Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291 }
292
293 /*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299 {
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306 {
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375 {
376 vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435 return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
441 {
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
453 h->resv_huge_pages--;
454 }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511 int nid = page_to_nid(page);
512 list_move(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519 struct page *page;
520
521 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
522 if (!is_migrate_isolate_page(page))
523 break;
524 /*
525 * if 'non-isolated free hugepage' not found on the list,
526 * the allocation fails.
527 */
528 if (&h->hugepage_freelists[nid] == &page->lru)
529 return NULL;
530 list_move(&page->lru, &h->hugepage_activelist);
531 set_page_refcounted(page);
532 h->free_huge_pages--;
533 h->free_huge_pages_node[nid]--;
534 return page;
535 }
536
537 static struct page *dequeue_huge_page_vma(struct hstate *h,
538 struct vm_area_struct *vma,
539 unsigned long address, int avoid_reserve)
540 {
541 struct page *page = NULL;
542 struct mempolicy *mpol;
543 nodemask_t *nodemask;
544 struct zonelist *zonelist;
545 struct zone *zone;
546 struct zoneref *z;
547 unsigned int cpuset_mems_cookie;
548
549 retry_cpuset:
550 cpuset_mems_cookie = get_mems_allowed();
551 zonelist = huge_zonelist(vma, address,
552 htlb_alloc_mask, &mpol, &nodemask);
553 /*
554 * A child process with MAP_PRIVATE mappings created by their parent
555 * have no page reserves. This check ensures that reservations are
556 * not "stolen". The child may still get SIGKILLed
557 */
558 if (!vma_has_reserves(vma) &&
559 h->free_huge_pages - h->resv_huge_pages == 0)
560 goto err;
561
562 /* If reserves cannot be used, ensure enough pages are in the pool */
563 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
564 goto err;
565
566 for_each_zone_zonelist_nodemask(zone, z, zonelist,
567 MAX_NR_ZONES - 1, nodemask) {
568 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569 page = dequeue_huge_page_node(h, zone_to_nid(zone));
570 if (page) {
571 if (!avoid_reserve)
572 decrement_hugepage_resv_vma(h, vma);
573 break;
574 }
575 }
576 }
577
578 mpol_cond_put(mpol);
579 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
580 goto retry_cpuset;
581 return page;
582
583 err:
584 mpol_cond_put(mpol);
585 return NULL;
586 }
587
588 static void update_and_free_page(struct hstate *h, struct page *page)
589 {
590 int i;
591
592 VM_BUG_ON(h->order >= MAX_ORDER);
593
594 h->nr_huge_pages--;
595 h->nr_huge_pages_node[page_to_nid(page)]--;
596 for (i = 0; i < pages_per_huge_page(h); i++) {
597 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
598 1 << PG_referenced | 1 << PG_dirty |
599 1 << PG_active | 1 << PG_reserved |
600 1 << PG_private | 1 << PG_writeback);
601 }
602 VM_BUG_ON(hugetlb_cgroup_from_page(page));
603 set_compound_page_dtor(page, NULL);
604 set_page_refcounted(page);
605 arch_release_hugepage(page);
606 __free_pages(page, huge_page_order(h));
607 }
608
609 struct hstate *size_to_hstate(unsigned long size)
610 {
611 struct hstate *h;
612
613 for_each_hstate(h) {
614 if (huge_page_size(h) == size)
615 return h;
616 }
617 return NULL;
618 }
619
620 static void free_huge_page(struct page *page)
621 {
622 /*
623 * Can't pass hstate in here because it is called from the
624 * compound page destructor.
625 */
626 struct hstate *h = page_hstate(page);
627 int nid = page_to_nid(page);
628 struct hugepage_subpool *spool =
629 (struct hugepage_subpool *)page_private(page);
630
631 set_page_private(page, 0);
632 page->mapping = NULL;
633 BUG_ON(page_count(page));
634 BUG_ON(page_mapcount(page));
635
636 spin_lock(&hugetlb_lock);
637 hugetlb_cgroup_uncharge_page(hstate_index(h),
638 pages_per_huge_page(h), page);
639 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
640 /* remove the page from active list */
641 list_del(&page->lru);
642 update_and_free_page(h, page);
643 h->surplus_huge_pages--;
644 h->surplus_huge_pages_node[nid]--;
645 } else {
646 arch_clear_hugepage_flags(page);
647 enqueue_huge_page(h, page);
648 }
649 spin_unlock(&hugetlb_lock);
650 hugepage_subpool_put_pages(spool, 1);
651 }
652
653 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
654 {
655 INIT_LIST_HEAD(&page->lru);
656 set_compound_page_dtor(page, free_huge_page);
657 spin_lock(&hugetlb_lock);
658 set_hugetlb_cgroup(page, NULL);
659 h->nr_huge_pages++;
660 h->nr_huge_pages_node[nid]++;
661 spin_unlock(&hugetlb_lock);
662 put_page(page); /* free it into the hugepage allocator */
663 }
664
665 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
666 {
667 int i;
668 int nr_pages = 1 << order;
669 struct page *p = page + 1;
670
671 /* we rely on prep_new_huge_page to set the destructor */
672 set_compound_order(page, order);
673 __SetPageHead(page);
674 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
675 __SetPageTail(p);
676 set_page_count(p, 0);
677 p->first_page = page;
678 }
679 }
680
681 /*
682 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
683 * transparent huge pages. See the PageTransHuge() documentation for more
684 * details.
685 */
686 int PageHuge(struct page *page)
687 {
688 compound_page_dtor *dtor;
689
690 if (!PageCompound(page))
691 return 0;
692
693 page = compound_head(page);
694 dtor = get_compound_page_dtor(page);
695
696 return dtor == free_huge_page;
697 }
698 EXPORT_SYMBOL_GPL(PageHuge);
699
700 /*
701 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702 * normal or transparent huge pages.
703 */
704 int PageHeadHuge(struct page *page_head)
705 {
706 compound_page_dtor *dtor;
707
708 if (!PageHead(page_head))
709 return 0;
710
711 dtor = get_compound_page_dtor(page_head);
712
713 return dtor == free_huge_page;
714 }
715 EXPORT_SYMBOL_GPL(PageHeadHuge);
716
717 pgoff_t __basepage_index(struct page *page)
718 {
719 struct page *page_head = compound_head(page);
720 pgoff_t index = page_index(page_head);
721 unsigned long compound_idx;
722
723 if (!PageHuge(page_head))
724 return page_index(page);
725
726 if (compound_order(page_head) >= MAX_ORDER)
727 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
728 else
729 compound_idx = page - page_head;
730
731 return (index << compound_order(page_head)) + compound_idx;
732 }
733
734 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
735 {
736 struct page *page;
737
738 if (h->order >= MAX_ORDER)
739 return NULL;
740
741 page = alloc_pages_exact_node(nid,
742 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
743 __GFP_REPEAT|__GFP_NOWARN,
744 huge_page_order(h));
745 if (page) {
746 if (arch_prepare_hugepage(page)) {
747 __free_pages(page, huge_page_order(h));
748 return NULL;
749 }
750 prep_new_huge_page(h, page, nid);
751 }
752
753 return page;
754 }
755
756 /*
757 * common helper functions for hstate_next_node_to_{alloc|free}.
758 * We may have allocated or freed a huge page based on a different
759 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
760 * be outside of *nodes_allowed. Ensure that we use an allowed
761 * node for alloc or free.
762 */
763 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
764 {
765 nid = next_node(nid, *nodes_allowed);
766 if (nid == MAX_NUMNODES)
767 nid = first_node(*nodes_allowed);
768 VM_BUG_ON(nid >= MAX_NUMNODES);
769
770 return nid;
771 }
772
773 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
774 {
775 if (!node_isset(nid, *nodes_allowed))
776 nid = next_node_allowed(nid, nodes_allowed);
777 return nid;
778 }
779
780 /*
781 * returns the previously saved node ["this node"] from which to
782 * allocate a persistent huge page for the pool and advance the
783 * next node from which to allocate, handling wrap at end of node
784 * mask.
785 */
786 static int hstate_next_node_to_alloc(struct hstate *h,
787 nodemask_t *nodes_allowed)
788 {
789 int nid;
790
791 VM_BUG_ON(!nodes_allowed);
792
793 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
794 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
795
796 return nid;
797 }
798
799 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
800 {
801 struct page *page;
802 int start_nid;
803 int next_nid;
804 int ret = 0;
805
806 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
807 next_nid = start_nid;
808
809 do {
810 page = alloc_fresh_huge_page_node(h, next_nid);
811 if (page) {
812 ret = 1;
813 break;
814 }
815 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
816 } while (next_nid != start_nid);
817
818 if (ret)
819 count_vm_event(HTLB_BUDDY_PGALLOC);
820 else
821 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
822
823 return ret;
824 }
825
826 /*
827 * helper for free_pool_huge_page() - return the previously saved
828 * node ["this node"] from which to free a huge page. Advance the
829 * next node id whether or not we find a free huge page to free so
830 * that the next attempt to free addresses the next node.
831 */
832 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
833 {
834 int nid;
835
836 VM_BUG_ON(!nodes_allowed);
837
838 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
839 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
840
841 return nid;
842 }
843
844 /*
845 * Free huge page from pool from next node to free.
846 * Attempt to keep persistent huge pages more or less
847 * balanced over allowed nodes.
848 * Called with hugetlb_lock locked.
849 */
850 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
851 bool acct_surplus)
852 {
853 int start_nid;
854 int next_nid;
855 int ret = 0;
856
857 start_nid = hstate_next_node_to_free(h, nodes_allowed);
858 next_nid = start_nid;
859
860 do {
861 /*
862 * If we're returning unused surplus pages, only examine
863 * nodes with surplus pages.
864 */
865 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
866 !list_empty(&h->hugepage_freelists[next_nid])) {
867 struct page *page =
868 list_entry(h->hugepage_freelists[next_nid].next,
869 struct page, lru);
870 list_del(&page->lru);
871 h->free_huge_pages--;
872 h->free_huge_pages_node[next_nid]--;
873 if (acct_surplus) {
874 h->surplus_huge_pages--;
875 h->surplus_huge_pages_node[next_nid]--;
876 }
877 update_and_free_page(h, page);
878 ret = 1;
879 break;
880 }
881 next_nid = hstate_next_node_to_free(h, nodes_allowed);
882 } while (next_nid != start_nid);
883
884 return ret;
885 }
886
887 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
888 {
889 struct page *page;
890 unsigned int r_nid;
891
892 if (h->order >= MAX_ORDER)
893 return NULL;
894
895 /*
896 * Assume we will successfully allocate the surplus page to
897 * prevent racing processes from causing the surplus to exceed
898 * overcommit
899 *
900 * This however introduces a different race, where a process B
901 * tries to grow the static hugepage pool while alloc_pages() is
902 * called by process A. B will only examine the per-node
903 * counters in determining if surplus huge pages can be
904 * converted to normal huge pages in adjust_pool_surplus(). A
905 * won't be able to increment the per-node counter, until the
906 * lock is dropped by B, but B doesn't drop hugetlb_lock until
907 * no more huge pages can be converted from surplus to normal
908 * state (and doesn't try to convert again). Thus, we have a
909 * case where a surplus huge page exists, the pool is grown, and
910 * the surplus huge page still exists after, even though it
911 * should just have been converted to a normal huge page. This
912 * does not leak memory, though, as the hugepage will be freed
913 * once it is out of use. It also does not allow the counters to
914 * go out of whack in adjust_pool_surplus() as we don't modify
915 * the node values until we've gotten the hugepage and only the
916 * per-node value is checked there.
917 */
918 spin_lock(&hugetlb_lock);
919 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
920 spin_unlock(&hugetlb_lock);
921 return NULL;
922 } else {
923 h->nr_huge_pages++;
924 h->surplus_huge_pages++;
925 }
926 spin_unlock(&hugetlb_lock);
927
928 if (nid == NUMA_NO_NODE)
929 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
930 __GFP_REPEAT|__GFP_NOWARN,
931 huge_page_order(h));
932 else
933 page = alloc_pages_exact_node(nid,
934 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
935 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
936
937 if (page && arch_prepare_hugepage(page)) {
938 __free_pages(page, huge_page_order(h));
939 page = NULL;
940 }
941
942 spin_lock(&hugetlb_lock);
943 if (page) {
944 INIT_LIST_HEAD(&page->lru);
945 r_nid = page_to_nid(page);
946 set_compound_page_dtor(page, free_huge_page);
947 set_hugetlb_cgroup(page, NULL);
948 /*
949 * We incremented the global counters already
950 */
951 h->nr_huge_pages_node[r_nid]++;
952 h->surplus_huge_pages_node[r_nid]++;
953 __count_vm_event(HTLB_BUDDY_PGALLOC);
954 } else {
955 h->nr_huge_pages--;
956 h->surplus_huge_pages--;
957 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
958 }
959 spin_unlock(&hugetlb_lock);
960
961 return page;
962 }
963
964 /*
965 * This allocation function is useful in the context where vma is irrelevant.
966 * E.g. soft-offlining uses this function because it only cares physical
967 * address of error page.
968 */
969 struct page *alloc_huge_page_node(struct hstate *h, int nid)
970 {
971 struct page *page;
972
973 spin_lock(&hugetlb_lock);
974 page = dequeue_huge_page_node(h, nid);
975 spin_unlock(&hugetlb_lock);
976
977 if (!page)
978 page = alloc_buddy_huge_page(h, nid);
979
980 return page;
981 }
982
983 /*
984 * Increase the hugetlb pool such that it can accommodate a reservation
985 * of size 'delta'.
986 */
987 static int gather_surplus_pages(struct hstate *h, int delta)
988 {
989 struct list_head surplus_list;
990 struct page *page, *tmp;
991 int ret, i;
992 int needed, allocated;
993 bool alloc_ok = true;
994
995 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
996 if (needed <= 0) {
997 h->resv_huge_pages += delta;
998 return 0;
999 }
1000
1001 allocated = 0;
1002 INIT_LIST_HEAD(&surplus_list);
1003
1004 ret = -ENOMEM;
1005 retry:
1006 spin_unlock(&hugetlb_lock);
1007 for (i = 0; i < needed; i++) {
1008 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1009 if (!page) {
1010 alloc_ok = false;
1011 break;
1012 }
1013 list_add(&page->lru, &surplus_list);
1014 }
1015 allocated += i;
1016
1017 /*
1018 * After retaking hugetlb_lock, we need to recalculate 'needed'
1019 * because either resv_huge_pages or free_huge_pages may have changed.
1020 */
1021 spin_lock(&hugetlb_lock);
1022 needed = (h->resv_huge_pages + delta) -
1023 (h->free_huge_pages + allocated);
1024 if (needed > 0) {
1025 if (alloc_ok)
1026 goto retry;
1027 /*
1028 * We were not able to allocate enough pages to
1029 * satisfy the entire reservation so we free what
1030 * we've allocated so far.
1031 */
1032 goto free;
1033 }
1034 /*
1035 * The surplus_list now contains _at_least_ the number of extra pages
1036 * needed to accommodate the reservation. Add the appropriate number
1037 * of pages to the hugetlb pool and free the extras back to the buddy
1038 * allocator. Commit the entire reservation here to prevent another
1039 * process from stealing the pages as they are added to the pool but
1040 * before they are reserved.
1041 */
1042 needed += allocated;
1043 h->resv_huge_pages += delta;
1044 ret = 0;
1045
1046 /* Free the needed pages to the hugetlb pool */
1047 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1048 if ((--needed) < 0)
1049 break;
1050 /*
1051 * This page is now managed by the hugetlb allocator and has
1052 * no users -- drop the buddy allocator's reference.
1053 */
1054 put_page_testzero(page);
1055 VM_BUG_ON(page_count(page));
1056 enqueue_huge_page(h, page);
1057 }
1058 free:
1059 spin_unlock(&hugetlb_lock);
1060
1061 /* Free unnecessary surplus pages to the buddy allocator */
1062 if (!list_empty(&surplus_list)) {
1063 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1064 put_page(page);
1065 }
1066 }
1067 spin_lock(&hugetlb_lock);
1068
1069 return ret;
1070 }
1071
1072 /*
1073 * When releasing a hugetlb pool reservation, any surplus pages that were
1074 * allocated to satisfy the reservation must be explicitly freed if they were
1075 * never used.
1076 * Called with hugetlb_lock held.
1077 */
1078 static void return_unused_surplus_pages(struct hstate *h,
1079 unsigned long unused_resv_pages)
1080 {
1081 unsigned long nr_pages;
1082
1083 /* Uncommit the reservation */
1084 h->resv_huge_pages -= unused_resv_pages;
1085
1086 /* Cannot return gigantic pages currently */
1087 if (h->order >= MAX_ORDER)
1088 return;
1089
1090 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1091
1092 /*
1093 * We want to release as many surplus pages as possible, spread
1094 * evenly across all nodes with memory. Iterate across these nodes
1095 * until we can no longer free unreserved surplus pages. This occurs
1096 * when the nodes with surplus pages have no free pages.
1097 * free_pool_huge_page() will balance the the freed pages across the
1098 * on-line nodes with memory and will handle the hstate accounting.
1099 */
1100 while (nr_pages--) {
1101 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1102 break;
1103 cond_resched_lock(&hugetlb_lock);
1104 }
1105 }
1106
1107 /*
1108 * Determine if the huge page at addr within the vma has an associated
1109 * reservation. Where it does not we will need to logically increase
1110 * reservation and actually increase subpool usage before an allocation
1111 * can occur. Where any new reservation would be required the
1112 * reservation change is prepared, but not committed. Once the page
1113 * has been allocated from the subpool and instantiated the change should
1114 * be committed via vma_commit_reservation. No action is required on
1115 * failure.
1116 */
1117 static long vma_needs_reservation(struct hstate *h,
1118 struct vm_area_struct *vma, unsigned long addr)
1119 {
1120 struct address_space *mapping = vma->vm_file->f_mapping;
1121 struct inode *inode = mapping->host;
1122
1123 if (vma->vm_flags & VM_MAYSHARE) {
1124 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125 return region_chg(&inode->i_mapping->private_list,
1126 idx, idx + 1);
1127
1128 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1129 return 1;
1130
1131 } else {
1132 long err;
1133 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1134 struct resv_map *reservations = vma_resv_map(vma);
1135
1136 err = region_chg(&reservations->regions, idx, idx + 1);
1137 if (err < 0)
1138 return err;
1139 return 0;
1140 }
1141 }
1142 static void vma_commit_reservation(struct hstate *h,
1143 struct vm_area_struct *vma, unsigned long addr)
1144 {
1145 struct address_space *mapping = vma->vm_file->f_mapping;
1146 struct inode *inode = mapping->host;
1147
1148 if (vma->vm_flags & VM_MAYSHARE) {
1149 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1150 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1151
1152 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1153 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1154 struct resv_map *reservations = vma_resv_map(vma);
1155
1156 /* Mark this page used in the map. */
1157 region_add(&reservations->regions, idx, idx + 1);
1158 }
1159 }
1160
1161 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1162 unsigned long addr, int avoid_reserve)
1163 {
1164 struct hugepage_subpool *spool = subpool_vma(vma);
1165 struct hstate *h = hstate_vma(vma);
1166 struct page *page;
1167 long chg;
1168 int ret, idx;
1169 struct hugetlb_cgroup *h_cg;
1170
1171 idx = hstate_index(h);
1172 /*
1173 * Processes that did not create the mapping will have no
1174 * reserves and will not have accounted against subpool
1175 * limit. Check that the subpool limit can be made before
1176 * satisfying the allocation MAP_NORESERVE mappings may also
1177 * need pages and subpool limit allocated allocated if no reserve
1178 * mapping overlaps.
1179 */
1180 chg = vma_needs_reservation(h, vma, addr);
1181 if (chg < 0)
1182 return ERR_PTR(-ENOMEM);
1183 if (chg)
1184 if (hugepage_subpool_get_pages(spool, chg))
1185 return ERR_PTR(-ENOSPC);
1186
1187 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1188 if (ret) {
1189 hugepage_subpool_put_pages(spool, chg);
1190 return ERR_PTR(-ENOSPC);
1191 }
1192 spin_lock(&hugetlb_lock);
1193 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1194 if (page) {
1195 /* update page cgroup details */
1196 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1197 h_cg, page);
1198 spin_unlock(&hugetlb_lock);
1199 } else {
1200 spin_unlock(&hugetlb_lock);
1201 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1202 if (!page) {
1203 hugetlb_cgroup_uncharge_cgroup(idx,
1204 pages_per_huge_page(h),
1205 h_cg);
1206 hugepage_subpool_put_pages(spool, chg);
1207 return ERR_PTR(-ENOSPC);
1208 }
1209 spin_lock(&hugetlb_lock);
1210 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1211 h_cg, page);
1212 list_move(&page->lru, &h->hugepage_activelist);
1213 spin_unlock(&hugetlb_lock);
1214 }
1215
1216 set_page_private(page, (unsigned long)spool);
1217
1218 vma_commit_reservation(h, vma, addr);
1219 return page;
1220 }
1221
1222 int __weak alloc_bootmem_huge_page(struct hstate *h)
1223 {
1224 struct huge_bootmem_page *m;
1225 int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1226
1227 while (nr_nodes) {
1228 void *addr;
1229
1230 addr = __alloc_bootmem_node_nopanic(
1231 NODE_DATA(hstate_next_node_to_alloc(h,
1232 &node_states[N_MEMORY])),
1233 huge_page_size(h), huge_page_size(h), 0);
1234
1235 if (addr) {
1236 /*
1237 * Use the beginning of the huge page to store the
1238 * huge_bootmem_page struct (until gather_bootmem
1239 * puts them into the mem_map).
1240 */
1241 m = addr;
1242 goto found;
1243 }
1244 nr_nodes--;
1245 }
1246 return 0;
1247
1248 found:
1249 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1250 /* Put them into a private list first because mem_map is not up yet */
1251 list_add(&m->list, &huge_boot_pages);
1252 m->hstate = h;
1253 return 1;
1254 }
1255
1256 static void prep_compound_huge_page(struct page *page, int order)
1257 {
1258 if (unlikely(order > (MAX_ORDER - 1)))
1259 prep_compound_gigantic_page(page, order);
1260 else
1261 prep_compound_page(page, order);
1262 }
1263
1264 /* Put bootmem huge pages into the standard lists after mem_map is up */
1265 static void __init gather_bootmem_prealloc(void)
1266 {
1267 struct huge_bootmem_page *m;
1268
1269 list_for_each_entry(m, &huge_boot_pages, list) {
1270 struct hstate *h = m->hstate;
1271 struct page *page;
1272
1273 #ifdef CONFIG_HIGHMEM
1274 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1275 free_bootmem_late((unsigned long)m,
1276 sizeof(struct huge_bootmem_page));
1277 #else
1278 page = virt_to_page(m);
1279 #endif
1280 __ClearPageReserved(page);
1281 WARN_ON(page_count(page) != 1);
1282 prep_compound_huge_page(page, h->order);
1283 prep_new_huge_page(h, page, page_to_nid(page));
1284 /*
1285 * If we had gigantic hugepages allocated at boot time, we need
1286 * to restore the 'stolen' pages to totalram_pages in order to
1287 * fix confusing memory reports from free(1) and another
1288 * side-effects, like CommitLimit going negative.
1289 */
1290 if (h->order > (MAX_ORDER - 1))
1291 totalram_pages += 1 << h->order;
1292 }
1293 }
1294
1295 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1296 {
1297 unsigned long i;
1298
1299 for (i = 0; i < h->max_huge_pages; ++i) {
1300 if (h->order >= MAX_ORDER) {
1301 if (!alloc_bootmem_huge_page(h))
1302 break;
1303 } else if (!alloc_fresh_huge_page(h,
1304 &node_states[N_MEMORY]))
1305 break;
1306 }
1307 h->max_huge_pages = i;
1308 }
1309
1310 static void __init hugetlb_init_hstates(void)
1311 {
1312 struct hstate *h;
1313
1314 for_each_hstate(h) {
1315 /* oversize hugepages were init'ed in early boot */
1316 if (h->order < MAX_ORDER)
1317 hugetlb_hstate_alloc_pages(h);
1318 }
1319 }
1320
1321 static char * __init memfmt(char *buf, unsigned long n)
1322 {
1323 if (n >= (1UL << 30))
1324 sprintf(buf, "%lu GB", n >> 30);
1325 else if (n >= (1UL << 20))
1326 sprintf(buf, "%lu MB", n >> 20);
1327 else
1328 sprintf(buf, "%lu KB", n >> 10);
1329 return buf;
1330 }
1331
1332 static void __init report_hugepages(void)
1333 {
1334 struct hstate *h;
1335
1336 for_each_hstate(h) {
1337 char buf[32];
1338 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1339 memfmt(buf, huge_page_size(h)),
1340 h->free_huge_pages);
1341 }
1342 }
1343
1344 #ifdef CONFIG_HIGHMEM
1345 static void try_to_free_low(struct hstate *h, unsigned long count,
1346 nodemask_t *nodes_allowed)
1347 {
1348 int i;
1349
1350 if (h->order >= MAX_ORDER)
1351 return;
1352
1353 for_each_node_mask(i, *nodes_allowed) {
1354 struct page *page, *next;
1355 struct list_head *freel = &h->hugepage_freelists[i];
1356 list_for_each_entry_safe(page, next, freel, lru) {
1357 if (count >= h->nr_huge_pages)
1358 return;
1359 if (PageHighMem(page))
1360 continue;
1361 list_del(&page->lru);
1362 update_and_free_page(h, page);
1363 h->free_huge_pages--;
1364 h->free_huge_pages_node[page_to_nid(page)]--;
1365 }
1366 }
1367 }
1368 #else
1369 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1370 nodemask_t *nodes_allowed)
1371 {
1372 }
1373 #endif
1374
1375 /*
1376 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1377 * balanced by operating on them in a round-robin fashion.
1378 * Returns 1 if an adjustment was made.
1379 */
1380 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1381 int delta)
1382 {
1383 int start_nid, next_nid;
1384 int ret = 0;
1385
1386 VM_BUG_ON(delta != -1 && delta != 1);
1387
1388 if (delta < 0)
1389 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1390 else
1391 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1392 next_nid = start_nid;
1393
1394 do {
1395 int nid = next_nid;
1396 if (delta < 0) {
1397 /*
1398 * To shrink on this node, there must be a surplus page
1399 */
1400 if (!h->surplus_huge_pages_node[nid]) {
1401 next_nid = hstate_next_node_to_alloc(h,
1402 nodes_allowed);
1403 continue;
1404 }
1405 }
1406 if (delta > 0) {
1407 /*
1408 * Surplus cannot exceed the total number of pages
1409 */
1410 if (h->surplus_huge_pages_node[nid] >=
1411 h->nr_huge_pages_node[nid]) {
1412 next_nid = hstate_next_node_to_free(h,
1413 nodes_allowed);
1414 continue;
1415 }
1416 }
1417
1418 h->surplus_huge_pages += delta;
1419 h->surplus_huge_pages_node[nid] += delta;
1420 ret = 1;
1421 break;
1422 } while (next_nid != start_nid);
1423
1424 return ret;
1425 }
1426
1427 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1428 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1429 nodemask_t *nodes_allowed)
1430 {
1431 unsigned long min_count, ret;
1432
1433 if (h->order >= MAX_ORDER)
1434 return h->max_huge_pages;
1435
1436 /*
1437 * Increase the pool size
1438 * First take pages out of surplus state. Then make up the
1439 * remaining difference by allocating fresh huge pages.
1440 *
1441 * We might race with alloc_buddy_huge_page() here and be unable
1442 * to convert a surplus huge page to a normal huge page. That is
1443 * not critical, though, it just means the overall size of the
1444 * pool might be one hugepage larger than it needs to be, but
1445 * within all the constraints specified by the sysctls.
1446 */
1447 spin_lock(&hugetlb_lock);
1448 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1449 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1450 break;
1451 }
1452
1453 while (count > persistent_huge_pages(h)) {
1454 /*
1455 * If this allocation races such that we no longer need the
1456 * page, free_huge_page will handle it by freeing the page
1457 * and reducing the surplus.
1458 */
1459 spin_unlock(&hugetlb_lock);
1460 ret = alloc_fresh_huge_page(h, nodes_allowed);
1461 spin_lock(&hugetlb_lock);
1462 if (!ret)
1463 goto out;
1464
1465 /* Bail for signals. Probably ctrl-c from user */
1466 if (signal_pending(current))
1467 goto out;
1468 }
1469
1470 /*
1471 * Decrease the pool size
1472 * First return free pages to the buddy allocator (being careful
1473 * to keep enough around to satisfy reservations). Then place
1474 * pages into surplus state as needed so the pool will shrink
1475 * to the desired size as pages become free.
1476 *
1477 * By placing pages into the surplus state independent of the
1478 * overcommit value, we are allowing the surplus pool size to
1479 * exceed overcommit. There are few sane options here. Since
1480 * alloc_buddy_huge_page() is checking the global counter,
1481 * though, we'll note that we're not allowed to exceed surplus
1482 * and won't grow the pool anywhere else. Not until one of the
1483 * sysctls are changed, or the surplus pages go out of use.
1484 */
1485 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1486 min_count = max(count, min_count);
1487 try_to_free_low(h, min_count, nodes_allowed);
1488 while (min_count < persistent_huge_pages(h)) {
1489 if (!free_pool_huge_page(h, nodes_allowed, 0))
1490 break;
1491 cond_resched_lock(&hugetlb_lock);
1492 }
1493 while (count < persistent_huge_pages(h)) {
1494 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1495 break;
1496 }
1497 out:
1498 ret = persistent_huge_pages(h);
1499 spin_unlock(&hugetlb_lock);
1500 return ret;
1501 }
1502
1503 #define HSTATE_ATTR_RO(_name) \
1504 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1505
1506 #define HSTATE_ATTR(_name) \
1507 static struct kobj_attribute _name##_attr = \
1508 __ATTR(_name, 0644, _name##_show, _name##_store)
1509
1510 static struct kobject *hugepages_kobj;
1511 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1512
1513 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1514
1515 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1516 {
1517 int i;
1518
1519 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1520 if (hstate_kobjs[i] == kobj) {
1521 if (nidp)
1522 *nidp = NUMA_NO_NODE;
1523 return &hstates[i];
1524 }
1525
1526 return kobj_to_node_hstate(kobj, nidp);
1527 }
1528
1529 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1530 struct kobj_attribute *attr, char *buf)
1531 {
1532 struct hstate *h;
1533 unsigned long nr_huge_pages;
1534 int nid;
1535
1536 h = kobj_to_hstate(kobj, &nid);
1537 if (nid == NUMA_NO_NODE)
1538 nr_huge_pages = h->nr_huge_pages;
1539 else
1540 nr_huge_pages = h->nr_huge_pages_node[nid];
1541
1542 return sprintf(buf, "%lu\n", nr_huge_pages);
1543 }
1544
1545 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1546 struct kobject *kobj, struct kobj_attribute *attr,
1547 const char *buf, size_t len)
1548 {
1549 int err;
1550 int nid;
1551 unsigned long count;
1552 struct hstate *h;
1553 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1554
1555 err = strict_strtoul(buf, 10, &count);
1556 if (err)
1557 goto out;
1558
1559 h = kobj_to_hstate(kobj, &nid);
1560 if (h->order >= MAX_ORDER) {
1561 err = -EINVAL;
1562 goto out;
1563 }
1564
1565 if (nid == NUMA_NO_NODE) {
1566 /*
1567 * global hstate attribute
1568 */
1569 if (!(obey_mempolicy &&
1570 init_nodemask_of_mempolicy(nodes_allowed))) {
1571 NODEMASK_FREE(nodes_allowed);
1572 nodes_allowed = &node_states[N_MEMORY];
1573 }
1574 } else if (nodes_allowed) {
1575 /*
1576 * per node hstate attribute: adjust count to global,
1577 * but restrict alloc/free to the specified node.
1578 */
1579 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1580 init_nodemask_of_node(nodes_allowed, nid);
1581 } else
1582 nodes_allowed = &node_states[N_MEMORY];
1583
1584 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1585
1586 if (nodes_allowed != &node_states[N_MEMORY])
1587 NODEMASK_FREE(nodes_allowed);
1588
1589 return len;
1590 out:
1591 NODEMASK_FREE(nodes_allowed);
1592 return err;
1593 }
1594
1595 static ssize_t nr_hugepages_show(struct kobject *kobj,
1596 struct kobj_attribute *attr, char *buf)
1597 {
1598 return nr_hugepages_show_common(kobj, attr, buf);
1599 }
1600
1601 static ssize_t nr_hugepages_store(struct kobject *kobj,
1602 struct kobj_attribute *attr, const char *buf, size_t len)
1603 {
1604 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1605 }
1606 HSTATE_ATTR(nr_hugepages);
1607
1608 #ifdef CONFIG_NUMA
1609
1610 /*
1611 * hstate attribute for optionally mempolicy-based constraint on persistent
1612 * huge page alloc/free.
1613 */
1614 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1615 struct kobj_attribute *attr, char *buf)
1616 {
1617 return nr_hugepages_show_common(kobj, attr, buf);
1618 }
1619
1620 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1621 struct kobj_attribute *attr, const char *buf, size_t len)
1622 {
1623 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1624 }
1625 HSTATE_ATTR(nr_hugepages_mempolicy);
1626 #endif
1627
1628
1629 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1630 struct kobj_attribute *attr, char *buf)
1631 {
1632 struct hstate *h = kobj_to_hstate(kobj, NULL);
1633 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1634 }
1635
1636 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1637 struct kobj_attribute *attr, const char *buf, size_t count)
1638 {
1639 int err;
1640 unsigned long input;
1641 struct hstate *h = kobj_to_hstate(kobj, NULL);
1642
1643 if (h->order >= MAX_ORDER)
1644 return -EINVAL;
1645
1646 err = strict_strtoul(buf, 10, &input);
1647 if (err)
1648 return err;
1649
1650 spin_lock(&hugetlb_lock);
1651 h->nr_overcommit_huge_pages = input;
1652 spin_unlock(&hugetlb_lock);
1653
1654 return count;
1655 }
1656 HSTATE_ATTR(nr_overcommit_hugepages);
1657
1658 static ssize_t free_hugepages_show(struct kobject *kobj,
1659 struct kobj_attribute *attr, char *buf)
1660 {
1661 struct hstate *h;
1662 unsigned long free_huge_pages;
1663 int nid;
1664
1665 h = kobj_to_hstate(kobj, &nid);
1666 if (nid == NUMA_NO_NODE)
1667 free_huge_pages = h->free_huge_pages;
1668 else
1669 free_huge_pages = h->free_huge_pages_node[nid];
1670
1671 return sprintf(buf, "%lu\n", free_huge_pages);
1672 }
1673 HSTATE_ATTR_RO(free_hugepages);
1674
1675 static ssize_t resv_hugepages_show(struct kobject *kobj,
1676 struct kobj_attribute *attr, char *buf)
1677 {
1678 struct hstate *h = kobj_to_hstate(kobj, NULL);
1679 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1680 }
1681 HSTATE_ATTR_RO(resv_hugepages);
1682
1683 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1684 struct kobj_attribute *attr, char *buf)
1685 {
1686 struct hstate *h;
1687 unsigned long surplus_huge_pages;
1688 int nid;
1689
1690 h = kobj_to_hstate(kobj, &nid);
1691 if (nid == NUMA_NO_NODE)
1692 surplus_huge_pages = h->surplus_huge_pages;
1693 else
1694 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1695
1696 return sprintf(buf, "%lu\n", surplus_huge_pages);
1697 }
1698 HSTATE_ATTR_RO(surplus_hugepages);
1699
1700 static struct attribute *hstate_attrs[] = {
1701 &nr_hugepages_attr.attr,
1702 &nr_overcommit_hugepages_attr.attr,
1703 &free_hugepages_attr.attr,
1704 &resv_hugepages_attr.attr,
1705 &surplus_hugepages_attr.attr,
1706 #ifdef CONFIG_NUMA
1707 &nr_hugepages_mempolicy_attr.attr,
1708 #endif
1709 NULL,
1710 };
1711
1712 static struct attribute_group hstate_attr_group = {
1713 .attrs = hstate_attrs,
1714 };
1715
1716 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1717 struct kobject **hstate_kobjs,
1718 struct attribute_group *hstate_attr_group)
1719 {
1720 int retval;
1721 int hi = hstate_index(h);
1722
1723 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1724 if (!hstate_kobjs[hi])
1725 return -ENOMEM;
1726
1727 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1728 if (retval)
1729 kobject_put(hstate_kobjs[hi]);
1730
1731 return retval;
1732 }
1733
1734 static void __init hugetlb_sysfs_init(void)
1735 {
1736 struct hstate *h;
1737 int err;
1738
1739 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1740 if (!hugepages_kobj)
1741 return;
1742
1743 for_each_hstate(h) {
1744 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1745 hstate_kobjs, &hstate_attr_group);
1746 if (err)
1747 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1748 }
1749 }
1750
1751 #ifdef CONFIG_NUMA
1752
1753 /*
1754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1755 * with node devices in node_devices[] using a parallel array. The array
1756 * index of a node device or _hstate == node id.
1757 * This is here to avoid any static dependency of the node device driver, in
1758 * the base kernel, on the hugetlb module.
1759 */
1760 struct node_hstate {
1761 struct kobject *hugepages_kobj;
1762 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1763 };
1764 struct node_hstate node_hstates[MAX_NUMNODES];
1765
1766 /*
1767 * A subset of global hstate attributes for node devices
1768 */
1769 static struct attribute *per_node_hstate_attrs[] = {
1770 &nr_hugepages_attr.attr,
1771 &free_hugepages_attr.attr,
1772 &surplus_hugepages_attr.attr,
1773 NULL,
1774 };
1775
1776 static struct attribute_group per_node_hstate_attr_group = {
1777 .attrs = per_node_hstate_attrs,
1778 };
1779
1780 /*
1781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1782 * Returns node id via non-NULL nidp.
1783 */
1784 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1785 {
1786 int nid;
1787
1788 for (nid = 0; nid < nr_node_ids; nid++) {
1789 struct node_hstate *nhs = &node_hstates[nid];
1790 int i;
1791 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1792 if (nhs->hstate_kobjs[i] == kobj) {
1793 if (nidp)
1794 *nidp = nid;
1795 return &hstates[i];
1796 }
1797 }
1798
1799 BUG();
1800 return NULL;
1801 }
1802
1803 /*
1804 * Unregister hstate attributes from a single node device.
1805 * No-op if no hstate attributes attached.
1806 */
1807 static void hugetlb_unregister_node(struct node *node)
1808 {
1809 struct hstate *h;
1810 struct node_hstate *nhs = &node_hstates[node->dev.id];
1811
1812 if (!nhs->hugepages_kobj)
1813 return; /* no hstate attributes */
1814
1815 for_each_hstate(h) {
1816 int idx = hstate_index(h);
1817 if (nhs->hstate_kobjs[idx]) {
1818 kobject_put(nhs->hstate_kobjs[idx]);
1819 nhs->hstate_kobjs[idx] = NULL;
1820 }
1821 }
1822
1823 kobject_put(nhs->hugepages_kobj);
1824 nhs->hugepages_kobj = NULL;
1825 }
1826
1827 /*
1828 * hugetlb module exit: unregister hstate attributes from node devices
1829 * that have them.
1830 */
1831 static void hugetlb_unregister_all_nodes(void)
1832 {
1833 int nid;
1834
1835 /*
1836 * disable node device registrations.
1837 */
1838 register_hugetlbfs_with_node(NULL, NULL);
1839
1840 /*
1841 * remove hstate attributes from any nodes that have them.
1842 */
1843 for (nid = 0; nid < nr_node_ids; nid++)
1844 hugetlb_unregister_node(node_devices[nid]);
1845 }
1846
1847 /*
1848 * Register hstate attributes for a single node device.
1849 * No-op if attributes already registered.
1850 */
1851 static void hugetlb_register_node(struct node *node)
1852 {
1853 struct hstate *h;
1854 struct node_hstate *nhs = &node_hstates[node->dev.id];
1855 int err;
1856
1857 if (nhs->hugepages_kobj)
1858 return; /* already allocated */
1859
1860 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1861 &node->dev.kobj);
1862 if (!nhs->hugepages_kobj)
1863 return;
1864
1865 for_each_hstate(h) {
1866 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1867 nhs->hstate_kobjs,
1868 &per_node_hstate_attr_group);
1869 if (err) {
1870 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1871 h->name, node->dev.id);
1872 hugetlb_unregister_node(node);
1873 break;
1874 }
1875 }
1876 }
1877
1878 /*
1879 * hugetlb init time: register hstate attributes for all registered node
1880 * devices of nodes that have memory. All on-line nodes should have
1881 * registered their associated device by this time.
1882 */
1883 static void hugetlb_register_all_nodes(void)
1884 {
1885 int nid;
1886
1887 for_each_node_state(nid, N_MEMORY) {
1888 struct node *node = node_devices[nid];
1889 if (node->dev.id == nid)
1890 hugetlb_register_node(node);
1891 }
1892
1893 /*
1894 * Let the node device driver know we're here so it can
1895 * [un]register hstate attributes on node hotplug.
1896 */
1897 register_hugetlbfs_with_node(hugetlb_register_node,
1898 hugetlb_unregister_node);
1899 }
1900 #else /* !CONFIG_NUMA */
1901
1902 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1903 {
1904 BUG();
1905 if (nidp)
1906 *nidp = -1;
1907 return NULL;
1908 }
1909
1910 static void hugetlb_unregister_all_nodes(void) { }
1911
1912 static void hugetlb_register_all_nodes(void) { }
1913
1914 #endif
1915
1916 static void __exit hugetlb_exit(void)
1917 {
1918 struct hstate *h;
1919
1920 hugetlb_unregister_all_nodes();
1921
1922 for_each_hstate(h) {
1923 kobject_put(hstate_kobjs[hstate_index(h)]);
1924 }
1925
1926 kobject_put(hugepages_kobj);
1927 }
1928 module_exit(hugetlb_exit);
1929
1930 static int __init hugetlb_init(void)
1931 {
1932 /* Some platform decide whether they support huge pages at boot
1933 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1934 * there is no such support
1935 */
1936 if (HPAGE_SHIFT == 0)
1937 return 0;
1938
1939 if (!size_to_hstate(default_hstate_size)) {
1940 default_hstate_size = HPAGE_SIZE;
1941 if (!size_to_hstate(default_hstate_size))
1942 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1943 }
1944 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1945 if (default_hstate_max_huge_pages)
1946 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1947
1948 hugetlb_init_hstates();
1949 gather_bootmem_prealloc();
1950 report_hugepages();
1951
1952 hugetlb_sysfs_init();
1953 hugetlb_register_all_nodes();
1954 hugetlb_cgroup_file_init();
1955
1956 return 0;
1957 }
1958 module_init(hugetlb_init);
1959
1960 /* Should be called on processing a hugepagesz=... option */
1961 void __init hugetlb_add_hstate(unsigned order)
1962 {
1963 struct hstate *h;
1964 unsigned long i;
1965
1966 if (size_to_hstate(PAGE_SIZE << order)) {
1967 pr_warning("hugepagesz= specified twice, ignoring\n");
1968 return;
1969 }
1970 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1971 BUG_ON(order == 0);
1972 h = &hstates[hugetlb_max_hstate++];
1973 h->order = order;
1974 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1975 h->nr_huge_pages = 0;
1976 h->free_huge_pages = 0;
1977 for (i = 0; i < MAX_NUMNODES; ++i)
1978 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1979 INIT_LIST_HEAD(&h->hugepage_activelist);
1980 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1981 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1982 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1983 huge_page_size(h)/1024);
1984
1985 parsed_hstate = h;
1986 }
1987
1988 static int __init hugetlb_nrpages_setup(char *s)
1989 {
1990 unsigned long *mhp;
1991 static unsigned long *last_mhp;
1992
1993 /*
1994 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1995 * so this hugepages= parameter goes to the "default hstate".
1996 */
1997 if (!hugetlb_max_hstate)
1998 mhp = &default_hstate_max_huge_pages;
1999 else
2000 mhp = &parsed_hstate->max_huge_pages;
2001
2002 if (mhp == last_mhp) {
2003 pr_warning("hugepages= specified twice without "
2004 "interleaving hugepagesz=, ignoring\n");
2005 return 1;
2006 }
2007
2008 if (sscanf(s, "%lu", mhp) <= 0)
2009 *mhp = 0;
2010
2011 /*
2012 * Global state is always initialized later in hugetlb_init.
2013 * But we need to allocate >= MAX_ORDER hstates here early to still
2014 * use the bootmem allocator.
2015 */
2016 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2017 hugetlb_hstate_alloc_pages(parsed_hstate);
2018
2019 last_mhp = mhp;
2020
2021 return 1;
2022 }
2023 __setup("hugepages=", hugetlb_nrpages_setup);
2024
2025 static int __init hugetlb_default_setup(char *s)
2026 {
2027 default_hstate_size = memparse(s, &s);
2028 return 1;
2029 }
2030 __setup("default_hugepagesz=", hugetlb_default_setup);
2031
2032 static unsigned int cpuset_mems_nr(unsigned int *array)
2033 {
2034 int node;
2035 unsigned int nr = 0;
2036
2037 for_each_node_mask(node, cpuset_current_mems_allowed)
2038 nr += array[node];
2039
2040 return nr;
2041 }
2042
2043 #ifdef CONFIG_SYSCTL
2044 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2045 struct ctl_table *table, int write,
2046 void __user *buffer, size_t *length, loff_t *ppos)
2047 {
2048 struct hstate *h = &default_hstate;
2049 unsigned long tmp;
2050 int ret;
2051
2052 tmp = h->max_huge_pages;
2053
2054 if (write && h->order >= MAX_ORDER)
2055 return -EINVAL;
2056
2057 table->data = &tmp;
2058 table->maxlen = sizeof(unsigned long);
2059 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2060 if (ret)
2061 goto out;
2062
2063 if (write) {
2064 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2065 GFP_KERNEL | __GFP_NORETRY);
2066 if (!(obey_mempolicy &&
2067 init_nodemask_of_mempolicy(nodes_allowed))) {
2068 NODEMASK_FREE(nodes_allowed);
2069 nodes_allowed = &node_states[N_MEMORY];
2070 }
2071 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2072
2073 if (nodes_allowed != &node_states[N_MEMORY])
2074 NODEMASK_FREE(nodes_allowed);
2075 }
2076 out:
2077 return ret;
2078 }
2079
2080 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2081 void __user *buffer, size_t *length, loff_t *ppos)
2082 {
2083
2084 return hugetlb_sysctl_handler_common(false, table, write,
2085 buffer, length, ppos);
2086 }
2087
2088 #ifdef CONFIG_NUMA
2089 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2090 void __user *buffer, size_t *length, loff_t *ppos)
2091 {
2092 return hugetlb_sysctl_handler_common(true, table, write,
2093 buffer, length, ppos);
2094 }
2095 #endif /* CONFIG_NUMA */
2096
2097 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2098 void __user *buffer,
2099 size_t *length, loff_t *ppos)
2100 {
2101 proc_dointvec(table, write, buffer, length, ppos);
2102 if (hugepages_treat_as_movable)
2103 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2104 else
2105 htlb_alloc_mask = GFP_HIGHUSER;
2106 return 0;
2107 }
2108
2109 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2110 void __user *buffer,
2111 size_t *length, loff_t *ppos)
2112 {
2113 struct hstate *h = &default_hstate;
2114 unsigned long tmp;
2115 int ret;
2116
2117 tmp = h->nr_overcommit_huge_pages;
2118
2119 if (write && h->order >= MAX_ORDER)
2120 return -EINVAL;
2121
2122 table->data = &tmp;
2123 table->maxlen = sizeof(unsigned long);
2124 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2125 if (ret)
2126 goto out;
2127
2128 if (write) {
2129 spin_lock(&hugetlb_lock);
2130 h->nr_overcommit_huge_pages = tmp;
2131 spin_unlock(&hugetlb_lock);
2132 }
2133 out:
2134 return ret;
2135 }
2136
2137 #endif /* CONFIG_SYSCTL */
2138
2139 void hugetlb_report_meminfo(struct seq_file *m)
2140 {
2141 struct hstate *h = &default_hstate;
2142 seq_printf(m,
2143 "HugePages_Total: %5lu\n"
2144 "HugePages_Free: %5lu\n"
2145 "HugePages_Rsvd: %5lu\n"
2146 "HugePages_Surp: %5lu\n"
2147 "Hugepagesize: %8lu kB\n",
2148 h->nr_huge_pages,
2149 h->free_huge_pages,
2150 h->resv_huge_pages,
2151 h->surplus_huge_pages,
2152 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2153 }
2154
2155 int hugetlb_report_node_meminfo(int nid, char *buf)
2156 {
2157 struct hstate *h = &default_hstate;
2158 return sprintf(buf,
2159 "Node %d HugePages_Total: %5u\n"
2160 "Node %d HugePages_Free: %5u\n"
2161 "Node %d HugePages_Surp: %5u\n",
2162 nid, h->nr_huge_pages_node[nid],
2163 nid, h->free_huge_pages_node[nid],
2164 nid, h->surplus_huge_pages_node[nid]);
2165 }
2166
2167 void hugetlb_show_meminfo(void)
2168 {
2169 struct hstate *h;
2170 int nid;
2171
2172 for_each_node_state(nid, N_MEMORY)
2173 for_each_hstate(h)
2174 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2175 nid,
2176 h->nr_huge_pages_node[nid],
2177 h->free_huge_pages_node[nid],
2178 h->surplus_huge_pages_node[nid],
2179 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2180 }
2181
2182 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2183 unsigned long hugetlb_total_pages(void)
2184 {
2185 struct hstate *h;
2186 unsigned long nr_total_pages = 0;
2187
2188 for_each_hstate(h)
2189 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2190 return nr_total_pages;
2191 }
2192
2193 static int hugetlb_acct_memory(struct hstate *h, long delta)
2194 {
2195 int ret = -ENOMEM;
2196
2197 spin_lock(&hugetlb_lock);
2198 /*
2199 * When cpuset is configured, it breaks the strict hugetlb page
2200 * reservation as the accounting is done on a global variable. Such
2201 * reservation is completely rubbish in the presence of cpuset because
2202 * the reservation is not checked against page availability for the
2203 * current cpuset. Application can still potentially OOM'ed by kernel
2204 * with lack of free htlb page in cpuset that the task is in.
2205 * Attempt to enforce strict accounting with cpuset is almost
2206 * impossible (or too ugly) because cpuset is too fluid that
2207 * task or memory node can be dynamically moved between cpusets.
2208 *
2209 * The change of semantics for shared hugetlb mapping with cpuset is
2210 * undesirable. However, in order to preserve some of the semantics,
2211 * we fall back to check against current free page availability as
2212 * a best attempt and hopefully to minimize the impact of changing
2213 * semantics that cpuset has.
2214 */
2215 if (delta > 0) {
2216 if (gather_surplus_pages(h, delta) < 0)
2217 goto out;
2218
2219 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2220 return_unused_surplus_pages(h, delta);
2221 goto out;
2222 }
2223 }
2224
2225 ret = 0;
2226 if (delta < 0)
2227 return_unused_surplus_pages(h, (unsigned long) -delta);
2228
2229 out:
2230 spin_unlock(&hugetlb_lock);
2231 return ret;
2232 }
2233
2234 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2235 {
2236 struct resv_map *reservations = vma_resv_map(vma);
2237
2238 /*
2239 * This new VMA should share its siblings reservation map if present.
2240 * The VMA will only ever have a valid reservation map pointer where
2241 * it is being copied for another still existing VMA. As that VMA
2242 * has a reference to the reservation map it cannot disappear until
2243 * after this open call completes. It is therefore safe to take a
2244 * new reference here without additional locking.
2245 */
2246 if (reservations)
2247 kref_get(&reservations->refs);
2248 }
2249
2250 static void resv_map_put(struct vm_area_struct *vma)
2251 {
2252 struct resv_map *reservations = vma_resv_map(vma);
2253
2254 if (!reservations)
2255 return;
2256 kref_put(&reservations->refs, resv_map_release);
2257 }
2258
2259 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2260 {
2261 struct hstate *h = hstate_vma(vma);
2262 struct resv_map *reservations = vma_resv_map(vma);
2263 struct hugepage_subpool *spool = subpool_vma(vma);
2264 unsigned long reserve;
2265 unsigned long start;
2266 unsigned long end;
2267
2268 if (reservations) {
2269 start = vma_hugecache_offset(h, vma, vma->vm_start);
2270 end = vma_hugecache_offset(h, vma, vma->vm_end);
2271
2272 reserve = (end - start) -
2273 region_count(&reservations->regions, start, end);
2274
2275 resv_map_put(vma);
2276
2277 if (reserve) {
2278 hugetlb_acct_memory(h, -reserve);
2279 hugepage_subpool_put_pages(spool, reserve);
2280 }
2281 }
2282 }
2283
2284 /*
2285 * We cannot handle pagefaults against hugetlb pages at all. They cause
2286 * handle_mm_fault() to try to instantiate regular-sized pages in the
2287 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2288 * this far.
2289 */
2290 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2291 {
2292 BUG();
2293 return 0;
2294 }
2295
2296 const struct vm_operations_struct hugetlb_vm_ops = {
2297 .fault = hugetlb_vm_op_fault,
2298 .open = hugetlb_vm_op_open,
2299 .close = hugetlb_vm_op_close,
2300 };
2301
2302 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2303 int writable)
2304 {
2305 pte_t entry;
2306
2307 if (writable) {
2308 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2309 vma->vm_page_prot)));
2310 } else {
2311 entry = huge_pte_wrprotect(mk_huge_pte(page,
2312 vma->vm_page_prot));
2313 }
2314 entry = pte_mkyoung(entry);
2315 entry = pte_mkhuge(entry);
2316 entry = arch_make_huge_pte(entry, vma, page, writable);
2317
2318 return entry;
2319 }
2320
2321 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2322 unsigned long address, pte_t *ptep)
2323 {
2324 pte_t entry;
2325
2326 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2327 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2328 update_mmu_cache(vma, address, ptep);
2329 }
2330
2331 static int is_hugetlb_entry_migration(pte_t pte)
2332 {
2333 swp_entry_t swp;
2334
2335 if (huge_pte_none(pte) || pte_present(pte))
2336 return 0;
2337 swp = pte_to_swp_entry(pte);
2338 if (non_swap_entry(swp) && is_migration_entry(swp))
2339 return 1;
2340 else
2341 return 0;
2342 }
2343
2344 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2345 {
2346 swp_entry_t swp;
2347
2348 if (huge_pte_none(pte) || pte_present(pte))
2349 return 0;
2350 swp = pte_to_swp_entry(pte);
2351 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2352 return 1;
2353 else
2354 return 0;
2355 }
2356
2357 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2358 struct vm_area_struct *vma)
2359 {
2360 pte_t *src_pte, *dst_pte, entry;
2361 struct page *ptepage;
2362 unsigned long addr;
2363 int cow;
2364 struct hstate *h = hstate_vma(vma);
2365 unsigned long sz = huge_page_size(h);
2366
2367 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2368
2369 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2370 src_pte = huge_pte_offset(src, addr);
2371 if (!src_pte)
2372 continue;
2373 dst_pte = huge_pte_alloc(dst, addr, sz);
2374 if (!dst_pte)
2375 goto nomem;
2376
2377 /* If the pagetables are shared don't copy or take references */
2378 if (dst_pte == src_pte)
2379 continue;
2380
2381 spin_lock(&dst->page_table_lock);
2382 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2383 entry = huge_ptep_get(src_pte);
2384 if (huge_pte_none(entry)) { /* skip none entry */
2385 ;
2386 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2387 is_hugetlb_entry_hwpoisoned(entry))) {
2388 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2389
2390 if (is_write_migration_entry(swp_entry) && cow) {
2391 /*
2392 * COW mappings require pages in both
2393 * parent and child to be set to read.
2394 */
2395 make_migration_entry_read(&swp_entry);
2396 entry = swp_entry_to_pte(swp_entry);
2397 set_huge_pte_at(src, addr, src_pte, entry);
2398 }
2399 set_huge_pte_at(dst, addr, dst_pte, entry);
2400 } else {
2401 if (cow)
2402 huge_ptep_set_wrprotect(src, addr, src_pte);
2403 entry = huge_ptep_get(src_pte);
2404 ptepage = pte_page(entry);
2405 get_page(ptepage);
2406 page_dup_rmap(ptepage);
2407 set_huge_pte_at(dst, addr, dst_pte, entry);
2408 }
2409 spin_unlock(&src->page_table_lock);
2410 spin_unlock(&dst->page_table_lock);
2411 }
2412 return 0;
2413
2414 nomem:
2415 return -ENOMEM;
2416 }
2417
2418 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2419 unsigned long start, unsigned long end,
2420 struct page *ref_page)
2421 {
2422 int force_flush = 0;
2423 struct mm_struct *mm = vma->vm_mm;
2424 unsigned long address;
2425 pte_t *ptep;
2426 pte_t pte;
2427 struct page *page;
2428 struct hstate *h = hstate_vma(vma);
2429 unsigned long sz = huge_page_size(h);
2430 const unsigned long mmun_start = start; /* For mmu_notifiers */
2431 const unsigned long mmun_end = end; /* For mmu_notifiers */
2432
2433 WARN_ON(!is_vm_hugetlb_page(vma));
2434 BUG_ON(start & ~huge_page_mask(h));
2435 BUG_ON(end & ~huge_page_mask(h));
2436
2437 tlb_start_vma(tlb, vma);
2438 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2439 again:
2440 spin_lock(&mm->page_table_lock);
2441 for (address = start; address < end; address += sz) {
2442 ptep = huge_pte_offset(mm, address);
2443 if (!ptep)
2444 continue;
2445
2446 if (huge_pmd_unshare(mm, &address, ptep))
2447 continue;
2448
2449 pte = huge_ptep_get(ptep);
2450 if (huge_pte_none(pte))
2451 continue;
2452
2453 /*
2454 * HWPoisoned hugepage is already unmapped and dropped reference
2455 */
2456 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2457 huge_pte_clear(mm, address, ptep);
2458 continue;
2459 }
2460
2461 page = pte_page(pte);
2462 /*
2463 * If a reference page is supplied, it is because a specific
2464 * page is being unmapped, not a range. Ensure the page we
2465 * are about to unmap is the actual page of interest.
2466 */
2467 if (ref_page) {
2468 if (page != ref_page)
2469 continue;
2470
2471 /*
2472 * Mark the VMA as having unmapped its page so that
2473 * future faults in this VMA will fail rather than
2474 * looking like data was lost
2475 */
2476 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2477 }
2478
2479 pte = huge_ptep_get_and_clear(mm, address, ptep);
2480 tlb_remove_tlb_entry(tlb, ptep, address);
2481 if (huge_pte_dirty(pte))
2482 set_page_dirty(page);
2483
2484 page_remove_rmap(page);
2485 force_flush = !__tlb_remove_page(tlb, page);
2486 if (force_flush)
2487 break;
2488 /* Bail out after unmapping reference page if supplied */
2489 if (ref_page)
2490 break;
2491 }
2492 spin_unlock(&mm->page_table_lock);
2493 /*
2494 * mmu_gather ran out of room to batch pages, we break out of
2495 * the PTE lock to avoid doing the potential expensive TLB invalidate
2496 * and page-free while holding it.
2497 */
2498 if (force_flush) {
2499 force_flush = 0;
2500 tlb_flush_mmu(tlb);
2501 if (address < end && !ref_page)
2502 goto again;
2503 }
2504 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2505 tlb_end_vma(tlb, vma);
2506 }
2507
2508 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2509 struct vm_area_struct *vma, unsigned long start,
2510 unsigned long end, struct page *ref_page)
2511 {
2512 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2513
2514 /*
2515 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2516 * test will fail on a vma being torn down, and not grab a page table
2517 * on its way out. We're lucky that the flag has such an appropriate
2518 * name, and can in fact be safely cleared here. We could clear it
2519 * before the __unmap_hugepage_range above, but all that's necessary
2520 * is to clear it before releasing the i_mmap_mutex. This works
2521 * because in the context this is called, the VMA is about to be
2522 * destroyed and the i_mmap_mutex is held.
2523 */
2524 vma->vm_flags &= ~VM_MAYSHARE;
2525 }
2526
2527 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2528 unsigned long end, struct page *ref_page)
2529 {
2530 struct mm_struct *mm;
2531 struct mmu_gather tlb;
2532
2533 mm = vma->vm_mm;
2534
2535 tlb_gather_mmu(&tlb, mm, start, end);
2536 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2537 tlb_finish_mmu(&tlb, start, end);
2538 }
2539
2540 /*
2541 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2542 * mappping it owns the reserve page for. The intention is to unmap the page
2543 * from other VMAs and let the children be SIGKILLed if they are faulting the
2544 * same region.
2545 */
2546 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2547 struct page *page, unsigned long address)
2548 {
2549 struct hstate *h = hstate_vma(vma);
2550 struct vm_area_struct *iter_vma;
2551 struct address_space *mapping;
2552 pgoff_t pgoff;
2553
2554 /*
2555 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2556 * from page cache lookup which is in HPAGE_SIZE units.
2557 */
2558 address = address & huge_page_mask(h);
2559 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2560 vma->vm_pgoff;
2561 mapping = file_inode(vma->vm_file)->i_mapping;
2562
2563 /*
2564 * Take the mapping lock for the duration of the table walk. As
2565 * this mapping should be shared between all the VMAs,
2566 * __unmap_hugepage_range() is called as the lock is already held
2567 */
2568 mutex_lock(&mapping->i_mmap_mutex);
2569 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2570 /* Do not unmap the current VMA */
2571 if (iter_vma == vma)
2572 continue;
2573
2574 /*
2575 * Unmap the page from other VMAs without their own reserves.
2576 * They get marked to be SIGKILLed if they fault in these
2577 * areas. This is because a future no-page fault on this VMA
2578 * could insert a zeroed page instead of the data existing
2579 * from the time of fork. This would look like data corruption
2580 */
2581 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2582 unmap_hugepage_range(iter_vma, address,
2583 address + huge_page_size(h), page);
2584 }
2585 mutex_unlock(&mapping->i_mmap_mutex);
2586
2587 return 1;
2588 }
2589
2590 /*
2591 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2592 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2593 * cannot race with other handlers or page migration.
2594 * Keep the pte_same checks anyway to make transition from the mutex easier.
2595 */
2596 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2597 unsigned long address, pte_t *ptep, pte_t pte,
2598 struct page *pagecache_page)
2599 {
2600 struct hstate *h = hstate_vma(vma);
2601 struct page *old_page, *new_page;
2602 int avoidcopy;
2603 int outside_reserve = 0;
2604 unsigned long mmun_start; /* For mmu_notifiers */
2605 unsigned long mmun_end; /* For mmu_notifiers */
2606
2607 old_page = pte_page(pte);
2608
2609 retry_avoidcopy:
2610 /* If no-one else is actually using this page, avoid the copy
2611 * and just make the page writable */
2612 avoidcopy = (page_mapcount(old_page) == 1);
2613 if (avoidcopy) {
2614 if (PageAnon(old_page))
2615 page_move_anon_rmap(old_page, vma, address);
2616 set_huge_ptep_writable(vma, address, ptep);
2617 return 0;
2618 }
2619
2620 /*
2621 * If the process that created a MAP_PRIVATE mapping is about to
2622 * perform a COW due to a shared page count, attempt to satisfy
2623 * the allocation without using the existing reserves. The pagecache
2624 * page is used to determine if the reserve at this address was
2625 * consumed or not. If reserves were used, a partial faulted mapping
2626 * at the time of fork() could consume its reserves on COW instead
2627 * of the full address range.
2628 */
2629 if (!(vma->vm_flags & VM_MAYSHARE) &&
2630 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2631 old_page != pagecache_page)
2632 outside_reserve = 1;
2633
2634 page_cache_get(old_page);
2635
2636 /* Drop page_table_lock as buddy allocator may be called */
2637 spin_unlock(&mm->page_table_lock);
2638 new_page = alloc_huge_page(vma, address, outside_reserve);
2639
2640 if (IS_ERR(new_page)) {
2641 long err = PTR_ERR(new_page);
2642 page_cache_release(old_page);
2643
2644 /*
2645 * If a process owning a MAP_PRIVATE mapping fails to COW,
2646 * it is due to references held by a child and an insufficient
2647 * huge page pool. To guarantee the original mappers
2648 * reliability, unmap the page from child processes. The child
2649 * may get SIGKILLed if it later faults.
2650 */
2651 if (outside_reserve) {
2652 BUG_ON(huge_pte_none(pte));
2653 if (unmap_ref_private(mm, vma, old_page, address)) {
2654 BUG_ON(huge_pte_none(pte));
2655 spin_lock(&mm->page_table_lock);
2656 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2657 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2658 goto retry_avoidcopy;
2659 /*
2660 * race occurs while re-acquiring page_table_lock, and
2661 * our job is done.
2662 */
2663 return 0;
2664 }
2665 WARN_ON_ONCE(1);
2666 }
2667
2668 /* Caller expects lock to be held */
2669 spin_lock(&mm->page_table_lock);
2670 if (err == -ENOMEM)
2671 return VM_FAULT_OOM;
2672 else
2673 return VM_FAULT_SIGBUS;
2674 }
2675
2676 /*
2677 * When the original hugepage is shared one, it does not have
2678 * anon_vma prepared.
2679 */
2680 if (unlikely(anon_vma_prepare(vma))) {
2681 page_cache_release(new_page);
2682 page_cache_release(old_page);
2683 /* Caller expects lock to be held */
2684 spin_lock(&mm->page_table_lock);
2685 return VM_FAULT_OOM;
2686 }
2687
2688 copy_user_huge_page(new_page, old_page, address, vma,
2689 pages_per_huge_page(h));
2690 __SetPageUptodate(new_page);
2691
2692 mmun_start = address & huge_page_mask(h);
2693 mmun_end = mmun_start + huge_page_size(h);
2694 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2695 /*
2696 * Retake the page_table_lock to check for racing updates
2697 * before the page tables are altered
2698 */
2699 spin_lock(&mm->page_table_lock);
2700 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2701 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2702 /* Break COW */
2703 huge_ptep_clear_flush(vma, address, ptep);
2704 set_huge_pte_at(mm, address, ptep,
2705 make_huge_pte(vma, new_page, 1));
2706 page_remove_rmap(old_page);
2707 hugepage_add_new_anon_rmap(new_page, vma, address);
2708 /* Make the old page be freed below */
2709 new_page = old_page;
2710 }
2711 spin_unlock(&mm->page_table_lock);
2712 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2713 /* Caller expects lock to be held */
2714 spin_lock(&mm->page_table_lock);
2715 page_cache_release(new_page);
2716 page_cache_release(old_page);
2717 return 0;
2718 }
2719
2720 /* Return the pagecache page at a given address within a VMA */
2721 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2722 struct vm_area_struct *vma, unsigned long address)
2723 {
2724 struct address_space *mapping;
2725 pgoff_t idx;
2726
2727 mapping = vma->vm_file->f_mapping;
2728 idx = vma_hugecache_offset(h, vma, address);
2729
2730 return find_lock_page(mapping, idx);
2731 }
2732
2733 /*
2734 * Return whether there is a pagecache page to back given address within VMA.
2735 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2736 */
2737 static bool hugetlbfs_pagecache_present(struct hstate *h,
2738 struct vm_area_struct *vma, unsigned long address)
2739 {
2740 struct address_space *mapping;
2741 pgoff_t idx;
2742 struct page *page;
2743
2744 mapping = vma->vm_file->f_mapping;
2745 idx = vma_hugecache_offset(h, vma, address);
2746
2747 page = find_get_page(mapping, idx);
2748 if (page)
2749 put_page(page);
2750 return page != NULL;
2751 }
2752
2753 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2754 unsigned long address, pte_t *ptep, unsigned int flags)
2755 {
2756 struct hstate *h = hstate_vma(vma);
2757 int ret = VM_FAULT_SIGBUS;
2758 int anon_rmap = 0;
2759 pgoff_t idx;
2760 unsigned long size;
2761 struct page *page;
2762 struct address_space *mapping;
2763 pte_t new_pte;
2764
2765 /*
2766 * Currently, we are forced to kill the process in the event the
2767 * original mapper has unmapped pages from the child due to a failed
2768 * COW. Warn that such a situation has occurred as it may not be obvious
2769 */
2770 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2771 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2772 current->pid);
2773 return ret;
2774 }
2775
2776 mapping = vma->vm_file->f_mapping;
2777 idx = vma_hugecache_offset(h, vma, address);
2778
2779 /*
2780 * Use page lock to guard against racing truncation
2781 * before we get page_table_lock.
2782 */
2783 retry:
2784 page = find_lock_page(mapping, idx);
2785 if (!page) {
2786 size = i_size_read(mapping->host) >> huge_page_shift(h);
2787 if (idx >= size)
2788 goto out;
2789 page = alloc_huge_page(vma, address, 0);
2790 if (IS_ERR(page)) {
2791 ret = PTR_ERR(page);
2792 if (ret == -ENOMEM)
2793 ret = VM_FAULT_OOM;
2794 else
2795 ret = VM_FAULT_SIGBUS;
2796 goto out;
2797 }
2798 clear_huge_page(page, address, pages_per_huge_page(h));
2799 __SetPageUptodate(page);
2800
2801 if (vma->vm_flags & VM_MAYSHARE) {
2802 int err;
2803 struct inode *inode = mapping->host;
2804
2805 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2806 if (err) {
2807 put_page(page);
2808 if (err == -EEXIST)
2809 goto retry;
2810 goto out;
2811 }
2812
2813 spin_lock(&inode->i_lock);
2814 inode->i_blocks += blocks_per_huge_page(h);
2815 spin_unlock(&inode->i_lock);
2816 } else {
2817 lock_page(page);
2818 if (unlikely(anon_vma_prepare(vma))) {
2819 ret = VM_FAULT_OOM;
2820 goto backout_unlocked;
2821 }
2822 anon_rmap = 1;
2823 }
2824 } else {
2825 /*
2826 * If memory error occurs between mmap() and fault, some process
2827 * don't have hwpoisoned swap entry for errored virtual address.
2828 * So we need to block hugepage fault by PG_hwpoison bit check.
2829 */
2830 if (unlikely(PageHWPoison(page))) {
2831 ret = VM_FAULT_HWPOISON |
2832 VM_FAULT_SET_HINDEX(hstate_index(h));
2833 goto backout_unlocked;
2834 }
2835 }
2836
2837 /*
2838 * If we are going to COW a private mapping later, we examine the
2839 * pending reservations for this page now. This will ensure that
2840 * any allocations necessary to record that reservation occur outside
2841 * the spinlock.
2842 */
2843 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2844 if (vma_needs_reservation(h, vma, address) < 0) {
2845 ret = VM_FAULT_OOM;
2846 goto backout_unlocked;
2847 }
2848
2849 spin_lock(&mm->page_table_lock);
2850 size = i_size_read(mapping->host) >> huge_page_shift(h);
2851 if (idx >= size)
2852 goto backout;
2853
2854 ret = 0;
2855 if (!huge_pte_none(huge_ptep_get(ptep)))
2856 goto backout;
2857
2858 if (anon_rmap)
2859 hugepage_add_new_anon_rmap(page, vma, address);
2860 else
2861 page_dup_rmap(page);
2862 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2863 && (vma->vm_flags & VM_SHARED)));
2864 set_huge_pte_at(mm, address, ptep, new_pte);
2865
2866 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2867 /* Optimization, do the COW without a second fault */
2868 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2869 }
2870
2871 spin_unlock(&mm->page_table_lock);
2872 unlock_page(page);
2873 out:
2874 return ret;
2875
2876 backout:
2877 spin_unlock(&mm->page_table_lock);
2878 backout_unlocked:
2879 unlock_page(page);
2880 put_page(page);
2881 goto out;
2882 }
2883
2884 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2885 unsigned long address, unsigned int flags)
2886 {
2887 pte_t *ptep;
2888 pte_t entry;
2889 int ret;
2890 struct page *page = NULL;
2891 struct page *pagecache_page = NULL;
2892 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2893 struct hstate *h = hstate_vma(vma);
2894
2895 address &= huge_page_mask(h);
2896
2897 ptep = huge_pte_offset(mm, address);
2898 if (ptep) {
2899 entry = huge_ptep_get(ptep);
2900 if (unlikely(is_hugetlb_entry_migration(entry))) {
2901 migration_entry_wait_huge(mm, ptep);
2902 return 0;
2903 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2904 return VM_FAULT_HWPOISON_LARGE |
2905 VM_FAULT_SET_HINDEX(hstate_index(h));
2906 }
2907
2908 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2909 if (!ptep)
2910 return VM_FAULT_OOM;
2911
2912 /*
2913 * Serialize hugepage allocation and instantiation, so that we don't
2914 * get spurious allocation failures if two CPUs race to instantiate
2915 * the same page in the page cache.
2916 */
2917 mutex_lock(&hugetlb_instantiation_mutex);
2918 entry = huge_ptep_get(ptep);
2919 if (huge_pte_none(entry)) {
2920 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2921 goto out_mutex;
2922 }
2923
2924 ret = 0;
2925
2926 /*
2927 * If we are going to COW the mapping later, we examine the pending
2928 * reservations for this page now. This will ensure that any
2929 * allocations necessary to record that reservation occur outside the
2930 * spinlock. For private mappings, we also lookup the pagecache
2931 * page now as it is used to determine if a reservation has been
2932 * consumed.
2933 */
2934 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2935 if (vma_needs_reservation(h, vma, address) < 0) {
2936 ret = VM_FAULT_OOM;
2937 goto out_mutex;
2938 }
2939
2940 if (!(vma->vm_flags & VM_MAYSHARE))
2941 pagecache_page = hugetlbfs_pagecache_page(h,
2942 vma, address);
2943 }
2944
2945 /*
2946 * hugetlb_cow() requires page locks of pte_page(entry) and
2947 * pagecache_page, so here we need take the former one
2948 * when page != pagecache_page or !pagecache_page.
2949 * Note that locking order is always pagecache_page -> page,
2950 * so no worry about deadlock.
2951 */
2952 page = pte_page(entry);
2953 get_page(page);
2954 if (page != pagecache_page)
2955 lock_page(page);
2956
2957 spin_lock(&mm->page_table_lock);
2958 /* Check for a racing update before calling hugetlb_cow */
2959 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2960 goto out_page_table_lock;
2961
2962
2963 if (flags & FAULT_FLAG_WRITE) {
2964 if (!huge_pte_write(entry)) {
2965 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2966 pagecache_page);
2967 goto out_page_table_lock;
2968 }
2969 entry = huge_pte_mkdirty(entry);
2970 }
2971 entry = pte_mkyoung(entry);
2972 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2973 flags & FAULT_FLAG_WRITE))
2974 update_mmu_cache(vma, address, ptep);
2975
2976 out_page_table_lock:
2977 spin_unlock(&mm->page_table_lock);
2978
2979 if (pagecache_page) {
2980 unlock_page(pagecache_page);
2981 put_page(pagecache_page);
2982 }
2983 if (page != pagecache_page)
2984 unlock_page(page);
2985 put_page(page);
2986
2987 out_mutex:
2988 mutex_unlock(&hugetlb_instantiation_mutex);
2989
2990 return ret;
2991 }
2992
2993 /* Can be overriden by architectures */
2994 __attribute__((weak)) struct page *
2995 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2996 pud_t *pud, int write)
2997 {
2998 BUG();
2999 return NULL;
3000 }
3001
3002 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3003 struct page **pages, struct vm_area_struct **vmas,
3004 unsigned long *position, unsigned long *nr_pages,
3005 long i, unsigned int flags)
3006 {
3007 unsigned long pfn_offset;
3008 unsigned long vaddr = *position;
3009 unsigned long remainder = *nr_pages;
3010 struct hstate *h = hstate_vma(vma);
3011
3012 spin_lock(&mm->page_table_lock);
3013 while (vaddr < vma->vm_end && remainder) {
3014 pte_t *pte;
3015 int absent;
3016 struct page *page;
3017
3018 /*
3019 * Some archs (sparc64, sh*) have multiple pte_ts to
3020 * each hugepage. We have to make sure we get the
3021 * first, for the page indexing below to work.
3022 */
3023 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3024 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3025
3026 /*
3027 * When coredumping, it suits get_dump_page if we just return
3028 * an error where there's an empty slot with no huge pagecache
3029 * to back it. This way, we avoid allocating a hugepage, and
3030 * the sparse dumpfile avoids allocating disk blocks, but its
3031 * huge holes still show up with zeroes where they need to be.
3032 */
3033 if (absent && (flags & FOLL_DUMP) &&
3034 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3035 remainder = 0;
3036 break;
3037 }
3038
3039 /*
3040 * We need call hugetlb_fault for both hugepages under migration
3041 * (in which case hugetlb_fault waits for the migration,) and
3042 * hwpoisoned hugepages (in which case we need to prevent the
3043 * caller from accessing to them.) In order to do this, we use
3044 * here is_swap_pte instead of is_hugetlb_entry_migration and
3045 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3046 * both cases, and because we can't follow correct pages
3047 * directly from any kind of swap entries.
3048 */
3049 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3050 ((flags & FOLL_WRITE) &&
3051 !huge_pte_write(huge_ptep_get(pte)))) {
3052 int ret;
3053
3054 spin_unlock(&mm->page_table_lock);
3055 ret = hugetlb_fault(mm, vma, vaddr,
3056 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3057 spin_lock(&mm->page_table_lock);
3058 if (!(ret & VM_FAULT_ERROR))
3059 continue;
3060
3061 remainder = 0;
3062 break;
3063 }
3064
3065 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3066 page = pte_page(huge_ptep_get(pte));
3067 same_page:
3068 if (pages) {
3069 pages[i] = mem_map_offset(page, pfn_offset);
3070 get_page(pages[i]);
3071 }
3072
3073 if (vmas)
3074 vmas[i] = vma;
3075
3076 vaddr += PAGE_SIZE;
3077 ++pfn_offset;
3078 --remainder;
3079 ++i;
3080 if (vaddr < vma->vm_end && remainder &&
3081 pfn_offset < pages_per_huge_page(h)) {
3082 /*
3083 * We use pfn_offset to avoid touching the pageframes
3084 * of this compound page.
3085 */
3086 goto same_page;
3087 }
3088 }
3089 spin_unlock(&mm->page_table_lock);
3090 *nr_pages = remainder;
3091 *position = vaddr;
3092
3093 return i ? i : -EFAULT;
3094 }
3095
3096 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3097 unsigned long address, unsigned long end, pgprot_t newprot)
3098 {
3099 struct mm_struct *mm = vma->vm_mm;
3100 unsigned long start = address;
3101 pte_t *ptep;
3102 pte_t pte;
3103 struct hstate *h = hstate_vma(vma);
3104 unsigned long pages = 0;
3105
3106 BUG_ON(address >= end);
3107 flush_cache_range(vma, address, end);
3108
3109 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3110 spin_lock(&mm->page_table_lock);
3111 for (; address < end; address += huge_page_size(h)) {
3112 ptep = huge_pte_offset(mm, address);
3113 if (!ptep)
3114 continue;
3115 if (huge_pmd_unshare(mm, &address, ptep)) {
3116 pages++;
3117 continue;
3118 }
3119 if (!huge_pte_none(huge_ptep_get(ptep))) {
3120 pte = huge_ptep_get_and_clear(mm, address, ptep);
3121 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3122 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3123 set_huge_pte_at(mm, address, ptep, pte);
3124 pages++;
3125 }
3126 }
3127 spin_unlock(&mm->page_table_lock);
3128 /*
3129 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3130 * may have cleared our pud entry and done put_page on the page table:
3131 * once we release i_mmap_mutex, another task can do the final put_page
3132 * and that page table be reused and filled with junk.
3133 */
3134 flush_tlb_range(vma, start, end);
3135 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3136
3137 return pages << h->order;
3138 }
3139
3140 int hugetlb_reserve_pages(struct inode *inode,
3141 long from, long to,
3142 struct vm_area_struct *vma,
3143 vm_flags_t vm_flags)
3144 {
3145 long ret, chg;
3146 struct hstate *h = hstate_inode(inode);
3147 struct hugepage_subpool *spool = subpool_inode(inode);
3148
3149 /*
3150 * Only apply hugepage reservation if asked. At fault time, an
3151 * attempt will be made for VM_NORESERVE to allocate a page
3152 * without using reserves
3153 */
3154 if (vm_flags & VM_NORESERVE)
3155 return 0;
3156
3157 /*
3158 * Shared mappings base their reservation on the number of pages that
3159 * are already allocated on behalf of the file. Private mappings need
3160 * to reserve the full area even if read-only as mprotect() may be
3161 * called to make the mapping read-write. Assume !vma is a shm mapping
3162 */
3163 if (!vma || vma->vm_flags & VM_MAYSHARE)
3164 chg = region_chg(&inode->i_mapping->private_list, from, to);
3165 else {
3166 struct resv_map *resv_map = resv_map_alloc();
3167 if (!resv_map)
3168 return -ENOMEM;
3169
3170 chg = to - from;
3171
3172 set_vma_resv_map(vma, resv_map);
3173 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3174 }
3175
3176 if (chg < 0) {
3177 ret = chg;
3178 goto out_err;
3179 }
3180
3181 /* There must be enough pages in the subpool for the mapping */
3182 if (hugepage_subpool_get_pages(spool, chg)) {
3183 ret = -ENOSPC;
3184 goto out_err;
3185 }
3186
3187 /*
3188 * Check enough hugepages are available for the reservation.
3189 * Hand the pages back to the subpool if there are not
3190 */
3191 ret = hugetlb_acct_memory(h, chg);
3192 if (ret < 0) {
3193 hugepage_subpool_put_pages(spool, chg);
3194 goto out_err;
3195 }
3196
3197 /*
3198 * Account for the reservations made. Shared mappings record regions
3199 * that have reservations as they are shared by multiple VMAs.
3200 * When the last VMA disappears, the region map says how much
3201 * the reservation was and the page cache tells how much of
3202 * the reservation was consumed. Private mappings are per-VMA and
3203 * only the consumed reservations are tracked. When the VMA
3204 * disappears, the original reservation is the VMA size and the
3205 * consumed reservations are stored in the map. Hence, nothing
3206 * else has to be done for private mappings here
3207 */
3208 if (!vma || vma->vm_flags & VM_MAYSHARE)
3209 region_add(&inode->i_mapping->private_list, from, to);
3210 return 0;
3211 out_err:
3212 if (vma)
3213 resv_map_put(vma);
3214 return ret;
3215 }
3216
3217 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3218 {
3219 struct hstate *h = hstate_inode(inode);
3220 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3221 struct hugepage_subpool *spool = subpool_inode(inode);
3222
3223 spin_lock(&inode->i_lock);
3224 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3225 spin_unlock(&inode->i_lock);
3226
3227 hugepage_subpool_put_pages(spool, (chg - freed));
3228 hugetlb_acct_memory(h, -(chg - freed));
3229 }
3230
3231 #ifdef CONFIG_MEMORY_FAILURE
3232
3233 /* Should be called in hugetlb_lock */
3234 static int is_hugepage_on_freelist(struct page *hpage)
3235 {
3236 struct page *page;
3237 struct page *tmp;
3238 struct hstate *h = page_hstate(hpage);
3239 int nid = page_to_nid(hpage);
3240
3241 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3242 if (page == hpage)
3243 return 1;
3244 return 0;
3245 }
3246
3247 /*
3248 * This function is called from memory failure code.
3249 * Assume the caller holds page lock of the head page.
3250 */
3251 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3252 {
3253 struct hstate *h = page_hstate(hpage);
3254 int nid = page_to_nid(hpage);
3255 int ret = -EBUSY;
3256
3257 spin_lock(&hugetlb_lock);
3258 if (is_hugepage_on_freelist(hpage)) {
3259 /*
3260 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3261 * but dangling hpage->lru can trigger list-debug warnings
3262 * (this happens when we call unpoison_memory() on it),
3263 * so let it point to itself with list_del_init().
3264 */
3265 list_del_init(&hpage->lru);
3266 set_page_refcounted(hpage);
3267 h->free_huge_pages--;
3268 h->free_huge_pages_node[nid]--;
3269 ret = 0;
3270 }
3271 spin_unlock(&hugetlb_lock);
3272 return ret;
3273 }
3274 #endif