Merge branch 'depends/rmk/devel-stable' into next/board
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existent name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 static char *getname_flags(const char __user * filename, int flags)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
152 __putname(tmp);
153 result = ERR_PTR(retval);
154 }
155 }
156 }
157 audit_getname(result);
158 return result;
159 }
160
161 char *getname(const char __user * filename)
162 {
163 return getname_flags(filename, 0);
164 }
165
166 #ifdef CONFIG_AUDITSYSCALL
167 void putname(const char *name)
168 {
169 if (unlikely(!audit_dummy_context()))
170 audit_putname(name);
171 else
172 __putname(name);
173 }
174 EXPORT_SYMBOL(putname);
175 #endif
176
177 static int check_acl(struct inode *inode, int mask)
178 {
179 #ifdef CONFIG_FS_POSIX_ACL
180 struct posix_acl *acl;
181
182 if (mask & MAY_NOT_BLOCK) {
183 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
184 if (!acl)
185 return -EAGAIN;
186 /* no ->get_acl() calls in RCU mode... */
187 if (acl == ACL_NOT_CACHED)
188 return -ECHILD;
189 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
190 }
191
192 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
193
194 /*
195 * A filesystem can force a ACL callback by just never filling the
196 * ACL cache. But normally you'd fill the cache either at inode
197 * instantiation time, or on the first ->get_acl call.
198 *
199 * If the filesystem doesn't have a get_acl() function at all, we'll
200 * just create the negative cache entry.
201 */
202 if (acl == ACL_NOT_CACHED) {
203 if (inode->i_op->get_acl) {
204 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
205 if (IS_ERR(acl))
206 return PTR_ERR(acl);
207 } else {
208 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
209 return -EAGAIN;
210 }
211 }
212
213 if (acl) {
214 int error = posix_acl_permission(inode, acl, mask);
215 posix_acl_release(acl);
216 return error;
217 }
218 #endif
219
220 return -EAGAIN;
221 }
222
223 /*
224 * This does basic POSIX ACL permission checking
225 */
226 static int acl_permission_check(struct inode *inode, int mask)
227 {
228 unsigned int mode = inode->i_mode;
229
230 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
231
232 if (current_user_ns() != inode_userns(inode))
233 goto other_perms;
234
235 if (likely(current_fsuid() == inode->i_uid))
236 mode >>= 6;
237 else {
238 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
239 int error = check_acl(inode, mask);
240 if (error != -EAGAIN)
241 return error;
242 }
243
244 if (in_group_p(inode->i_gid))
245 mode >>= 3;
246 }
247
248 other_perms:
249 /*
250 * If the DACs are ok we don't need any capability check.
251 */
252 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
253 return 0;
254 return -EACCES;
255 }
256
257 /**
258 * generic_permission - check for access rights on a Posix-like filesystem
259 * @inode: inode to check access rights for
260 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
261 *
262 * Used to check for read/write/execute permissions on a file.
263 * We use "fsuid" for this, letting us set arbitrary permissions
264 * for filesystem access without changing the "normal" uids which
265 * are used for other things.
266 *
267 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
268 * request cannot be satisfied (eg. requires blocking or too much complexity).
269 * It would then be called again in ref-walk mode.
270 */
271 int generic_permission(struct inode *inode, int mask)
272 {
273 int ret;
274
275 /*
276 * Do the basic POSIX ACL permission checks.
277 */
278 ret = acl_permission_check(inode, mask);
279 if (ret != -EACCES)
280 return ret;
281
282 if (S_ISDIR(inode->i_mode)) {
283 /* DACs are overridable for directories */
284 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
285 return 0;
286 if (!(mask & MAY_WRITE))
287 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
288 return 0;
289 return -EACCES;
290 }
291 /*
292 * Read/write DACs are always overridable.
293 * Executable DACs are overridable when there is
294 * at least one exec bit set.
295 */
296 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
297 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
298 return 0;
299
300 /*
301 * Searching includes executable on directories, else just read.
302 */
303 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
304 if (mask == MAY_READ)
305 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
306 return 0;
307
308 return -EACCES;
309 }
310
311 /*
312 * We _really_ want to just do "generic_permission()" without
313 * even looking at the inode->i_op values. So we keep a cache
314 * flag in inode->i_opflags, that says "this has not special
315 * permission function, use the fast case".
316 */
317 static inline int do_inode_permission(struct inode *inode, int mask)
318 {
319 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
320 if (likely(inode->i_op->permission))
321 return inode->i_op->permission(inode, mask);
322
323 /* This gets set once for the inode lifetime */
324 spin_lock(&inode->i_lock);
325 inode->i_opflags |= IOP_FASTPERM;
326 spin_unlock(&inode->i_lock);
327 }
328 return generic_permission(inode, mask);
329 }
330
331 /**
332 * inode_permission - check for access rights to a given inode
333 * @inode: inode to check permission on
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
335 *
336 * Used to check for read/write/execute permissions on an inode.
337 * We use "fsuid" for this, letting us set arbitrary permissions
338 * for filesystem access without changing the "normal" uids which
339 * are used for other things.
340 */
341 int inode_permission(struct inode *inode, int mask)
342 {
343 int retval;
344
345 if (unlikely(mask & MAY_WRITE)) {
346 umode_t mode = inode->i_mode;
347
348 /*
349 * Nobody gets write access to a read-only fs.
350 */
351 if (IS_RDONLY(inode) &&
352 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
353 return -EROFS;
354
355 /*
356 * Nobody gets write access to an immutable file.
357 */
358 if (IS_IMMUTABLE(inode))
359 return -EACCES;
360 }
361
362 retval = do_inode_permission(inode, mask);
363 if (retval)
364 return retval;
365
366 retval = devcgroup_inode_permission(inode, mask);
367 if (retval)
368 return retval;
369
370 return security_inode_permission(inode, mask);
371 }
372
373 /**
374 * path_get - get a reference to a path
375 * @path: path to get the reference to
376 *
377 * Given a path increment the reference count to the dentry and the vfsmount.
378 */
379 void path_get(struct path *path)
380 {
381 mntget(path->mnt);
382 dget(path->dentry);
383 }
384 EXPORT_SYMBOL(path_get);
385
386 /**
387 * path_put - put a reference to a path
388 * @path: path to put the reference to
389 *
390 * Given a path decrement the reference count to the dentry and the vfsmount.
391 */
392 void path_put(struct path *path)
393 {
394 dput(path->dentry);
395 mntput(path->mnt);
396 }
397 EXPORT_SYMBOL(path_put);
398
399 /*
400 * Path walking has 2 modes, rcu-walk and ref-walk (see
401 * Documentation/filesystems/path-lookup.txt). In situations when we can't
402 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
403 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
404 * mode. Refcounts are grabbed at the last known good point before rcu-walk
405 * got stuck, so ref-walk may continue from there. If this is not successful
406 * (eg. a seqcount has changed), then failure is returned and it's up to caller
407 * to restart the path walk from the beginning in ref-walk mode.
408 */
409
410 /**
411 * unlazy_walk - try to switch to ref-walk mode.
412 * @nd: nameidata pathwalk data
413 * @dentry: child of nd->path.dentry or NULL
414 * Returns: 0 on success, -ECHILD on failure
415 *
416 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
417 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
418 * @nd or NULL. Must be called from rcu-walk context.
419 */
420 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
421 {
422 struct fs_struct *fs = current->fs;
423 struct dentry *parent = nd->path.dentry;
424 int want_root = 0;
425
426 BUG_ON(!(nd->flags & LOOKUP_RCU));
427 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
428 want_root = 1;
429 spin_lock(&fs->lock);
430 if (nd->root.mnt != fs->root.mnt ||
431 nd->root.dentry != fs->root.dentry)
432 goto err_root;
433 }
434 spin_lock(&parent->d_lock);
435 if (!dentry) {
436 if (!__d_rcu_to_refcount(parent, nd->seq))
437 goto err_parent;
438 BUG_ON(nd->inode != parent->d_inode);
439 } else {
440 if (dentry->d_parent != parent)
441 goto err_parent;
442 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
443 if (!__d_rcu_to_refcount(dentry, nd->seq))
444 goto err_child;
445 /*
446 * If the sequence check on the child dentry passed, then
447 * the child has not been removed from its parent. This
448 * means the parent dentry must be valid and able to take
449 * a reference at this point.
450 */
451 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
452 BUG_ON(!parent->d_count);
453 parent->d_count++;
454 spin_unlock(&dentry->d_lock);
455 }
456 spin_unlock(&parent->d_lock);
457 if (want_root) {
458 path_get(&nd->root);
459 spin_unlock(&fs->lock);
460 }
461 mntget(nd->path.mnt);
462
463 rcu_read_unlock();
464 br_read_unlock(vfsmount_lock);
465 nd->flags &= ~LOOKUP_RCU;
466 return 0;
467
468 err_child:
469 spin_unlock(&dentry->d_lock);
470 err_parent:
471 spin_unlock(&parent->d_lock);
472 err_root:
473 if (want_root)
474 spin_unlock(&fs->lock);
475 return -ECHILD;
476 }
477
478 /**
479 * release_open_intent - free up open intent resources
480 * @nd: pointer to nameidata
481 */
482 void release_open_intent(struct nameidata *nd)
483 {
484 struct file *file = nd->intent.open.file;
485
486 if (file && !IS_ERR(file)) {
487 if (file->f_path.dentry == NULL)
488 put_filp(file);
489 else
490 fput(file);
491 }
492 }
493
494 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
495 {
496 return dentry->d_op->d_revalidate(dentry, nd);
497 }
498
499 /**
500 * complete_walk - successful completion of path walk
501 * @nd: pointer nameidata
502 *
503 * If we had been in RCU mode, drop out of it and legitimize nd->path.
504 * Revalidate the final result, unless we'd already done that during
505 * the path walk or the filesystem doesn't ask for it. Return 0 on
506 * success, -error on failure. In case of failure caller does not
507 * need to drop nd->path.
508 */
509 static int complete_walk(struct nameidata *nd)
510 {
511 struct dentry *dentry = nd->path.dentry;
512 int status;
513
514 if (nd->flags & LOOKUP_RCU) {
515 nd->flags &= ~LOOKUP_RCU;
516 if (!(nd->flags & LOOKUP_ROOT))
517 nd->root.mnt = NULL;
518 spin_lock(&dentry->d_lock);
519 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
520 spin_unlock(&dentry->d_lock);
521 rcu_read_unlock();
522 br_read_unlock(vfsmount_lock);
523 return -ECHILD;
524 }
525 BUG_ON(nd->inode != dentry->d_inode);
526 spin_unlock(&dentry->d_lock);
527 mntget(nd->path.mnt);
528 rcu_read_unlock();
529 br_read_unlock(vfsmount_lock);
530 }
531
532 if (likely(!(nd->flags & LOOKUP_JUMPED)))
533 return 0;
534
535 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
536 return 0;
537
538 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
539 return 0;
540
541 /* Note: we do not d_invalidate() */
542 status = d_revalidate(dentry, nd);
543 if (status > 0)
544 return 0;
545
546 if (!status)
547 status = -ESTALE;
548
549 path_put(&nd->path);
550 return status;
551 }
552
553 static __always_inline void set_root(struct nameidata *nd)
554 {
555 if (!nd->root.mnt)
556 get_fs_root(current->fs, &nd->root);
557 }
558
559 static int link_path_walk(const char *, struct nameidata *);
560
561 static __always_inline void set_root_rcu(struct nameidata *nd)
562 {
563 if (!nd->root.mnt) {
564 struct fs_struct *fs = current->fs;
565 unsigned seq;
566
567 do {
568 seq = read_seqcount_begin(&fs->seq);
569 nd->root = fs->root;
570 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
571 } while (read_seqcount_retry(&fs->seq, seq));
572 }
573 }
574
575 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
576 {
577 int ret;
578
579 if (IS_ERR(link))
580 goto fail;
581
582 if (*link == '/') {
583 set_root(nd);
584 path_put(&nd->path);
585 nd->path = nd->root;
586 path_get(&nd->root);
587 nd->flags |= LOOKUP_JUMPED;
588 }
589 nd->inode = nd->path.dentry->d_inode;
590
591 ret = link_path_walk(link, nd);
592 return ret;
593 fail:
594 path_put(&nd->path);
595 return PTR_ERR(link);
596 }
597
598 static void path_put_conditional(struct path *path, struct nameidata *nd)
599 {
600 dput(path->dentry);
601 if (path->mnt != nd->path.mnt)
602 mntput(path->mnt);
603 }
604
605 static inline void path_to_nameidata(const struct path *path,
606 struct nameidata *nd)
607 {
608 if (!(nd->flags & LOOKUP_RCU)) {
609 dput(nd->path.dentry);
610 if (nd->path.mnt != path->mnt)
611 mntput(nd->path.mnt);
612 }
613 nd->path.mnt = path->mnt;
614 nd->path.dentry = path->dentry;
615 }
616
617 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
618 {
619 struct inode *inode = link->dentry->d_inode;
620 if (!IS_ERR(cookie) && inode->i_op->put_link)
621 inode->i_op->put_link(link->dentry, nd, cookie);
622 path_put(link);
623 }
624
625 static __always_inline int
626 follow_link(struct path *link, struct nameidata *nd, void **p)
627 {
628 int error;
629 struct dentry *dentry = link->dentry;
630
631 BUG_ON(nd->flags & LOOKUP_RCU);
632
633 if (link->mnt == nd->path.mnt)
634 mntget(link->mnt);
635
636 if (unlikely(current->total_link_count >= 40)) {
637 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
638 path_put(&nd->path);
639 return -ELOOP;
640 }
641 cond_resched();
642 current->total_link_count++;
643
644 touch_atime(link->mnt, dentry);
645 nd_set_link(nd, NULL);
646
647 error = security_inode_follow_link(link->dentry, nd);
648 if (error) {
649 *p = ERR_PTR(error); /* no ->put_link(), please */
650 path_put(&nd->path);
651 return error;
652 }
653
654 nd->last_type = LAST_BIND;
655 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
656 error = PTR_ERR(*p);
657 if (!IS_ERR(*p)) {
658 char *s = nd_get_link(nd);
659 error = 0;
660 if (s)
661 error = __vfs_follow_link(nd, s);
662 else if (nd->last_type == LAST_BIND) {
663 nd->flags |= LOOKUP_JUMPED;
664 nd->inode = nd->path.dentry->d_inode;
665 if (nd->inode->i_op->follow_link) {
666 /* stepped on a _really_ weird one */
667 path_put(&nd->path);
668 error = -ELOOP;
669 }
670 }
671 }
672 return error;
673 }
674
675 static int follow_up_rcu(struct path *path)
676 {
677 struct vfsmount *parent;
678 struct dentry *mountpoint;
679
680 parent = path->mnt->mnt_parent;
681 if (parent == path->mnt)
682 return 0;
683 mountpoint = path->mnt->mnt_mountpoint;
684 path->dentry = mountpoint;
685 path->mnt = parent;
686 return 1;
687 }
688
689 int follow_up(struct path *path)
690 {
691 struct vfsmount *parent;
692 struct dentry *mountpoint;
693
694 br_read_lock(vfsmount_lock);
695 parent = path->mnt->mnt_parent;
696 if (parent == path->mnt) {
697 br_read_unlock(vfsmount_lock);
698 return 0;
699 }
700 mntget(parent);
701 mountpoint = dget(path->mnt->mnt_mountpoint);
702 br_read_unlock(vfsmount_lock);
703 dput(path->dentry);
704 path->dentry = mountpoint;
705 mntput(path->mnt);
706 path->mnt = parent;
707 return 1;
708 }
709
710 /*
711 * Perform an automount
712 * - return -EISDIR to tell follow_managed() to stop and return the path we
713 * were called with.
714 */
715 static int follow_automount(struct path *path, unsigned flags,
716 bool *need_mntput)
717 {
718 struct vfsmount *mnt;
719 int err;
720
721 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
722 return -EREMOTE;
723
724 /* We don't want to mount if someone's just doing a stat -
725 * unless they're stat'ing a directory and appended a '/' to
726 * the name.
727 *
728 * We do, however, want to mount if someone wants to open or
729 * create a file of any type under the mountpoint, wants to
730 * traverse through the mountpoint or wants to open the
731 * mounted directory. Also, autofs may mark negative dentries
732 * as being automount points. These will need the attentions
733 * of the daemon to instantiate them before they can be used.
734 */
735 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
736 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
737 path->dentry->d_inode)
738 return -EISDIR;
739
740 current->total_link_count++;
741 if (current->total_link_count >= 40)
742 return -ELOOP;
743
744 mnt = path->dentry->d_op->d_automount(path);
745 if (IS_ERR(mnt)) {
746 /*
747 * The filesystem is allowed to return -EISDIR here to indicate
748 * it doesn't want to automount. For instance, autofs would do
749 * this so that its userspace daemon can mount on this dentry.
750 *
751 * However, we can only permit this if it's a terminal point in
752 * the path being looked up; if it wasn't then the remainder of
753 * the path is inaccessible and we should say so.
754 */
755 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
756 return -EREMOTE;
757 return PTR_ERR(mnt);
758 }
759
760 if (!mnt) /* mount collision */
761 return 0;
762
763 if (!*need_mntput) {
764 /* lock_mount() may release path->mnt on error */
765 mntget(path->mnt);
766 *need_mntput = true;
767 }
768 err = finish_automount(mnt, path);
769
770 switch (err) {
771 case -EBUSY:
772 /* Someone else made a mount here whilst we were busy */
773 return 0;
774 case 0:
775 path_put(path);
776 path->mnt = mnt;
777 path->dentry = dget(mnt->mnt_root);
778 return 0;
779 default:
780 return err;
781 }
782
783 }
784
785 /*
786 * Handle a dentry that is managed in some way.
787 * - Flagged for transit management (autofs)
788 * - Flagged as mountpoint
789 * - Flagged as automount point
790 *
791 * This may only be called in refwalk mode.
792 *
793 * Serialization is taken care of in namespace.c
794 */
795 static int follow_managed(struct path *path, unsigned flags)
796 {
797 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
798 unsigned managed;
799 bool need_mntput = false;
800 int ret = 0;
801
802 /* Given that we're not holding a lock here, we retain the value in a
803 * local variable for each dentry as we look at it so that we don't see
804 * the components of that value change under us */
805 while (managed = ACCESS_ONCE(path->dentry->d_flags),
806 managed &= DCACHE_MANAGED_DENTRY,
807 unlikely(managed != 0)) {
808 /* Allow the filesystem to manage the transit without i_mutex
809 * being held. */
810 if (managed & DCACHE_MANAGE_TRANSIT) {
811 BUG_ON(!path->dentry->d_op);
812 BUG_ON(!path->dentry->d_op->d_manage);
813 ret = path->dentry->d_op->d_manage(path->dentry, false);
814 if (ret < 0)
815 break;
816 }
817
818 /* Transit to a mounted filesystem. */
819 if (managed & DCACHE_MOUNTED) {
820 struct vfsmount *mounted = lookup_mnt(path);
821 if (mounted) {
822 dput(path->dentry);
823 if (need_mntput)
824 mntput(path->mnt);
825 path->mnt = mounted;
826 path->dentry = dget(mounted->mnt_root);
827 need_mntput = true;
828 continue;
829 }
830
831 /* Something is mounted on this dentry in another
832 * namespace and/or whatever was mounted there in this
833 * namespace got unmounted before we managed to get the
834 * vfsmount_lock */
835 }
836
837 /* Handle an automount point */
838 if (managed & DCACHE_NEED_AUTOMOUNT) {
839 ret = follow_automount(path, flags, &need_mntput);
840 if (ret < 0)
841 break;
842 continue;
843 }
844
845 /* We didn't change the current path point */
846 break;
847 }
848
849 if (need_mntput && path->mnt == mnt)
850 mntput(path->mnt);
851 if (ret == -EISDIR)
852 ret = 0;
853 return ret;
854 }
855
856 int follow_down_one(struct path *path)
857 {
858 struct vfsmount *mounted;
859
860 mounted = lookup_mnt(path);
861 if (mounted) {
862 dput(path->dentry);
863 mntput(path->mnt);
864 path->mnt = mounted;
865 path->dentry = dget(mounted->mnt_root);
866 return 1;
867 }
868 return 0;
869 }
870
871 static inline bool managed_dentry_might_block(struct dentry *dentry)
872 {
873 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
874 dentry->d_op->d_manage(dentry, true) < 0);
875 }
876
877 /*
878 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
879 * we meet a managed dentry that would need blocking.
880 */
881 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
882 struct inode **inode)
883 {
884 for (;;) {
885 struct vfsmount *mounted;
886 /*
887 * Don't forget we might have a non-mountpoint managed dentry
888 * that wants to block transit.
889 */
890 if (unlikely(managed_dentry_might_block(path->dentry)))
891 return false;
892
893 if (!d_mountpoint(path->dentry))
894 break;
895
896 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
897 if (!mounted)
898 break;
899 path->mnt = mounted;
900 path->dentry = mounted->mnt_root;
901 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
902 /*
903 * Update the inode too. We don't need to re-check the
904 * dentry sequence number here after this d_inode read,
905 * because a mount-point is always pinned.
906 */
907 *inode = path->dentry->d_inode;
908 }
909 return true;
910 }
911
912 static void follow_mount_rcu(struct nameidata *nd)
913 {
914 while (d_mountpoint(nd->path.dentry)) {
915 struct vfsmount *mounted;
916 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
917 if (!mounted)
918 break;
919 nd->path.mnt = mounted;
920 nd->path.dentry = mounted->mnt_root;
921 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
922 }
923 }
924
925 static int follow_dotdot_rcu(struct nameidata *nd)
926 {
927 set_root_rcu(nd);
928
929 while (1) {
930 if (nd->path.dentry == nd->root.dentry &&
931 nd->path.mnt == nd->root.mnt) {
932 break;
933 }
934 if (nd->path.dentry != nd->path.mnt->mnt_root) {
935 struct dentry *old = nd->path.dentry;
936 struct dentry *parent = old->d_parent;
937 unsigned seq;
938
939 seq = read_seqcount_begin(&parent->d_seq);
940 if (read_seqcount_retry(&old->d_seq, nd->seq))
941 goto failed;
942 nd->path.dentry = parent;
943 nd->seq = seq;
944 break;
945 }
946 if (!follow_up_rcu(&nd->path))
947 break;
948 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
949 }
950 follow_mount_rcu(nd);
951 nd->inode = nd->path.dentry->d_inode;
952 return 0;
953
954 failed:
955 nd->flags &= ~LOOKUP_RCU;
956 if (!(nd->flags & LOOKUP_ROOT))
957 nd->root.mnt = NULL;
958 rcu_read_unlock();
959 br_read_unlock(vfsmount_lock);
960 return -ECHILD;
961 }
962
963 /*
964 * Follow down to the covering mount currently visible to userspace. At each
965 * point, the filesystem owning that dentry may be queried as to whether the
966 * caller is permitted to proceed or not.
967 */
968 int follow_down(struct path *path)
969 {
970 unsigned managed;
971 int ret;
972
973 while (managed = ACCESS_ONCE(path->dentry->d_flags),
974 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
975 /* Allow the filesystem to manage the transit without i_mutex
976 * being held.
977 *
978 * We indicate to the filesystem if someone is trying to mount
979 * something here. This gives autofs the chance to deny anyone
980 * other than its daemon the right to mount on its
981 * superstructure.
982 *
983 * The filesystem may sleep at this point.
984 */
985 if (managed & DCACHE_MANAGE_TRANSIT) {
986 BUG_ON(!path->dentry->d_op);
987 BUG_ON(!path->dentry->d_op->d_manage);
988 ret = path->dentry->d_op->d_manage(
989 path->dentry, false);
990 if (ret < 0)
991 return ret == -EISDIR ? 0 : ret;
992 }
993
994 /* Transit to a mounted filesystem. */
995 if (managed & DCACHE_MOUNTED) {
996 struct vfsmount *mounted = lookup_mnt(path);
997 if (!mounted)
998 break;
999 dput(path->dentry);
1000 mntput(path->mnt);
1001 path->mnt = mounted;
1002 path->dentry = dget(mounted->mnt_root);
1003 continue;
1004 }
1005
1006 /* Don't handle automount points here */
1007 break;
1008 }
1009 return 0;
1010 }
1011
1012 /*
1013 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1014 */
1015 static void follow_mount(struct path *path)
1016 {
1017 while (d_mountpoint(path->dentry)) {
1018 struct vfsmount *mounted = lookup_mnt(path);
1019 if (!mounted)
1020 break;
1021 dput(path->dentry);
1022 mntput(path->mnt);
1023 path->mnt = mounted;
1024 path->dentry = dget(mounted->mnt_root);
1025 }
1026 }
1027
1028 static void follow_dotdot(struct nameidata *nd)
1029 {
1030 set_root(nd);
1031
1032 while(1) {
1033 struct dentry *old = nd->path.dentry;
1034
1035 if (nd->path.dentry == nd->root.dentry &&
1036 nd->path.mnt == nd->root.mnt) {
1037 break;
1038 }
1039 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1040 /* rare case of legitimate dget_parent()... */
1041 nd->path.dentry = dget_parent(nd->path.dentry);
1042 dput(old);
1043 break;
1044 }
1045 if (!follow_up(&nd->path))
1046 break;
1047 }
1048 follow_mount(&nd->path);
1049 nd->inode = nd->path.dentry->d_inode;
1050 }
1051
1052 /*
1053 * Allocate a dentry with name and parent, and perform a parent
1054 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1055 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1056 * have verified that no child exists while under i_mutex.
1057 */
1058 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1059 struct qstr *name, struct nameidata *nd)
1060 {
1061 struct inode *inode = parent->d_inode;
1062 struct dentry *dentry;
1063 struct dentry *old;
1064
1065 /* Don't create child dentry for a dead directory. */
1066 if (unlikely(IS_DEADDIR(inode)))
1067 return ERR_PTR(-ENOENT);
1068
1069 dentry = d_alloc(parent, name);
1070 if (unlikely(!dentry))
1071 return ERR_PTR(-ENOMEM);
1072
1073 old = inode->i_op->lookup(inode, dentry, nd);
1074 if (unlikely(old)) {
1075 dput(dentry);
1076 dentry = old;
1077 }
1078 return dentry;
1079 }
1080
1081 /*
1082 * We already have a dentry, but require a lookup to be performed on the parent
1083 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1084 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1085 * child exists while under i_mutex.
1086 */
1087 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1088 struct nameidata *nd)
1089 {
1090 struct inode *inode = parent->d_inode;
1091 struct dentry *old;
1092
1093 /* Don't create child dentry for a dead directory. */
1094 if (unlikely(IS_DEADDIR(inode)))
1095 return ERR_PTR(-ENOENT);
1096
1097 old = inode->i_op->lookup(inode, dentry, nd);
1098 if (unlikely(old)) {
1099 dput(dentry);
1100 dentry = old;
1101 }
1102 return dentry;
1103 }
1104
1105 /*
1106 * It's more convoluted than I'd like it to be, but... it's still fairly
1107 * small and for now I'd prefer to have fast path as straight as possible.
1108 * It _is_ time-critical.
1109 */
1110 static int do_lookup(struct nameidata *nd, struct qstr *name,
1111 struct path *path, struct inode **inode)
1112 {
1113 struct vfsmount *mnt = nd->path.mnt;
1114 struct dentry *dentry, *parent = nd->path.dentry;
1115 int need_reval = 1;
1116 int status = 1;
1117 int err;
1118
1119 /*
1120 * Rename seqlock is not required here because in the off chance
1121 * of a false negative due to a concurrent rename, we're going to
1122 * do the non-racy lookup, below.
1123 */
1124 if (nd->flags & LOOKUP_RCU) {
1125 unsigned seq;
1126 *inode = nd->inode;
1127 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1128 if (!dentry)
1129 goto unlazy;
1130
1131 /* Memory barrier in read_seqcount_begin of child is enough */
1132 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1133 return -ECHILD;
1134 nd->seq = seq;
1135
1136 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1137 status = d_revalidate(dentry, nd);
1138 if (unlikely(status <= 0)) {
1139 if (status != -ECHILD)
1140 need_reval = 0;
1141 goto unlazy;
1142 }
1143 }
1144 if (unlikely(d_need_lookup(dentry)))
1145 goto unlazy;
1146 path->mnt = mnt;
1147 path->dentry = dentry;
1148 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1149 goto unlazy;
1150 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1151 goto unlazy;
1152 return 0;
1153 unlazy:
1154 if (unlazy_walk(nd, dentry))
1155 return -ECHILD;
1156 } else {
1157 dentry = __d_lookup(parent, name);
1158 }
1159
1160 if (dentry && unlikely(d_need_lookup(dentry))) {
1161 dput(dentry);
1162 dentry = NULL;
1163 }
1164 retry:
1165 if (unlikely(!dentry)) {
1166 struct inode *dir = parent->d_inode;
1167 BUG_ON(nd->inode != dir);
1168
1169 mutex_lock(&dir->i_mutex);
1170 dentry = d_lookup(parent, name);
1171 if (likely(!dentry)) {
1172 dentry = d_alloc_and_lookup(parent, name, nd);
1173 if (IS_ERR(dentry)) {
1174 mutex_unlock(&dir->i_mutex);
1175 return PTR_ERR(dentry);
1176 }
1177 /* known good */
1178 need_reval = 0;
1179 status = 1;
1180 } else if (unlikely(d_need_lookup(dentry))) {
1181 dentry = d_inode_lookup(parent, dentry, nd);
1182 if (IS_ERR(dentry)) {
1183 mutex_unlock(&dir->i_mutex);
1184 return PTR_ERR(dentry);
1185 }
1186 /* known good */
1187 need_reval = 0;
1188 status = 1;
1189 }
1190 mutex_unlock(&dir->i_mutex);
1191 }
1192 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1193 status = d_revalidate(dentry, nd);
1194 if (unlikely(status <= 0)) {
1195 if (status < 0) {
1196 dput(dentry);
1197 return status;
1198 }
1199 if (!d_invalidate(dentry)) {
1200 dput(dentry);
1201 dentry = NULL;
1202 need_reval = 1;
1203 goto retry;
1204 }
1205 }
1206
1207 path->mnt = mnt;
1208 path->dentry = dentry;
1209 err = follow_managed(path, nd->flags);
1210 if (unlikely(err < 0)) {
1211 path_put_conditional(path, nd);
1212 return err;
1213 }
1214 *inode = path->dentry->d_inode;
1215 return 0;
1216 }
1217
1218 static inline int may_lookup(struct nameidata *nd)
1219 {
1220 if (nd->flags & LOOKUP_RCU) {
1221 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1222 if (err != -ECHILD)
1223 return err;
1224 if (unlazy_walk(nd, NULL))
1225 return -ECHILD;
1226 }
1227 return inode_permission(nd->inode, MAY_EXEC);
1228 }
1229
1230 static inline int handle_dots(struct nameidata *nd, int type)
1231 {
1232 if (type == LAST_DOTDOT) {
1233 if (nd->flags & LOOKUP_RCU) {
1234 if (follow_dotdot_rcu(nd))
1235 return -ECHILD;
1236 } else
1237 follow_dotdot(nd);
1238 }
1239 return 0;
1240 }
1241
1242 static void terminate_walk(struct nameidata *nd)
1243 {
1244 if (!(nd->flags & LOOKUP_RCU)) {
1245 path_put(&nd->path);
1246 } else {
1247 nd->flags &= ~LOOKUP_RCU;
1248 if (!(nd->flags & LOOKUP_ROOT))
1249 nd->root.mnt = NULL;
1250 rcu_read_unlock();
1251 br_read_unlock(vfsmount_lock);
1252 }
1253 }
1254
1255 /*
1256 * Do we need to follow links? We _really_ want to be able
1257 * to do this check without having to look at inode->i_op,
1258 * so we keep a cache of "no, this doesn't need follow_link"
1259 * for the common case.
1260 */
1261 static inline int should_follow_link(struct inode *inode, int follow)
1262 {
1263 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1264 if (likely(inode->i_op->follow_link))
1265 return follow;
1266
1267 /* This gets set once for the inode lifetime */
1268 spin_lock(&inode->i_lock);
1269 inode->i_opflags |= IOP_NOFOLLOW;
1270 spin_unlock(&inode->i_lock);
1271 }
1272 return 0;
1273 }
1274
1275 static inline int walk_component(struct nameidata *nd, struct path *path,
1276 struct qstr *name, int type, int follow)
1277 {
1278 struct inode *inode;
1279 int err;
1280 /*
1281 * "." and ".." are special - ".." especially so because it has
1282 * to be able to know about the current root directory and
1283 * parent relationships.
1284 */
1285 if (unlikely(type != LAST_NORM))
1286 return handle_dots(nd, type);
1287 err = do_lookup(nd, name, path, &inode);
1288 if (unlikely(err)) {
1289 terminate_walk(nd);
1290 return err;
1291 }
1292 if (!inode) {
1293 path_to_nameidata(path, nd);
1294 terminate_walk(nd);
1295 return -ENOENT;
1296 }
1297 if (should_follow_link(inode, follow)) {
1298 if (nd->flags & LOOKUP_RCU) {
1299 if (unlikely(unlazy_walk(nd, path->dentry))) {
1300 terminate_walk(nd);
1301 return -ECHILD;
1302 }
1303 }
1304 BUG_ON(inode != path->dentry->d_inode);
1305 return 1;
1306 }
1307 path_to_nameidata(path, nd);
1308 nd->inode = inode;
1309 return 0;
1310 }
1311
1312 /*
1313 * This limits recursive symlink follows to 8, while
1314 * limiting consecutive symlinks to 40.
1315 *
1316 * Without that kind of total limit, nasty chains of consecutive
1317 * symlinks can cause almost arbitrarily long lookups.
1318 */
1319 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1320 {
1321 int res;
1322
1323 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1324 path_put_conditional(path, nd);
1325 path_put(&nd->path);
1326 return -ELOOP;
1327 }
1328 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1329
1330 nd->depth++;
1331 current->link_count++;
1332
1333 do {
1334 struct path link = *path;
1335 void *cookie;
1336
1337 res = follow_link(&link, nd, &cookie);
1338 if (!res)
1339 res = walk_component(nd, path, &nd->last,
1340 nd->last_type, LOOKUP_FOLLOW);
1341 put_link(nd, &link, cookie);
1342 } while (res > 0);
1343
1344 current->link_count--;
1345 nd->depth--;
1346 return res;
1347 }
1348
1349 /*
1350 * We really don't want to look at inode->i_op->lookup
1351 * when we don't have to. So we keep a cache bit in
1352 * the inode ->i_opflags field that says "yes, we can
1353 * do lookup on this inode".
1354 */
1355 static inline int can_lookup(struct inode *inode)
1356 {
1357 if (likely(inode->i_opflags & IOP_LOOKUP))
1358 return 1;
1359 if (likely(!inode->i_op->lookup))
1360 return 0;
1361
1362 /* We do this once for the lifetime of the inode */
1363 spin_lock(&inode->i_lock);
1364 inode->i_opflags |= IOP_LOOKUP;
1365 spin_unlock(&inode->i_lock);
1366 return 1;
1367 }
1368
1369 /*
1370 * Name resolution.
1371 * This is the basic name resolution function, turning a pathname into
1372 * the final dentry. We expect 'base' to be positive and a directory.
1373 *
1374 * Returns 0 and nd will have valid dentry and mnt on success.
1375 * Returns error and drops reference to input namei data on failure.
1376 */
1377 static int link_path_walk(const char *name, struct nameidata *nd)
1378 {
1379 struct path next;
1380 int err;
1381
1382 while (*name=='/')
1383 name++;
1384 if (!*name)
1385 return 0;
1386
1387 /* At this point we know we have a real path component. */
1388 for(;;) {
1389 unsigned long hash;
1390 struct qstr this;
1391 unsigned int c;
1392 int type;
1393
1394 err = may_lookup(nd);
1395 if (err)
1396 break;
1397
1398 this.name = name;
1399 c = *(const unsigned char *)name;
1400
1401 hash = init_name_hash();
1402 do {
1403 name++;
1404 hash = partial_name_hash(c, hash);
1405 c = *(const unsigned char *)name;
1406 } while (c && (c != '/'));
1407 this.len = name - (const char *) this.name;
1408 this.hash = end_name_hash(hash);
1409
1410 type = LAST_NORM;
1411 if (this.name[0] == '.') switch (this.len) {
1412 case 2:
1413 if (this.name[1] == '.') {
1414 type = LAST_DOTDOT;
1415 nd->flags |= LOOKUP_JUMPED;
1416 }
1417 break;
1418 case 1:
1419 type = LAST_DOT;
1420 }
1421 if (likely(type == LAST_NORM)) {
1422 struct dentry *parent = nd->path.dentry;
1423 nd->flags &= ~LOOKUP_JUMPED;
1424 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1425 err = parent->d_op->d_hash(parent, nd->inode,
1426 &this);
1427 if (err < 0)
1428 break;
1429 }
1430 }
1431
1432 /* remove trailing slashes? */
1433 if (!c)
1434 goto last_component;
1435 while (*++name == '/');
1436 if (!*name)
1437 goto last_component;
1438
1439 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1440 if (err < 0)
1441 return err;
1442
1443 if (err) {
1444 err = nested_symlink(&next, nd);
1445 if (err)
1446 return err;
1447 }
1448 if (can_lookup(nd->inode))
1449 continue;
1450 err = -ENOTDIR;
1451 break;
1452 /* here ends the main loop */
1453
1454 last_component:
1455 nd->last = this;
1456 nd->last_type = type;
1457 return 0;
1458 }
1459 terminate_walk(nd);
1460 return err;
1461 }
1462
1463 static int path_init(int dfd, const char *name, unsigned int flags,
1464 struct nameidata *nd, struct file **fp)
1465 {
1466 int retval = 0;
1467 int fput_needed;
1468 struct file *file;
1469
1470 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1471 nd->flags = flags | LOOKUP_JUMPED;
1472 nd->depth = 0;
1473 if (flags & LOOKUP_ROOT) {
1474 struct inode *inode = nd->root.dentry->d_inode;
1475 if (*name) {
1476 if (!inode->i_op->lookup)
1477 return -ENOTDIR;
1478 retval = inode_permission(inode, MAY_EXEC);
1479 if (retval)
1480 return retval;
1481 }
1482 nd->path = nd->root;
1483 nd->inode = inode;
1484 if (flags & LOOKUP_RCU) {
1485 br_read_lock(vfsmount_lock);
1486 rcu_read_lock();
1487 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1488 } else {
1489 path_get(&nd->path);
1490 }
1491 return 0;
1492 }
1493
1494 nd->root.mnt = NULL;
1495
1496 if (*name=='/') {
1497 if (flags & LOOKUP_RCU) {
1498 br_read_lock(vfsmount_lock);
1499 rcu_read_lock();
1500 set_root_rcu(nd);
1501 } else {
1502 set_root(nd);
1503 path_get(&nd->root);
1504 }
1505 nd->path = nd->root;
1506 } else if (dfd == AT_FDCWD) {
1507 if (flags & LOOKUP_RCU) {
1508 struct fs_struct *fs = current->fs;
1509 unsigned seq;
1510
1511 br_read_lock(vfsmount_lock);
1512 rcu_read_lock();
1513
1514 do {
1515 seq = read_seqcount_begin(&fs->seq);
1516 nd->path = fs->pwd;
1517 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1518 } while (read_seqcount_retry(&fs->seq, seq));
1519 } else {
1520 get_fs_pwd(current->fs, &nd->path);
1521 }
1522 } else {
1523 struct dentry *dentry;
1524
1525 file = fget_raw_light(dfd, &fput_needed);
1526 retval = -EBADF;
1527 if (!file)
1528 goto out_fail;
1529
1530 dentry = file->f_path.dentry;
1531
1532 if (*name) {
1533 retval = -ENOTDIR;
1534 if (!S_ISDIR(dentry->d_inode->i_mode))
1535 goto fput_fail;
1536
1537 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1538 if (retval)
1539 goto fput_fail;
1540 }
1541
1542 nd->path = file->f_path;
1543 if (flags & LOOKUP_RCU) {
1544 if (fput_needed)
1545 *fp = file;
1546 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1547 br_read_lock(vfsmount_lock);
1548 rcu_read_lock();
1549 } else {
1550 path_get(&file->f_path);
1551 fput_light(file, fput_needed);
1552 }
1553 }
1554
1555 nd->inode = nd->path.dentry->d_inode;
1556 return 0;
1557
1558 fput_fail:
1559 fput_light(file, fput_needed);
1560 out_fail:
1561 return retval;
1562 }
1563
1564 static inline int lookup_last(struct nameidata *nd, struct path *path)
1565 {
1566 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1567 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1568
1569 nd->flags &= ~LOOKUP_PARENT;
1570 return walk_component(nd, path, &nd->last, nd->last_type,
1571 nd->flags & LOOKUP_FOLLOW);
1572 }
1573
1574 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1575 static int path_lookupat(int dfd, const char *name,
1576 unsigned int flags, struct nameidata *nd)
1577 {
1578 struct file *base = NULL;
1579 struct path path;
1580 int err;
1581
1582 /*
1583 * Path walking is largely split up into 2 different synchronisation
1584 * schemes, rcu-walk and ref-walk (explained in
1585 * Documentation/filesystems/path-lookup.txt). These share much of the
1586 * path walk code, but some things particularly setup, cleanup, and
1587 * following mounts are sufficiently divergent that functions are
1588 * duplicated. Typically there is a function foo(), and its RCU
1589 * analogue, foo_rcu().
1590 *
1591 * -ECHILD is the error number of choice (just to avoid clashes) that
1592 * is returned if some aspect of an rcu-walk fails. Such an error must
1593 * be handled by restarting a traditional ref-walk (which will always
1594 * be able to complete).
1595 */
1596 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1597
1598 if (unlikely(err))
1599 return err;
1600
1601 current->total_link_count = 0;
1602 err = link_path_walk(name, nd);
1603
1604 if (!err && !(flags & LOOKUP_PARENT)) {
1605 err = lookup_last(nd, &path);
1606 while (err > 0) {
1607 void *cookie;
1608 struct path link = path;
1609 nd->flags |= LOOKUP_PARENT;
1610 err = follow_link(&link, nd, &cookie);
1611 if (!err)
1612 err = lookup_last(nd, &path);
1613 put_link(nd, &link, cookie);
1614 }
1615 }
1616
1617 if (!err)
1618 err = complete_walk(nd);
1619
1620 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1621 if (!nd->inode->i_op->lookup) {
1622 path_put(&nd->path);
1623 err = -ENOTDIR;
1624 }
1625 }
1626
1627 if (base)
1628 fput(base);
1629
1630 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1631 path_put(&nd->root);
1632 nd->root.mnt = NULL;
1633 }
1634 return err;
1635 }
1636
1637 static int do_path_lookup(int dfd, const char *name,
1638 unsigned int flags, struct nameidata *nd)
1639 {
1640 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1641 if (unlikely(retval == -ECHILD))
1642 retval = path_lookupat(dfd, name, flags, nd);
1643 if (unlikely(retval == -ESTALE))
1644 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1645
1646 if (likely(!retval)) {
1647 if (unlikely(!audit_dummy_context())) {
1648 if (nd->path.dentry && nd->inode)
1649 audit_inode(name, nd->path.dentry);
1650 }
1651 }
1652 return retval;
1653 }
1654
1655 int kern_path_parent(const char *name, struct nameidata *nd)
1656 {
1657 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1658 }
1659
1660 int kern_path(const char *name, unsigned int flags, struct path *path)
1661 {
1662 struct nameidata nd;
1663 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1664 if (!res)
1665 *path = nd.path;
1666 return res;
1667 }
1668
1669 /**
1670 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1671 * @dentry: pointer to dentry of the base directory
1672 * @mnt: pointer to vfs mount of the base directory
1673 * @name: pointer to file name
1674 * @flags: lookup flags
1675 * @path: pointer to struct path to fill
1676 */
1677 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1678 const char *name, unsigned int flags,
1679 struct path *path)
1680 {
1681 struct nameidata nd;
1682 int err;
1683 nd.root.dentry = dentry;
1684 nd.root.mnt = mnt;
1685 BUG_ON(flags & LOOKUP_PARENT);
1686 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1687 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1688 if (!err)
1689 *path = nd.path;
1690 return err;
1691 }
1692
1693 static struct dentry *__lookup_hash(struct qstr *name,
1694 struct dentry *base, struct nameidata *nd)
1695 {
1696 struct inode *inode = base->d_inode;
1697 struct dentry *dentry;
1698 int err;
1699
1700 err = inode_permission(inode, MAY_EXEC);
1701 if (err)
1702 return ERR_PTR(err);
1703
1704 /*
1705 * Don't bother with __d_lookup: callers are for creat as
1706 * well as unlink, so a lot of the time it would cost
1707 * a double lookup.
1708 */
1709 dentry = d_lookup(base, name);
1710
1711 if (dentry && d_need_lookup(dentry)) {
1712 /*
1713 * __lookup_hash is called with the parent dir's i_mutex already
1714 * held, so we are good to go here.
1715 */
1716 dentry = d_inode_lookup(base, dentry, nd);
1717 if (IS_ERR(dentry))
1718 return dentry;
1719 }
1720
1721 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1722 int status = d_revalidate(dentry, nd);
1723 if (unlikely(status <= 0)) {
1724 /*
1725 * The dentry failed validation.
1726 * If d_revalidate returned 0 attempt to invalidate
1727 * the dentry otherwise d_revalidate is asking us
1728 * to return a fail status.
1729 */
1730 if (status < 0) {
1731 dput(dentry);
1732 return ERR_PTR(status);
1733 } else if (!d_invalidate(dentry)) {
1734 dput(dentry);
1735 dentry = NULL;
1736 }
1737 }
1738 }
1739
1740 if (!dentry)
1741 dentry = d_alloc_and_lookup(base, name, nd);
1742
1743 return dentry;
1744 }
1745
1746 /*
1747 * Restricted form of lookup. Doesn't follow links, single-component only,
1748 * needs parent already locked. Doesn't follow mounts.
1749 * SMP-safe.
1750 */
1751 static struct dentry *lookup_hash(struct nameidata *nd)
1752 {
1753 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1754 }
1755
1756 /**
1757 * lookup_one_len - filesystem helper to lookup single pathname component
1758 * @name: pathname component to lookup
1759 * @base: base directory to lookup from
1760 * @len: maximum length @len should be interpreted to
1761 *
1762 * Note that this routine is purely a helper for filesystem usage and should
1763 * not be called by generic code. Also note that by using this function the
1764 * nameidata argument is passed to the filesystem methods and a filesystem
1765 * using this helper needs to be prepared for that.
1766 */
1767 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1768 {
1769 struct qstr this;
1770 unsigned long hash;
1771 unsigned int c;
1772
1773 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1774
1775 this.name = name;
1776 this.len = len;
1777 if (!len)
1778 return ERR_PTR(-EACCES);
1779
1780 hash = init_name_hash();
1781 while (len--) {
1782 c = *(const unsigned char *)name++;
1783 if (c == '/' || c == '\0')
1784 return ERR_PTR(-EACCES);
1785 hash = partial_name_hash(c, hash);
1786 }
1787 this.hash = end_name_hash(hash);
1788 /*
1789 * See if the low-level filesystem might want
1790 * to use its own hash..
1791 */
1792 if (base->d_flags & DCACHE_OP_HASH) {
1793 int err = base->d_op->d_hash(base, base->d_inode, &this);
1794 if (err < 0)
1795 return ERR_PTR(err);
1796 }
1797
1798 return __lookup_hash(&this, base, NULL);
1799 }
1800
1801 int user_path_at(int dfd, const char __user *name, unsigned flags,
1802 struct path *path)
1803 {
1804 struct nameidata nd;
1805 char *tmp = getname_flags(name, flags);
1806 int err = PTR_ERR(tmp);
1807 if (!IS_ERR(tmp)) {
1808
1809 BUG_ON(flags & LOOKUP_PARENT);
1810
1811 err = do_path_lookup(dfd, tmp, flags, &nd);
1812 putname(tmp);
1813 if (!err)
1814 *path = nd.path;
1815 }
1816 return err;
1817 }
1818
1819 static int user_path_parent(int dfd, const char __user *path,
1820 struct nameidata *nd, char **name)
1821 {
1822 char *s = getname(path);
1823 int error;
1824
1825 if (IS_ERR(s))
1826 return PTR_ERR(s);
1827
1828 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1829 if (error)
1830 putname(s);
1831 else
1832 *name = s;
1833
1834 return error;
1835 }
1836
1837 /*
1838 * It's inline, so penalty for filesystems that don't use sticky bit is
1839 * minimal.
1840 */
1841 static inline int check_sticky(struct inode *dir, struct inode *inode)
1842 {
1843 uid_t fsuid = current_fsuid();
1844
1845 if (!(dir->i_mode & S_ISVTX))
1846 return 0;
1847 if (current_user_ns() != inode_userns(inode))
1848 goto other_userns;
1849 if (inode->i_uid == fsuid)
1850 return 0;
1851 if (dir->i_uid == fsuid)
1852 return 0;
1853
1854 other_userns:
1855 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1856 }
1857
1858 /*
1859 * Check whether we can remove a link victim from directory dir, check
1860 * whether the type of victim is right.
1861 * 1. We can't do it if dir is read-only (done in permission())
1862 * 2. We should have write and exec permissions on dir
1863 * 3. We can't remove anything from append-only dir
1864 * 4. We can't do anything with immutable dir (done in permission())
1865 * 5. If the sticky bit on dir is set we should either
1866 * a. be owner of dir, or
1867 * b. be owner of victim, or
1868 * c. have CAP_FOWNER capability
1869 * 6. If the victim is append-only or immutable we can't do antyhing with
1870 * links pointing to it.
1871 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1872 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1873 * 9. We can't remove a root or mountpoint.
1874 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1875 * nfs_async_unlink().
1876 */
1877 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1878 {
1879 int error;
1880
1881 if (!victim->d_inode)
1882 return -ENOENT;
1883
1884 BUG_ON(victim->d_parent->d_inode != dir);
1885 audit_inode_child(victim, dir);
1886
1887 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1888 if (error)
1889 return error;
1890 if (IS_APPEND(dir))
1891 return -EPERM;
1892 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1893 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1894 return -EPERM;
1895 if (isdir) {
1896 if (!S_ISDIR(victim->d_inode->i_mode))
1897 return -ENOTDIR;
1898 if (IS_ROOT(victim))
1899 return -EBUSY;
1900 } else if (S_ISDIR(victim->d_inode->i_mode))
1901 return -EISDIR;
1902 if (IS_DEADDIR(dir))
1903 return -ENOENT;
1904 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1905 return -EBUSY;
1906 return 0;
1907 }
1908
1909 /* Check whether we can create an object with dentry child in directory
1910 * dir.
1911 * 1. We can't do it if child already exists (open has special treatment for
1912 * this case, but since we are inlined it's OK)
1913 * 2. We can't do it if dir is read-only (done in permission())
1914 * 3. We should have write and exec permissions on dir
1915 * 4. We can't do it if dir is immutable (done in permission())
1916 */
1917 static inline int may_create(struct inode *dir, struct dentry *child)
1918 {
1919 if (child->d_inode)
1920 return -EEXIST;
1921 if (IS_DEADDIR(dir))
1922 return -ENOENT;
1923 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1924 }
1925
1926 /*
1927 * p1 and p2 should be directories on the same fs.
1928 */
1929 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1930 {
1931 struct dentry *p;
1932
1933 if (p1 == p2) {
1934 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1935 return NULL;
1936 }
1937
1938 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1939
1940 p = d_ancestor(p2, p1);
1941 if (p) {
1942 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1943 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1944 return p;
1945 }
1946
1947 p = d_ancestor(p1, p2);
1948 if (p) {
1949 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1950 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1951 return p;
1952 }
1953
1954 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1955 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1956 return NULL;
1957 }
1958
1959 void unlock_rename(struct dentry *p1, struct dentry *p2)
1960 {
1961 mutex_unlock(&p1->d_inode->i_mutex);
1962 if (p1 != p2) {
1963 mutex_unlock(&p2->d_inode->i_mutex);
1964 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1965 }
1966 }
1967
1968 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1969 struct nameidata *nd)
1970 {
1971 int error = may_create(dir, dentry);
1972
1973 if (error)
1974 return error;
1975
1976 if (!dir->i_op->create)
1977 return -EACCES; /* shouldn't it be ENOSYS? */
1978 mode &= S_IALLUGO;
1979 mode |= S_IFREG;
1980 error = security_inode_create(dir, dentry, mode);
1981 if (error)
1982 return error;
1983 error = dir->i_op->create(dir, dentry, mode, nd);
1984 if (!error)
1985 fsnotify_create(dir, dentry);
1986 return error;
1987 }
1988
1989 static int may_open(struct path *path, int acc_mode, int flag)
1990 {
1991 struct dentry *dentry = path->dentry;
1992 struct inode *inode = dentry->d_inode;
1993 int error;
1994
1995 /* O_PATH? */
1996 if (!acc_mode)
1997 return 0;
1998
1999 if (!inode)
2000 return -ENOENT;
2001
2002 switch (inode->i_mode & S_IFMT) {
2003 case S_IFLNK:
2004 return -ELOOP;
2005 case S_IFDIR:
2006 if (acc_mode & MAY_WRITE)
2007 return -EISDIR;
2008 break;
2009 case S_IFBLK:
2010 case S_IFCHR:
2011 if (path->mnt->mnt_flags & MNT_NODEV)
2012 return -EACCES;
2013 /*FALLTHRU*/
2014 case S_IFIFO:
2015 case S_IFSOCK:
2016 flag &= ~O_TRUNC;
2017 break;
2018 }
2019
2020 error = inode_permission(inode, acc_mode);
2021 if (error)
2022 return error;
2023
2024 /*
2025 * An append-only file must be opened in append mode for writing.
2026 */
2027 if (IS_APPEND(inode)) {
2028 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2029 return -EPERM;
2030 if (flag & O_TRUNC)
2031 return -EPERM;
2032 }
2033
2034 /* O_NOATIME can only be set by the owner or superuser */
2035 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2036 return -EPERM;
2037
2038 /*
2039 * Ensure there are no outstanding leases on the file.
2040 */
2041 return break_lease(inode, flag);
2042 }
2043
2044 static int handle_truncate(struct file *filp)
2045 {
2046 struct path *path = &filp->f_path;
2047 struct inode *inode = path->dentry->d_inode;
2048 int error = get_write_access(inode);
2049 if (error)
2050 return error;
2051 /*
2052 * Refuse to truncate files with mandatory locks held on them.
2053 */
2054 error = locks_verify_locked(inode);
2055 if (!error)
2056 error = security_path_truncate(path);
2057 if (!error) {
2058 error = do_truncate(path->dentry, 0,
2059 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2060 filp);
2061 }
2062 put_write_access(inode);
2063 return error;
2064 }
2065
2066 static inline int open_to_namei_flags(int flag)
2067 {
2068 if ((flag & O_ACCMODE) == 3)
2069 flag--;
2070 return flag;
2071 }
2072
2073 /*
2074 * Handle the last step of open()
2075 */
2076 static struct file *do_last(struct nameidata *nd, struct path *path,
2077 const struct open_flags *op, const char *pathname)
2078 {
2079 struct dentry *dir = nd->path.dentry;
2080 struct dentry *dentry;
2081 int open_flag = op->open_flag;
2082 int will_truncate = open_flag & O_TRUNC;
2083 int want_write = 0;
2084 int acc_mode = op->acc_mode;
2085 struct file *filp;
2086 int error;
2087
2088 nd->flags &= ~LOOKUP_PARENT;
2089 nd->flags |= op->intent;
2090
2091 switch (nd->last_type) {
2092 case LAST_DOTDOT:
2093 case LAST_DOT:
2094 error = handle_dots(nd, nd->last_type);
2095 if (error)
2096 return ERR_PTR(error);
2097 /* fallthrough */
2098 case LAST_ROOT:
2099 error = complete_walk(nd);
2100 if (error)
2101 return ERR_PTR(error);
2102 audit_inode(pathname, nd->path.dentry);
2103 if (open_flag & O_CREAT) {
2104 error = -EISDIR;
2105 goto exit;
2106 }
2107 goto ok;
2108 case LAST_BIND:
2109 error = complete_walk(nd);
2110 if (error)
2111 return ERR_PTR(error);
2112 audit_inode(pathname, dir);
2113 goto ok;
2114 }
2115
2116 if (!(open_flag & O_CREAT)) {
2117 int symlink_ok = 0;
2118 if (nd->last.name[nd->last.len])
2119 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2120 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2121 symlink_ok = 1;
2122 /* we _can_ be in RCU mode here */
2123 error = walk_component(nd, path, &nd->last, LAST_NORM,
2124 !symlink_ok);
2125 if (error < 0)
2126 return ERR_PTR(error);
2127 if (error) /* symlink */
2128 return NULL;
2129 /* sayonara */
2130 error = complete_walk(nd);
2131 if (error)
2132 return ERR_PTR(-ECHILD);
2133
2134 error = -ENOTDIR;
2135 if (nd->flags & LOOKUP_DIRECTORY) {
2136 if (!nd->inode->i_op->lookup)
2137 goto exit;
2138 }
2139 audit_inode(pathname, nd->path.dentry);
2140 goto ok;
2141 }
2142
2143 /* create side of things */
2144 error = complete_walk(nd);
2145 if (error)
2146 return ERR_PTR(error);
2147
2148 audit_inode(pathname, dir);
2149 error = -EISDIR;
2150 /* trailing slashes? */
2151 if (nd->last.name[nd->last.len])
2152 goto exit;
2153
2154 mutex_lock(&dir->d_inode->i_mutex);
2155
2156 dentry = lookup_hash(nd);
2157 error = PTR_ERR(dentry);
2158 if (IS_ERR(dentry)) {
2159 mutex_unlock(&dir->d_inode->i_mutex);
2160 goto exit;
2161 }
2162
2163 path->dentry = dentry;
2164 path->mnt = nd->path.mnt;
2165
2166 /* Negative dentry, just create the file */
2167 if (!dentry->d_inode) {
2168 int mode = op->mode;
2169 if (!IS_POSIXACL(dir->d_inode))
2170 mode &= ~current_umask();
2171 /*
2172 * This write is needed to ensure that a
2173 * rw->ro transition does not occur between
2174 * the time when the file is created and when
2175 * a permanent write count is taken through
2176 * the 'struct file' in nameidata_to_filp().
2177 */
2178 error = mnt_want_write(nd->path.mnt);
2179 if (error)
2180 goto exit_mutex_unlock;
2181 want_write = 1;
2182 /* Don't check for write permission, don't truncate */
2183 open_flag &= ~O_TRUNC;
2184 will_truncate = 0;
2185 acc_mode = MAY_OPEN;
2186 error = security_path_mknod(&nd->path, dentry, mode, 0);
2187 if (error)
2188 goto exit_mutex_unlock;
2189 error = vfs_create(dir->d_inode, dentry, mode, nd);
2190 if (error)
2191 goto exit_mutex_unlock;
2192 mutex_unlock(&dir->d_inode->i_mutex);
2193 dput(nd->path.dentry);
2194 nd->path.dentry = dentry;
2195 goto common;
2196 }
2197
2198 /*
2199 * It already exists.
2200 */
2201 mutex_unlock(&dir->d_inode->i_mutex);
2202 audit_inode(pathname, path->dentry);
2203
2204 error = -EEXIST;
2205 if (open_flag & O_EXCL)
2206 goto exit_dput;
2207
2208 error = follow_managed(path, nd->flags);
2209 if (error < 0)
2210 goto exit_dput;
2211
2212 error = -ENOENT;
2213 if (!path->dentry->d_inode)
2214 goto exit_dput;
2215
2216 if (path->dentry->d_inode->i_op->follow_link)
2217 return NULL;
2218
2219 path_to_nameidata(path, nd);
2220 nd->inode = path->dentry->d_inode;
2221 error = -EISDIR;
2222 if (S_ISDIR(nd->inode->i_mode))
2223 goto exit;
2224 ok:
2225 if (!S_ISREG(nd->inode->i_mode))
2226 will_truncate = 0;
2227
2228 if (will_truncate) {
2229 error = mnt_want_write(nd->path.mnt);
2230 if (error)
2231 goto exit;
2232 want_write = 1;
2233 }
2234 common:
2235 error = may_open(&nd->path, acc_mode, open_flag);
2236 if (error)
2237 goto exit;
2238 filp = nameidata_to_filp(nd);
2239 if (!IS_ERR(filp)) {
2240 error = ima_file_check(filp, op->acc_mode);
2241 if (error) {
2242 fput(filp);
2243 filp = ERR_PTR(error);
2244 }
2245 }
2246 if (!IS_ERR(filp)) {
2247 if (will_truncate) {
2248 error = handle_truncate(filp);
2249 if (error) {
2250 fput(filp);
2251 filp = ERR_PTR(error);
2252 }
2253 }
2254 }
2255 out:
2256 if (want_write)
2257 mnt_drop_write(nd->path.mnt);
2258 path_put(&nd->path);
2259 return filp;
2260
2261 exit_mutex_unlock:
2262 mutex_unlock(&dir->d_inode->i_mutex);
2263 exit_dput:
2264 path_put_conditional(path, nd);
2265 exit:
2266 filp = ERR_PTR(error);
2267 goto out;
2268 }
2269
2270 static struct file *path_openat(int dfd, const char *pathname,
2271 struct nameidata *nd, const struct open_flags *op, int flags)
2272 {
2273 struct file *base = NULL;
2274 struct file *filp;
2275 struct path path;
2276 int error;
2277
2278 filp = get_empty_filp();
2279 if (!filp)
2280 return ERR_PTR(-ENFILE);
2281
2282 filp->f_flags = op->open_flag;
2283 nd->intent.open.file = filp;
2284 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2285 nd->intent.open.create_mode = op->mode;
2286
2287 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2288 if (unlikely(error))
2289 goto out_filp;
2290
2291 current->total_link_count = 0;
2292 error = link_path_walk(pathname, nd);
2293 if (unlikely(error))
2294 goto out_filp;
2295
2296 filp = do_last(nd, &path, op, pathname);
2297 while (unlikely(!filp)) { /* trailing symlink */
2298 struct path link = path;
2299 void *cookie;
2300 if (!(nd->flags & LOOKUP_FOLLOW)) {
2301 path_put_conditional(&path, nd);
2302 path_put(&nd->path);
2303 filp = ERR_PTR(-ELOOP);
2304 break;
2305 }
2306 nd->flags |= LOOKUP_PARENT;
2307 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2308 error = follow_link(&link, nd, &cookie);
2309 if (unlikely(error))
2310 filp = ERR_PTR(error);
2311 else
2312 filp = do_last(nd, &path, op, pathname);
2313 put_link(nd, &link, cookie);
2314 }
2315 out:
2316 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2317 path_put(&nd->root);
2318 if (base)
2319 fput(base);
2320 release_open_intent(nd);
2321 return filp;
2322
2323 out_filp:
2324 filp = ERR_PTR(error);
2325 goto out;
2326 }
2327
2328 struct file *do_filp_open(int dfd, const char *pathname,
2329 const struct open_flags *op, int flags)
2330 {
2331 struct nameidata nd;
2332 struct file *filp;
2333
2334 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2335 if (unlikely(filp == ERR_PTR(-ECHILD)))
2336 filp = path_openat(dfd, pathname, &nd, op, flags);
2337 if (unlikely(filp == ERR_PTR(-ESTALE)))
2338 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2339 return filp;
2340 }
2341
2342 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2343 const char *name, const struct open_flags *op, int flags)
2344 {
2345 struct nameidata nd;
2346 struct file *file;
2347
2348 nd.root.mnt = mnt;
2349 nd.root.dentry = dentry;
2350
2351 flags |= LOOKUP_ROOT;
2352
2353 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2354 return ERR_PTR(-ELOOP);
2355
2356 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2357 if (unlikely(file == ERR_PTR(-ECHILD)))
2358 file = path_openat(-1, name, &nd, op, flags);
2359 if (unlikely(file == ERR_PTR(-ESTALE)))
2360 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2361 return file;
2362 }
2363
2364 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2365 {
2366 struct dentry *dentry = ERR_PTR(-EEXIST);
2367 struct nameidata nd;
2368 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2369 if (error)
2370 return ERR_PTR(error);
2371
2372 /*
2373 * Yucky last component or no last component at all?
2374 * (foo/., foo/.., /////)
2375 */
2376 if (nd.last_type != LAST_NORM)
2377 goto out;
2378 nd.flags &= ~LOOKUP_PARENT;
2379 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2380 nd.intent.open.flags = O_EXCL;
2381
2382 /*
2383 * Do the final lookup.
2384 */
2385 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2386 dentry = lookup_hash(&nd);
2387 if (IS_ERR(dentry))
2388 goto fail;
2389
2390 if (dentry->d_inode)
2391 goto eexist;
2392 /*
2393 * Special case - lookup gave negative, but... we had foo/bar/
2394 * From the vfs_mknod() POV we just have a negative dentry -
2395 * all is fine. Let's be bastards - you had / on the end, you've
2396 * been asking for (non-existent) directory. -ENOENT for you.
2397 */
2398 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2399 dput(dentry);
2400 dentry = ERR_PTR(-ENOENT);
2401 goto fail;
2402 }
2403 *path = nd.path;
2404 return dentry;
2405 eexist:
2406 dput(dentry);
2407 dentry = ERR_PTR(-EEXIST);
2408 fail:
2409 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2410 out:
2411 path_put(&nd.path);
2412 return dentry;
2413 }
2414 EXPORT_SYMBOL(kern_path_create);
2415
2416 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2417 {
2418 char *tmp = getname(pathname);
2419 struct dentry *res;
2420 if (IS_ERR(tmp))
2421 return ERR_CAST(tmp);
2422 res = kern_path_create(dfd, tmp, path, is_dir);
2423 putname(tmp);
2424 return res;
2425 }
2426 EXPORT_SYMBOL(user_path_create);
2427
2428 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2429 {
2430 int error = may_create(dir, dentry);
2431
2432 if (error)
2433 return error;
2434
2435 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2436 !ns_capable(inode_userns(dir), CAP_MKNOD))
2437 return -EPERM;
2438
2439 if (!dir->i_op->mknod)
2440 return -EPERM;
2441
2442 error = devcgroup_inode_mknod(mode, dev);
2443 if (error)
2444 return error;
2445
2446 error = security_inode_mknod(dir, dentry, mode, dev);
2447 if (error)
2448 return error;
2449
2450 error = dir->i_op->mknod(dir, dentry, mode, dev);
2451 if (!error)
2452 fsnotify_create(dir, dentry);
2453 return error;
2454 }
2455
2456 static int may_mknod(mode_t mode)
2457 {
2458 switch (mode & S_IFMT) {
2459 case S_IFREG:
2460 case S_IFCHR:
2461 case S_IFBLK:
2462 case S_IFIFO:
2463 case S_IFSOCK:
2464 case 0: /* zero mode translates to S_IFREG */
2465 return 0;
2466 case S_IFDIR:
2467 return -EPERM;
2468 default:
2469 return -EINVAL;
2470 }
2471 }
2472
2473 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2474 unsigned, dev)
2475 {
2476 struct dentry *dentry;
2477 struct path path;
2478 int error;
2479
2480 if (S_ISDIR(mode))
2481 return -EPERM;
2482
2483 dentry = user_path_create(dfd, filename, &path, 0);
2484 if (IS_ERR(dentry))
2485 return PTR_ERR(dentry);
2486
2487 if (!IS_POSIXACL(path.dentry->d_inode))
2488 mode &= ~current_umask();
2489 error = may_mknod(mode);
2490 if (error)
2491 goto out_dput;
2492 error = mnt_want_write(path.mnt);
2493 if (error)
2494 goto out_dput;
2495 error = security_path_mknod(&path, dentry, mode, dev);
2496 if (error)
2497 goto out_drop_write;
2498 switch (mode & S_IFMT) {
2499 case 0: case S_IFREG:
2500 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2501 break;
2502 case S_IFCHR: case S_IFBLK:
2503 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2504 new_decode_dev(dev));
2505 break;
2506 case S_IFIFO: case S_IFSOCK:
2507 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2508 break;
2509 }
2510 out_drop_write:
2511 mnt_drop_write(path.mnt);
2512 out_dput:
2513 dput(dentry);
2514 mutex_unlock(&path.dentry->d_inode->i_mutex);
2515 path_put(&path);
2516
2517 return error;
2518 }
2519
2520 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2521 {
2522 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2523 }
2524
2525 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2526 {
2527 int error = may_create(dir, dentry);
2528
2529 if (error)
2530 return error;
2531
2532 if (!dir->i_op->mkdir)
2533 return -EPERM;
2534
2535 mode &= (S_IRWXUGO|S_ISVTX);
2536 error = security_inode_mkdir(dir, dentry, mode);
2537 if (error)
2538 return error;
2539
2540 error = dir->i_op->mkdir(dir, dentry, mode);
2541 if (!error)
2542 fsnotify_mkdir(dir, dentry);
2543 return error;
2544 }
2545
2546 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2547 {
2548 struct dentry *dentry;
2549 struct path path;
2550 int error;
2551
2552 dentry = user_path_create(dfd, pathname, &path, 1);
2553 if (IS_ERR(dentry))
2554 return PTR_ERR(dentry);
2555
2556 if (!IS_POSIXACL(path.dentry->d_inode))
2557 mode &= ~current_umask();
2558 error = mnt_want_write(path.mnt);
2559 if (error)
2560 goto out_dput;
2561 error = security_path_mkdir(&path, dentry, mode);
2562 if (error)
2563 goto out_drop_write;
2564 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2565 out_drop_write:
2566 mnt_drop_write(path.mnt);
2567 out_dput:
2568 dput(dentry);
2569 mutex_unlock(&path.dentry->d_inode->i_mutex);
2570 path_put(&path);
2571 return error;
2572 }
2573
2574 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2575 {
2576 return sys_mkdirat(AT_FDCWD, pathname, mode);
2577 }
2578
2579 /*
2580 * The dentry_unhash() helper will try to drop the dentry early: we
2581 * should have a usage count of 2 if we're the only user of this
2582 * dentry, and if that is true (possibly after pruning the dcache),
2583 * then we drop the dentry now.
2584 *
2585 * A low-level filesystem can, if it choses, legally
2586 * do a
2587 *
2588 * if (!d_unhashed(dentry))
2589 * return -EBUSY;
2590 *
2591 * if it cannot handle the case of removing a directory
2592 * that is still in use by something else..
2593 */
2594 void dentry_unhash(struct dentry *dentry)
2595 {
2596 shrink_dcache_parent(dentry);
2597 spin_lock(&dentry->d_lock);
2598 if (dentry->d_count == 1)
2599 __d_drop(dentry);
2600 spin_unlock(&dentry->d_lock);
2601 }
2602
2603 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2604 {
2605 int error = may_delete(dir, dentry, 1);
2606
2607 if (error)
2608 return error;
2609
2610 if (!dir->i_op->rmdir)
2611 return -EPERM;
2612
2613 dget(dentry);
2614 mutex_lock(&dentry->d_inode->i_mutex);
2615
2616 error = -EBUSY;
2617 if (d_mountpoint(dentry))
2618 goto out;
2619
2620 error = security_inode_rmdir(dir, dentry);
2621 if (error)
2622 goto out;
2623
2624 shrink_dcache_parent(dentry);
2625 error = dir->i_op->rmdir(dir, dentry);
2626 if (error)
2627 goto out;
2628
2629 dentry->d_inode->i_flags |= S_DEAD;
2630 dont_mount(dentry);
2631
2632 out:
2633 mutex_unlock(&dentry->d_inode->i_mutex);
2634 dput(dentry);
2635 if (!error)
2636 d_delete(dentry);
2637 return error;
2638 }
2639
2640 static long do_rmdir(int dfd, const char __user *pathname)
2641 {
2642 int error = 0;
2643 char * name;
2644 struct dentry *dentry;
2645 struct nameidata nd;
2646
2647 error = user_path_parent(dfd, pathname, &nd, &name);
2648 if (error)
2649 return error;
2650
2651 switch(nd.last_type) {
2652 case LAST_DOTDOT:
2653 error = -ENOTEMPTY;
2654 goto exit1;
2655 case LAST_DOT:
2656 error = -EINVAL;
2657 goto exit1;
2658 case LAST_ROOT:
2659 error = -EBUSY;
2660 goto exit1;
2661 }
2662
2663 nd.flags &= ~LOOKUP_PARENT;
2664
2665 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2666 dentry = lookup_hash(&nd);
2667 error = PTR_ERR(dentry);
2668 if (IS_ERR(dentry))
2669 goto exit2;
2670 if (!dentry->d_inode) {
2671 error = -ENOENT;
2672 goto exit3;
2673 }
2674 error = mnt_want_write(nd.path.mnt);
2675 if (error)
2676 goto exit3;
2677 error = security_path_rmdir(&nd.path, dentry);
2678 if (error)
2679 goto exit4;
2680 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2681 exit4:
2682 mnt_drop_write(nd.path.mnt);
2683 exit3:
2684 dput(dentry);
2685 exit2:
2686 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2687 exit1:
2688 path_put(&nd.path);
2689 putname(name);
2690 return error;
2691 }
2692
2693 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2694 {
2695 return do_rmdir(AT_FDCWD, pathname);
2696 }
2697
2698 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2699 {
2700 int error = may_delete(dir, dentry, 0);
2701
2702 if (error)
2703 return error;
2704
2705 if (!dir->i_op->unlink)
2706 return -EPERM;
2707
2708 mutex_lock(&dentry->d_inode->i_mutex);
2709 if (d_mountpoint(dentry))
2710 error = -EBUSY;
2711 else {
2712 error = security_inode_unlink(dir, dentry);
2713 if (!error) {
2714 error = dir->i_op->unlink(dir, dentry);
2715 if (!error)
2716 dont_mount(dentry);
2717 }
2718 }
2719 mutex_unlock(&dentry->d_inode->i_mutex);
2720
2721 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2722 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2723 fsnotify_link_count(dentry->d_inode);
2724 d_delete(dentry);
2725 }
2726
2727 return error;
2728 }
2729
2730 /*
2731 * Make sure that the actual truncation of the file will occur outside its
2732 * directory's i_mutex. Truncate can take a long time if there is a lot of
2733 * writeout happening, and we don't want to prevent access to the directory
2734 * while waiting on the I/O.
2735 */
2736 static long do_unlinkat(int dfd, const char __user *pathname)
2737 {
2738 int error;
2739 char *name;
2740 struct dentry *dentry;
2741 struct nameidata nd;
2742 struct inode *inode = NULL;
2743
2744 error = user_path_parent(dfd, pathname, &nd, &name);
2745 if (error)
2746 return error;
2747
2748 error = -EISDIR;
2749 if (nd.last_type != LAST_NORM)
2750 goto exit1;
2751
2752 nd.flags &= ~LOOKUP_PARENT;
2753
2754 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2755 dentry = lookup_hash(&nd);
2756 error = PTR_ERR(dentry);
2757 if (!IS_ERR(dentry)) {
2758 /* Why not before? Because we want correct error value */
2759 if (nd.last.name[nd.last.len])
2760 goto slashes;
2761 inode = dentry->d_inode;
2762 if (!inode)
2763 goto slashes;
2764 ihold(inode);
2765 error = mnt_want_write(nd.path.mnt);
2766 if (error)
2767 goto exit2;
2768 error = security_path_unlink(&nd.path, dentry);
2769 if (error)
2770 goto exit3;
2771 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2772 exit3:
2773 mnt_drop_write(nd.path.mnt);
2774 exit2:
2775 dput(dentry);
2776 }
2777 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2778 if (inode)
2779 iput(inode); /* truncate the inode here */
2780 exit1:
2781 path_put(&nd.path);
2782 putname(name);
2783 return error;
2784
2785 slashes:
2786 error = !dentry->d_inode ? -ENOENT :
2787 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2788 goto exit2;
2789 }
2790
2791 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2792 {
2793 if ((flag & ~AT_REMOVEDIR) != 0)
2794 return -EINVAL;
2795
2796 if (flag & AT_REMOVEDIR)
2797 return do_rmdir(dfd, pathname);
2798
2799 return do_unlinkat(dfd, pathname);
2800 }
2801
2802 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2803 {
2804 return do_unlinkat(AT_FDCWD, pathname);
2805 }
2806
2807 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2808 {
2809 int error = may_create(dir, dentry);
2810
2811 if (error)
2812 return error;
2813
2814 if (!dir->i_op->symlink)
2815 return -EPERM;
2816
2817 error = security_inode_symlink(dir, dentry, oldname);
2818 if (error)
2819 return error;
2820
2821 error = dir->i_op->symlink(dir, dentry, oldname);
2822 if (!error)
2823 fsnotify_create(dir, dentry);
2824 return error;
2825 }
2826
2827 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2828 int, newdfd, const char __user *, newname)
2829 {
2830 int error;
2831 char *from;
2832 struct dentry *dentry;
2833 struct path path;
2834
2835 from = getname(oldname);
2836 if (IS_ERR(from))
2837 return PTR_ERR(from);
2838
2839 dentry = user_path_create(newdfd, newname, &path, 0);
2840 error = PTR_ERR(dentry);
2841 if (IS_ERR(dentry))
2842 goto out_putname;
2843
2844 error = mnt_want_write(path.mnt);
2845 if (error)
2846 goto out_dput;
2847 error = security_path_symlink(&path, dentry, from);
2848 if (error)
2849 goto out_drop_write;
2850 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2851 out_drop_write:
2852 mnt_drop_write(path.mnt);
2853 out_dput:
2854 dput(dentry);
2855 mutex_unlock(&path.dentry->d_inode->i_mutex);
2856 path_put(&path);
2857 out_putname:
2858 putname(from);
2859 return error;
2860 }
2861
2862 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2863 {
2864 return sys_symlinkat(oldname, AT_FDCWD, newname);
2865 }
2866
2867 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2868 {
2869 struct inode *inode = old_dentry->d_inode;
2870 int error;
2871
2872 if (!inode)
2873 return -ENOENT;
2874
2875 error = may_create(dir, new_dentry);
2876 if (error)
2877 return error;
2878
2879 if (dir->i_sb != inode->i_sb)
2880 return -EXDEV;
2881
2882 /*
2883 * A link to an append-only or immutable file cannot be created.
2884 */
2885 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2886 return -EPERM;
2887 if (!dir->i_op->link)
2888 return -EPERM;
2889 if (S_ISDIR(inode->i_mode))
2890 return -EPERM;
2891
2892 error = security_inode_link(old_dentry, dir, new_dentry);
2893 if (error)
2894 return error;
2895
2896 mutex_lock(&inode->i_mutex);
2897 /* Make sure we don't allow creating hardlink to an unlinked file */
2898 if (inode->i_nlink == 0)
2899 error = -ENOENT;
2900 else
2901 error = dir->i_op->link(old_dentry, dir, new_dentry);
2902 mutex_unlock(&inode->i_mutex);
2903 if (!error)
2904 fsnotify_link(dir, inode, new_dentry);
2905 return error;
2906 }
2907
2908 /*
2909 * Hardlinks are often used in delicate situations. We avoid
2910 * security-related surprises by not following symlinks on the
2911 * newname. --KAB
2912 *
2913 * We don't follow them on the oldname either to be compatible
2914 * with linux 2.0, and to avoid hard-linking to directories
2915 * and other special files. --ADM
2916 */
2917 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2918 int, newdfd, const char __user *, newname, int, flags)
2919 {
2920 struct dentry *new_dentry;
2921 struct path old_path, new_path;
2922 int how = 0;
2923 int error;
2924
2925 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2926 return -EINVAL;
2927 /*
2928 * To use null names we require CAP_DAC_READ_SEARCH
2929 * This ensures that not everyone will be able to create
2930 * handlink using the passed filedescriptor.
2931 */
2932 if (flags & AT_EMPTY_PATH) {
2933 if (!capable(CAP_DAC_READ_SEARCH))
2934 return -ENOENT;
2935 how = LOOKUP_EMPTY;
2936 }
2937
2938 if (flags & AT_SYMLINK_FOLLOW)
2939 how |= LOOKUP_FOLLOW;
2940
2941 error = user_path_at(olddfd, oldname, how, &old_path);
2942 if (error)
2943 return error;
2944
2945 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2946 error = PTR_ERR(new_dentry);
2947 if (IS_ERR(new_dentry))
2948 goto out;
2949
2950 error = -EXDEV;
2951 if (old_path.mnt != new_path.mnt)
2952 goto out_dput;
2953 error = mnt_want_write(new_path.mnt);
2954 if (error)
2955 goto out_dput;
2956 error = security_path_link(old_path.dentry, &new_path, new_dentry);
2957 if (error)
2958 goto out_drop_write;
2959 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2960 out_drop_write:
2961 mnt_drop_write(new_path.mnt);
2962 out_dput:
2963 dput(new_dentry);
2964 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2965 path_put(&new_path);
2966 out:
2967 path_put(&old_path);
2968
2969 return error;
2970 }
2971
2972 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2973 {
2974 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2975 }
2976
2977 /*
2978 * The worst of all namespace operations - renaming directory. "Perverted"
2979 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2980 * Problems:
2981 * a) we can get into loop creation. Check is done in is_subdir().
2982 * b) race potential - two innocent renames can create a loop together.
2983 * That's where 4.4 screws up. Current fix: serialization on
2984 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2985 * story.
2986 * c) we have to lock _three_ objects - parents and victim (if it exists).
2987 * And that - after we got ->i_mutex on parents (until then we don't know
2988 * whether the target exists). Solution: try to be smart with locking
2989 * order for inodes. We rely on the fact that tree topology may change
2990 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2991 * move will be locked. Thus we can rank directories by the tree
2992 * (ancestors first) and rank all non-directories after them.
2993 * That works since everybody except rename does "lock parent, lookup,
2994 * lock child" and rename is under ->s_vfs_rename_mutex.
2995 * HOWEVER, it relies on the assumption that any object with ->lookup()
2996 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2997 * we'd better make sure that there's no link(2) for them.
2998 * d) conversion from fhandle to dentry may come in the wrong moment - when
2999 * we are removing the target. Solution: we will have to grab ->i_mutex
3000 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3001 * ->i_mutex on parents, which works but leads to some truly excessive
3002 * locking].
3003 */
3004 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3005 struct inode *new_dir, struct dentry *new_dentry)
3006 {
3007 int error = 0;
3008 struct inode *target = new_dentry->d_inode;
3009
3010 /*
3011 * If we are going to change the parent - check write permissions,
3012 * we'll need to flip '..'.
3013 */
3014 if (new_dir != old_dir) {
3015 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3016 if (error)
3017 return error;
3018 }
3019
3020 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3021 if (error)
3022 return error;
3023
3024 dget(new_dentry);
3025 if (target)
3026 mutex_lock(&target->i_mutex);
3027
3028 error = -EBUSY;
3029 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3030 goto out;
3031
3032 if (target)
3033 shrink_dcache_parent(new_dentry);
3034 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3035 if (error)
3036 goto out;
3037
3038 if (target) {
3039 target->i_flags |= S_DEAD;
3040 dont_mount(new_dentry);
3041 }
3042 out:
3043 if (target)
3044 mutex_unlock(&target->i_mutex);
3045 dput(new_dentry);
3046 if (!error)
3047 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3048 d_move(old_dentry,new_dentry);
3049 return error;
3050 }
3051
3052 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3053 struct inode *new_dir, struct dentry *new_dentry)
3054 {
3055 struct inode *target = new_dentry->d_inode;
3056 int error;
3057
3058 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3059 if (error)
3060 return error;
3061
3062 dget(new_dentry);
3063 if (target)
3064 mutex_lock(&target->i_mutex);
3065
3066 error = -EBUSY;
3067 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3068 goto out;
3069
3070 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3071 if (error)
3072 goto out;
3073
3074 if (target)
3075 dont_mount(new_dentry);
3076 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3077 d_move(old_dentry, new_dentry);
3078 out:
3079 if (target)
3080 mutex_unlock(&target->i_mutex);
3081 dput(new_dentry);
3082 return error;
3083 }
3084
3085 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3086 struct inode *new_dir, struct dentry *new_dentry)
3087 {
3088 int error;
3089 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3090 const unsigned char *old_name;
3091
3092 if (old_dentry->d_inode == new_dentry->d_inode)
3093 return 0;
3094
3095 error = may_delete(old_dir, old_dentry, is_dir);
3096 if (error)
3097 return error;
3098
3099 if (!new_dentry->d_inode)
3100 error = may_create(new_dir, new_dentry);
3101 else
3102 error = may_delete(new_dir, new_dentry, is_dir);
3103 if (error)
3104 return error;
3105
3106 if (!old_dir->i_op->rename)
3107 return -EPERM;
3108
3109 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3110
3111 if (is_dir)
3112 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3113 else
3114 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3115 if (!error)
3116 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3117 new_dentry->d_inode, old_dentry);
3118 fsnotify_oldname_free(old_name);
3119
3120 return error;
3121 }
3122
3123 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3124 int, newdfd, const char __user *, newname)
3125 {
3126 struct dentry *old_dir, *new_dir;
3127 struct dentry *old_dentry, *new_dentry;
3128 struct dentry *trap;
3129 struct nameidata oldnd, newnd;
3130 char *from;
3131 char *to;
3132 int error;
3133
3134 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3135 if (error)
3136 goto exit;
3137
3138 error = user_path_parent(newdfd, newname, &newnd, &to);
3139 if (error)
3140 goto exit1;
3141
3142 error = -EXDEV;
3143 if (oldnd.path.mnt != newnd.path.mnt)
3144 goto exit2;
3145
3146 old_dir = oldnd.path.dentry;
3147 error = -EBUSY;
3148 if (oldnd.last_type != LAST_NORM)
3149 goto exit2;
3150
3151 new_dir = newnd.path.dentry;
3152 if (newnd.last_type != LAST_NORM)
3153 goto exit2;
3154
3155 oldnd.flags &= ~LOOKUP_PARENT;
3156 newnd.flags &= ~LOOKUP_PARENT;
3157 newnd.flags |= LOOKUP_RENAME_TARGET;
3158
3159 trap = lock_rename(new_dir, old_dir);
3160
3161 old_dentry = lookup_hash(&oldnd);
3162 error = PTR_ERR(old_dentry);
3163 if (IS_ERR(old_dentry))
3164 goto exit3;
3165 /* source must exist */
3166 error = -ENOENT;
3167 if (!old_dentry->d_inode)
3168 goto exit4;
3169 /* unless the source is a directory trailing slashes give -ENOTDIR */
3170 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3171 error = -ENOTDIR;
3172 if (oldnd.last.name[oldnd.last.len])
3173 goto exit4;
3174 if (newnd.last.name[newnd.last.len])
3175 goto exit4;
3176 }
3177 /* source should not be ancestor of target */
3178 error = -EINVAL;
3179 if (old_dentry == trap)
3180 goto exit4;
3181 new_dentry = lookup_hash(&newnd);
3182 error = PTR_ERR(new_dentry);
3183 if (IS_ERR(new_dentry))
3184 goto exit4;
3185 /* target should not be an ancestor of source */
3186 error = -ENOTEMPTY;
3187 if (new_dentry == trap)
3188 goto exit5;
3189
3190 error = mnt_want_write(oldnd.path.mnt);
3191 if (error)
3192 goto exit5;
3193 error = security_path_rename(&oldnd.path, old_dentry,
3194 &newnd.path, new_dentry);
3195 if (error)
3196 goto exit6;
3197 error = vfs_rename(old_dir->d_inode, old_dentry,
3198 new_dir->d_inode, new_dentry);
3199 exit6:
3200 mnt_drop_write(oldnd.path.mnt);
3201 exit5:
3202 dput(new_dentry);
3203 exit4:
3204 dput(old_dentry);
3205 exit3:
3206 unlock_rename(new_dir, old_dir);
3207 exit2:
3208 path_put(&newnd.path);
3209 putname(to);
3210 exit1:
3211 path_put(&oldnd.path);
3212 putname(from);
3213 exit:
3214 return error;
3215 }
3216
3217 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3218 {
3219 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3220 }
3221
3222 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3223 {
3224 int len;
3225
3226 len = PTR_ERR(link);
3227 if (IS_ERR(link))
3228 goto out;
3229
3230 len = strlen(link);
3231 if (len > (unsigned) buflen)
3232 len = buflen;
3233 if (copy_to_user(buffer, link, len))
3234 len = -EFAULT;
3235 out:
3236 return len;
3237 }
3238
3239 /*
3240 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3241 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3242 * using) it for any given inode is up to filesystem.
3243 */
3244 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3245 {
3246 struct nameidata nd;
3247 void *cookie;
3248 int res;
3249
3250 nd.depth = 0;
3251 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3252 if (IS_ERR(cookie))
3253 return PTR_ERR(cookie);
3254
3255 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3256 if (dentry->d_inode->i_op->put_link)
3257 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3258 return res;
3259 }
3260
3261 int vfs_follow_link(struct nameidata *nd, const char *link)
3262 {
3263 return __vfs_follow_link(nd, link);
3264 }
3265
3266 /* get the link contents into pagecache */
3267 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3268 {
3269 char *kaddr;
3270 struct page *page;
3271 struct address_space *mapping = dentry->d_inode->i_mapping;
3272 page = read_mapping_page(mapping, 0, NULL);
3273 if (IS_ERR(page))
3274 return (char*)page;
3275 *ppage = page;
3276 kaddr = kmap(page);
3277 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3278 return kaddr;
3279 }
3280
3281 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3282 {
3283 struct page *page = NULL;
3284 char *s = page_getlink(dentry, &page);
3285 int res = vfs_readlink(dentry,buffer,buflen,s);
3286 if (page) {
3287 kunmap(page);
3288 page_cache_release(page);
3289 }
3290 return res;
3291 }
3292
3293 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3294 {
3295 struct page *page = NULL;
3296 nd_set_link(nd, page_getlink(dentry, &page));
3297 return page;
3298 }
3299
3300 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3301 {
3302 struct page *page = cookie;
3303
3304 if (page) {
3305 kunmap(page);
3306 page_cache_release(page);
3307 }
3308 }
3309
3310 /*
3311 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3312 */
3313 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3314 {
3315 struct address_space *mapping = inode->i_mapping;
3316 struct page *page;
3317 void *fsdata;
3318 int err;
3319 char *kaddr;
3320 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3321 if (nofs)
3322 flags |= AOP_FLAG_NOFS;
3323
3324 retry:
3325 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3326 flags, &page, &fsdata);
3327 if (err)
3328 goto fail;
3329
3330 kaddr = kmap_atomic(page, KM_USER0);
3331 memcpy(kaddr, symname, len-1);
3332 kunmap_atomic(kaddr, KM_USER0);
3333
3334 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3335 page, fsdata);
3336 if (err < 0)
3337 goto fail;
3338 if (err < len-1)
3339 goto retry;
3340
3341 mark_inode_dirty(inode);
3342 return 0;
3343 fail:
3344 return err;
3345 }
3346
3347 int page_symlink(struct inode *inode, const char *symname, int len)
3348 {
3349 return __page_symlink(inode, symname, len,
3350 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3351 }
3352
3353 const struct inode_operations page_symlink_inode_operations = {
3354 .readlink = generic_readlink,
3355 .follow_link = page_follow_link_light,
3356 .put_link = page_put_link,
3357 };
3358
3359 EXPORT_SYMBOL(user_path_at);
3360 EXPORT_SYMBOL(follow_down_one);
3361 EXPORT_SYMBOL(follow_down);
3362 EXPORT_SYMBOL(follow_up);
3363 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3364 EXPORT_SYMBOL(getname);
3365 EXPORT_SYMBOL(lock_rename);
3366 EXPORT_SYMBOL(lookup_one_len);
3367 EXPORT_SYMBOL(page_follow_link_light);
3368 EXPORT_SYMBOL(page_put_link);
3369 EXPORT_SYMBOL(page_readlink);
3370 EXPORT_SYMBOL(__page_symlink);
3371 EXPORT_SYMBOL(page_symlink);
3372 EXPORT_SYMBOL(page_symlink_inode_operations);
3373 EXPORT_SYMBOL(kern_path);
3374 EXPORT_SYMBOL(vfs_path_lookup);
3375 EXPORT_SYMBOL(inode_permission);
3376 EXPORT_SYMBOL(unlock_rename);
3377 EXPORT_SYMBOL(vfs_create);
3378 EXPORT_SYMBOL(vfs_follow_link);
3379 EXPORT_SYMBOL(vfs_link);
3380 EXPORT_SYMBOL(vfs_mkdir);
3381 EXPORT_SYMBOL(vfs_mknod);
3382 EXPORT_SYMBOL(generic_permission);
3383 EXPORT_SYMBOL(vfs_readlink);
3384 EXPORT_SYMBOL(vfs_rename);
3385 EXPORT_SYMBOL(vfs_rmdir);
3386 EXPORT_SYMBOL(vfs_symlink);
3387 EXPORT_SYMBOL(vfs_unlink);
3388 EXPORT_SYMBOL(dentry_unhash);
3389 EXPORT_SYMBOL(generic_readlink);