_scan_anon_sum = 0;
1701static int vmscan_recent_scanned_anon = 0;
1702static int vmscan_recent_scanned_file = 0;
1703static int vmscan_recent_rotated_anon = 0;
1704static int vmscan_recent_rotated_file = 0;
1705module_param_named(scan_file_sum, vmscan_scan_file_sum, int, S_IRUGO);
1706module_param_named(scan_anon_sum, vmscan_scan_anon_sum, int, S_IRUGO);
1707module_param_named(recent_scanned_anon, vmscan_recent_scanned_anon, int, S_IRUGO);
1708module_param_named(recent_scanned_file, vmscan_recent_scanned_file, int, S_IRUGO);
1709module_param_named(recent_rotated_anon, vmscan_recent_rotated_anon, int, S_IRUGO);
1710module_param_named(recent_rotated_file, vmscan_recent_rotated_file, int, S_IRUGO);
1711#endif // CONFIG_ZRAM
1712
1713
1714#if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1715//#define LOGTAG "VMSCAN"
1716static unsigned long t=0;
1717static unsigned long history[2] = {0};
1718extern int lowmem_minfree[9];
1719#endif
1720
1721#endif // CONFIG_ZRAM
1722
4f98a2fe
RR
1723/*
1724 * Determine how aggressively the anon and file LRU lists should be
1725 * scanned. The relative value of each set of LRU lists is determined
1726 * by looking at the fraction of the pages scanned we did rotate back
1727 * onto the active list instead of evict.
1728 *
be7bd59d
WL
1729 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1730 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1731 */
90126375 1732static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1733 unsigned long *nr)
4f98a2fe 1734{
9a265114
JW
1735 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1736 u64 fraction[2];
1737 u64 denominator = 0; /* gcc */
1738 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1739 unsigned long anon_prio, file_prio;
9a265114
JW
1740 enum scan_balance scan_balance;
1741 unsigned long anon, file, free;
1742 bool force_scan = false;
4f98a2fe 1743 unsigned long ap, fp;
4111304d 1744 enum lru_list lru;
6fa3eb70
S
1745#if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1746 int cpu;
1747 unsigned long SwapinCount, SwapoutCount, cached;
1748 bool bThrashing = false;
1749#endif
246e87a9 1750
f11c0ca5
JW
1751 /*
1752 * If the zone or memcg is small, nr[l] can be 0. This
1753 * results in no scanning on this priority and a potential
1754 * priority drop. Global direct reclaim can go to the next
1755 * zone and tends to have no problems. Global kswapd is for
1756 * zone balancing and it needs to scan a minimum amount. When
1757 * reclaiming for a memcg, a priority drop can cause high
1758 * latencies, so it's better to scan a minimum amount there as
1759 * well.
1760 */
90126375 1761 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1762 force_scan = true;
89b5fae5 1763 if (!global_reclaim(sc))
a4d3e9e7 1764 force_scan = true;
76a33fc3
SL
1765
1766 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1767 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1768 scan_balance = SCAN_FILE;
76a33fc3
SL
1769 goto out;
1770 }
4f98a2fe 1771
10316b31
JW
1772 /*
1773 * Global reclaim will swap to prevent OOM even with no
1774 * swappiness, but memcg users want to use this knob to
1775 * disable swapping for individual groups completely when
1776 * using the memory controller's swap limit feature would be
1777 * too expensive.
1778 */
1779 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1780 scan_balance = SCAN_FILE;
10316b31
JW
1781 goto out;
1782 }
1783
1784 /*
1785 * Do not apply any pressure balancing cleverness when the
1786 * system is close to OOM, scan both anon and file equally
1787 * (unless the swappiness setting disagrees with swapping).
1788 */
1789 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1790 scan_balance = SCAN_EQUAL;
10316b31
JW
1791 goto out;
1792 }
1793
4d7dcca2
HD
1794 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1795 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1796 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1797 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1798
11d16c25
JW
1799 /*
1800 * If it's foreseeable that reclaiming the file cache won't be
1801 * enough to get the zone back into a desirable shape, we have
1802 * to swap. Better start now and leave the - probably heavily
1803 * thrashing - remaining file pages alone.
1804 */
89b5fae5 1805 if (global_reclaim(sc)) {
11d16c25 1806 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1807 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1808 scan_balance = SCAN_ANON;
76a33fc3 1809 goto out;
eeee9a8c 1810 }
4f98a2fe
RR
1811 }
1812
7c5bd705
JW
1813 /*
1814 * There is enough inactive page cache, do not reclaim
1815 * anything from the anonymous working set right now.
1816 */
1817 if (!inactive_file_is_low(lruvec)) {
9a265114 1818 scan_balance = SCAN_FILE;
7c5bd705
JW
1819 goto out;
1820 }
1821
9a265114
JW
1822 scan_balance = SCAN_FRACT;
1823
58c37f6e
KM
1824 /*
1825 * With swappiness at 100, anonymous and file have the same priority.
1826 * This scanning priority is essentially the inverse of IO cost.
1827 */
3d58ab5c 1828 anon_prio = vmscan_swappiness(sc);
75b00af7 1829 file_prio = 200 - anon_prio;
58c37f6e 1830
6fa3eb70
S
1831 /*
1832 * With swappiness at 100, anonymous and file have the same priority.
1833 * This scanning priority is essentially the inverse of IO cost.
1834 */
1835#if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1836 if (vmscan_swap_file_ratio) {
1837
1838 if(t == 0)
1839 t = jiffies;
1840
1841 if (time_after(jiffies, t + 1 * HZ)) {
1842
1843 for_each_online_cpu(cpu) {
1844 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
1845 SwapinCount += this->event[PSWPIN];
1846 SwapoutCount += this->event[PSWPOUT];
1847 }
1848
1849 if( ((SwapinCount-history[0] + SwapoutCount - history[1]) / (jiffies-t) * HZ) > 3000){
1850 bThrashing = true;
1851 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "!!! thrashing !!!\n");
1852 }else{
1853 bThrashing = false;
1854 //xlog_printk(ANDROID_LOG_WARN, LOGTAG, "!!! NO thrashing !!!\n");
1855 }
1856 history[0] = SwapinCount;
1857 history[1] = SwapoutCount;
1858
1859
1860 t=jiffies;
1861 }
1862
1863
1864 if(!bThrashing){
1865 anon_prio = (vmscan_swappiness(sc) * anon) / (anon + file + 1);
1866 file_prio = (vmscan_swap_sum - vmscan_swappiness(sc)) * file / (anon + file + 1);
1867 //xlog_printk(ANDROID_LOG_DEBUG, LOGTAG, "1 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1868
1869 } else {
1870 cached = global_page_state(NR_FILE_PAGES) - global_page_state(NR_SHMEM) - total_swapcache_pages();
1871 if(cached > lowmem_minfree[2]) {
1872 anon_prio = vmscan_swappiness(sc);
1873 file_prio = vmscan_swap_sum - vmscan_swappiness(sc);
1874 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "2 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1875 } else {
1876 anon_prio = (vmscan_swappiness(sc) * anon) / (anon + file + 1);
1877 file_prio = (vmscan_swap_sum - vmscan_swappiness(sc)) * file / (anon + file + 1);
1878 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "3 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1879 }
1880 }
1881
1882 } else {
1883 anon_prio = vmscan_swappiness(sc);
1884 file_prio = vmscan_swap_sum - vmscan_swappiness(sc);
1885 }
1886#elif defined(CONFIG_ZRAM) // CONFIG_ZRAM
1887 if (vmscan_swap_file_ratio) {
1888 anon_prio = anon_prio * anon / (anon + file + 1);
1889 file_prio = file_prio * file / (anon + file + 1);
1890 }
1891#endif // CONFIG_ZRAM
1892
1893
1894
4f98a2fe
RR
1895 /*
1896 * OK, so we have swap space and a fair amount of page cache
1897 * pages. We use the recently rotated / recently scanned
1898 * ratios to determine how valuable each cache is.
1899 *
1900 * Because workloads change over time (and to avoid overflow)
1901 * we keep these statistics as a floating average, which ends
1902 * up weighing recent references more than old ones.
1903 *
1904 * anon in [0], file in [1]
1905 */
90126375 1906 spin_lock_irq(&zone->lru_lock);
6e901571 1907 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1908 reclaim_stat->recent_scanned[0] /= 2;
1909 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1910 }
1911
6e901571 1912 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1913 reclaim_stat->recent_scanned[1] /= 2;
1914 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1915 }
1916
4f98a2fe 1917 /*
00d8089c
RR
1918 * The amount of pressure on anon vs file pages is inversely
1919 * proportional to the fraction of recently scanned pages on
1920 * each list that were recently referenced and in active use.
4f98a2fe 1921 */
fe35004f 1922 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1923 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1924
fe35004f 1925 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1926 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1927 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1928
76a33fc3
SL
1929 fraction[0] = ap;
1930 fraction[1] = fp;
1931 denominator = ap + fp + 1;
1932out:
4111304d
HD
1933 for_each_evictable_lru(lru) {
1934 int file = is_file_lru(lru);
d778df51 1935 unsigned long size;
76a33fc3 1936 unsigned long scan;
6e08a369 1937
d778df51 1938 size = get_lru_size(lruvec, lru);
10316b31 1939 scan = size >> sc->priority;
9a265114 1940
10316b31
JW
1941 if (!scan && force_scan)
1942 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1943
1944 switch (scan_balance) {
1945 case SCAN_EQUAL:
1946 /* Scan lists relative to size */
1947 break;
1948 case SCAN_FRACT:
1949 /*
1950 * Scan types proportional to swappiness and
1951 * their relative recent reclaim efficiency.
1952 */
1953 scan = div64_u64(scan * fraction[file], denominator);
1954 break;
1955 case SCAN_FILE:
1956 case SCAN_ANON:
1957 /* Scan one type exclusively */
1958 if ((scan_balance == SCAN_FILE) != file)
1959 scan = 0;
1960 break;
1961 default:
1962 /* Look ma, no brain */
1963 BUG();
1964 }
4111304d 1965 nr[lru] = scan;
76a33fc3 1966 }
6e08a369 1967}
4f98a2fe 1968
9b4f98cd
JW
1969/*
1970 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1971 */
1972static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1973{
1974 unsigned long nr[NR_LRU_LISTS];
1975 unsigned long nr_to_scan;
1976 enum lru_list lru;
1977 unsigned long nr_reclaimed = 0;
1978 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1979 struct blk_plug plug;
1980
1981 get_scan_count(lruvec, sc, nr);
1982
1983 blk_start_plug(&plug);
1984 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1985 nr[LRU_INACTIVE_FILE]) {
1986 for_each_evictable_lru(lru) {
1987 if (nr[lru]) {
1988 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1989 nr[lru] -= nr_to_scan;
1990
1991 nr_reclaimed += shrink_list(lru, nr_to_scan,
1992 lruvec, sc);
1993 }
1994 }
1995 /*
1996 * On large memory systems, scan >> priority can become
1997 * really large. This is fine for the starting priority;
1998 * we want to put equal scanning pressure on each zone.
1999 * However, if the VM has a harder time of freeing pages,
2000 * with multiple processes reclaiming pages, the total
2001 * freeing target can get unreasonably large.
2002 */
2003 if (nr_reclaimed >= nr_to_reclaim &&
2004 sc->priority < DEF_PRIORITY)
2005 break;
2006 }
2007 blk_finish_plug(&plug);
2008 sc->nr_reclaimed += nr_reclaimed;
2009
2010 /*
2011 * Even if we did not try to evict anon pages at all, we want to
2012 * rebalance the anon lru active/inactive ratio.
2013 */
2014 if (inactive_anon_is_low(lruvec))
2015 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2016 sc, LRU_ACTIVE_ANON);
2017
2018 throttle_vm_writeout(sc->gfp_mask);
2019}
2020
23b9da55 2021/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2022static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2023{
d84da3f9 2024 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2025 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2026 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2027 return true;
2028
2029 return false;
2030}
2031
3e7d3449 2032/*
23b9da55
MG
2033 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2034 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2035 * true if more pages should be reclaimed such that when the page allocator
2036 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2037 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2038 */
9b4f98cd 2039static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2040 unsigned long nr_reclaimed,
2041 unsigned long nr_scanned,
2042 struct scan_control *sc)
2043{
2044 unsigned long pages_for_compaction;
2045 unsigned long inactive_lru_pages;
2046
2047 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2048 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2049 return false;
2050
2876592f
MG
2051 /* Consider stopping depending on scan and reclaim activity */
2052 if (sc->gfp_mask & __GFP_REPEAT) {
2053 /*
2054 * For __GFP_REPEAT allocations, stop reclaiming if the
2055 * full LRU list has been scanned and we are still failing
2056 * to reclaim pages. This full LRU scan is potentially
2057 * expensive but a __GFP_REPEAT caller really wants to succeed
2058 */
2059 if (!nr_reclaimed && !nr_scanned)
2060 return false;
2061 } else {
2062 /*
2063 * For non-__GFP_REPEAT allocations which can presumably
2064 * fail without consequence, stop if we failed to reclaim
2065 * any pages from the last SWAP_CLUSTER_MAX number of
2066 * pages that were scanned. This will return to the
2067 * caller faster at the risk reclaim/compaction and
2068 * the resulting allocation attempt fails
2069 */
2070 if (!nr_reclaimed)
2071 return false;
2072 }
3e7d3449
MG
2073
2074 /*
2075 * If we have not reclaimed enough pages for compaction and the
2076 * inactive lists are large enough, continue reclaiming
2077 */
2078 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2079 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2080 if (get_nr_swap_pages() > 0)
9b4f98cd 2081 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2082 if (sc->nr_reclaimed < pages_for_compaction &&
2083 inactive_lru_pages > pages_for_compaction)
2084 return true;
2085
2086 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2087 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2088 case COMPACT_PARTIAL:
2089 case COMPACT_CONTINUE:
2090 return false;
2091 default:
2092 return true;
2093 }
2094}
2095
9b4f98cd 2096static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2097{
f0fdc5e8 2098 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2099
9b4f98cd
JW
2100 do {
2101 struct mem_cgroup *root = sc->target_mem_cgroup;
2102 struct mem_cgroup_reclaim_cookie reclaim = {
2103 .zone = zone,
2104 .priority = sc->priority,
2105 };
2106 struct mem_cgroup *memcg;
3e7d3449 2107
9b4f98cd
JW
2108 nr_reclaimed = sc->nr_reclaimed;
2109 nr_scanned = sc->nr_scanned;
1da177e4 2110
9b4f98cd
JW
2111 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2112 do {
2113 struct lruvec *lruvec;
5660048c 2114
9b4f98cd 2115 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2116
9b4f98cd 2117 shrink_lruvec(lruvec, sc);
f16015fb 2118
9b4f98cd 2119 /*
a394cb8e
MH
2120 * Direct reclaim and kswapd have to scan all memory
2121 * cgroups to fulfill the overall scan target for the
9b4f98cd 2122 * zone.
a394cb8e
MH
2123 *
2124 * Limit reclaim, on the other hand, only cares about
2125 * nr_to_reclaim pages to be reclaimed and it will
2126 * retry with decreasing priority if one round over the
2127 * whole hierarchy is not sufficient.
9b4f98cd 2128 */
a394cb8e
MH
2129 if (!global_reclaim(sc) &&
2130 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2131 mem_cgroup_iter_break(root, memcg);
2132 break;
2133 }
2134 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2135 } while (memcg);
70ddf637
AV
2136
2137 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2138 sc->nr_scanned - nr_scanned,
2139 sc->nr_reclaimed - nr_reclaimed);
2140
9b4f98cd
JW
2141 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2142 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2143}
2144
fe4b1b24
MG
2145/* Returns true if compaction should go ahead for a high-order request */
2146static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2147{
2148 unsigned long balance_gap, watermark;
2149 bool watermark_ok;
2150
2151 /* Do not consider compaction for orders reclaim is meant to satisfy */
2152 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2153 return false;
2154
2155 /*
2156 * Compaction takes time to run and there are potentially other
2157 * callers using the pages just freed. Continue reclaiming until
2158 * there is a buffer of free pages available to give compaction
2159 * a reasonable chance of completing and allocating the page
2160 */
2161 balance_gap = min(low_wmark_pages(zone),
b40da049 2162 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2163 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2164 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2165 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2166
2167 /*
2168 * If compaction is deferred, reclaim up to a point where
2169 * compaction will have a chance of success when re-enabled
2170 */
aff62249 2171 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2172 return watermark_ok;
2173
2174 /* If compaction is not ready to start, keep reclaiming */
2175 if (!compaction_suitable(zone, sc->order))
2176 return false;
2177
2178 return watermark_ok;
2179}
2180
1da177e4
LT
2181/*
2182 * This is the direct reclaim path, for page-allocating processes. We only
2183 * try to reclaim pages from zones which will satisfy the caller's allocation
2184 * request.
2185 *
41858966
MG
2186 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2187 * Because:
1da177e4
LT
2188 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2189 * allocation or
41858966
MG
2190 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2191 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2192 * zone defense algorithm.
1da177e4 2193 *
1da177e4
LT
2194 * If a zone is deemed to be full of pinned pages then just give it a light
2195 * scan then give up on it.
e0c23279
MG
2196 *
2197 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2198 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2199 * the caller that it should consider retrying the allocation instead of
2200 * further reclaim.
1da177e4 2201 */
9e3b2f8c 2202static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2203{
dd1a239f 2204 struct zoneref *z;
54a6eb5c 2205 struct zone *zone;
d149e3b2
YH
2206 unsigned long nr_soft_reclaimed;
2207 unsigned long nr_soft_scanned;
0cee34fd 2208 bool aborted_reclaim = false;
1cfb419b 2209
cc715d99
MG
2210 /*
2211 * If the number of buffer_heads in the machine exceeds the maximum
2212 * allowed level, force direct reclaim to scan the highmem zone as
2213 * highmem pages could be pinning lowmem pages storing buffer_heads
2214 */
2215 if (buffer_heads_over_limit)
2216 sc->gfp_mask |= __GFP_HIGHMEM;
2217
d4debc66
MG
2218 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2219 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2220 if (!populated_zone(zone))
1da177e4 2221 continue;
1cfb419b
KH
2222 /*
2223 * Take care memory controller reclaiming has small influence
2224 * to global LRU.
2225 */
89b5fae5 2226 if (global_reclaim(sc)) {
1cfb419b
KH
2227 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2228 continue;
9e3b2f8c
KK
2229 if (zone->all_unreclaimable &&
2230 sc->priority != DEF_PRIORITY)
1cfb419b 2231 continue; /* Let kswapd poll it */
6fa3eb70 2232 if (IS_ENABLED(CONFIG_COMPACTION) && !sc->hibernation_mode) {
e0887c19 2233 /*
e0c23279
MG
2234 * If we already have plenty of memory free for
2235 * compaction in this zone, don't free any more.
2236 * Even though compaction is invoked for any
2237 * non-zero order, only frequent costly order
2238 * reclamation is disruptive enough to become a
c7cfa37b
CA
2239 * noticeable problem, like transparent huge
2240 * page allocations.
e0887c19 2241 */
fe4b1b24 2242 if (compaction_ready(zone, sc)) {
0cee34fd 2243 aborted_reclaim = true;
e0887c19 2244 continue;
e0c23279 2245 }
e0887c19 2246 }
ac34a1a3
KH
2247 /*
2248 * This steals pages from memory cgroups over softlimit
2249 * and returns the number of reclaimed pages and
2250 * scanned pages. This works for global memory pressure
2251 * and balancing, not for a memcg's limit.
2252 */
2253 nr_soft_scanned = 0;
2254 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2255 sc->order, sc->gfp_mask,
2256 &nr_soft_scanned);
2257 sc->nr_reclaimed += nr_soft_reclaimed;
2258 sc->nr_scanned += nr_soft_scanned;
2259 /* need some check for avoid more shrink_zone() */
1cfb419b 2260 }
408d8544 2261
9e3b2f8c 2262 shrink_zone(zone, sc);
1da177e4 2263 }
e0c23279 2264
0cee34fd 2265 return aborted_reclaim;
d1908362
MK
2266}
2267
48526149
JW
2268static unsigned long zone_reclaimable_pages(struct zone *zone)
2269{
2270 int nr;
2271
2272 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2273 zone_page_state(zone, NR_INACTIVE_FILE);
2274
2275 if (get_nr_swap_pages() > 0)
2276 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2277 zone_page_state(zone, NR_INACTIVE_ANON);
2278
2279 return nr;
2280}
2281
d1908362
MK
2282static bool zone_reclaimable(struct zone *zone)
2283{
2284 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2285}
2286
929bea7c 2287/* All zones in zonelist are unreclaimable? */
d1908362
MK
2288static bool all_unreclaimable(struct zonelist *zonelist,
2289 struct scan_control *sc)
2290{
2291 struct zoneref *z;
2292 struct zone *zone;
d1908362
MK
2293
2294 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2295 gfp_zone(sc->gfp_mask), sc->nodemask) {
2296 if (!populated_zone(zone))
2297 continue;
2298 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2299 continue;
929bea7c
KM
2300 if (!zone->all_unreclaimable)
2301 return false;
d1908362
MK
2302 }
2303
929bea7c 2304 return true;
1da177e4 2305}
4f98a2fe 2306
1da177e4
LT
2307/*
2308 * This is the main entry point to direct page reclaim.
2309 *
2310 * If a full scan of the inactive list fails to free enough memory then we
2311 * are "out of memory" and something needs to be killed.
2312 *
2313 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2314 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2315 * caller can't do much about. We kick the writeback threads and take explicit
2316 * naps in the hope that some of these pages can be written. But if the
2317 * allocating task holds filesystem locks which prevent writeout this might not
2318 * work, and the allocation attempt will fail.
a41f24ea
NA
2319 *
2320 * returns: 0, if no pages reclaimed
2321 * else, the number of pages reclaimed
1da177e4 2322 */
dac1d27b 2323static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2324 struct scan_control *sc,
2325 struct shrink_control *shrink)
1da177e4 2326{
69e05944 2327 unsigned long total_scanned = 0;
1da177e4 2328 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2329 struct zoneref *z;
54a6eb5c 2330 struct zone *zone;
22fba335 2331 unsigned long writeback_threshold;
0cee34fd 2332 bool aborted_reclaim;
1da177e4 2333
6fa3eb70
S
2334#ifdef CONFIG_FREEZER
2335 if (unlikely(pm_freezing && !sc->hibernation_mode))
2336 return 0;
2337#endif
2338
873b4771
KK
2339 delayacct_freepages_start();
2340
89b5fae5 2341 if (global_reclaim(sc))
1cfb419b 2342 count_vm_event(ALLOCSTALL);
1da177e4 2343
9e3b2f8c 2344 do {
70ddf637
AV
2345 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2346 sc->priority);
66e1707b 2347 sc->nr_scanned = 0;
9e3b2f8c 2348 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2349
66e1707b
BS
2350 /*
2351 * Don't shrink slabs when reclaiming memory from
2352 * over limit cgroups
2353 */
89b5fae5 2354 if (global_reclaim(sc)) {
c6a8a8c5 2355 unsigned long lru_pages = 0;
d4debc66
MG
2356 for_each_zone_zonelist(zone, z, zonelist,
2357 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2358 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2359 continue;
2360
2361 lru_pages += zone_reclaimable_pages(zone);
2362 }
2363
1495f230 2364 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2365 if (reclaim_state) {
a79311c1 2366 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2367 reclaim_state->reclaimed_slab = 0;
2368 }
1da177e4 2369 }
66e1707b 2370 total_scanned += sc->nr_scanned;
bb21c7ce 2371 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2372 goto out;
1da177e4 2373
0e50ce3b
MK
2374 /*
2375 * If we're getting trouble reclaiming, start doing
2376 * writepage even in laptop mode.
2377 */
2378 if (sc->priority < DEF_PRIORITY - 2)
2379 sc->may_writepage = 1;
2380
1da177e4
LT
2381 /*
2382 * Try to write back as many pages as we just scanned. This
2383 * tends to cause slow streaming writers to write data to the
2384 * disk smoothly, at the dirtying rate, which is nice. But
2385 * that's undesirable in laptop mode, where we *want* lumpy
2386 * writeout. So in laptop mode, write out the whole world.
2387 */
22fba335
KM
2388 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2389 if (total_scanned > writeback_threshold) {
0e175a18
CW
2390 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2391 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2392 sc->may_writepage = 1;
1da177e4
LT
2393 }
2394
2395 /* Take a nap, wait for some writeback to complete */
7b51755c 2396 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2397 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2398 struct zone *preferred_zone;
2399
2400 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2401 &cpuset_current_mems_allowed,
2402 &preferred_zone);
0e093d99
MG
2403 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2404 }
9e3b2f8c 2405 } while (--sc->priority >= 0);
bb21c7ce 2406
1da177e4 2407out:
873b4771
KK
2408 delayacct_freepages_end();
2409
bb21c7ce
KM
2410 if (sc->nr_reclaimed)
2411 return sc->nr_reclaimed;
2412
929bea7c
KM
2413 /*
2414 * As hibernation is going on, kswapd is freezed so that it can't mark
2415 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2416 * check.
2417 */
2418 if (oom_killer_disabled)
2419 return 0;
2420
0cee34fd
MG
2421 /* Aborted reclaim to try compaction? don't OOM, then */
2422 if (aborted_reclaim)
7335084d
MG
2423 return 1;
2424
bb21c7ce 2425 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2426 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2427 return 1;
2428
2429 return 0;
1da177e4
LT
2430}
2431
5515061d
MG
2432static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2433{
2434 struct zone *zone;
2435 unsigned long pfmemalloc_reserve = 0;
2436 unsigned long free_pages = 0;
2437 int i;
2438 bool wmark_ok;
2439
2440 for (i = 0; i <= ZONE_NORMAL; i++) {
2441 zone = &pgdat->node_zones[i];
16838de6
MG
2442 if (!populated_zone(zone))
2443 continue;
2444
5515061d
MG
2445 pfmemalloc_reserve += min_wmark_pages(zone);
2446 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2447 }
2448
16838de6
MG
2449 /* If there are no reserves (unexpected config) then do not throttle */
2450 if (!pfmemalloc_reserve)
2451 return true;
2452
5515061d
MG
2453 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2454
2455 /* kswapd must be awake if processes are being throttled */
2456 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2457 pgdat->classzone_idx = min(pgdat->classzone_idx,
2458 (enum zone_type)ZONE_NORMAL);
2459 wake_up_interruptible(&pgdat->kswapd_wait);
2460 }
2461
2462 return wmark_ok;
2463}
2464
2465/*
2466 * Throttle direct reclaimers if backing storage is backed by the network
2467 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2468 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2469 * when the low watermark is reached.
2470 *
2471 * Returns true if a fatal signal was delivered during throttling. If this
2472 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2473 */
50694c28 2474static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2475 nodemask_t *nodemask)
2476{
16838de6 2477 struct zoneref *z;
5515061d 2478 struct zone *zone;
16838de6 2479 pg_data_t *pgdat = NULL;
5515061d
MG
2480
2481 /*
2482 * Kernel threads should not be throttled as they may be indirectly
2483 * responsible for cleaning pages necessary for reclaim to make forward
2484 * progress. kjournald for example may enter direct reclaim while
2485 * committing a transaction where throttling it could forcing other
2486 * processes to block on log_wait_commit().
2487 */
2488 if (current->flags & PF_KTHREAD)
50694c28
MG
2489 goto out;
2490
2491 /*
2492 * If a fatal signal is pending, this process should not throttle.
2493 * It should return quickly so it can exit and free its memory
2494 */
2495 if (fatal_signal_pending(current))
2496 goto out;
5515061d 2497
16838de6
MG
2498 /*
2499 * Check if the pfmemalloc reserves are ok by finding the first node
2500 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2501 * GFP_KERNEL will be required for allocating network buffers when
2502 * swapping over the network so ZONE_HIGHMEM is unusable.
2503 *
2504 * Throttling is based on the first usable node and throttled processes
2505 * wait on a queue until kswapd makes progress and wakes them. There
2506 * is an affinity then between processes waking up and where reclaim
2507 * progress has been made assuming the process wakes on the same node.
2508 * More importantly, processes running on remote nodes will not compete
2509 * for remote pfmemalloc reserves and processes on different nodes
2510 * should make reasonable progress.
2511 */
2512 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2513 gfp_mask, nodemask) {
2514 if (zone_idx(zone) > ZONE_NORMAL)
2515 continue;
2516
2517 /* Throttle based on the first usable node */
2518 pgdat = zone->zone_pgdat;
2519 if (pfmemalloc_watermark_ok(pgdat))
2520 goto out;
2521 break;
2522 }
2523
2524 /* If no zone was usable by the allocation flags then do not throttle */
2525 if (!pgdat)
50694c28 2526 goto out;
5515061d 2527
68243e76
MG
2528 /* Account for the throttling */
2529 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2530
5515061d
MG
2531 /*
2532 * If the caller cannot enter the filesystem, it's possible that it
2533 * is due to the caller holding an FS lock or performing a journal
2534 * transaction in the case of a filesystem like ext[3|4]. In this case,
2535 * it is not safe to block on pfmemalloc_wait as kswapd could be
2536 * blocked waiting on the same lock. Instead, throttle for up to a
2537 * second before continuing.
2538 */
2539 if (!(gfp_mask & __GFP_FS)) {
2540 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2541 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2542
2543 goto check_pending;
5515061d
MG
2544 }
2545
2546 /* Throttle until kswapd wakes the process */
2547 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2548 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2549
2550check_pending:
2551 if (fatal_signal_pending(current))
2552 return true;
2553
2554out:
2555 return false;
5515061d
MG
2556}
2557
dac1d27b 2558unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2559 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2560{
33906bc5 2561 unsigned long nr_reclaimed;
66e1707b 2562 struct scan_control sc = {
21caf2fc 2563 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2564 .may_writepage = !laptop_mode,
22fba335 2565 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2566 .may_unmap = 1,
2e2e4259 2567 .may_swap = 1,
66e1707b 2568 .order = order,
9e3b2f8c 2569 .priority = DEF_PRIORITY,
f16015fb 2570 .target_mem_cgroup = NULL,
327c0e96 2571 .nodemask = nodemask,
66e1707b 2572 };
a09ed5e0
YH
2573 struct shrink_control shrink = {
2574 .gfp_mask = sc.gfp_mask,
2575 };
66e1707b 2576
5515061d 2577 /*
50694c28
MG
2578 * Do not enter reclaim if fatal signal was delivered while throttled.
2579 * 1 is returned so that the page allocator does not OOM kill at this
2580 * point.
5515061d 2581 */
50694c28 2582 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2583 return 1;
2584
33906bc5
MG
2585 trace_mm_vmscan_direct_reclaim_begin(order,
2586 sc.may_writepage,
2587 gfp_mask);
2588
a09ed5e0 2589 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2590
2591 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2592
2593 return nr_reclaimed;
66e1707b
BS
2594}
2595
c255a458 2596#ifdef CONFIG_MEMCG
66e1707b 2597
72835c86 2598unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2599 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2600 struct zone *zone,
2601 unsigned long *nr_scanned)
4e416953
BS
2602{
2603 struct scan_control sc = {
0ae5e89c 2604 .nr_scanned = 0,
b8f5c566 2605 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2606 .may_writepage = !laptop_mode,
2607 .may_unmap = 1,
2608 .may_swap = !noswap,
4e416953 2609 .order = 0,
9e3b2f8c 2610 .priority = 0,
72835c86 2611 .target_mem_cgroup = memcg,
4e416953 2612 };
f9be23d6 2613 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2614
4e416953
BS
2615 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2616 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2617
9e3b2f8c 2618 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2619 sc.may_writepage,
2620 sc.gfp_mask);
2621
4e416953
BS
2622 /*
2623 * NOTE: Although we can get the priority field, using it
2624 * here is not a good idea, since it limits the pages we can scan.
2625 * if we don't reclaim here, the shrink_zone from balance_pgdat
2626 * will pick up pages from other mem cgroup's as well. We hack
2627 * the priority and make it zero.
2628 */
f9be23d6 2629 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2630
2631 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2632
0ae5e89c 2633 *nr_scanned = sc.nr_scanned;
4e416953
BS
2634 return sc.nr_reclaimed;
2635}
2636
72835c86 2637unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2638 gfp_t gfp_mask,
185efc0f 2639 bool noswap)
66e1707b 2640{
4e416953 2641 struct zonelist *zonelist;
bdce6d9e 2642 unsigned long nr_reclaimed;
889976db 2643 int nid;
66e1707b 2644 struct scan_control sc = {
66e1707b 2645 .may_writepage = !laptop_mode,
a6dc60f8 2646 .may_unmap = 1,
2e2e4259 2647 .may_swap = !noswap,
22fba335 2648 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2649 .order = 0,
9e3b2f8c 2650 .priority = DEF_PRIORITY,
72835c86 2651 .target_mem_cgroup = memcg,
327c0e96 2652 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2653 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2654 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2655 };
2656 struct shrink_control shrink = {
2657 .gfp_mask = sc.gfp_mask,
66e1707b 2658 };
66e1707b 2659
889976db
YH
2660 /*
2661 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2662 * take care of from where we get pages. So the node where we start the
2663 * scan does not need to be the current node.
2664 */
72835c86 2665 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2666
2667 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2668
2669 trace_mm_vmscan_memcg_reclaim_begin(0,
2670 sc.may_writepage,
2671 sc.gfp_mask);
2672
a09ed5e0 2673 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2674
2675 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2676
2677 return nr_reclaimed;
66e1707b
BS
2678}
2679#endif
2680
9e3b2f8c 2681static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2682{
b95a2f2d 2683 struct mem_cgroup *memcg;
f16015fb 2684
b95a2f2d
JW
2685 if (!total_swap_pages)
2686 return;
2687
2688 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2689 do {
c56d5c7d 2690 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2691
c56d5c7d 2692 if (inactive_anon_is_low(lruvec))
1a93be0e 2693 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2694 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2695
2696 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2697 } while (memcg);
f16015fb
JW
2698}
2699
60cefed4
JW
2700static bool zone_balanced(struct zone *zone, int order,
2701 unsigned long balance_gap, int classzone_idx)
2702{
2703 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2704 balance_gap, classzone_idx, 0))
2705 return false;
2706
d84da3f9
KS
2707 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2708 !compaction_suitable(zone, order))
60cefed4
JW
2709 return false;
2710
2711 return true;
2712}
2713
1741c877 2714/*
4ae0a48b
ZC
2715 * pgdat_balanced() is used when checking if a node is balanced.
2716 *
2717 * For order-0, all zones must be balanced!
2718 *
2719 * For high-order allocations only zones that meet watermarks and are in a
2720 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2721 * total of balanced pages must be at least 25% of the zones allowed by
2722 * classzone_idx for the node to be considered balanced. Forcing all zones to
2723 * be balanced for high orders can cause excessive reclaim when there are
2724 * imbalanced zones.
1741c877
MG
2725 * The choice of 25% is due to
2726 * o a 16M DMA zone that is balanced will not balance a zone on any
2727 * reasonable sized machine
2728 * o On all other machines, the top zone must be at least a reasonable
25985edc 2729 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2730 * would need to be at least 256M for it to be balance a whole node.
2731 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2732 * to balance a node on its own. These seemed like reasonable ratios.
2733 */
4ae0a48b 2734static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2735{
b40da049 2736 unsigned long managed_pages = 0;
4ae0a48b 2737 unsigned long balanced_pages = 0;
1741c877
MG
2738 int i;
2739
4ae0a48b
ZC
2740 /* Check the watermark levels */
2741 for (i = 0; i <= classzone_idx; i++) {
2742 struct zone *zone = pgdat->node_zones + i;
1741c877 2743
4ae0a48b
ZC
2744 if (!populated_zone(zone))
2745 continue;
2746
b40da049 2747 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2748
2749 /*
2750 * A special case here:
2751 *
2752 * balance_pgdat() skips over all_unreclaimable after
2753 * DEF_PRIORITY. Effectively, it considers them balanced so
2754 * they must be considered balanced here as well!
2755 */
2756 if (zone->all_unreclaimable) {
b40da049 2757 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2758 continue;
2759 }
2760
2761 if (zone_balanced(zone, order, 0, i))
b40da049 2762 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2763 else if (!order)
2764 return false;
2765 }
2766
2767 if (order)
b40da049 2768 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2769 else
2770 return true;
1741c877
MG
2771}
2772
5515061d
MG
2773/*
2774 * Prepare kswapd for sleeping. This verifies that there are no processes
2775 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2776 *
2777 * Returns true if kswapd is ready to sleep
2778 */
2779static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2780 int classzone_idx)
f50de2d3 2781{
f50de2d3
MG
2782 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2783 if (remaining)
5515061d
MG
2784 return false;
2785
2786 /*
6bb148fb
VB
2787 * The throttled processes are normally woken up in balance_pgdat() as
2788 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2789 * race between when kswapd checks the watermarks and a process gets
2790 * throttled. There is also a potential race if processes get
2791 * throttled, kswapd wakes, a large process exits thereby balancing the
2792 * zones, which causes kswapd to exit balance_pgdat() before reaching
2793 * the wake up checks. If kswapd is going to sleep, no process should
2794 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2795 * the wake up is premature, processes will wake kswapd and get
2796 * throttled again. The difference from wake ups in balance_pgdat() is
2797 * that here we are under prepare_to_wait().
5515061d 2798 */
6bb148fb
VB
2799 if (waitqueue_active(&pgdat->pfmemalloc_wait))
2800 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 2801
4ae0a48b 2802 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2803}
2804
1da177e4
LT
2805/*
2806 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2807 * they are all at high_wmark_pages(zone).
1da177e4 2808 *
0abdee2b 2809 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2810 *
2811 * There is special handling here for zones which are full of pinned pages.
2812 * This can happen if the pages are all mlocked, or if they are all used by
2813 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2814 * What we do is to detect the case where all pages in the zone have been
2815 * scanned twice and there has been zero successful reclaim. Mark the zone as
2816 * dead and from now on, only perform a short scan. Basically we're polling
2817 * the zone for when the problem goes away.
2818 *
2819 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2820 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2821 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2822 * lower zones regardless of the number of free pages in the lower zones. This
2823 * interoperates with the page allocator fallback scheme to ensure that aging
2824 * of pages is balanced across the zones.
1da177e4 2825 */
99504748 2826static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2827 int *classzone_idx)
1da177e4 2828{
dafcb73e 2829 bool pgdat_is_balanced = false;
1da177e4 2830 int i;
99504748 2831 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1da177e4 2832 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2833 unsigned long nr_soft_reclaimed;
2834 unsigned long nr_soft_scanned;
179e9639
AM
2835 struct scan_control sc = {
2836 .gfp_mask = GFP_KERNEL,
a6dc60f8 2837 .may_unmap = 1,
2e2e4259 2838 .may_swap = 1,
22fba335
KM
2839 /*
2840 * kswapd doesn't want to be bailed out while reclaim. because
2841 * we want to put equal scanning pressure on each zone.
2842 */
2843 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2844 .order = order,
f16015fb 2845 .target_mem_cgroup = NULL,
179e9639 2846 };
a09ed5e0
YH
2847 struct shrink_control shrink = {
2848 .gfp_mask = sc.gfp_mask,
2849 };
1da177e4 2850loop_again:
9e3b2f8c 2851 sc.priority = DEF_PRIORITY;
a79311c1 2852 sc.nr_reclaimed = 0;
c0bbbc73 2853 sc.may_writepage = !laptop_mode;
f8891e5e 2854 count_vm_event(PAGEOUTRUN);
1da177e4 2855
9e3b2f8c 2856 do {
1da177e4 2857 unsigned long lru_pages = 0;
1da177e4 2858
d6277db4
RW
2859 /*
2860 * Scan in the highmem->dma direction for the highest
2861 * zone which needs scanning
2862 */
2863 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2864 struct zone *zone = pgdat->node_zones + i;
1da177e4 2865
d6277db4
RW
2866 if (!populated_zone(zone))
2867 continue;
1da177e4 2868
9e3b2f8c
KK
2869 if (zone->all_unreclaimable &&
2870 sc.priority != DEF_PRIORITY)
d6277db4 2871 continue;
1da177e4 2872
556adecb
RR
2873 /*
2874 * Do some background aging of the anon list, to give
2875 * pages a chance to be referenced before reclaiming.
2876 */
9e3b2f8c 2877 age_active_anon(zone, &sc);
556adecb 2878
cc715d99
MG
2879 /*
2880 * If the number of buffer_heads in the machine
2881 * exceeds the maximum allowed level and this node
2882 * has a highmem zone, force kswapd to reclaim from
2883 * it to relieve lowmem pressure.
2884 */
2885 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2886 end_zone = i;
2887 break;
2888 }
2889
60cefed4 2890 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2891 end_zone = i;
e1dbeda6 2892 break;
439423f6
SL
2893 } else {
2894 /* If balanced, clear the congested flag */
2895 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2896 }
1da177e4 2897 }
dafcb73e
ZC
2898
2899 if (i < 0) {
2900 pgdat_is_balanced = true;
e1dbeda6 2901 goto out;
dafcb73e 2902 }
e1dbeda6 2903
1da177e4
LT
2904 for (i = 0; i <= end_zone; i++) {
2905 struct zone *zone = pgdat->node_zones + i;
2906
adea02a1 2907 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2908 }
2909
2910 /*
2911 * Now scan the zone in the dma->highmem direction, stopping
2912 * at the last zone which needs scanning.
2913 *
2914 * We do this because the page allocator works in the opposite
2915 * direction. This prevents the page allocator from allocating
2916 * pages behind kswapd's direction of progress, which would
2917 * cause too much scanning of the lower zones.
2918 */
2919 for (i = 0; i <= end_zone; i++) {
2920 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2921 int nr_slab, testorder;
8afdcece 2922 unsigned long balance_gap;
1da177e4 2923
f3fe6512 2924 if (!populated_zone(zone))
1da177e4
LT
2925 continue;
2926
9e3b2f8c
KK
2927 if (zone->all_unreclaimable &&
2928 sc.priority != DEF_PRIORITY)
1da177e4
LT
2929 continue;
2930
1da177e4 2931 sc.nr_scanned = 0;
4e416953 2932
0ae5e89c 2933 nr_soft_scanned = 0;
4e416953
BS
2934 /*
2935 * Call soft limit reclaim before calling shrink_zone.
4e416953 2936 */
0ae5e89c
YH
2937 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2938 order, sc.gfp_mask,
2939 &nr_soft_scanned);
2940 sc.nr_reclaimed += nr_soft_reclaimed;
00918b6a 2941
32a4330d 2942 /*
8afdcece
MG
2943 * We put equal pressure on every zone, unless
2944 * one zone has way too many pages free
2945 * already. The "too many pages" is defined
2946 * as the high wmark plus a "gap" where the
2947 * gap is either the low watermark or 1%
2948 * of the zone, whichever is smaller.
32a4330d 2949 */
8afdcece 2950 balance_gap = min(low_wmark_pages(zone),
b40da049 2951 (zone->managed_pages +
8afdcece
MG
2952 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2953 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2954 /*
2955 * Kswapd reclaims only single pages with compaction
2956 * enabled. Trying too hard to reclaim until contiguous
2957 * free pages have become available can hurt performance
2958 * by evicting too much useful data from memory.
2959 * Do not reclaim more than needed for compaction.
2960 */
2961 testorder = order;
d84da3f9 2962 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
fe2c2a10
RR
2963 compaction_suitable(zone, order) !=
2964 COMPACT_SKIPPED)
2965 testorder = 0;
2966
cc715d99 2967 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
60cefed4
JW
2968 !zone_balanced(zone, testorder,
2969 balance_gap, end_zone)) {
9e3b2f8c 2970 shrink_zone(zone, &sc);
5a03b051 2971
d7868dae
MG
2972 reclaim_state->reclaimed_slab = 0;
2973 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2974 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
d7868dae
MG
2975
2976 if (nr_slab == 0 && !zone_reclaimable(zone))
2977 zone->all_unreclaimable = 1;
2978 }
2979
1da177e4 2980 /*
0e50ce3b
MK
2981 * If we're getting trouble reclaiming, start doing
2982 * writepage even in laptop mode.
1da177e4 2983 */
0e50ce3b 2984 if (sc.priority < DEF_PRIORITY - 2)
1da177e4 2985 sc.may_writepage = 1;
bb3ab596 2986
215ddd66
MG
2987 if (zone->all_unreclaimable) {
2988 if (end_zone && end_zone == i)
2989 end_zone--;
d7868dae 2990 continue;
215ddd66 2991 }
d7868dae 2992
258401a6 2993 if (zone_balanced(zone, testorder, 0, end_zone))
0e093d99
MG
2994 /*
2995 * If a zone reaches its high watermark,
2996 * consider it to be no longer congested. It's
2997 * possible there are dirty pages backed by
2998 * congested BDIs but as pressure is relieved,
ab8704b8 2999 * speculatively avoid congestion waits
0e093d99
MG
3000 */
3001 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 3002 }
5515061d
MG
3003
3004 /*
3005 * If the low watermark is met there is no need for processes
3006 * to be throttled on pfmemalloc_wait as they should not be
3007 * able to safely make forward progress. Wake them
3008 */
3009 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3010 pfmemalloc_watermark_ok(pgdat))
3011 wake_up(&pgdat->pfmemalloc_wait);
3012
dafcb73e
ZC
3013 if (pgdat_balanced(pgdat, order, *classzone_idx)) {
3014 pgdat_is_balanced = true;
1da177e4 3015 break; /* kswapd: all done */
dafcb73e
ZC
3016 }
3017
1da177e4
LT
3018 /*
3019 * We do this so kswapd doesn't build up large priorities for
3020 * example when it is freeing in parallel with allocators. It
3021 * matches the direct reclaim path behaviour in terms of impact
3022 * on zone->*_priority.
3023 */
a79311c1 3024 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 3025 break;
9e3b2f8c 3026 } while (--sc.priority >= 0);
99504748 3027
dafcb73e
ZC
3028out:
3029 if (!pgdat_is_balanced) {
1da177e4 3030 cond_resched();
8357376d
RW
3031
3032 try_to_freeze();
3033
73ce02e9
KM
3034 /*
3035 * Fragmentation may mean that the system cannot be
3036 * rebalanced for high-order allocations in all zones.
3037 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
3038 * it means the zones have been fully scanned and are still
3039 * not balanced. For high-order allocations, there is
3040 * little point trying all over again as kswapd may
3041 * infinite loop.
3042 *
3043 * Instead, recheck all watermarks at order-0 as they
3044 * are the most important. If watermarks are ok, kswapd will go
3045 * back to sleep. High-order users can still perform direct
3046 * reclaim if they wish.
3047 */
3048 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
3049 order = sc.order = 0;
3050
1da177e4
LT
3051 goto loop_again;
3052 }
3053
99504748
MG
3054 /*
3055 * If kswapd was reclaiming at a higher order, it has the option of
3056 * sleeping without all zones being balanced. Before it does, it must
3057 * ensure that the watermarks for order-0 on *all* zones are met and
3058 * that the congestion flags are cleared. The congestion flag must
3059 * be cleared as kswapd is the only mechanism that clears the flag
3060 * and it is potentially going to sleep here.
3061 */
3062 if (order) {
7be62de9
RR
3063 int zones_need_compaction = 1;
3064
99504748
MG
3065 for (i = 0; i <= end_zone; i++) {
3066 struct zone *zone = pgdat->node_zones + i;
3067
3068 if (!populated_zone(zone))
3069 continue;
3070
7be62de9
RR
3071 /* Check if the memory needs to be defragmented. */
3072 if (zone_watermark_ok(zone, order,
3073 low_wmark_pages(zone), *classzone_idx, 0))
3074 zones_need_compaction = 0;
99504748 3075 }
7be62de9
RR
3076
3077 if (zones_need_compaction)
3078 compact_pgdat(pgdat, order);
99504748
MG
3079 }
3080
0abdee2b 3081 /*
5515061d 3082 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3083 * makes a decision on the order we were last reclaiming at. However,
3084 * if another caller entered the allocator slow path while kswapd
3085 * was awake, order will remain at the higher level
3086 */
dc83edd9 3087 *classzone_idx = end_zone;
0abdee2b 3088 return order;
1da177e4
LT
3089}
3090
dc83edd9 3091static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3092{
3093 long remaining = 0;
3094 DEFINE_WAIT(wait);
3095
3096 if (freezing(current) || kthread_should_stop())
3097 return;
3098
3099 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3100
3101 /* Try to sleep for a short interval */
5515061d 3102 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3103 remaining = schedule_timeout(HZ/10);
3104 finish_wait(&pgdat->kswapd_wait, &wait);
3105 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3106 }
3107
3108 /*
3109 * After a short sleep, check if it was a premature sleep. If not, then
3110 * go fully to sleep until explicitly woken up.
3111 */
5515061d 3112 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3113 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3114
3115 /*
3116 * vmstat counters are not perfectly accurate and the estimated
3117 * value for counters such as NR_FREE_PAGES can deviate from the
3118 * true value by nr_online_cpus * threshold. To avoid the zone
3119 * watermarks being breached while under pressure, we reduce the
3120 * per-cpu vmstat threshold while kswapd is awake and restore
3121 * them before going back to sleep.
3122 */
3123 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3124
62997027
MG
3125 /*
3126 * Compaction records what page blocks it recently failed to
3127 * isolate pages from and skips them in the future scanning.
3128 * When kswapd is going to sleep, it is reasonable to assume
3129 * that pages and compaction may succeed so reset the cache.
3130 */
3131 reset_isolation_suitable(pgdat);
3132
1c7e7f6c
AK
3133 if (!kthread_should_stop())
3134 schedule();
3135
f0bc0a60
KM
3136 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3137 } else {
3138 if (remaining)
3139 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3140 else
3141 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3142 }
3143 finish_wait(&pgdat->kswapd_wait, &wait);
3144}
3145
1da177e4
LT
3146/*
3147 * The background pageout daemon, started as a kernel thread
4f98a2fe 3148 * from the init process.
1da177e4
LT
3149 *
3150 * This basically trickles out pages so that we have _some_
3151 * free memory available even if there is no other activity
3152 * that frees anything up. This is needed for things like routing
3153 * etc, where we otherwise might have all activity going on in
3154 * asynchronous contexts that cannot page things out.
3155 *
3156 * If there are applications that are active memory-allocators
3157 * (most normal use), this basically shouldn't matter.
3158 */
3159static int kswapd(void *p)
3160{
215ddd66 3161 unsigned long order, new_order;
d2ebd0f6 3162 unsigned balanced_order;
215ddd66 3163 int classzone_idx, new_classzone_idx;
d2ebd0f6 3164 int balanced_classzone_idx;
1da177e4
LT
3165 pg_data_t *pgdat = (pg_data_t*)p;
3166 struct task_struct *tsk = current;
f0bc0a60 3167
1da177e4
LT
3168 struct reclaim_state reclaim_state = {
3169 .reclaimed_slab = 0,
3170 };
a70f7302 3171 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3172
cf40bd16
NP
3173 lockdep_set_current_reclaim_state(GFP_KERNEL);
3174
174596a0 3175 if (!cpumask_empty(cpumask))
c5f59f08 3176 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3177 current->reclaim_state = &reclaim_state;
3178
3179 /*
3180 * Tell the memory management that we're a "memory allocator",
3181 * and that if we need more memory we should get access to it
3182 * regardless (see "__alloc_pages()"). "kswapd" should
3183 * never get caught in the normal page freeing logic.
3184 *
3185 * (Kswapd normally doesn't need memory anyway, but sometimes
3186 * you need a small amount of memory in order to be able to
3187 * page out something else, and this flag essentially protects
3188 * us from recursively trying to free more memory as we're
3189 * trying to free the first piece of memory in the first place).
3190 */
930d9152 3191 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3192 set_freezable();
1da177e4 3193
215ddd66 3194 order = new_order = 0;
d2ebd0f6 3195 balanced_order = 0;
215ddd66 3196 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3197 balanced_classzone_idx = classzone_idx;
1da177e4 3198 for ( ; ; ) {
6f6313d4 3199 bool ret;
3e1d1d28 3200
215ddd66
MG
3201 /*
3202 * If the last balance_pgdat was unsuccessful it's unlikely a
3203 * new request of a similar or harder type will succeed soon
3204 * so consider going to sleep on the basis we reclaimed at
3205 */
d2ebd0f6
AS
3206 if (balanced_classzone_idx >= new_classzone_idx &&
3207 balanced_order == new_order) {
215ddd66
MG
3208 new_order = pgdat->kswapd_max_order;
3209 new_classzone_idx = pgdat->classzone_idx;
3210 pgdat->kswapd_max_order = 0;
3211 pgdat->classzone_idx = pgdat->nr_zones - 1;
3212 }
3213
99504748 3214 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3215 /*
3216 * Don't sleep if someone wants a larger 'order'
99504748 3217 * allocation or has tigher zone constraints
1da177e4
LT
3218 */
3219 order = new_order;
99504748 3220 classzone_idx = new_classzone_idx;
1da177e4 3221 } else {
d2ebd0f6
AS
3222 kswapd_try_to_sleep(pgdat, balanced_order,
3223 balanced_classzone_idx);
1da177e4 3224 order = pgdat->kswapd_max_order;
99504748 3225 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3226 new_order = order;
3227 new_classzone_idx = classzone_idx;
4d40502e 3228 pgdat->kswapd_max_order = 0;
215ddd66 3229 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3230 }
1da177e4 3231
8fe23e05
DR
3232 ret = try_to_freeze();
3233 if (kthread_should_stop())
3234 break;
3235
3236 /*
3237 * We can speed up thawing tasks if we don't call balance_pgdat
3238 * after returning from the refrigerator
3239 */
33906bc5
MG
3240 if (!ret) {
3241 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3242 balanced_classzone_idx = classzone_idx;
3243 balanced_order = balance_pgdat(pgdat, order,
3244 &balanced_classzone_idx);
33906bc5 3245 }
1da177e4 3246 }
b0a8cc58 3247
f26bff27 3248 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3249 current->reclaim_state = NULL;
f26bff27
JW
3250 lockdep_clear_current_reclaim_state();
3251
1da177e4
LT
3252 return 0;
3253}
3254
3255/*
3256 * A zone is low on free memory, so wake its kswapd task to service it.
3257 */
99504748 3258void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3259{
3260 pg_data_t *pgdat;
3261
f3fe6512 3262 if (!populated_zone(zone))
1da177e4
LT
3263 return;
3264
6fa3eb70
S
3265#ifdef CONFIG_FREEZER
3266 if (pm_freezing)
3267 return;
3268#endif
3269
88f5acf8 3270 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3271 return;
88f5acf8 3272 pgdat = zone->zone_pgdat;
99504748 3273 if (pgdat->kswapd_max_order < order) {
1da177e4 3274 pgdat->kswapd_max_order = order;
99504748
MG
3275 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3276 }
8d0986e2 3277 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3278 return;
88f5acf8
MG
3279 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3280 return;
3281
3282 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3283 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3284}
3285
c6f37f12 3286#ifdef CONFIG_HIBERNATION
1da177e4 3287/*
7b51755c 3288 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3289 * freed pages.
3290 *
3291 * Rather than trying to age LRUs the aim is to preserve the overall
3292 * LRU order by reclaiming preferentially
3293 * inactive > active > active referenced > active mapped
1da177e4 3294 */
6fa3eb70 3295unsigned long shrink_memory_mask(unsigned long nr_to_reclaim, gfp_t mask)
1da177e4 3296{
d6277db4 3297 struct reclaim_state reclaim_state;
d6277db4 3298 struct scan_control sc = {
6fa3eb70 3299 .gfp_mask = mask,
7b51755c
KM
3300 .may_swap = 1,
3301 .may_unmap = 1,
d6277db4 3302 .may_writepage = 1,
7b51755c
KM
3303 .nr_to_reclaim = nr_to_reclaim,
3304 .hibernation_mode = 1,
7b51755c 3305 .order = 0,
9e3b2f8c 3306 .priority = DEF_PRIORITY,
1da177e4 3307 };
a09ed5e0
YH
3308 struct shrink_control shrink = {
3309 .gfp_mask = sc.gfp_mask,
3310 };
3311 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3312 struct task_struct *p = current;
3313 unsigned long nr_reclaimed;
1da177e4 3314
7b51755c
KM
3315 p->flags |= PF_MEMALLOC;
3316 lockdep_set_current_reclaim_state(sc.gfp_mask);
3317 reclaim_state.reclaimed_slab = 0;
3318 p->reclaim_state = &reclaim_state;
d6277db4 3319
a09ed5e0 3320 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3321
7b51755c
KM
3322 p->reclaim_state = NULL;
3323 lockdep_clear_current_reclaim_state();
3324 p->flags &= ~PF_MEMALLOC;
d6277db4 3325
7b51755c 3326 return nr_reclaimed;
1da177e4 3327}
6fa3eb70
S
3328EXPORT_SYMBOL_GPL(shrink_memory_mask);
3329
3330#ifdef CONFIG_MTKPASR
3331extern void shrink_mtkpasr_all(void);
3332#else
3333#define shrink_mtkpasr_all() do {} while (0)
3334#endif
3335unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3336{
3337 shrink_mtkpasr_all();
3338 return shrink_memory_mask(nr_to_reclaim, GFP_HIGHUSER_MOVABLE);
3339}
3340EXPORT_SYMBOL_GPL(shrink_all_memory);
c6f37f12 3341#endif /* CONFIG_HIBERNATION */
1da177e4 3342
1da177e4
LT
3343/* It's optimal to keep kswapds on the same CPUs as their memory, but
3344 not required for correctness. So if the last cpu in a node goes
3345 away, we get changed to run anywhere: as the first one comes back,
3346 restore their cpu bindings. */
fcb35a9b
GKH
3347static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3348 void *hcpu)
1da177e4 3349{
58c0a4a7 3350 int nid;
1da177e4 3351
8bb78442 3352 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3353 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3354 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3355 const struct cpumask *mask;
3356
3357 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3358
3e597945 3359 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3360 /* One of our CPUs online: restore mask */
c5f59f08 3361 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3362 }
3363 }
3364 return NOTIFY_OK;
3365}
1da177e4 3366
3218ae14
YG
3367/*
3368 * This kswapd start function will be called by init and node-hot-add.
3369 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3370 */
3371int kswapd_run(int nid)
3372{
3373 pg_data_t *pgdat = NODE_DATA(nid);
3374 int ret = 0;
3375
3376 if (pgdat->kswapd)
3377 return 0;
3378
3379 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3380 if (IS_ERR(pgdat->kswapd)) {
3381 /* failure at boot is fatal */
3382 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3383 pr_err("Failed to start kswapd on node %d\n", nid);
3384 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3385 pgdat->kswapd = NULL;
3218ae14
YG
3386 }
3387 return ret;
3388}
3389
8fe23e05 3390/*
d8adde17
JL
3391 * Called by memory hotplug when all memory in a node is offlined. Caller must
3392 * hold lock_memory_hotplug().
8fe23e05
DR
3393 */
3394void kswapd_stop(int nid)
3395{
3396 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3397
d8adde17 3398 if (kswapd) {
8fe23e05 3399 kthread_stop(kswapd);
d8adde17
JL
3400 NODE_DATA(nid)->kswapd = NULL;
3401 }
8fe23e05
DR
3402}
3403
1da177e4
LT
3404static int __init kswapd_init(void)
3405{
3218ae14 3406 int nid;
69e05944 3407
1da177e4 3408 swap_setup();
48fb2e24 3409 for_each_node_state(nid, N_MEMORY)
3218ae14 3410 kswapd_run(nid);
1da177e4
LT
3411 hotcpu_notifier(cpu_callback, 0);
3412 return 0;
3413}
3414
3415module_init(kswapd_init)
9eeff239
CL
3416
3417#ifdef CONFIG_NUMA
3418/*
3419 * Zone reclaim mode
3420 *
3421 * If non-zero call zone_reclaim when the number of free pages falls below
3422 * the watermarks.
9eeff239
CL
3423 */
3424int zone_reclaim_mode __read_mostly;
3425
1b2ffb78 3426#define RECLAIM_OFF 0
7d03431c 3427#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3428#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3429#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3430
a92f7126
CL
3431/*
3432 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3433 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3434 * a zone.
3435 */
3436#define ZONE_RECLAIM_PRIORITY 4
3437
9614634f
CL
3438/*
3439 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3440 * occur.
3441 */
3442int sysctl_min_unmapped_ratio = 1;
3443
0ff38490
CL
3444/*
3445 * If the number of slab pages in a zone grows beyond this percentage then
3446 * slab reclaim needs to occur.
3447 */
3448int sysctl_min_slab_ratio = 5;
3449
90afa5de
MG
3450static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3451{
3452 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3453 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3454 zone_page_state(zone, NR_ACTIVE_FILE);
3455
3456 /*
3457 * It's possible for there to be more file mapped pages than
3458 * accounted for by the pages on the file LRU lists because
3459 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3460 */
3461 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3462}
3463
3464/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3465static long zone_pagecache_reclaimable(struct zone *zone)
3466{
3467 long nr_pagecache_reclaimable;
3468 long delta = 0;
3469
3470 /*
3471 * If RECLAIM_SWAP is set, then all file pages are considered
3472 * potentially reclaimable. Otherwise, we have to worry about
3473 * pages like swapcache and zone_unmapped_file_pages() provides
3474 * a better estimate
3475 */
3476 if (zone_reclaim_mode & RECLAIM_SWAP)
3477 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3478 else
3479 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3480
3481 /* If we can't clean pages, remove dirty pages from consideration */
3482 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3483 delta += zone_page_state(zone, NR_FILE_DIRTY);
3484
3485 /* Watch for any possible underflows due to delta */
3486 if (unlikely(delta > nr_pagecache_reclaimable))
3487 delta = nr_pagecache_reclaimable;
3488
3489 return nr_pagecache_reclaimable - delta;
3490}
3491
9eeff239
CL
3492/*
3493 * Try to free up some pages from this zone through reclaim.
3494 */
179e9639 3495static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3496{
7fb2d46d 3497 /* Minimum pages needed in order to stay on node */
69e05944 3498 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3499 struct task_struct *p = current;
3500 struct reclaim_state reclaim_state;
179e9639
AM
3501 struct scan_control sc = {
3502 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3503 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3504 .may_swap = 1,
62b726c1 3505 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3506 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3507 .order = order,
9e3b2f8c 3508 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3509 };
a09ed5e0
YH
3510 struct shrink_control shrink = {
3511 .gfp_mask = sc.gfp_mask,
3512 };
15748048 3513 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3514
9eeff239 3515 cond_resched();
d4f7796e
CL
3516 /*
3517 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3518 * and we also need to be able to write out pages for RECLAIM_WRITE
3519 * and RECLAIM_SWAP.
3520 */
3521 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3522 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3523 reclaim_state.reclaimed_slab = 0;
3524 p->reclaim_state = &reclaim_state;
c84db23c 3525
90afa5de 3526 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3527 /*
3528 * Free memory by calling shrink zone with increasing
3529 * priorities until we have enough memory freed.
3530 */
0ff38490 3531 do {
9e3b2f8c
KK
3532 shrink_zone(zone, &sc);
3533 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3534 }
c84db23c 3535
15748048
KM
3536 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3537 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3538 /*
7fb2d46d 3539 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3540 * many pages were freed in this zone. So we take the current
3541 * number of slab pages and shake the slab until it is reduced
3542 * by the same nr_pages that we used for reclaiming unmapped
3543 * pages.
2a16e3f4 3544 *
0ff38490
CL
3545 * Note that shrink_slab will free memory on all zones and may
3546 * take a long time.
2a16e3f4 3547 */
4dc4b3d9
KM
3548 for (;;) {
3549 unsigned long lru_pages = zone_reclaimable_pages(zone);
3550
3551 /* No reclaimable slab or very low memory pressure */
1495f230 3552 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3553 break;
3554
3555 /* Freed enough memory */
3556 nr_slab_pages1 = zone_page_state(zone,
3557 NR_SLAB_RECLAIMABLE);
3558 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3559 break;
3560 }
83e33a47
CL
3561
3562 /*
3563 * Update nr_reclaimed by the number of slab pages we
3564 * reclaimed from this zone.
3565 */
15748048
KM
3566 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3567 if (nr_slab_pages1 < nr_slab_pages0)
3568 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3569 }
3570
9eeff239 3571 p->reclaim_state = NULL;
d4f7796e 3572 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3573 lockdep_clear_current_reclaim_state();
a79311c1 3574 return sc.nr_reclaimed >= nr_pages;
9eeff239 3575}
179e9639
AM
3576
3577int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3578{
179e9639 3579 int node_id;
d773ed6b 3580 int ret;
179e9639
AM
3581
3582 /*
0ff38490
CL
3583 * Zone reclaim reclaims unmapped file backed pages and
3584 * slab pages if we are over the defined limits.
34aa1330 3585 *
9614634f
CL
3586 * A small portion of unmapped file backed pages is needed for
3587 * file I/O otherwise pages read by file I/O will be immediately
3588 * thrown out if the zone is overallocated. So we do not reclaim
3589 * if less than a specified percentage of the zone is used by
3590 * unmapped file backed pages.
179e9639 3591 */
90afa5de
MG
3592 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3593 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3594 return ZONE_RECLAIM_FULL;
179e9639 3595
93e4a89a 3596 if (zone->all_unreclaimable)
fa5e084e 3597 return ZONE_RECLAIM_FULL;
d773ed6b 3598
179e9639 3599 /*
d773ed6b 3600 * Do not scan if the allocation should not be delayed.
179e9639 3601 */
d773ed6b 3602 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3603 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3604
3605 /*
3606 * Only run zone reclaim on the local zone or on zones that do not
3607 * have associated processors. This will favor the local processor
3608 * over remote processors and spread off node memory allocations
3609 * as wide as possible.
3610 */
89fa3024 3611 node_id = zone_to_nid(zone);
37c0708d 3612 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3613 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3614
3615 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3616 return ZONE_RECLAIM_NOSCAN;
3617
d773ed6b
DR
3618 ret = __zone_reclaim(zone, gfp_mask, order);
3619 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3620
24cf7251
MG
3621 if (!ret)
3622 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3623
d773ed6b 3624 return ret;
179e9639 3625}
9eeff239 3626#endif
894bc310 3627
894bc310
LS
3628/*
3629 * page_evictable - test whether a page is evictable
3630 * @page: the page to test
894bc310
LS
3631 *
3632 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3633 * lists vs unevictable list.
894bc310
LS
3634 *
3635 * Reasons page might not be evictable:
ba9ddf49 3636 * (1) page's mapping marked unevictable
b291f000 3637 * (2) page is part of an mlocked VMA
ba9ddf49 3638 *
894bc310 3639 */
39b5f29a 3640int page_evictable(struct page *page)
894bc310 3641{
39b5f29a 3642 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3643}
89e004ea 3644
85046579 3645#ifdef CONFIG_SHMEM
89e004ea 3646/**
24513264
HD
3647 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3648 * @pages: array of pages to check
3649 * @nr_pages: number of pages to check
89e004ea 3650 *
24513264 3651 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3652 *
3653 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3654 */
24513264 3655void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3656{
925b7673 3657 struct lruvec *lruvec;
24513264
HD
3658 struct zone *zone = NULL;
3659 int pgscanned = 0;
3660 int pgrescued = 0;
3661 int i;
89e004ea 3662
24513264
HD
3663 for (i = 0; i < nr_pages; i++) {
3664 struct page *page = pages[i];
3665 struct zone *pagezone;
89e004ea 3666
24513264
HD
3667 pgscanned++;
3668 pagezone = page_zone(page);
3669 if (pagezone != zone) {
3670 if (zone)
3671 spin_unlock_irq(&zone->lru_lock);
3672 zone = pagezone;
3673 spin_lock_irq(&zone->lru_lock);
3674 }
fa9add64 3675 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3676
24513264
HD
3677 if (!PageLRU(page) || !PageUnevictable(page))
3678 continue;
89e004ea 3679
39b5f29a 3680 if (page_evictable(page)) {
24513264
HD
3681 enum lru_list lru = page_lru_base_type(page);
3682
3683 VM_BUG_ON(PageActive(page));
3684 ClearPageUnevictable(page);
fa9add64
HD
3685 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3686 add_page_to_lru_list(page, lruvec, lru);
24513264 3687 pgrescued++;
89e004ea 3688 }
24513264 3689 }
89e004ea 3690
24513264
HD
3691 if (zone) {
3692 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3693 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3694 spin_unlock_irq(&zone->lru_lock);
89e004ea 3695 }
89e004ea 3696}
85046579 3697#endif /* CONFIG_SHMEM */
af936a16 3698
264e56d8 3699static void warn_scan_unevictable_pages(void)
af936a16 3700{
264e56d8 3701 printk_once(KERN_WARNING
25bd91bd 3702 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3703 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3704 "one, please send an email to linux-mm@kvack.org.\n",
3705 current->comm);
af936a16
LS
3706}
3707
3708/*
3709 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3710 * all nodes' unevictable lists for evictable pages
3711 */
3712unsigned long scan_unevictable_pages;
3713
3714int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3715 void __user *buffer,
af936a16
LS
3716 size_t *length, loff_t *ppos)
3717{
264e56d8 3718 warn_scan_unevictable_pages();
8d65af78 3719 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3720 scan_unevictable_pages = 0;
3721 return 0;
3722}
3723
e4455abb 3724#ifdef CONFIG_NUMA
af936a16
LS
3725/*
3726 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3727 * a specified node's per zone unevictable lists for evictable pages.
3728 */
3729
10fbcf4c
KS
3730static ssize_t read_scan_unevictable_node(struct device *dev,
3731 struct device_attribute *attr,
af936a16
LS
3732 char *buf)
3733{
264e56d8 3734 warn_scan_unevictable_pages();
af936a16
LS
3735 return sprintf(buf, "0\n"); /* always zero; should fit... */
3736}
3737
10fbcf4c
KS
3738static ssize_t write_scan_unevictable_node(struct device *dev,
3739 struct device_attribute *attr,
af936a16
LS
3740 const char *buf, size_t count)
3741{
264e56d8 3742 warn_scan_unevictable_pages();
af936a16
LS
3743 return 1;
3744}
3745
3746
10fbcf4c 3747static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3748 read_scan_unevictable_node,
3749 write_scan_unevictable_node);
3750
3751int scan_unevictable_register_node(struct node *node)
3752{
10fbcf4c 3753 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3754}
3755
3756void scan_unevictable_unregister_node(struct node *node)
3757{
10fbcf4c 3758 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3759}
e4455abb 3760#endif
6fa3eb70
S
3761
3762#ifdef CONFIG_MTKPASR
3763void try_to_shrink_slab(void)
3764{
3765 struct shrinker *shrinker;
3766 struct shrink_control shrink = {
3767 .gfp_mask = GFP_KERNEL|__GFP_HIGHMEM,
3768 };
3769
3770 if (!down_read_trylock(&shrinker_rwsem)) {
3771 return;
3772 }
3773
3774 list_for_each_entry(shrinker, &shrinker_list, list) {
3775 int num_objs;
3776 int shrink_ret = 0;
3777 int retry = 2;
3778
3779 num_objs = do_shrinker_shrink(shrinker, &shrink, 0);
3780 if (num_objs <= 0)
3781 continue;
3782
3783 do {
3784 /* To shrink */
3785 shrink_ret = do_shrinker_shrink(shrinker, &shrink, num_objs);
3786 if (shrink_ret == -1)
3787 break;
3788 /* Check empty */
3789 num_objs = do_shrinker_shrink(shrinker, &shrink, 0);
3790 if (num_objs <= 0)
3791 break;
3792 } while (--retry);
3793 }
3794
3795 up_read(&shrinker_rwsem);
3796}
3797
3798extern void free_hot_cold_page(struct page *page, int cold);
3799/* Isolate pages for PASR */
3800#ifdef CONFIG_MTKPASR_ALLEXTCOMP
3801int mtkpasr_isolate_page(struct page *page, int check_swap)
3802#else
3803int mtkpasr_isolate_page(struct page *page)
3804#endif
3805{
3806 struct zone *zone = page_zone(page);
3807 struct lruvec *lruvec;
3808 unsigned long flags;
3809 isolate_mode_t mode = ISOLATE_ASYNC_MIGRATE;
3810
3811 /* Lock this zone - USE trylock version! */
3812 if (!spin_trylock_irqsave(&zone->lru_lock, flags)) {
3813 printk(KERN_ALERT"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
3814 printk(KERN_ALERT"[%s][%d] Failed to lock this zone!\n",__FUNCTION__,__LINE__);
3815 printk(KERN_ALERT"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
3816 return -EAGAIN;
3817 }
3818
3819#ifdef CONFIG_MTKPASR_ALLEXTCOMP
3820 /* Check whether we should handle SwapBacked, SwapCache pages */
3821 if (check_swap) {
3822 if (PageSwapBacked(page) || PageSwapCache(page)) {
3823 spin_unlock_irqrestore(&zone->lru_lock, flags);
3824 return -EACCES;
3825 }
3826 }
3827#endif
3828
3829 /* Try to isolate this page */
3830 if (__isolate_lru_page(page, mode) != 0) {
3831 spin_unlock_irqrestore(&zone->lru_lock, flags);
3832 return -EACCES;
3833 }
3834
3835 /* Successfully isolated */
3836 lruvec = mem_cgroup_page_lruvec(page, zone);
3837 del_page_from_lru_list(page, lruvec, page_lru(page));
3838
3839 /* Unlock this zone */
3840 spin_unlock_irqrestore(&zone->lru_lock, flags);
3841
3842 return 0;
3843}
3844
3845/* Drop page (in File/Anon LRUs) (Imitate the behavior of shrink_page_list) */
3846/* If returns error, caller needs to putback page by itself. */
3847int mtkpasr_drop_page(struct page *page)
3848{
3849 int ret;
3850 unsigned long vm_flags = 0x0;
3851 bool active = false;
3852 struct address_space *mapping;
3853 enum ttu_flags unmap_flags = TTU_UNMAP;
3854
3855 /* Suitable scan control */
3856 struct scan_control sc = {
3857 .gfp_mask = GFP_KERNEL,
3858 .order = PAGE_ALLOC_COSTLY_ORDER + 1,
3859 //.reclaim_mode = RECLAIM_MODE_SINGLE|RECLAIM_MODE_SYNC, // We only handle "SwapBacked" pages in this reclaim_mode!
3860 };
3861
3862 /* Try to isolate this page */
3863#ifdef CONFIG_MTKPASR_ALLEXTCOMP
3864 ret = mtkpasr_isolate_page(page, 0x1);
3865#else
3866 ret = mtkpasr_isolate_page(page);
3867#endif
3868 if (ret) {
3869 return ret;
3870 }
3871
3872 /* Check whether it is evictable! */
3873 if (unlikely(!page_evictable(page))) {
3874 putback_lru_page(page);
3875 return -EACCES;
3876 }
3877
3878 /* If it is Active, reference and deactivate it */
3879 if (PageActive(page)) {
3880 active = TestClearPageActive(page);
3881 }
3882
3883 /* If we fail to lock this page, ignore it */
3884 if (!trylock_page(page)) {
3885 goto putback;
3886 }
3887
3888 /* If page is in writeback, we don't handle it here! */
3889 if (PageWriteback(page)) {
3890 goto unlock;
3891 }
3892
3893 /*
3894 * Anonymous process memory has backing store?
3895 * Try to allocate it some swap space here.
3896 */
3897 if (PageAnon(page) && !PageSwapCache(page)) {
3898 /* Check whether we have enough free memory */
3899 if (vm_swap_full()) {
3900 goto unlock;
3901 }
3902
3903 /* Ok! It is safe to add this page to swap. */
3904 if (!add_to_swap(page, NULL)){
3905 goto unlock;
3906 }
3907 }
3908
3909 /* We don't handle dirty file cache here (Related devices may be suspended) */
3910 if (page_is_file_cache(page)) {
3911 /* How do we handle pages in VM_EXEC vmas? */
3912 if ((vm_flags & VM_EXEC)) {
3913 goto unlock;
3914 }
3915 /* We don't handle dirty file pages! */
3916 if (PageDirty(page)) {
3917#ifdef CONFIG_MTKPASR_DEBUG
3918 printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d]\n\n\n\n\n\n",__FUNCTION__,__LINE__);
3919#endif
3920 goto unlock;
3921 }
3922 }
3923
3924 /*
3925 * The page is mapped into the page tables of one or more
3926 * processes. Try to unmap it here.
3927 */
3928 mapping = page_mapping(page);
3929 if (page_mapped(page) && mapping) {
3930#if 0
3931 /* Indicate unmap action for SwapBacked pages */
3932 if (PageSwapBacked(page)) {
3933 unmap_flags |= TTU_IGNORE_ACCESS;
3934 }
3935#endif
3936 /* To unmap */
3937 switch (try_to_unmap(page, unmap_flags)) {
3938 case SWAP_SUCCESS:
3939 /* try to free the page below */
3940 break;
3941 case SWAP_FAIL:
3942 goto restore_swap;
3943 case SWAP_AGAIN:
3944 goto restore_swap;
3945 case SWAP_MLOCK:
3946 goto restore_swap;
3947
3948 }
3949 }
3950
3951 /* Check whether it is dirtied.
3952 * We have filtered out dirty file pages above. (IMPORTANT!)
3953 * "VM_BUG_ON(!PageSwapBacked(page))"
3954 * */
3955 if (PageDirty(page)) {
3956 /* Page is dirty, try to write it out here */
3957 /* It's ok for zram swap! */
3958 /* Should we need to apply GFP_IOFS? */
3959 switch (pageout(page, mapping, &sc)) {
3960 case PAGE_SUCCESS:
3961 if (PageWriteback(page)) {
3962 goto putback;
3963 }
3964 if (PageDirty(page)) {
3965 goto putback;
3966 }
3967
3968 /*
3969 * A synchronous write - probably a ramdisk. Go
3970 * ahead and try to reclaim the page.
3971 */
3972 if (!trylock_page(page)) {
3973 goto putback;
3974 }
3975 if (PageDirty(page) || PageWriteback(page)) {
3976 goto unlock;
3977 }
3978 mapping = page_mapping(page);
3979 case PAGE_CLEAN:
3980 /* try to free the page below */
3981 break;
3982 default:
3983#ifdef CONFIG_MTKPASR_DEBUG
3984 /*printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d]\n\n\n\n\n\n",__FUNCTION__,__LINE__);*/
3985#endif
3986 goto restore_unmap;
3987 }
3988 }
3989
3990 /* Release buffer */
3991 if (page_has_private(page)) {
3992 if (!try_to_release_page(page, sc.gfp_mask)) {
3993 goto unlock;
3994 }
3995 if (!mapping && page_count(page) == 1) {
3996 unlock_page(page);
3997 if (put_page_testzero(page)) {
3998 goto freeit;
3999 } else {
4000 /* Race! TOCHECK */
4001 printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d] RACE!!\n\n\n\n\n\n",__FUNCTION__,__LINE__);
4002 goto notask;
4003 }
4004 }
4005 }
4006 if (!mapping || !__remove_mapping(mapping, page)) {
4007 goto unlock;
4008 }
4009
4010 __clear_page_locked(page);
4011
4012freeit:
4013 free_hot_cold_page(page, 0);
4014 return 0;
4015
4016restore_unmap:
4017 /* Do something */
4018
4019restore_swap:
4020 if (PageSwapCache(page))
4021 try_to_free_swap(page);
4022
4023unlock:
4024 unlock_page(page);
4025
4026putback:
4027 /* Activate it again if needed! */
4028 if (active)
4029 SetPageActive(page);
4030
4031 /* We don't putback them to corresponding LRUs, because we want to do more tasks outside this function!
4032 putback_lru_page(page); */
4033
4034 /* Failedly dropped pages. Do migration! */
4035 return -EBUSY;
4036
4037notask:
4038 return 0;
4039}
4040#endif