Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 #ifdef CONFIG_MT_PRIO_TRACER
63 # include <linux/prio_tracer.h>
64 #endif
65
66 static void exit_mm(struct task_struct * tsk);
67
68 static void __unhash_process(struct task_struct *p, bool group_dead)
69 {
70 nr_threads--;
71 detach_pid(p, PIDTYPE_PID);
72 if (group_dead) {
73 detach_pid(p, PIDTYPE_PGID);
74 detach_pid(p, PIDTYPE_SID);
75
76 list_del_rcu(&p->tasks);
77 list_del_init(&p->sibling);
78 __this_cpu_dec(process_counts);
79 }
80 list_del_rcu(&p->thread_group);
81 list_del_rcu(&p->thread_node);
82 }
83
84 /*
85 * This function expects the tasklist_lock write-locked.
86 */
87 static void __exit_signal(struct task_struct *tsk)
88 {
89 struct signal_struct *sig = tsk->signal;
90 bool group_dead = thread_group_leader(tsk);
91 struct sighand_struct *sighand;
92 struct tty_struct *uninitialized_var(tty);
93 cputime_t utime, stime;
94
95 sighand = rcu_dereference_check(tsk->sighand,
96 lockdep_tasklist_lock_is_held());
97 spin_lock(&sighand->siglock);
98
99 posix_cpu_timers_exit(tsk);
100 if (group_dead) {
101 posix_cpu_timers_exit_group(tsk);
102 tty = sig->tty;
103 sig->tty = NULL;
104 } else {
105 /*
106 * This can only happen if the caller is de_thread().
107 * FIXME: this is the temporary hack, we should teach
108 * posix-cpu-timers to handle this case correctly.
109 */
110 if (unlikely(has_group_leader_pid(tsk)))
111 posix_cpu_timers_exit_group(tsk);
112
113 /*
114 * If there is any task waiting for the group exit
115 * then notify it:
116 */
117 if (sig->notify_count > 0 && !--sig->notify_count)
118 wake_up_process(sig->group_exit_task);
119
120 if (tsk == sig->curr_target)
121 sig->curr_target = next_thread(tsk);
122 /*
123 * Accumulate here the counters for all threads but the
124 * group leader as they die, so they can be added into
125 * the process-wide totals when those are taken.
126 * The group leader stays around as a zombie as long
127 * as there are other threads. When it gets reaped,
128 * the exit.c code will add its counts into these totals.
129 * We won't ever get here for the group leader, since it
130 * will have been the last reference on the signal_struct.
131 */
132 task_cputime(tsk, &utime, &stime);
133 sig->utime += utime;
134 sig->stime += stime;
135 sig->gtime += task_gtime(tsk);
136 sig->min_flt += tsk->min_flt;
137 sig->maj_flt += tsk->maj_flt;
138 sig->nvcsw += tsk->nvcsw;
139 sig->nivcsw += tsk->nivcsw;
140 sig->inblock += task_io_get_inblock(tsk);
141 sig->oublock += task_io_get_oublock(tsk);
142 task_io_accounting_add(&sig->ioac, &tsk->ioac);
143 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
144 }
145
146 sig->nr_threads--;
147 __unhash_process(tsk, group_dead);
148
149 /*
150 * Do this under ->siglock, we can race with another thread
151 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
152 */
153 flush_sigqueue(&tsk->pending);
154 tsk->sighand = NULL;
155 spin_unlock(&sighand->siglock);
156
157 __cleanup_sighand(sighand);
158 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
159 if (group_dead) {
160 flush_sigqueue(&sig->shared_pending);
161 tty_kref_put(tty);
162 }
163 }
164
165 static void delayed_put_task_struct(struct rcu_head *rhp)
166 {
167 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
168
169 perf_event_delayed_put(tsk);
170 trace_sched_process_free(tsk);
171 put_task_struct(tsk);
172 }
173
174
175 void release_task(struct task_struct * p)
176 {
177 struct task_struct *leader;
178 int zap_leader;
179 repeat:
180 /* don't need to get the RCU readlock here - the process is dead and
181 * can't be modifying its own credentials. But shut RCU-lockdep up */
182 rcu_read_lock();
183 atomic_dec(&__task_cred(p)->user->processes);
184 rcu_read_unlock();
185
186 proc_flush_task(p);
187
188 write_lock_irq(&tasklist_lock);
189 ptrace_release_task(p);
190 __exit_signal(p);
191
192 /*
193 * If we are the last non-leader member of the thread
194 * group, and the leader is zombie, then notify the
195 * group leader's parent process. (if it wants notification.)
196 */
197 zap_leader = 0;
198 leader = p->group_leader;
199 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
200 /*
201 * If we were the last child thread and the leader has
202 * exited already, and the leader's parent ignores SIGCHLD,
203 * then we are the one who should release the leader.
204 */
205 zap_leader = do_notify_parent(leader, leader->exit_signal);
206 if (zap_leader)
207 leader->exit_state = EXIT_DEAD;
208 }
209
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
213
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
217 }
218
219 /*
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * without this...
223 *
224 * The caller must hold rcu lock or the tasklist lock.
225 */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 struct task_struct *p;
229 struct pid *sid = NULL;
230
231 p = pid_task(pgrp, PIDTYPE_PGID);
232 if (p == NULL)
233 p = pid_task(pgrp, PIDTYPE_PID);
234 if (p != NULL)
235 sid = task_session(p);
236
237 return sid;
238 }
239
240 /*
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
245 *
246 * "I ask you, have you ever known what it is to be an orphan?"
247 */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 struct task_struct *p;
251
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if ((p == ignored_task) ||
254 (p->exit_state && thread_group_empty(p)) ||
255 is_global_init(p->real_parent))
256 continue;
257
258 if (task_pgrp(p->real_parent) != pgrp &&
259 task_session(p->real_parent) == task_session(p))
260 return 0;
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262
263 return 1;
264 }
265
266 int is_current_pgrp_orphaned(void)
267 {
268 int retval;
269
270 read_lock(&tasklist_lock);
271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 read_unlock(&tasklist_lock);
273
274 return retval;
275 }
276
277 static bool has_stopped_jobs(struct pid *pgrp)
278 {
279 struct task_struct *p;
280
281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282 if (p->signal->flags & SIGNAL_STOP_STOPPED)
283 return true;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286 return false;
287 }
288
289 /*
290 * Check to see if any process groups have become orphaned as
291 * a result of our exiting, and if they have any stopped jobs,
292 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
293 */
294 static void
295 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
296 {
297 struct pid *pgrp = task_pgrp(tsk);
298 struct task_struct *ignored_task = tsk;
299
300 if (!parent)
301 /* exit: our father is in a different pgrp than
302 * we are and we were the only connection outside.
303 */
304 parent = tsk->real_parent;
305 else
306 /* reparent: our child is in a different pgrp than
307 * we are, and it was the only connection outside.
308 */
309 ignored_task = NULL;
310
311 if (task_pgrp(parent) != pgrp &&
312 task_session(parent) == task_session(tsk) &&
313 will_become_orphaned_pgrp(pgrp, ignored_task) &&
314 has_stopped_jobs(pgrp)) {
315 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
316 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
317 }
318 }
319
320 void __set_special_pids(struct pid *pid)
321 {
322 struct task_struct *curr = current->group_leader;
323
324 if (task_session(curr) != pid)
325 change_pid(curr, PIDTYPE_SID, pid);
326
327 if (task_pgrp(curr) != pid)
328 change_pid(curr, PIDTYPE_PGID, pid);
329 }
330
331 /*
332 * Let kernel threads use this to say that they allow a certain signal.
333 * Must not be used if kthread was cloned with CLONE_SIGHAND.
334 */
335 int allow_signal(int sig)
336 {
337 if (!valid_signal(sig) || sig < 1)
338 return -EINVAL;
339
340 spin_lock_irq(&current->sighand->siglock);
341 /* This is only needed for daemonize()'ed kthreads */
342 sigdelset(&current->blocked, sig);
343 /*
344 * Kernel threads handle their own signals. Let the signal code
345 * know it'll be handled, so that they don't get converted to
346 * SIGKILL or just silently dropped.
347 */
348 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
349 recalc_sigpending();
350 spin_unlock_irq(&current->sighand->siglock);
351 return 0;
352 }
353
354 EXPORT_SYMBOL(allow_signal);
355
356 int disallow_signal(int sig)
357 {
358 if (!valid_signal(sig) || sig < 1)
359 return -EINVAL;
360
361 spin_lock_irq(&current->sighand->siglock);
362 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
363 recalc_sigpending();
364 spin_unlock_irq(&current->sighand->siglock);
365 return 0;
366 }
367
368 EXPORT_SYMBOL(disallow_signal);
369
370 #ifdef CONFIG_MM_OWNER
371 /*
372 * A task is exiting. If it owned this mm, find a new owner for the mm.
373 */
374 void mm_update_next_owner(struct mm_struct *mm)
375 {
376 struct task_struct *c, *g, *p = current;
377
378 retry:
379 /*
380 * If the exiting or execing task is not the owner, it's
381 * someone else's problem.
382 */
383 if (mm->owner != p)
384 return;
385 /*
386 * The current owner is exiting/execing and there are no other
387 * candidates. Do not leave the mm pointing to a possibly
388 * freed task structure.
389 */
390 if (atomic_read(&mm->mm_users) <= 1) {
391 mm->owner = NULL;
392 return;
393 }
394
395 read_lock(&tasklist_lock);
396 /*
397 * Search in the children
398 */
399 list_for_each_entry(c, &p->children, sibling) {
400 if (c->mm == mm)
401 goto assign_new_owner;
402 }
403
404 /*
405 * Search in the siblings
406 */
407 list_for_each_entry(c, &p->real_parent->children, sibling) {
408 if (c->mm == mm)
409 goto assign_new_owner;
410 }
411
412 /*
413 * Search through everything else. We should not get
414 * here often
415 */
416 do_each_thread(g, c) {
417 if (c->mm == mm)
418 goto assign_new_owner;
419 } while_each_thread(g, c);
420
421 read_unlock(&tasklist_lock);
422 /*
423 * We found no owner yet mm_users > 1: this implies that we are
424 * most likely racing with swapoff (try_to_unuse()) or /proc or
425 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
426 */
427 mm->owner = NULL;
428 return;
429
430 assign_new_owner:
431 BUG_ON(c == p);
432 get_task_struct(c);
433 /*
434 * The task_lock protects c->mm from changing.
435 * We always want mm->owner->mm == mm
436 */
437 task_lock(c);
438 /*
439 * Delay read_unlock() till we have the task_lock()
440 * to ensure that c does not slip away underneath us
441 */
442 read_unlock(&tasklist_lock);
443 if (c->mm != mm) {
444 task_unlock(c);
445 put_task_struct(c);
446 goto retry;
447 }
448 mm->owner = c;
449 task_unlock(c);
450 put_task_struct(c);
451 }
452 #endif /* CONFIG_MM_OWNER */
453
454 /*
455 * Turn us into a lazy TLB process if we
456 * aren't already..
457 */
458 static void exit_mm(struct task_struct * tsk)
459 {
460 struct mm_struct *mm = tsk->mm;
461 struct core_state *core_state;
462
463 mm_release(tsk, mm);
464 if (!mm)
465 return;
466 sync_mm_rss(mm);
467 /*
468 * Serialize with any possible pending coredump.
469 * We must hold mmap_sem around checking core_state
470 * and clearing tsk->mm. The core-inducing thread
471 * will increment ->nr_threads for each thread in the
472 * group with ->mm != NULL.
473 */
474 down_read(&mm->mmap_sem);
475 core_state = mm->core_state;
476 if (core_state) {
477 struct core_thread self;
478 up_read(&mm->mmap_sem);
479
480 self.task = tsk;
481 self.next = xchg(&core_state->dumper.next, &self);
482 /*
483 * Implies mb(), the result of xchg() must be visible
484 * to core_state->dumper.
485 */
486 if (atomic_dec_and_test(&core_state->nr_threads))
487 complete(&core_state->startup);
488
489 for (;;) {
490 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
491 if (!self.task) /* see coredump_finish() */
492 break;
493 freezable_schedule();
494 }
495 __set_task_state(tsk, TASK_RUNNING);
496 down_read(&mm->mmap_sem);
497 }
498 atomic_inc(&mm->mm_count);
499 BUG_ON(mm != tsk->active_mm);
500 /* more a memory barrier than a real lock */
501 task_lock(tsk);
502 tsk->mm = NULL;
503 up_read(&mm->mmap_sem);
504 enter_lazy_tlb(mm, current);
505 task_unlock(tsk);
506 mm_update_next_owner(mm);
507 mmput(mm);
508 }
509
510 /*
511 * When we die, we re-parent all our children, and try to:
512 * 1. give them to another thread in our thread group, if such a member exists
513 * 2. give it to the first ancestor process which prctl'd itself as a
514 * child_subreaper for its children (like a service manager)
515 * 3. give it to the init process (PID 1) in our pid namespace
516 */
517 static struct task_struct *find_new_reaper(struct task_struct *father)
518 __releases(&tasklist_lock)
519 __acquires(&tasklist_lock)
520 {
521 struct pid_namespace *pid_ns = task_active_pid_ns(father);
522 struct task_struct *thread;
523
524 thread = father;
525 while_each_thread(father, thread) {
526 if (thread->flags & PF_EXITING)
527 continue;
528 if (unlikely(pid_ns->child_reaper == father))
529 pid_ns->child_reaper = thread;
530 return thread;
531 }
532
533 if (unlikely(pid_ns->child_reaper == father)) {
534 write_unlock_irq(&tasklist_lock);
535 if (unlikely(pid_ns == &init_pid_ns)) {
536 panic("Attempted to kill init! exitcode=0x%08x\n",
537 father->signal->group_exit_code ?:
538 father->exit_code);
539 }
540
541 zap_pid_ns_processes(pid_ns);
542 write_lock_irq(&tasklist_lock);
543 } else if (father->signal->has_child_subreaper) {
544 struct task_struct *reaper;
545
546 /*
547 * Find the first ancestor marked as child_subreaper.
548 * Note that the code below checks same_thread_group(reaper,
549 * pid_ns->child_reaper). This is what we need to DTRT in a
550 * PID namespace. However we still need the check above, see
551 * http://marc.info/?l=linux-kernel&m=131385460420380
552 */
553 for (reaper = father->real_parent;
554 reaper != &init_task;
555 reaper = reaper->real_parent) {
556 if (same_thread_group(reaper, pid_ns->child_reaper))
557 break;
558 if (!reaper->signal->is_child_subreaper)
559 continue;
560 thread = reaper;
561 do {
562 if (!(thread->flags & PF_EXITING))
563 return reaper;
564 } while_each_thread(reaper, thread);
565 }
566 }
567
568 return pid_ns->child_reaper;
569 }
570
571 /*
572 * Any that need to be release_task'd are put on the @dead list.
573 */
574 static void reparent_leader(struct task_struct *father, struct task_struct *p,
575 struct list_head *dead)
576 {
577 list_move_tail(&p->sibling, &p->real_parent->children);
578 /*
579 * If this is a threaded reparent there is no need to
580 * notify anyone anything has happened.
581 */
582 if (same_thread_group(p->real_parent, father))
583 return;
584
585 /*
586 * We don't want people slaying init.
587 *
588 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
589 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
590 * state, do_notify_parent() was already called and ->exit_signal
591 * doesn't matter.
592 */
593 p->exit_signal = SIGCHLD;
594
595 if (p->exit_state == EXIT_DEAD)
596 return;
597
598 /* If it has exited notify the new parent about this child's death. */
599 if (!p->ptrace &&
600 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
601 if (do_notify_parent(p, p->exit_signal)) {
602 p->exit_state = EXIT_DEAD;
603 list_move_tail(&p->sibling, dead);
604 }
605 }
606
607 kill_orphaned_pgrp(p, father);
608 }
609
610 static void forget_original_parent(struct task_struct *father)
611 {
612 struct task_struct *p, *n, *reaper;
613 LIST_HEAD(dead_children);
614
615 write_lock_irq(&tasklist_lock);
616 /*
617 * Note that exit_ptrace() and find_new_reaper() might
618 * drop tasklist_lock and reacquire it.
619 */
620 exit_ptrace(father);
621 reaper = find_new_reaper(father);
622
623 list_for_each_entry_safe(p, n, &father->children, sibling) {
624 struct task_struct *t = p;
625 do {
626 t->real_parent = reaper;
627 if (t->parent == father) {
628 BUG_ON(t->ptrace);
629 t->parent = t->real_parent;
630 }
631 if (t->pdeath_signal)
632 group_send_sig_info(t->pdeath_signal,
633 SEND_SIG_NOINFO, t);
634 } while_each_thread(p, t);
635 reparent_leader(father, p, &dead_children);
636 }
637 write_unlock_irq(&tasklist_lock);
638
639 BUG_ON(!list_empty(&father->children));
640
641 list_for_each_entry_safe(p, n, &dead_children, sibling) {
642 list_del_init(&p->sibling);
643 release_task(p);
644 }
645 }
646
647 /*
648 * Send signals to all our closest relatives so that they know
649 * to properly mourn us..
650 */
651 static void exit_notify(struct task_struct *tsk, int group_dead)
652 {
653 bool autoreap;
654
655 /*
656 * This does two things:
657 *
658 * A. Make init inherit all the child processes
659 * B. Check to see if any process groups have become orphaned
660 * as a result of our exiting, and if they have any stopped
661 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
662 */
663 forget_original_parent(tsk);
664
665 write_lock_irq(&tasklist_lock);
666 if (group_dead)
667 kill_orphaned_pgrp(tsk->group_leader, NULL);
668
669 if (unlikely(tsk->ptrace)) {
670 int sig = thread_group_leader(tsk) &&
671 thread_group_empty(tsk) &&
672 !ptrace_reparented(tsk) ?
673 tsk->exit_signal : SIGCHLD;
674 autoreap = do_notify_parent(tsk, sig);
675 } else if (thread_group_leader(tsk)) {
676 autoreap = thread_group_empty(tsk) &&
677 do_notify_parent(tsk, tsk->exit_signal);
678 } else {
679 autoreap = true;
680 }
681
682 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
683
684 /* mt-exec, de_thread() is waiting for group leader */
685 if (unlikely(tsk->signal->notify_count < 0))
686 wake_up_process(tsk->signal->group_exit_task);
687 write_unlock_irq(&tasklist_lock);
688
689 /* If the process is dead, release it - nobody will wait for it */
690 if (autoreap)
691 release_task(tsk);
692 }
693
694 #ifdef CONFIG_DEBUG_STACK_USAGE
695 static void check_stack_usage(void)
696 {
697 static DEFINE_SPINLOCK(low_water_lock);
698 static int lowest_to_date = THREAD_SIZE;
699 unsigned long free;
700
701 free = stack_not_used(current);
702
703 if (free >= lowest_to_date)
704 return;
705
706 spin_lock(&low_water_lock);
707 if (free < lowest_to_date) {
708 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
709 "%lu bytes left\n",
710 current->comm, task_pid_nr(current), free);
711 lowest_to_date = free;
712 }
713 spin_unlock(&low_water_lock);
714 }
715 #else
716 static inline void check_stack_usage(void) {}
717 #endif
718
719 #ifdef CONFIG_SCHEDSTATS
720 /* mt shceduler profiling*/
721 extern void end_mtproc_info(struct task_struct *p);
722 #endif
723 void do_exit(long code)
724 {
725 struct task_struct *tsk = current;
726 int group_dead;
727
728 profile_task_exit(tsk);
729 #ifdef CONFIG_SCHEDSTATS
730 /* mt shceduler profiling*/
731 printk(KERN_DEBUG "[%d:%s] exit\n", tsk->pid, tsk->comm);
732 end_mtproc_info(tsk);
733 #endif
734
735 #ifdef CONFIG_MT_PRIO_TRACER
736 delete_prio_tracer(tsk->pid);
737 #endif
738
739 WARN_ON(blk_needs_flush_plug(tsk));
740
741 if (unlikely(in_interrupt()))
742 panic("Aiee, killing interrupt handler!");
743 if (unlikely(!tsk->pid))
744 panic("Attempted to kill the idle task!");
745
746 /*
747 * If do_exit is called because this processes oopsed, it's possible
748 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
749 * continuing. Amongst other possible reasons, this is to prevent
750 * mm_release()->clear_child_tid() from writing to a user-controlled
751 * kernel address.
752 */
753 set_fs(USER_DS);
754
755 ptrace_event(PTRACE_EVENT_EXIT, code);
756
757 validate_creds_for_do_exit(tsk);
758
759 /*
760 * We're taking recursive faults here in do_exit. Safest is to just
761 * leave this task alone and wait for reboot.
762 */
763 if (unlikely(tsk->flags & PF_EXITING)) {
764 printk(KERN_ALERT
765 "Fixing recursive fault but reboot is needed!\n");
766 /*
767 * We can do this unlocked here. The futex code uses
768 * this flag just to verify whether the pi state
769 * cleanup has been done or not. In the worst case it
770 * loops once more. We pretend that the cleanup was
771 * done as there is no way to return. Either the
772 * OWNER_DIED bit is set by now or we push the blocked
773 * task into the wait for ever nirwana as well.
774 */
775 tsk->flags |= PF_EXITPIDONE;
776 set_current_state(TASK_UNINTERRUPTIBLE);
777 schedule();
778 }
779
780 exit_signals(tsk); /* sets PF_EXITING */
781 /*
782 * tsk->flags are checked in the futex code to protect against
783 * an exiting task cleaning up the robust pi futexes.
784 */
785 smp_mb();
786 raw_spin_unlock_wait(&tsk->pi_lock);
787
788 if (unlikely(in_atomic()))
789 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
790 current->comm, task_pid_nr(current),
791 preempt_count());
792
793 acct_update_integrals(tsk);
794 /* sync mm's RSS info before statistics gathering */
795 if (tsk->mm)
796 sync_mm_rss(tsk->mm);
797 group_dead = atomic_dec_and_test(&tsk->signal->live);
798 if (group_dead) {
799 hrtimer_cancel(&tsk->signal->real_timer);
800 exit_itimers(tsk->signal);
801 if (tsk->mm)
802 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
803 }
804 acct_collect(code, group_dead);
805 if (group_dead)
806 tty_audit_exit();
807 audit_free(tsk);
808
809 tsk->exit_code = code;
810 taskstats_exit(tsk, group_dead);
811
812 exit_mm(tsk);
813
814 if (group_dead)
815 acct_process();
816 trace_sched_process_exit(tsk);
817
818 exit_sem(tsk);
819 exit_shm(tsk);
820 exit_files(tsk);
821 exit_fs(tsk);
822 if (group_dead)
823 disassociate_ctty(1);
824 exit_task_namespaces(tsk);
825 exit_task_work(tsk);
826 check_stack_usage();
827 exit_thread();
828
829 /*
830 * Flush inherited counters to the parent - before the parent
831 * gets woken up by child-exit notifications.
832 *
833 * because of cgroup mode, must be called before cgroup_exit()
834 */
835 perf_event_exit_task(tsk);
836
837 cgroup_exit(tsk, 1);
838
839 module_put(task_thread_info(tsk)->exec_domain->module);
840
841 proc_exit_connector(tsk);
842 /*
843 * FIXME: do that only when needed, using sched_exit tracepoint
844 */
845 ptrace_put_breakpoints(tsk);
846
847 exit_notify(tsk, group_dead);
848 #ifdef CONFIG_NUMA
849 task_lock(tsk);
850 mpol_put(tsk->mempolicy);
851 tsk->mempolicy = NULL;
852 task_unlock(tsk);
853 #endif
854 #ifdef CONFIG_FUTEX
855 if (unlikely(current->pi_state_cache))
856 kfree(current->pi_state_cache);
857 #endif
858 /*
859 * Make sure we are holding no locks:
860 */
861 debug_check_no_locks_held();
862 /*
863 * We can do this unlocked here. The futex code uses this flag
864 * just to verify whether the pi state cleanup has been done
865 * or not. In the worst case it loops once more.
866 */
867 tsk->flags |= PF_EXITPIDONE;
868
869 if (tsk->io_context)
870 exit_io_context(tsk);
871
872 if (tsk->splice_pipe)
873 free_pipe_info(tsk->splice_pipe);
874
875 if (tsk->task_frag.page)
876 put_page(tsk->task_frag.page);
877
878 validate_creds_for_do_exit(tsk);
879
880 preempt_disable();
881 if (tsk->nr_dirtied)
882 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
883 exit_rcu();
884
885 /*
886 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
887 * when the following two conditions become true.
888 * - There is race condition of mmap_sem (It is acquired by
889 * exit_mm()), and
890 * - SMI occurs before setting TASK_RUNINNG.
891 * (or hypervisor of virtual machine switches to other guest)
892 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
893 *
894 * To avoid it, we have to wait for releasing tsk->pi_lock which
895 * is held by try_to_wake_up()
896 */
897 smp_mb();
898 raw_spin_unlock_wait(&tsk->pi_lock);
899
900 /* causes final put_task_struct in finish_task_switch(). */
901 tsk->state = TASK_DEAD;
902 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
903 schedule();
904 BUG();
905 /* Avoid "noreturn function does return". */
906 for (;;)
907 cpu_relax(); /* For when BUG is null */
908 }
909
910 EXPORT_SYMBOL_GPL(do_exit);
911
912 void complete_and_exit(struct completion *comp, long code)
913 {
914 if (comp)
915 complete(comp);
916
917 do_exit(code);
918 }
919
920 EXPORT_SYMBOL(complete_and_exit);
921
922 SYSCALL_DEFINE1(exit, int, error_code)
923 {
924 do_exit((error_code&0xff)<<8);
925 }
926
927 /*
928 * Take down every thread in the group. This is called by fatal signals
929 * as well as by sys_exit_group (below).
930 */
931 void
932 do_group_exit(int exit_code)
933 {
934 struct signal_struct *sig = current->signal;
935
936 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
937
938 if (signal_group_exit(sig))
939 exit_code = sig->group_exit_code;
940 else if (!thread_group_empty(current)) {
941 struct sighand_struct *const sighand = current->sighand;
942 spin_lock_irq(&sighand->siglock);
943 if (signal_group_exit(sig))
944 /* Another thread got here before we took the lock. */
945 exit_code = sig->group_exit_code;
946 else {
947 sig->group_exit_code = exit_code;
948 sig->flags = SIGNAL_GROUP_EXIT;
949 zap_other_threads(current);
950 }
951 spin_unlock_irq(&sighand->siglock);
952 }
953
954 do_exit(exit_code);
955 /* NOTREACHED */
956 }
957
958 /*
959 * this kills every thread in the thread group. Note that any externally
960 * wait4()-ing process will get the correct exit code - even if this
961 * thread is not the thread group leader.
962 */
963 SYSCALL_DEFINE1(exit_group, int, error_code)
964 {
965 do_group_exit((error_code & 0xff) << 8);
966 /* NOTREACHED */
967 return 0;
968 }
969
970 struct wait_opts {
971 enum pid_type wo_type;
972 int wo_flags;
973 struct pid *wo_pid;
974
975 struct siginfo __user *wo_info;
976 int __user *wo_stat;
977 struct rusage __user *wo_rusage;
978
979 wait_queue_t child_wait;
980 int notask_error;
981 };
982
983 static inline
984 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
985 {
986 if (type != PIDTYPE_PID)
987 task = task->group_leader;
988 return task->pids[type].pid;
989 }
990
991 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
992 {
993 return wo->wo_type == PIDTYPE_MAX ||
994 task_pid_type(p, wo->wo_type) == wo->wo_pid;
995 }
996
997 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
998 {
999 if (!eligible_pid(wo, p))
1000 return 0;
1001 /* Wait for all children (clone and not) if __WALL is set;
1002 * otherwise, wait for clone children *only* if __WCLONE is
1003 * set; otherwise, wait for non-clone children *only*. (Note:
1004 * A "clone" child here is one that reports to its parent
1005 * using a signal other than SIGCHLD.) */
1006 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1007 && !(wo->wo_flags & __WALL))
1008 return 0;
1009
1010 return 1;
1011 }
1012
1013 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1014 pid_t pid, uid_t uid, int why, int status)
1015 {
1016 struct siginfo __user *infop;
1017 int retval = wo->wo_rusage
1018 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1019
1020 put_task_struct(p);
1021 infop = wo->wo_info;
1022 if (infop) {
1023 if (!retval)
1024 retval = put_user(SIGCHLD, &infop->si_signo);
1025 if (!retval)
1026 retval = put_user(0, &infop->si_errno);
1027 if (!retval)
1028 retval = put_user((short)why, &infop->si_code);
1029 if (!retval)
1030 retval = put_user(pid, &infop->si_pid);
1031 if (!retval)
1032 retval = put_user(uid, &infop->si_uid);
1033 if (!retval)
1034 retval = put_user(status, &infop->si_status);
1035 }
1036 if (!retval)
1037 retval = pid;
1038 return retval;
1039 }
1040
1041 /*
1042 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1043 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1044 * the lock and this task is uninteresting. If we return nonzero, we have
1045 * released the lock and the system call should return.
1046 */
1047 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1048 {
1049 unsigned long state;
1050 int retval, status, traced;
1051 pid_t pid = task_pid_vnr(p);
1052 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1053 struct siginfo __user *infop;
1054
1055 if (!likely(wo->wo_flags & WEXITED))
1056 return 0;
1057
1058 if (unlikely(wo->wo_flags & WNOWAIT)) {
1059 int exit_code = p->exit_code;
1060 int why;
1061
1062 get_task_struct(p);
1063 read_unlock(&tasklist_lock);
1064 if ((exit_code & 0x7f) == 0) {
1065 why = CLD_EXITED;
1066 status = exit_code >> 8;
1067 } else {
1068 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1069 status = exit_code & 0x7f;
1070 }
1071 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1072 }
1073
1074 /*
1075 * Try to move the task's state to DEAD
1076 * only one thread is allowed to do this:
1077 */
1078 state = xchg(&p->exit_state, EXIT_DEAD);
1079 if (state != EXIT_ZOMBIE) {
1080 BUG_ON(state != EXIT_DEAD);
1081 return 0;
1082 }
1083
1084 traced = ptrace_reparented(p);
1085 /*
1086 * It can be ptraced but not reparented, check
1087 * thread_group_leader() to filter out sub-threads.
1088 */
1089 if (likely(!traced) && thread_group_leader(p)) {
1090 struct signal_struct *psig;
1091 struct signal_struct *sig;
1092 unsigned long maxrss;
1093 cputime_t tgutime, tgstime;
1094
1095 /*
1096 * The resource counters for the group leader are in its
1097 * own task_struct. Those for dead threads in the group
1098 * are in its signal_struct, as are those for the child
1099 * processes it has previously reaped. All these
1100 * accumulate in the parent's signal_struct c* fields.
1101 *
1102 * We don't bother to take a lock here to protect these
1103 * p->signal fields, because they are only touched by
1104 * __exit_signal, which runs with tasklist_lock
1105 * write-locked anyway, and so is excluded here. We do
1106 * need to protect the access to parent->signal fields,
1107 * as other threads in the parent group can be right
1108 * here reaping other children at the same time.
1109 *
1110 * We use thread_group_cputime_adjusted() to get times for the thread
1111 * group, which consolidates times for all threads in the
1112 * group including the group leader.
1113 */
1114 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1115 spin_lock_irq(&p->real_parent->sighand->siglock);
1116 psig = p->real_parent->signal;
1117 sig = p->signal;
1118 psig->cutime += tgutime + sig->cutime;
1119 psig->cstime += tgstime + sig->cstime;
1120 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1121 psig->cmin_flt +=
1122 p->min_flt + sig->min_flt + sig->cmin_flt;
1123 psig->cmaj_flt +=
1124 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1125 psig->cnvcsw +=
1126 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1127 psig->cnivcsw +=
1128 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1129 psig->cinblock +=
1130 task_io_get_inblock(p) +
1131 sig->inblock + sig->cinblock;
1132 psig->coublock +=
1133 task_io_get_oublock(p) +
1134 sig->oublock + sig->coublock;
1135 maxrss = max(sig->maxrss, sig->cmaxrss);
1136 if (psig->cmaxrss < maxrss)
1137 psig->cmaxrss = maxrss;
1138 task_io_accounting_add(&psig->ioac, &p->ioac);
1139 task_io_accounting_add(&psig->ioac, &sig->ioac);
1140 spin_unlock_irq(&p->real_parent->sighand->siglock);
1141 }
1142
1143 /*
1144 * Now we are sure this task is interesting, and no other
1145 * thread can reap it because we set its state to EXIT_DEAD.
1146 */
1147 read_unlock(&tasklist_lock);
1148
1149 retval = wo->wo_rusage
1150 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1151 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1152 ? p->signal->group_exit_code : p->exit_code;
1153 if (!retval && wo->wo_stat)
1154 retval = put_user(status, wo->wo_stat);
1155
1156 infop = wo->wo_info;
1157 if (!retval && infop)
1158 retval = put_user(SIGCHLD, &infop->si_signo);
1159 if (!retval && infop)
1160 retval = put_user(0, &infop->si_errno);
1161 if (!retval && infop) {
1162 int why;
1163
1164 if ((status & 0x7f) == 0) {
1165 why = CLD_EXITED;
1166 status >>= 8;
1167 } else {
1168 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1169 status &= 0x7f;
1170 }
1171 retval = put_user((short)why, &infop->si_code);
1172 if (!retval)
1173 retval = put_user(status, &infop->si_status);
1174 }
1175 if (!retval && infop)
1176 retval = put_user(pid, &infop->si_pid);
1177 if (!retval && infop)
1178 retval = put_user(uid, &infop->si_uid);
1179 if (!retval)
1180 retval = pid;
1181
1182 if (traced) {
1183 write_lock_irq(&tasklist_lock);
1184 /* We dropped tasklist, ptracer could die and untrace */
1185 ptrace_unlink(p);
1186 /*
1187 * If this is not a sub-thread, notify the parent.
1188 * If parent wants a zombie, don't release it now.
1189 */
1190 if (thread_group_leader(p) &&
1191 !do_notify_parent(p, p->exit_signal)) {
1192 p->exit_state = EXIT_ZOMBIE;
1193 p = NULL;
1194 }
1195 write_unlock_irq(&tasklist_lock);
1196 }
1197 if (p != NULL)
1198 release_task(p);
1199
1200 return retval;
1201 }
1202
1203 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1204 {
1205 if (ptrace) {
1206 if (task_is_stopped_or_traced(p) &&
1207 !(p->jobctl & JOBCTL_LISTENING))
1208 return &p->exit_code;
1209 } else {
1210 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1211 return &p->signal->group_exit_code;
1212 }
1213 return NULL;
1214 }
1215
1216 /**
1217 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1218 * @wo: wait options
1219 * @ptrace: is the wait for ptrace
1220 * @p: task to wait for
1221 *
1222 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1223 *
1224 * CONTEXT:
1225 * read_lock(&tasklist_lock), which is released if return value is
1226 * non-zero. Also, grabs and releases @p->sighand->siglock.
1227 *
1228 * RETURNS:
1229 * 0 if wait condition didn't exist and search for other wait conditions
1230 * should continue. Non-zero return, -errno on failure and @p's pid on
1231 * success, implies that tasklist_lock is released and wait condition
1232 * search should terminate.
1233 */
1234 static int wait_task_stopped(struct wait_opts *wo,
1235 int ptrace, struct task_struct *p)
1236 {
1237 struct siginfo __user *infop;
1238 int retval, exit_code, *p_code, why;
1239 uid_t uid = 0; /* unneeded, required by compiler */
1240 pid_t pid;
1241
1242 /*
1243 * Traditionally we see ptrace'd stopped tasks regardless of options.
1244 */
1245 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1246 return 0;
1247
1248 if (!task_stopped_code(p, ptrace))
1249 return 0;
1250
1251 exit_code = 0;
1252 spin_lock_irq(&p->sighand->siglock);
1253
1254 p_code = task_stopped_code(p, ptrace);
1255 if (unlikely(!p_code))
1256 goto unlock_sig;
1257
1258 exit_code = *p_code;
1259 if (!exit_code)
1260 goto unlock_sig;
1261
1262 if (!unlikely(wo->wo_flags & WNOWAIT))
1263 *p_code = 0;
1264
1265 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1266 unlock_sig:
1267 spin_unlock_irq(&p->sighand->siglock);
1268 if (!exit_code)
1269 return 0;
1270
1271 /*
1272 * Now we are pretty sure this task is interesting.
1273 * Make sure it doesn't get reaped out from under us while we
1274 * give up the lock and then examine it below. We don't want to
1275 * keep holding onto the tasklist_lock while we call getrusage and
1276 * possibly take page faults for user memory.
1277 */
1278 get_task_struct(p);
1279 pid = task_pid_vnr(p);
1280 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1281 read_unlock(&tasklist_lock);
1282
1283 if (unlikely(wo->wo_flags & WNOWAIT))
1284 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1285
1286 retval = wo->wo_rusage
1287 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1288 if (!retval && wo->wo_stat)
1289 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1290
1291 infop = wo->wo_info;
1292 if (!retval && infop)
1293 retval = put_user(SIGCHLD, &infop->si_signo);
1294 if (!retval && infop)
1295 retval = put_user(0, &infop->si_errno);
1296 if (!retval && infop)
1297 retval = put_user((short)why, &infop->si_code);
1298 if (!retval && infop)
1299 retval = put_user(exit_code, &infop->si_status);
1300 if (!retval && infop)
1301 retval = put_user(pid, &infop->si_pid);
1302 if (!retval && infop)
1303 retval = put_user(uid, &infop->si_uid);
1304 if (!retval)
1305 retval = pid;
1306 put_task_struct(p);
1307
1308 BUG_ON(!retval);
1309 return retval;
1310 }
1311
1312 /*
1313 * Handle do_wait work for one task in a live, non-stopped state.
1314 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1315 * the lock and this task is uninteresting. If we return nonzero, we have
1316 * released the lock and the system call should return.
1317 */
1318 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1319 {
1320 int retval;
1321 pid_t pid;
1322 uid_t uid;
1323
1324 if (!unlikely(wo->wo_flags & WCONTINUED))
1325 return 0;
1326
1327 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1328 return 0;
1329
1330 spin_lock_irq(&p->sighand->siglock);
1331 /* Re-check with the lock held. */
1332 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1333 spin_unlock_irq(&p->sighand->siglock);
1334 return 0;
1335 }
1336 if (!unlikely(wo->wo_flags & WNOWAIT))
1337 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1338 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1339 spin_unlock_irq(&p->sighand->siglock);
1340
1341 pid = task_pid_vnr(p);
1342 get_task_struct(p);
1343 read_unlock(&tasklist_lock);
1344
1345 if (!wo->wo_info) {
1346 retval = wo->wo_rusage
1347 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1348 put_task_struct(p);
1349 if (!retval && wo->wo_stat)
1350 retval = put_user(0xffff, wo->wo_stat);
1351 if (!retval)
1352 retval = pid;
1353 } else {
1354 retval = wait_noreap_copyout(wo, p, pid, uid,
1355 CLD_CONTINUED, SIGCONT);
1356 BUG_ON(retval == 0);
1357 }
1358
1359 return retval;
1360 }
1361
1362 /*
1363 * Consider @p for a wait by @parent.
1364 *
1365 * -ECHILD should be in ->notask_error before the first call.
1366 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1367 * Returns zero if the search for a child should continue;
1368 * then ->notask_error is 0 if @p is an eligible child,
1369 * or another error from security_task_wait(), or still -ECHILD.
1370 */
1371 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1372 struct task_struct *p)
1373 {
1374 int ret = eligible_child(wo, p);
1375 if (!ret)
1376 return ret;
1377
1378 ret = security_task_wait(p);
1379 if (unlikely(ret < 0)) {
1380 /*
1381 * If we have not yet seen any eligible child,
1382 * then let this error code replace -ECHILD.
1383 * A permission error will give the user a clue
1384 * to look for security policy problems, rather
1385 * than for mysterious wait bugs.
1386 */
1387 if (wo->notask_error)
1388 wo->notask_error = ret;
1389 return 0;
1390 }
1391
1392 /* dead body doesn't have much to contribute */
1393 if (unlikely(p->exit_state == EXIT_DEAD)) {
1394 /*
1395 * But do not ignore this task until the tracer does
1396 * wait_task_zombie()->do_notify_parent().
1397 */
1398 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1399 wo->notask_error = 0;
1400 return 0;
1401 }
1402
1403 /* slay zombie? */
1404 if (p->exit_state == EXIT_ZOMBIE) {
1405 /*
1406 * A zombie ptracee is only visible to its ptracer.
1407 * Notification and reaping will be cascaded to the real
1408 * parent when the ptracer detaches.
1409 */
1410 if (likely(!ptrace) && unlikely(p->ptrace)) {
1411 /* it will become visible, clear notask_error */
1412 wo->notask_error = 0;
1413 return 0;
1414 }
1415
1416 /* we don't reap group leaders with subthreads */
1417 if (!delay_group_leader(p))
1418 return wait_task_zombie(wo, p);
1419
1420 /*
1421 * Allow access to stopped/continued state via zombie by
1422 * falling through. Clearing of notask_error is complex.
1423 *
1424 * When !@ptrace:
1425 *
1426 * If WEXITED is set, notask_error should naturally be
1427 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1428 * so, if there are live subthreads, there are events to
1429 * wait for. If all subthreads are dead, it's still safe
1430 * to clear - this function will be called again in finite
1431 * amount time once all the subthreads are released and
1432 * will then return without clearing.
1433 *
1434 * When @ptrace:
1435 *
1436 * Stopped state is per-task and thus can't change once the
1437 * target task dies. Only continued and exited can happen.
1438 * Clear notask_error if WCONTINUED | WEXITED.
1439 */
1440 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1441 wo->notask_error = 0;
1442 } else {
1443 /*
1444 * If @p is ptraced by a task in its real parent's group,
1445 * hide group stop/continued state when looking at @p as
1446 * the real parent; otherwise, a single stop can be
1447 * reported twice as group and ptrace stops.
1448 *
1449 * If a ptracer wants to distinguish the two events for its
1450 * own children, it should create a separate process which
1451 * takes the role of real parent.
1452 */
1453 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1454 return 0;
1455
1456 /*
1457 * @p is alive and it's gonna stop, continue or exit, so
1458 * there always is something to wait for.
1459 */
1460 wo->notask_error = 0;
1461 }
1462
1463 /*
1464 * Wait for stopped. Depending on @ptrace, different stopped state
1465 * is used and the two don't interact with each other.
1466 */
1467 ret = wait_task_stopped(wo, ptrace, p);
1468 if (ret)
1469 return ret;
1470
1471 /*
1472 * Wait for continued. There's only one continued state and the
1473 * ptracer can consume it which can confuse the real parent. Don't
1474 * use WCONTINUED from ptracer. You don't need or want it.
1475 */
1476 return wait_task_continued(wo, p);
1477 }
1478
1479 /*
1480 * Do the work of do_wait() for one thread in the group, @tsk.
1481 *
1482 * -ECHILD should be in ->notask_error before the first call.
1483 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1484 * Returns zero if the search for a child should continue; then
1485 * ->notask_error is 0 if there were any eligible children,
1486 * or another error from security_task_wait(), or still -ECHILD.
1487 */
1488 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1489 {
1490 struct task_struct *p;
1491
1492 list_for_each_entry(p, &tsk->children, sibling) {
1493 int ret = wait_consider_task(wo, 0, p);
1494 if (ret)
1495 return ret;
1496 }
1497
1498 return 0;
1499 }
1500
1501 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1502 {
1503 struct task_struct *p;
1504
1505 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1506 int ret = wait_consider_task(wo, 1, p);
1507 if (ret)
1508 return ret;
1509 }
1510
1511 return 0;
1512 }
1513
1514 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1515 int sync, void *key)
1516 {
1517 struct wait_opts *wo = container_of(wait, struct wait_opts,
1518 child_wait);
1519 struct task_struct *p = key;
1520
1521 if (!eligible_pid(wo, p))
1522 return 0;
1523
1524 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1525 return 0;
1526
1527 return default_wake_function(wait, mode, sync, key);
1528 }
1529
1530 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1531 {
1532 __wake_up_sync_key(&parent->signal->wait_chldexit,
1533 TASK_INTERRUPTIBLE, 1, p);
1534 }
1535
1536 static long do_wait(struct wait_opts *wo)
1537 {
1538 struct task_struct *tsk;
1539 int retval;
1540
1541 trace_sched_process_wait(wo->wo_pid);
1542
1543 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1544 wo->child_wait.private = current;
1545 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1546 repeat:
1547 /*
1548 * If there is nothing that can match our critiera just get out.
1549 * We will clear ->notask_error to zero if we see any child that
1550 * might later match our criteria, even if we are not able to reap
1551 * it yet.
1552 */
1553 wo->notask_error = -ECHILD;
1554 if ((wo->wo_type < PIDTYPE_MAX) &&
1555 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1556 goto notask;
1557
1558 set_current_state(TASK_INTERRUPTIBLE);
1559 read_lock(&tasklist_lock);
1560 tsk = current;
1561 do {
1562 retval = do_wait_thread(wo, tsk);
1563 if (retval)
1564 goto end;
1565
1566 retval = ptrace_do_wait(wo, tsk);
1567 if (retval)
1568 goto end;
1569
1570 if (wo->wo_flags & __WNOTHREAD)
1571 break;
1572 } while_each_thread(current, tsk);
1573 read_unlock(&tasklist_lock);
1574
1575 notask:
1576 retval = wo->notask_error;
1577 if (!retval && !(wo->wo_flags & WNOHANG)) {
1578 retval = -ERESTARTSYS;
1579 if (!signal_pending(current)) {
1580 schedule();
1581 goto repeat;
1582 }
1583 }
1584 end:
1585 __set_current_state(TASK_RUNNING);
1586 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1587 return retval;
1588 }
1589
1590 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1591 infop, int, options, struct rusage __user *, ru)
1592 {
1593 struct wait_opts wo;
1594 struct pid *pid = NULL;
1595 enum pid_type type;
1596 long ret;
1597
1598 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1599 return -EINVAL;
1600 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1601 return -EINVAL;
1602
1603 switch (which) {
1604 case P_ALL:
1605 type = PIDTYPE_MAX;
1606 break;
1607 case P_PID:
1608 type = PIDTYPE_PID;
1609 if (upid <= 0)
1610 return -EINVAL;
1611 break;
1612 case P_PGID:
1613 type = PIDTYPE_PGID;
1614 if (upid <= 0)
1615 return -EINVAL;
1616 break;
1617 default:
1618 return -EINVAL;
1619 }
1620
1621 if (type < PIDTYPE_MAX)
1622 pid = find_get_pid(upid);
1623
1624 wo.wo_type = type;
1625 wo.wo_pid = pid;
1626 wo.wo_flags = options;
1627 wo.wo_info = infop;
1628 wo.wo_stat = NULL;
1629 wo.wo_rusage = ru;
1630 ret = do_wait(&wo);
1631
1632 if (ret > 0) {
1633 ret = 0;
1634 } else if (infop) {
1635 /*
1636 * For a WNOHANG return, clear out all the fields
1637 * we would set so the user can easily tell the
1638 * difference.
1639 */
1640 if (!ret)
1641 ret = put_user(0, &infop->si_signo);
1642 if (!ret)
1643 ret = put_user(0, &infop->si_errno);
1644 if (!ret)
1645 ret = put_user(0, &infop->si_code);
1646 if (!ret)
1647 ret = put_user(0, &infop->si_pid);
1648 if (!ret)
1649 ret = put_user(0, &infop->si_uid);
1650 if (!ret)
1651 ret = put_user(0, &infop->si_status);
1652 }
1653
1654 put_pid(pid);
1655 return ret;
1656 }
1657
1658 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1659 int, options, struct rusage __user *, ru)
1660 {
1661 struct wait_opts wo;
1662 struct pid *pid = NULL;
1663 enum pid_type type;
1664 long ret;
1665
1666 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1667 __WNOTHREAD|__WCLONE|__WALL))
1668 return -EINVAL;
1669
1670 if (upid == -1)
1671 type = PIDTYPE_MAX;
1672 else if (upid < 0) {
1673 type = PIDTYPE_PGID;
1674 pid = find_get_pid(-upid);
1675 } else if (upid == 0) {
1676 type = PIDTYPE_PGID;
1677 pid = get_task_pid(current, PIDTYPE_PGID);
1678 } else /* upid > 0 */ {
1679 type = PIDTYPE_PID;
1680 pid = find_get_pid(upid);
1681 }
1682
1683 wo.wo_type = type;
1684 wo.wo_pid = pid;
1685 wo.wo_flags = options | WEXITED;
1686 wo.wo_info = NULL;
1687 wo.wo_stat = stat_addr;
1688 wo.wo_rusage = ru;
1689 ret = do_wait(&wo);
1690 put_pid(pid);
1691
1692 return ret;
1693 }
1694
1695 #ifdef __ARCH_WANT_SYS_WAITPID
1696
1697 /*
1698 * sys_waitpid() remains for compatibility. waitpid() should be
1699 * implemented by calling sys_wait4() from libc.a.
1700 */
1701 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1702 {
1703 return sys_wait4(pid, stat_addr, options, NULL);
1704 }
1705
1706 #endif