Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
6843d925 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
37static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38unsigned long hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
25985edc 227 /* We overlap with this area, if it extends further than
96822904
AW
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
84afd99b
AW
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
276 long seg_from;
277 long seg_to;
84afd99b
AW
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
e7c4b0bf
AW
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
a5516438
AK
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 299{
a5516438
AK
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
302}
303
0fe6e20b
NH
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
08fba699
MG
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324}
f340ca0f 325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 326
3340289d
MG
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
84afd99b
AW
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 348
a1e78772
MG
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
a1e78772 367 */
e7c4b0bf
AW
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
84afd99b
AW
379struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382};
383
2a4b3ded 384static struct resv_map *resv_map_alloc(void)
84afd99b
AW
385{
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394}
395
2a4b3ded 396static void resv_map_release(struct kref *ref)
84afd99b
AW
397{
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
406{
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 408 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
2a4b3ded 411 return NULL;
a1e78772
MG
412}
413
84afd99b 414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
415{
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 418
84afd99b
AW
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
04f2cbe3 425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
434
435 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
436}
437
438/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
439static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
a1e78772 441{
c37f9fb1
AW
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
f83a275d 445 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 446 /* Shared mappings always use reserves */
a5516438 447 h->resv_huge_pages--;
84afd99b 448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
a5516438 453 h->resv_huge_pages--;
a1e78772
MG
454 }
455}
456
04f2cbe3 457/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
458void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459{
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 461 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
462 vma->vm_private_data = (void *)0;
463}
464
465/* Returns true if the VMA has associated reserve pages */
7f09ca51 466static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 467{
f83a275d 468 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
a1e78772
MG
473}
474
0ebabb41
NH
475static void copy_gigantic_page(struct page *dst, struct page *src)
476{
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490}
491
492void copy_huge_page(struct page *dst, struct page *src)
493{
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507}
508
a5516438 509static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
510{
511 int nid = page_to_nid(page);
0edaecfa 512 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
1da177e4
LT
515}
516
bf50bab2
NH
517static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518{
519 struct page *page;
520
6843d925
XQ
521 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
522 if (!is_migrate_isolate_page(page))
523 break;
524 /*
525 * if 'non-isolated free hugepage' not found on the list,
526 * the allocation fails.
527 */
528 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 529 return NULL;
0edaecfa 530 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 531 set_page_refcounted(page);
bf50bab2
NH
532 h->free_huge_pages--;
533 h->free_huge_pages_node[nid]--;
534 return page;
535}
536
a5516438
AK
537static struct page *dequeue_huge_page_vma(struct hstate *h,
538 struct vm_area_struct *vma,
04f2cbe3 539 unsigned long address, int avoid_reserve)
1da177e4 540{
b1c12cbc 541 struct page *page = NULL;
480eccf9 542 struct mempolicy *mpol;
19770b32 543 nodemask_t *nodemask;
c0ff7453 544 struct zonelist *zonelist;
dd1a239f
MG
545 struct zone *zone;
546 struct zoneref *z;
cc9a6c87 547 unsigned int cpuset_mems_cookie;
1da177e4 548
cc9a6c87
MG
549retry_cpuset:
550 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
551 zonelist = huge_zonelist(vma, address,
552 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
553 /*
554 * A child process with MAP_PRIVATE mappings created by their parent
555 * have no page reserves. This check ensures that reservations are
556 * not "stolen". The child may still get SIGKILLed
557 */
7f09ca51 558 if (!vma_has_reserves(vma) &&
a5516438 559 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 560 goto err;
a1e78772 561
04f2cbe3 562 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 563 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 564 goto err;
04f2cbe3 565
19770b32
MG
566 for_each_zone_zonelist_nodemask(zone, z, zonelist,
567 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
568 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569 page = dequeue_huge_page_node(h, zone_to_nid(zone));
570 if (page) {
571 if (!avoid_reserve)
572 decrement_hugepage_resv_vma(h, vma);
573 break;
574 }
3abf7afd 575 }
1da177e4 576 }
cc9a6c87 577
52cd3b07 578 mpol_cond_put(mpol);
cc9a6c87
MG
579 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
580 goto retry_cpuset;
1da177e4 581 return page;
cc9a6c87
MG
582
583err:
584 mpol_cond_put(mpol);
585 return NULL;
1da177e4
LT
586}
587
a5516438 588static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
589{
590 int i;
a5516438 591
18229df5
AW
592 VM_BUG_ON(h->order >= MAX_ORDER);
593
a5516438
AK
594 h->nr_huge_pages--;
595 h->nr_huge_pages_node[page_to_nid(page)]--;
596 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
597 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
598 1 << PG_referenced | 1 << PG_dirty |
599 1 << PG_active | 1 << PG_reserved |
600 1 << PG_private | 1 << PG_writeback);
6af2acb6 601 }
9dd540e2 602 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
603 set_compound_page_dtor(page, NULL);
604 set_page_refcounted(page);
7f2e9525 605 arch_release_hugepage(page);
a5516438 606 __free_pages(page, huge_page_order(h));
6af2acb6
AL
607}
608
e5ff2159
AK
609struct hstate *size_to_hstate(unsigned long size)
610{
611 struct hstate *h;
612
613 for_each_hstate(h) {
614 if (huge_page_size(h) == size)
615 return h;
616 }
617 return NULL;
618}
619
27a85ef1
DG
620static void free_huge_page(struct page *page)
621{
a5516438
AK
622 /*
623 * Can't pass hstate in here because it is called from the
624 * compound page destructor.
625 */
e5ff2159 626 struct hstate *h = page_hstate(page);
7893d1d5 627 int nid = page_to_nid(page);
90481622
DG
628 struct hugepage_subpool *spool =
629 (struct hugepage_subpool *)page_private(page);
27a85ef1 630
e5df70ab 631 set_page_private(page, 0);
23be7468 632 page->mapping = NULL;
7893d1d5 633 BUG_ON(page_count(page));
0fe6e20b 634 BUG_ON(page_mapcount(page));
27a85ef1
DG
635
636 spin_lock(&hugetlb_lock);
6d76dcf4
AK
637 hugetlb_cgroup_uncharge_page(hstate_index(h),
638 pages_per_huge_page(h), page);
aa888a74 639 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
640 /* remove the page from active list */
641 list_del(&page->lru);
a5516438
AK
642 update_and_free_page(h, page);
643 h->surplus_huge_pages--;
644 h->surplus_huge_pages_node[nid]--;
7893d1d5 645 } else {
5d3a551c 646 arch_clear_hugepage_flags(page);
a5516438 647 enqueue_huge_page(h, page);
7893d1d5 648 }
27a85ef1 649 spin_unlock(&hugetlb_lock);
90481622 650 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
651}
652
a5516438 653static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 654{
0edaecfa 655 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
656 set_compound_page_dtor(page, free_huge_page);
657 spin_lock(&hugetlb_lock);
9dd540e2 658 set_hugetlb_cgroup(page, NULL);
a5516438
AK
659 h->nr_huge_pages++;
660 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
661 spin_unlock(&hugetlb_lock);
662 put_page(page); /* free it into the hugepage allocator */
663}
664
20a0307c
WF
665static void prep_compound_gigantic_page(struct page *page, unsigned long order)
666{
667 int i;
668 int nr_pages = 1 << order;
669 struct page *p = page + 1;
670
671 /* we rely on prep_new_huge_page to set the destructor */
672 set_compound_order(page, order);
673 __SetPageHead(page);
674 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
675 __SetPageTail(p);
58a84aa9 676 set_page_count(p, 0);
20a0307c
WF
677 p->first_page = page;
678 }
679}
680
7795912c
AM
681/*
682 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
683 * transparent huge pages. See the PageTransHuge() documentation for more
684 * details.
685 */
20a0307c
WF
686int PageHuge(struct page *page)
687{
688 compound_page_dtor *dtor;
689
690 if (!PageCompound(page))
691 return 0;
692
693 page = compound_head(page);
694 dtor = get_compound_page_dtor(page);
695
696 return dtor == free_huge_page;
697}
43131e14
NH
698EXPORT_SYMBOL_GPL(PageHuge);
699
17b6ada0
AA
700/*
701 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702 * normal or transparent huge pages.
703 */
704int PageHeadHuge(struct page *page_head)
705{
706 compound_page_dtor *dtor;
707
708 if (!PageHead(page_head))
709 return 0;
710
711 dtor = get_compound_page_dtor(page_head);
712
713 return dtor == free_huge_page;
714}
715EXPORT_SYMBOL_GPL(PageHeadHuge);
716
ab1842f1
ZY
717pgoff_t __basepage_index(struct page *page)
718{
719 struct page *page_head = compound_head(page);
720 pgoff_t index = page_index(page_head);
721 unsigned long compound_idx;
722
723 if (!PageHuge(page_head))
724 return page_index(page);
725
726 if (compound_order(page_head) >= MAX_ORDER)
727 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
728 else
729 compound_idx = page - page_head;
730
731 return (index << compound_order(page_head)) + compound_idx;
732}
733
a5516438 734static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 735{
1da177e4 736 struct page *page;
f96efd58 737
aa888a74
AK
738 if (h->order >= MAX_ORDER)
739 return NULL;
740
6484eb3e 741 page = alloc_pages_exact_node(nid,
551883ae
NA
742 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
743 __GFP_REPEAT|__GFP_NOWARN,
a5516438 744 huge_page_order(h));
1da177e4 745 if (page) {
7f2e9525 746 if (arch_prepare_hugepage(page)) {
caff3a2c 747 __free_pages(page, huge_page_order(h));
7b8ee84d 748 return NULL;
7f2e9525 749 }
a5516438 750 prep_new_huge_page(h, page, nid);
1da177e4 751 }
63b4613c
NA
752
753 return page;
754}
755
9a76db09 756/*
6ae11b27
LS
757 * common helper functions for hstate_next_node_to_{alloc|free}.
758 * We may have allocated or freed a huge page based on a different
759 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
760 * be outside of *nodes_allowed. Ensure that we use an allowed
761 * node for alloc or free.
9a76db09 762 */
6ae11b27 763static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 764{
6ae11b27 765 nid = next_node(nid, *nodes_allowed);
9a76db09 766 if (nid == MAX_NUMNODES)
6ae11b27 767 nid = first_node(*nodes_allowed);
9a76db09
LS
768 VM_BUG_ON(nid >= MAX_NUMNODES);
769
770 return nid;
771}
772
6ae11b27
LS
773static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
774{
775 if (!node_isset(nid, *nodes_allowed))
776 nid = next_node_allowed(nid, nodes_allowed);
777 return nid;
778}
779
5ced66c9 780/*
6ae11b27
LS
781 * returns the previously saved node ["this node"] from which to
782 * allocate a persistent huge page for the pool and advance the
783 * next node from which to allocate, handling wrap at end of node
784 * mask.
5ced66c9 785 */
6ae11b27
LS
786static int hstate_next_node_to_alloc(struct hstate *h,
787 nodemask_t *nodes_allowed)
5ced66c9 788{
6ae11b27
LS
789 int nid;
790
791 VM_BUG_ON(!nodes_allowed);
792
793 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
794 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 795
9a76db09 796 return nid;
5ced66c9
AK
797}
798
6ae11b27 799static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
800{
801 struct page *page;
802 int start_nid;
803 int next_nid;
804 int ret = 0;
805
6ae11b27 806 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 807 next_nid = start_nid;
63b4613c
NA
808
809 do {
e8c5c824 810 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 811 if (page) {
63b4613c 812 ret = 1;
9a76db09
LS
813 break;
814 }
6ae11b27 815 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 816 } while (next_nid != start_nid);
63b4613c 817
3b116300
AL
818 if (ret)
819 count_vm_event(HTLB_BUDDY_PGALLOC);
820 else
821 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
822
63b4613c 823 return ret;
1da177e4
LT
824}
825
e8c5c824 826/*
6ae11b27
LS
827 * helper for free_pool_huge_page() - return the previously saved
828 * node ["this node"] from which to free a huge page. Advance the
829 * next node id whether or not we find a free huge page to free so
830 * that the next attempt to free addresses the next node.
e8c5c824 831 */
6ae11b27 832static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 833{
6ae11b27
LS
834 int nid;
835
836 VM_BUG_ON(!nodes_allowed);
837
838 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
839 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 840
9a76db09 841 return nid;
e8c5c824
LS
842}
843
844/*
845 * Free huge page from pool from next node to free.
846 * Attempt to keep persistent huge pages more or less
847 * balanced over allowed nodes.
848 * Called with hugetlb_lock locked.
849 */
6ae11b27
LS
850static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
851 bool acct_surplus)
e8c5c824
LS
852{
853 int start_nid;
854 int next_nid;
855 int ret = 0;
856
6ae11b27 857 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
858 next_nid = start_nid;
859
860 do {
685f3457
LS
861 /*
862 * If we're returning unused surplus pages, only examine
863 * nodes with surplus pages.
864 */
865 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
866 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
867 struct page *page =
868 list_entry(h->hugepage_freelists[next_nid].next,
869 struct page, lru);
870 list_del(&page->lru);
871 h->free_huge_pages--;
872 h->free_huge_pages_node[next_nid]--;
685f3457
LS
873 if (acct_surplus) {
874 h->surplus_huge_pages--;
875 h->surplus_huge_pages_node[next_nid]--;
876 }
e8c5c824
LS
877 update_and_free_page(h, page);
878 ret = 1;
9a76db09 879 break;
e8c5c824 880 }
6ae11b27 881 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 882 } while (next_nid != start_nid);
e8c5c824
LS
883
884 return ret;
885}
886
bf50bab2 887static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
888{
889 struct page *page;
bf50bab2 890 unsigned int r_nid;
7893d1d5 891
aa888a74
AK
892 if (h->order >= MAX_ORDER)
893 return NULL;
894
d1c3fb1f
NA
895 /*
896 * Assume we will successfully allocate the surplus page to
897 * prevent racing processes from causing the surplus to exceed
898 * overcommit
899 *
900 * This however introduces a different race, where a process B
901 * tries to grow the static hugepage pool while alloc_pages() is
902 * called by process A. B will only examine the per-node
903 * counters in determining if surplus huge pages can be
904 * converted to normal huge pages in adjust_pool_surplus(). A
905 * won't be able to increment the per-node counter, until the
906 * lock is dropped by B, but B doesn't drop hugetlb_lock until
907 * no more huge pages can be converted from surplus to normal
908 * state (and doesn't try to convert again). Thus, we have a
909 * case where a surplus huge page exists, the pool is grown, and
910 * the surplus huge page still exists after, even though it
911 * should just have been converted to a normal huge page. This
912 * does not leak memory, though, as the hugepage will be freed
913 * once it is out of use. It also does not allow the counters to
914 * go out of whack in adjust_pool_surplus() as we don't modify
915 * the node values until we've gotten the hugepage and only the
916 * per-node value is checked there.
917 */
918 spin_lock(&hugetlb_lock);
a5516438 919 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
920 spin_unlock(&hugetlb_lock);
921 return NULL;
922 } else {
a5516438
AK
923 h->nr_huge_pages++;
924 h->surplus_huge_pages++;
d1c3fb1f
NA
925 }
926 spin_unlock(&hugetlb_lock);
927
bf50bab2
NH
928 if (nid == NUMA_NO_NODE)
929 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
930 __GFP_REPEAT|__GFP_NOWARN,
931 huge_page_order(h));
932 else
933 page = alloc_pages_exact_node(nid,
934 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
935 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 936
caff3a2c
GS
937 if (page && arch_prepare_hugepage(page)) {
938 __free_pages(page, huge_page_order(h));
ea5768c7 939 page = NULL;
caff3a2c
GS
940 }
941
d1c3fb1f 942 spin_lock(&hugetlb_lock);
7893d1d5 943 if (page) {
0edaecfa 944 INIT_LIST_HEAD(&page->lru);
bf50bab2 945 r_nid = page_to_nid(page);
7893d1d5 946 set_compound_page_dtor(page, free_huge_page);
9dd540e2 947 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
948 /*
949 * We incremented the global counters already
950 */
bf50bab2
NH
951 h->nr_huge_pages_node[r_nid]++;
952 h->surplus_huge_pages_node[r_nid]++;
3b116300 953 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 954 } else {
a5516438
AK
955 h->nr_huge_pages--;
956 h->surplus_huge_pages--;
3b116300 957 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 958 }
d1c3fb1f 959 spin_unlock(&hugetlb_lock);
7893d1d5
AL
960
961 return page;
962}
963
bf50bab2
NH
964/*
965 * This allocation function is useful in the context where vma is irrelevant.
966 * E.g. soft-offlining uses this function because it only cares physical
967 * address of error page.
968 */
969struct page *alloc_huge_page_node(struct hstate *h, int nid)
970{
971 struct page *page;
972
973 spin_lock(&hugetlb_lock);
974 page = dequeue_huge_page_node(h, nid);
975 spin_unlock(&hugetlb_lock);
976
94ae8ba7 977 if (!page)
bf50bab2
NH
978 page = alloc_buddy_huge_page(h, nid);
979
980 return page;
981}
982
e4e574b7 983/*
25985edc 984 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
985 * of size 'delta'.
986 */
a5516438 987static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
988{
989 struct list_head surplus_list;
990 struct page *page, *tmp;
991 int ret, i;
992 int needed, allocated;
28073b02 993 bool alloc_ok = true;
e4e574b7 994
a5516438 995 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 996 if (needed <= 0) {
a5516438 997 h->resv_huge_pages += delta;
e4e574b7 998 return 0;
ac09b3a1 999 }
e4e574b7
AL
1000
1001 allocated = 0;
1002 INIT_LIST_HEAD(&surplus_list);
1003
1004 ret = -ENOMEM;
1005retry:
1006 spin_unlock(&hugetlb_lock);
1007 for (i = 0; i < needed; i++) {
bf50bab2 1008 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1009 if (!page) {
1010 alloc_ok = false;
1011 break;
1012 }
e4e574b7
AL
1013 list_add(&page->lru, &surplus_list);
1014 }
28073b02 1015 allocated += i;
e4e574b7
AL
1016
1017 /*
1018 * After retaking hugetlb_lock, we need to recalculate 'needed'
1019 * because either resv_huge_pages or free_huge_pages may have changed.
1020 */
1021 spin_lock(&hugetlb_lock);
a5516438
AK
1022 needed = (h->resv_huge_pages + delta) -
1023 (h->free_huge_pages + allocated);
28073b02
HD
1024 if (needed > 0) {
1025 if (alloc_ok)
1026 goto retry;
1027 /*
1028 * We were not able to allocate enough pages to
1029 * satisfy the entire reservation so we free what
1030 * we've allocated so far.
1031 */
1032 goto free;
1033 }
e4e574b7
AL
1034 /*
1035 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1036 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1037 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1038 * allocator. Commit the entire reservation here to prevent another
1039 * process from stealing the pages as they are added to the pool but
1040 * before they are reserved.
e4e574b7
AL
1041 */
1042 needed += allocated;
a5516438 1043 h->resv_huge_pages += delta;
e4e574b7 1044 ret = 0;
a9869b83 1045
19fc3f0a 1046 /* Free the needed pages to the hugetlb pool */
e4e574b7 1047 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1048 if ((--needed) < 0)
1049 break;
a9869b83
NH
1050 /*
1051 * This page is now managed by the hugetlb allocator and has
1052 * no users -- drop the buddy allocator's reference.
1053 */
1054 put_page_testzero(page);
1055 VM_BUG_ON(page_count(page));
a5516438 1056 enqueue_huge_page(h, page);
19fc3f0a 1057 }
28073b02 1058free:
b0365c8d 1059 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1060
1061 /* Free unnecessary surplus pages to the buddy allocator */
1062 if (!list_empty(&surplus_list)) {
19fc3f0a 1063 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1064 put_page(page);
af767cbd 1065 }
e4e574b7 1066 }
a9869b83 1067 spin_lock(&hugetlb_lock);
e4e574b7
AL
1068
1069 return ret;
1070}
1071
1072/*
1073 * When releasing a hugetlb pool reservation, any surplus pages that were
1074 * allocated to satisfy the reservation must be explicitly freed if they were
1075 * never used.
685f3457 1076 * Called with hugetlb_lock held.
e4e574b7 1077 */
a5516438
AK
1078static void return_unused_surplus_pages(struct hstate *h,
1079 unsigned long unused_resv_pages)
e4e574b7 1080{
e4e574b7
AL
1081 unsigned long nr_pages;
1082
ac09b3a1 1083 /* Uncommit the reservation */
a5516438 1084 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1085
aa888a74
AK
1086 /* Cannot return gigantic pages currently */
1087 if (h->order >= MAX_ORDER)
1088 return;
1089
a5516438 1090 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1091
685f3457
LS
1092 /*
1093 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1094 * evenly across all nodes with memory. Iterate across these nodes
1095 * until we can no longer free unreserved surplus pages. This occurs
1096 * when the nodes with surplus pages have no free pages.
1097 * free_pool_huge_page() will balance the the freed pages across the
1098 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1099 */
1100 while (nr_pages--) {
8cebfcd0 1101 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1102 break;
b934932a 1103 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1104 }
1105}
1106
c37f9fb1
AW
1107/*
1108 * Determine if the huge page at addr within the vma has an associated
1109 * reservation. Where it does not we will need to logically increase
90481622
DG
1110 * reservation and actually increase subpool usage before an allocation
1111 * can occur. Where any new reservation would be required the
1112 * reservation change is prepared, but not committed. Once the page
1113 * has been allocated from the subpool and instantiated the change should
1114 * be committed via vma_commit_reservation. No action is required on
1115 * failure.
c37f9fb1 1116 */
e2f17d94 1117static long vma_needs_reservation(struct hstate *h,
a5516438 1118 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1119{
1120 struct address_space *mapping = vma->vm_file->f_mapping;
1121 struct inode *inode = mapping->host;
1122
f83a275d 1123 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1124 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1125 return region_chg(&inode->i_mapping->private_list,
1126 idx, idx + 1);
1127
84afd99b
AW
1128 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1129 return 1;
c37f9fb1 1130
84afd99b 1131 } else {
e2f17d94 1132 long err;
a5516438 1133 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1134 struct resv_map *reservations = vma_resv_map(vma);
1135
1136 err = region_chg(&reservations->regions, idx, idx + 1);
1137 if (err < 0)
1138 return err;
1139 return 0;
1140 }
c37f9fb1 1141}
a5516438
AK
1142static void vma_commit_reservation(struct hstate *h,
1143 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1144{
1145 struct address_space *mapping = vma->vm_file->f_mapping;
1146 struct inode *inode = mapping->host;
1147
f83a275d 1148 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1149 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1150 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1151
1152 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1153 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1154 struct resv_map *reservations = vma_resv_map(vma);
1155
1156 /* Mark this page used in the map. */
1157 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1158 }
1159}
1160
a1e78772 1161static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1162 unsigned long addr, int avoid_reserve)
1da177e4 1163{
90481622 1164 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1165 struct hstate *h = hstate_vma(vma);
348ea204 1166 struct page *page;
e2f17d94 1167 long chg;
6d76dcf4
AK
1168 int ret, idx;
1169 struct hugetlb_cgroup *h_cg;
a1e78772 1170
6d76dcf4 1171 idx = hstate_index(h);
a1e78772 1172 /*
90481622
DG
1173 * Processes that did not create the mapping will have no
1174 * reserves and will not have accounted against subpool
1175 * limit. Check that the subpool limit can be made before
1176 * satisfying the allocation MAP_NORESERVE mappings may also
1177 * need pages and subpool limit allocated allocated if no reserve
1178 * mapping overlaps.
a1e78772 1179 */
a5516438 1180 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1181 if (chg < 0)
76dcee75 1182 return ERR_PTR(-ENOMEM);
c37f9fb1 1183 if (chg)
90481622 1184 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1185 return ERR_PTR(-ENOSPC);
1da177e4 1186
6d76dcf4
AK
1187 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1188 if (ret) {
1189 hugepage_subpool_put_pages(spool, chg);
1190 return ERR_PTR(-ENOSPC);
1191 }
1da177e4 1192 spin_lock(&hugetlb_lock);
a5516438 1193 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
94ae8ba7
AK
1194 if (page) {
1195 /* update page cgroup details */
1196 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1197 h_cg, page);
1198 spin_unlock(&hugetlb_lock);
1199 } else {
1200 spin_unlock(&hugetlb_lock);
bf50bab2 1201 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1202 if (!page) {
6d76dcf4
AK
1203 hugetlb_cgroup_uncharge_cgroup(idx,
1204 pages_per_huge_page(h),
1205 h_cg);
90481622 1206 hugepage_subpool_put_pages(spool, chg);
76dcee75 1207 return ERR_PTR(-ENOSPC);
68842c9b 1208 }
79dbb236 1209 spin_lock(&hugetlb_lock);
94ae8ba7
AK
1210 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1211 h_cg, page);
79dbb236
AK
1212 list_move(&page->lru, &h->hugepage_activelist);
1213 spin_unlock(&hugetlb_lock);
68842c9b 1214 }
348ea204 1215
90481622 1216 set_page_private(page, (unsigned long)spool);
90d8b7e6 1217
a5516438 1218 vma_commit_reservation(h, vma, addr);
90d8b7e6 1219 return page;
b45b5bd6
DG
1220}
1221
91f47662 1222int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1223{
1224 struct huge_bootmem_page *m;
8cebfcd0 1225 int nr_nodes = nodes_weight(node_states[N_MEMORY]);
aa888a74
AK
1226
1227 while (nr_nodes) {
1228 void *addr;
1229
1230 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1231 NODE_DATA(hstate_next_node_to_alloc(h,
8cebfcd0 1232 &node_states[N_MEMORY])),
aa888a74
AK
1233 huge_page_size(h), huge_page_size(h), 0);
1234
1235 if (addr) {
1236 /*
1237 * Use the beginning of the huge page to store the
1238 * huge_bootmem_page struct (until gather_bootmem
1239 * puts them into the mem_map).
1240 */
1241 m = addr;
91f47662 1242 goto found;
aa888a74 1243 }
aa888a74
AK
1244 nr_nodes--;
1245 }
1246 return 0;
1247
1248found:
1249 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1250 /* Put them into a private list first because mem_map is not up yet */
1251 list_add(&m->list, &huge_boot_pages);
1252 m->hstate = h;
1253 return 1;
1254}
1255
18229df5
AW
1256static void prep_compound_huge_page(struct page *page, int order)
1257{
1258 if (unlikely(order > (MAX_ORDER - 1)))
1259 prep_compound_gigantic_page(page, order);
1260 else
1261 prep_compound_page(page, order);
1262}
1263
aa888a74
AK
1264/* Put bootmem huge pages into the standard lists after mem_map is up */
1265static void __init gather_bootmem_prealloc(void)
1266{
1267 struct huge_bootmem_page *m;
1268
1269 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1270 struct hstate *h = m->hstate;
ee8f248d
BB
1271 struct page *page;
1272
1273#ifdef CONFIG_HIGHMEM
1274 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1275 free_bootmem_late((unsigned long)m,
1276 sizeof(struct huge_bootmem_page));
1277#else
1278 page = virt_to_page(m);
1279#endif
aa888a74
AK
1280 __ClearPageReserved(page);
1281 WARN_ON(page_count(page) != 1);
18229df5 1282 prep_compound_huge_page(page, h->order);
aa888a74 1283 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1284 /*
1285 * If we had gigantic hugepages allocated at boot time, we need
1286 * to restore the 'stolen' pages to totalram_pages in order to
1287 * fix confusing memory reports from free(1) and another
1288 * side-effects, like CommitLimit going negative.
1289 */
1290 if (h->order > (MAX_ORDER - 1))
1291 totalram_pages += 1 << h->order;
aa888a74
AK
1292 }
1293}
1294
8faa8b07 1295static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1296{
1297 unsigned long i;
a5516438 1298
e5ff2159 1299 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1300 if (h->order >= MAX_ORDER) {
1301 if (!alloc_bootmem_huge_page(h))
1302 break;
9b5e5d0f 1303 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1304 &node_states[N_MEMORY]))
1da177e4 1305 break;
1da177e4 1306 }
8faa8b07 1307 h->max_huge_pages = i;
e5ff2159
AK
1308}
1309
1310static void __init hugetlb_init_hstates(void)
1311{
1312 struct hstate *h;
1313
1314 for_each_hstate(h) {
8faa8b07
AK
1315 /* oversize hugepages were init'ed in early boot */
1316 if (h->order < MAX_ORDER)
1317 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1318 }
1319}
1320
4abd32db
AK
1321static char * __init memfmt(char *buf, unsigned long n)
1322{
1323 if (n >= (1UL << 30))
1324 sprintf(buf, "%lu GB", n >> 30);
1325 else if (n >= (1UL << 20))
1326 sprintf(buf, "%lu MB", n >> 20);
1327 else
1328 sprintf(buf, "%lu KB", n >> 10);
1329 return buf;
1330}
1331
e5ff2159
AK
1332static void __init report_hugepages(void)
1333{
1334 struct hstate *h;
1335
1336 for_each_hstate(h) {
4abd32db 1337 char buf[32];
ffb22af5 1338 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1339 memfmt(buf, huge_page_size(h)),
1340 h->free_huge_pages);
e5ff2159
AK
1341 }
1342}
1343
1da177e4 1344#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1345static void try_to_free_low(struct hstate *h, unsigned long count,
1346 nodemask_t *nodes_allowed)
1da177e4 1347{
4415cc8d
CL
1348 int i;
1349
aa888a74
AK
1350 if (h->order >= MAX_ORDER)
1351 return;
1352
6ae11b27 1353 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1354 struct page *page, *next;
a5516438
AK
1355 struct list_head *freel = &h->hugepage_freelists[i];
1356 list_for_each_entry_safe(page, next, freel, lru) {
1357 if (count >= h->nr_huge_pages)
6b0c880d 1358 return;
1da177e4
LT
1359 if (PageHighMem(page))
1360 continue;
1361 list_del(&page->lru);
e5ff2159 1362 update_and_free_page(h, page);
a5516438
AK
1363 h->free_huge_pages--;
1364 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1365 }
1366 }
1367}
1368#else
6ae11b27
LS
1369static inline void try_to_free_low(struct hstate *h, unsigned long count,
1370 nodemask_t *nodes_allowed)
1da177e4
LT
1371{
1372}
1373#endif
1374
20a0307c
WF
1375/*
1376 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1377 * balanced by operating on them in a round-robin fashion.
1378 * Returns 1 if an adjustment was made.
1379 */
6ae11b27
LS
1380static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1381 int delta)
20a0307c 1382{
e8c5c824 1383 int start_nid, next_nid;
20a0307c
WF
1384 int ret = 0;
1385
1386 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1387
e8c5c824 1388 if (delta < 0)
6ae11b27 1389 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1390 else
6ae11b27 1391 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1392 next_nid = start_nid;
1393
1394 do {
1395 int nid = next_nid;
1396 if (delta < 0) {
e8c5c824
LS
1397 /*
1398 * To shrink on this node, there must be a surplus page
1399 */
9a76db09 1400 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1401 next_nid = hstate_next_node_to_alloc(h,
1402 nodes_allowed);
e8c5c824 1403 continue;
9a76db09 1404 }
e8c5c824
LS
1405 }
1406 if (delta > 0) {
e8c5c824
LS
1407 /*
1408 * Surplus cannot exceed the total number of pages
1409 */
1410 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1411 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1412 next_nid = hstate_next_node_to_free(h,
1413 nodes_allowed);
e8c5c824 1414 continue;
9a76db09 1415 }
e8c5c824 1416 }
20a0307c
WF
1417
1418 h->surplus_huge_pages += delta;
1419 h->surplus_huge_pages_node[nid] += delta;
1420 ret = 1;
1421 break;
e8c5c824 1422 } while (next_nid != start_nid);
20a0307c 1423
20a0307c
WF
1424 return ret;
1425}
1426
a5516438 1427#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1428static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1429 nodemask_t *nodes_allowed)
1da177e4 1430{
7893d1d5 1431 unsigned long min_count, ret;
1da177e4 1432
aa888a74
AK
1433 if (h->order >= MAX_ORDER)
1434 return h->max_huge_pages;
1435
7893d1d5
AL
1436 /*
1437 * Increase the pool size
1438 * First take pages out of surplus state. Then make up the
1439 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1440 *
1441 * We might race with alloc_buddy_huge_page() here and be unable
1442 * to convert a surplus huge page to a normal huge page. That is
1443 * not critical, though, it just means the overall size of the
1444 * pool might be one hugepage larger than it needs to be, but
1445 * within all the constraints specified by the sysctls.
7893d1d5 1446 */
1da177e4 1447 spin_lock(&hugetlb_lock);
a5516438 1448 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1449 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1450 break;
1451 }
1452
a5516438 1453 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1454 /*
1455 * If this allocation races such that we no longer need the
1456 * page, free_huge_page will handle it by freeing the page
1457 * and reducing the surplus.
1458 */
1459 spin_unlock(&hugetlb_lock);
6ae11b27 1460 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1461 spin_lock(&hugetlb_lock);
1462 if (!ret)
1463 goto out;
1464
536240f2
MG
1465 /* Bail for signals. Probably ctrl-c from user */
1466 if (signal_pending(current))
1467 goto out;
7893d1d5 1468 }
7893d1d5
AL
1469
1470 /*
1471 * Decrease the pool size
1472 * First return free pages to the buddy allocator (being careful
1473 * to keep enough around to satisfy reservations). Then place
1474 * pages into surplus state as needed so the pool will shrink
1475 * to the desired size as pages become free.
d1c3fb1f
NA
1476 *
1477 * By placing pages into the surplus state independent of the
1478 * overcommit value, we are allowing the surplus pool size to
1479 * exceed overcommit. There are few sane options here. Since
1480 * alloc_buddy_huge_page() is checking the global counter,
1481 * though, we'll note that we're not allowed to exceed surplus
1482 * and won't grow the pool anywhere else. Not until one of the
1483 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1484 */
a5516438 1485 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1486 min_count = max(count, min_count);
6ae11b27 1487 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1488 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1489 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1490 break;
733ad2dc 1491 cond_resched_lock(&hugetlb_lock);
1da177e4 1492 }
a5516438 1493 while (count < persistent_huge_pages(h)) {
6ae11b27 1494 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1495 break;
1496 }
1497out:
a5516438 1498 ret = persistent_huge_pages(h);
1da177e4 1499 spin_unlock(&hugetlb_lock);
7893d1d5 1500 return ret;
1da177e4
LT
1501}
1502
a3437870
NA
1503#define HSTATE_ATTR_RO(_name) \
1504 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1505
1506#define HSTATE_ATTR(_name) \
1507 static struct kobj_attribute _name##_attr = \
1508 __ATTR(_name, 0644, _name##_show, _name##_store)
1509
1510static struct kobject *hugepages_kobj;
1511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1512
9a305230
LS
1513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1514
1515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1516{
1517 int i;
9a305230 1518
a3437870 1519 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1520 if (hstate_kobjs[i] == kobj) {
1521 if (nidp)
1522 *nidp = NUMA_NO_NODE;
a3437870 1523 return &hstates[i];
9a305230
LS
1524 }
1525
1526 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1527}
1528
06808b08 1529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1530 struct kobj_attribute *attr, char *buf)
1531{
9a305230
LS
1532 struct hstate *h;
1533 unsigned long nr_huge_pages;
1534 int nid;
1535
1536 h = kobj_to_hstate(kobj, &nid);
1537 if (nid == NUMA_NO_NODE)
1538 nr_huge_pages = h->nr_huge_pages;
1539 else
1540 nr_huge_pages = h->nr_huge_pages_node[nid];
1541
1542 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1543}
adbe8726 1544
06808b08
LS
1545static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1546 struct kobject *kobj, struct kobj_attribute *attr,
1547 const char *buf, size_t len)
a3437870
NA
1548{
1549 int err;
9a305230 1550 int nid;
06808b08 1551 unsigned long count;
9a305230 1552 struct hstate *h;
bad44b5b 1553 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1554
06808b08 1555 err = strict_strtoul(buf, 10, &count);
73ae31e5 1556 if (err)
adbe8726 1557 goto out;
a3437870 1558
9a305230 1559 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1560 if (h->order >= MAX_ORDER) {
1561 err = -EINVAL;
1562 goto out;
1563 }
1564
9a305230
LS
1565 if (nid == NUMA_NO_NODE) {
1566 /*
1567 * global hstate attribute
1568 */
1569 if (!(obey_mempolicy &&
1570 init_nodemask_of_mempolicy(nodes_allowed))) {
1571 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1572 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1573 }
1574 } else if (nodes_allowed) {
1575 /*
1576 * per node hstate attribute: adjust count to global,
1577 * but restrict alloc/free to the specified node.
1578 */
1579 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1580 init_nodemask_of_node(nodes_allowed, nid);
1581 } else
8cebfcd0 1582 nodes_allowed = &node_states[N_MEMORY];
9a305230 1583
06808b08 1584 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1585
8cebfcd0 1586 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1587 NODEMASK_FREE(nodes_allowed);
1588
1589 return len;
adbe8726
EM
1590out:
1591 NODEMASK_FREE(nodes_allowed);
1592 return err;
06808b08
LS
1593}
1594
1595static ssize_t nr_hugepages_show(struct kobject *kobj,
1596 struct kobj_attribute *attr, char *buf)
1597{
1598 return nr_hugepages_show_common(kobj, attr, buf);
1599}
1600
1601static ssize_t nr_hugepages_store(struct kobject *kobj,
1602 struct kobj_attribute *attr, const char *buf, size_t len)
1603{
1604 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1605}
1606HSTATE_ATTR(nr_hugepages);
1607
06808b08
LS
1608#ifdef CONFIG_NUMA
1609
1610/*
1611 * hstate attribute for optionally mempolicy-based constraint on persistent
1612 * huge page alloc/free.
1613 */
1614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1615 struct kobj_attribute *attr, char *buf)
1616{
1617 return nr_hugepages_show_common(kobj, attr, buf);
1618}
1619
1620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1621 struct kobj_attribute *attr, const char *buf, size_t len)
1622{
1623 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1624}
1625HSTATE_ATTR(nr_hugepages_mempolicy);
1626#endif
1627
1628
a3437870
NA
1629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1630 struct kobj_attribute *attr, char *buf)
1631{
9a305230 1632 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1633 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1634}
adbe8726 1635
a3437870
NA
1636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1637 struct kobj_attribute *attr, const char *buf, size_t count)
1638{
1639 int err;
1640 unsigned long input;
9a305230 1641 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1642
adbe8726
EM
1643 if (h->order >= MAX_ORDER)
1644 return -EINVAL;
1645
a3437870
NA
1646 err = strict_strtoul(buf, 10, &input);
1647 if (err)
73ae31e5 1648 return err;
a3437870
NA
1649
1650 spin_lock(&hugetlb_lock);
1651 h->nr_overcommit_huge_pages = input;
1652 spin_unlock(&hugetlb_lock);
1653
1654 return count;
1655}
1656HSTATE_ATTR(nr_overcommit_hugepages);
1657
1658static ssize_t free_hugepages_show(struct kobject *kobj,
1659 struct kobj_attribute *attr, char *buf)
1660{
9a305230
LS
1661 struct hstate *h;
1662 unsigned long free_huge_pages;
1663 int nid;
1664
1665 h = kobj_to_hstate(kobj, &nid);
1666 if (nid == NUMA_NO_NODE)
1667 free_huge_pages = h->free_huge_pages;
1668 else
1669 free_huge_pages = h->free_huge_pages_node[nid];
1670
1671 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1672}
1673HSTATE_ATTR_RO(free_hugepages);
1674
1675static ssize_t resv_hugepages_show(struct kobject *kobj,
1676 struct kobj_attribute *attr, char *buf)
1677{
9a305230 1678 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1679 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1680}
1681HSTATE_ATTR_RO(resv_hugepages);
1682
1683static ssize_t surplus_hugepages_show(struct kobject *kobj,
1684 struct kobj_attribute *attr, char *buf)
1685{
9a305230
LS
1686 struct hstate *h;
1687 unsigned long surplus_huge_pages;
1688 int nid;
1689
1690 h = kobj_to_hstate(kobj, &nid);
1691 if (nid == NUMA_NO_NODE)
1692 surplus_huge_pages = h->surplus_huge_pages;
1693 else
1694 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1695
1696 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1697}
1698HSTATE_ATTR_RO(surplus_hugepages);
1699
1700static struct attribute *hstate_attrs[] = {
1701 &nr_hugepages_attr.attr,
1702 &nr_overcommit_hugepages_attr.attr,
1703 &free_hugepages_attr.attr,
1704 &resv_hugepages_attr.attr,
1705 &surplus_hugepages_attr.attr,
06808b08
LS
1706#ifdef CONFIG_NUMA
1707 &nr_hugepages_mempolicy_attr.attr,
1708#endif
a3437870
NA
1709 NULL,
1710};
1711
1712static struct attribute_group hstate_attr_group = {
1713 .attrs = hstate_attrs,
1714};
1715
094e9539
JM
1716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1717 struct kobject **hstate_kobjs,
1718 struct attribute_group *hstate_attr_group)
a3437870
NA
1719{
1720 int retval;
972dc4de 1721 int hi = hstate_index(h);
a3437870 1722
9a305230
LS
1723 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1724 if (!hstate_kobjs[hi])
a3437870
NA
1725 return -ENOMEM;
1726
9a305230 1727 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1728 if (retval)
9a305230 1729 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1730
1731 return retval;
1732}
1733
1734static void __init hugetlb_sysfs_init(void)
1735{
1736 struct hstate *h;
1737 int err;
1738
1739 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1740 if (!hugepages_kobj)
1741 return;
1742
1743 for_each_hstate(h) {
9a305230
LS
1744 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1745 hstate_kobjs, &hstate_attr_group);
a3437870 1746 if (err)
ffb22af5 1747 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1748 }
1749}
1750
9a305230
LS
1751#ifdef CONFIG_NUMA
1752
1753/*
1754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1755 * with node devices in node_devices[] using a parallel array. The array
1756 * index of a node device or _hstate == node id.
1757 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1758 * the base kernel, on the hugetlb module.
1759 */
1760struct node_hstate {
1761 struct kobject *hugepages_kobj;
1762 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1763};
1764struct node_hstate node_hstates[MAX_NUMNODES];
1765
1766/*
10fbcf4c 1767 * A subset of global hstate attributes for node devices
9a305230
LS
1768 */
1769static struct attribute *per_node_hstate_attrs[] = {
1770 &nr_hugepages_attr.attr,
1771 &free_hugepages_attr.attr,
1772 &surplus_hugepages_attr.attr,
1773 NULL,
1774};
1775
1776static struct attribute_group per_node_hstate_attr_group = {
1777 .attrs = per_node_hstate_attrs,
1778};
1779
1780/*
10fbcf4c 1781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1782 * Returns node id via non-NULL nidp.
1783 */
1784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1785{
1786 int nid;
1787
1788 for (nid = 0; nid < nr_node_ids; nid++) {
1789 struct node_hstate *nhs = &node_hstates[nid];
1790 int i;
1791 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1792 if (nhs->hstate_kobjs[i] == kobj) {
1793 if (nidp)
1794 *nidp = nid;
1795 return &hstates[i];
1796 }
1797 }
1798
1799 BUG();
1800 return NULL;
1801}
1802
1803/*
10fbcf4c 1804 * Unregister hstate attributes from a single node device.
9a305230
LS
1805 * No-op if no hstate attributes attached.
1806 */
3cd8b44f 1807static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1808{
1809 struct hstate *h;
10fbcf4c 1810 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1811
1812 if (!nhs->hugepages_kobj)
9b5e5d0f 1813 return; /* no hstate attributes */
9a305230 1814
972dc4de
AK
1815 for_each_hstate(h) {
1816 int idx = hstate_index(h);
1817 if (nhs->hstate_kobjs[idx]) {
1818 kobject_put(nhs->hstate_kobjs[idx]);
1819 nhs->hstate_kobjs[idx] = NULL;
9a305230 1820 }
972dc4de 1821 }
9a305230
LS
1822
1823 kobject_put(nhs->hugepages_kobj);
1824 nhs->hugepages_kobj = NULL;
1825}
1826
1827/*
10fbcf4c 1828 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1829 * that have them.
1830 */
1831static void hugetlb_unregister_all_nodes(void)
1832{
1833 int nid;
1834
1835 /*
10fbcf4c 1836 * disable node device registrations.
9a305230
LS
1837 */
1838 register_hugetlbfs_with_node(NULL, NULL);
1839
1840 /*
1841 * remove hstate attributes from any nodes that have them.
1842 */
1843 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1844 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1845}
1846
1847/*
10fbcf4c 1848 * Register hstate attributes for a single node device.
9a305230
LS
1849 * No-op if attributes already registered.
1850 */
3cd8b44f 1851static void hugetlb_register_node(struct node *node)
9a305230
LS
1852{
1853 struct hstate *h;
10fbcf4c 1854 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1855 int err;
1856
1857 if (nhs->hugepages_kobj)
1858 return; /* already allocated */
1859
1860 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1861 &node->dev.kobj);
9a305230
LS
1862 if (!nhs->hugepages_kobj)
1863 return;
1864
1865 for_each_hstate(h) {
1866 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1867 nhs->hstate_kobjs,
1868 &per_node_hstate_attr_group);
1869 if (err) {
ffb22af5
AM
1870 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1871 h->name, node->dev.id);
9a305230
LS
1872 hugetlb_unregister_node(node);
1873 break;
1874 }
1875 }
1876}
1877
1878/*
9b5e5d0f 1879 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1880 * devices of nodes that have memory. All on-line nodes should have
1881 * registered their associated device by this time.
9a305230
LS
1882 */
1883static void hugetlb_register_all_nodes(void)
1884{
1885 int nid;
1886
8cebfcd0 1887 for_each_node_state(nid, N_MEMORY) {
8732794b 1888 struct node *node = node_devices[nid];
10fbcf4c 1889 if (node->dev.id == nid)
9a305230
LS
1890 hugetlb_register_node(node);
1891 }
1892
1893 /*
10fbcf4c 1894 * Let the node device driver know we're here so it can
9a305230
LS
1895 * [un]register hstate attributes on node hotplug.
1896 */
1897 register_hugetlbfs_with_node(hugetlb_register_node,
1898 hugetlb_unregister_node);
1899}
1900#else /* !CONFIG_NUMA */
1901
1902static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1903{
1904 BUG();
1905 if (nidp)
1906 *nidp = -1;
1907 return NULL;
1908}
1909
1910static void hugetlb_unregister_all_nodes(void) { }
1911
1912static void hugetlb_register_all_nodes(void) { }
1913
1914#endif
1915
a3437870
NA
1916static void __exit hugetlb_exit(void)
1917{
1918 struct hstate *h;
1919
9a305230
LS
1920 hugetlb_unregister_all_nodes();
1921
a3437870 1922 for_each_hstate(h) {
972dc4de 1923 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1924 }
1925
1926 kobject_put(hugepages_kobj);
1927}
1928module_exit(hugetlb_exit);
1929
1930static int __init hugetlb_init(void)
1931{
0ef89d25
BH
1932 /* Some platform decide whether they support huge pages at boot
1933 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1934 * there is no such support
1935 */
1936 if (HPAGE_SHIFT == 0)
1937 return 0;
a3437870 1938
e11bfbfc
NP
1939 if (!size_to_hstate(default_hstate_size)) {
1940 default_hstate_size = HPAGE_SIZE;
1941 if (!size_to_hstate(default_hstate_size))
1942 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1943 }
972dc4de 1944 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1945 if (default_hstate_max_huge_pages)
1946 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1947
1948 hugetlb_init_hstates();
aa888a74 1949 gather_bootmem_prealloc();
a3437870
NA
1950 report_hugepages();
1951
1952 hugetlb_sysfs_init();
9a305230 1953 hugetlb_register_all_nodes();
7179e7bf 1954 hugetlb_cgroup_file_init();
9a305230 1955
a3437870
NA
1956 return 0;
1957}
1958module_init(hugetlb_init);
1959
1960/* Should be called on processing a hugepagesz=... option */
1961void __init hugetlb_add_hstate(unsigned order)
1962{
1963 struct hstate *h;
8faa8b07
AK
1964 unsigned long i;
1965
a3437870 1966 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1967 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1968 return;
1969 }
47d38344 1970 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1971 BUG_ON(order == 0);
47d38344 1972 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1973 h->order = order;
1974 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1975 h->nr_huge_pages = 0;
1976 h->free_huge_pages = 0;
1977 for (i = 0; i < MAX_NUMNODES; ++i)
1978 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1979 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1980 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1981 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1982 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1983 huge_page_size(h)/1024);
8faa8b07 1984
a3437870
NA
1985 parsed_hstate = h;
1986}
1987
e11bfbfc 1988static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1989{
1990 unsigned long *mhp;
8faa8b07 1991 static unsigned long *last_mhp;
a3437870
NA
1992
1993 /*
47d38344 1994 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1995 * so this hugepages= parameter goes to the "default hstate".
1996 */
47d38344 1997 if (!hugetlb_max_hstate)
a3437870
NA
1998 mhp = &default_hstate_max_huge_pages;
1999 else
2000 mhp = &parsed_hstate->max_huge_pages;
2001
8faa8b07 2002 if (mhp == last_mhp) {
ffb22af5
AM
2003 pr_warning("hugepages= specified twice without "
2004 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2005 return 1;
2006 }
2007
a3437870
NA
2008 if (sscanf(s, "%lu", mhp) <= 0)
2009 *mhp = 0;
2010
8faa8b07
AK
2011 /*
2012 * Global state is always initialized later in hugetlb_init.
2013 * But we need to allocate >= MAX_ORDER hstates here early to still
2014 * use the bootmem allocator.
2015 */
47d38344 2016 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2017 hugetlb_hstate_alloc_pages(parsed_hstate);
2018
2019 last_mhp = mhp;
2020
a3437870
NA
2021 return 1;
2022}
e11bfbfc
NP
2023__setup("hugepages=", hugetlb_nrpages_setup);
2024
2025static int __init hugetlb_default_setup(char *s)
2026{
2027 default_hstate_size = memparse(s, &s);
2028 return 1;
2029}
2030__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2031
8a213460
NA
2032static unsigned int cpuset_mems_nr(unsigned int *array)
2033{
2034 int node;
2035 unsigned int nr = 0;
2036
2037 for_each_node_mask(node, cpuset_current_mems_allowed)
2038 nr += array[node];
2039
2040 return nr;
2041}
2042
2043#ifdef CONFIG_SYSCTL
06808b08
LS
2044static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2045 struct ctl_table *table, int write,
2046 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2047{
e5ff2159
AK
2048 struct hstate *h = &default_hstate;
2049 unsigned long tmp;
08d4a246 2050 int ret;
e5ff2159 2051
c033a93c 2052 tmp = h->max_huge_pages;
e5ff2159 2053
adbe8726
EM
2054 if (write && h->order >= MAX_ORDER)
2055 return -EINVAL;
2056
e5ff2159
AK
2057 table->data = &tmp;
2058 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2059 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2060 if (ret)
2061 goto out;
e5ff2159 2062
06808b08 2063 if (write) {
bad44b5b
DR
2064 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2065 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2066 if (!(obey_mempolicy &&
2067 init_nodemask_of_mempolicy(nodes_allowed))) {
2068 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2069 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2070 }
2071 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2072
8cebfcd0 2073 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2074 NODEMASK_FREE(nodes_allowed);
2075 }
08d4a246
MH
2076out:
2077 return ret;
1da177e4 2078}
396faf03 2079
06808b08
LS
2080int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2081 void __user *buffer, size_t *length, loff_t *ppos)
2082{
2083
2084 return hugetlb_sysctl_handler_common(false, table, write,
2085 buffer, length, ppos);
2086}
2087
2088#ifdef CONFIG_NUMA
2089int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2090 void __user *buffer, size_t *length, loff_t *ppos)
2091{
2092 return hugetlb_sysctl_handler_common(true, table, write,
2093 buffer, length, ppos);
2094}
2095#endif /* CONFIG_NUMA */
2096
396faf03 2097int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2098 void __user *buffer,
396faf03
MG
2099 size_t *length, loff_t *ppos)
2100{
8d65af78 2101 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2102 if (hugepages_treat_as_movable)
2103 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2104 else
2105 htlb_alloc_mask = GFP_HIGHUSER;
2106 return 0;
2107}
2108
a3d0c6aa 2109int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2110 void __user *buffer,
a3d0c6aa
NA
2111 size_t *length, loff_t *ppos)
2112{
a5516438 2113 struct hstate *h = &default_hstate;
e5ff2159 2114 unsigned long tmp;
08d4a246 2115 int ret;
e5ff2159 2116
c033a93c 2117 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2118
adbe8726
EM
2119 if (write && h->order >= MAX_ORDER)
2120 return -EINVAL;
2121
e5ff2159
AK
2122 table->data = &tmp;
2123 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2124 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2125 if (ret)
2126 goto out;
e5ff2159
AK
2127
2128 if (write) {
2129 spin_lock(&hugetlb_lock);
2130 h->nr_overcommit_huge_pages = tmp;
2131 spin_unlock(&hugetlb_lock);
2132 }
08d4a246
MH
2133out:
2134 return ret;
a3d0c6aa
NA
2135}
2136
1da177e4
LT
2137#endif /* CONFIG_SYSCTL */
2138
e1759c21 2139void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2140{
a5516438 2141 struct hstate *h = &default_hstate;
e1759c21 2142 seq_printf(m,
4f98a2fe
RR
2143 "HugePages_Total: %5lu\n"
2144 "HugePages_Free: %5lu\n"
2145 "HugePages_Rsvd: %5lu\n"
2146 "HugePages_Surp: %5lu\n"
2147 "Hugepagesize: %8lu kB\n",
a5516438
AK
2148 h->nr_huge_pages,
2149 h->free_huge_pages,
2150 h->resv_huge_pages,
2151 h->surplus_huge_pages,
2152 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2153}
2154
2155int hugetlb_report_node_meminfo(int nid, char *buf)
2156{
a5516438 2157 struct hstate *h = &default_hstate;
1da177e4
LT
2158 return sprintf(buf,
2159 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2160 "Node %d HugePages_Free: %5u\n"
2161 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2162 nid, h->nr_huge_pages_node[nid],
2163 nid, h->free_huge_pages_node[nid],
2164 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2165}
2166
949f7ec5
DR
2167void hugetlb_show_meminfo(void)
2168{
2169 struct hstate *h;
2170 int nid;
2171
2172 for_each_node_state(nid, N_MEMORY)
2173 for_each_hstate(h)
2174 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2175 nid,
2176 h->nr_huge_pages_node[nid],
2177 h->free_huge_pages_node[nid],
2178 h->surplus_huge_pages_node[nid],
2179 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2180}
2181
1da177e4
LT
2182/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2183unsigned long hugetlb_total_pages(void)
2184{
d0028588
WL
2185 struct hstate *h;
2186 unsigned long nr_total_pages = 0;
2187
2188 for_each_hstate(h)
2189 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2190 return nr_total_pages;
1da177e4 2191}
1da177e4 2192
a5516438 2193static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2194{
2195 int ret = -ENOMEM;
2196
2197 spin_lock(&hugetlb_lock);
2198 /*
2199 * When cpuset is configured, it breaks the strict hugetlb page
2200 * reservation as the accounting is done on a global variable. Such
2201 * reservation is completely rubbish in the presence of cpuset because
2202 * the reservation is not checked against page availability for the
2203 * current cpuset. Application can still potentially OOM'ed by kernel
2204 * with lack of free htlb page in cpuset that the task is in.
2205 * Attempt to enforce strict accounting with cpuset is almost
2206 * impossible (or too ugly) because cpuset is too fluid that
2207 * task or memory node can be dynamically moved between cpusets.
2208 *
2209 * The change of semantics for shared hugetlb mapping with cpuset is
2210 * undesirable. However, in order to preserve some of the semantics,
2211 * we fall back to check against current free page availability as
2212 * a best attempt and hopefully to minimize the impact of changing
2213 * semantics that cpuset has.
2214 */
2215 if (delta > 0) {
a5516438 2216 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2217 goto out;
2218
a5516438
AK
2219 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2220 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2221 goto out;
2222 }
2223 }
2224
2225 ret = 0;
2226 if (delta < 0)
a5516438 2227 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2228
2229out:
2230 spin_unlock(&hugetlb_lock);
2231 return ret;
2232}
2233
84afd99b
AW
2234static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2235{
2236 struct resv_map *reservations = vma_resv_map(vma);
2237
2238 /*
2239 * This new VMA should share its siblings reservation map if present.
2240 * The VMA will only ever have a valid reservation map pointer where
2241 * it is being copied for another still existing VMA. As that VMA
25985edc 2242 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2243 * after this open call completes. It is therefore safe to take a
2244 * new reference here without additional locking.
2245 */
2246 if (reservations)
2247 kref_get(&reservations->refs);
2248}
2249
c50ac050
DH
2250static void resv_map_put(struct vm_area_struct *vma)
2251{
2252 struct resv_map *reservations = vma_resv_map(vma);
2253
2254 if (!reservations)
2255 return;
2256 kref_put(&reservations->refs, resv_map_release);
2257}
2258
a1e78772
MG
2259static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2260{
a5516438 2261 struct hstate *h = hstate_vma(vma);
84afd99b 2262 struct resv_map *reservations = vma_resv_map(vma);
90481622 2263 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2264 unsigned long reserve;
2265 unsigned long start;
2266 unsigned long end;
2267
2268 if (reservations) {
a5516438
AK
2269 start = vma_hugecache_offset(h, vma, vma->vm_start);
2270 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2271
2272 reserve = (end - start) -
2273 region_count(&reservations->regions, start, end);
2274
c50ac050 2275 resv_map_put(vma);
84afd99b 2276
7251ff78 2277 if (reserve) {
a5516438 2278 hugetlb_acct_memory(h, -reserve);
90481622 2279 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2280 }
84afd99b 2281 }
a1e78772
MG
2282}
2283
1da177e4
LT
2284/*
2285 * We cannot handle pagefaults against hugetlb pages at all. They cause
2286 * handle_mm_fault() to try to instantiate regular-sized pages in the
2287 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2288 * this far.
2289 */
d0217ac0 2290static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2291{
2292 BUG();
d0217ac0 2293 return 0;
1da177e4
LT
2294}
2295
f0f37e2f 2296const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2297 .fault = hugetlb_vm_op_fault,
84afd99b 2298 .open = hugetlb_vm_op_open,
a1e78772 2299 .close = hugetlb_vm_op_close,
1da177e4
LT
2300};
2301
1e8f889b
DG
2302static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2303 int writable)
63551ae0
DG
2304{
2305 pte_t entry;
2306
1e8f889b 2307 if (writable) {
106c992a
GS
2308 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2309 vma->vm_page_prot)));
63551ae0 2310 } else {
106c992a
GS
2311 entry = huge_pte_wrprotect(mk_huge_pte(page,
2312 vma->vm_page_prot));
63551ae0
DG
2313 }
2314 entry = pte_mkyoung(entry);
2315 entry = pte_mkhuge(entry);
d9ed9faa 2316 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2317
2318 return entry;
2319}
2320
1e8f889b
DG
2321static void set_huge_ptep_writable(struct vm_area_struct *vma,
2322 unsigned long address, pte_t *ptep)
2323{
2324 pte_t entry;
2325
106c992a 2326 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2327 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2328 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2329}
2330
9b576da0
NH
2331static int is_hugetlb_entry_migration(pte_t pte)
2332{
2333 swp_entry_t swp;
2334
2335 if (huge_pte_none(pte) || pte_present(pte))
2336 return 0;
2337 swp = pte_to_swp_entry(pte);
2338 if (non_swap_entry(swp) && is_migration_entry(swp))
2339 return 1;
2340 else
2341 return 0;
2342}
2343
2344static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2345{
2346 swp_entry_t swp;
2347
2348 if (huge_pte_none(pte) || pte_present(pte))
2349 return 0;
2350 swp = pte_to_swp_entry(pte);
2351 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2352 return 1;
2353 else
2354 return 0;
2355}
1e8f889b 2356
63551ae0
DG
2357int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2358 struct vm_area_struct *vma)
2359{
2360 pte_t *src_pte, *dst_pte, entry;
2361 struct page *ptepage;
1c59827d 2362 unsigned long addr;
1e8f889b 2363 int cow;
a5516438
AK
2364 struct hstate *h = hstate_vma(vma);
2365 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2366
2367 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2368
a5516438 2369 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2370 src_pte = huge_pte_offset(src, addr);
2371 if (!src_pte)
2372 continue;
a5516438 2373 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2374 if (!dst_pte)
2375 goto nomem;
c5c99429
LW
2376
2377 /* If the pagetables are shared don't copy or take references */
2378 if (dst_pte == src_pte)
2379 continue;
2380
c74df32c 2381 spin_lock(&dst->page_table_lock);
46478758 2382 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
9b576da0
NH
2383 entry = huge_ptep_get(src_pte);
2384 if (huge_pte_none(entry)) { /* skip none entry */
2385 ;
2386 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2387 is_hugetlb_entry_hwpoisoned(entry))) {
2388 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2389
2390 if (is_write_migration_entry(swp_entry) && cow) {
2391 /*
2392 * COW mappings require pages in both
2393 * parent and child to be set to read.
2394 */
2395 make_migration_entry_read(&swp_entry);
2396 entry = swp_entry_to_pte(swp_entry);
2397 set_huge_pte_at(src, addr, src_pte, entry);
2398 }
2399 set_huge_pte_at(dst, addr, dst_pte, entry);
2400 } else {
1e8f889b 2401 if (cow)
7f2e9525 2402 huge_ptep_set_wrprotect(src, addr, src_pte);
32226c20 2403 entry = huge_ptep_get(src_pte);
1c59827d
HD
2404 ptepage = pte_page(entry);
2405 get_page(ptepage);
0fe6e20b 2406 page_dup_rmap(ptepage);
1c59827d
HD
2407 set_huge_pte_at(dst, addr, dst_pte, entry);
2408 }
2409 spin_unlock(&src->page_table_lock);
c74df32c 2410 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2411 }
2412 return 0;
2413
2414nomem:
2415 return -ENOMEM;
2416}
2417
24669e58
AK
2418void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2419 unsigned long start, unsigned long end,
2420 struct page *ref_page)
63551ae0 2421{
24669e58 2422 int force_flush = 0;
63551ae0
DG
2423 struct mm_struct *mm = vma->vm_mm;
2424 unsigned long address;
c7546f8f 2425 pte_t *ptep;
63551ae0
DG
2426 pte_t pte;
2427 struct page *page;
a5516438
AK
2428 struct hstate *h = hstate_vma(vma);
2429 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2430 const unsigned long mmun_start = start; /* For mmu_notifiers */
2431 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2432
63551ae0 2433 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2434 BUG_ON(start & ~huge_page_mask(h));
2435 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2436
24669e58 2437 tlb_start_vma(tlb, vma);
2ec74c3e 2438 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2439again:
508034a3 2440 spin_lock(&mm->page_table_lock);
a5516438 2441 for (address = start; address < end; address += sz) {
c7546f8f 2442 ptep = huge_pte_offset(mm, address);
4c887265 2443 if (!ptep)
c7546f8f
DG
2444 continue;
2445
39dde65c
KC
2446 if (huge_pmd_unshare(mm, &address, ptep))
2447 continue;
2448
6629326b
HD
2449 pte = huge_ptep_get(ptep);
2450 if (huge_pte_none(pte))
2451 continue;
2452
2453 /*
2454 * HWPoisoned hugepage is already unmapped and dropped reference
2455 */
8c4894c6 2456 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2457 huge_pte_clear(mm, address, ptep);
6629326b 2458 continue;
8c4894c6 2459 }
6629326b
HD
2460
2461 page = pte_page(pte);
04f2cbe3
MG
2462 /*
2463 * If a reference page is supplied, it is because a specific
2464 * page is being unmapped, not a range. Ensure the page we
2465 * are about to unmap is the actual page of interest.
2466 */
2467 if (ref_page) {
04f2cbe3
MG
2468 if (page != ref_page)
2469 continue;
2470
2471 /*
2472 * Mark the VMA as having unmapped its page so that
2473 * future faults in this VMA will fail rather than
2474 * looking like data was lost
2475 */
2476 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2477 }
2478
c7546f8f 2479 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2480 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2481 if (huge_pte_dirty(pte))
6649a386 2482 set_page_dirty(page);
9e81130b 2483
24669e58
AK
2484 page_remove_rmap(page);
2485 force_flush = !__tlb_remove_page(tlb, page);
2486 if (force_flush)
2487 break;
9e81130b
HD
2488 /* Bail out after unmapping reference page if supplied */
2489 if (ref_page)
2490 break;
63551ae0 2491 }
cd2934a3 2492 spin_unlock(&mm->page_table_lock);
24669e58
AK
2493 /*
2494 * mmu_gather ran out of room to batch pages, we break out of
2495 * the PTE lock to avoid doing the potential expensive TLB invalidate
2496 * and page-free while holding it.
2497 */
2498 if (force_flush) {
2499 force_flush = 0;
2500 tlb_flush_mmu(tlb);
2501 if (address < end && !ref_page)
2502 goto again;
fe1668ae 2503 }
2ec74c3e 2504 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2505 tlb_end_vma(tlb, vma);
1da177e4 2506}
63551ae0 2507
d833352a
MG
2508void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2509 struct vm_area_struct *vma, unsigned long start,
2510 unsigned long end, struct page *ref_page)
2511{
2512 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2513
2514 /*
2515 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2516 * test will fail on a vma being torn down, and not grab a page table
2517 * on its way out. We're lucky that the flag has such an appropriate
2518 * name, and can in fact be safely cleared here. We could clear it
2519 * before the __unmap_hugepage_range above, but all that's necessary
2520 * is to clear it before releasing the i_mmap_mutex. This works
2521 * because in the context this is called, the VMA is about to be
2522 * destroyed and the i_mmap_mutex is held.
2523 */
2524 vma->vm_flags &= ~VM_MAYSHARE;
2525}
2526
502717f4 2527void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2528 unsigned long end, struct page *ref_page)
502717f4 2529{
24669e58
AK
2530 struct mm_struct *mm;
2531 struct mmu_gather tlb;
2532
2533 mm = vma->vm_mm;
2534
8e220cfd 2535 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2536 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2537 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2538}
2539
04f2cbe3
MG
2540/*
2541 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2542 * mappping it owns the reserve page for. The intention is to unmap the page
2543 * from other VMAs and let the children be SIGKILLed if they are faulting the
2544 * same region.
2545 */
2a4b3ded
HH
2546static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2547 struct page *page, unsigned long address)
04f2cbe3 2548{
7526674d 2549 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2550 struct vm_area_struct *iter_vma;
2551 struct address_space *mapping;
04f2cbe3
MG
2552 pgoff_t pgoff;
2553
2554 /*
2555 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2556 * from page cache lookup which is in HPAGE_SIZE units.
2557 */
7526674d 2558 address = address & huge_page_mask(h);
36e4f20a
MH
2559 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2560 vma->vm_pgoff;
496ad9aa 2561 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2562
4eb2b1dc
MG
2563 /*
2564 * Take the mapping lock for the duration of the table walk. As
2565 * this mapping should be shared between all the VMAs,
2566 * __unmap_hugepage_range() is called as the lock is already held
2567 */
3d48ae45 2568 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2569 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2570 /* Do not unmap the current VMA */
2571 if (iter_vma == vma)
2572 continue;
2573
2574 /*
2575 * Unmap the page from other VMAs without their own reserves.
2576 * They get marked to be SIGKILLed if they fault in these
2577 * areas. This is because a future no-page fault on this VMA
2578 * could insert a zeroed page instead of the data existing
2579 * from the time of fork. This would look like data corruption
2580 */
2581 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2582 unmap_hugepage_range(iter_vma, address,
2583 address + huge_page_size(h), page);
04f2cbe3 2584 }
3d48ae45 2585 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2586
2587 return 1;
2588}
2589
0fe6e20b
NH
2590/*
2591 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2592 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2593 * cannot race with other handlers or page migration.
2594 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2595 */
1e8f889b 2596static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2597 unsigned long address, pte_t *ptep, pte_t pte,
2598 struct page *pagecache_page)
1e8f889b 2599{
a5516438 2600 struct hstate *h = hstate_vma(vma);
1e8f889b 2601 struct page *old_page, *new_page;
79ac6ba4 2602 int avoidcopy;
04f2cbe3 2603 int outside_reserve = 0;
2ec74c3e
SG
2604 unsigned long mmun_start; /* For mmu_notifiers */
2605 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2606
2607 old_page = pte_page(pte);
2608
04f2cbe3 2609retry_avoidcopy:
1e8f889b
DG
2610 /* If no-one else is actually using this page, avoid the copy
2611 * and just make the page writable */
0fe6e20b 2612 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2613 if (avoidcopy) {
56c9cfb1
NH
2614 if (PageAnon(old_page))
2615 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2616 set_huge_ptep_writable(vma, address, ptep);
83c54070 2617 return 0;
1e8f889b
DG
2618 }
2619
04f2cbe3
MG
2620 /*
2621 * If the process that created a MAP_PRIVATE mapping is about to
2622 * perform a COW due to a shared page count, attempt to satisfy
2623 * the allocation without using the existing reserves. The pagecache
2624 * page is used to determine if the reserve at this address was
2625 * consumed or not. If reserves were used, a partial faulted mapping
2626 * at the time of fork() could consume its reserves on COW instead
2627 * of the full address range.
2628 */
f83a275d 2629 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2630 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2631 old_page != pagecache_page)
2632 outside_reserve = 1;
2633
1e8f889b 2634 page_cache_get(old_page);
b76c8cfb
LW
2635
2636 /* Drop page_table_lock as buddy allocator may be called */
2637 spin_unlock(&mm->page_table_lock);
04f2cbe3 2638 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2639
2fc39cec 2640 if (IS_ERR(new_page)) {
76dcee75 2641 long err = PTR_ERR(new_page);
1e8f889b 2642 page_cache_release(old_page);
04f2cbe3
MG
2643
2644 /*
2645 * If a process owning a MAP_PRIVATE mapping fails to COW,
2646 * it is due to references held by a child and an insufficient
2647 * huge page pool. To guarantee the original mappers
2648 * reliability, unmap the page from child processes. The child
2649 * may get SIGKILLed if it later faults.
2650 */
2651 if (outside_reserve) {
2652 BUG_ON(huge_pte_none(pte));
2653 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2654 BUG_ON(huge_pte_none(pte));
b76c8cfb 2655 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2656 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2657 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2658 goto retry_avoidcopy;
2659 /*
2660 * race occurs while re-acquiring page_table_lock, and
2661 * our job is done.
2662 */
2663 return 0;
04f2cbe3
MG
2664 }
2665 WARN_ON_ONCE(1);
2666 }
2667
b76c8cfb
LW
2668 /* Caller expects lock to be held */
2669 spin_lock(&mm->page_table_lock);
76dcee75
AK
2670 if (err == -ENOMEM)
2671 return VM_FAULT_OOM;
2672 else
2673 return VM_FAULT_SIGBUS;
1e8f889b
DG
2674 }
2675
0fe6e20b
NH
2676 /*
2677 * When the original hugepage is shared one, it does not have
2678 * anon_vma prepared.
2679 */
44e2aa93 2680 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2681 page_cache_release(new_page);
2682 page_cache_release(old_page);
44e2aa93
DN
2683 /* Caller expects lock to be held */
2684 spin_lock(&mm->page_table_lock);
0fe6e20b 2685 return VM_FAULT_OOM;
44e2aa93 2686 }
0fe6e20b 2687
47ad8475
AA
2688 copy_user_huge_page(new_page, old_page, address, vma,
2689 pages_per_huge_page(h));
0ed361de 2690 __SetPageUptodate(new_page);
1e8f889b 2691
2ec74c3e
SG
2692 mmun_start = address & huge_page_mask(h);
2693 mmun_end = mmun_start + huge_page_size(h);
2694 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2695 /*
2696 * Retake the page_table_lock to check for racing updates
2697 * before the page tables are altered
2698 */
2699 spin_lock(&mm->page_table_lock);
a5516438 2700 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2701 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2702 /* Break COW */
8fe627ec 2703 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2704 set_huge_pte_at(mm, address, ptep,
2705 make_huge_pte(vma, new_page, 1));
0fe6e20b 2706 page_remove_rmap(old_page);
cd67f0d2 2707 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2708 /* Make the old page be freed below */
2709 new_page = old_page;
2710 }
2ec74c3e
SG
2711 spin_unlock(&mm->page_table_lock);
2712 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2713 /* Caller expects lock to be held */
2714 spin_lock(&mm->page_table_lock);
1e8f889b
DG
2715 page_cache_release(new_page);
2716 page_cache_release(old_page);
83c54070 2717 return 0;
1e8f889b
DG
2718}
2719
04f2cbe3 2720/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2721static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2722 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2723{
2724 struct address_space *mapping;
e7c4b0bf 2725 pgoff_t idx;
04f2cbe3
MG
2726
2727 mapping = vma->vm_file->f_mapping;
a5516438 2728 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2729
2730 return find_lock_page(mapping, idx);
2731}
2732
3ae77f43
HD
2733/*
2734 * Return whether there is a pagecache page to back given address within VMA.
2735 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2736 */
2737static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2738 struct vm_area_struct *vma, unsigned long address)
2739{
2740 struct address_space *mapping;
2741 pgoff_t idx;
2742 struct page *page;
2743
2744 mapping = vma->vm_file->f_mapping;
2745 idx = vma_hugecache_offset(h, vma, address);
2746
2747 page = find_get_page(mapping, idx);
2748 if (page)
2749 put_page(page);
2750 return page != NULL;
2751}
2752
a1ed3dda 2753static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2754 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2755{
a5516438 2756 struct hstate *h = hstate_vma(vma);
ac9b9c66 2757 int ret = VM_FAULT_SIGBUS;
409eb8c2 2758 int anon_rmap = 0;
e7c4b0bf 2759 pgoff_t idx;
4c887265 2760 unsigned long size;
4c887265
AL
2761 struct page *page;
2762 struct address_space *mapping;
1e8f889b 2763 pte_t new_pte;
4c887265 2764
04f2cbe3
MG
2765 /*
2766 * Currently, we are forced to kill the process in the event the
2767 * original mapper has unmapped pages from the child due to a failed
25985edc 2768 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2769 */
2770 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2771 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2772 current->pid);
04f2cbe3
MG
2773 return ret;
2774 }
2775
4c887265 2776 mapping = vma->vm_file->f_mapping;
a5516438 2777 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2778
2779 /*
2780 * Use page lock to guard against racing truncation
2781 * before we get page_table_lock.
2782 */
6bda666a
CL
2783retry:
2784 page = find_lock_page(mapping, idx);
2785 if (!page) {
a5516438 2786 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2787 if (idx >= size)
2788 goto out;
04f2cbe3 2789 page = alloc_huge_page(vma, address, 0);
2fc39cec 2790 if (IS_ERR(page)) {
76dcee75
AK
2791 ret = PTR_ERR(page);
2792 if (ret == -ENOMEM)
2793 ret = VM_FAULT_OOM;
2794 else
2795 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2796 goto out;
2797 }
47ad8475 2798 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2799 __SetPageUptodate(page);
ac9b9c66 2800
f83a275d 2801 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2802 int err;
45c682a6 2803 struct inode *inode = mapping->host;
6bda666a
CL
2804
2805 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2806 if (err) {
2807 put_page(page);
6bda666a
CL
2808 if (err == -EEXIST)
2809 goto retry;
2810 goto out;
2811 }
45c682a6
KC
2812
2813 spin_lock(&inode->i_lock);
a5516438 2814 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2815 spin_unlock(&inode->i_lock);
23be7468 2816 } else {
6bda666a 2817 lock_page(page);
0fe6e20b
NH
2818 if (unlikely(anon_vma_prepare(vma))) {
2819 ret = VM_FAULT_OOM;
2820 goto backout_unlocked;
2821 }
409eb8c2 2822 anon_rmap = 1;
23be7468 2823 }
0fe6e20b 2824 } else {
998b4382
NH
2825 /*
2826 * If memory error occurs between mmap() and fault, some process
2827 * don't have hwpoisoned swap entry for errored virtual address.
2828 * So we need to block hugepage fault by PG_hwpoison bit check.
2829 */
2830 if (unlikely(PageHWPoison(page))) {
32f84528 2831 ret = VM_FAULT_HWPOISON |
972dc4de 2832 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2833 goto backout_unlocked;
2834 }
6bda666a 2835 }
1e8f889b 2836
57303d80
AW
2837 /*
2838 * If we are going to COW a private mapping later, we examine the
2839 * pending reservations for this page now. This will ensure that
2840 * any allocations necessary to record that reservation occur outside
2841 * the spinlock.
2842 */
788c7df4 2843 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2844 if (vma_needs_reservation(h, vma, address) < 0) {
2845 ret = VM_FAULT_OOM;
2846 goto backout_unlocked;
2847 }
57303d80 2848
ac9b9c66 2849 spin_lock(&mm->page_table_lock);
a5516438 2850 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2851 if (idx >= size)
2852 goto backout;
2853
83c54070 2854 ret = 0;
7f2e9525 2855 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2856 goto backout;
2857
409eb8c2
HD
2858 if (anon_rmap)
2859 hugepage_add_new_anon_rmap(page, vma, address);
2860 else
2861 page_dup_rmap(page);
1e8f889b
DG
2862 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2863 && (vma->vm_flags & VM_SHARED)));
2864 set_huge_pte_at(mm, address, ptep, new_pte);
2865
788c7df4 2866 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2867 /* Optimization, do the COW without a second fault */
04f2cbe3 2868 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2869 }
2870
ac9b9c66 2871 spin_unlock(&mm->page_table_lock);
4c887265
AL
2872 unlock_page(page);
2873out:
ac9b9c66 2874 return ret;
4c887265
AL
2875
2876backout:
2877 spin_unlock(&mm->page_table_lock);
2b26736c 2878backout_unlocked:
4c887265
AL
2879 unlock_page(page);
2880 put_page(page);
2881 goto out;
ac9b9c66
HD
2882}
2883
86e5216f 2884int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2885 unsigned long address, unsigned int flags)
86e5216f
AL
2886{
2887 pte_t *ptep;
2888 pte_t entry;
1e8f889b 2889 int ret;
0fe6e20b 2890 struct page *page = NULL;
57303d80 2891 struct page *pagecache_page = NULL;
3935baa9 2892 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2893 struct hstate *h = hstate_vma(vma);
86e5216f 2894
1e16a539
KH
2895 address &= huge_page_mask(h);
2896
fd6a03ed
NH
2897 ptep = huge_pte_offset(mm, address);
2898 if (ptep) {
2899 entry = huge_ptep_get(ptep);
290408d4 2900 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2901 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2902 return 0;
2903 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2904 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2905 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2906 }
2907
a5516438 2908 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2909 if (!ptep)
2910 return VM_FAULT_OOM;
2911
3935baa9
DG
2912 /*
2913 * Serialize hugepage allocation and instantiation, so that we don't
2914 * get spurious allocation failures if two CPUs race to instantiate
2915 * the same page in the page cache.
2916 */
2917 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2918 entry = huge_ptep_get(ptep);
2919 if (huge_pte_none(entry)) {
788c7df4 2920 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2921 goto out_mutex;
3935baa9 2922 }
86e5216f 2923
83c54070 2924 ret = 0;
1e8f889b 2925
57303d80
AW
2926 /*
2927 * If we are going to COW the mapping later, we examine the pending
2928 * reservations for this page now. This will ensure that any
2929 * allocations necessary to record that reservation occur outside the
2930 * spinlock. For private mappings, we also lookup the pagecache
2931 * page now as it is used to determine if a reservation has been
2932 * consumed.
2933 */
106c992a 2934 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2935 if (vma_needs_reservation(h, vma, address) < 0) {
2936 ret = VM_FAULT_OOM;
b4d1d99f 2937 goto out_mutex;
2b26736c 2938 }
57303d80 2939
f83a275d 2940 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2941 pagecache_page = hugetlbfs_pagecache_page(h,
2942 vma, address);
2943 }
2944
56c9cfb1
NH
2945 /*
2946 * hugetlb_cow() requires page locks of pte_page(entry) and
2947 * pagecache_page, so here we need take the former one
2948 * when page != pagecache_page or !pagecache_page.
2949 * Note that locking order is always pagecache_page -> page,
2950 * so no worry about deadlock.
2951 */
2952 page = pte_page(entry);
66aebce7 2953 get_page(page);
56c9cfb1 2954 if (page != pagecache_page)
0fe6e20b 2955 lock_page(page);
0fe6e20b 2956
1e8f889b
DG
2957 spin_lock(&mm->page_table_lock);
2958 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2959 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2960 goto out_page_table_lock;
2961
2962
788c7df4 2963 if (flags & FAULT_FLAG_WRITE) {
106c992a 2964 if (!huge_pte_write(entry)) {
57303d80
AW
2965 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2966 pagecache_page);
b4d1d99f
DG
2967 goto out_page_table_lock;
2968 }
106c992a 2969 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2970 }
2971 entry = pte_mkyoung(entry);
788c7df4
HD
2972 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2973 flags & FAULT_FLAG_WRITE))
4b3073e1 2974 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2975
2976out_page_table_lock:
1e8f889b 2977 spin_unlock(&mm->page_table_lock);
57303d80
AW
2978
2979 if (pagecache_page) {
2980 unlock_page(pagecache_page);
2981 put_page(pagecache_page);
2982 }
1f64d69c
DN
2983 if (page != pagecache_page)
2984 unlock_page(page);
66aebce7 2985 put_page(page);
57303d80 2986
b4d1d99f 2987out_mutex:
3935baa9 2988 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2989
2990 return ret;
86e5216f
AL
2991}
2992
ceb86879
AK
2993/* Can be overriden by architectures */
2994__attribute__((weak)) struct page *
2995follow_huge_pud(struct mm_struct *mm, unsigned long address,
2996 pud_t *pud, int write)
2997{
2998 BUG();
2999 return NULL;
3000}
3001
28a35716
ML
3002long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3003 struct page **pages, struct vm_area_struct **vmas,
3004 unsigned long *position, unsigned long *nr_pages,
3005 long i, unsigned int flags)
63551ae0 3006{
d5d4b0aa
KC
3007 unsigned long pfn_offset;
3008 unsigned long vaddr = *position;
28a35716 3009 unsigned long remainder = *nr_pages;
a5516438 3010 struct hstate *h = hstate_vma(vma);
63551ae0 3011
1c59827d 3012 spin_lock(&mm->page_table_lock);
63551ae0 3013 while (vaddr < vma->vm_end && remainder) {
4c887265 3014 pte_t *pte;
2a15efc9 3015 int absent;
4c887265 3016 struct page *page;
63551ae0 3017
4c887265
AL
3018 /*
3019 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3020 * each hugepage. We have to make sure we get the
4c887265
AL
3021 * first, for the page indexing below to work.
3022 */
a5516438 3023 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
3024 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3025
3026 /*
3027 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3028 * an error where there's an empty slot with no huge pagecache
3029 * to back it. This way, we avoid allocating a hugepage, and
3030 * the sparse dumpfile avoids allocating disk blocks, but its
3031 * huge holes still show up with zeroes where they need to be.
2a15efc9 3032 */
3ae77f43
HD
3033 if (absent && (flags & FOLL_DUMP) &&
3034 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
3035 remainder = 0;
3036 break;
3037 }
63551ae0 3038
9cc3a5bd
NH
3039 /*
3040 * We need call hugetlb_fault for both hugepages under migration
3041 * (in which case hugetlb_fault waits for the migration,) and
3042 * hwpoisoned hugepages (in which case we need to prevent the
3043 * caller from accessing to them.) In order to do this, we use
3044 * here is_swap_pte instead of is_hugetlb_entry_migration and
3045 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3046 * both cases, and because we can't follow correct pages
3047 * directly from any kind of swap entries.
3048 */
3049 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3050 ((flags & FOLL_WRITE) &&
3051 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3052 int ret;
63551ae0 3053
4c887265 3054 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
3055 ret = hugetlb_fault(mm, vma, vaddr,
3056 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 3057 spin_lock(&mm->page_table_lock);
a89182c7 3058 if (!(ret & VM_FAULT_ERROR))
4c887265 3059 continue;
63551ae0 3060
4c887265 3061 remainder = 0;
4c887265
AL
3062 break;
3063 }
3064
a5516438 3065 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3066 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3067same_page:
d6692183 3068 if (pages) {
2a15efc9 3069 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 3070 get_page(pages[i]);
d6692183 3071 }
63551ae0
DG
3072
3073 if (vmas)
3074 vmas[i] = vma;
3075
3076 vaddr += PAGE_SIZE;
d5d4b0aa 3077 ++pfn_offset;
63551ae0
DG
3078 --remainder;
3079 ++i;
d5d4b0aa 3080 if (vaddr < vma->vm_end && remainder &&
a5516438 3081 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3082 /*
3083 * We use pfn_offset to avoid touching the pageframes
3084 * of this compound page.
3085 */
3086 goto same_page;
3087 }
63551ae0 3088 }
1c59827d 3089 spin_unlock(&mm->page_table_lock);
28a35716 3090 *nr_pages = remainder;
63551ae0
DG
3091 *position = vaddr;
3092
2a15efc9 3093 return i ? i : -EFAULT;
63551ae0 3094}
8f860591 3095
7da4d641 3096unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3097 unsigned long address, unsigned long end, pgprot_t newprot)
3098{
3099 struct mm_struct *mm = vma->vm_mm;
3100 unsigned long start = address;
3101 pte_t *ptep;
3102 pte_t pte;
a5516438 3103 struct hstate *h = hstate_vma(vma);
7da4d641 3104 unsigned long pages = 0;
8f860591
ZY
3105
3106 BUG_ON(address >= end);
3107 flush_cache_range(vma, address, end);
3108
3d48ae45 3109 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3110 spin_lock(&mm->page_table_lock);
a5516438 3111 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3112 ptep = huge_pte_offset(mm, address);
3113 if (!ptep)
3114 continue;
7da4d641
PZ
3115 if (huge_pmd_unshare(mm, &address, ptep)) {
3116 pages++;
39dde65c 3117 continue;
7da4d641 3118 }
7f2e9525 3119 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3120 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3121 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3122 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3123 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3124 pages++;
8f860591
ZY
3125 }
3126 }
3127 spin_unlock(&mm->page_table_lock);
d833352a
MG
3128 /*
3129 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3130 * may have cleared our pud entry and done put_page on the page table:
3131 * once we release i_mmap_mutex, another task can do the final put_page
3132 * and that page table be reused and filled with junk.
3133 */
8f860591 3134 flush_tlb_range(vma, start, end);
d833352a 3135 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3136
3137 return pages << h->order;
8f860591
ZY
3138}
3139
a1e78772
MG
3140int hugetlb_reserve_pages(struct inode *inode,
3141 long from, long to,
5a6fe125 3142 struct vm_area_struct *vma,
ca16d140 3143 vm_flags_t vm_flags)
e4e574b7 3144{
17c9d12e 3145 long ret, chg;
a5516438 3146 struct hstate *h = hstate_inode(inode);
90481622 3147 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3148
17c9d12e
MG
3149 /*
3150 * Only apply hugepage reservation if asked. At fault time, an
3151 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3152 * without using reserves
17c9d12e 3153 */
ca16d140 3154 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3155 return 0;
3156
a1e78772
MG
3157 /*
3158 * Shared mappings base their reservation on the number of pages that
3159 * are already allocated on behalf of the file. Private mappings need
3160 * to reserve the full area even if read-only as mprotect() may be
3161 * called to make the mapping read-write. Assume !vma is a shm mapping
3162 */
f83a275d 3163 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3164 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3165 else {
3166 struct resv_map *resv_map = resv_map_alloc();
3167 if (!resv_map)
3168 return -ENOMEM;
3169
a1e78772 3170 chg = to - from;
84afd99b 3171
17c9d12e
MG
3172 set_vma_resv_map(vma, resv_map);
3173 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3174 }
3175
c50ac050
DH
3176 if (chg < 0) {
3177 ret = chg;
3178 goto out_err;
3179 }
8a630112 3180
90481622 3181 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3182 if (hugepage_subpool_get_pages(spool, chg)) {
3183 ret = -ENOSPC;
3184 goto out_err;
3185 }
5a6fe125
MG
3186
3187 /*
17c9d12e 3188 * Check enough hugepages are available for the reservation.
90481622 3189 * Hand the pages back to the subpool if there are not
5a6fe125 3190 */
a5516438 3191 ret = hugetlb_acct_memory(h, chg);
68842c9b 3192 if (ret < 0) {
90481622 3193 hugepage_subpool_put_pages(spool, chg);
c50ac050 3194 goto out_err;
68842c9b 3195 }
17c9d12e
MG
3196
3197 /*
3198 * Account for the reservations made. Shared mappings record regions
3199 * that have reservations as they are shared by multiple VMAs.
3200 * When the last VMA disappears, the region map says how much
3201 * the reservation was and the page cache tells how much of
3202 * the reservation was consumed. Private mappings are per-VMA and
3203 * only the consumed reservations are tracked. When the VMA
3204 * disappears, the original reservation is the VMA size and the
3205 * consumed reservations are stored in the map. Hence, nothing
3206 * else has to be done for private mappings here
3207 */
f83a275d 3208 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3209 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3210 return 0;
c50ac050 3211out_err:
4523e145
DH
3212 if (vma)
3213 resv_map_put(vma);
c50ac050 3214 return ret;
a43a8c39
KC
3215}
3216
3217void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3218{
a5516438 3219 struct hstate *h = hstate_inode(inode);
a43a8c39 3220 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3221 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3222
3223 spin_lock(&inode->i_lock);
e4c6f8be 3224 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3225 spin_unlock(&inode->i_lock);
3226
90481622 3227 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3228 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3229}
93f70f90 3230
d5bd9106
AK
3231#ifdef CONFIG_MEMORY_FAILURE
3232
6de2b1aa
NH
3233/* Should be called in hugetlb_lock */
3234static int is_hugepage_on_freelist(struct page *hpage)
3235{
3236 struct page *page;
3237 struct page *tmp;
3238 struct hstate *h = page_hstate(hpage);
3239 int nid = page_to_nid(hpage);
3240
3241 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3242 if (page == hpage)
3243 return 1;
3244 return 0;
3245}
3246
93f70f90
NH
3247/*
3248 * This function is called from memory failure code.
3249 * Assume the caller holds page lock of the head page.
3250 */
6de2b1aa 3251int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3252{
3253 struct hstate *h = page_hstate(hpage);
3254 int nid = page_to_nid(hpage);
6de2b1aa 3255 int ret = -EBUSY;
93f70f90
NH
3256
3257 spin_lock(&hugetlb_lock);
6de2b1aa 3258 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3259 /*
3260 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3261 * but dangling hpage->lru can trigger list-debug warnings
3262 * (this happens when we call unpoison_memory() on it),
3263 * so let it point to itself with list_del_init().
3264 */
3265 list_del_init(&hpage->lru);
8c6c2ecb 3266 set_page_refcounted(hpage);
6de2b1aa
NH
3267 h->free_huge_pages--;
3268 h->free_huge_pages_node[nid]--;
3269 ret = 0;
3270 }
93f70f90 3271 spin_unlock(&hugetlb_lock);
6de2b1aa 3272 return ret;
93f70f90 3273}
6de2b1aa 3274#endif