nlm: Ensure callback code also checks that the files match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32
33 /* Stats that can be updated by kernel. */
34 enum mem_cgroup_page_stat_item {
35 MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
36 };
37
38 struct mem_cgroup_reclaim_cookie {
39 struct zone *zone;
40 int priority;
41 unsigned int generation;
42 };
43
44 #ifdef CONFIG_MEMCG
45 /*
46 * All "charge" functions with gfp_mask should use GFP_KERNEL or
47 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
48 * alloc memory but reclaims memory from all available zones. So, "where I want
49 * memory from" bits of gfp_mask has no meaning. So any bits of that field is
50 * available but adding a rule is better. charge functions' gfp_mask should
51 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
52 * codes.
53 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
54 */
55
56 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
57 gfp_t gfp_mask);
58 /* for swap handling */
59 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
60 struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
61 extern void mem_cgroup_commit_charge_swapin(struct page *page,
62 struct mem_cgroup *memcg);
63 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
64
65 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
66 gfp_t gfp_mask);
67
68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
70
71 /* For coalescing uncharge for reducing memcg' overhead*/
72 extern void mem_cgroup_uncharge_start(void);
73 extern void mem_cgroup_uncharge_end(void);
74
75 extern void mem_cgroup_uncharge_page(struct page *page);
76 extern void mem_cgroup_uncharge_cache_page(struct page *page);
77
78 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
79 struct mem_cgroup *memcg);
80 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg);
81
82 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
83 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
84 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
85
86 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
87 extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont);
88
89 static inline
90 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
91 {
92 struct mem_cgroup *task_memcg;
93 bool match;
94
95 rcu_read_lock();
96 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
97 match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
98 rcu_read_unlock();
99 return match;
100 }
101
102 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
103
104 extern void
105 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
106 struct mem_cgroup **memcgp);
107 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
108 struct page *oldpage, struct page *newpage, bool migration_ok);
109
110 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
111 struct mem_cgroup *,
112 struct mem_cgroup_reclaim_cookie *);
113 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
114
115 /*
116 * For memory reclaim.
117 */
118 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
119 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
120 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
121 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
122 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
123 struct task_struct *p);
124 extern void mem_cgroup_replace_page_cache(struct page *oldpage,
125 struct page *newpage);
126
127 static inline void mem_cgroup_oom_enable(void)
128 {
129 WARN_ON(current->memcg_oom.may_oom);
130 current->memcg_oom.may_oom = 1;
131 }
132
133 static inline void mem_cgroup_oom_disable(void)
134 {
135 WARN_ON(!current->memcg_oom.may_oom);
136 current->memcg_oom.may_oom = 0;
137 }
138
139 static inline bool task_in_memcg_oom(struct task_struct *p)
140 {
141 return p->memcg_oom.memcg;
142 }
143
144 bool mem_cgroup_oom_synchronize(bool wait);
145
146 #ifdef CONFIG_MEMCG_SWAP
147 extern int do_swap_account;
148 #endif
149
150 static inline bool mem_cgroup_disabled(void)
151 {
152 if (mem_cgroup_subsys.disabled)
153 return true;
154 return false;
155 }
156
157 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
158 unsigned long *flags);
159
160 extern atomic_t memcg_moving;
161
162 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
163 bool *locked, unsigned long *flags)
164 {
165 if (mem_cgroup_disabled())
166 return;
167 rcu_read_lock();
168 *locked = false;
169 if (atomic_read(&memcg_moving))
170 __mem_cgroup_begin_update_page_stat(page, locked, flags);
171 }
172
173 void __mem_cgroup_end_update_page_stat(struct page *page,
174 unsigned long *flags);
175 static inline void mem_cgroup_end_update_page_stat(struct page *page,
176 bool *locked, unsigned long *flags)
177 {
178 if (mem_cgroup_disabled())
179 return;
180 if (*locked)
181 __mem_cgroup_end_update_page_stat(page, flags);
182 rcu_read_unlock();
183 }
184
185 void mem_cgroup_update_page_stat(struct page *page,
186 enum mem_cgroup_page_stat_item idx,
187 int val);
188
189 static inline void mem_cgroup_inc_page_stat(struct page *page,
190 enum mem_cgroup_page_stat_item idx)
191 {
192 mem_cgroup_update_page_stat(page, idx, 1);
193 }
194
195 static inline void mem_cgroup_dec_page_stat(struct page *page,
196 enum mem_cgroup_page_stat_item idx)
197 {
198 mem_cgroup_update_page_stat(page, idx, -1);
199 }
200
201 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
202 gfp_t gfp_mask,
203 unsigned long *total_scanned);
204
205 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
206 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
207 enum vm_event_item idx)
208 {
209 if (mem_cgroup_disabled())
210 return;
211 __mem_cgroup_count_vm_event(mm, idx);
212 }
213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
214 void mem_cgroup_split_huge_fixup(struct page *head);
215 #endif
216
217 #ifdef CONFIG_DEBUG_VM
218 bool mem_cgroup_bad_page_check(struct page *page);
219 void mem_cgroup_print_bad_page(struct page *page);
220 #endif
221 #else /* CONFIG_MEMCG */
222 struct mem_cgroup;
223
224 static inline int mem_cgroup_newpage_charge(struct page *page,
225 struct mm_struct *mm, gfp_t gfp_mask)
226 {
227 return 0;
228 }
229
230 static inline int mem_cgroup_cache_charge(struct page *page,
231 struct mm_struct *mm, gfp_t gfp_mask)
232 {
233 return 0;
234 }
235
236 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
237 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
238 {
239 return 0;
240 }
241
242 static inline void mem_cgroup_commit_charge_swapin(struct page *page,
243 struct mem_cgroup *memcg)
244 {
245 }
246
247 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
248 {
249 }
250
251 static inline void mem_cgroup_uncharge_start(void)
252 {
253 }
254
255 static inline void mem_cgroup_uncharge_end(void)
256 {
257 }
258
259 static inline void mem_cgroup_uncharge_page(struct page *page)
260 {
261 }
262
263 static inline void mem_cgroup_uncharge_cache_page(struct page *page)
264 {
265 }
266
267 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
268 struct mem_cgroup *memcg)
269 {
270 return &zone->lruvec;
271 }
272
273 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
274 struct zone *zone)
275 {
276 return &zone->lruvec;
277 }
278
279 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
280 {
281 return NULL;
282 }
283
284 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
285 {
286 return NULL;
287 }
288
289 static inline bool mm_match_cgroup(struct mm_struct *mm,
290 struct mem_cgroup *memcg)
291 {
292 return true;
293 }
294
295 static inline int task_in_mem_cgroup(struct task_struct *task,
296 const struct mem_cgroup *memcg)
297 {
298 return 1;
299 }
300
301 static inline struct cgroup_subsys_state
302 *mem_cgroup_css(struct mem_cgroup *memcg)
303 {
304 return NULL;
305 }
306
307 static inline void
308 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
309 struct mem_cgroup **memcgp)
310 {
311 }
312
313 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
314 struct page *oldpage, struct page *newpage, bool migration_ok)
315 {
316 }
317
318 static inline struct mem_cgroup *
319 mem_cgroup_iter(struct mem_cgroup *root,
320 struct mem_cgroup *prev,
321 struct mem_cgroup_reclaim_cookie *reclaim)
322 {
323 return NULL;
324 }
325
326 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
327 struct mem_cgroup *prev)
328 {
329 }
330
331 static inline bool mem_cgroup_disabled(void)
332 {
333 return true;
334 }
335
336 static inline int
337 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
338 {
339 return 1;
340 }
341
342 static inline unsigned long
343 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
344 {
345 return 0;
346 }
347
348 static inline void
349 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
350 int increment)
351 {
352 }
353
354 static inline void
355 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
356 {
357 }
358
359 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
360 bool *locked, unsigned long *flags)
361 {
362 }
363
364 static inline void mem_cgroup_end_update_page_stat(struct page *page,
365 bool *locked, unsigned long *flags)
366 {
367 }
368
369 static inline void mem_cgroup_oom_enable(void)
370 {
371 }
372
373 static inline void mem_cgroup_oom_disable(void)
374 {
375 }
376
377 static inline bool task_in_memcg_oom(struct task_struct *p)
378 {
379 return false;
380 }
381
382 static inline bool mem_cgroup_oom_synchronize(bool wait)
383 {
384 return false;
385 }
386
387 static inline void mem_cgroup_inc_page_stat(struct page *page,
388 enum mem_cgroup_page_stat_item idx)
389 {
390 }
391
392 static inline void mem_cgroup_dec_page_stat(struct page *page,
393 enum mem_cgroup_page_stat_item idx)
394 {
395 }
396
397 static inline
398 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
399 gfp_t gfp_mask,
400 unsigned long *total_scanned)
401 {
402 return 0;
403 }
404
405 static inline void mem_cgroup_split_huge_fixup(struct page *head)
406 {
407 }
408
409 static inline
410 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
411 {
412 }
413 static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
414 struct page *newpage)
415 {
416 }
417 #endif /* CONFIG_MEMCG */
418
419 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
420 static inline bool
421 mem_cgroup_bad_page_check(struct page *page)
422 {
423 return false;
424 }
425
426 static inline void
427 mem_cgroup_print_bad_page(struct page *page)
428 {
429 }
430 #endif
431
432 enum {
433 UNDER_LIMIT,
434 SOFT_LIMIT,
435 OVER_LIMIT,
436 };
437
438 struct sock;
439 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
440 void sock_update_memcg(struct sock *sk);
441 void sock_release_memcg(struct sock *sk);
442 #else
443 static inline void sock_update_memcg(struct sock *sk)
444 {
445 }
446 static inline void sock_release_memcg(struct sock *sk)
447 {
448 }
449 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
450
451 #ifdef CONFIG_MEMCG_KMEM
452 extern struct static_key memcg_kmem_enabled_key;
453
454 extern int memcg_limited_groups_array_size;
455
456 /*
457 * Helper macro to loop through all memcg-specific caches. Callers must still
458 * check if the cache is valid (it is either valid or NULL).
459 * the slab_mutex must be held when looping through those caches
460 */
461 #define for_each_memcg_cache_index(_idx) \
462 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
463
464 static inline bool memcg_kmem_enabled(void)
465 {
466 return static_key_false(&memcg_kmem_enabled_key);
467 }
468
469 /*
470 * In general, we'll do everything in our power to not incur in any overhead
471 * for non-memcg users for the kmem functions. Not even a function call, if we
472 * can avoid it.
473 *
474 * Therefore, we'll inline all those functions so that in the best case, we'll
475 * see that kmemcg is off for everybody and proceed quickly. If it is on,
476 * we'll still do most of the flag checking inline. We check a lot of
477 * conditions, but because they are pretty simple, they are expected to be
478 * fast.
479 */
480 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
481 int order);
482 void __memcg_kmem_commit_charge(struct page *page,
483 struct mem_cgroup *memcg, int order);
484 void __memcg_kmem_uncharge_pages(struct page *page, int order);
485
486 int memcg_cache_id(struct mem_cgroup *memcg);
487 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
488 struct kmem_cache *root_cache);
489 void memcg_release_cache(struct kmem_cache *cachep);
490 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
491
492 int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
493 void memcg_update_array_size(int num_groups);
494
495 struct kmem_cache *
496 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
497
498 void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
499 void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
500
501 /**
502 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
503 * @gfp: the gfp allocation flags.
504 * @memcg: a pointer to the memcg this was charged against.
505 * @order: allocation order.
506 *
507 * returns true if the memcg where the current task belongs can hold this
508 * allocation.
509 *
510 * We return true automatically if this allocation is not to be accounted to
511 * any memcg.
512 */
513 static inline bool
514 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
515 {
516 if (!memcg_kmem_enabled())
517 return true;
518
519 /*
520 * __GFP_NOFAIL allocations will move on even if charging is not
521 * possible. Therefore we don't even try, and have this allocation
522 * unaccounted. We could in theory charge it with
523 * res_counter_charge_nofail, but we hope those allocations are rare,
524 * and won't be worth the trouble.
525 */
526 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
527 return true;
528 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
529 return true;
530
531 /* If the test is dying, just let it go. */
532 if (unlikely(fatal_signal_pending(current)))
533 return true;
534
535 return __memcg_kmem_newpage_charge(gfp, memcg, order);
536 }
537
538 /**
539 * memcg_kmem_uncharge_pages: uncharge pages from memcg
540 * @page: pointer to struct page being freed
541 * @order: allocation order.
542 *
543 * there is no need to specify memcg here, since it is embedded in page_cgroup
544 */
545 static inline void
546 memcg_kmem_uncharge_pages(struct page *page, int order)
547 {
548 if (memcg_kmem_enabled())
549 __memcg_kmem_uncharge_pages(page, order);
550 }
551
552 /**
553 * memcg_kmem_commit_charge: embeds correct memcg in a page
554 * @page: pointer to struct page recently allocated
555 * @memcg: the memcg structure we charged against
556 * @order: allocation order.
557 *
558 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
559 * failure of the allocation. if @page is NULL, this function will revert the
560 * charges. Otherwise, it will commit the memcg given by @memcg to the
561 * corresponding page_cgroup.
562 */
563 static inline void
564 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
565 {
566 if (memcg_kmem_enabled() && memcg)
567 __memcg_kmem_commit_charge(page, memcg, order);
568 }
569
570 /**
571 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
572 * @cachep: the original global kmem cache
573 * @gfp: allocation flags.
574 *
575 * This function assumes that the task allocating, which determines the memcg
576 * in the page allocator, belongs to the same cgroup throughout the whole
577 * process. Misacounting can happen if the task calls memcg_kmem_get_cache()
578 * while belonging to a cgroup, and later on changes. This is considered
579 * acceptable, and should only happen upon task migration.
580 *
581 * Before the cache is created by the memcg core, there is also a possible
582 * imbalance: the task belongs to a memcg, but the cache being allocated from
583 * is the global cache, since the child cache is not yet guaranteed to be
584 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
585 * passed and the page allocator will not attempt any cgroup accounting.
586 */
587 static __always_inline struct kmem_cache *
588 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
589 {
590 if (!memcg_kmem_enabled())
591 return cachep;
592 if (gfp & __GFP_NOFAIL)
593 return cachep;
594 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
595 return cachep;
596 if (unlikely(fatal_signal_pending(current)))
597 return cachep;
598
599 return __memcg_kmem_get_cache(cachep, gfp);
600 }
601 #else
602 #define for_each_memcg_cache_index(_idx) \
603 for (; NULL; )
604
605 static inline bool memcg_kmem_enabled(void)
606 {
607 return false;
608 }
609
610 static inline bool
611 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
612 {
613 return true;
614 }
615
616 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
617 {
618 }
619
620 static inline void
621 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
622 {
623 }
624
625 static inline int memcg_cache_id(struct mem_cgroup *memcg)
626 {
627 return -1;
628 }
629
630 static inline int
631 memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
632 struct kmem_cache *root_cache)
633 {
634 return 0;
635 }
636
637 static inline void memcg_release_cache(struct kmem_cache *cachep)
638 {
639 }
640
641 static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
642 struct kmem_cache *s)
643 {
644 }
645
646 static inline struct kmem_cache *
647 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
648 {
649 return cachep;
650 }
651
652 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
653 {
654 }
655 #endif /* CONFIG_MEMCG_KMEM */
656 #endif /* _LINUX_MEMCONTROL_H */
657