Merge tag 'for-v3.8' of git://git.infradead.org/users/cbou/linux-pstore
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /**
498 * unlazy_walk - try to switch to ref-walk mode.
499 * @nd: nameidata pathwalk data
500 * @dentry: child of nd->path.dentry or NULL
501 * Returns: 0 on success, -ECHILD on failure
502 *
503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
505 * @nd or NULL. Must be called from rcu-walk context.
506 */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 struct fs_struct *fs = current->fs;
510 struct dentry *parent = nd->path.dentry;
511 int want_root = 0;
512
513 BUG_ON(!(nd->flags & LOOKUP_RCU));
514 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 want_root = 1;
516 spin_lock(&fs->lock);
517 if (nd->root.mnt != fs->root.mnt ||
518 nd->root.dentry != fs->root.dentry)
519 goto err_root;
520 }
521 spin_lock(&parent->d_lock);
522 if (!dentry) {
523 if (!__d_rcu_to_refcount(parent, nd->seq))
524 goto err_parent;
525 BUG_ON(nd->inode != parent->d_inode);
526 } else {
527 if (dentry->d_parent != parent)
528 goto err_parent;
529 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 if (!__d_rcu_to_refcount(dentry, nd->seq))
531 goto err_child;
532 /*
533 * If the sequence check on the child dentry passed, then
534 * the child has not been removed from its parent. This
535 * means the parent dentry must be valid and able to take
536 * a reference at this point.
537 */
538 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 BUG_ON(!parent->d_count);
540 parent->d_count++;
541 spin_unlock(&dentry->d_lock);
542 }
543 spin_unlock(&parent->d_lock);
544 if (want_root) {
545 path_get(&nd->root);
546 spin_unlock(&fs->lock);
547 }
548 mntget(nd->path.mnt);
549
550 unlock_rcu_walk();
551 nd->flags &= ~LOOKUP_RCU;
552 return 0;
553
554 err_child:
555 spin_unlock(&dentry->d_lock);
556 err_parent:
557 spin_unlock(&parent->d_lock);
558 err_root:
559 if (want_root)
560 spin_unlock(&fs->lock);
561 return -ECHILD;
562 }
563
564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565 {
566 return dentry->d_op->d_revalidate(dentry, flags);
567 }
568
569 /**
570 * complete_walk - successful completion of path walk
571 * @nd: pointer nameidata
572 *
573 * If we had been in RCU mode, drop out of it and legitimize nd->path.
574 * Revalidate the final result, unless we'd already done that during
575 * the path walk or the filesystem doesn't ask for it. Return 0 on
576 * success, -error on failure. In case of failure caller does not
577 * need to drop nd->path.
578 */
579 static int complete_walk(struct nameidata *nd)
580 {
581 struct dentry *dentry = nd->path.dentry;
582 int status;
583
584 if (nd->flags & LOOKUP_RCU) {
585 nd->flags &= ~LOOKUP_RCU;
586 if (!(nd->flags & LOOKUP_ROOT))
587 nd->root.mnt = NULL;
588 spin_lock(&dentry->d_lock);
589 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 spin_unlock(&dentry->d_lock);
591 unlock_rcu_walk();
592 return -ECHILD;
593 }
594 BUG_ON(nd->inode != dentry->d_inode);
595 spin_unlock(&dentry->d_lock);
596 mntget(nd->path.mnt);
597 unlock_rcu_walk();
598 }
599
600 if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 return 0;
602
603 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
604 return 0;
605
606 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
607 return 0;
608
609 /* Note: we do not d_invalidate() */
610 status = d_revalidate(dentry, nd->flags);
611 if (status > 0)
612 return 0;
613
614 if (!status)
615 status = -ESTALE;
616
617 path_put(&nd->path);
618 return status;
619 }
620
621 static __always_inline void set_root(struct nameidata *nd)
622 {
623 if (!nd->root.mnt)
624 get_fs_root(current->fs, &nd->root);
625 }
626
627 static int link_path_walk(const char *, struct nameidata *);
628
629 static __always_inline void set_root_rcu(struct nameidata *nd)
630 {
631 if (!nd->root.mnt) {
632 struct fs_struct *fs = current->fs;
633 unsigned seq;
634
635 do {
636 seq = read_seqcount_begin(&fs->seq);
637 nd->root = fs->root;
638 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
639 } while (read_seqcount_retry(&fs->seq, seq));
640 }
641 }
642
643 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
644 {
645 int ret;
646
647 if (IS_ERR(link))
648 goto fail;
649
650 if (*link == '/') {
651 set_root(nd);
652 path_put(&nd->path);
653 nd->path = nd->root;
654 path_get(&nd->root);
655 nd->flags |= LOOKUP_JUMPED;
656 }
657 nd->inode = nd->path.dentry->d_inode;
658
659 ret = link_path_walk(link, nd);
660 return ret;
661 fail:
662 path_put(&nd->path);
663 return PTR_ERR(link);
664 }
665
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 dput(path->dentry);
669 if (path->mnt != nd->path.mnt)
670 mntput(path->mnt);
671 }
672
673 static inline void path_to_nameidata(const struct path *path,
674 struct nameidata *nd)
675 {
676 if (!(nd->flags & LOOKUP_RCU)) {
677 dput(nd->path.dentry);
678 if (nd->path.mnt != path->mnt)
679 mntput(nd->path.mnt);
680 }
681 nd->path.mnt = path->mnt;
682 nd->path.dentry = path->dentry;
683 }
684
685 /*
686 * Helper to directly jump to a known parsed path from ->follow_link,
687 * caller must have taken a reference to path beforehand.
688 */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 path_put(&nd->path);
692
693 nd->path = *path;
694 nd->inode = nd->path.dentry->d_inode;
695 nd->flags |= LOOKUP_JUMPED;
696
697 BUG_ON(nd->inode->i_op->follow_link);
698 }
699
700 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
701 {
702 struct inode *inode = link->dentry->d_inode;
703 if (inode->i_op->put_link)
704 inode->i_op->put_link(link->dentry, nd, cookie);
705 path_put(link);
706 }
707
708 int sysctl_protected_symlinks __read_mostly = 0;
709 int sysctl_protected_hardlinks __read_mostly = 0;
710
711 /**
712 * may_follow_link - Check symlink following for unsafe situations
713 * @link: The path of the symlink
714 * @nd: nameidata pathwalk data
715 *
716 * In the case of the sysctl_protected_symlinks sysctl being enabled,
717 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
718 * in a sticky world-writable directory. This is to protect privileged
719 * processes from failing races against path names that may change out
720 * from under them by way of other users creating malicious symlinks.
721 * It will permit symlinks to be followed only when outside a sticky
722 * world-writable directory, or when the uid of the symlink and follower
723 * match, or when the directory owner matches the symlink's owner.
724 *
725 * Returns 0 if following the symlink is allowed, -ve on error.
726 */
727 static inline int may_follow_link(struct path *link, struct nameidata *nd)
728 {
729 const struct inode *inode;
730 const struct inode *parent;
731
732 if (!sysctl_protected_symlinks)
733 return 0;
734
735 /* Allowed if owner and follower match. */
736 inode = link->dentry->d_inode;
737 if (uid_eq(current_cred()->fsuid, inode->i_uid))
738 return 0;
739
740 /* Allowed if parent directory not sticky and world-writable. */
741 parent = nd->path.dentry->d_inode;
742 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
743 return 0;
744
745 /* Allowed if parent directory and link owner match. */
746 if (uid_eq(parent->i_uid, inode->i_uid))
747 return 0;
748
749 audit_log_link_denied("follow_link", link);
750 path_put_conditional(link, nd);
751 path_put(&nd->path);
752 return -EACCES;
753 }
754
755 /**
756 * safe_hardlink_source - Check for safe hardlink conditions
757 * @inode: the source inode to hardlink from
758 *
759 * Return false if at least one of the following conditions:
760 * - inode is not a regular file
761 * - inode is setuid
762 * - inode is setgid and group-exec
763 * - access failure for read and write
764 *
765 * Otherwise returns true.
766 */
767 static bool safe_hardlink_source(struct inode *inode)
768 {
769 umode_t mode = inode->i_mode;
770
771 /* Special files should not get pinned to the filesystem. */
772 if (!S_ISREG(mode))
773 return false;
774
775 /* Setuid files should not get pinned to the filesystem. */
776 if (mode & S_ISUID)
777 return false;
778
779 /* Executable setgid files should not get pinned to the filesystem. */
780 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
781 return false;
782
783 /* Hardlinking to unreadable or unwritable sources is dangerous. */
784 if (inode_permission(inode, MAY_READ | MAY_WRITE))
785 return false;
786
787 return true;
788 }
789
790 /**
791 * may_linkat - Check permissions for creating a hardlink
792 * @link: the source to hardlink from
793 *
794 * Block hardlink when all of:
795 * - sysctl_protected_hardlinks enabled
796 * - fsuid does not match inode
797 * - hardlink source is unsafe (see safe_hardlink_source() above)
798 * - not CAP_FOWNER
799 *
800 * Returns 0 if successful, -ve on error.
801 */
802 static int may_linkat(struct path *link)
803 {
804 const struct cred *cred;
805 struct inode *inode;
806
807 if (!sysctl_protected_hardlinks)
808 return 0;
809
810 cred = current_cred();
811 inode = link->dentry->d_inode;
812
813 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
814 * otherwise, it must be a safe source.
815 */
816 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
817 capable(CAP_FOWNER))
818 return 0;
819
820 audit_log_link_denied("linkat", link);
821 return -EPERM;
822 }
823
824 static __always_inline int
825 follow_link(struct path *link, struct nameidata *nd, void **p)
826 {
827 struct dentry *dentry = link->dentry;
828 int error;
829 char *s;
830
831 BUG_ON(nd->flags & LOOKUP_RCU);
832
833 if (link->mnt == nd->path.mnt)
834 mntget(link->mnt);
835
836 error = -ELOOP;
837 if (unlikely(current->total_link_count >= 40))
838 goto out_put_nd_path;
839
840 cond_resched();
841 current->total_link_count++;
842
843 touch_atime(link);
844 nd_set_link(nd, NULL);
845
846 error = security_inode_follow_link(link->dentry, nd);
847 if (error)
848 goto out_put_nd_path;
849
850 nd->last_type = LAST_BIND;
851 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
852 error = PTR_ERR(*p);
853 if (IS_ERR(*p))
854 goto out_put_nd_path;
855
856 error = 0;
857 s = nd_get_link(nd);
858 if (s) {
859 error = __vfs_follow_link(nd, s);
860 if (unlikely(error))
861 put_link(nd, link, *p);
862 }
863
864 return error;
865
866 out_put_nd_path:
867 *p = NULL;
868 path_put(&nd->path);
869 path_put(link);
870 return error;
871 }
872
873 static int follow_up_rcu(struct path *path)
874 {
875 struct mount *mnt = real_mount(path->mnt);
876 struct mount *parent;
877 struct dentry *mountpoint;
878
879 parent = mnt->mnt_parent;
880 if (&parent->mnt == path->mnt)
881 return 0;
882 mountpoint = mnt->mnt_mountpoint;
883 path->dentry = mountpoint;
884 path->mnt = &parent->mnt;
885 return 1;
886 }
887
888 /*
889 * follow_up - Find the mountpoint of path's vfsmount
890 *
891 * Given a path, find the mountpoint of its source file system.
892 * Replace @path with the path of the mountpoint in the parent mount.
893 * Up is towards /.
894 *
895 * Return 1 if we went up a level and 0 if we were already at the
896 * root.
897 */
898 int follow_up(struct path *path)
899 {
900 struct mount *mnt = real_mount(path->mnt);
901 struct mount *parent;
902 struct dentry *mountpoint;
903
904 br_read_lock(&vfsmount_lock);
905 parent = mnt->mnt_parent;
906 if (parent == mnt) {
907 br_read_unlock(&vfsmount_lock);
908 return 0;
909 }
910 mntget(&parent->mnt);
911 mountpoint = dget(mnt->mnt_mountpoint);
912 br_read_unlock(&vfsmount_lock);
913 dput(path->dentry);
914 path->dentry = mountpoint;
915 mntput(path->mnt);
916 path->mnt = &parent->mnt;
917 return 1;
918 }
919
920 /*
921 * Perform an automount
922 * - return -EISDIR to tell follow_managed() to stop and return the path we
923 * were called with.
924 */
925 static int follow_automount(struct path *path, unsigned flags,
926 bool *need_mntput)
927 {
928 struct vfsmount *mnt;
929 int err;
930
931 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
932 return -EREMOTE;
933
934 /* We don't want to mount if someone's just doing a stat -
935 * unless they're stat'ing a directory and appended a '/' to
936 * the name.
937 *
938 * We do, however, want to mount if someone wants to open or
939 * create a file of any type under the mountpoint, wants to
940 * traverse through the mountpoint or wants to open the
941 * mounted directory. Also, autofs may mark negative dentries
942 * as being automount points. These will need the attentions
943 * of the daemon to instantiate them before they can be used.
944 */
945 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
946 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
947 path->dentry->d_inode)
948 return -EISDIR;
949
950 current->total_link_count++;
951 if (current->total_link_count >= 40)
952 return -ELOOP;
953
954 mnt = path->dentry->d_op->d_automount(path);
955 if (IS_ERR(mnt)) {
956 /*
957 * The filesystem is allowed to return -EISDIR here to indicate
958 * it doesn't want to automount. For instance, autofs would do
959 * this so that its userspace daemon can mount on this dentry.
960 *
961 * However, we can only permit this if it's a terminal point in
962 * the path being looked up; if it wasn't then the remainder of
963 * the path is inaccessible and we should say so.
964 */
965 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
966 return -EREMOTE;
967 return PTR_ERR(mnt);
968 }
969
970 if (!mnt) /* mount collision */
971 return 0;
972
973 if (!*need_mntput) {
974 /* lock_mount() may release path->mnt on error */
975 mntget(path->mnt);
976 *need_mntput = true;
977 }
978 err = finish_automount(mnt, path);
979
980 switch (err) {
981 case -EBUSY:
982 /* Someone else made a mount here whilst we were busy */
983 return 0;
984 case 0:
985 path_put(path);
986 path->mnt = mnt;
987 path->dentry = dget(mnt->mnt_root);
988 return 0;
989 default:
990 return err;
991 }
992
993 }
994
995 /*
996 * Handle a dentry that is managed in some way.
997 * - Flagged for transit management (autofs)
998 * - Flagged as mountpoint
999 * - Flagged as automount point
1000 *
1001 * This may only be called in refwalk mode.
1002 *
1003 * Serialization is taken care of in namespace.c
1004 */
1005 static int follow_managed(struct path *path, unsigned flags)
1006 {
1007 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1008 unsigned managed;
1009 bool need_mntput = false;
1010 int ret = 0;
1011
1012 /* Given that we're not holding a lock here, we retain the value in a
1013 * local variable for each dentry as we look at it so that we don't see
1014 * the components of that value change under us */
1015 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1016 managed &= DCACHE_MANAGED_DENTRY,
1017 unlikely(managed != 0)) {
1018 /* Allow the filesystem to manage the transit without i_mutex
1019 * being held. */
1020 if (managed & DCACHE_MANAGE_TRANSIT) {
1021 BUG_ON(!path->dentry->d_op);
1022 BUG_ON(!path->dentry->d_op->d_manage);
1023 ret = path->dentry->d_op->d_manage(path->dentry, false);
1024 if (ret < 0)
1025 break;
1026 }
1027
1028 /* Transit to a mounted filesystem. */
1029 if (managed & DCACHE_MOUNTED) {
1030 struct vfsmount *mounted = lookup_mnt(path);
1031 if (mounted) {
1032 dput(path->dentry);
1033 if (need_mntput)
1034 mntput(path->mnt);
1035 path->mnt = mounted;
1036 path->dentry = dget(mounted->mnt_root);
1037 need_mntput = true;
1038 continue;
1039 }
1040
1041 /* Something is mounted on this dentry in another
1042 * namespace and/or whatever was mounted there in this
1043 * namespace got unmounted before we managed to get the
1044 * vfsmount_lock */
1045 }
1046
1047 /* Handle an automount point */
1048 if (managed & DCACHE_NEED_AUTOMOUNT) {
1049 ret = follow_automount(path, flags, &need_mntput);
1050 if (ret < 0)
1051 break;
1052 continue;
1053 }
1054
1055 /* We didn't change the current path point */
1056 break;
1057 }
1058
1059 if (need_mntput && path->mnt == mnt)
1060 mntput(path->mnt);
1061 if (ret == -EISDIR)
1062 ret = 0;
1063 return ret < 0 ? ret : need_mntput;
1064 }
1065
1066 int follow_down_one(struct path *path)
1067 {
1068 struct vfsmount *mounted;
1069
1070 mounted = lookup_mnt(path);
1071 if (mounted) {
1072 dput(path->dentry);
1073 mntput(path->mnt);
1074 path->mnt = mounted;
1075 path->dentry = dget(mounted->mnt_root);
1076 return 1;
1077 }
1078 return 0;
1079 }
1080
1081 static inline bool managed_dentry_might_block(struct dentry *dentry)
1082 {
1083 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1084 dentry->d_op->d_manage(dentry, true) < 0);
1085 }
1086
1087 /*
1088 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1089 * we meet a managed dentry that would need blocking.
1090 */
1091 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1092 struct inode **inode)
1093 {
1094 for (;;) {
1095 struct mount *mounted;
1096 /*
1097 * Don't forget we might have a non-mountpoint managed dentry
1098 * that wants to block transit.
1099 */
1100 if (unlikely(managed_dentry_might_block(path->dentry)))
1101 return false;
1102
1103 if (!d_mountpoint(path->dentry))
1104 break;
1105
1106 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1107 if (!mounted)
1108 break;
1109 path->mnt = &mounted->mnt;
1110 path->dentry = mounted->mnt.mnt_root;
1111 nd->flags |= LOOKUP_JUMPED;
1112 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1113 /*
1114 * Update the inode too. We don't need to re-check the
1115 * dentry sequence number here after this d_inode read,
1116 * because a mount-point is always pinned.
1117 */
1118 *inode = path->dentry->d_inode;
1119 }
1120 return true;
1121 }
1122
1123 static void follow_mount_rcu(struct nameidata *nd)
1124 {
1125 while (d_mountpoint(nd->path.dentry)) {
1126 struct mount *mounted;
1127 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1128 if (!mounted)
1129 break;
1130 nd->path.mnt = &mounted->mnt;
1131 nd->path.dentry = mounted->mnt.mnt_root;
1132 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1133 }
1134 }
1135
1136 static int follow_dotdot_rcu(struct nameidata *nd)
1137 {
1138 set_root_rcu(nd);
1139
1140 while (1) {
1141 if (nd->path.dentry == nd->root.dentry &&
1142 nd->path.mnt == nd->root.mnt) {
1143 break;
1144 }
1145 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1146 struct dentry *old = nd->path.dentry;
1147 struct dentry *parent = old->d_parent;
1148 unsigned seq;
1149
1150 seq = read_seqcount_begin(&parent->d_seq);
1151 if (read_seqcount_retry(&old->d_seq, nd->seq))
1152 goto failed;
1153 nd->path.dentry = parent;
1154 nd->seq = seq;
1155 break;
1156 }
1157 if (!follow_up_rcu(&nd->path))
1158 break;
1159 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1160 }
1161 follow_mount_rcu(nd);
1162 nd->inode = nd->path.dentry->d_inode;
1163 return 0;
1164
1165 failed:
1166 nd->flags &= ~LOOKUP_RCU;
1167 if (!(nd->flags & LOOKUP_ROOT))
1168 nd->root.mnt = NULL;
1169 unlock_rcu_walk();
1170 return -ECHILD;
1171 }
1172
1173 /*
1174 * Follow down to the covering mount currently visible to userspace. At each
1175 * point, the filesystem owning that dentry may be queried as to whether the
1176 * caller is permitted to proceed or not.
1177 */
1178 int follow_down(struct path *path)
1179 {
1180 unsigned managed;
1181 int ret;
1182
1183 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1184 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1185 /* Allow the filesystem to manage the transit without i_mutex
1186 * being held.
1187 *
1188 * We indicate to the filesystem if someone is trying to mount
1189 * something here. This gives autofs the chance to deny anyone
1190 * other than its daemon the right to mount on its
1191 * superstructure.
1192 *
1193 * The filesystem may sleep at this point.
1194 */
1195 if (managed & DCACHE_MANAGE_TRANSIT) {
1196 BUG_ON(!path->dentry->d_op);
1197 BUG_ON(!path->dentry->d_op->d_manage);
1198 ret = path->dentry->d_op->d_manage(
1199 path->dentry, false);
1200 if (ret < 0)
1201 return ret == -EISDIR ? 0 : ret;
1202 }
1203
1204 /* Transit to a mounted filesystem. */
1205 if (managed & DCACHE_MOUNTED) {
1206 struct vfsmount *mounted = lookup_mnt(path);
1207 if (!mounted)
1208 break;
1209 dput(path->dentry);
1210 mntput(path->mnt);
1211 path->mnt = mounted;
1212 path->dentry = dget(mounted->mnt_root);
1213 continue;
1214 }
1215
1216 /* Don't handle automount points here */
1217 break;
1218 }
1219 return 0;
1220 }
1221
1222 /*
1223 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1224 */
1225 static void follow_mount(struct path *path)
1226 {
1227 while (d_mountpoint(path->dentry)) {
1228 struct vfsmount *mounted = lookup_mnt(path);
1229 if (!mounted)
1230 break;
1231 dput(path->dentry);
1232 mntput(path->mnt);
1233 path->mnt = mounted;
1234 path->dentry = dget(mounted->mnt_root);
1235 }
1236 }
1237
1238 static void follow_dotdot(struct nameidata *nd)
1239 {
1240 set_root(nd);
1241
1242 while(1) {
1243 struct dentry *old = nd->path.dentry;
1244
1245 if (nd->path.dentry == nd->root.dentry &&
1246 nd->path.mnt == nd->root.mnt) {
1247 break;
1248 }
1249 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1250 /* rare case of legitimate dget_parent()... */
1251 nd->path.dentry = dget_parent(nd->path.dentry);
1252 dput(old);
1253 break;
1254 }
1255 if (!follow_up(&nd->path))
1256 break;
1257 }
1258 follow_mount(&nd->path);
1259 nd->inode = nd->path.dentry->d_inode;
1260 }
1261
1262 /*
1263 * This looks up the name in dcache, possibly revalidates the old dentry and
1264 * allocates a new one if not found or not valid. In the need_lookup argument
1265 * returns whether i_op->lookup is necessary.
1266 *
1267 * dir->d_inode->i_mutex must be held
1268 */
1269 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1270 unsigned int flags, bool *need_lookup)
1271 {
1272 struct dentry *dentry;
1273 int error;
1274
1275 *need_lookup = false;
1276 dentry = d_lookup(dir, name);
1277 if (dentry) {
1278 if (d_need_lookup(dentry)) {
1279 *need_lookup = true;
1280 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1281 error = d_revalidate(dentry, flags);
1282 if (unlikely(error <= 0)) {
1283 if (error < 0) {
1284 dput(dentry);
1285 return ERR_PTR(error);
1286 } else if (!d_invalidate(dentry)) {
1287 dput(dentry);
1288 dentry = NULL;
1289 }
1290 }
1291 }
1292 }
1293
1294 if (!dentry) {
1295 dentry = d_alloc(dir, name);
1296 if (unlikely(!dentry))
1297 return ERR_PTR(-ENOMEM);
1298
1299 *need_lookup = true;
1300 }
1301 return dentry;
1302 }
1303
1304 /*
1305 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1306 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1307 *
1308 * dir->d_inode->i_mutex must be held
1309 */
1310 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1311 unsigned int flags)
1312 {
1313 struct dentry *old;
1314
1315 /* Don't create child dentry for a dead directory. */
1316 if (unlikely(IS_DEADDIR(dir))) {
1317 dput(dentry);
1318 return ERR_PTR(-ENOENT);
1319 }
1320
1321 old = dir->i_op->lookup(dir, dentry, flags);
1322 if (unlikely(old)) {
1323 dput(dentry);
1324 dentry = old;
1325 }
1326 return dentry;
1327 }
1328
1329 static struct dentry *__lookup_hash(struct qstr *name,
1330 struct dentry *base, unsigned int flags)
1331 {
1332 bool need_lookup;
1333 struct dentry *dentry;
1334
1335 dentry = lookup_dcache(name, base, flags, &need_lookup);
1336 if (!need_lookup)
1337 return dentry;
1338
1339 return lookup_real(base->d_inode, dentry, flags);
1340 }
1341
1342 /*
1343 * It's more convoluted than I'd like it to be, but... it's still fairly
1344 * small and for now I'd prefer to have fast path as straight as possible.
1345 * It _is_ time-critical.
1346 */
1347 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1348 struct path *path, struct inode **inode)
1349 {
1350 struct vfsmount *mnt = nd->path.mnt;
1351 struct dentry *dentry, *parent = nd->path.dentry;
1352 int need_reval = 1;
1353 int status = 1;
1354 int err;
1355
1356 /*
1357 * Rename seqlock is not required here because in the off chance
1358 * of a false negative due to a concurrent rename, we're going to
1359 * do the non-racy lookup, below.
1360 */
1361 if (nd->flags & LOOKUP_RCU) {
1362 unsigned seq;
1363 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1364 if (!dentry)
1365 goto unlazy;
1366
1367 /*
1368 * This sequence count validates that the inode matches
1369 * the dentry name information from lookup.
1370 */
1371 *inode = dentry->d_inode;
1372 if (read_seqcount_retry(&dentry->d_seq, seq))
1373 return -ECHILD;
1374
1375 /*
1376 * This sequence count validates that the parent had no
1377 * changes while we did the lookup of the dentry above.
1378 *
1379 * The memory barrier in read_seqcount_begin of child is
1380 * enough, we can use __read_seqcount_retry here.
1381 */
1382 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1383 return -ECHILD;
1384 nd->seq = seq;
1385
1386 if (unlikely(d_need_lookup(dentry)))
1387 goto unlazy;
1388 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1389 status = d_revalidate(dentry, nd->flags);
1390 if (unlikely(status <= 0)) {
1391 if (status != -ECHILD)
1392 need_reval = 0;
1393 goto unlazy;
1394 }
1395 }
1396 path->mnt = mnt;
1397 path->dentry = dentry;
1398 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1399 goto unlazy;
1400 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1401 goto unlazy;
1402 return 0;
1403 unlazy:
1404 if (unlazy_walk(nd, dentry))
1405 return -ECHILD;
1406 } else {
1407 dentry = __d_lookup(parent, name);
1408 }
1409
1410 if (unlikely(!dentry))
1411 goto need_lookup;
1412
1413 if (unlikely(d_need_lookup(dentry))) {
1414 dput(dentry);
1415 goto need_lookup;
1416 }
1417
1418 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1419 status = d_revalidate(dentry, nd->flags);
1420 if (unlikely(status <= 0)) {
1421 if (status < 0) {
1422 dput(dentry);
1423 return status;
1424 }
1425 if (!d_invalidate(dentry)) {
1426 dput(dentry);
1427 goto need_lookup;
1428 }
1429 }
1430
1431 path->mnt = mnt;
1432 path->dentry = dentry;
1433 err = follow_managed(path, nd->flags);
1434 if (unlikely(err < 0)) {
1435 path_put_conditional(path, nd);
1436 return err;
1437 }
1438 if (err)
1439 nd->flags |= LOOKUP_JUMPED;
1440 *inode = path->dentry->d_inode;
1441 return 0;
1442
1443 need_lookup:
1444 return 1;
1445 }
1446
1447 /* Fast lookup failed, do it the slow way */
1448 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1449 struct path *path)
1450 {
1451 struct dentry *dentry, *parent;
1452 int err;
1453
1454 parent = nd->path.dentry;
1455 BUG_ON(nd->inode != parent->d_inode);
1456
1457 mutex_lock(&parent->d_inode->i_mutex);
1458 dentry = __lookup_hash(name, parent, nd->flags);
1459 mutex_unlock(&parent->d_inode->i_mutex);
1460 if (IS_ERR(dentry))
1461 return PTR_ERR(dentry);
1462 path->mnt = nd->path.mnt;
1463 path->dentry = dentry;
1464 err = follow_managed(path, nd->flags);
1465 if (unlikely(err < 0)) {
1466 path_put_conditional(path, nd);
1467 return err;
1468 }
1469 if (err)
1470 nd->flags |= LOOKUP_JUMPED;
1471 return 0;
1472 }
1473
1474 static inline int may_lookup(struct nameidata *nd)
1475 {
1476 if (nd->flags & LOOKUP_RCU) {
1477 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1478 if (err != -ECHILD)
1479 return err;
1480 if (unlazy_walk(nd, NULL))
1481 return -ECHILD;
1482 }
1483 return inode_permission(nd->inode, MAY_EXEC);
1484 }
1485
1486 static inline int handle_dots(struct nameidata *nd, int type)
1487 {
1488 if (type == LAST_DOTDOT) {
1489 if (nd->flags & LOOKUP_RCU) {
1490 if (follow_dotdot_rcu(nd))
1491 return -ECHILD;
1492 } else
1493 follow_dotdot(nd);
1494 }
1495 return 0;
1496 }
1497
1498 static void terminate_walk(struct nameidata *nd)
1499 {
1500 if (!(nd->flags & LOOKUP_RCU)) {
1501 path_put(&nd->path);
1502 } else {
1503 nd->flags &= ~LOOKUP_RCU;
1504 if (!(nd->flags & LOOKUP_ROOT))
1505 nd->root.mnt = NULL;
1506 unlock_rcu_walk();
1507 }
1508 }
1509
1510 /*
1511 * Do we need to follow links? We _really_ want to be able
1512 * to do this check without having to look at inode->i_op,
1513 * so we keep a cache of "no, this doesn't need follow_link"
1514 * for the common case.
1515 */
1516 static inline int should_follow_link(struct inode *inode, int follow)
1517 {
1518 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1519 if (likely(inode->i_op->follow_link))
1520 return follow;
1521
1522 /* This gets set once for the inode lifetime */
1523 spin_lock(&inode->i_lock);
1524 inode->i_opflags |= IOP_NOFOLLOW;
1525 spin_unlock(&inode->i_lock);
1526 }
1527 return 0;
1528 }
1529
1530 static inline int walk_component(struct nameidata *nd, struct path *path,
1531 struct qstr *name, int type, int follow)
1532 {
1533 struct inode *inode;
1534 int err;
1535 /*
1536 * "." and ".." are special - ".." especially so because it has
1537 * to be able to know about the current root directory and
1538 * parent relationships.
1539 */
1540 if (unlikely(type != LAST_NORM))
1541 return handle_dots(nd, type);
1542 err = lookup_fast(nd, name, path, &inode);
1543 if (unlikely(err)) {
1544 if (err < 0)
1545 goto out_err;
1546
1547 err = lookup_slow(nd, name, path);
1548 if (err < 0)
1549 goto out_err;
1550
1551 inode = path->dentry->d_inode;
1552 }
1553 err = -ENOENT;
1554 if (!inode)
1555 goto out_path_put;
1556
1557 if (should_follow_link(inode, follow)) {
1558 if (nd->flags & LOOKUP_RCU) {
1559 if (unlikely(unlazy_walk(nd, path->dentry))) {
1560 err = -ECHILD;
1561 goto out_err;
1562 }
1563 }
1564 BUG_ON(inode != path->dentry->d_inode);
1565 return 1;
1566 }
1567 path_to_nameidata(path, nd);
1568 nd->inode = inode;
1569 return 0;
1570
1571 out_path_put:
1572 path_to_nameidata(path, nd);
1573 out_err:
1574 terminate_walk(nd);
1575 return err;
1576 }
1577
1578 /*
1579 * This limits recursive symlink follows to 8, while
1580 * limiting consecutive symlinks to 40.
1581 *
1582 * Without that kind of total limit, nasty chains of consecutive
1583 * symlinks can cause almost arbitrarily long lookups.
1584 */
1585 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1586 {
1587 int res;
1588
1589 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1590 path_put_conditional(path, nd);
1591 path_put(&nd->path);
1592 return -ELOOP;
1593 }
1594 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1595
1596 nd->depth++;
1597 current->link_count++;
1598
1599 do {
1600 struct path link = *path;
1601 void *cookie;
1602
1603 res = follow_link(&link, nd, &cookie);
1604 if (res)
1605 break;
1606 res = walk_component(nd, path, &nd->last,
1607 nd->last_type, LOOKUP_FOLLOW);
1608 put_link(nd, &link, cookie);
1609 } while (res > 0);
1610
1611 current->link_count--;
1612 nd->depth--;
1613 return res;
1614 }
1615
1616 /*
1617 * We really don't want to look at inode->i_op->lookup
1618 * when we don't have to. So we keep a cache bit in
1619 * the inode ->i_opflags field that says "yes, we can
1620 * do lookup on this inode".
1621 */
1622 static inline int can_lookup(struct inode *inode)
1623 {
1624 if (likely(inode->i_opflags & IOP_LOOKUP))
1625 return 1;
1626 if (likely(!inode->i_op->lookup))
1627 return 0;
1628
1629 /* We do this once for the lifetime of the inode */
1630 spin_lock(&inode->i_lock);
1631 inode->i_opflags |= IOP_LOOKUP;
1632 spin_unlock(&inode->i_lock);
1633 return 1;
1634 }
1635
1636 /*
1637 * We can do the critical dentry name comparison and hashing
1638 * operations one word at a time, but we are limited to:
1639 *
1640 * - Architectures with fast unaligned word accesses. We could
1641 * do a "get_unaligned()" if this helps and is sufficiently
1642 * fast.
1643 *
1644 * - Little-endian machines (so that we can generate the mask
1645 * of low bytes efficiently). Again, we *could* do a byte
1646 * swapping load on big-endian architectures if that is not
1647 * expensive enough to make the optimization worthless.
1648 *
1649 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1650 * do not trap on the (extremely unlikely) case of a page
1651 * crossing operation.
1652 *
1653 * - Furthermore, we need an efficient 64-bit compile for the
1654 * 64-bit case in order to generate the "number of bytes in
1655 * the final mask". Again, that could be replaced with a
1656 * efficient population count instruction or similar.
1657 */
1658 #ifdef CONFIG_DCACHE_WORD_ACCESS
1659
1660 #include <asm/word-at-a-time.h>
1661
1662 #ifdef CONFIG_64BIT
1663
1664 static inline unsigned int fold_hash(unsigned long hash)
1665 {
1666 hash += hash >> (8*sizeof(int));
1667 return hash;
1668 }
1669
1670 #else /* 32-bit case */
1671
1672 #define fold_hash(x) (x)
1673
1674 #endif
1675
1676 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1677 {
1678 unsigned long a, mask;
1679 unsigned long hash = 0;
1680
1681 for (;;) {
1682 a = load_unaligned_zeropad(name);
1683 if (len < sizeof(unsigned long))
1684 break;
1685 hash += a;
1686 hash *= 9;
1687 name += sizeof(unsigned long);
1688 len -= sizeof(unsigned long);
1689 if (!len)
1690 goto done;
1691 }
1692 mask = ~(~0ul << len*8);
1693 hash += mask & a;
1694 done:
1695 return fold_hash(hash);
1696 }
1697 EXPORT_SYMBOL(full_name_hash);
1698
1699 /*
1700 * Calculate the length and hash of the path component, and
1701 * return the length of the component;
1702 */
1703 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1704 {
1705 unsigned long a, b, adata, bdata, mask, hash, len;
1706 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1707
1708 hash = a = 0;
1709 len = -sizeof(unsigned long);
1710 do {
1711 hash = (hash + a) * 9;
1712 len += sizeof(unsigned long);
1713 a = load_unaligned_zeropad(name+len);
1714 b = a ^ REPEAT_BYTE('/');
1715 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1716
1717 adata = prep_zero_mask(a, adata, &constants);
1718 bdata = prep_zero_mask(b, bdata, &constants);
1719
1720 mask = create_zero_mask(adata | bdata);
1721
1722 hash += a & zero_bytemask(mask);
1723 *hashp = fold_hash(hash);
1724
1725 return len + find_zero(mask);
1726 }
1727
1728 #else
1729
1730 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1731 {
1732 unsigned long hash = init_name_hash();
1733 while (len--)
1734 hash = partial_name_hash(*name++, hash);
1735 return end_name_hash(hash);
1736 }
1737 EXPORT_SYMBOL(full_name_hash);
1738
1739 /*
1740 * We know there's a real path component here of at least
1741 * one character.
1742 */
1743 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1744 {
1745 unsigned long hash = init_name_hash();
1746 unsigned long len = 0, c;
1747
1748 c = (unsigned char)*name;
1749 do {
1750 len++;
1751 hash = partial_name_hash(c, hash);
1752 c = (unsigned char)name[len];
1753 } while (c && c != '/');
1754 *hashp = end_name_hash(hash);
1755 return len;
1756 }
1757
1758 #endif
1759
1760 /*
1761 * Name resolution.
1762 * This is the basic name resolution function, turning a pathname into
1763 * the final dentry. We expect 'base' to be positive and a directory.
1764 *
1765 * Returns 0 and nd will have valid dentry and mnt on success.
1766 * Returns error and drops reference to input namei data on failure.
1767 */
1768 static int link_path_walk(const char *name, struct nameidata *nd)
1769 {
1770 struct path next;
1771 int err;
1772
1773 while (*name=='/')
1774 name++;
1775 if (!*name)
1776 return 0;
1777
1778 /* At this point we know we have a real path component. */
1779 for(;;) {
1780 struct qstr this;
1781 long len;
1782 int type;
1783
1784 err = may_lookup(nd);
1785 if (err)
1786 break;
1787
1788 len = hash_name(name, &this.hash);
1789 this.name = name;
1790 this.len = len;
1791
1792 type = LAST_NORM;
1793 if (name[0] == '.') switch (len) {
1794 case 2:
1795 if (name[1] == '.') {
1796 type = LAST_DOTDOT;
1797 nd->flags |= LOOKUP_JUMPED;
1798 }
1799 break;
1800 case 1:
1801 type = LAST_DOT;
1802 }
1803 if (likely(type == LAST_NORM)) {
1804 struct dentry *parent = nd->path.dentry;
1805 nd->flags &= ~LOOKUP_JUMPED;
1806 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1807 err = parent->d_op->d_hash(parent, nd->inode,
1808 &this);
1809 if (err < 0)
1810 break;
1811 }
1812 }
1813
1814 if (!name[len])
1815 goto last_component;
1816 /*
1817 * If it wasn't NUL, we know it was '/'. Skip that
1818 * slash, and continue until no more slashes.
1819 */
1820 do {
1821 len++;
1822 } while (unlikely(name[len] == '/'));
1823 if (!name[len])
1824 goto last_component;
1825 name += len;
1826
1827 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1828 if (err < 0)
1829 return err;
1830
1831 if (err) {
1832 err = nested_symlink(&next, nd);
1833 if (err)
1834 return err;
1835 }
1836 if (can_lookup(nd->inode))
1837 continue;
1838 err = -ENOTDIR;
1839 break;
1840 /* here ends the main loop */
1841
1842 last_component:
1843 nd->last = this;
1844 nd->last_type = type;
1845 return 0;
1846 }
1847 terminate_walk(nd);
1848 return err;
1849 }
1850
1851 static int path_init(int dfd, const char *name, unsigned int flags,
1852 struct nameidata *nd, struct file **fp)
1853 {
1854 int retval = 0;
1855
1856 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1857 nd->flags = flags | LOOKUP_JUMPED;
1858 nd->depth = 0;
1859 if (flags & LOOKUP_ROOT) {
1860 struct inode *inode = nd->root.dentry->d_inode;
1861 if (*name) {
1862 if (!inode->i_op->lookup)
1863 return -ENOTDIR;
1864 retval = inode_permission(inode, MAY_EXEC);
1865 if (retval)
1866 return retval;
1867 }
1868 nd->path = nd->root;
1869 nd->inode = inode;
1870 if (flags & LOOKUP_RCU) {
1871 lock_rcu_walk();
1872 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1873 } else {
1874 path_get(&nd->path);
1875 }
1876 return 0;
1877 }
1878
1879 nd->root.mnt = NULL;
1880
1881 if (*name=='/') {
1882 if (flags & LOOKUP_RCU) {
1883 lock_rcu_walk();
1884 set_root_rcu(nd);
1885 } else {
1886 set_root(nd);
1887 path_get(&nd->root);
1888 }
1889 nd->path = nd->root;
1890 } else if (dfd == AT_FDCWD) {
1891 if (flags & LOOKUP_RCU) {
1892 struct fs_struct *fs = current->fs;
1893 unsigned seq;
1894
1895 lock_rcu_walk();
1896
1897 do {
1898 seq = read_seqcount_begin(&fs->seq);
1899 nd->path = fs->pwd;
1900 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1901 } while (read_seqcount_retry(&fs->seq, seq));
1902 } else {
1903 get_fs_pwd(current->fs, &nd->path);
1904 }
1905 } else {
1906 struct fd f = fdget_raw(dfd);
1907 struct dentry *dentry;
1908
1909 if (!f.file)
1910 return -EBADF;
1911
1912 dentry = f.file->f_path.dentry;
1913
1914 if (*name) {
1915 if (!S_ISDIR(dentry->d_inode->i_mode)) {
1916 fdput(f);
1917 return -ENOTDIR;
1918 }
1919
1920 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1921 if (retval) {
1922 fdput(f);
1923 return retval;
1924 }
1925 }
1926
1927 nd->path = f.file->f_path;
1928 if (flags & LOOKUP_RCU) {
1929 if (f.need_put)
1930 *fp = f.file;
1931 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1932 lock_rcu_walk();
1933 } else {
1934 path_get(&nd->path);
1935 fdput(f);
1936 }
1937 }
1938
1939 nd->inode = nd->path.dentry->d_inode;
1940 return 0;
1941 }
1942
1943 static inline int lookup_last(struct nameidata *nd, struct path *path)
1944 {
1945 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1946 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1947
1948 nd->flags &= ~LOOKUP_PARENT;
1949 return walk_component(nd, path, &nd->last, nd->last_type,
1950 nd->flags & LOOKUP_FOLLOW);
1951 }
1952
1953 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1954 static int path_lookupat(int dfd, const char *name,
1955 unsigned int flags, struct nameidata *nd)
1956 {
1957 struct file *base = NULL;
1958 struct path path;
1959 int err;
1960
1961 /*
1962 * Path walking is largely split up into 2 different synchronisation
1963 * schemes, rcu-walk and ref-walk (explained in
1964 * Documentation/filesystems/path-lookup.txt). These share much of the
1965 * path walk code, but some things particularly setup, cleanup, and
1966 * following mounts are sufficiently divergent that functions are
1967 * duplicated. Typically there is a function foo(), and its RCU
1968 * analogue, foo_rcu().
1969 *
1970 * -ECHILD is the error number of choice (just to avoid clashes) that
1971 * is returned if some aspect of an rcu-walk fails. Such an error must
1972 * be handled by restarting a traditional ref-walk (which will always
1973 * be able to complete).
1974 */
1975 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1976
1977 if (unlikely(err))
1978 return err;
1979
1980 current->total_link_count = 0;
1981 err = link_path_walk(name, nd);
1982
1983 if (!err && !(flags & LOOKUP_PARENT)) {
1984 err = lookup_last(nd, &path);
1985 while (err > 0) {
1986 void *cookie;
1987 struct path link = path;
1988 err = may_follow_link(&link, nd);
1989 if (unlikely(err))
1990 break;
1991 nd->flags |= LOOKUP_PARENT;
1992 err = follow_link(&link, nd, &cookie);
1993 if (err)
1994 break;
1995 err = lookup_last(nd, &path);
1996 put_link(nd, &link, cookie);
1997 }
1998 }
1999
2000 if (!err)
2001 err = complete_walk(nd);
2002
2003 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2004 if (!nd->inode->i_op->lookup) {
2005 path_put(&nd->path);
2006 err = -ENOTDIR;
2007 }
2008 }
2009
2010 if (base)
2011 fput(base);
2012
2013 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2014 path_put(&nd->root);
2015 nd->root.mnt = NULL;
2016 }
2017 return err;
2018 }
2019
2020 static int filename_lookup(int dfd, struct filename *name,
2021 unsigned int flags, struct nameidata *nd)
2022 {
2023 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2024 if (unlikely(retval == -ECHILD))
2025 retval = path_lookupat(dfd, name->name, flags, nd);
2026 if (unlikely(retval == -ESTALE))
2027 retval = path_lookupat(dfd, name->name,
2028 flags | LOOKUP_REVAL, nd);
2029
2030 if (likely(!retval))
2031 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2032 return retval;
2033 }
2034
2035 static int do_path_lookup(int dfd, const char *name,
2036 unsigned int flags, struct nameidata *nd)
2037 {
2038 struct filename filename = { .name = name };
2039
2040 return filename_lookup(dfd, &filename, flags, nd);
2041 }
2042
2043 /* does lookup, returns the object with parent locked */
2044 struct dentry *kern_path_locked(const char *name, struct path *path)
2045 {
2046 struct nameidata nd;
2047 struct dentry *d;
2048 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2049 if (err)
2050 return ERR_PTR(err);
2051 if (nd.last_type != LAST_NORM) {
2052 path_put(&nd.path);
2053 return ERR_PTR(-EINVAL);
2054 }
2055 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2056 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2057 if (IS_ERR(d)) {
2058 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2059 path_put(&nd.path);
2060 return d;
2061 }
2062 *path = nd.path;
2063 return d;
2064 }
2065
2066 int kern_path(const char *name, unsigned int flags, struct path *path)
2067 {
2068 struct nameidata nd;
2069 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2070 if (!res)
2071 *path = nd.path;
2072 return res;
2073 }
2074
2075 /**
2076 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2077 * @dentry: pointer to dentry of the base directory
2078 * @mnt: pointer to vfs mount of the base directory
2079 * @name: pointer to file name
2080 * @flags: lookup flags
2081 * @path: pointer to struct path to fill
2082 */
2083 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2084 const char *name, unsigned int flags,
2085 struct path *path)
2086 {
2087 struct nameidata nd;
2088 int err;
2089 nd.root.dentry = dentry;
2090 nd.root.mnt = mnt;
2091 BUG_ON(flags & LOOKUP_PARENT);
2092 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2093 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2094 if (!err)
2095 *path = nd.path;
2096 return err;
2097 }
2098
2099 /*
2100 * Restricted form of lookup. Doesn't follow links, single-component only,
2101 * needs parent already locked. Doesn't follow mounts.
2102 * SMP-safe.
2103 */
2104 static struct dentry *lookup_hash(struct nameidata *nd)
2105 {
2106 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2107 }
2108
2109 /**
2110 * lookup_one_len - filesystem helper to lookup single pathname component
2111 * @name: pathname component to lookup
2112 * @base: base directory to lookup from
2113 * @len: maximum length @len should be interpreted to
2114 *
2115 * Note that this routine is purely a helper for filesystem usage and should
2116 * not be called by generic code. Also note that by using this function the
2117 * nameidata argument is passed to the filesystem methods and a filesystem
2118 * using this helper needs to be prepared for that.
2119 */
2120 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2121 {
2122 struct qstr this;
2123 unsigned int c;
2124 int err;
2125
2126 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2127
2128 this.name = name;
2129 this.len = len;
2130 this.hash = full_name_hash(name, len);
2131 if (!len)
2132 return ERR_PTR(-EACCES);
2133
2134 if (unlikely(name[0] == '.')) {
2135 if (len < 2 || (len == 2 && name[1] == '.'))
2136 return ERR_PTR(-EACCES);
2137 }
2138
2139 while (len--) {
2140 c = *(const unsigned char *)name++;
2141 if (c == '/' || c == '\0')
2142 return ERR_PTR(-EACCES);
2143 }
2144 /*
2145 * See if the low-level filesystem might want
2146 * to use its own hash..
2147 */
2148 if (base->d_flags & DCACHE_OP_HASH) {
2149 int err = base->d_op->d_hash(base, base->d_inode, &this);
2150 if (err < 0)
2151 return ERR_PTR(err);
2152 }
2153
2154 err = inode_permission(base->d_inode, MAY_EXEC);
2155 if (err)
2156 return ERR_PTR(err);
2157
2158 return __lookup_hash(&this, base, 0);
2159 }
2160
2161 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2162 struct path *path, int *empty)
2163 {
2164 struct nameidata nd;
2165 struct filename *tmp = getname_flags(name, flags, empty);
2166 int err = PTR_ERR(tmp);
2167 if (!IS_ERR(tmp)) {
2168
2169 BUG_ON(flags & LOOKUP_PARENT);
2170
2171 err = filename_lookup(dfd, tmp, flags, &nd);
2172 putname(tmp);
2173 if (!err)
2174 *path = nd.path;
2175 }
2176 return err;
2177 }
2178
2179 int user_path_at(int dfd, const char __user *name, unsigned flags,
2180 struct path *path)
2181 {
2182 return user_path_at_empty(dfd, name, flags, path, NULL);
2183 }
2184
2185 /*
2186 * NB: most callers don't do anything directly with the reference to the
2187 * to struct filename, but the nd->last pointer points into the name string
2188 * allocated by getname. So we must hold the reference to it until all
2189 * path-walking is complete.
2190 */
2191 static struct filename *
2192 user_path_parent(int dfd, const char __user *path, struct nameidata *nd)
2193 {
2194 struct filename *s = getname(path);
2195 int error;
2196
2197 if (IS_ERR(s))
2198 return s;
2199
2200 error = filename_lookup(dfd, s, LOOKUP_PARENT, nd);
2201 if (error) {
2202 putname(s);
2203 return ERR_PTR(error);
2204 }
2205
2206 return s;
2207 }
2208
2209 /*
2210 * It's inline, so penalty for filesystems that don't use sticky bit is
2211 * minimal.
2212 */
2213 static inline int check_sticky(struct inode *dir, struct inode *inode)
2214 {
2215 kuid_t fsuid = current_fsuid();
2216
2217 if (!(dir->i_mode & S_ISVTX))
2218 return 0;
2219 if (uid_eq(inode->i_uid, fsuid))
2220 return 0;
2221 if (uid_eq(dir->i_uid, fsuid))
2222 return 0;
2223 return !inode_capable(inode, CAP_FOWNER);
2224 }
2225
2226 /*
2227 * Check whether we can remove a link victim from directory dir, check
2228 * whether the type of victim is right.
2229 * 1. We can't do it if dir is read-only (done in permission())
2230 * 2. We should have write and exec permissions on dir
2231 * 3. We can't remove anything from append-only dir
2232 * 4. We can't do anything with immutable dir (done in permission())
2233 * 5. If the sticky bit on dir is set we should either
2234 * a. be owner of dir, or
2235 * b. be owner of victim, or
2236 * c. have CAP_FOWNER capability
2237 * 6. If the victim is append-only or immutable we can't do antyhing with
2238 * links pointing to it.
2239 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2240 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2241 * 9. We can't remove a root or mountpoint.
2242 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2243 * nfs_async_unlink().
2244 */
2245 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2246 {
2247 int error;
2248
2249 if (!victim->d_inode)
2250 return -ENOENT;
2251
2252 BUG_ON(victim->d_parent->d_inode != dir);
2253 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2254
2255 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2256 if (error)
2257 return error;
2258 if (IS_APPEND(dir))
2259 return -EPERM;
2260 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2261 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2262 return -EPERM;
2263 if (isdir) {
2264 if (!S_ISDIR(victim->d_inode->i_mode))
2265 return -ENOTDIR;
2266 if (IS_ROOT(victim))
2267 return -EBUSY;
2268 } else if (S_ISDIR(victim->d_inode->i_mode))
2269 return -EISDIR;
2270 if (IS_DEADDIR(dir))
2271 return -ENOENT;
2272 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2273 return -EBUSY;
2274 return 0;
2275 }
2276
2277 /* Check whether we can create an object with dentry child in directory
2278 * dir.
2279 * 1. We can't do it if child already exists (open has special treatment for
2280 * this case, but since we are inlined it's OK)
2281 * 2. We can't do it if dir is read-only (done in permission())
2282 * 3. We should have write and exec permissions on dir
2283 * 4. We can't do it if dir is immutable (done in permission())
2284 */
2285 static inline int may_create(struct inode *dir, struct dentry *child)
2286 {
2287 if (child->d_inode)
2288 return -EEXIST;
2289 if (IS_DEADDIR(dir))
2290 return -ENOENT;
2291 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2292 }
2293
2294 /*
2295 * p1 and p2 should be directories on the same fs.
2296 */
2297 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2298 {
2299 struct dentry *p;
2300
2301 if (p1 == p2) {
2302 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2303 return NULL;
2304 }
2305
2306 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2307
2308 p = d_ancestor(p2, p1);
2309 if (p) {
2310 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2311 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2312 return p;
2313 }
2314
2315 p = d_ancestor(p1, p2);
2316 if (p) {
2317 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2318 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2319 return p;
2320 }
2321
2322 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2323 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2324 return NULL;
2325 }
2326
2327 void unlock_rename(struct dentry *p1, struct dentry *p2)
2328 {
2329 mutex_unlock(&p1->d_inode->i_mutex);
2330 if (p1 != p2) {
2331 mutex_unlock(&p2->d_inode->i_mutex);
2332 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2333 }
2334 }
2335
2336 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2337 bool want_excl)
2338 {
2339 int error = may_create(dir, dentry);
2340 if (error)
2341 return error;
2342
2343 if (!dir->i_op->create)
2344 return -EACCES; /* shouldn't it be ENOSYS? */
2345 mode &= S_IALLUGO;
2346 mode |= S_IFREG;
2347 error = security_inode_create(dir, dentry, mode);
2348 if (error)
2349 return error;
2350 error = dir->i_op->create(dir, dentry, mode, want_excl);
2351 if (!error)
2352 fsnotify_create(dir, dentry);
2353 return error;
2354 }
2355
2356 static int may_open(struct path *path, int acc_mode, int flag)
2357 {
2358 struct dentry *dentry = path->dentry;
2359 struct inode *inode = dentry->d_inode;
2360 int error;
2361
2362 /* O_PATH? */
2363 if (!acc_mode)
2364 return 0;
2365
2366 if (!inode)
2367 return -ENOENT;
2368
2369 switch (inode->i_mode & S_IFMT) {
2370 case S_IFLNK:
2371 return -ELOOP;
2372 case S_IFDIR:
2373 if (acc_mode & MAY_WRITE)
2374 return -EISDIR;
2375 break;
2376 case S_IFBLK:
2377 case S_IFCHR:
2378 if (path->mnt->mnt_flags & MNT_NODEV)
2379 return -EACCES;
2380 /*FALLTHRU*/
2381 case S_IFIFO:
2382 case S_IFSOCK:
2383 flag &= ~O_TRUNC;
2384 break;
2385 }
2386
2387 error = inode_permission(inode, acc_mode);
2388 if (error)
2389 return error;
2390
2391 /*
2392 * An append-only file must be opened in append mode for writing.
2393 */
2394 if (IS_APPEND(inode)) {
2395 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2396 return -EPERM;
2397 if (flag & O_TRUNC)
2398 return -EPERM;
2399 }
2400
2401 /* O_NOATIME can only be set by the owner or superuser */
2402 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2403 return -EPERM;
2404
2405 return 0;
2406 }
2407
2408 static int handle_truncate(struct file *filp)
2409 {
2410 struct path *path = &filp->f_path;
2411 struct inode *inode = path->dentry->d_inode;
2412 int error = get_write_access(inode);
2413 if (error)
2414 return error;
2415 /*
2416 * Refuse to truncate files with mandatory locks held on them.
2417 */
2418 error = locks_verify_locked(inode);
2419 if (!error)
2420 error = security_path_truncate(path);
2421 if (!error) {
2422 error = do_truncate(path->dentry, 0,
2423 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2424 filp);
2425 }
2426 put_write_access(inode);
2427 return error;
2428 }
2429
2430 static inline int open_to_namei_flags(int flag)
2431 {
2432 if ((flag & O_ACCMODE) == 3)
2433 flag--;
2434 return flag;
2435 }
2436
2437 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2438 {
2439 int error = security_path_mknod(dir, dentry, mode, 0);
2440 if (error)
2441 return error;
2442
2443 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2444 if (error)
2445 return error;
2446
2447 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2448 }
2449
2450 /*
2451 * Attempt to atomically look up, create and open a file from a negative
2452 * dentry.
2453 *
2454 * Returns 0 if successful. The file will have been created and attached to
2455 * @file by the filesystem calling finish_open().
2456 *
2457 * Returns 1 if the file was looked up only or didn't need creating. The
2458 * caller will need to perform the open themselves. @path will have been
2459 * updated to point to the new dentry. This may be negative.
2460 *
2461 * Returns an error code otherwise.
2462 */
2463 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2464 struct path *path, struct file *file,
2465 const struct open_flags *op,
2466 bool got_write, bool need_lookup,
2467 int *opened)
2468 {
2469 struct inode *dir = nd->path.dentry->d_inode;
2470 unsigned open_flag = open_to_namei_flags(op->open_flag);
2471 umode_t mode;
2472 int error;
2473 int acc_mode;
2474 int create_error = 0;
2475 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2476
2477 BUG_ON(dentry->d_inode);
2478
2479 /* Don't create child dentry for a dead directory. */
2480 if (unlikely(IS_DEADDIR(dir))) {
2481 error = -ENOENT;
2482 goto out;
2483 }
2484
2485 mode = op->mode;
2486 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2487 mode &= ~current_umask();
2488
2489 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2490 open_flag &= ~O_TRUNC;
2491 *opened |= FILE_CREATED;
2492 }
2493
2494 /*
2495 * Checking write permission is tricky, bacuse we don't know if we are
2496 * going to actually need it: O_CREAT opens should work as long as the
2497 * file exists. But checking existence breaks atomicity. The trick is
2498 * to check access and if not granted clear O_CREAT from the flags.
2499 *
2500 * Another problem is returing the "right" error value (e.g. for an
2501 * O_EXCL open we want to return EEXIST not EROFS).
2502 */
2503 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2504 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2505 if (!(open_flag & O_CREAT)) {
2506 /*
2507 * No O_CREATE -> atomicity not a requirement -> fall
2508 * back to lookup + open
2509 */
2510 goto no_open;
2511 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2512 /* Fall back and fail with the right error */
2513 create_error = -EROFS;
2514 goto no_open;
2515 } else {
2516 /* No side effects, safe to clear O_CREAT */
2517 create_error = -EROFS;
2518 open_flag &= ~O_CREAT;
2519 }
2520 }
2521
2522 if (open_flag & O_CREAT) {
2523 error = may_o_create(&nd->path, dentry, mode);
2524 if (error) {
2525 create_error = error;
2526 if (open_flag & O_EXCL)
2527 goto no_open;
2528 open_flag &= ~O_CREAT;
2529 }
2530 }
2531
2532 if (nd->flags & LOOKUP_DIRECTORY)
2533 open_flag |= O_DIRECTORY;
2534
2535 file->f_path.dentry = DENTRY_NOT_SET;
2536 file->f_path.mnt = nd->path.mnt;
2537 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2538 opened);
2539 if (error < 0) {
2540 if (create_error && error == -ENOENT)
2541 error = create_error;
2542 goto out;
2543 }
2544
2545 acc_mode = op->acc_mode;
2546 if (*opened & FILE_CREATED) {
2547 fsnotify_create(dir, dentry);
2548 acc_mode = MAY_OPEN;
2549 }
2550
2551 if (error) { /* returned 1, that is */
2552 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2553 error = -EIO;
2554 goto out;
2555 }
2556 if (file->f_path.dentry) {
2557 dput(dentry);
2558 dentry = file->f_path.dentry;
2559 }
2560 if (create_error && dentry->d_inode == NULL) {
2561 error = create_error;
2562 goto out;
2563 }
2564 goto looked_up;
2565 }
2566
2567 /*
2568 * We didn't have the inode before the open, so check open permission
2569 * here.
2570 */
2571 error = may_open(&file->f_path, acc_mode, open_flag);
2572 if (error)
2573 fput(file);
2574
2575 out:
2576 dput(dentry);
2577 return error;
2578
2579 no_open:
2580 if (need_lookup) {
2581 dentry = lookup_real(dir, dentry, nd->flags);
2582 if (IS_ERR(dentry))
2583 return PTR_ERR(dentry);
2584
2585 if (create_error) {
2586 int open_flag = op->open_flag;
2587
2588 error = create_error;
2589 if ((open_flag & O_EXCL)) {
2590 if (!dentry->d_inode)
2591 goto out;
2592 } else if (!dentry->d_inode) {
2593 goto out;
2594 } else if ((open_flag & O_TRUNC) &&
2595 S_ISREG(dentry->d_inode->i_mode)) {
2596 goto out;
2597 }
2598 /* will fail later, go on to get the right error */
2599 }
2600 }
2601 looked_up:
2602 path->dentry = dentry;
2603 path->mnt = nd->path.mnt;
2604 return 1;
2605 }
2606
2607 /*
2608 * Look up and maybe create and open the last component.
2609 *
2610 * Must be called with i_mutex held on parent.
2611 *
2612 * Returns 0 if the file was successfully atomically created (if necessary) and
2613 * opened. In this case the file will be returned attached to @file.
2614 *
2615 * Returns 1 if the file was not completely opened at this time, though lookups
2616 * and creations will have been performed and the dentry returned in @path will
2617 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2618 * specified then a negative dentry may be returned.
2619 *
2620 * An error code is returned otherwise.
2621 *
2622 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2623 * cleared otherwise prior to returning.
2624 */
2625 static int lookup_open(struct nameidata *nd, struct path *path,
2626 struct file *file,
2627 const struct open_flags *op,
2628 bool got_write, int *opened)
2629 {
2630 struct dentry *dir = nd->path.dentry;
2631 struct inode *dir_inode = dir->d_inode;
2632 struct dentry *dentry;
2633 int error;
2634 bool need_lookup;
2635
2636 *opened &= ~FILE_CREATED;
2637 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2638 if (IS_ERR(dentry))
2639 return PTR_ERR(dentry);
2640
2641 /* Cached positive dentry: will open in f_op->open */
2642 if (!need_lookup && dentry->d_inode)
2643 goto out_no_open;
2644
2645 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2646 return atomic_open(nd, dentry, path, file, op, got_write,
2647 need_lookup, opened);
2648 }
2649
2650 if (need_lookup) {
2651 BUG_ON(dentry->d_inode);
2652
2653 dentry = lookup_real(dir_inode, dentry, nd->flags);
2654 if (IS_ERR(dentry))
2655 return PTR_ERR(dentry);
2656 }
2657
2658 /* Negative dentry, just create the file */
2659 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2660 umode_t mode = op->mode;
2661 if (!IS_POSIXACL(dir->d_inode))
2662 mode &= ~current_umask();
2663 /*
2664 * This write is needed to ensure that a
2665 * rw->ro transition does not occur between
2666 * the time when the file is created and when
2667 * a permanent write count is taken through
2668 * the 'struct file' in finish_open().
2669 */
2670 if (!got_write) {
2671 error = -EROFS;
2672 goto out_dput;
2673 }
2674 *opened |= FILE_CREATED;
2675 error = security_path_mknod(&nd->path, dentry, mode, 0);
2676 if (error)
2677 goto out_dput;
2678 error = vfs_create(dir->d_inode, dentry, mode,
2679 nd->flags & LOOKUP_EXCL);
2680 if (error)
2681 goto out_dput;
2682 }
2683 out_no_open:
2684 path->dentry = dentry;
2685 path->mnt = nd->path.mnt;
2686 return 1;
2687
2688 out_dput:
2689 dput(dentry);
2690 return error;
2691 }
2692
2693 /*
2694 * Handle the last step of open()
2695 */
2696 static int do_last(struct nameidata *nd, struct path *path,
2697 struct file *file, const struct open_flags *op,
2698 int *opened, struct filename *name)
2699 {
2700 struct dentry *dir = nd->path.dentry;
2701 int open_flag = op->open_flag;
2702 bool will_truncate = (open_flag & O_TRUNC) != 0;
2703 bool got_write = false;
2704 int acc_mode = op->acc_mode;
2705 struct inode *inode;
2706 bool symlink_ok = false;
2707 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2708 bool retried = false;
2709 int error;
2710
2711 nd->flags &= ~LOOKUP_PARENT;
2712 nd->flags |= op->intent;
2713
2714 switch (nd->last_type) {
2715 case LAST_DOTDOT:
2716 case LAST_DOT:
2717 error = handle_dots(nd, nd->last_type);
2718 if (error)
2719 return error;
2720 /* fallthrough */
2721 case LAST_ROOT:
2722 error = complete_walk(nd);
2723 if (error)
2724 return error;
2725 audit_inode(name, nd->path.dentry, 0);
2726 if (open_flag & O_CREAT) {
2727 error = -EISDIR;
2728 goto out;
2729 }
2730 goto finish_open;
2731 case LAST_BIND:
2732 error = complete_walk(nd);
2733 if (error)
2734 return error;
2735 audit_inode(name, dir, 0);
2736 goto finish_open;
2737 }
2738
2739 if (!(open_flag & O_CREAT)) {
2740 if (nd->last.name[nd->last.len])
2741 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2742 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2743 symlink_ok = true;
2744 /* we _can_ be in RCU mode here */
2745 error = lookup_fast(nd, &nd->last, path, &inode);
2746 if (likely(!error))
2747 goto finish_lookup;
2748
2749 if (error < 0)
2750 goto out;
2751
2752 BUG_ON(nd->inode != dir->d_inode);
2753 } else {
2754 /* create side of things */
2755 /*
2756 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2757 * has been cleared when we got to the last component we are
2758 * about to look up
2759 */
2760 error = complete_walk(nd);
2761 if (error)
2762 return error;
2763
2764 audit_inode(name, dir, 0);
2765 error = -EISDIR;
2766 /* trailing slashes? */
2767 if (nd->last.name[nd->last.len])
2768 goto out;
2769 }
2770
2771 retry_lookup:
2772 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2773 error = mnt_want_write(nd->path.mnt);
2774 if (!error)
2775 got_write = true;
2776 /*
2777 * do _not_ fail yet - we might not need that or fail with
2778 * a different error; let lookup_open() decide; we'll be
2779 * dropping this one anyway.
2780 */
2781 }
2782 mutex_lock(&dir->d_inode->i_mutex);
2783 error = lookup_open(nd, path, file, op, got_write, opened);
2784 mutex_unlock(&dir->d_inode->i_mutex);
2785
2786 if (error <= 0) {
2787 if (error)
2788 goto out;
2789
2790 if ((*opened & FILE_CREATED) ||
2791 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2792 will_truncate = false;
2793
2794 audit_inode(name, file->f_path.dentry, 0);
2795 goto opened;
2796 }
2797
2798 if (*opened & FILE_CREATED) {
2799 /* Don't check for write permission, don't truncate */
2800 open_flag &= ~O_TRUNC;
2801 will_truncate = false;
2802 acc_mode = MAY_OPEN;
2803 path_to_nameidata(path, nd);
2804 goto finish_open_created;
2805 }
2806
2807 /*
2808 * create/update audit record if it already exists.
2809 */
2810 if (path->dentry->d_inode)
2811 audit_inode(name, path->dentry, 0);
2812
2813 /*
2814 * If atomic_open() acquired write access it is dropped now due to
2815 * possible mount and symlink following (this might be optimized away if
2816 * necessary...)
2817 */
2818 if (got_write) {
2819 mnt_drop_write(nd->path.mnt);
2820 got_write = false;
2821 }
2822
2823 error = -EEXIST;
2824 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2825 goto exit_dput;
2826
2827 error = follow_managed(path, nd->flags);
2828 if (error < 0)
2829 goto exit_dput;
2830
2831 if (error)
2832 nd->flags |= LOOKUP_JUMPED;
2833
2834 BUG_ON(nd->flags & LOOKUP_RCU);
2835 inode = path->dentry->d_inode;
2836 finish_lookup:
2837 /* we _can_ be in RCU mode here */
2838 error = -ENOENT;
2839 if (!inode) {
2840 path_to_nameidata(path, nd);
2841 goto out;
2842 }
2843
2844 if (should_follow_link(inode, !symlink_ok)) {
2845 if (nd->flags & LOOKUP_RCU) {
2846 if (unlikely(unlazy_walk(nd, path->dentry))) {
2847 error = -ECHILD;
2848 goto out;
2849 }
2850 }
2851 BUG_ON(inode != path->dentry->d_inode);
2852 return 1;
2853 }
2854
2855 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2856 path_to_nameidata(path, nd);
2857 } else {
2858 save_parent.dentry = nd->path.dentry;
2859 save_parent.mnt = mntget(path->mnt);
2860 nd->path.dentry = path->dentry;
2861
2862 }
2863 nd->inode = inode;
2864 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2865 error = complete_walk(nd);
2866 if (error) {
2867 path_put(&save_parent);
2868 return error;
2869 }
2870 error = -EISDIR;
2871 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2872 goto out;
2873 error = -ENOTDIR;
2874 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2875 goto out;
2876 audit_inode(name, nd->path.dentry, 0);
2877 finish_open:
2878 if (!S_ISREG(nd->inode->i_mode))
2879 will_truncate = false;
2880
2881 if (will_truncate) {
2882 error = mnt_want_write(nd->path.mnt);
2883 if (error)
2884 goto out;
2885 got_write = true;
2886 }
2887 finish_open_created:
2888 error = may_open(&nd->path, acc_mode, open_flag);
2889 if (error)
2890 goto out;
2891 file->f_path.mnt = nd->path.mnt;
2892 error = finish_open(file, nd->path.dentry, NULL, opened);
2893 if (error) {
2894 if (error == -EOPENSTALE)
2895 goto stale_open;
2896 goto out;
2897 }
2898 opened:
2899 error = open_check_o_direct(file);
2900 if (error)
2901 goto exit_fput;
2902 error = ima_file_check(file, op->acc_mode);
2903 if (error)
2904 goto exit_fput;
2905
2906 if (will_truncate) {
2907 error = handle_truncate(file);
2908 if (error)
2909 goto exit_fput;
2910 }
2911 out:
2912 if (got_write)
2913 mnt_drop_write(nd->path.mnt);
2914 path_put(&save_parent);
2915 terminate_walk(nd);
2916 return error;
2917
2918 exit_dput:
2919 path_put_conditional(path, nd);
2920 goto out;
2921 exit_fput:
2922 fput(file);
2923 goto out;
2924
2925 stale_open:
2926 /* If no saved parent or already retried then can't retry */
2927 if (!save_parent.dentry || retried)
2928 goto out;
2929
2930 BUG_ON(save_parent.dentry != dir);
2931 path_put(&nd->path);
2932 nd->path = save_parent;
2933 nd->inode = dir->d_inode;
2934 save_parent.mnt = NULL;
2935 save_parent.dentry = NULL;
2936 if (got_write) {
2937 mnt_drop_write(nd->path.mnt);
2938 got_write = false;
2939 }
2940 retried = true;
2941 goto retry_lookup;
2942 }
2943
2944 static struct file *path_openat(int dfd, struct filename *pathname,
2945 struct nameidata *nd, const struct open_flags *op, int flags)
2946 {
2947 struct file *base = NULL;
2948 struct file *file;
2949 struct path path;
2950 int opened = 0;
2951 int error;
2952
2953 file = get_empty_filp();
2954 if (!file)
2955 return ERR_PTR(-ENFILE);
2956
2957 file->f_flags = op->open_flag;
2958
2959 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2960 if (unlikely(error))
2961 goto out;
2962
2963 current->total_link_count = 0;
2964 error = link_path_walk(pathname->name, nd);
2965 if (unlikely(error))
2966 goto out;
2967
2968 error = do_last(nd, &path, file, op, &opened, pathname);
2969 while (unlikely(error > 0)) { /* trailing symlink */
2970 struct path link = path;
2971 void *cookie;
2972 if (!(nd->flags & LOOKUP_FOLLOW)) {
2973 path_put_conditional(&path, nd);
2974 path_put(&nd->path);
2975 error = -ELOOP;
2976 break;
2977 }
2978 error = may_follow_link(&link, nd);
2979 if (unlikely(error))
2980 break;
2981 nd->flags |= LOOKUP_PARENT;
2982 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2983 error = follow_link(&link, nd, &cookie);
2984 if (unlikely(error))
2985 break;
2986 error = do_last(nd, &path, file, op, &opened, pathname);
2987 put_link(nd, &link, cookie);
2988 }
2989 out:
2990 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2991 path_put(&nd->root);
2992 if (base)
2993 fput(base);
2994 if (!(opened & FILE_OPENED)) {
2995 BUG_ON(!error);
2996 put_filp(file);
2997 }
2998 if (unlikely(error)) {
2999 if (error == -EOPENSTALE) {
3000 if (flags & LOOKUP_RCU)
3001 error = -ECHILD;
3002 else
3003 error = -ESTALE;
3004 }
3005 file = ERR_PTR(error);
3006 }
3007 return file;
3008 }
3009
3010 struct file *do_filp_open(int dfd, struct filename *pathname,
3011 const struct open_flags *op, int flags)
3012 {
3013 struct nameidata nd;
3014 struct file *filp;
3015
3016 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3017 if (unlikely(filp == ERR_PTR(-ECHILD)))
3018 filp = path_openat(dfd, pathname, &nd, op, flags);
3019 if (unlikely(filp == ERR_PTR(-ESTALE)))
3020 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3021 return filp;
3022 }
3023
3024 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3025 const char *name, const struct open_flags *op, int flags)
3026 {
3027 struct nameidata nd;
3028 struct file *file;
3029 struct filename filename = { .name = name };
3030
3031 nd.root.mnt = mnt;
3032 nd.root.dentry = dentry;
3033
3034 flags |= LOOKUP_ROOT;
3035
3036 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3037 return ERR_PTR(-ELOOP);
3038
3039 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3040 if (unlikely(file == ERR_PTR(-ECHILD)))
3041 file = path_openat(-1, &filename, &nd, op, flags);
3042 if (unlikely(file == ERR_PTR(-ESTALE)))
3043 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3044 return file;
3045 }
3046
3047 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
3048 {
3049 struct dentry *dentry = ERR_PTR(-EEXIST);
3050 struct nameidata nd;
3051 int err2;
3052 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
3053 if (error)
3054 return ERR_PTR(error);
3055
3056 /*
3057 * Yucky last component or no last component at all?
3058 * (foo/., foo/.., /////)
3059 */
3060 if (nd.last_type != LAST_NORM)
3061 goto out;
3062 nd.flags &= ~LOOKUP_PARENT;
3063 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3064
3065 /* don't fail immediately if it's r/o, at least try to report other errors */
3066 err2 = mnt_want_write(nd.path.mnt);
3067 /*
3068 * Do the final lookup.
3069 */
3070 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3071 dentry = lookup_hash(&nd);
3072 if (IS_ERR(dentry))
3073 goto unlock;
3074
3075 error = -EEXIST;
3076 if (dentry->d_inode)
3077 goto fail;
3078 /*
3079 * Special case - lookup gave negative, but... we had foo/bar/
3080 * From the vfs_mknod() POV we just have a negative dentry -
3081 * all is fine. Let's be bastards - you had / on the end, you've
3082 * been asking for (non-existent) directory. -ENOENT for you.
3083 */
3084 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3085 error = -ENOENT;
3086 goto fail;
3087 }
3088 if (unlikely(err2)) {
3089 error = err2;
3090 goto fail;
3091 }
3092 *path = nd.path;
3093 return dentry;
3094 fail:
3095 dput(dentry);
3096 dentry = ERR_PTR(error);
3097 unlock:
3098 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3099 if (!err2)
3100 mnt_drop_write(nd.path.mnt);
3101 out:
3102 path_put(&nd.path);
3103 return dentry;
3104 }
3105 EXPORT_SYMBOL(kern_path_create);
3106
3107 void done_path_create(struct path *path, struct dentry *dentry)
3108 {
3109 dput(dentry);
3110 mutex_unlock(&path->dentry->d_inode->i_mutex);
3111 mnt_drop_write(path->mnt);
3112 path_put(path);
3113 }
3114 EXPORT_SYMBOL(done_path_create);
3115
3116 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3117 {
3118 struct filename *tmp = getname(pathname);
3119 struct dentry *res;
3120 if (IS_ERR(tmp))
3121 return ERR_CAST(tmp);
3122 res = kern_path_create(dfd, tmp->name, path, is_dir);
3123 putname(tmp);
3124 return res;
3125 }
3126 EXPORT_SYMBOL(user_path_create);
3127
3128 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3129 {
3130 int error = may_create(dir, dentry);
3131
3132 if (error)
3133 return error;
3134
3135 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3136 return -EPERM;
3137
3138 if (!dir->i_op->mknod)
3139 return -EPERM;
3140
3141 error = devcgroup_inode_mknod(mode, dev);
3142 if (error)
3143 return error;
3144
3145 error = security_inode_mknod(dir, dentry, mode, dev);
3146 if (error)
3147 return error;
3148
3149 error = dir->i_op->mknod(dir, dentry, mode, dev);
3150 if (!error)
3151 fsnotify_create(dir, dentry);
3152 return error;
3153 }
3154
3155 static int may_mknod(umode_t mode)
3156 {
3157 switch (mode & S_IFMT) {
3158 case S_IFREG:
3159 case S_IFCHR:
3160 case S_IFBLK:
3161 case S_IFIFO:
3162 case S_IFSOCK:
3163 case 0: /* zero mode translates to S_IFREG */
3164 return 0;
3165 case S_IFDIR:
3166 return -EPERM;
3167 default:
3168 return -EINVAL;
3169 }
3170 }
3171
3172 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3173 unsigned, dev)
3174 {
3175 struct dentry *dentry;
3176 struct path path;
3177 int error;
3178
3179 error = may_mknod(mode);
3180 if (error)
3181 return error;
3182
3183 dentry = user_path_create(dfd, filename, &path, 0);
3184 if (IS_ERR(dentry))
3185 return PTR_ERR(dentry);
3186
3187 if (!IS_POSIXACL(path.dentry->d_inode))
3188 mode &= ~current_umask();
3189 error = security_path_mknod(&path, dentry, mode, dev);
3190 if (error)
3191 goto out;
3192 switch (mode & S_IFMT) {
3193 case 0: case S_IFREG:
3194 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3195 break;
3196 case S_IFCHR: case S_IFBLK:
3197 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3198 new_decode_dev(dev));
3199 break;
3200 case S_IFIFO: case S_IFSOCK:
3201 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3202 break;
3203 }
3204 out:
3205 done_path_create(&path, dentry);
3206 return error;
3207 }
3208
3209 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3210 {
3211 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3212 }
3213
3214 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3215 {
3216 int error = may_create(dir, dentry);
3217 unsigned max_links = dir->i_sb->s_max_links;
3218
3219 if (error)
3220 return error;
3221
3222 if (!dir->i_op->mkdir)
3223 return -EPERM;
3224
3225 mode &= (S_IRWXUGO|S_ISVTX);
3226 error = security_inode_mkdir(dir, dentry, mode);
3227 if (error)
3228 return error;
3229
3230 if (max_links && dir->i_nlink >= max_links)
3231 return -EMLINK;
3232
3233 error = dir->i_op->mkdir(dir, dentry, mode);
3234 if (!error)
3235 fsnotify_mkdir(dir, dentry);
3236 return error;
3237 }
3238
3239 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3240 {
3241 struct dentry *dentry;
3242 struct path path;
3243 int error;
3244
3245 dentry = user_path_create(dfd, pathname, &path, 1);
3246 if (IS_ERR(dentry))
3247 return PTR_ERR(dentry);
3248
3249 if (!IS_POSIXACL(path.dentry->d_inode))
3250 mode &= ~current_umask();
3251 error = security_path_mkdir(&path, dentry, mode);
3252 if (!error)
3253 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3254 done_path_create(&path, dentry);
3255 return error;
3256 }
3257
3258 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3259 {
3260 return sys_mkdirat(AT_FDCWD, pathname, mode);
3261 }
3262
3263 /*
3264 * The dentry_unhash() helper will try to drop the dentry early: we
3265 * should have a usage count of 1 if we're the only user of this
3266 * dentry, and if that is true (possibly after pruning the dcache),
3267 * then we drop the dentry now.
3268 *
3269 * A low-level filesystem can, if it choses, legally
3270 * do a
3271 *
3272 * if (!d_unhashed(dentry))
3273 * return -EBUSY;
3274 *
3275 * if it cannot handle the case of removing a directory
3276 * that is still in use by something else..
3277 */
3278 void dentry_unhash(struct dentry *dentry)
3279 {
3280 shrink_dcache_parent(dentry);
3281 spin_lock(&dentry->d_lock);
3282 if (dentry->d_count == 1)
3283 __d_drop(dentry);
3284 spin_unlock(&dentry->d_lock);
3285 }
3286
3287 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3288 {
3289 int error = may_delete(dir, dentry, 1);
3290
3291 if (error)
3292 return error;
3293
3294 if (!dir->i_op->rmdir)
3295 return -EPERM;
3296
3297 dget(dentry);
3298 mutex_lock(&dentry->d_inode->i_mutex);
3299
3300 error = -EBUSY;
3301 if (d_mountpoint(dentry))
3302 goto out;
3303
3304 error = security_inode_rmdir(dir, dentry);
3305 if (error)
3306 goto out;
3307
3308 shrink_dcache_parent(dentry);
3309 error = dir->i_op->rmdir(dir, dentry);
3310 if (error)
3311 goto out;
3312
3313 dentry->d_inode->i_flags |= S_DEAD;
3314 dont_mount(dentry);
3315
3316 out:
3317 mutex_unlock(&dentry->d_inode->i_mutex);
3318 dput(dentry);
3319 if (!error)
3320 d_delete(dentry);
3321 return error;
3322 }
3323
3324 static long do_rmdir(int dfd, const char __user *pathname)
3325 {
3326 int error = 0;
3327 struct filename *name;
3328 struct dentry *dentry;
3329 struct nameidata nd;
3330
3331 name = user_path_parent(dfd, pathname, &nd);
3332 if (IS_ERR(name))
3333 return PTR_ERR(name);
3334
3335 switch(nd.last_type) {
3336 case LAST_DOTDOT:
3337 error = -ENOTEMPTY;
3338 goto exit1;
3339 case LAST_DOT:
3340 error = -EINVAL;
3341 goto exit1;
3342 case LAST_ROOT:
3343 error = -EBUSY;
3344 goto exit1;
3345 }
3346
3347 nd.flags &= ~LOOKUP_PARENT;
3348 error = mnt_want_write(nd.path.mnt);
3349 if (error)
3350 goto exit1;
3351
3352 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3353 dentry = lookup_hash(&nd);
3354 error = PTR_ERR(dentry);
3355 if (IS_ERR(dentry))
3356 goto exit2;
3357 if (!dentry->d_inode) {
3358 error = -ENOENT;
3359 goto exit3;
3360 }
3361 error = security_path_rmdir(&nd.path, dentry);
3362 if (error)
3363 goto exit3;
3364 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3365 exit3:
3366 dput(dentry);
3367 exit2:
3368 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3369 mnt_drop_write(nd.path.mnt);
3370 exit1:
3371 path_put(&nd.path);
3372 putname(name);
3373 return error;
3374 }
3375
3376 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3377 {
3378 return do_rmdir(AT_FDCWD, pathname);
3379 }
3380
3381 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3382 {
3383 int error = may_delete(dir, dentry, 0);
3384
3385 if (error)
3386 return error;
3387
3388 if (!dir->i_op->unlink)
3389 return -EPERM;
3390
3391 mutex_lock(&dentry->d_inode->i_mutex);
3392 if (d_mountpoint(dentry))
3393 error = -EBUSY;
3394 else {
3395 error = security_inode_unlink(dir, dentry);
3396 if (!error) {
3397 error = dir->i_op->unlink(dir, dentry);
3398 if (!error)
3399 dont_mount(dentry);
3400 }
3401 }
3402 mutex_unlock(&dentry->d_inode->i_mutex);
3403
3404 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3405 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3406 fsnotify_link_count(dentry->d_inode);
3407 d_delete(dentry);
3408 }
3409
3410 return error;
3411 }
3412
3413 /*
3414 * Make sure that the actual truncation of the file will occur outside its
3415 * directory's i_mutex. Truncate can take a long time if there is a lot of
3416 * writeout happening, and we don't want to prevent access to the directory
3417 * while waiting on the I/O.
3418 */
3419 static long do_unlinkat(int dfd, const char __user *pathname)
3420 {
3421 int error;
3422 struct filename *name;
3423 struct dentry *dentry;
3424 struct nameidata nd;
3425 struct inode *inode = NULL;
3426
3427 name = user_path_parent(dfd, pathname, &nd);
3428 if (IS_ERR(name))
3429 return PTR_ERR(name);
3430
3431 error = -EISDIR;
3432 if (nd.last_type != LAST_NORM)
3433 goto exit1;
3434
3435 nd.flags &= ~LOOKUP_PARENT;
3436 error = mnt_want_write(nd.path.mnt);
3437 if (error)
3438 goto exit1;
3439
3440 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3441 dentry = lookup_hash(&nd);
3442 error = PTR_ERR(dentry);
3443 if (!IS_ERR(dentry)) {
3444 /* Why not before? Because we want correct error value */
3445 if (nd.last.name[nd.last.len])
3446 goto slashes;
3447 inode = dentry->d_inode;
3448 if (!inode)
3449 goto slashes;
3450 ihold(inode);
3451 error = security_path_unlink(&nd.path, dentry);
3452 if (error)
3453 goto exit2;
3454 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3455 exit2:
3456 dput(dentry);
3457 }
3458 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3459 if (inode)
3460 iput(inode); /* truncate the inode here */
3461 mnt_drop_write(nd.path.mnt);
3462 exit1:
3463 path_put(&nd.path);
3464 putname(name);
3465 return error;
3466
3467 slashes:
3468 error = !dentry->d_inode ? -ENOENT :
3469 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3470 goto exit2;
3471 }
3472
3473 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3474 {
3475 if ((flag & ~AT_REMOVEDIR) != 0)
3476 return -EINVAL;
3477
3478 if (flag & AT_REMOVEDIR)
3479 return do_rmdir(dfd, pathname);
3480
3481 return do_unlinkat(dfd, pathname);
3482 }
3483
3484 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3485 {
3486 return do_unlinkat(AT_FDCWD, pathname);
3487 }
3488
3489 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3490 {
3491 int error = may_create(dir, dentry);
3492
3493 if (error)
3494 return error;
3495
3496 if (!dir->i_op->symlink)
3497 return -EPERM;
3498
3499 error = security_inode_symlink(dir, dentry, oldname);
3500 if (error)
3501 return error;
3502
3503 error = dir->i_op->symlink(dir, dentry, oldname);
3504 if (!error)
3505 fsnotify_create(dir, dentry);
3506 return error;
3507 }
3508
3509 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3510 int, newdfd, const char __user *, newname)
3511 {
3512 int error;
3513 struct filename *from;
3514 struct dentry *dentry;
3515 struct path path;
3516
3517 from = getname(oldname);
3518 if (IS_ERR(from))
3519 return PTR_ERR(from);
3520
3521 dentry = user_path_create(newdfd, newname, &path, 0);
3522 error = PTR_ERR(dentry);
3523 if (IS_ERR(dentry))
3524 goto out_putname;
3525
3526 error = security_path_symlink(&path, dentry, from->name);
3527 if (!error)
3528 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3529 done_path_create(&path, dentry);
3530 out_putname:
3531 putname(from);
3532 return error;
3533 }
3534
3535 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3536 {
3537 return sys_symlinkat(oldname, AT_FDCWD, newname);
3538 }
3539
3540 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3541 {
3542 struct inode *inode = old_dentry->d_inode;
3543 unsigned max_links = dir->i_sb->s_max_links;
3544 int error;
3545
3546 if (!inode)
3547 return -ENOENT;
3548
3549 error = may_create(dir, new_dentry);
3550 if (error)
3551 return error;
3552
3553 if (dir->i_sb != inode->i_sb)
3554 return -EXDEV;
3555
3556 /*
3557 * A link to an append-only or immutable file cannot be created.
3558 */
3559 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3560 return -EPERM;
3561 if (!dir->i_op->link)
3562 return -EPERM;
3563 if (S_ISDIR(inode->i_mode))
3564 return -EPERM;
3565
3566 error = security_inode_link(old_dentry, dir, new_dentry);
3567 if (error)
3568 return error;
3569
3570 mutex_lock(&inode->i_mutex);
3571 /* Make sure we don't allow creating hardlink to an unlinked file */
3572 if (inode->i_nlink == 0)
3573 error = -ENOENT;
3574 else if (max_links && inode->i_nlink >= max_links)
3575 error = -EMLINK;
3576 else
3577 error = dir->i_op->link(old_dentry, dir, new_dentry);
3578 mutex_unlock(&inode->i_mutex);
3579 if (!error)
3580 fsnotify_link(dir, inode, new_dentry);
3581 return error;
3582 }
3583
3584 /*
3585 * Hardlinks are often used in delicate situations. We avoid
3586 * security-related surprises by not following symlinks on the
3587 * newname. --KAB
3588 *
3589 * We don't follow them on the oldname either to be compatible
3590 * with linux 2.0, and to avoid hard-linking to directories
3591 * and other special files. --ADM
3592 */
3593 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3594 int, newdfd, const char __user *, newname, int, flags)
3595 {
3596 struct dentry *new_dentry;
3597 struct path old_path, new_path;
3598 int how = 0;
3599 int error;
3600
3601 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3602 return -EINVAL;
3603 /*
3604 * To use null names we require CAP_DAC_READ_SEARCH
3605 * This ensures that not everyone will be able to create
3606 * handlink using the passed filedescriptor.
3607 */
3608 if (flags & AT_EMPTY_PATH) {
3609 if (!capable(CAP_DAC_READ_SEARCH))
3610 return -ENOENT;
3611 how = LOOKUP_EMPTY;
3612 }
3613
3614 if (flags & AT_SYMLINK_FOLLOW)
3615 how |= LOOKUP_FOLLOW;
3616
3617 error = user_path_at(olddfd, oldname, how, &old_path);
3618 if (error)
3619 return error;
3620
3621 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3622 error = PTR_ERR(new_dentry);
3623 if (IS_ERR(new_dentry))
3624 goto out;
3625
3626 error = -EXDEV;
3627 if (old_path.mnt != new_path.mnt)
3628 goto out_dput;
3629 error = may_linkat(&old_path);
3630 if (unlikely(error))
3631 goto out_dput;
3632 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3633 if (error)
3634 goto out_dput;
3635 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3636 out_dput:
3637 done_path_create(&new_path, new_dentry);
3638 out:
3639 path_put(&old_path);
3640
3641 return error;
3642 }
3643
3644 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3645 {
3646 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3647 }
3648
3649 /*
3650 * The worst of all namespace operations - renaming directory. "Perverted"
3651 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3652 * Problems:
3653 * a) we can get into loop creation. Check is done in is_subdir().
3654 * b) race potential - two innocent renames can create a loop together.
3655 * That's where 4.4 screws up. Current fix: serialization on
3656 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3657 * story.
3658 * c) we have to lock _three_ objects - parents and victim (if it exists).
3659 * And that - after we got ->i_mutex on parents (until then we don't know
3660 * whether the target exists). Solution: try to be smart with locking
3661 * order for inodes. We rely on the fact that tree topology may change
3662 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3663 * move will be locked. Thus we can rank directories by the tree
3664 * (ancestors first) and rank all non-directories after them.
3665 * That works since everybody except rename does "lock parent, lookup,
3666 * lock child" and rename is under ->s_vfs_rename_mutex.
3667 * HOWEVER, it relies on the assumption that any object with ->lookup()
3668 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3669 * we'd better make sure that there's no link(2) for them.
3670 * d) conversion from fhandle to dentry may come in the wrong moment - when
3671 * we are removing the target. Solution: we will have to grab ->i_mutex
3672 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3673 * ->i_mutex on parents, which works but leads to some truly excessive
3674 * locking].
3675 */
3676 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3677 struct inode *new_dir, struct dentry *new_dentry)
3678 {
3679 int error = 0;
3680 struct inode *target = new_dentry->d_inode;
3681 unsigned max_links = new_dir->i_sb->s_max_links;
3682
3683 /*
3684 * If we are going to change the parent - check write permissions,
3685 * we'll need to flip '..'.
3686 */
3687 if (new_dir != old_dir) {
3688 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3689 if (error)
3690 return error;
3691 }
3692
3693 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3694 if (error)
3695 return error;
3696
3697 dget(new_dentry);
3698 if (target)
3699 mutex_lock(&target->i_mutex);
3700
3701 error = -EBUSY;
3702 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3703 goto out;
3704
3705 error = -EMLINK;
3706 if (max_links && !target && new_dir != old_dir &&
3707 new_dir->i_nlink >= max_links)
3708 goto out;
3709
3710 if (target)
3711 shrink_dcache_parent(new_dentry);
3712 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3713 if (error)
3714 goto out;
3715
3716 if (target) {
3717 target->i_flags |= S_DEAD;
3718 dont_mount(new_dentry);
3719 }
3720 out:
3721 if (target)
3722 mutex_unlock(&target->i_mutex);
3723 dput(new_dentry);
3724 if (!error)
3725 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3726 d_move(old_dentry,new_dentry);
3727 return error;
3728 }
3729
3730 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3731 struct inode *new_dir, struct dentry *new_dentry)
3732 {
3733 struct inode *target = new_dentry->d_inode;
3734 int error;
3735
3736 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3737 if (error)
3738 return error;
3739
3740 dget(new_dentry);
3741 if (target)
3742 mutex_lock(&target->i_mutex);
3743
3744 error = -EBUSY;
3745 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3746 goto out;
3747
3748 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3749 if (error)
3750 goto out;
3751
3752 if (target)
3753 dont_mount(new_dentry);
3754 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3755 d_move(old_dentry, new_dentry);
3756 out:
3757 if (target)
3758 mutex_unlock(&target->i_mutex);
3759 dput(new_dentry);
3760 return error;
3761 }
3762
3763 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3764 struct inode *new_dir, struct dentry *new_dentry)
3765 {
3766 int error;
3767 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3768 const unsigned char *old_name;
3769
3770 if (old_dentry->d_inode == new_dentry->d_inode)
3771 return 0;
3772
3773 error = may_delete(old_dir, old_dentry, is_dir);
3774 if (error)
3775 return error;
3776
3777 if (!new_dentry->d_inode)
3778 error = may_create(new_dir, new_dentry);
3779 else
3780 error = may_delete(new_dir, new_dentry, is_dir);
3781 if (error)
3782 return error;
3783
3784 if (!old_dir->i_op->rename)
3785 return -EPERM;
3786
3787 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3788
3789 if (is_dir)
3790 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3791 else
3792 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3793 if (!error)
3794 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3795 new_dentry->d_inode, old_dentry);
3796 fsnotify_oldname_free(old_name);
3797
3798 return error;
3799 }
3800
3801 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3802 int, newdfd, const char __user *, newname)
3803 {
3804 struct dentry *old_dir, *new_dir;
3805 struct dentry *old_dentry, *new_dentry;
3806 struct dentry *trap;
3807 struct nameidata oldnd, newnd;
3808 struct filename *from;
3809 struct filename *to;
3810 int error;
3811
3812 from = user_path_parent(olddfd, oldname, &oldnd);
3813 if (IS_ERR(from)) {
3814 error = PTR_ERR(from);
3815 goto exit;
3816 }
3817
3818 to = user_path_parent(newdfd, newname, &newnd);
3819 if (IS_ERR(to)) {
3820 error = PTR_ERR(to);
3821 goto exit1;
3822 }
3823
3824 error = -EXDEV;
3825 if (oldnd.path.mnt != newnd.path.mnt)
3826 goto exit2;
3827
3828 old_dir = oldnd.path.dentry;
3829 error = -EBUSY;
3830 if (oldnd.last_type != LAST_NORM)
3831 goto exit2;
3832
3833 new_dir = newnd.path.dentry;
3834 if (newnd.last_type != LAST_NORM)
3835 goto exit2;
3836
3837 error = mnt_want_write(oldnd.path.mnt);
3838 if (error)
3839 goto exit2;
3840
3841 oldnd.flags &= ~LOOKUP_PARENT;
3842 newnd.flags &= ~LOOKUP_PARENT;
3843 newnd.flags |= LOOKUP_RENAME_TARGET;
3844
3845 trap = lock_rename(new_dir, old_dir);
3846
3847 old_dentry = lookup_hash(&oldnd);
3848 error = PTR_ERR(old_dentry);
3849 if (IS_ERR(old_dentry))
3850 goto exit3;
3851 /* source must exist */
3852 error = -ENOENT;
3853 if (!old_dentry->d_inode)
3854 goto exit4;
3855 /* unless the source is a directory trailing slashes give -ENOTDIR */
3856 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3857 error = -ENOTDIR;
3858 if (oldnd.last.name[oldnd.last.len])
3859 goto exit4;
3860 if (newnd.last.name[newnd.last.len])
3861 goto exit4;
3862 }
3863 /* source should not be ancestor of target */
3864 error = -EINVAL;
3865 if (old_dentry == trap)
3866 goto exit4;
3867 new_dentry = lookup_hash(&newnd);
3868 error = PTR_ERR(new_dentry);
3869 if (IS_ERR(new_dentry))
3870 goto exit4;
3871 /* target should not be an ancestor of source */
3872 error = -ENOTEMPTY;
3873 if (new_dentry == trap)
3874 goto exit5;
3875
3876 error = security_path_rename(&oldnd.path, old_dentry,
3877 &newnd.path, new_dentry);
3878 if (error)
3879 goto exit5;
3880 error = vfs_rename(old_dir->d_inode, old_dentry,
3881 new_dir->d_inode, new_dentry);
3882 exit5:
3883 dput(new_dentry);
3884 exit4:
3885 dput(old_dentry);
3886 exit3:
3887 unlock_rename(new_dir, old_dir);
3888 mnt_drop_write(oldnd.path.mnt);
3889 exit2:
3890 path_put(&newnd.path);
3891 putname(to);
3892 exit1:
3893 path_put(&oldnd.path);
3894 putname(from);
3895 exit:
3896 return error;
3897 }
3898
3899 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3900 {
3901 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3902 }
3903
3904 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3905 {
3906 int len;
3907
3908 len = PTR_ERR(link);
3909 if (IS_ERR(link))
3910 goto out;
3911
3912 len = strlen(link);
3913 if (len > (unsigned) buflen)
3914 len = buflen;
3915 if (copy_to_user(buffer, link, len))
3916 len = -EFAULT;
3917 out:
3918 return len;
3919 }
3920
3921 /*
3922 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3923 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3924 * using) it for any given inode is up to filesystem.
3925 */
3926 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3927 {
3928 struct nameidata nd;
3929 void *cookie;
3930 int res;
3931
3932 nd.depth = 0;
3933 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3934 if (IS_ERR(cookie))
3935 return PTR_ERR(cookie);
3936
3937 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3938 if (dentry->d_inode->i_op->put_link)
3939 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3940 return res;
3941 }
3942
3943 int vfs_follow_link(struct nameidata *nd, const char *link)
3944 {
3945 return __vfs_follow_link(nd, link);
3946 }
3947
3948 /* get the link contents into pagecache */
3949 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3950 {
3951 char *kaddr;
3952 struct page *page;
3953 struct address_space *mapping = dentry->d_inode->i_mapping;
3954 page = read_mapping_page(mapping, 0, NULL);
3955 if (IS_ERR(page))
3956 return (char*)page;
3957 *ppage = page;
3958 kaddr = kmap(page);
3959 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3960 return kaddr;
3961 }
3962
3963 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3964 {
3965 struct page *page = NULL;
3966 char *s = page_getlink(dentry, &page);
3967 int res = vfs_readlink(dentry,buffer,buflen,s);
3968 if (page) {
3969 kunmap(page);
3970 page_cache_release(page);
3971 }
3972 return res;
3973 }
3974
3975 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3976 {
3977 struct page *page = NULL;
3978 nd_set_link(nd, page_getlink(dentry, &page));
3979 return page;
3980 }
3981
3982 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3983 {
3984 struct page *page = cookie;
3985
3986 if (page) {
3987 kunmap(page);
3988 page_cache_release(page);
3989 }
3990 }
3991
3992 /*
3993 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3994 */
3995 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3996 {
3997 struct address_space *mapping = inode->i_mapping;
3998 struct page *page;
3999 void *fsdata;
4000 int err;
4001 char *kaddr;
4002 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4003 if (nofs)
4004 flags |= AOP_FLAG_NOFS;
4005
4006 retry:
4007 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4008 flags, &page, &fsdata);
4009 if (err)
4010 goto fail;
4011
4012 kaddr = kmap_atomic(page);
4013 memcpy(kaddr, symname, len-1);
4014 kunmap_atomic(kaddr);
4015
4016 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4017 page, fsdata);
4018 if (err < 0)
4019 goto fail;
4020 if (err < len-1)
4021 goto retry;
4022
4023 mark_inode_dirty(inode);
4024 return 0;
4025 fail:
4026 return err;
4027 }
4028
4029 int page_symlink(struct inode *inode, const char *symname, int len)
4030 {
4031 return __page_symlink(inode, symname, len,
4032 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4033 }
4034
4035 const struct inode_operations page_symlink_inode_operations = {
4036 .readlink = generic_readlink,
4037 .follow_link = page_follow_link_light,
4038 .put_link = page_put_link,
4039 };
4040
4041 EXPORT_SYMBOL(user_path_at);
4042 EXPORT_SYMBOL(follow_down_one);
4043 EXPORT_SYMBOL(follow_down);
4044 EXPORT_SYMBOL(follow_up);
4045 EXPORT_SYMBOL(get_write_access); /* nfsd */
4046 EXPORT_SYMBOL(lock_rename);
4047 EXPORT_SYMBOL(lookup_one_len);
4048 EXPORT_SYMBOL(page_follow_link_light);
4049 EXPORT_SYMBOL(page_put_link);
4050 EXPORT_SYMBOL(page_readlink);
4051 EXPORT_SYMBOL(__page_symlink);
4052 EXPORT_SYMBOL(page_symlink);
4053 EXPORT_SYMBOL(page_symlink_inode_operations);
4054 EXPORT_SYMBOL(kern_path);
4055 EXPORT_SYMBOL(vfs_path_lookup);
4056 EXPORT_SYMBOL(inode_permission);
4057 EXPORT_SYMBOL(unlock_rename);
4058 EXPORT_SYMBOL(vfs_create);
4059 EXPORT_SYMBOL(vfs_follow_link);
4060 EXPORT_SYMBOL(vfs_link);
4061 EXPORT_SYMBOL(vfs_mkdir);
4062 EXPORT_SYMBOL(vfs_mknod);
4063 EXPORT_SYMBOL(generic_permission);
4064 EXPORT_SYMBOL(vfs_readlink);
4065 EXPORT_SYMBOL(vfs_rename);
4066 EXPORT_SYMBOL(vfs_rmdir);
4067 EXPORT_SYMBOL(vfs_symlink);
4068 EXPORT_SYMBOL(vfs_unlink);
4069 EXPORT_SYMBOL(dentry_unhash);
4070 EXPORT_SYMBOL(generic_readlink);