nlm: Ensure callback code also checks that the files match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / memcontrol.h
CommitLineData
8cdea7c0
BS
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
f8d66542 22#include <linux/cgroup.h>
456f998e 23#include <linux/vm_event_item.h>
7ae1e1d0 24#include <linux/hardirq.h>
a8964b9b 25#include <linux/jump_label.h>
456f998e 26
78fb7466
PE
27struct mem_cgroup;
28struct page_cgroup;
8697d331
BS
29struct page;
30struct mm_struct;
2633d7a0 31struct kmem_cache;
78fb7466 32
2a7106f2
GT
33/* Stats that can be updated by kernel. */
34enum mem_cgroup_page_stat_item {
35 MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
36};
37
5660048c
JW
38struct mem_cgroup_reclaim_cookie {
39 struct zone *zone;
40 int priority;
41 unsigned int generation;
42};
43
c255a458 44#ifdef CONFIG_MEMCG
2c26fdd7
KH
45/*
46 * All "charge" functions with gfp_mask should use GFP_KERNEL or
47 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
48 * alloc memory but reclaims memory from all available zones. So, "where I want
49 * memory from" bits of gfp_mask has no meaning. So any bits of that field is
50 * available but adding a rule is better. charge functions' gfp_mask should
51 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
52 * codes.
53 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
54 */
78fb7466 55
7a81b88c 56extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
e1a1cd59 57 gfp_t gfp_mask);
7a81b88c 58/* for swap handling */
8c7c6e34 59extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
72835c86 60 struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
7a81b88c 61extern void mem_cgroup_commit_charge_swapin(struct page *page,
72835c86
JW
62 struct mem_cgroup *memcg);
63extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
7a81b88c 64
8289546e
HD
65extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
66 gfp_t gfp_mask);
925b7673
JW
67
68struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
fa9add64 69struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
569b846d
KH
70
71/* For coalescing uncharge for reducing memcg' overhead*/
72extern void mem_cgroup_uncharge_start(void);
73extern void mem_cgroup_uncharge_end(void);
74
3c541e14 75extern void mem_cgroup_uncharge_page(struct page *page);
69029cd5 76extern void mem_cgroup_uncharge_cache_page(struct page *page);
c9b0ed51 77
c3ac9a8a
JW
78bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
79 struct mem_cgroup *memcg);
c0ff4b85 80int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg);
3062fc67 81
e42d9d5d 82extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
cf475ad2 83extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
a433658c 84extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
cf475ad2 85
e1aab161 86extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
d1a4c0b3 87extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont);
e1aab161 88
2e4d4091 89static inline
587af308 90bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
2e4d4091 91{
587af308
JW
92 struct mem_cgroup *task_memcg;
93 bool match;
c3ac9a8a 94
2e4d4091 95 rcu_read_lock();
587af308
JW
96 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
97 match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
2e4d4091 98 rcu_read_unlock();
c3ac9a8a 99 return match;
2e4d4091 100}
8a9f3ccd 101
c0ff4b85 102extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
d324236b 103
0030f535
JW
104extern void
105mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
106 struct mem_cgroup **memcgp);
c0ff4b85 107extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 108 struct page *oldpage, struct page *newpage, bool migration_ok);
ae41be37 109
5660048c
JW
110struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
111 struct mem_cgroup *,
112 struct mem_cgroup_reclaim_cookie *);
113void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
114
58ae83db
KH
115/*
116 * For memory reclaim.
117 */
c56d5c7d 118int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
889976db 119int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
4d7dcca2 120unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
fa9add64 121void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
e222432b
BS
122extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
123 struct task_struct *p);
ab936cbc
KH
124extern void mem_cgroup_replace_page_cache(struct page *oldpage,
125 struct page *newpage);
58ae83db 126
f8a51179 127static inline void mem_cgroup_oom_enable(void)
11f34787 128{
f8a51179
JW
129 WARN_ON(current->memcg_oom.may_oom);
130 current->memcg_oom.may_oom = 1;
11f34787
JW
131}
132
f8a51179 133static inline void mem_cgroup_oom_disable(void)
11f34787 134{
f8a51179
JW
135 WARN_ON(!current->memcg_oom.may_oom);
136 current->memcg_oom.may_oom = 0;
11f34787
JW
137}
138
f79d6a46
JW
139static inline bool task_in_memcg_oom(struct task_struct *p)
140{
f8a51179 141 return p->memcg_oom.memcg;
f79d6a46
JW
142}
143
f8a51179 144bool mem_cgroup_oom_synchronize(bool wait);
f79d6a46 145
c255a458 146#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
147extern int do_swap_account;
148#endif
f8d66542
HT
149
150static inline bool mem_cgroup_disabled(void)
151{
152 if (mem_cgroup_subsys.disabled)
153 return true;
154 return false;
155}
156
89c06bd5
KH
157void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
158 unsigned long *flags);
159
4331f7d3
KH
160extern atomic_t memcg_moving;
161
89c06bd5
KH
162static inline void mem_cgroup_begin_update_page_stat(struct page *page,
163 bool *locked, unsigned long *flags)
164{
165 if (mem_cgroup_disabled())
166 return;
167 rcu_read_lock();
168 *locked = false;
4331f7d3
KH
169 if (atomic_read(&memcg_moving))
170 __mem_cgroup_begin_update_page_stat(page, locked, flags);
89c06bd5
KH
171}
172
173void __mem_cgroup_end_update_page_stat(struct page *page,
174 unsigned long *flags);
175static inline void mem_cgroup_end_update_page_stat(struct page *page,
176 bool *locked, unsigned long *flags)
177{
178 if (mem_cgroup_disabled())
179 return;
180 if (*locked)
181 __mem_cgroup_end_update_page_stat(page, flags);
182 rcu_read_unlock();
183}
184
2a7106f2
GT
185void mem_cgroup_update_page_stat(struct page *page,
186 enum mem_cgroup_page_stat_item idx,
187 int val);
188
189static inline void mem_cgroup_inc_page_stat(struct page *page,
190 enum mem_cgroup_page_stat_item idx)
191{
192 mem_cgroup_update_page_stat(page, idx, 1);
193}
194
195static inline void mem_cgroup_dec_page_stat(struct page *page,
196 enum mem_cgroup_page_stat_item idx)
197{
198 mem_cgroup_update_page_stat(page, idx, -1);
199}
200
4e416953 201unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
202 gfp_t gfp_mask,
203 unsigned long *total_scanned);
a63d83f4 204
68ae564b
DR
205void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
206static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
207 enum vm_event_item idx)
208{
209 if (mem_cgroup_disabled())
210 return;
211 __mem_cgroup_count_vm_event(mm, idx);
212}
ca3e0214 213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e94c8a9c 214void mem_cgroup_split_huge_fixup(struct page *head);
ca3e0214
KH
215#endif
216
f212ad7c
DN
217#ifdef CONFIG_DEBUG_VM
218bool mem_cgroup_bad_page_check(struct page *page);
219void mem_cgroup_print_bad_page(struct page *page);
220#endif
c255a458 221#else /* CONFIG_MEMCG */
7a81b88c
KH
222struct mem_cgroup;
223
224static inline int mem_cgroup_newpage_charge(struct page *page,
8289546e 225 struct mm_struct *mm, gfp_t gfp_mask)
8a9f3ccd
BS
226{
227 return 0;
228}
229
8289546e
HD
230static inline int mem_cgroup_cache_charge(struct page *page,
231 struct mm_struct *mm, gfp_t gfp_mask)
8a9f3ccd 232{
8289546e 233 return 0;
8a9f3ccd
BS
234}
235
8c7c6e34 236static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
72835c86 237 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
7a81b88c
KH
238{
239 return 0;
240}
241
242static inline void mem_cgroup_commit_charge_swapin(struct page *page,
72835c86 243 struct mem_cgroup *memcg)
7a81b88c
KH
244{
245}
246
72835c86 247static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c
KH
248{
249}
250
569b846d
KH
251static inline void mem_cgroup_uncharge_start(void)
252{
253}
254
255static inline void mem_cgroup_uncharge_end(void)
256{
257}
258
8a9f3ccd
BS
259static inline void mem_cgroup_uncharge_page(struct page *page)
260{
261}
262
69029cd5
KH
263static inline void mem_cgroup_uncharge_cache_page(struct page *page)
264{
265}
266
925b7673
JW
267static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
268 struct mem_cgroup *memcg)
08e552c6 269{
925b7673 270 return &zone->lruvec;
08e552c6
KH
271}
272
fa9add64
HD
273static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
274 struct zone *zone)
66e1707b 275{
925b7673 276 return &zone->lruvec;
66e1707b
BS
277}
278
e42d9d5d
WF
279static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
280{
281 return NULL;
282}
283
a433658c
KM
284static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
285{
286 return NULL;
287}
288
587af308 289static inline bool mm_match_cgroup(struct mm_struct *mm,
c0ff4b85 290 struct mem_cgroup *memcg)
bed7161a 291{
587af308 292 return true;
bed7161a
BS
293}
294
4c4a2214 295static inline int task_in_mem_cgroup(struct task_struct *task,
c0ff4b85 296 const struct mem_cgroup *memcg)
4c4a2214
DR
297{
298 return 1;
299}
300
c0ff4b85
R
301static inline struct cgroup_subsys_state
302 *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b
WF
303{
304 return NULL;
305}
306
0030f535 307static inline void
ac39cf8c 308mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
0030f535 309 struct mem_cgroup **memcgp)
ae41be37 310{
ae41be37
KH
311}
312
c0ff4b85 313static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 314 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37
KH
315{
316}
317
5660048c
JW
318static inline struct mem_cgroup *
319mem_cgroup_iter(struct mem_cgroup *root,
320 struct mem_cgroup *prev,
321 struct mem_cgroup_reclaim_cookie *reclaim)
322{
323 return NULL;
324}
325
326static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
327 struct mem_cgroup *prev)
328{
329}
330
f8d66542
HT
331static inline bool mem_cgroup_disabled(void)
332{
333 return true;
334}
a636b327 335
14797e23 336static inline int
c56d5c7d 337mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23
KM
338{
339 return 1;
340}
341
a3d8e054 342static inline unsigned long
4d7dcca2 343mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
a3d8e054
KM
344{
345 return 0;
346}
347
fa9add64
HD
348static inline void
349mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
350 int increment)
3e2f41f1 351{
3e2f41f1
KM
352}
353
e222432b
BS
354static inline void
355mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
356{
357}
358
89c06bd5
KH
359static inline void mem_cgroup_begin_update_page_stat(struct page *page,
360 bool *locked, unsigned long *flags)
361{
362}
363
364static inline void mem_cgroup_end_update_page_stat(struct page *page,
365 bool *locked, unsigned long *flags)
366{
367}
368
f8a51179 369static inline void mem_cgroup_oom_enable(void)
11f34787
JW
370{
371}
372
f8a51179 373static inline void mem_cgroup_oom_disable(void)
11f34787
JW
374{
375}
376
f79d6a46
JW
377static inline bool task_in_memcg_oom(struct task_struct *p)
378{
379 return false;
380}
381
f8a51179 382static inline bool mem_cgroup_oom_synchronize(bool wait)
f79d6a46
JW
383{
384 return false;
385}
386
2a7106f2
GT
387static inline void mem_cgroup_inc_page_stat(struct page *page,
388 enum mem_cgroup_page_stat_item idx)
389{
390}
391
392static inline void mem_cgroup_dec_page_stat(struct page *page,
393 enum mem_cgroup_page_stat_item idx)
d69b042f
BS
394{
395}
396
4e416953
BS
397static inline
398unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
399 gfp_t gfp_mask,
400 unsigned long *total_scanned)
4e416953
BS
401{
402 return 0;
403}
404
e94c8a9c 405static inline void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
406{
407}
408
456f998e
YH
409static inline
410void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
411{
412}
ab936cbc
KH
413static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
414 struct page *newpage)
415{
416}
c255a458 417#endif /* CONFIG_MEMCG */
78fb7466 418
c255a458 419#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
f212ad7c
DN
420static inline bool
421mem_cgroup_bad_page_check(struct page *page)
422{
423 return false;
424}
425
426static inline void
427mem_cgroup_print_bad_page(struct page *page)
428{
429}
430#endif
431
e1aab161
GC
432enum {
433 UNDER_LIMIT,
434 SOFT_LIMIT,
435 OVER_LIMIT,
436};
437
438struct sock;
cd59085a 439#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161
GC
440void sock_update_memcg(struct sock *sk);
441void sock_release_memcg(struct sock *sk);
442#else
443static inline void sock_update_memcg(struct sock *sk)
444{
445}
446static inline void sock_release_memcg(struct sock *sk)
447{
448}
cd59085a 449#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
7ae1e1d0
GC
450
451#ifdef CONFIG_MEMCG_KMEM
a8964b9b 452extern struct static_key memcg_kmem_enabled_key;
749c5415
GC
453
454extern int memcg_limited_groups_array_size;
ebe945c2
GC
455
456/*
457 * Helper macro to loop through all memcg-specific caches. Callers must still
458 * check if the cache is valid (it is either valid or NULL).
459 * the slab_mutex must be held when looping through those caches
460 */
749c5415 461#define for_each_memcg_cache_index(_idx) \
91c777d8 462 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
749c5415 463
7ae1e1d0
GC
464static inline bool memcg_kmem_enabled(void)
465{
a8964b9b 466 return static_key_false(&memcg_kmem_enabled_key);
7ae1e1d0
GC
467}
468
469/*
470 * In general, we'll do everything in our power to not incur in any overhead
471 * for non-memcg users for the kmem functions. Not even a function call, if we
472 * can avoid it.
473 *
474 * Therefore, we'll inline all those functions so that in the best case, we'll
475 * see that kmemcg is off for everybody and proceed quickly. If it is on,
476 * we'll still do most of the flag checking inline. We check a lot of
477 * conditions, but because they are pretty simple, they are expected to be
478 * fast.
479 */
480bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
481 int order);
482void __memcg_kmem_commit_charge(struct page *page,
483 struct mem_cgroup *memcg, int order);
484void __memcg_kmem_uncharge_pages(struct page *page, int order);
485
2633d7a0 486int memcg_cache_id(struct mem_cgroup *memcg);
943a451a
GC
487int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
488 struct kmem_cache *root_cache);
2633d7a0
GC
489void memcg_release_cache(struct kmem_cache *cachep);
490void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
491
55007d84
GC
492int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
493void memcg_update_array_size(int num_groups);
d7f25f8a
GC
494
495struct kmem_cache *
496__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
497
1f458cbf 498void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
7cf27982 499void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
1f458cbf 500
7ae1e1d0
GC
501/**
502 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
503 * @gfp: the gfp allocation flags.
504 * @memcg: a pointer to the memcg this was charged against.
505 * @order: allocation order.
506 *
507 * returns true if the memcg where the current task belongs can hold this
508 * allocation.
509 *
510 * We return true automatically if this allocation is not to be accounted to
511 * any memcg.
512 */
513static inline bool
514memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
515{
516 if (!memcg_kmem_enabled())
517 return true;
518
519 /*
520 * __GFP_NOFAIL allocations will move on even if charging is not
521 * possible. Therefore we don't even try, and have this allocation
522 * unaccounted. We could in theory charge it with
523 * res_counter_charge_nofail, but we hope those allocations are rare,
524 * and won't be worth the trouble.
525 */
526 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
527 return true;
528 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
529 return true;
530
531 /* If the test is dying, just let it go. */
532 if (unlikely(fatal_signal_pending(current)))
533 return true;
534
535 return __memcg_kmem_newpage_charge(gfp, memcg, order);
536}
537
538/**
539 * memcg_kmem_uncharge_pages: uncharge pages from memcg
540 * @page: pointer to struct page being freed
541 * @order: allocation order.
542 *
543 * there is no need to specify memcg here, since it is embedded in page_cgroup
544 */
545static inline void
546memcg_kmem_uncharge_pages(struct page *page, int order)
547{
548 if (memcg_kmem_enabled())
549 __memcg_kmem_uncharge_pages(page, order);
550}
551
552/**
553 * memcg_kmem_commit_charge: embeds correct memcg in a page
554 * @page: pointer to struct page recently allocated
555 * @memcg: the memcg structure we charged against
556 * @order: allocation order.
557 *
558 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
559 * failure of the allocation. if @page is NULL, this function will revert the
560 * charges. Otherwise, it will commit the memcg given by @memcg to the
561 * corresponding page_cgroup.
562 */
563static inline void
564memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
565{
566 if (memcg_kmem_enabled() && memcg)
567 __memcg_kmem_commit_charge(page, memcg, order);
568}
569
d7f25f8a
GC
570/**
571 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
572 * @cachep: the original global kmem cache
573 * @gfp: allocation flags.
574 *
575 * This function assumes that the task allocating, which determines the memcg
576 * in the page allocator, belongs to the same cgroup throughout the whole
577 * process. Misacounting can happen if the task calls memcg_kmem_get_cache()
578 * while belonging to a cgroup, and later on changes. This is considered
579 * acceptable, and should only happen upon task migration.
580 *
581 * Before the cache is created by the memcg core, there is also a possible
582 * imbalance: the task belongs to a memcg, but the cache being allocated from
583 * is the global cache, since the child cache is not yet guaranteed to be
584 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
585 * passed and the page allocator will not attempt any cgroup accounting.
586 */
587static __always_inline struct kmem_cache *
588memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
589{
590 if (!memcg_kmem_enabled())
591 return cachep;
592 if (gfp & __GFP_NOFAIL)
593 return cachep;
594 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
595 return cachep;
596 if (unlikely(fatal_signal_pending(current)))
597 return cachep;
598
599 return __memcg_kmem_get_cache(cachep, gfp);
600}
7ae1e1d0 601#else
749c5415
GC
602#define for_each_memcg_cache_index(_idx) \
603 for (; NULL; )
604
b9ce5ef4
GC
605static inline bool memcg_kmem_enabled(void)
606{
607 return false;
608}
609
7ae1e1d0
GC
610static inline bool
611memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
612{
613 return true;
614}
615
616static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
617{
618}
619
620static inline void
621memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
622{
623}
2633d7a0
GC
624
625static inline int memcg_cache_id(struct mem_cgroup *memcg)
626{
627 return -1;
628}
629
943a451a
GC
630static inline int
631memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
632 struct kmem_cache *root_cache)
2633d7a0
GC
633{
634 return 0;
635}
636
637static inline void memcg_release_cache(struct kmem_cache *cachep)
638{
639}
640
641static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
642 struct kmem_cache *s)
643{
644}
d7f25f8a
GC
645
646static inline struct kmem_cache *
647memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
648{
649 return cachep;
650}
7cf27982
GC
651
652static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
653{
654}
7ae1e1d0 655#endif /* CONFIG_MEMCG_KMEM */
8cdea7c0
BS
656#endif /* _LINUX_MEMCONTROL_H */
657