drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121 void final_putname(struct filename *name)
122 {
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
128 }
129 }
130
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
140
141 result = audit_reusename(filename);
142 if (result)
143 return result;
144
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
148
149 /*
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
152 */
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
157
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
163 }
164
165 /*
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
170 */
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
173
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
179 }
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
184 }
185
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
193 }
194
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
198
199 result->uptr = filename;
200 audit_getname(result);
201 return result;
202
203 error:
204 final_putname(result);
205 return err;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213 EXPORT_SYMBOL(getname);
214
215 #ifdef CONFIG_AUDITSYSCALL
216 void putname(struct filename *name)
217 {
218 if (unlikely(!audit_dummy_context()))
219 return audit_putname(name);
220 final_putname(name);
221 }
222 #endif
223
224 static int check_acl(struct inode *inode, int mask)
225 {
226 #ifdef CONFIG_FS_POSIX_ACL
227 struct posix_acl *acl;
228
229 if (mask & MAY_NOT_BLOCK) {
230 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
231 if (!acl)
232 return -EAGAIN;
233 /* no ->get_acl() calls in RCU mode... */
234 if (acl == ACL_NOT_CACHED)
235 return -ECHILD;
236 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
237 }
238
239 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
240
241 /*
242 * A filesystem can force a ACL callback by just never filling the
243 * ACL cache. But normally you'd fill the cache either at inode
244 * instantiation time, or on the first ->get_acl call.
245 *
246 * If the filesystem doesn't have a get_acl() function at all, we'll
247 * just create the negative cache entry.
248 */
249 if (acl == ACL_NOT_CACHED) {
250 if (inode->i_op->get_acl) {
251 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
252 if (IS_ERR(acl))
253 return PTR_ERR(acl);
254 } else {
255 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
256 return -EAGAIN;
257 }
258 }
259
260 if (acl) {
261 int error = posix_acl_permission(inode, acl, mask);
262 posix_acl_release(acl);
263 return error;
264 }
265 #endif
266
267 return -EAGAIN;
268 }
269
270 /*
271 * This does the basic permission checking
272 */
273 static int acl_permission_check(struct inode *inode, int mask)
274 {
275 unsigned int mode = inode->i_mode;
276
277 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
278 mode >>= 6;
279 else {
280 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
281 int error = check_acl(inode, mask);
282 if (error != -EAGAIN)
283 return error;
284 }
285
286 if (in_group_p(inode->i_gid))
287 mode >>= 3;
288 }
289
290 /*
291 * If the DACs are ok we don't need any capability check.
292 */
293 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
294 return 0;
295 return -EACCES;
296 }
297
298 /**
299 * generic_permission - check for access rights on a Posix-like filesystem
300 * @inode: inode to check access rights for
301 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
302 *
303 * Used to check for read/write/execute permissions on a file.
304 * We use "fsuid" for this, letting us set arbitrary permissions
305 * for filesystem access without changing the "normal" uids which
306 * are used for other things.
307 *
308 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
309 * request cannot be satisfied (eg. requires blocking or too much complexity).
310 * It would then be called again in ref-walk mode.
311 */
312 int generic_permission(struct inode *inode, int mask)
313 {
314 int ret;
315
316 /*
317 * Do the basic permission checks.
318 */
319 ret = acl_permission_check(inode, mask);
320 if (ret != -EACCES)
321 return ret;
322
323 if (S_ISDIR(inode->i_mode)) {
324 /* DACs are overridable for directories */
325 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
326 return 0;
327 if (!(mask & MAY_WRITE))
328 if (capable_wrt_inode_uidgid(inode,
329 CAP_DAC_READ_SEARCH))
330 return 0;
331 return -EACCES;
332 }
333 /*
334 * Read/write DACs are always overridable.
335 * Executable DACs are overridable when there is
336 * at least one exec bit set.
337 */
338 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
339 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
340 return 0;
341
342 /*
343 * Searching includes executable on directories, else just read.
344 */
345 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
346 if (mask == MAY_READ)
347 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
348 return 0;
349
350 return -EACCES;
351 }
352
353 /*
354 * We _really_ want to just do "generic_permission()" without
355 * even looking at the inode->i_op values. So we keep a cache
356 * flag in inode->i_opflags, that says "this has not special
357 * permission function, use the fast case".
358 */
359 static inline int do_inode_permission(struct inode *inode, int mask)
360 {
361 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
362 if (likely(inode->i_op->permission))
363 return inode->i_op->permission(inode, mask);
364
365 /* This gets set once for the inode lifetime */
366 spin_lock(&inode->i_lock);
367 inode->i_opflags |= IOP_FASTPERM;
368 spin_unlock(&inode->i_lock);
369 }
370 return generic_permission(inode, mask);
371 }
372
373 /**
374 * __inode_permission - Check for access rights to a given inode
375 * @inode: Inode to check permission on
376 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
377 *
378 * Check for read/write/execute permissions on an inode.
379 *
380 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
381 *
382 * This does not check for a read-only file system. You probably want
383 * inode_permission().
384 */
385 int __inode_permission(struct inode *inode, int mask)
386 {
387 int retval;
388
389 if (unlikely(mask & MAY_WRITE)) {
390 /*
391 * Nobody gets write access to an immutable file.
392 */
393 if (IS_IMMUTABLE(inode))
394 return -EACCES;
395 }
396
397 retval = do_inode_permission(inode, mask);
398 if (retval)
399 return retval;
400
401 retval = devcgroup_inode_permission(inode, mask);
402 if (retval)
403 return retval;
404
405 return security_inode_permission(inode, mask);
406 }
407
408 /**
409 * sb_permission - Check superblock-level permissions
410 * @sb: Superblock of inode to check permission on
411 * @inode: Inode to check permission on
412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413 *
414 * Separate out file-system wide checks from inode-specific permission checks.
415 */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 if (unlikely(mask & MAY_WRITE)) {
419 umode_t mode = inode->i_mode;
420
421 /* Nobody gets write access to a read-only fs. */
422 if ((sb->s_flags & MS_RDONLY) &&
423 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
424 return -EROFS;
425 }
426 return 0;
427 }
428
429 /**
430 * inode_permission - Check for access rights to a given inode
431 * @inode: Inode to check permission on
432 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
433 *
434 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
435 * this, letting us set arbitrary permissions for filesystem access without
436 * changing the "normal" UIDs which are used for other things.
437 *
438 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
439 */
440 int inode_permission(struct inode *inode, int mask)
441 {
442 int retval;
443
444 retval = sb_permission(inode->i_sb, inode, mask);
445 if (retval)
446 return retval;
447 return __inode_permission(inode, mask);
448 }
449
450 /**
451 * path_get - get a reference to a path
452 * @path: path to get the reference to
453 *
454 * Given a path increment the reference count to the dentry and the vfsmount.
455 */
456 void path_get(const struct path *path)
457 {
458 mntget(path->mnt);
459 dget(path->dentry);
460 }
461 EXPORT_SYMBOL(path_get);
462
463 /**
464 * path_put - put a reference to a path
465 * @path: path to put the reference to
466 *
467 * Given a path decrement the reference count to the dentry and the vfsmount.
468 */
469 void path_put(const struct path *path)
470 {
471 dput(path->dentry);
472 mntput(path->mnt);
473 }
474 EXPORT_SYMBOL(path_put);
475
476 /**
477 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
478 * @path: nameidate to verify
479 *
480 * Rename can sometimes move a file or directory outside of a bind
481 * mount, path_connected allows those cases to be detected.
482 */
483 static bool path_connected(const struct path *path)
484 {
485 struct vfsmount *mnt = path->mnt;
486
487 /* Only bind mounts can have disconnected paths */
488 if (mnt->mnt_root == mnt->mnt_sb->s_root)
489 return true;
490
491 return is_subdir(path->dentry, mnt->mnt_root);
492 }
493
494 /*
495 * Path walking has 2 modes, rcu-walk and ref-walk (see
496 * Documentation/filesystems/path-lookup.txt). In situations when we can't
497 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
498 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
499 * mode. Refcounts are grabbed at the last known good point before rcu-walk
500 * got stuck, so ref-walk may continue from there. If this is not successful
501 * (eg. a seqcount has changed), then failure is returned and it's up to caller
502 * to restart the path walk from the beginning in ref-walk mode.
503 */
504
505 static inline void lock_rcu_walk(void)
506 {
507 br_read_lock(&vfsmount_lock);
508 rcu_read_lock();
509 }
510
511 static inline void unlock_rcu_walk(void)
512 {
513 rcu_read_unlock();
514 br_read_unlock(&vfsmount_lock);
515 }
516
517 /**
518 * unlazy_walk - try to switch to ref-walk mode.
519 * @nd: nameidata pathwalk data
520 * @dentry: child of nd->path.dentry or NULL
521 * Returns: 0 on success, -ECHILD on failure
522 *
523 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
524 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
525 * @nd or NULL. Must be called from rcu-walk context.
526 */
527 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
528 {
529 struct fs_struct *fs = current->fs;
530 struct dentry *parent = nd->path.dentry;
531 int want_root = 0;
532
533 BUG_ON(!(nd->flags & LOOKUP_RCU));
534 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
535 want_root = 1;
536 spin_lock(&fs->lock);
537 if (nd->root.mnt != fs->root.mnt ||
538 nd->root.dentry != fs->root.dentry)
539 goto err_root;
540 }
541 spin_lock(&parent->d_lock);
542 if (!dentry) {
543 if (!__d_rcu_to_refcount(parent, nd->seq))
544 goto err_parent;
545 BUG_ON(nd->inode != parent->d_inode);
546 } else {
547 if (dentry->d_parent != parent)
548 goto err_parent;
549 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
550 if (!__d_rcu_to_refcount(dentry, nd->seq))
551 goto err_child;
552 /*
553 * If the sequence check on the child dentry passed, then
554 * the child has not been removed from its parent. This
555 * means the parent dentry must be valid and able to take
556 * a reference at this point.
557 */
558 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
559 BUG_ON(!parent->d_count);
560 parent->d_count++;
561 spin_unlock(&dentry->d_lock);
562 }
563 spin_unlock(&parent->d_lock);
564 if (want_root) {
565 path_get(&nd->root);
566 spin_unlock(&fs->lock);
567 }
568 mntget(nd->path.mnt);
569
570 unlock_rcu_walk();
571 nd->flags &= ~LOOKUP_RCU;
572 return 0;
573
574 err_child:
575 spin_unlock(&dentry->d_lock);
576 err_parent:
577 spin_unlock(&parent->d_lock);
578 err_root:
579 if (want_root)
580 spin_unlock(&fs->lock);
581 return -ECHILD;
582 }
583
584 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
585 {
586 return dentry->d_op->d_revalidate(dentry, flags);
587 }
588
589 /**
590 * complete_walk - successful completion of path walk
591 * @nd: pointer nameidata
592 *
593 * If we had been in RCU mode, drop out of it and legitimize nd->path.
594 * Revalidate the final result, unless we'd already done that during
595 * the path walk or the filesystem doesn't ask for it. Return 0 on
596 * success, -error on failure. In case of failure caller does not
597 * need to drop nd->path.
598 */
599 static int complete_walk(struct nameidata *nd)
600 {
601 struct dentry *dentry = nd->path.dentry;
602 int status;
603
604 if (nd->flags & LOOKUP_RCU) {
605 nd->flags &= ~LOOKUP_RCU;
606 if (!(nd->flags & LOOKUP_ROOT))
607 nd->root.mnt = NULL;
608 spin_lock(&dentry->d_lock);
609 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
610 spin_unlock(&dentry->d_lock);
611 unlock_rcu_walk();
612 return -ECHILD;
613 }
614 BUG_ON(nd->inode != dentry->d_inode);
615 spin_unlock(&dentry->d_lock);
616 mntget(nd->path.mnt);
617 unlock_rcu_walk();
618 }
619
620 if (likely(!(nd->flags & LOOKUP_JUMPED)))
621 return 0;
622
623 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
624 return 0;
625
626 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
627 if (status > 0)
628 return 0;
629
630 if (!status)
631 status = -ESTALE;
632
633 path_put(&nd->path);
634 return status;
635 }
636
637 static __always_inline void set_root(struct nameidata *nd)
638 {
639 if (!nd->root.mnt)
640 get_fs_root(current->fs, &nd->root);
641 }
642
643 static int link_path_walk(const char *, struct nameidata *);
644
645 static __always_inline void set_root_rcu(struct nameidata *nd)
646 {
647 if (!nd->root.mnt) {
648 struct fs_struct *fs = current->fs;
649 unsigned seq;
650
651 do {
652 seq = read_seqcount_begin(&fs->seq);
653 nd->root = fs->root;
654 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
655 } while (read_seqcount_retry(&fs->seq, seq));
656 }
657 }
658
659 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
660 {
661 int ret;
662
663 if (IS_ERR(link))
664 goto fail;
665
666 if (*link == '/') {
667 set_root(nd);
668 path_put(&nd->path);
669 nd->path = nd->root;
670 path_get(&nd->root);
671 nd->flags |= LOOKUP_JUMPED;
672 }
673 nd->inode = nd->path.dentry->d_inode;
674
675 ret = link_path_walk(link, nd);
676 return ret;
677 fail:
678 path_put(&nd->path);
679 return PTR_ERR(link);
680 }
681
682 static void path_put_conditional(struct path *path, struct nameidata *nd)
683 {
684 dput(path->dentry);
685 if (path->mnt != nd->path.mnt)
686 mntput(path->mnt);
687 }
688
689 static inline void path_to_nameidata(const struct path *path,
690 struct nameidata *nd)
691 {
692 if (!(nd->flags & LOOKUP_RCU)) {
693 dput(nd->path.dentry);
694 if (nd->path.mnt != path->mnt)
695 mntput(nd->path.mnt);
696 }
697 nd->path.mnt = path->mnt;
698 nd->path.dentry = path->dentry;
699 }
700
701 /*
702 * Helper to directly jump to a known parsed path from ->follow_link,
703 * caller must have taken a reference to path beforehand.
704 */
705 void nd_jump_link(struct nameidata *nd, struct path *path)
706 {
707 path_put(&nd->path);
708
709 nd->path = *path;
710 nd->inode = nd->path.dentry->d_inode;
711 nd->flags |= LOOKUP_JUMPED;
712 }
713
714 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
715 {
716 struct inode *inode = link->dentry->d_inode;
717 if (inode->i_op->put_link)
718 inode->i_op->put_link(link->dentry, nd, cookie);
719 path_put(link);
720 }
721
722 int sysctl_protected_symlinks __read_mostly = 0;
723 int sysctl_protected_hardlinks __read_mostly = 0;
724
725 /**
726 * may_follow_link - Check symlink following for unsafe situations
727 * @link: The path of the symlink
728 * @nd: nameidata pathwalk data
729 *
730 * In the case of the sysctl_protected_symlinks sysctl being enabled,
731 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
732 * in a sticky world-writable directory. This is to protect privileged
733 * processes from failing races against path names that may change out
734 * from under them by way of other users creating malicious symlinks.
735 * It will permit symlinks to be followed only when outside a sticky
736 * world-writable directory, or when the uid of the symlink and follower
737 * match, or when the directory owner matches the symlink's owner.
738 *
739 * Returns 0 if following the symlink is allowed, -ve on error.
740 */
741 static inline int may_follow_link(struct path *link, struct nameidata *nd)
742 {
743 const struct inode *inode;
744 const struct inode *parent;
745
746 if (!sysctl_protected_symlinks)
747 return 0;
748
749 /* Allowed if owner and follower match. */
750 inode = link->dentry->d_inode;
751 if (uid_eq(current_cred()->fsuid, inode->i_uid))
752 return 0;
753
754 /* Allowed if parent directory not sticky and world-writable. */
755 parent = nd->path.dentry->d_inode;
756 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
757 return 0;
758
759 /* Allowed if parent directory and link owner match. */
760 if (uid_eq(parent->i_uid, inode->i_uid))
761 return 0;
762
763 audit_log_link_denied("follow_link", link);
764 path_put_conditional(link, nd);
765 path_put(&nd->path);
766 return -EACCES;
767 }
768
769 /**
770 * safe_hardlink_source - Check for safe hardlink conditions
771 * @inode: the source inode to hardlink from
772 *
773 * Return false if at least one of the following conditions:
774 * - inode is not a regular file
775 * - inode is setuid
776 * - inode is setgid and group-exec
777 * - access failure for read and write
778 *
779 * Otherwise returns true.
780 */
781 static bool safe_hardlink_source(struct inode *inode)
782 {
783 umode_t mode = inode->i_mode;
784
785 /* Special files should not get pinned to the filesystem. */
786 if (!S_ISREG(mode))
787 return false;
788
789 /* Setuid files should not get pinned to the filesystem. */
790 if (mode & S_ISUID)
791 return false;
792
793 /* Executable setgid files should not get pinned to the filesystem. */
794 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
795 return false;
796
797 /* Hardlinking to unreadable or unwritable sources is dangerous. */
798 if (inode_permission(inode, MAY_READ | MAY_WRITE))
799 return false;
800
801 return true;
802 }
803
804 /**
805 * may_linkat - Check permissions for creating a hardlink
806 * @link: the source to hardlink from
807 *
808 * Block hardlink when all of:
809 * - sysctl_protected_hardlinks enabled
810 * - fsuid does not match inode
811 * - hardlink source is unsafe (see safe_hardlink_source() above)
812 * - not CAP_FOWNER
813 *
814 * Returns 0 if successful, -ve on error.
815 */
816 static int may_linkat(struct path *link)
817 {
818 const struct cred *cred;
819 struct inode *inode;
820
821 if (!sysctl_protected_hardlinks)
822 return 0;
823
824 cred = current_cred();
825 inode = link->dentry->d_inode;
826
827 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
828 * otherwise, it must be a safe source.
829 */
830 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
831 capable(CAP_FOWNER))
832 return 0;
833
834 audit_log_link_denied("linkat", link);
835 return -EPERM;
836 }
837
838 static __always_inline int
839 follow_link(struct path *link, struct nameidata *nd, void **p)
840 {
841 struct dentry *dentry = link->dentry;
842 int error;
843 char *s;
844
845 BUG_ON(nd->flags & LOOKUP_RCU);
846
847 if (link->mnt == nd->path.mnt)
848 mntget(link->mnt);
849
850 error = -ELOOP;
851 if (unlikely(current->total_link_count >= 40))
852 goto out_put_nd_path;
853
854 cond_resched();
855 current->total_link_count++;
856
857 touch_atime(link);
858 nd_set_link(nd, NULL);
859
860 error = security_inode_follow_link(link->dentry, nd);
861 if (error)
862 goto out_put_nd_path;
863
864 nd->last_type = LAST_BIND;
865 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
866 error = PTR_ERR(*p);
867 if (IS_ERR(*p))
868 goto out_put_nd_path;
869
870 error = 0;
871 s = nd_get_link(nd);
872 if (s) {
873 error = __vfs_follow_link(nd, s);
874 if (unlikely(error))
875 put_link(nd, link, *p);
876 }
877
878 return error;
879
880 out_put_nd_path:
881 *p = NULL;
882 path_put(&nd->path);
883 path_put(link);
884 return error;
885 }
886
887 static int follow_up_rcu(struct path *path)
888 {
889 struct mount *mnt = real_mount(path->mnt);
890 struct mount *parent;
891 struct dentry *mountpoint;
892
893 parent = mnt->mnt_parent;
894 if (&parent->mnt == path->mnt)
895 return 0;
896 mountpoint = mnt->mnt_mountpoint;
897 path->dentry = mountpoint;
898 path->mnt = &parent->mnt;
899 return 1;
900 }
901
902 /*
903 * follow_up - Find the mountpoint of path's vfsmount
904 *
905 * Given a path, find the mountpoint of its source file system.
906 * Replace @path with the path of the mountpoint in the parent mount.
907 * Up is towards /.
908 *
909 * Return 1 if we went up a level and 0 if we were already at the
910 * root.
911 */
912 int follow_up(struct path *path)
913 {
914 struct mount *mnt = real_mount(path->mnt);
915 struct mount *parent;
916 struct dentry *mountpoint;
917
918 br_read_lock(&vfsmount_lock);
919 parent = mnt->mnt_parent;
920 if (parent == mnt) {
921 br_read_unlock(&vfsmount_lock);
922 return 0;
923 }
924 mntget(&parent->mnt);
925 mountpoint = dget(mnt->mnt_mountpoint);
926 br_read_unlock(&vfsmount_lock);
927 dput(path->dentry);
928 path->dentry = mountpoint;
929 mntput(path->mnt);
930 path->mnt = &parent->mnt;
931 return 1;
932 }
933
934 /*
935 * Perform an automount
936 * - return -EISDIR to tell follow_managed() to stop and return the path we
937 * were called with.
938 */
939 static int follow_automount(struct path *path, unsigned flags,
940 bool *need_mntput)
941 {
942 struct vfsmount *mnt;
943 int err;
944
945 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
946 return -EREMOTE;
947
948 /* We don't want to mount if someone's just doing a stat -
949 * unless they're stat'ing a directory and appended a '/' to
950 * the name.
951 *
952 * We do, however, want to mount if someone wants to open or
953 * create a file of any type under the mountpoint, wants to
954 * traverse through the mountpoint or wants to open the
955 * mounted directory. Also, autofs may mark negative dentries
956 * as being automount points. These will need the attentions
957 * of the daemon to instantiate them before they can be used.
958 */
959 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
960 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
961 path->dentry->d_inode)
962 return -EISDIR;
963
964 current->total_link_count++;
965 if (current->total_link_count >= 40)
966 return -ELOOP;
967
968 mnt = path->dentry->d_op->d_automount(path);
969 if (IS_ERR(mnt)) {
970 /*
971 * The filesystem is allowed to return -EISDIR here to indicate
972 * it doesn't want to automount. For instance, autofs would do
973 * this so that its userspace daemon can mount on this dentry.
974 *
975 * However, we can only permit this if it's a terminal point in
976 * the path being looked up; if it wasn't then the remainder of
977 * the path is inaccessible and we should say so.
978 */
979 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
980 return -EREMOTE;
981 return PTR_ERR(mnt);
982 }
983
984 if (!mnt) /* mount collision */
985 return 0;
986
987 if (!*need_mntput) {
988 /* lock_mount() may release path->mnt on error */
989 mntget(path->mnt);
990 *need_mntput = true;
991 }
992 err = finish_automount(mnt, path);
993
994 switch (err) {
995 case -EBUSY:
996 /* Someone else made a mount here whilst we were busy */
997 return 0;
998 case 0:
999 path_put(path);
1000 path->mnt = mnt;
1001 path->dentry = dget(mnt->mnt_root);
1002 return 0;
1003 default:
1004 return err;
1005 }
1006
1007 }
1008
1009 /*
1010 * Handle a dentry that is managed in some way.
1011 * - Flagged for transit management (autofs)
1012 * - Flagged as mountpoint
1013 * - Flagged as automount point
1014 *
1015 * This may only be called in refwalk mode.
1016 *
1017 * Serialization is taken care of in namespace.c
1018 */
1019 static int follow_managed(struct path *path, unsigned flags)
1020 {
1021 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1022 unsigned managed;
1023 bool need_mntput = false;
1024 int ret = 0;
1025
1026 /* Given that we're not holding a lock here, we retain the value in a
1027 * local variable for each dentry as we look at it so that we don't see
1028 * the components of that value change under us */
1029 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1030 managed &= DCACHE_MANAGED_DENTRY,
1031 unlikely(managed != 0)) {
1032 /* Allow the filesystem to manage the transit without i_mutex
1033 * being held. */
1034 if (managed & DCACHE_MANAGE_TRANSIT) {
1035 BUG_ON(!path->dentry->d_op);
1036 BUG_ON(!path->dentry->d_op->d_manage);
1037 ret = path->dentry->d_op->d_manage(path->dentry, false);
1038 if (ret < 0)
1039 break;
1040 }
1041
1042 /* Transit to a mounted filesystem. */
1043 if (managed & DCACHE_MOUNTED) {
1044 struct vfsmount *mounted = lookup_mnt(path);
1045 if (mounted) {
1046 dput(path->dentry);
1047 if (need_mntput)
1048 mntput(path->mnt);
1049 path->mnt = mounted;
1050 path->dentry = dget(mounted->mnt_root);
1051 need_mntput = true;
1052 continue;
1053 }
1054
1055 /* Something is mounted on this dentry in another
1056 * namespace and/or whatever was mounted there in this
1057 * namespace got unmounted before we managed to get the
1058 * vfsmount_lock */
1059 }
1060
1061 /* Handle an automount point */
1062 if (managed & DCACHE_NEED_AUTOMOUNT) {
1063 ret = follow_automount(path, flags, &need_mntput);
1064 if (ret < 0)
1065 break;
1066 continue;
1067 }
1068
1069 /* We didn't change the current path point */
1070 break;
1071 }
1072
1073 if (need_mntput && path->mnt == mnt)
1074 mntput(path->mnt);
1075 if (ret == -EISDIR)
1076 ret = 0;
1077 return ret < 0 ? ret : need_mntput;
1078 }
1079
1080 int follow_down_one(struct path *path)
1081 {
1082 struct vfsmount *mounted;
1083
1084 mounted = lookup_mnt(path);
1085 if (mounted) {
1086 dput(path->dentry);
1087 mntput(path->mnt);
1088 path->mnt = mounted;
1089 path->dentry = dget(mounted->mnt_root);
1090 return 1;
1091 }
1092 return 0;
1093 }
1094
1095 static inline bool managed_dentry_might_block(struct dentry *dentry)
1096 {
1097 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1098 dentry->d_op->d_manage(dentry, true) < 0);
1099 }
1100
1101 /*
1102 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1103 * we meet a managed dentry that would need blocking.
1104 */
1105 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1106 struct inode **inode)
1107 {
1108 for (;;) {
1109 struct mount *mounted;
1110 /*
1111 * Don't forget we might have a non-mountpoint managed dentry
1112 * that wants to block transit.
1113 */
1114 if (unlikely(managed_dentry_might_block(path->dentry)))
1115 return false;
1116
1117 if (!d_mountpoint(path->dentry))
1118 break;
1119
1120 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1121 if (!mounted)
1122 break;
1123 path->mnt = &mounted->mnt;
1124 path->dentry = mounted->mnt.mnt_root;
1125 nd->flags |= LOOKUP_JUMPED;
1126 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1127 /*
1128 * Update the inode too. We don't need to re-check the
1129 * dentry sequence number here after this d_inode read,
1130 * because a mount-point is always pinned.
1131 */
1132 *inode = path->dentry->d_inode;
1133 }
1134 return true;
1135 }
1136
1137 static void follow_mount_rcu(struct nameidata *nd)
1138 {
1139 while (d_mountpoint(nd->path.dentry)) {
1140 struct mount *mounted;
1141 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1142 if (!mounted)
1143 break;
1144 nd->path.mnt = &mounted->mnt;
1145 nd->path.dentry = mounted->mnt.mnt_root;
1146 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1147 }
1148 }
1149
1150 static int follow_dotdot_rcu(struct nameidata *nd)
1151 {
1152 set_root_rcu(nd);
1153
1154 while (1) {
1155 if (nd->path.dentry == nd->root.dentry &&
1156 nd->path.mnt == nd->root.mnt) {
1157 break;
1158 }
1159 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1160 struct dentry *old = nd->path.dentry;
1161 struct dentry *parent = old->d_parent;
1162 unsigned seq;
1163
1164 seq = read_seqcount_begin(&parent->d_seq);
1165 if (read_seqcount_retry(&old->d_seq, nd->seq))
1166 goto failed;
1167 nd->path.dentry = parent;
1168 nd->seq = seq;
1169 if (unlikely(!path_connected(&nd->path)))
1170 goto failed;
1171 break;
1172 }
1173 if (!follow_up_rcu(&nd->path))
1174 break;
1175 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1176 }
1177 follow_mount_rcu(nd);
1178 nd->inode = nd->path.dentry->d_inode;
1179 return 0;
1180
1181 failed:
1182 nd->flags &= ~LOOKUP_RCU;
1183 if (!(nd->flags & LOOKUP_ROOT))
1184 nd->root.mnt = NULL;
1185 unlock_rcu_walk();
1186 return -ECHILD;
1187 }
1188
1189 /*
1190 * Follow down to the covering mount currently visible to userspace. At each
1191 * point, the filesystem owning that dentry may be queried as to whether the
1192 * caller is permitted to proceed or not.
1193 */
1194 int follow_down(struct path *path)
1195 {
1196 unsigned managed;
1197 int ret;
1198
1199 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1200 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1201 /* Allow the filesystem to manage the transit without i_mutex
1202 * being held.
1203 *
1204 * We indicate to the filesystem if someone is trying to mount
1205 * something here. This gives autofs the chance to deny anyone
1206 * other than its daemon the right to mount on its
1207 * superstructure.
1208 *
1209 * The filesystem may sleep at this point.
1210 */
1211 if (managed & DCACHE_MANAGE_TRANSIT) {
1212 BUG_ON(!path->dentry->d_op);
1213 BUG_ON(!path->dentry->d_op->d_manage);
1214 ret = path->dentry->d_op->d_manage(
1215 path->dentry, false);
1216 if (ret < 0)
1217 return ret == -EISDIR ? 0 : ret;
1218 }
1219
1220 /* Transit to a mounted filesystem. */
1221 if (managed & DCACHE_MOUNTED) {
1222 struct vfsmount *mounted = lookup_mnt(path);
1223 if (!mounted)
1224 break;
1225 dput(path->dentry);
1226 mntput(path->mnt);
1227 path->mnt = mounted;
1228 path->dentry = dget(mounted->mnt_root);
1229 continue;
1230 }
1231
1232 /* Don't handle automount points here */
1233 break;
1234 }
1235 return 0;
1236 }
1237
1238 /*
1239 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1240 */
1241 static void follow_mount(struct path *path)
1242 {
1243 while (d_mountpoint(path->dentry)) {
1244 struct vfsmount *mounted = lookup_mnt(path);
1245 if (!mounted)
1246 break;
1247 dput(path->dentry);
1248 mntput(path->mnt);
1249 path->mnt = mounted;
1250 path->dentry = dget(mounted->mnt_root);
1251 }
1252 }
1253
1254 static int follow_dotdot(struct nameidata *nd)
1255 {
1256 set_root(nd);
1257
1258 while(1) {
1259 struct dentry *old = nd->path.dentry;
1260
1261 if (nd->path.dentry == nd->root.dentry &&
1262 nd->path.mnt == nd->root.mnt) {
1263 break;
1264 }
1265 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1266 /* rare case of legitimate dget_parent()... */
1267 nd->path.dentry = dget_parent(nd->path.dentry);
1268 dput(old);
1269 if (unlikely(!path_connected(&nd->path))) {
1270 path_put(&nd->path);
1271 return -ENOENT;
1272 }
1273 break;
1274 }
1275 if (!follow_up(&nd->path))
1276 break;
1277 }
1278 follow_mount(&nd->path);
1279 nd->inode = nd->path.dentry->d_inode;
1280 return 0;
1281 }
1282
1283 /*
1284 * This looks up the name in dcache, possibly revalidates the old dentry and
1285 * allocates a new one if not found or not valid. In the need_lookup argument
1286 * returns whether i_op->lookup is necessary.
1287 *
1288 * dir->d_inode->i_mutex must be held
1289 */
1290 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1291 unsigned int flags, bool *need_lookup)
1292 {
1293 struct dentry *dentry;
1294 int error;
1295
1296 *need_lookup = false;
1297 dentry = d_lookup(dir, name);
1298 if (dentry) {
1299 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1300 error = d_revalidate(dentry, flags);
1301 if (unlikely(error <= 0)) {
1302 if (error < 0) {
1303 dput(dentry);
1304 return ERR_PTR(error);
1305 } else if (!d_invalidate(dentry)) {
1306 dput(dentry);
1307 dentry = NULL;
1308 }
1309 }
1310 }
1311 }
1312
1313 if (!dentry) {
1314 dentry = d_alloc(dir, name);
1315 if (unlikely(!dentry))
1316 return ERR_PTR(-ENOMEM);
1317
1318 *need_lookup = true;
1319 }
1320 return dentry;
1321 }
1322
1323 /*
1324 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1325 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1326 *
1327 * dir->d_inode->i_mutex must be held
1328 */
1329 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1330 unsigned int flags)
1331 {
1332 struct dentry *old;
1333
1334 /* Don't create child dentry for a dead directory. */
1335 if (unlikely(IS_DEADDIR(dir))) {
1336 dput(dentry);
1337 return ERR_PTR(-ENOENT);
1338 }
1339
1340 old = dir->i_op->lookup(dir, dentry, flags);
1341 if (unlikely(old)) {
1342 dput(dentry);
1343 dentry = old;
1344 }
1345 return dentry;
1346 }
1347
1348 static struct dentry *__lookup_hash(struct qstr *name,
1349 struct dentry *base, unsigned int flags)
1350 {
1351 bool need_lookup;
1352 struct dentry *dentry;
1353
1354 dentry = lookup_dcache(name, base, flags, &need_lookup);
1355 if (!need_lookup)
1356 return dentry;
1357
1358 return lookup_real(base->d_inode, dentry, flags);
1359 }
1360
1361 /*
1362 * It's more convoluted than I'd like it to be, but... it's still fairly
1363 * small and for now I'd prefer to have fast path as straight as possible.
1364 * It _is_ time-critical.
1365 */
1366 static int lookup_fast(struct nameidata *nd,
1367 struct path *path, struct inode **inode)
1368 {
1369 struct vfsmount *mnt = nd->path.mnt;
1370 struct dentry *dentry, *parent = nd->path.dentry;
1371 int need_reval = 1;
1372 int status = 1;
1373 int err;
1374
1375 /*
1376 * Rename seqlock is not required here because in the off chance
1377 * of a false negative due to a concurrent rename, we're going to
1378 * do the non-racy lookup, below.
1379 */
1380 if (nd->flags & LOOKUP_RCU) {
1381 unsigned seq;
1382 dentry = __d_lookup_rcu(parent, &nd->last, &seq, nd->inode);
1383 if (!dentry)
1384 goto unlazy;
1385
1386 /*
1387 * This sequence count validates that the inode matches
1388 * the dentry name information from lookup.
1389 */
1390 *inode = dentry->d_inode;
1391 if (read_seqcount_retry(&dentry->d_seq, seq))
1392 return -ECHILD;
1393
1394 /*
1395 * This sequence count validates that the parent had no
1396 * changes while we did the lookup of the dentry above.
1397 *
1398 * The memory barrier in read_seqcount_begin of child is
1399 * enough, we can use __read_seqcount_retry here.
1400 */
1401 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1402 return -ECHILD;
1403 nd->seq = seq;
1404
1405 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1406 status = d_revalidate(dentry, nd->flags);
1407 if (unlikely(status <= 0)) {
1408 if (status != -ECHILD)
1409 need_reval = 0;
1410 goto unlazy;
1411 }
1412 }
1413 path->mnt = mnt;
1414 path->dentry = dentry;
1415 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1416 goto unlazy;
1417 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1418 goto unlazy;
1419 return 0;
1420 unlazy:
1421 if (unlazy_walk(nd, dentry))
1422 return -ECHILD;
1423 } else {
1424 dentry = __d_lookup(parent, &nd->last);
1425 }
1426
1427 if (unlikely(!dentry))
1428 goto need_lookup;
1429
1430 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1431 status = d_revalidate(dentry, nd->flags);
1432 if (unlikely(status <= 0)) {
1433 if (status < 0) {
1434 dput(dentry);
1435 return status;
1436 }
1437 if (!d_invalidate(dentry)) {
1438 dput(dentry);
1439 goto need_lookup;
1440 }
1441 }
1442
1443 path->mnt = mnt;
1444 path->dentry = dentry;
1445 err = follow_managed(path, nd->flags);
1446 if (unlikely(err < 0)) {
1447 path_put_conditional(path, nd);
1448 return err;
1449 }
1450 if (err)
1451 nd->flags |= LOOKUP_JUMPED;
1452 *inode = path->dentry->d_inode;
1453 return 0;
1454
1455 need_lookup:
1456 return 1;
1457 }
1458
1459 /* Fast lookup failed, do it the slow way */
1460 static int lookup_slow(struct nameidata *nd, struct path *path)
1461 {
1462 struct dentry *dentry, *parent;
1463 int err;
1464
1465 parent = nd->path.dentry;
1466 BUG_ON(nd->inode != parent->d_inode);
1467
1468 mutex_lock(&parent->d_inode->i_mutex);
1469 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1470 mutex_unlock(&parent->d_inode->i_mutex);
1471 if (IS_ERR(dentry))
1472 return PTR_ERR(dentry);
1473 path->mnt = nd->path.mnt;
1474 path->dentry = dentry;
1475 err = follow_managed(path, nd->flags);
1476 if (unlikely(err < 0)) {
1477 path_put_conditional(path, nd);
1478 return err;
1479 }
1480 if (err)
1481 nd->flags |= LOOKUP_JUMPED;
1482 return 0;
1483 }
1484
1485 static inline int may_lookup(struct nameidata *nd)
1486 {
1487 if (nd->flags & LOOKUP_RCU) {
1488 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1489 if (err != -ECHILD)
1490 return err;
1491 if (unlazy_walk(nd, NULL))
1492 return -ECHILD;
1493 }
1494 return inode_permission(nd->inode, MAY_EXEC);
1495 }
1496
1497 static inline int handle_dots(struct nameidata *nd, int type)
1498 {
1499 if (type == LAST_DOTDOT) {
1500 if (nd->flags & LOOKUP_RCU) {
1501 if (follow_dotdot_rcu(nd))
1502 return -ECHILD;
1503 } else
1504 return follow_dotdot(nd);
1505 }
1506 return 0;
1507 }
1508
1509 static void terminate_walk(struct nameidata *nd)
1510 {
1511 if (!(nd->flags & LOOKUP_RCU)) {
1512 path_put(&nd->path);
1513 } else {
1514 nd->flags &= ~LOOKUP_RCU;
1515 if (!(nd->flags & LOOKUP_ROOT))
1516 nd->root.mnt = NULL;
1517 unlock_rcu_walk();
1518 }
1519 }
1520
1521 /*
1522 * Do we need to follow links? We _really_ want to be able
1523 * to do this check without having to look at inode->i_op,
1524 * so we keep a cache of "no, this doesn't need follow_link"
1525 * for the common case.
1526 */
1527 static inline int should_follow_link(struct inode *inode, int follow)
1528 {
1529 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1530 if (likely(inode->i_op->follow_link))
1531 return follow;
1532
1533 /* This gets set once for the inode lifetime */
1534 spin_lock(&inode->i_lock);
1535 inode->i_opflags |= IOP_NOFOLLOW;
1536 spin_unlock(&inode->i_lock);
1537 }
1538 return 0;
1539 }
1540
1541 static inline int walk_component(struct nameidata *nd, struct path *path,
1542 int follow)
1543 {
1544 struct inode *inode;
1545 int err;
1546 /*
1547 * "." and ".." are special - ".." especially so because it has
1548 * to be able to know about the current root directory and
1549 * parent relationships.
1550 */
1551 if (unlikely(nd->last_type != LAST_NORM))
1552 return handle_dots(nd, nd->last_type);
1553 err = lookup_fast(nd, path, &inode);
1554 if (unlikely(err)) {
1555 if (err < 0)
1556 goto out_err;
1557
1558 err = lookup_slow(nd, path);
1559 if (err < 0)
1560 goto out_err;
1561
1562 inode = path->dentry->d_inode;
1563 }
1564 err = -ENOENT;
1565 if (!inode)
1566 goto out_path_put;
1567
1568 if (should_follow_link(inode, follow)) {
1569 if (nd->flags & LOOKUP_RCU) {
1570 if (unlikely(nd->path.mnt != path->mnt ||
1571 unlazy_walk(nd, path->dentry))) {
1572 err = -ECHILD;
1573 goto out_err;
1574 }
1575 }
1576 BUG_ON(inode != path->dentry->d_inode);
1577 return 1;
1578 }
1579 path_to_nameidata(path, nd);
1580 nd->inode = inode;
1581 return 0;
1582
1583 out_path_put:
1584 path_to_nameidata(path, nd);
1585 out_err:
1586 terminate_walk(nd);
1587 return err;
1588 }
1589
1590 /*
1591 * This limits recursive symlink follows to 8, while
1592 * limiting consecutive symlinks to 40.
1593 *
1594 * Without that kind of total limit, nasty chains of consecutive
1595 * symlinks can cause almost arbitrarily long lookups.
1596 */
1597 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1598 {
1599 int res;
1600
1601 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1602 path_put_conditional(path, nd);
1603 path_put(&nd->path);
1604 return -ELOOP;
1605 }
1606 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1607
1608 nd->depth++;
1609 current->link_count++;
1610
1611 do {
1612 struct path link = *path;
1613 void *cookie;
1614
1615 res = follow_link(&link, nd, &cookie);
1616 if (res)
1617 break;
1618 res = walk_component(nd, path, LOOKUP_FOLLOW);
1619 put_link(nd, &link, cookie);
1620 } while (res > 0);
1621
1622 current->link_count--;
1623 nd->depth--;
1624 return res;
1625 }
1626
1627 /*
1628 * We really don't want to look at inode->i_op->lookup
1629 * when we don't have to. So we keep a cache bit in
1630 * the inode ->i_opflags field that says "yes, we can
1631 * do lookup on this inode".
1632 */
1633 static inline int can_lookup(struct inode *inode)
1634 {
1635 if (likely(inode->i_opflags & IOP_LOOKUP))
1636 return 1;
1637 if (likely(!inode->i_op->lookup))
1638 return 0;
1639
1640 /* We do this once for the lifetime of the inode */
1641 spin_lock(&inode->i_lock);
1642 inode->i_opflags |= IOP_LOOKUP;
1643 spin_unlock(&inode->i_lock);
1644 return 1;
1645 }
1646
1647 /*
1648 * We can do the critical dentry name comparison and hashing
1649 * operations one word at a time, but we are limited to:
1650 *
1651 * - Architectures with fast unaligned word accesses. We could
1652 * do a "get_unaligned()" if this helps and is sufficiently
1653 * fast.
1654 *
1655 * - Little-endian machines (so that we can generate the mask
1656 * of low bytes efficiently). Again, we *could* do a byte
1657 * swapping load on big-endian architectures if that is not
1658 * expensive enough to make the optimization worthless.
1659 *
1660 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1661 * do not trap on the (extremely unlikely) case of a page
1662 * crossing operation.
1663 *
1664 * - Furthermore, we need an efficient 64-bit compile for the
1665 * 64-bit case in order to generate the "number of bytes in
1666 * the final mask". Again, that could be replaced with a
1667 * efficient population count instruction or similar.
1668 */
1669 #ifdef CONFIG_DCACHE_WORD_ACCESS
1670
1671 #include <asm/word-at-a-time.h>
1672
1673 #ifdef CONFIG_64BIT
1674
1675 static inline unsigned int fold_hash(unsigned long hash)
1676 {
1677 return hash_64(hash, 32);
1678 }
1679
1680 #else /* 32-bit case */
1681
1682 #define fold_hash(x) (x)
1683
1684 #endif
1685
1686 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1687 {
1688 unsigned long a, mask;
1689 unsigned long hash = 0;
1690
1691 for (;;) {
1692 a = load_unaligned_zeropad(name);
1693 if (len < sizeof(unsigned long))
1694 break;
1695 hash += a;
1696 hash *= 9;
1697 name += sizeof(unsigned long);
1698 len -= sizeof(unsigned long);
1699 if (!len)
1700 goto done;
1701 }
1702 mask = ~(~0ul << len*8);
1703 hash += mask & a;
1704 done:
1705 return fold_hash(hash);
1706 }
1707 EXPORT_SYMBOL(full_name_hash);
1708
1709 /*
1710 * Calculate the length and hash of the path component, and
1711 * return the length of the component;
1712 */
1713 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1714 {
1715 unsigned long a, b, adata, bdata, mask, hash, len;
1716 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1717
1718 hash = a = 0;
1719 len = -sizeof(unsigned long);
1720 do {
1721 hash = (hash + a) * 9;
1722 len += sizeof(unsigned long);
1723 a = load_unaligned_zeropad(name+len);
1724 b = a ^ REPEAT_BYTE('/');
1725 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1726
1727 adata = prep_zero_mask(a, adata, &constants);
1728 bdata = prep_zero_mask(b, bdata, &constants);
1729
1730 mask = create_zero_mask(adata | bdata);
1731
1732 hash += a & zero_bytemask(mask);
1733 *hashp = fold_hash(hash);
1734
1735 return len + find_zero(mask);
1736 }
1737
1738 #else
1739
1740 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1741 {
1742 unsigned long hash = init_name_hash();
1743 while (len--)
1744 hash = partial_name_hash(*name++, hash);
1745 return end_name_hash(hash);
1746 }
1747 EXPORT_SYMBOL(full_name_hash);
1748
1749 /*
1750 * We know there's a real path component here of at least
1751 * one character.
1752 */
1753 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1754 {
1755 unsigned long hash = init_name_hash();
1756 unsigned long len = 0, c;
1757
1758 c = (unsigned char)*name;
1759 do {
1760 len++;
1761 hash = partial_name_hash(c, hash);
1762 c = (unsigned char)name[len];
1763 } while (c && c != '/');
1764 *hashp = end_name_hash(hash);
1765 return len;
1766 }
1767
1768 #endif
1769
1770 /*
1771 * Name resolution.
1772 * This is the basic name resolution function, turning a pathname into
1773 * the final dentry. We expect 'base' to be positive and a directory.
1774 *
1775 * Returns 0 and nd will have valid dentry and mnt on success.
1776 * Returns error and drops reference to input namei data on failure.
1777 */
1778 static int link_path_walk(const char *name, struct nameidata *nd)
1779 {
1780 struct path next;
1781 int err;
1782
1783 while (*name=='/')
1784 name++;
1785 if (!*name)
1786 return 0;
1787
1788 /* At this point we know we have a real path component. */
1789 for(;;) {
1790 struct qstr this;
1791 long len;
1792 int type;
1793
1794 err = may_lookup(nd);
1795 if (err)
1796 break;
1797
1798 len = hash_name(name, &this.hash);
1799 this.name = name;
1800 this.len = len;
1801
1802 type = LAST_NORM;
1803 if (name[0] == '.') switch (len) {
1804 case 2:
1805 if (name[1] == '.') {
1806 type = LAST_DOTDOT;
1807 nd->flags |= LOOKUP_JUMPED;
1808 }
1809 break;
1810 case 1:
1811 type = LAST_DOT;
1812 }
1813 if (likely(type == LAST_NORM)) {
1814 struct dentry *parent = nd->path.dentry;
1815 nd->flags &= ~LOOKUP_JUMPED;
1816 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1817 err = parent->d_op->d_hash(parent, nd->inode,
1818 &this);
1819 if (err < 0)
1820 break;
1821 }
1822 }
1823
1824 nd->last = this;
1825 nd->last_type = type;
1826
1827 if (!name[len])
1828 return 0;
1829 /*
1830 * If it wasn't NUL, we know it was '/'. Skip that
1831 * slash, and continue until no more slashes.
1832 */
1833 do {
1834 len++;
1835 } while (unlikely(name[len] == '/'));
1836 if (!name[len])
1837 return 0;
1838
1839 name += len;
1840
1841 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1842 if (err < 0)
1843 return err;
1844
1845 if (err) {
1846 err = nested_symlink(&next, nd);
1847 if (err)
1848 return err;
1849 }
1850 if (!can_lookup(nd->inode)) {
1851 err = -ENOTDIR;
1852 break;
1853 }
1854 }
1855 terminate_walk(nd);
1856 return err;
1857 }
1858
1859 static int path_init(int dfd, const char *name, unsigned int flags,
1860 struct nameidata *nd, struct file **fp)
1861 {
1862 int retval = 0;
1863
1864 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1865 nd->flags = flags | LOOKUP_JUMPED;
1866 nd->depth = 0;
1867 if (flags & LOOKUP_ROOT) {
1868 struct inode *inode = nd->root.dentry->d_inode;
1869 if (*name) {
1870 if (!can_lookup(inode))
1871 return -ENOTDIR;
1872 retval = inode_permission(inode, MAY_EXEC);
1873 if (retval)
1874 return retval;
1875 }
1876 nd->path = nd->root;
1877 nd->inode = inode;
1878 if (flags & LOOKUP_RCU) {
1879 lock_rcu_walk();
1880 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1881 } else {
1882 path_get(&nd->path);
1883 }
1884 return 0;
1885 }
1886
1887 nd->root.mnt = NULL;
1888
1889 if (*name=='/') {
1890 if (flags & LOOKUP_RCU) {
1891 lock_rcu_walk();
1892 set_root_rcu(nd);
1893 } else {
1894 set_root(nd);
1895 path_get(&nd->root);
1896 }
1897 nd->path = nd->root;
1898 } else if (dfd == AT_FDCWD) {
1899 if (flags & LOOKUP_RCU) {
1900 struct fs_struct *fs = current->fs;
1901 unsigned seq;
1902
1903 lock_rcu_walk();
1904
1905 do {
1906 seq = read_seqcount_begin(&fs->seq);
1907 nd->path = fs->pwd;
1908 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1909 } while (read_seqcount_retry(&fs->seq, seq));
1910 } else {
1911 get_fs_pwd(current->fs, &nd->path);
1912 }
1913 } else {
1914 /* Caller must check execute permissions on the starting path component */
1915 struct fd f = fdget_raw(dfd);
1916 struct dentry *dentry;
1917
1918 if (!f.file)
1919 return -EBADF;
1920
1921 dentry = f.file->f_path.dentry;
1922
1923 if (*name) {
1924 if (!can_lookup(dentry->d_inode)) {
1925 fdput(f);
1926 return -ENOTDIR;
1927 }
1928 }
1929
1930 nd->path = f.file->f_path;
1931 if (flags & LOOKUP_RCU) {
1932 if (f.need_put)
1933 *fp = f.file;
1934 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1935 lock_rcu_walk();
1936 } else {
1937 path_get(&nd->path);
1938 fdput(f);
1939 }
1940 }
1941
1942 nd->inode = nd->path.dentry->d_inode;
1943 return 0;
1944 }
1945
1946 static inline int lookup_last(struct nameidata *nd, struct path *path)
1947 {
1948 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1949 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1950
1951 nd->flags &= ~LOOKUP_PARENT;
1952 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1953 }
1954
1955 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1956 static int path_lookupat(int dfd, const char *name,
1957 unsigned int flags, struct nameidata *nd)
1958 {
1959 struct file *base = NULL;
1960 struct path path;
1961 int err;
1962
1963 /*
1964 * Path walking is largely split up into 2 different synchronisation
1965 * schemes, rcu-walk and ref-walk (explained in
1966 * Documentation/filesystems/path-lookup.txt). These share much of the
1967 * path walk code, but some things particularly setup, cleanup, and
1968 * following mounts are sufficiently divergent that functions are
1969 * duplicated. Typically there is a function foo(), and its RCU
1970 * analogue, foo_rcu().
1971 *
1972 * -ECHILD is the error number of choice (just to avoid clashes) that
1973 * is returned if some aspect of an rcu-walk fails. Such an error must
1974 * be handled by restarting a traditional ref-walk (which will always
1975 * be able to complete).
1976 */
1977 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1978
1979 if (unlikely(err))
1980 return err;
1981
1982 current->total_link_count = 0;
1983 err = link_path_walk(name, nd);
1984
1985 if (!err && !(flags & LOOKUP_PARENT)) {
1986 err = lookup_last(nd, &path);
1987 while (err > 0) {
1988 void *cookie;
1989 struct path link = path;
1990 err = may_follow_link(&link, nd);
1991 if (unlikely(err))
1992 break;
1993 nd->flags |= LOOKUP_PARENT;
1994 err = follow_link(&link, nd, &cookie);
1995 if (err)
1996 break;
1997 err = lookup_last(nd, &path);
1998 put_link(nd, &link, cookie);
1999 }
2000 }
2001
2002 if (!err)
2003 err = complete_walk(nd);
2004
2005 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2006 if (!can_lookup(nd->inode)) {
2007 path_put(&nd->path);
2008 err = -ENOTDIR;
2009 }
2010 }
2011
2012 if (!err) {
2013 struct super_block *sb = nd->inode->i_sb;
2014 if (sb->s_flags & MS_RDONLY) {
2015 if (d_is_su(nd->path.dentry) && !su_visible()) {
2016 path_put(&nd->path);
2017 err = -ENOENT;
2018 }
2019 }
2020 }
2021
2022 if (base)
2023 fput(base);
2024
2025 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2026 path_put(&nd->root);
2027 nd->root.mnt = NULL;
2028 }
2029 return err;
2030 }
2031
2032 static int filename_lookup(int dfd, struct filename *name,
2033 unsigned int flags, struct nameidata *nd)
2034 {
2035 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2036 if (unlikely(retval == -ECHILD))
2037 retval = path_lookupat(dfd, name->name, flags, nd);
2038 if (unlikely(retval == -ESTALE))
2039 retval = path_lookupat(dfd, name->name,
2040 flags | LOOKUP_REVAL, nd);
2041
2042 if (likely(!retval))
2043 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2044 return retval;
2045 }
2046
2047 static int do_path_lookup(int dfd, const char *name,
2048 unsigned int flags, struct nameidata *nd)
2049 {
2050 struct filename filename = { .name = name };
2051
2052 return filename_lookup(dfd, &filename, flags, nd);
2053 }
2054
2055 /* does lookup, returns the object with parent locked */
2056 struct dentry *kern_path_locked(const char *name, struct path *path)
2057 {
2058 struct nameidata nd;
2059 struct dentry *d;
2060 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2061 if (err)
2062 return ERR_PTR(err);
2063 if (nd.last_type != LAST_NORM) {
2064 path_put(&nd.path);
2065 return ERR_PTR(-EINVAL);
2066 }
2067 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2068 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2069 if (IS_ERR(d)) {
2070 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2071 path_put(&nd.path);
2072 return d;
2073 }
2074 *path = nd.path;
2075 return d;
2076 }
2077
2078 int kern_path(const char *name, unsigned int flags, struct path *path)
2079 {
2080 struct nameidata nd;
2081 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2082 if (!res)
2083 *path = nd.path;
2084 return res;
2085 }
2086
2087 /**
2088 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2089 * @dentry: pointer to dentry of the base directory
2090 * @mnt: pointer to vfs mount of the base directory
2091 * @name: pointer to file name
2092 * @flags: lookup flags
2093 * @path: pointer to struct path to fill
2094 */
2095 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2096 const char *name, unsigned int flags,
2097 struct path *path)
2098 {
2099 struct nameidata nd;
2100 int err;
2101 nd.root.dentry = dentry;
2102 nd.root.mnt = mnt;
2103 BUG_ON(flags & LOOKUP_PARENT);
2104 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2105 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2106 if (!err)
2107 *path = nd.path;
2108 return err;
2109 }
2110
2111 /*
2112 * Restricted form of lookup. Doesn't follow links, single-component only,
2113 * needs parent already locked. Doesn't follow mounts.
2114 * SMP-safe.
2115 */
2116 static struct dentry *lookup_hash(struct nameidata *nd)
2117 {
2118 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2119 }
2120
2121 /**
2122 * lookup_one_len - filesystem helper to lookup single pathname component
2123 * @name: pathname component to lookup
2124 * @base: base directory to lookup from
2125 * @len: maximum length @len should be interpreted to
2126 *
2127 * Note that this routine is purely a helper for filesystem usage and should
2128 * not be called by generic code. Also note that by using this function the
2129 * nameidata argument is passed to the filesystem methods and a filesystem
2130 * using this helper needs to be prepared for that.
2131 */
2132 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2133 {
2134 struct qstr this;
2135 unsigned int c;
2136 int err;
2137
2138 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2139
2140 this.name = name;
2141 this.len = len;
2142 this.hash = full_name_hash(name, len);
2143 if (!len)
2144 return ERR_PTR(-EACCES);
2145
2146 if (unlikely(name[0] == '.')) {
2147 if (len < 2 || (len == 2 && name[1] == '.'))
2148 return ERR_PTR(-EACCES);
2149 }
2150
2151 while (len--) {
2152 c = *(const unsigned char *)name++;
2153 if (c == '/' || c == '\0')
2154 return ERR_PTR(-EACCES);
2155 }
2156 /*
2157 * See if the low-level filesystem might want
2158 * to use its own hash..
2159 */
2160 if (base->d_flags & DCACHE_OP_HASH) {
2161 int err = base->d_op->d_hash(base, base->d_inode, &this);
2162 if (err < 0)
2163 return ERR_PTR(err);
2164 }
2165
2166 err = inode_permission(base->d_inode, MAY_EXEC);
2167 if (err)
2168 return ERR_PTR(err);
2169
2170 return __lookup_hash(&this, base, 0);
2171 }
2172
2173 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2174 struct path *path, int *empty)
2175 {
2176 struct nameidata nd;
2177 struct filename *tmp = getname_flags(name, flags, empty);
2178 int err = PTR_ERR(tmp);
2179 if (!IS_ERR(tmp)) {
2180
2181 BUG_ON(flags & LOOKUP_PARENT);
2182
2183 err = filename_lookup(dfd, tmp, flags, &nd);
2184 putname(tmp);
2185 if (!err)
2186 *path = nd.path;
2187 }
2188 return err;
2189 }
2190
2191 int user_path_at(int dfd, const char __user *name, unsigned flags,
2192 struct path *path)
2193 {
2194 return user_path_at_empty(dfd, name, flags, path, NULL);
2195 }
2196
2197 /*
2198 * NB: most callers don't do anything directly with the reference to the
2199 * to struct filename, but the nd->last pointer points into the name string
2200 * allocated by getname. So we must hold the reference to it until all
2201 * path-walking is complete.
2202 */
2203 static struct filename *
2204 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2205 unsigned int flags)
2206 {
2207 struct filename *s = getname(path);
2208 int error;
2209
2210 /* only LOOKUP_REVAL is allowed in extra flags */
2211 flags &= LOOKUP_REVAL;
2212
2213 if (IS_ERR(s))
2214 return s;
2215
2216 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2217 if (error) {
2218 putname(s);
2219 return ERR_PTR(error);
2220 }
2221
2222 return s;
2223 }
2224
2225 /*
2226 * It's inline, so penalty for filesystems that don't use sticky bit is
2227 * minimal.
2228 */
2229 static inline int check_sticky(struct inode *dir, struct inode *inode)
2230 {
2231 kuid_t fsuid = current_fsuid();
2232
2233 if (!(dir->i_mode & S_ISVTX))
2234 return 0;
2235 if (uid_eq(inode->i_uid, fsuid))
2236 return 0;
2237 if (uid_eq(dir->i_uid, fsuid))
2238 return 0;
2239 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2240 }
2241
2242 /*
2243 * Check whether we can remove a link victim from directory dir, check
2244 * whether the type of victim is right.
2245 * 1. We can't do it if dir is read-only (done in permission())
2246 * 2. We should have write and exec permissions on dir
2247 * 3. We can't remove anything from append-only dir
2248 * 4. We can't do anything with immutable dir (done in permission())
2249 * 5. If the sticky bit on dir is set we should either
2250 * a. be owner of dir, or
2251 * b. be owner of victim, or
2252 * c. have CAP_FOWNER capability
2253 * 6. If the victim is append-only or immutable we can't do antyhing with
2254 * links pointing to it.
2255 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2256 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2257 * 9. We can't remove a root or mountpoint.
2258 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2259 * nfs_async_unlink().
2260 */
2261 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2262 {
2263 int error;
2264
2265 if (!victim->d_inode)
2266 return -ENOENT;
2267
2268 BUG_ON(victim->d_parent->d_inode != dir);
2269 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2270
2271 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2272 if (error)
2273 return error;
2274 if (IS_APPEND(dir))
2275 return -EPERM;
2276 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2277 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2278 return -EPERM;
2279 if (isdir) {
2280 if (!S_ISDIR(victim->d_inode->i_mode))
2281 return -ENOTDIR;
2282 if (IS_ROOT(victim))
2283 return -EBUSY;
2284 } else if (S_ISDIR(victim->d_inode->i_mode))
2285 return -EISDIR;
2286 if (IS_DEADDIR(dir))
2287 return -ENOENT;
2288 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2289 return -EBUSY;
2290 return 0;
2291 }
2292
2293 /* Check whether we can create an object with dentry child in directory
2294 * dir.
2295 * 1. We can't do it if child already exists (open has special treatment for
2296 * this case, but since we are inlined it's OK)
2297 * 2. We can't do it if dir is read-only (done in permission())
2298 * 3. We should have write and exec permissions on dir
2299 * 4. We can't do it if dir is immutable (done in permission())
2300 */
2301 static inline int may_create(struct inode *dir, struct dentry *child)
2302 {
2303 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2304 if (child->d_inode)
2305 return -EEXIST;
2306 if (IS_DEADDIR(dir))
2307 return -ENOENT;
2308 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2309 }
2310
2311 /*
2312 * p1 and p2 should be directories on the same fs.
2313 */
2314 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2315 {
2316 struct dentry *p;
2317
2318 if (p1 == p2) {
2319 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2320 return NULL;
2321 }
2322
2323 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2324
2325 p = d_ancestor(p2, p1);
2326 if (p) {
2327 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2328 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2329 return p;
2330 }
2331
2332 p = d_ancestor(p1, p2);
2333 if (p) {
2334 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2335 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2336 return p;
2337 }
2338
2339 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2340 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2341 return NULL;
2342 }
2343
2344 void unlock_rename(struct dentry *p1, struct dentry *p2)
2345 {
2346 mutex_unlock(&p1->d_inode->i_mutex);
2347 if (p1 != p2) {
2348 mutex_unlock(&p2->d_inode->i_mutex);
2349 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2350 }
2351 }
2352
2353 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2354 bool want_excl)
2355 {
2356 int error = may_create(dir, dentry);
2357 if (error)
2358 return error;
2359
2360 if (!dir->i_op->create)
2361 return -EACCES; /* shouldn't it be ENOSYS? */
2362 mode &= S_IALLUGO;
2363 mode |= S_IFREG;
2364 error = security_inode_create(dir, dentry, mode);
2365 if (error)
2366 return error;
2367 error = dir->i_op->create(dir, dentry, mode, want_excl);
2368 if (!error)
2369 fsnotify_create(dir, dentry);
2370 return error;
2371 }
2372
2373 static int may_open(struct path *path, int acc_mode, int flag)
2374 {
2375 struct dentry *dentry = path->dentry;
2376 struct inode *inode = dentry->d_inode;
2377 int error;
2378
2379 /* O_PATH? */
2380 if (!acc_mode)
2381 return 0;
2382
2383 if (!inode)
2384 return -ENOENT;
2385
2386 switch (inode->i_mode & S_IFMT) {
2387 case S_IFLNK:
2388 return -ELOOP;
2389 case S_IFDIR:
2390 if (acc_mode & MAY_WRITE)
2391 return -EISDIR;
2392 break;
2393 case S_IFBLK:
2394 case S_IFCHR:
2395 if (path->mnt->mnt_flags & MNT_NODEV)
2396 return -EACCES;
2397 /*FALLTHRU*/
2398 case S_IFIFO:
2399 case S_IFSOCK:
2400 flag &= ~O_TRUNC;
2401 break;
2402 }
2403
2404 error = inode_permission(inode, acc_mode);
2405 if (error)
2406 return error;
2407
2408 /*
2409 * An append-only file must be opened in append mode for writing.
2410 */
2411 if (IS_APPEND(inode)) {
2412 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2413 return -EPERM;
2414 if (flag & O_TRUNC)
2415 return -EPERM;
2416 }
2417
2418 /* O_NOATIME can only be set by the owner or superuser */
2419 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2420 return -EPERM;
2421
2422 return 0;
2423 }
2424
2425 static int handle_truncate(struct file *filp)
2426 {
2427 struct path *path = &filp->f_path;
2428 struct inode *inode = path->dentry->d_inode;
2429 int error = get_write_access(inode);
2430 if (error)
2431 return error;
2432 /*
2433 * Refuse to truncate files with mandatory locks held on them.
2434 */
2435 error = locks_verify_locked(inode);
2436 if (!error)
2437 error = security_path_truncate(path);
2438 if (!error) {
2439 error = do_truncate(path->dentry, 0,
2440 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2441 filp);
2442 }
2443 put_write_access(inode);
2444 return error;
2445 }
2446
2447 static inline int open_to_namei_flags(int flag)
2448 {
2449 if ((flag & O_ACCMODE) == 3)
2450 flag--;
2451 return flag;
2452 }
2453
2454 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2455 {
2456 int error = security_path_mknod(dir, dentry, mode, 0);
2457 if (error)
2458 return error;
2459
2460 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2461 if (error)
2462 return error;
2463
2464 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2465 }
2466
2467 /*
2468 * Attempt to atomically look up, create and open a file from a negative
2469 * dentry.
2470 *
2471 * Returns 0 if successful. The file will have been created and attached to
2472 * @file by the filesystem calling finish_open().
2473 *
2474 * Returns 1 if the file was looked up only or didn't need creating. The
2475 * caller will need to perform the open themselves. @path will have been
2476 * updated to point to the new dentry. This may be negative.
2477 *
2478 * Returns an error code otherwise.
2479 */
2480 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2481 struct path *path, struct file *file,
2482 const struct open_flags *op,
2483 bool got_write, bool need_lookup,
2484 int *opened)
2485 {
2486 struct inode *dir = nd->path.dentry->d_inode;
2487 unsigned open_flag = open_to_namei_flags(op->open_flag);
2488 umode_t mode;
2489 int error;
2490 int acc_mode;
2491 int create_error = 0;
2492 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2493
2494 BUG_ON(dentry->d_inode);
2495
2496 /* Don't create child dentry for a dead directory. */
2497 if (unlikely(IS_DEADDIR(dir))) {
2498 error = -ENOENT;
2499 goto out;
2500 }
2501
2502 mode = op->mode;
2503 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2504 mode &= ~current_umask();
2505
2506 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2507 open_flag &= ~O_TRUNC;
2508 *opened |= FILE_CREATED;
2509 }
2510
2511 /*
2512 * Checking write permission is tricky, bacuse we don't know if we are
2513 * going to actually need it: O_CREAT opens should work as long as the
2514 * file exists. But checking existence breaks atomicity. The trick is
2515 * to check access and if not granted clear O_CREAT from the flags.
2516 *
2517 * Another problem is returing the "right" error value (e.g. for an
2518 * O_EXCL open we want to return EEXIST not EROFS).
2519 */
2520 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2521 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2522 if (!(open_flag & O_CREAT)) {
2523 /*
2524 * No O_CREATE -> atomicity not a requirement -> fall
2525 * back to lookup + open
2526 */
2527 goto no_open;
2528 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2529 /* Fall back and fail with the right error */
2530 create_error = -EROFS;
2531 goto no_open;
2532 } else {
2533 /* No side effects, safe to clear O_CREAT */
2534 create_error = -EROFS;
2535 open_flag &= ~O_CREAT;
2536 }
2537 }
2538
2539 if (open_flag & O_CREAT) {
2540 error = may_o_create(&nd->path, dentry, mode);
2541 if (error) {
2542 create_error = error;
2543 if (open_flag & O_EXCL)
2544 goto no_open;
2545 open_flag &= ~O_CREAT;
2546 }
2547 }
2548
2549 if (nd->flags & LOOKUP_DIRECTORY)
2550 open_flag |= O_DIRECTORY;
2551
2552 file->f_path.dentry = DENTRY_NOT_SET;
2553 file->f_path.mnt = nd->path.mnt;
2554 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2555 opened);
2556 if (error < 0) {
2557 if (create_error && error == -ENOENT)
2558 error = create_error;
2559 goto out;
2560 }
2561
2562 acc_mode = op->acc_mode;
2563 if (*opened & FILE_CREATED) {
2564 fsnotify_create(dir, dentry);
2565 acc_mode = MAY_OPEN;
2566 }
2567
2568 if (error) { /* returned 1, that is */
2569 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2570 error = -EIO;
2571 goto out;
2572 }
2573 if (file->f_path.dentry) {
2574 dput(dentry);
2575 dentry = file->f_path.dentry;
2576 }
2577 if (create_error && dentry->d_inode == NULL) {
2578 error = create_error;
2579 goto out;
2580 }
2581 goto looked_up;
2582 }
2583
2584 /*
2585 * We didn't have the inode before the open, so check open permission
2586 * here.
2587 */
2588 error = may_open(&file->f_path, acc_mode, open_flag);
2589 if (error)
2590 fput(file);
2591
2592 out:
2593 dput(dentry);
2594 return error;
2595
2596 no_open:
2597 if (need_lookup) {
2598 dentry = lookup_real(dir, dentry, nd->flags);
2599 if (IS_ERR(dentry))
2600 return PTR_ERR(dentry);
2601
2602 if (create_error) {
2603 int open_flag = op->open_flag;
2604
2605 error = create_error;
2606 if ((open_flag & O_EXCL)) {
2607 if (!dentry->d_inode)
2608 goto out;
2609 } else if (!dentry->d_inode) {
2610 goto out;
2611 } else if ((open_flag & O_TRUNC) &&
2612 S_ISREG(dentry->d_inode->i_mode)) {
2613 goto out;
2614 }
2615 /* will fail later, go on to get the right error */
2616 }
2617 }
2618 looked_up:
2619 path->dentry = dentry;
2620 path->mnt = nd->path.mnt;
2621 return 1;
2622 }
2623
2624 /*
2625 * Look up and maybe create and open the last component.
2626 *
2627 * Must be called with i_mutex held on parent.
2628 *
2629 * Returns 0 if the file was successfully atomically created (if necessary) and
2630 * opened. In this case the file will be returned attached to @file.
2631 *
2632 * Returns 1 if the file was not completely opened at this time, though lookups
2633 * and creations will have been performed and the dentry returned in @path will
2634 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2635 * specified then a negative dentry may be returned.
2636 *
2637 * An error code is returned otherwise.
2638 *
2639 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2640 * cleared otherwise prior to returning.
2641 */
2642 static int lookup_open(struct nameidata *nd, struct path *path,
2643 struct file *file,
2644 const struct open_flags *op,
2645 bool got_write, int *opened)
2646 {
2647 struct dentry *dir = nd->path.dentry;
2648 struct inode *dir_inode = dir->d_inode;
2649 struct dentry *dentry;
2650 int error;
2651 bool need_lookup;
2652
2653 *opened &= ~FILE_CREATED;
2654 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2655 if (IS_ERR(dentry))
2656 return PTR_ERR(dentry);
2657
2658 /* Cached positive dentry: will open in f_op->open */
2659 if (!need_lookup && dentry->d_inode)
2660 goto out_no_open;
2661
2662 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2663 return atomic_open(nd, dentry, path, file, op, got_write,
2664 need_lookup, opened);
2665 }
2666
2667 if (need_lookup) {
2668 BUG_ON(dentry->d_inode);
2669
2670 dentry = lookup_real(dir_inode, dentry, nd->flags);
2671 if (IS_ERR(dentry))
2672 return PTR_ERR(dentry);
2673 }
2674
2675 /* Negative dentry, just create the file */
2676 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2677 umode_t mode = op->mode;
2678 if (!IS_POSIXACL(dir->d_inode))
2679 mode &= ~current_umask();
2680 /*
2681 * This write is needed to ensure that a
2682 * rw->ro transition does not occur between
2683 * the time when the file is created and when
2684 * a permanent write count is taken through
2685 * the 'struct file' in finish_open().
2686 */
2687 if (!got_write) {
2688 error = -EROFS;
2689 goto out_dput;
2690 }
2691 *opened |= FILE_CREATED;
2692 error = security_path_mknod(&nd->path, dentry, mode, 0);
2693 if (error)
2694 goto out_dput;
2695 error = vfs_create(dir->d_inode, dentry, mode,
2696 nd->flags & LOOKUP_EXCL);
2697 if (error)
2698 goto out_dput;
2699 }
2700 out_no_open:
2701 path->dentry = dentry;
2702 path->mnt = nd->path.mnt;
2703 return 1;
2704
2705 out_dput:
2706 dput(dentry);
2707 return error;
2708 }
2709
2710 /*
2711 * Handle the last step of open()
2712 */
2713 static int do_last(struct nameidata *nd, struct path *path,
2714 struct file *file, const struct open_flags *op,
2715 int *opened, struct filename *name)
2716 {
2717 struct dentry *dir = nd->path.dentry;
2718 int open_flag = op->open_flag;
2719 bool will_truncate = (open_flag & O_TRUNC) != 0;
2720 bool got_write = false;
2721 int acc_mode = op->acc_mode;
2722 struct inode *inode;
2723 bool symlink_ok = false;
2724 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2725 bool retried = false;
2726 int error;
2727
2728 nd->flags &= ~LOOKUP_PARENT;
2729 nd->flags |= op->intent;
2730
2731 switch (nd->last_type) {
2732 case LAST_DOTDOT:
2733 case LAST_DOT:
2734 error = handle_dots(nd, nd->last_type);
2735 if (error)
2736 return error;
2737 /* fallthrough */
2738 case LAST_ROOT:
2739 error = complete_walk(nd);
2740 if (error)
2741 return error;
2742 audit_inode(name, nd->path.dentry, 0);
2743 if (open_flag & O_CREAT) {
2744 error = -EISDIR;
2745 goto out;
2746 }
2747 goto finish_open;
2748 case LAST_BIND:
2749 error = complete_walk(nd);
2750 if (error)
2751 return error;
2752 audit_inode(name, dir, 0);
2753 goto finish_open;
2754 }
2755
2756 if (!(open_flag & O_CREAT)) {
2757 if (nd->last.name[nd->last.len])
2758 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2759 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2760 symlink_ok = true;
2761 /* we _can_ be in RCU mode here */
2762 error = lookup_fast(nd, path, &inode);
2763 if (likely(!error))
2764 goto finish_lookup;
2765
2766 if (error < 0)
2767 goto out;
2768
2769 BUG_ON(nd->inode != dir->d_inode);
2770 } else {
2771 /* create side of things */
2772 /*
2773 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2774 * has been cleared when we got to the last component we are
2775 * about to look up
2776 */
2777 error = complete_walk(nd);
2778 if (error)
2779 return error;
2780
2781 audit_inode(name, dir, LOOKUP_PARENT);
2782 error = -EISDIR;
2783 /* trailing slashes? */
2784 if (nd->last.name[nd->last.len])
2785 goto out;
2786 }
2787
2788 retry_lookup:
2789 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2790 error = mnt_want_write(nd->path.mnt);
2791 if (!error)
2792 got_write = true;
2793 /*
2794 * do _not_ fail yet - we might not need that or fail with
2795 * a different error; let lookup_open() decide; we'll be
2796 * dropping this one anyway.
2797 */
2798 }
2799 mutex_lock(&dir->d_inode->i_mutex);
2800 error = lookup_open(nd, path, file, op, got_write, opened);
2801 mutex_unlock(&dir->d_inode->i_mutex);
2802
2803 if (error <= 0) {
2804 if (error)
2805 goto out;
2806
2807 if ((*opened & FILE_CREATED) ||
2808 !S_ISREG(file_inode(file)->i_mode))
2809 will_truncate = false;
2810
2811 audit_inode(name, file->f_path.dentry, 0);
2812 goto opened;
2813 }
2814
2815 if (*opened & FILE_CREATED) {
2816 /* Don't check for write permission, don't truncate */
2817 open_flag &= ~O_TRUNC;
2818 will_truncate = false;
2819 acc_mode = MAY_OPEN;
2820 path_to_nameidata(path, nd);
2821 goto finish_open_created;
2822 }
2823
2824 /*
2825 * create/update audit record if it already exists.
2826 */
2827 if (path->dentry->d_inode)
2828 audit_inode(name, path->dentry, 0);
2829
2830 /*
2831 * If atomic_open() acquired write access it is dropped now due to
2832 * possible mount and symlink following (this might be optimized away if
2833 * necessary...)
2834 */
2835 if (got_write) {
2836 mnt_drop_write(nd->path.mnt);
2837 got_write = false;
2838 }
2839
2840 error = -EEXIST;
2841 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2842 goto exit_dput;
2843
2844 error = follow_managed(path, nd->flags);
2845 if (error < 0)
2846 goto exit_dput;
2847
2848 if (error)
2849 nd->flags |= LOOKUP_JUMPED;
2850
2851 BUG_ON(nd->flags & LOOKUP_RCU);
2852 inode = path->dentry->d_inode;
2853 finish_lookup:
2854 /* we _can_ be in RCU mode here */
2855 error = -ENOENT;
2856 if (!inode) {
2857 path_to_nameidata(path, nd);
2858 goto out;
2859 }
2860
2861 if (should_follow_link(inode, !symlink_ok)) {
2862 if (nd->flags & LOOKUP_RCU) {
2863 if (unlikely(nd->path.mnt != path->mnt ||
2864 unlazy_walk(nd, path->dentry))) {
2865 error = -ECHILD;
2866 goto out;
2867 }
2868 }
2869 BUG_ON(inode != path->dentry->d_inode);
2870 return 1;
2871 }
2872
2873 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2874 path_to_nameidata(path, nd);
2875 } else {
2876 save_parent.dentry = nd->path.dentry;
2877 save_parent.mnt = mntget(path->mnt);
2878 nd->path.dentry = path->dentry;
2879
2880 }
2881 nd->inode = inode;
2882 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2883 error = complete_walk(nd);
2884 if (error) {
2885 path_put(&save_parent);
2886 return error;
2887 }
2888 error = -EISDIR;
2889 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2890 goto out;
2891 error = -ENOTDIR;
2892 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
2893 goto out;
2894 audit_inode(name, nd->path.dentry, 0);
2895 finish_open:
2896 if (!S_ISREG(nd->inode->i_mode))
2897 will_truncate = false;
2898
2899 if (will_truncate) {
2900 error = mnt_want_write(nd->path.mnt);
2901 if (error)
2902 goto out;
2903 got_write = true;
2904 }
2905 finish_open_created:
2906 error = may_open(&nd->path, acc_mode, open_flag);
2907 if (error)
2908 goto out;
2909 file->f_path.mnt = nd->path.mnt;
2910 error = finish_open(file, nd->path.dentry, NULL, opened);
2911 if (error) {
2912 if (error == -EOPENSTALE)
2913 goto stale_open;
2914 goto out;
2915 }
2916 opened:
2917 error = open_check_o_direct(file);
2918 if (error)
2919 goto exit_fput;
2920 error = ima_file_check(file, op->acc_mode);
2921 if (error)
2922 goto exit_fput;
2923
2924 if (will_truncate) {
2925 error = handle_truncate(file);
2926 if (error)
2927 goto exit_fput;
2928 }
2929 out:
2930 if (unlikely(error > 0)) {
2931 WARN_ON(1);
2932 error = -EINVAL;
2933 }
2934 if (got_write)
2935 mnt_drop_write(nd->path.mnt);
2936 path_put(&save_parent);
2937 terminate_walk(nd);
2938 return error;
2939
2940 exit_dput:
2941 path_put_conditional(path, nd);
2942 goto out;
2943 exit_fput:
2944 fput(file);
2945 goto out;
2946
2947 stale_open:
2948 /* If no saved parent or already retried then can't retry */
2949 if (!save_parent.dentry || retried)
2950 goto out;
2951
2952 BUG_ON(save_parent.dentry != dir);
2953 path_put(&nd->path);
2954 nd->path = save_parent;
2955 nd->inode = dir->d_inode;
2956 save_parent.mnt = NULL;
2957 save_parent.dentry = NULL;
2958 if (got_write) {
2959 mnt_drop_write(nd->path.mnt);
2960 got_write = false;
2961 }
2962 retried = true;
2963 goto retry_lookup;
2964 }
2965
2966 static struct file *path_openat(int dfd, struct filename *pathname,
2967 struct nameidata *nd, const struct open_flags *op, int flags)
2968 {
2969 struct file *base = NULL;
2970 struct file *file;
2971 struct path path;
2972 int opened = 0;
2973 int error;
2974
2975 file = get_empty_filp();
2976 if (IS_ERR(file))
2977 return file;
2978
2979 file->f_flags = op->open_flag;
2980
2981 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2982 if (unlikely(error))
2983 goto out;
2984
2985 current->total_link_count = 0;
2986 error = link_path_walk(pathname->name, nd);
2987 if (unlikely(error))
2988 goto out;
2989
2990 error = do_last(nd, &path, file, op, &opened, pathname);
2991 while (unlikely(error > 0)) { /* trailing symlink */
2992 struct path link = path;
2993 void *cookie;
2994 if (!(nd->flags & LOOKUP_FOLLOW)) {
2995 path_put_conditional(&path, nd);
2996 path_put(&nd->path);
2997 error = -ELOOP;
2998 break;
2999 }
3000 error = may_follow_link(&link, nd);
3001 if (unlikely(error))
3002 break;
3003 nd->flags |= LOOKUP_PARENT;
3004 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3005 error = follow_link(&link, nd, &cookie);
3006 if (unlikely(error))
3007 break;
3008 error = do_last(nd, &path, file, op, &opened, pathname);
3009 put_link(nd, &link, cookie);
3010 }
3011 out:
3012 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3013 path_put(&nd->root);
3014 if (base)
3015 fput(base);
3016 if (!(opened & FILE_OPENED)) {
3017 BUG_ON(!error);
3018 put_filp(file);
3019 }
3020 if (unlikely(error)) {
3021 if (error == -EOPENSTALE) {
3022 if (flags & LOOKUP_RCU)
3023 error = -ECHILD;
3024 else
3025 error = -ESTALE;
3026 }
3027 file = ERR_PTR(error);
3028 }
3029 return file;
3030 }
3031
3032 struct file *do_filp_open(int dfd, struct filename *pathname,
3033 const struct open_flags *op, int flags)
3034 {
3035 struct nameidata nd;
3036 struct file *filp;
3037
3038 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3039 if (unlikely(filp == ERR_PTR(-ECHILD)))
3040 filp = path_openat(dfd, pathname, &nd, op, flags);
3041 if (unlikely(filp == ERR_PTR(-ESTALE)))
3042 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3043 return filp;
3044 }
3045
3046 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3047 const char *name, const struct open_flags *op, int flags)
3048 {
3049 struct nameidata nd;
3050 struct file *file;
3051 struct filename filename = { .name = name };
3052
3053 nd.root.mnt = mnt;
3054 nd.root.dentry = dentry;
3055
3056 flags |= LOOKUP_ROOT;
3057
3058 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3059 return ERR_PTR(-ELOOP);
3060
3061 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3062 if (unlikely(file == ERR_PTR(-ECHILD)))
3063 file = path_openat(-1, &filename, &nd, op, flags);
3064 if (unlikely(file == ERR_PTR(-ESTALE)))
3065 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3066 return file;
3067 }
3068
3069 struct dentry *kern_path_create(int dfd, const char *pathname,
3070 struct path *path, unsigned int lookup_flags)
3071 {
3072 struct dentry *dentry = ERR_PTR(-EEXIST);
3073 struct nameidata nd;
3074 int err2;
3075 int error;
3076 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3077
3078 /*
3079 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3080 * other flags passed in are ignored!
3081 */
3082 lookup_flags &= LOOKUP_REVAL;
3083
3084 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3085 if (error)
3086 return ERR_PTR(error);
3087
3088 /*
3089 * Yucky last component or no last component at all?
3090 * (foo/., foo/.., /////)
3091 */
3092 if (nd.last_type != LAST_NORM)
3093 goto out;
3094 nd.flags &= ~LOOKUP_PARENT;
3095 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3096
3097 /* don't fail immediately if it's r/o, at least try to report other errors */
3098 err2 = mnt_want_write(nd.path.mnt);
3099 /*
3100 * Do the final lookup.
3101 */
3102 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3103 dentry = lookup_hash(&nd);
3104 if (IS_ERR(dentry))
3105 goto unlock;
3106
3107 error = -EEXIST;
3108 if (dentry->d_inode)
3109 goto fail;
3110 /*
3111 * Special case - lookup gave negative, but... we had foo/bar/
3112 * From the vfs_mknod() POV we just have a negative dentry -
3113 * all is fine. Let's be bastards - you had / on the end, you've
3114 * been asking for (non-existent) directory. -ENOENT for you.
3115 */
3116 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3117 error = -ENOENT;
3118 goto fail;
3119 }
3120 if (unlikely(err2)) {
3121 error = err2;
3122 goto fail;
3123 }
3124 *path = nd.path;
3125 return dentry;
3126 fail:
3127 dput(dentry);
3128 dentry = ERR_PTR(error);
3129 unlock:
3130 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3131 if (!err2)
3132 mnt_drop_write(nd.path.mnt);
3133 out:
3134 path_put(&nd.path);
3135 return dentry;
3136 }
3137 EXPORT_SYMBOL(kern_path_create);
3138
3139 void done_path_create(struct path *path, struct dentry *dentry)
3140 {
3141 dput(dentry);
3142 mutex_unlock(&path->dentry->d_inode->i_mutex);
3143 mnt_drop_write(path->mnt);
3144 path_put(path);
3145 }
3146 EXPORT_SYMBOL(done_path_create);
3147
3148 struct dentry *user_path_create(int dfd, const char __user *pathname,
3149 struct path *path, unsigned int lookup_flags)
3150 {
3151 struct filename *tmp = getname(pathname);
3152 struct dentry *res;
3153 if (IS_ERR(tmp))
3154 return ERR_CAST(tmp);
3155 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3156 putname(tmp);
3157 return res;
3158 }
3159 EXPORT_SYMBOL(user_path_create);
3160
3161 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3162 {
3163 int error = may_create(dir, dentry);
3164
3165 if (error)
3166 return error;
3167
3168 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3169 return -EPERM;
3170
3171 if (!dir->i_op->mknod)
3172 return -EPERM;
3173
3174 error = devcgroup_inode_mknod(mode, dev);
3175 if (error)
3176 return error;
3177
3178 error = security_inode_mknod(dir, dentry, mode, dev);
3179 if (error)
3180 return error;
3181
3182 error = dir->i_op->mknod(dir, dentry, mode, dev);
3183 if (!error)
3184 fsnotify_create(dir, dentry);
3185 return error;
3186 }
3187
3188 static int may_mknod(umode_t mode)
3189 {
3190 switch (mode & S_IFMT) {
3191 case S_IFREG:
3192 case S_IFCHR:
3193 case S_IFBLK:
3194 case S_IFIFO:
3195 case S_IFSOCK:
3196 case 0: /* zero mode translates to S_IFREG */
3197 return 0;
3198 case S_IFDIR:
3199 return -EPERM;
3200 default:
3201 return -EINVAL;
3202 }
3203 }
3204
3205 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3206 unsigned, dev)
3207 {
3208 struct dentry *dentry;
3209 struct path path;
3210 int error;
3211 unsigned int lookup_flags = 0;
3212
3213 error = may_mknod(mode);
3214 if (error)
3215 return error;
3216 retry:
3217 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3218 if (IS_ERR(dentry))
3219 return PTR_ERR(dentry);
3220
3221 if (!IS_POSIXACL(path.dentry->d_inode))
3222 mode &= ~current_umask();
3223 error = security_path_mknod(&path, dentry, mode, dev);
3224 if (error)
3225 goto out;
3226 switch (mode & S_IFMT) {
3227 case 0: case S_IFREG:
3228 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3229 break;
3230 case S_IFCHR: case S_IFBLK:
3231 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3232 new_decode_dev(dev));
3233 break;
3234 case S_IFIFO: case S_IFSOCK:
3235 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3236 break;
3237 }
3238 out:
3239 done_path_create(&path, dentry);
3240 if (retry_estale(error, lookup_flags)) {
3241 lookup_flags |= LOOKUP_REVAL;
3242 goto retry;
3243 }
3244 return error;
3245 }
3246
3247 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3248 {
3249 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3250 }
3251
3252 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3253 {
3254 int error = may_create(dir, dentry);
3255 unsigned max_links = dir->i_sb->s_max_links;
3256
3257 if (error)
3258 return error;
3259
3260 if (!dir->i_op->mkdir)
3261 return -EPERM;
3262
3263 mode &= (S_IRWXUGO|S_ISVTX);
3264 error = security_inode_mkdir(dir, dentry, mode);
3265 if (error)
3266 return error;
3267
3268 if (max_links && dir->i_nlink >= max_links)
3269 return -EMLINK;
3270
3271 error = dir->i_op->mkdir(dir, dentry, mode);
3272 if (!error)
3273 fsnotify_mkdir(dir, dentry);
3274 return error;
3275 }
3276
3277 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3278 {
3279 struct dentry *dentry;
3280 struct path path;
3281 int error;
3282 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3283
3284 retry:
3285 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3286 if (IS_ERR(dentry))
3287 return PTR_ERR(dentry);
3288
3289 if (!IS_POSIXACL(path.dentry->d_inode))
3290 mode &= ~current_umask();
3291 error = security_path_mkdir(&path, dentry, mode);
3292 if (!error)
3293 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3294 done_path_create(&path, dentry);
3295 if (retry_estale(error, lookup_flags)) {
3296 lookup_flags |= LOOKUP_REVAL;
3297 goto retry;
3298 }
3299 return error;
3300 }
3301
3302 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3303 {
3304 return sys_mkdirat(AT_FDCWD, pathname, mode);
3305 }
3306
3307 /*
3308 * The dentry_unhash() helper will try to drop the dentry early: we
3309 * should have a usage count of 1 if we're the only user of this
3310 * dentry, and if that is true (possibly after pruning the dcache),
3311 * then we drop the dentry now.
3312 *
3313 * A low-level filesystem can, if it choses, legally
3314 * do a
3315 *
3316 * if (!d_unhashed(dentry))
3317 * return -EBUSY;
3318 *
3319 * if it cannot handle the case of removing a directory
3320 * that is still in use by something else..
3321 */
3322 void dentry_unhash(struct dentry *dentry)
3323 {
3324 shrink_dcache_parent(dentry);
3325 spin_lock(&dentry->d_lock);
3326 if (dentry->d_count == 1)
3327 __d_drop(dentry);
3328 spin_unlock(&dentry->d_lock);
3329 }
3330
3331 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3332 {
3333 int error = may_delete(dir, dentry, 1);
3334
3335 if (error)
3336 return error;
3337
3338 if (!dir->i_op->rmdir)
3339 return -EPERM;
3340
3341 dget(dentry);
3342 mutex_lock(&dentry->d_inode->i_mutex);
3343
3344 error = -EBUSY;
3345 if (d_mountpoint(dentry))
3346 goto out;
3347
3348 error = security_inode_rmdir(dir, dentry);
3349 if (error)
3350 goto out;
3351
3352 shrink_dcache_parent(dentry);
3353 error = dir->i_op->rmdir(dir, dentry);
3354 if (error)
3355 goto out;
3356
3357 dentry->d_inode->i_flags |= S_DEAD;
3358 dont_mount(dentry);
3359
3360 out:
3361 mutex_unlock(&dentry->d_inode->i_mutex);
3362 dput(dentry);
3363 if (!error)
3364 d_delete(dentry);
3365 return error;
3366 }
3367
3368 static long do_rmdir(int dfd, const char __user *pathname)
3369 {
3370 int error = 0;
3371 struct filename *name;
3372 struct dentry *dentry;
3373 struct nameidata nd;
3374 unsigned int lookup_flags = 0;
3375 retry:
3376 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3377 if (IS_ERR(name))
3378 return PTR_ERR(name);
3379
3380 switch(nd.last_type) {
3381 case LAST_DOTDOT:
3382 error = -ENOTEMPTY;
3383 goto exit1;
3384 case LAST_DOT:
3385 error = -EINVAL;
3386 goto exit1;
3387 case LAST_ROOT:
3388 error = -EBUSY;
3389 goto exit1;
3390 }
3391
3392 nd.flags &= ~LOOKUP_PARENT;
3393 error = mnt_want_write(nd.path.mnt);
3394 if (error)
3395 goto exit1;
3396
3397 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3398 dentry = lookup_hash(&nd);
3399 error = PTR_ERR(dentry);
3400 if (IS_ERR(dentry))
3401 goto exit2;
3402 if (!dentry->d_inode) {
3403 error = -ENOENT;
3404 goto exit3;
3405 }
3406 error = security_path_rmdir(&nd.path, dentry);
3407 if (error)
3408 goto exit3;
3409 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3410 exit3:
3411 dput(dentry);
3412 exit2:
3413 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3414 mnt_drop_write(nd.path.mnt);
3415 exit1:
3416 path_put(&nd.path);
3417 putname(name);
3418 if (retry_estale(error, lookup_flags)) {
3419 lookup_flags |= LOOKUP_REVAL;
3420 goto retry;
3421 }
3422 return error;
3423 }
3424
3425 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3426 {
3427 return do_rmdir(AT_FDCWD, pathname);
3428 }
3429
3430 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3431 {
3432 int error = may_delete(dir, dentry, 0);
3433
3434 if (error)
3435 return error;
3436
3437 if (!dir->i_op->unlink)
3438 return -EPERM;
3439
3440 mutex_lock(&dentry->d_inode->i_mutex);
3441 if (d_mountpoint(dentry))
3442 error = -EBUSY;
3443 else {
3444 error = security_inode_unlink(dir, dentry);
3445 if (!error) {
3446 error = dir->i_op->unlink(dir, dentry);
3447 if (!error)
3448 dont_mount(dentry);
3449 }
3450 }
3451 mutex_unlock(&dentry->d_inode->i_mutex);
3452
3453 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3454 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3455 fsnotify_link_count(dentry->d_inode);
3456 d_delete(dentry);
3457 }
3458
3459 return error;
3460 }
3461
3462 /*
3463 * Make sure that the actual truncation of the file will occur outside its
3464 * directory's i_mutex. Truncate can take a long time if there is a lot of
3465 * writeout happening, and we don't want to prevent access to the directory
3466 * while waiting on the I/O.
3467 */
3468 static long do_unlinkat(int dfd, const char __user *pathname)
3469 {
3470 int error;
3471 struct filename *name;
3472 struct dentry *dentry;
3473 struct nameidata nd;
3474 struct inode *inode = NULL;
3475 unsigned int lookup_flags = 0;
3476 retry:
3477 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3478 if (IS_ERR(name))
3479 return PTR_ERR(name);
3480
3481 error = -EISDIR;
3482 if (nd.last_type != LAST_NORM)
3483 goto exit1;
3484
3485 nd.flags &= ~LOOKUP_PARENT;
3486 error = mnt_want_write(nd.path.mnt);
3487 if (error)
3488 goto exit1;
3489
3490 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3491 dentry = lookup_hash(&nd);
3492 error = PTR_ERR(dentry);
3493 if (!IS_ERR(dentry)) {
3494 /* Why not before? Because we want correct error value */
3495 if (nd.last.name[nd.last.len])
3496 goto slashes;
3497 inode = dentry->d_inode;
3498 if (!inode)
3499 goto slashes;
3500 ihold(inode);
3501 error = security_path_unlink(&nd.path, dentry);
3502 if (error)
3503 goto exit2;
3504 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3505 exit2:
3506 dput(dentry);
3507 }
3508 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3509 if (inode)
3510 iput(inode); /* truncate the inode here */
3511 mnt_drop_write(nd.path.mnt);
3512 exit1:
3513 path_put(&nd.path);
3514 putname(name);
3515 if (retry_estale(error, lookup_flags)) {
3516 lookup_flags |= LOOKUP_REVAL;
3517 inode = NULL;
3518 goto retry;
3519 }
3520 return error;
3521
3522 slashes:
3523 error = !dentry->d_inode ? -ENOENT :
3524 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3525 goto exit2;
3526 }
3527
3528 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3529 {
3530 if ((flag & ~AT_REMOVEDIR) != 0)
3531 return -EINVAL;
3532
3533 if (flag & AT_REMOVEDIR)
3534 return do_rmdir(dfd, pathname);
3535
3536 return do_unlinkat(dfd, pathname);
3537 }
3538
3539 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3540 {
3541 return do_unlinkat(AT_FDCWD, pathname);
3542 }
3543
3544 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3545 {
3546 int error = may_create(dir, dentry);
3547
3548 if (error)
3549 return error;
3550
3551 if (!dir->i_op->symlink)
3552 return -EPERM;
3553
3554 error = security_inode_symlink(dir, dentry, oldname);
3555 if (error)
3556 return error;
3557
3558 error = dir->i_op->symlink(dir, dentry, oldname);
3559 if (!error)
3560 fsnotify_create(dir, dentry);
3561 return error;
3562 }
3563
3564 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3565 int, newdfd, const char __user *, newname)
3566 {
3567 int error;
3568 struct filename *from;
3569 struct dentry *dentry;
3570 struct path path;
3571 unsigned int lookup_flags = 0;
3572
3573 from = getname(oldname);
3574 if (IS_ERR(from))
3575 return PTR_ERR(from);
3576 retry:
3577 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3578 error = PTR_ERR(dentry);
3579 if (IS_ERR(dentry))
3580 goto out_putname;
3581
3582 error = security_path_symlink(&path, dentry, from->name);
3583 if (!error)
3584 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3585 done_path_create(&path, dentry);
3586 if (retry_estale(error, lookup_flags)) {
3587 lookup_flags |= LOOKUP_REVAL;
3588 goto retry;
3589 }
3590 out_putname:
3591 putname(from);
3592 return error;
3593 }
3594
3595 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3596 {
3597 return sys_symlinkat(oldname, AT_FDCWD, newname);
3598 }
3599
3600 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3601 {
3602 struct inode *inode = old_dentry->d_inode;
3603 unsigned max_links = dir->i_sb->s_max_links;
3604 int error;
3605
3606 if (!inode)
3607 return -ENOENT;
3608
3609 error = may_create(dir, new_dentry);
3610 if (error)
3611 return error;
3612
3613 if (dir->i_sb != inode->i_sb)
3614 return -EXDEV;
3615
3616 /*
3617 * A link to an append-only or immutable file cannot be created.
3618 */
3619 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3620 return -EPERM;
3621 if (!dir->i_op->link)
3622 return -EPERM;
3623 if (S_ISDIR(inode->i_mode))
3624 return -EPERM;
3625
3626 error = security_inode_link(old_dentry, dir, new_dentry);
3627 if (error)
3628 return error;
3629
3630 mutex_lock(&inode->i_mutex);
3631 /* Make sure we don't allow creating hardlink to an unlinked file */
3632 if (inode->i_nlink == 0)
3633 error = -ENOENT;
3634 else if (max_links && inode->i_nlink >= max_links)
3635 error = -EMLINK;
3636 else
3637 error = dir->i_op->link(old_dentry, dir, new_dentry);
3638 mutex_unlock(&inode->i_mutex);
3639 if (!error)
3640 fsnotify_link(dir, inode, new_dentry);
3641 return error;
3642 }
3643
3644 /*
3645 * Hardlinks are often used in delicate situations. We avoid
3646 * security-related surprises by not following symlinks on the
3647 * newname. --KAB
3648 *
3649 * We don't follow them on the oldname either to be compatible
3650 * with linux 2.0, and to avoid hard-linking to directories
3651 * and other special files. --ADM
3652 */
3653 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3654 int, newdfd, const char __user *, newname, int, flags)
3655 {
3656 struct dentry *new_dentry;
3657 struct path old_path, new_path;
3658 int how = 0;
3659 int error;
3660
3661 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3662 return -EINVAL;
3663 /*
3664 * To use null names we require CAP_DAC_READ_SEARCH
3665 * This ensures that not everyone will be able to create
3666 * handlink using the passed filedescriptor.
3667 */
3668 if (flags & AT_EMPTY_PATH) {
3669 if (!capable(CAP_DAC_READ_SEARCH))
3670 return -ENOENT;
3671 how = LOOKUP_EMPTY;
3672 }
3673
3674 if (flags & AT_SYMLINK_FOLLOW)
3675 how |= LOOKUP_FOLLOW;
3676 retry:
3677 error = user_path_at(olddfd, oldname, how, &old_path);
3678 if (error)
3679 return error;
3680
3681 new_dentry = user_path_create(newdfd, newname, &new_path,
3682 (how & LOOKUP_REVAL));
3683 error = PTR_ERR(new_dentry);
3684 if (IS_ERR(new_dentry))
3685 goto out;
3686
3687 error = -EXDEV;
3688 if (old_path.mnt != new_path.mnt)
3689 goto out_dput;
3690 error = may_linkat(&old_path);
3691 if (unlikely(error))
3692 goto out_dput;
3693 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3694 if (error)
3695 goto out_dput;
3696 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3697 out_dput:
3698 done_path_create(&new_path, new_dentry);
3699 if (retry_estale(error, how)) {
3700 path_put(&old_path);
3701 how |= LOOKUP_REVAL;
3702 goto retry;
3703 }
3704 out:
3705 path_put(&old_path);
3706
3707 return error;
3708 }
3709
3710 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3711 {
3712 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3713 }
3714
3715 /*
3716 * The worst of all namespace operations - renaming directory. "Perverted"
3717 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3718 * Problems:
3719 * a) we can get into loop creation. Check is done in is_subdir().
3720 * b) race potential - two innocent renames can create a loop together.
3721 * That's where 4.4 screws up. Current fix: serialization on
3722 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3723 * story.
3724 * c) we have to lock _three_ objects - parents and victim (if it exists).
3725 * And that - after we got ->i_mutex on parents (until then we don't know
3726 * whether the target exists). Solution: try to be smart with locking
3727 * order for inodes. We rely on the fact that tree topology may change
3728 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3729 * move will be locked. Thus we can rank directories by the tree
3730 * (ancestors first) and rank all non-directories after them.
3731 * That works since everybody except rename does "lock parent, lookup,
3732 * lock child" and rename is under ->s_vfs_rename_mutex.
3733 * HOWEVER, it relies on the assumption that any object with ->lookup()
3734 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3735 * we'd better make sure that there's no link(2) for them.
3736 * d) conversion from fhandle to dentry may come in the wrong moment - when
3737 * we are removing the target. Solution: we will have to grab ->i_mutex
3738 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3739 * ->i_mutex on parents, which works but leads to some truly excessive
3740 * locking].
3741 */
3742 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3743 struct inode *new_dir, struct dentry *new_dentry)
3744 {
3745 int error = 0;
3746 struct inode *target = new_dentry->d_inode;
3747 unsigned max_links = new_dir->i_sb->s_max_links;
3748
3749 /*
3750 * If we are going to change the parent - check write permissions,
3751 * we'll need to flip '..'.
3752 */
3753 if (new_dir != old_dir) {
3754 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3755 if (error)
3756 return error;
3757 }
3758
3759 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3760 if (error)
3761 return error;
3762
3763 dget(new_dentry);
3764 if (target)
3765 mutex_lock(&target->i_mutex);
3766
3767 error = -EBUSY;
3768 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3769 goto out;
3770
3771 error = -EMLINK;
3772 if (max_links && !target && new_dir != old_dir &&
3773 new_dir->i_nlink >= max_links)
3774 goto out;
3775
3776 if (target)
3777 shrink_dcache_parent(new_dentry);
3778 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3779 if (error)
3780 goto out;
3781
3782 if (target) {
3783 target->i_flags |= S_DEAD;
3784 dont_mount(new_dentry);
3785 }
3786 out:
3787 if (target)
3788 mutex_unlock(&target->i_mutex);
3789 dput(new_dentry);
3790 if (!error)
3791 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3792 d_move(old_dentry,new_dentry);
3793 return error;
3794 }
3795
3796 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3797 struct inode *new_dir, struct dentry *new_dentry)
3798 {
3799 struct inode *target = new_dentry->d_inode;
3800 int error;
3801
3802 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3803 if (error)
3804 return error;
3805
3806 dget(new_dentry);
3807 if (target)
3808 mutex_lock(&target->i_mutex);
3809
3810 error = -EBUSY;
3811 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3812 goto out;
3813
3814 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3815 if (error)
3816 goto out;
3817
3818 if (target)
3819 dont_mount(new_dentry);
3820 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3821 d_move(old_dentry, new_dentry);
3822 out:
3823 if (target)
3824 mutex_unlock(&target->i_mutex);
3825 dput(new_dentry);
3826 return error;
3827 }
3828
3829 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3830 struct inode *new_dir, struct dentry *new_dentry)
3831 {
3832 int error;
3833 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3834 const unsigned char *old_name;
3835
3836 if (old_dentry->d_inode == new_dentry->d_inode)
3837 return 0;
3838
3839 error = may_delete(old_dir, old_dentry, is_dir);
3840 if (error)
3841 return error;
3842
3843 if (!new_dentry->d_inode)
3844 error = may_create(new_dir, new_dentry);
3845 else
3846 error = may_delete(new_dir, new_dentry, is_dir);
3847 if (error)
3848 return error;
3849
3850 if (!old_dir->i_op->rename)
3851 return -EPERM;
3852
3853 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3854
3855 if (is_dir)
3856 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3857 else
3858 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3859 if (!error)
3860 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3861 new_dentry->d_inode, old_dentry);
3862 fsnotify_oldname_free(old_name);
3863
3864 return error;
3865 }
3866
3867 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3868 int, newdfd, const char __user *, newname)
3869 {
3870 struct dentry *old_dir, *new_dir;
3871 struct dentry *old_dentry, *new_dentry;
3872 struct dentry *trap;
3873 struct nameidata oldnd, newnd;
3874 struct filename *from;
3875 struct filename *to;
3876 unsigned int lookup_flags = 0;
3877 bool should_retry = false;
3878 int error;
3879 retry:
3880 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3881 if (IS_ERR(from)) {
3882 error = PTR_ERR(from);
3883 goto exit;
3884 }
3885
3886 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3887 if (IS_ERR(to)) {
3888 error = PTR_ERR(to);
3889 goto exit1;
3890 }
3891
3892 error = -EXDEV;
3893 if (oldnd.path.mnt != newnd.path.mnt)
3894 goto exit2;
3895
3896 old_dir = oldnd.path.dentry;
3897 error = -EBUSY;
3898 if (oldnd.last_type != LAST_NORM)
3899 goto exit2;
3900
3901 new_dir = newnd.path.dentry;
3902 if (newnd.last_type != LAST_NORM)
3903 goto exit2;
3904
3905 error = mnt_want_write(oldnd.path.mnt);
3906 if (error)
3907 goto exit2;
3908
3909 oldnd.flags &= ~LOOKUP_PARENT;
3910 newnd.flags &= ~LOOKUP_PARENT;
3911 newnd.flags |= LOOKUP_RENAME_TARGET;
3912
3913 trap = lock_rename(new_dir, old_dir);
3914
3915 old_dentry = lookup_hash(&oldnd);
3916 error = PTR_ERR(old_dentry);
3917 if (IS_ERR(old_dentry))
3918 goto exit3;
3919 /* source must exist */
3920 error = -ENOENT;
3921 if (!old_dentry->d_inode)
3922 goto exit4;
3923 /* unless the source is a directory trailing slashes give -ENOTDIR */
3924 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3925 error = -ENOTDIR;
3926 if (oldnd.last.name[oldnd.last.len])
3927 goto exit4;
3928 if (newnd.last.name[newnd.last.len])
3929 goto exit4;
3930 }
3931 /* source should not be ancestor of target */
3932 error = -EINVAL;
3933 if (old_dentry == trap)
3934 goto exit4;
3935 new_dentry = lookup_hash(&newnd);
3936 error = PTR_ERR(new_dentry);
3937 if (IS_ERR(new_dentry))
3938 goto exit4;
3939 /* target should not be an ancestor of source */
3940 error = -ENOTEMPTY;
3941 if (new_dentry == trap)
3942 goto exit5;
3943
3944 error = security_path_rename(&oldnd.path, old_dentry,
3945 &newnd.path, new_dentry);
3946 if (error)
3947 goto exit5;
3948 error = vfs_rename(old_dir->d_inode, old_dentry,
3949 new_dir->d_inode, new_dentry);
3950 exit5:
3951 dput(new_dentry);
3952 exit4:
3953 dput(old_dentry);
3954 exit3:
3955 unlock_rename(new_dir, old_dir);
3956 mnt_drop_write(oldnd.path.mnt);
3957 exit2:
3958 if (retry_estale(error, lookup_flags))
3959 should_retry = true;
3960 path_put(&newnd.path);
3961 putname(to);
3962 exit1:
3963 path_put(&oldnd.path);
3964 putname(from);
3965 if (should_retry) {
3966 should_retry = false;
3967 lookup_flags |= LOOKUP_REVAL;
3968 goto retry;
3969 }
3970 exit:
3971 return error;
3972 }
3973
3974 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3975 {
3976 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3977 }
3978
3979 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3980 {
3981 int len;
3982
3983 len = PTR_ERR(link);
3984 if (IS_ERR(link))
3985 goto out;
3986
3987 len = strlen(link);
3988 if (len > (unsigned) buflen)
3989 len = buflen;
3990 if (copy_to_user(buffer, link, len))
3991 len = -EFAULT;
3992 out:
3993 return len;
3994 }
3995
3996 /*
3997 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3998 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3999 * using) it for any given inode is up to filesystem.
4000 */
4001 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4002 {
4003 struct nameidata nd;
4004 void *cookie;
4005 int res;
4006
4007 nd.depth = 0;
4008 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4009 if (IS_ERR(cookie))
4010 return PTR_ERR(cookie);
4011
4012 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4013 if (dentry->d_inode->i_op->put_link)
4014 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4015 return res;
4016 }
4017
4018 int vfs_follow_link(struct nameidata *nd, const char *link)
4019 {
4020 return __vfs_follow_link(nd, link);
4021 }
4022
4023 /* get the link contents into pagecache */
4024 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4025 {
4026 char *kaddr;
4027 struct page *page;
4028 struct address_space *mapping = dentry->d_inode->i_mapping;
4029 page = read_mapping_page(mapping, 0, NULL);
4030 if (IS_ERR(page))
4031 return (char*)page;
4032 *ppage = page;
4033 kaddr = kmap(page);
4034 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4035 return kaddr;
4036 }
4037
4038 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4039 {
4040 struct page *page = NULL;
4041 char *s = page_getlink(dentry, &page);
4042 int res = vfs_readlink(dentry,buffer,buflen,s);
4043 if (page) {
4044 kunmap(page);
4045 page_cache_release(page);
4046 }
4047 return res;
4048 }
4049
4050 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4051 {
4052 struct page *page = NULL;
4053 nd_set_link(nd, page_getlink(dentry, &page));
4054 return page;
4055 }
4056
4057 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4058 {
4059 struct page *page = cookie;
4060
4061 if (page) {
4062 kunmap(page);
4063 page_cache_release(page);
4064 }
4065 }
4066
4067 /*
4068 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4069 */
4070 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4071 {
4072 struct address_space *mapping = inode->i_mapping;
4073 struct page *page;
4074 void *fsdata;
4075 int err;
4076 char *kaddr;
4077 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4078 if (nofs)
4079 flags |= AOP_FLAG_NOFS;
4080
4081 retry:
4082 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4083 flags, &page, &fsdata);
4084 if (err)
4085 goto fail;
4086
4087 kaddr = kmap_atomic(page);
4088 memcpy(kaddr, symname, len-1);
4089 kunmap_atomic(kaddr);
4090
4091 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4092 page, fsdata);
4093 if (err < 0)
4094 goto fail;
4095 if (err < len-1)
4096 goto retry;
4097
4098 mark_inode_dirty(inode);
4099 return 0;
4100 fail:
4101 return err;
4102 }
4103
4104 int page_symlink(struct inode *inode, const char *symname, int len)
4105 {
4106 return __page_symlink(inode, symname, len,
4107 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4108 }
4109
4110 const struct inode_operations page_symlink_inode_operations = {
4111 .readlink = generic_readlink,
4112 .follow_link = page_follow_link_light,
4113 .put_link = page_put_link,
4114 };
4115
4116 EXPORT_SYMBOL(user_path_at);
4117 EXPORT_SYMBOL(follow_down_one);
4118 EXPORT_SYMBOL(follow_down);
4119 EXPORT_SYMBOL(follow_up);
4120 EXPORT_SYMBOL(get_write_access); /* nfsd */
4121 EXPORT_SYMBOL(lock_rename);
4122 EXPORT_SYMBOL(lookup_one_len);
4123 EXPORT_SYMBOL(page_follow_link_light);
4124 EXPORT_SYMBOL(page_put_link);
4125 EXPORT_SYMBOL(page_readlink);
4126 EXPORT_SYMBOL(__page_symlink);
4127 EXPORT_SYMBOL(page_symlink);
4128 EXPORT_SYMBOL(page_symlink_inode_operations);
4129 EXPORT_SYMBOL(kern_path);
4130 EXPORT_SYMBOL(vfs_path_lookup);
4131 EXPORT_SYMBOL(inode_permission);
4132 EXPORT_SYMBOL(unlock_rename);
4133 EXPORT_SYMBOL(vfs_create);
4134 EXPORT_SYMBOL(vfs_follow_link);
4135 EXPORT_SYMBOL(vfs_link);
4136 EXPORT_SYMBOL(vfs_mkdir);
4137 EXPORT_SYMBOL(vfs_mknod);
4138 EXPORT_SYMBOL(generic_permission);
4139 EXPORT_SYMBOL(vfs_readlink);
4140 EXPORT_SYMBOL(vfs_rename);
4141 EXPORT_SYMBOL(vfs_rmdir);
4142 EXPORT_SYMBOL(vfs_symlink);
4143 EXPORT_SYMBOL(vfs_unlink);
4144 EXPORT_SYMBOL(dentry_unhash);
4145 EXPORT_SYMBOL(generic_readlink);