readlinkat: ensure we return ENOENT for the empty pathname for normal lookups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existent name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 static char *getname_flags(const char __user *filename, int flags, int *empty)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(tmp);
155 result = ERR_PTR(retval);
156 }
157 }
158 }
159 audit_getname(result);
160 return result;
161 }
162
163 char *getname(const char __user * filename)
164 {
165 return getname_flags(filename, 0, 0);
166 }
167
168 #ifdef CONFIG_AUDITSYSCALL
169 void putname(const char *name)
170 {
171 if (unlikely(!audit_dummy_context()))
172 audit_putname(name);
173 else
174 __putname(name);
175 }
176 EXPORT_SYMBOL(putname);
177 #endif
178
179 static int check_acl(struct inode *inode, int mask)
180 {
181 #ifdef CONFIG_FS_POSIX_ACL
182 struct posix_acl *acl;
183
184 if (mask & MAY_NOT_BLOCK) {
185 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
186 if (!acl)
187 return -EAGAIN;
188 /* no ->get_acl() calls in RCU mode... */
189 if (acl == ACL_NOT_CACHED)
190 return -ECHILD;
191 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
192 }
193
194 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
195
196 /*
197 * A filesystem can force a ACL callback by just never filling the
198 * ACL cache. But normally you'd fill the cache either at inode
199 * instantiation time, or on the first ->get_acl call.
200 *
201 * If the filesystem doesn't have a get_acl() function at all, we'll
202 * just create the negative cache entry.
203 */
204 if (acl == ACL_NOT_CACHED) {
205 if (inode->i_op->get_acl) {
206 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
207 if (IS_ERR(acl))
208 return PTR_ERR(acl);
209 } else {
210 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
211 return -EAGAIN;
212 }
213 }
214
215 if (acl) {
216 int error = posix_acl_permission(inode, acl, mask);
217 posix_acl_release(acl);
218 return error;
219 }
220 #endif
221
222 return -EAGAIN;
223 }
224
225 /*
226 * This does the basic permission checking
227 */
228 static int acl_permission_check(struct inode *inode, int mask)
229 {
230 unsigned int mode = inode->i_mode;
231
232 if (current_user_ns() != inode_userns(inode))
233 goto other_perms;
234
235 if (likely(current_fsuid() == inode->i_uid))
236 mode >>= 6;
237 else {
238 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
239 int error = check_acl(inode, mask);
240 if (error != -EAGAIN)
241 return error;
242 }
243
244 if (in_group_p(inode->i_gid))
245 mode >>= 3;
246 }
247
248 other_perms:
249 /*
250 * If the DACs are ok we don't need any capability check.
251 */
252 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
253 return 0;
254 return -EACCES;
255 }
256
257 /**
258 * generic_permission - check for access rights on a Posix-like filesystem
259 * @inode: inode to check access rights for
260 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
261 *
262 * Used to check for read/write/execute permissions on a file.
263 * We use "fsuid" for this, letting us set arbitrary permissions
264 * for filesystem access without changing the "normal" uids which
265 * are used for other things.
266 *
267 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
268 * request cannot be satisfied (eg. requires blocking or too much complexity).
269 * It would then be called again in ref-walk mode.
270 */
271 int generic_permission(struct inode *inode, int mask)
272 {
273 int ret;
274
275 /*
276 * Do the basic permission checks.
277 */
278 ret = acl_permission_check(inode, mask);
279 if (ret != -EACCES)
280 return ret;
281
282 if (S_ISDIR(inode->i_mode)) {
283 /* DACs are overridable for directories */
284 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
285 return 0;
286 if (!(mask & MAY_WRITE))
287 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
288 return 0;
289 return -EACCES;
290 }
291 /*
292 * Read/write DACs are always overridable.
293 * Executable DACs are overridable when there is
294 * at least one exec bit set.
295 */
296 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
297 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
298 return 0;
299
300 /*
301 * Searching includes executable on directories, else just read.
302 */
303 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
304 if (mask == MAY_READ)
305 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
306 return 0;
307
308 return -EACCES;
309 }
310
311 /*
312 * We _really_ want to just do "generic_permission()" without
313 * even looking at the inode->i_op values. So we keep a cache
314 * flag in inode->i_opflags, that says "this has not special
315 * permission function, use the fast case".
316 */
317 static inline int do_inode_permission(struct inode *inode, int mask)
318 {
319 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
320 if (likely(inode->i_op->permission))
321 return inode->i_op->permission(inode, mask);
322
323 /* This gets set once for the inode lifetime */
324 spin_lock(&inode->i_lock);
325 inode->i_opflags |= IOP_FASTPERM;
326 spin_unlock(&inode->i_lock);
327 }
328 return generic_permission(inode, mask);
329 }
330
331 /**
332 * inode_permission - check for access rights to a given inode
333 * @inode: inode to check permission on
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
335 *
336 * Used to check for read/write/execute permissions on an inode.
337 * We use "fsuid" for this, letting us set arbitrary permissions
338 * for filesystem access without changing the "normal" uids which
339 * are used for other things.
340 *
341 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
342 */
343 int inode_permission(struct inode *inode, int mask)
344 {
345 int retval;
346
347 if (unlikely(mask & MAY_WRITE)) {
348 umode_t mode = inode->i_mode;
349
350 /*
351 * Nobody gets write access to a read-only fs.
352 */
353 if (IS_RDONLY(inode) &&
354 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
355 return -EROFS;
356
357 /*
358 * Nobody gets write access to an immutable file.
359 */
360 if (IS_IMMUTABLE(inode))
361 return -EACCES;
362 }
363
364 retval = do_inode_permission(inode, mask);
365 if (retval)
366 return retval;
367
368 retval = devcgroup_inode_permission(inode, mask);
369 if (retval)
370 return retval;
371
372 return security_inode_permission(inode, mask);
373 }
374
375 /**
376 * path_get - get a reference to a path
377 * @path: path to get the reference to
378 *
379 * Given a path increment the reference count to the dentry and the vfsmount.
380 */
381 void path_get(struct path *path)
382 {
383 mntget(path->mnt);
384 dget(path->dentry);
385 }
386 EXPORT_SYMBOL(path_get);
387
388 /**
389 * path_put - put a reference to a path
390 * @path: path to put the reference to
391 *
392 * Given a path decrement the reference count to the dentry and the vfsmount.
393 */
394 void path_put(struct path *path)
395 {
396 dput(path->dentry);
397 mntput(path->mnt);
398 }
399 EXPORT_SYMBOL(path_put);
400
401 /*
402 * Path walking has 2 modes, rcu-walk and ref-walk (see
403 * Documentation/filesystems/path-lookup.txt). In situations when we can't
404 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
405 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
406 * mode. Refcounts are grabbed at the last known good point before rcu-walk
407 * got stuck, so ref-walk may continue from there. If this is not successful
408 * (eg. a seqcount has changed), then failure is returned and it's up to caller
409 * to restart the path walk from the beginning in ref-walk mode.
410 */
411
412 /**
413 * unlazy_walk - try to switch to ref-walk mode.
414 * @nd: nameidata pathwalk data
415 * @dentry: child of nd->path.dentry or NULL
416 * Returns: 0 on success, -ECHILD on failure
417 *
418 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
419 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
420 * @nd or NULL. Must be called from rcu-walk context.
421 */
422 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
423 {
424 struct fs_struct *fs = current->fs;
425 struct dentry *parent = nd->path.dentry;
426 int want_root = 0;
427
428 BUG_ON(!(nd->flags & LOOKUP_RCU));
429 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
430 want_root = 1;
431 spin_lock(&fs->lock);
432 if (nd->root.mnt != fs->root.mnt ||
433 nd->root.dentry != fs->root.dentry)
434 goto err_root;
435 }
436 spin_lock(&parent->d_lock);
437 if (!dentry) {
438 if (!__d_rcu_to_refcount(parent, nd->seq))
439 goto err_parent;
440 BUG_ON(nd->inode != parent->d_inode);
441 } else {
442 if (dentry->d_parent != parent)
443 goto err_parent;
444 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
445 if (!__d_rcu_to_refcount(dentry, nd->seq))
446 goto err_child;
447 /*
448 * If the sequence check on the child dentry passed, then
449 * the child has not been removed from its parent. This
450 * means the parent dentry must be valid and able to take
451 * a reference at this point.
452 */
453 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
454 BUG_ON(!parent->d_count);
455 parent->d_count++;
456 spin_unlock(&dentry->d_lock);
457 }
458 spin_unlock(&parent->d_lock);
459 if (want_root) {
460 path_get(&nd->root);
461 spin_unlock(&fs->lock);
462 }
463 mntget(nd->path.mnt);
464
465 rcu_read_unlock();
466 br_read_unlock(vfsmount_lock);
467 nd->flags &= ~LOOKUP_RCU;
468 return 0;
469
470 err_child:
471 spin_unlock(&dentry->d_lock);
472 err_parent:
473 spin_unlock(&parent->d_lock);
474 err_root:
475 if (want_root)
476 spin_unlock(&fs->lock);
477 return -ECHILD;
478 }
479
480 /**
481 * release_open_intent - free up open intent resources
482 * @nd: pointer to nameidata
483 */
484 void release_open_intent(struct nameidata *nd)
485 {
486 struct file *file = nd->intent.open.file;
487
488 if (file && !IS_ERR(file)) {
489 if (file->f_path.dentry == NULL)
490 put_filp(file);
491 else
492 fput(file);
493 }
494 }
495
496 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
497 {
498 return dentry->d_op->d_revalidate(dentry, nd);
499 }
500
501 /**
502 * complete_walk - successful completion of path walk
503 * @nd: pointer nameidata
504 *
505 * If we had been in RCU mode, drop out of it and legitimize nd->path.
506 * Revalidate the final result, unless we'd already done that during
507 * the path walk or the filesystem doesn't ask for it. Return 0 on
508 * success, -error on failure. In case of failure caller does not
509 * need to drop nd->path.
510 */
511 static int complete_walk(struct nameidata *nd)
512 {
513 struct dentry *dentry = nd->path.dentry;
514 int status;
515
516 if (nd->flags & LOOKUP_RCU) {
517 nd->flags &= ~LOOKUP_RCU;
518 if (!(nd->flags & LOOKUP_ROOT))
519 nd->root.mnt = NULL;
520 spin_lock(&dentry->d_lock);
521 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
522 spin_unlock(&dentry->d_lock);
523 rcu_read_unlock();
524 br_read_unlock(vfsmount_lock);
525 return -ECHILD;
526 }
527 BUG_ON(nd->inode != dentry->d_inode);
528 spin_unlock(&dentry->d_lock);
529 mntget(nd->path.mnt);
530 rcu_read_unlock();
531 br_read_unlock(vfsmount_lock);
532 }
533
534 if (likely(!(nd->flags & LOOKUP_JUMPED)))
535 return 0;
536
537 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
538 return 0;
539
540 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
541 return 0;
542
543 /* Note: we do not d_invalidate() */
544 status = d_revalidate(dentry, nd);
545 if (status > 0)
546 return 0;
547
548 if (!status)
549 status = -ESTALE;
550
551 path_put(&nd->path);
552 return status;
553 }
554
555 static __always_inline void set_root(struct nameidata *nd)
556 {
557 if (!nd->root.mnt)
558 get_fs_root(current->fs, &nd->root);
559 }
560
561 static int link_path_walk(const char *, struct nameidata *);
562
563 static __always_inline void set_root_rcu(struct nameidata *nd)
564 {
565 if (!nd->root.mnt) {
566 struct fs_struct *fs = current->fs;
567 unsigned seq;
568
569 do {
570 seq = read_seqcount_begin(&fs->seq);
571 nd->root = fs->root;
572 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
573 } while (read_seqcount_retry(&fs->seq, seq));
574 }
575 }
576
577 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
578 {
579 int ret;
580
581 if (IS_ERR(link))
582 goto fail;
583
584 if (*link == '/') {
585 set_root(nd);
586 path_put(&nd->path);
587 nd->path = nd->root;
588 path_get(&nd->root);
589 nd->flags |= LOOKUP_JUMPED;
590 }
591 nd->inode = nd->path.dentry->d_inode;
592
593 ret = link_path_walk(link, nd);
594 return ret;
595 fail:
596 path_put(&nd->path);
597 return PTR_ERR(link);
598 }
599
600 static void path_put_conditional(struct path *path, struct nameidata *nd)
601 {
602 dput(path->dentry);
603 if (path->mnt != nd->path.mnt)
604 mntput(path->mnt);
605 }
606
607 static inline void path_to_nameidata(const struct path *path,
608 struct nameidata *nd)
609 {
610 if (!(nd->flags & LOOKUP_RCU)) {
611 dput(nd->path.dentry);
612 if (nd->path.mnt != path->mnt)
613 mntput(nd->path.mnt);
614 }
615 nd->path.mnt = path->mnt;
616 nd->path.dentry = path->dentry;
617 }
618
619 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
620 {
621 struct inode *inode = link->dentry->d_inode;
622 if (!IS_ERR(cookie) && inode->i_op->put_link)
623 inode->i_op->put_link(link->dentry, nd, cookie);
624 path_put(link);
625 }
626
627 static __always_inline int
628 follow_link(struct path *link, struct nameidata *nd, void **p)
629 {
630 int error;
631 struct dentry *dentry = link->dentry;
632
633 BUG_ON(nd->flags & LOOKUP_RCU);
634
635 if (link->mnt == nd->path.mnt)
636 mntget(link->mnt);
637
638 if (unlikely(current->total_link_count >= 40)) {
639 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
640 path_put(&nd->path);
641 return -ELOOP;
642 }
643 cond_resched();
644 current->total_link_count++;
645
646 touch_atime(link->mnt, dentry);
647 nd_set_link(nd, NULL);
648
649 error = security_inode_follow_link(link->dentry, nd);
650 if (error) {
651 *p = ERR_PTR(error); /* no ->put_link(), please */
652 path_put(&nd->path);
653 return error;
654 }
655
656 nd->last_type = LAST_BIND;
657 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
658 error = PTR_ERR(*p);
659 if (!IS_ERR(*p)) {
660 char *s = nd_get_link(nd);
661 error = 0;
662 if (s)
663 error = __vfs_follow_link(nd, s);
664 else if (nd->last_type == LAST_BIND) {
665 nd->flags |= LOOKUP_JUMPED;
666 nd->inode = nd->path.dentry->d_inode;
667 if (nd->inode->i_op->follow_link) {
668 /* stepped on a _really_ weird one */
669 path_put(&nd->path);
670 error = -ELOOP;
671 }
672 }
673 }
674 return error;
675 }
676
677 static int follow_up_rcu(struct path *path)
678 {
679 struct vfsmount *parent;
680 struct dentry *mountpoint;
681
682 parent = path->mnt->mnt_parent;
683 if (parent == path->mnt)
684 return 0;
685 mountpoint = path->mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = parent;
688 return 1;
689 }
690
691 int follow_up(struct path *path)
692 {
693 struct vfsmount *parent;
694 struct dentry *mountpoint;
695
696 br_read_lock(vfsmount_lock);
697 parent = path->mnt->mnt_parent;
698 if (parent == path->mnt) {
699 br_read_unlock(vfsmount_lock);
700 return 0;
701 }
702 mntget(parent);
703 mountpoint = dget(path->mnt->mnt_mountpoint);
704 br_read_unlock(vfsmount_lock);
705 dput(path->dentry);
706 path->dentry = mountpoint;
707 mntput(path->mnt);
708 path->mnt = parent;
709 return 1;
710 }
711
712 /*
713 * Perform an automount
714 * - return -EISDIR to tell follow_managed() to stop and return the path we
715 * were called with.
716 */
717 static int follow_automount(struct path *path, unsigned flags,
718 bool *need_mntput)
719 {
720 struct vfsmount *mnt;
721 int err;
722
723 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
724 return -EREMOTE;
725
726 /* We don't want to mount if someone's just doing a stat -
727 * unless they're stat'ing a directory and appended a '/' to
728 * the name.
729 *
730 * We do, however, want to mount if someone wants to open or
731 * create a file of any type under the mountpoint, wants to
732 * traverse through the mountpoint or wants to open the
733 * mounted directory. Also, autofs may mark negative dentries
734 * as being automount points. These will need the attentions
735 * of the daemon to instantiate them before they can be used.
736 */
737 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
738 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
739 path->dentry->d_inode)
740 return -EISDIR;
741
742 current->total_link_count++;
743 if (current->total_link_count >= 40)
744 return -ELOOP;
745
746 mnt = path->dentry->d_op->d_automount(path);
747 if (IS_ERR(mnt)) {
748 /*
749 * The filesystem is allowed to return -EISDIR here to indicate
750 * it doesn't want to automount. For instance, autofs would do
751 * this so that its userspace daemon can mount on this dentry.
752 *
753 * However, we can only permit this if it's a terminal point in
754 * the path being looked up; if it wasn't then the remainder of
755 * the path is inaccessible and we should say so.
756 */
757 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
758 return -EREMOTE;
759 return PTR_ERR(mnt);
760 }
761
762 if (!mnt) /* mount collision */
763 return 0;
764
765 if (!*need_mntput) {
766 /* lock_mount() may release path->mnt on error */
767 mntget(path->mnt);
768 *need_mntput = true;
769 }
770 err = finish_automount(mnt, path);
771
772 switch (err) {
773 case -EBUSY:
774 /* Someone else made a mount here whilst we were busy */
775 return 0;
776 case 0:
777 path_put(path);
778 path->mnt = mnt;
779 path->dentry = dget(mnt->mnt_root);
780 return 0;
781 default:
782 return err;
783 }
784
785 }
786
787 /*
788 * Handle a dentry that is managed in some way.
789 * - Flagged for transit management (autofs)
790 * - Flagged as mountpoint
791 * - Flagged as automount point
792 *
793 * This may only be called in refwalk mode.
794 *
795 * Serialization is taken care of in namespace.c
796 */
797 static int follow_managed(struct path *path, unsigned flags)
798 {
799 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
800 unsigned managed;
801 bool need_mntput = false;
802 int ret = 0;
803
804 /* Given that we're not holding a lock here, we retain the value in a
805 * local variable for each dentry as we look at it so that we don't see
806 * the components of that value change under us */
807 while (managed = ACCESS_ONCE(path->dentry->d_flags),
808 managed &= DCACHE_MANAGED_DENTRY,
809 unlikely(managed != 0)) {
810 /* Allow the filesystem to manage the transit without i_mutex
811 * being held. */
812 if (managed & DCACHE_MANAGE_TRANSIT) {
813 BUG_ON(!path->dentry->d_op);
814 BUG_ON(!path->dentry->d_op->d_manage);
815 ret = path->dentry->d_op->d_manage(path->dentry, false);
816 if (ret < 0)
817 break;
818 }
819
820 /* Transit to a mounted filesystem. */
821 if (managed & DCACHE_MOUNTED) {
822 struct vfsmount *mounted = lookup_mnt(path);
823 if (mounted) {
824 dput(path->dentry);
825 if (need_mntput)
826 mntput(path->mnt);
827 path->mnt = mounted;
828 path->dentry = dget(mounted->mnt_root);
829 need_mntput = true;
830 continue;
831 }
832
833 /* Something is mounted on this dentry in another
834 * namespace and/or whatever was mounted there in this
835 * namespace got unmounted before we managed to get the
836 * vfsmount_lock */
837 }
838
839 /* Handle an automount point */
840 if (managed & DCACHE_NEED_AUTOMOUNT) {
841 ret = follow_automount(path, flags, &need_mntput);
842 if (ret < 0)
843 break;
844 continue;
845 }
846
847 /* We didn't change the current path point */
848 break;
849 }
850
851 if (need_mntput && path->mnt == mnt)
852 mntput(path->mnt);
853 if (ret == -EISDIR)
854 ret = 0;
855 return ret;
856 }
857
858 int follow_down_one(struct path *path)
859 {
860 struct vfsmount *mounted;
861
862 mounted = lookup_mnt(path);
863 if (mounted) {
864 dput(path->dentry);
865 mntput(path->mnt);
866 path->mnt = mounted;
867 path->dentry = dget(mounted->mnt_root);
868 return 1;
869 }
870 return 0;
871 }
872
873 static inline bool managed_dentry_might_block(struct dentry *dentry)
874 {
875 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
876 dentry->d_op->d_manage(dentry, true) < 0);
877 }
878
879 /*
880 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
881 * we meet a managed dentry that would need blocking.
882 */
883 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
884 struct inode **inode)
885 {
886 for (;;) {
887 struct vfsmount *mounted;
888 /*
889 * Don't forget we might have a non-mountpoint managed dentry
890 * that wants to block transit.
891 */
892 if (unlikely(managed_dentry_might_block(path->dentry)))
893 return false;
894
895 if (!d_mountpoint(path->dentry))
896 break;
897
898 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
899 if (!mounted)
900 break;
901 path->mnt = mounted;
902 path->dentry = mounted->mnt_root;
903 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
904 /*
905 * Update the inode too. We don't need to re-check the
906 * dentry sequence number here after this d_inode read,
907 * because a mount-point is always pinned.
908 */
909 *inode = path->dentry->d_inode;
910 }
911 return true;
912 }
913
914 static void follow_mount_rcu(struct nameidata *nd)
915 {
916 while (d_mountpoint(nd->path.dentry)) {
917 struct vfsmount *mounted;
918 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
919 if (!mounted)
920 break;
921 nd->path.mnt = mounted;
922 nd->path.dentry = mounted->mnt_root;
923 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
924 }
925 }
926
927 static int follow_dotdot_rcu(struct nameidata *nd)
928 {
929 set_root_rcu(nd);
930
931 while (1) {
932 if (nd->path.dentry == nd->root.dentry &&
933 nd->path.mnt == nd->root.mnt) {
934 break;
935 }
936 if (nd->path.dentry != nd->path.mnt->mnt_root) {
937 struct dentry *old = nd->path.dentry;
938 struct dentry *parent = old->d_parent;
939 unsigned seq;
940
941 seq = read_seqcount_begin(&parent->d_seq);
942 if (read_seqcount_retry(&old->d_seq, nd->seq))
943 goto failed;
944 nd->path.dentry = parent;
945 nd->seq = seq;
946 break;
947 }
948 if (!follow_up_rcu(&nd->path))
949 break;
950 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
951 }
952 follow_mount_rcu(nd);
953 nd->inode = nd->path.dentry->d_inode;
954 return 0;
955
956 failed:
957 nd->flags &= ~LOOKUP_RCU;
958 if (!(nd->flags & LOOKUP_ROOT))
959 nd->root.mnt = NULL;
960 rcu_read_unlock();
961 br_read_unlock(vfsmount_lock);
962 return -ECHILD;
963 }
964
965 /*
966 * Follow down to the covering mount currently visible to userspace. At each
967 * point, the filesystem owning that dentry may be queried as to whether the
968 * caller is permitted to proceed or not.
969 */
970 int follow_down(struct path *path)
971 {
972 unsigned managed;
973 int ret;
974
975 while (managed = ACCESS_ONCE(path->dentry->d_flags),
976 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
977 /* Allow the filesystem to manage the transit without i_mutex
978 * being held.
979 *
980 * We indicate to the filesystem if someone is trying to mount
981 * something here. This gives autofs the chance to deny anyone
982 * other than its daemon the right to mount on its
983 * superstructure.
984 *
985 * The filesystem may sleep at this point.
986 */
987 if (managed & DCACHE_MANAGE_TRANSIT) {
988 BUG_ON(!path->dentry->d_op);
989 BUG_ON(!path->dentry->d_op->d_manage);
990 ret = path->dentry->d_op->d_manage(
991 path->dentry, false);
992 if (ret < 0)
993 return ret == -EISDIR ? 0 : ret;
994 }
995
996 /* Transit to a mounted filesystem. */
997 if (managed & DCACHE_MOUNTED) {
998 struct vfsmount *mounted = lookup_mnt(path);
999 if (!mounted)
1000 break;
1001 dput(path->dentry);
1002 mntput(path->mnt);
1003 path->mnt = mounted;
1004 path->dentry = dget(mounted->mnt_root);
1005 continue;
1006 }
1007
1008 /* Don't handle automount points here */
1009 break;
1010 }
1011 return 0;
1012 }
1013
1014 /*
1015 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1016 */
1017 static void follow_mount(struct path *path)
1018 {
1019 while (d_mountpoint(path->dentry)) {
1020 struct vfsmount *mounted = lookup_mnt(path);
1021 if (!mounted)
1022 break;
1023 dput(path->dentry);
1024 mntput(path->mnt);
1025 path->mnt = mounted;
1026 path->dentry = dget(mounted->mnt_root);
1027 }
1028 }
1029
1030 static void follow_dotdot(struct nameidata *nd)
1031 {
1032 set_root(nd);
1033
1034 while(1) {
1035 struct dentry *old = nd->path.dentry;
1036
1037 if (nd->path.dentry == nd->root.dentry &&
1038 nd->path.mnt == nd->root.mnt) {
1039 break;
1040 }
1041 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1042 /* rare case of legitimate dget_parent()... */
1043 nd->path.dentry = dget_parent(nd->path.dentry);
1044 dput(old);
1045 break;
1046 }
1047 if (!follow_up(&nd->path))
1048 break;
1049 }
1050 follow_mount(&nd->path);
1051 nd->inode = nd->path.dentry->d_inode;
1052 }
1053
1054 /*
1055 * Allocate a dentry with name and parent, and perform a parent
1056 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1057 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1058 * have verified that no child exists while under i_mutex.
1059 */
1060 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1061 struct qstr *name, struct nameidata *nd)
1062 {
1063 struct inode *inode = parent->d_inode;
1064 struct dentry *dentry;
1065 struct dentry *old;
1066
1067 /* Don't create child dentry for a dead directory. */
1068 if (unlikely(IS_DEADDIR(inode)))
1069 return ERR_PTR(-ENOENT);
1070
1071 dentry = d_alloc(parent, name);
1072 if (unlikely(!dentry))
1073 return ERR_PTR(-ENOMEM);
1074
1075 old = inode->i_op->lookup(inode, dentry, nd);
1076 if (unlikely(old)) {
1077 dput(dentry);
1078 dentry = old;
1079 }
1080 return dentry;
1081 }
1082
1083 /*
1084 * We already have a dentry, but require a lookup to be performed on the parent
1085 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1086 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1087 * child exists while under i_mutex.
1088 */
1089 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1090 struct nameidata *nd)
1091 {
1092 struct inode *inode = parent->d_inode;
1093 struct dentry *old;
1094
1095 /* Don't create child dentry for a dead directory. */
1096 if (unlikely(IS_DEADDIR(inode)))
1097 return ERR_PTR(-ENOENT);
1098
1099 old = inode->i_op->lookup(inode, dentry, nd);
1100 if (unlikely(old)) {
1101 dput(dentry);
1102 dentry = old;
1103 }
1104 return dentry;
1105 }
1106
1107 /*
1108 * It's more convoluted than I'd like it to be, but... it's still fairly
1109 * small and for now I'd prefer to have fast path as straight as possible.
1110 * It _is_ time-critical.
1111 */
1112 static int do_lookup(struct nameidata *nd, struct qstr *name,
1113 struct path *path, struct inode **inode)
1114 {
1115 struct vfsmount *mnt = nd->path.mnt;
1116 struct dentry *dentry, *parent = nd->path.dentry;
1117 int need_reval = 1;
1118 int status = 1;
1119 int err;
1120
1121 /*
1122 * Rename seqlock is not required here because in the off chance
1123 * of a false negative due to a concurrent rename, we're going to
1124 * do the non-racy lookup, below.
1125 */
1126 if (nd->flags & LOOKUP_RCU) {
1127 unsigned seq;
1128 *inode = nd->inode;
1129 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1130 if (!dentry)
1131 goto unlazy;
1132
1133 /* Memory barrier in read_seqcount_begin of child is enough */
1134 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1135 return -ECHILD;
1136 nd->seq = seq;
1137
1138 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1139 status = d_revalidate(dentry, nd);
1140 if (unlikely(status <= 0)) {
1141 if (status != -ECHILD)
1142 need_reval = 0;
1143 goto unlazy;
1144 }
1145 }
1146 if (unlikely(d_need_lookup(dentry)))
1147 goto unlazy;
1148 path->mnt = mnt;
1149 path->dentry = dentry;
1150 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1151 goto unlazy;
1152 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1153 goto unlazy;
1154 return 0;
1155 unlazy:
1156 if (unlazy_walk(nd, dentry))
1157 return -ECHILD;
1158 } else {
1159 dentry = __d_lookup(parent, name);
1160 }
1161
1162 if (dentry && unlikely(d_need_lookup(dentry))) {
1163 dput(dentry);
1164 dentry = NULL;
1165 }
1166 retry:
1167 if (unlikely(!dentry)) {
1168 struct inode *dir = parent->d_inode;
1169 BUG_ON(nd->inode != dir);
1170
1171 mutex_lock(&dir->i_mutex);
1172 dentry = d_lookup(parent, name);
1173 if (likely(!dentry)) {
1174 dentry = d_alloc_and_lookup(parent, name, nd);
1175 if (IS_ERR(dentry)) {
1176 mutex_unlock(&dir->i_mutex);
1177 return PTR_ERR(dentry);
1178 }
1179 /* known good */
1180 need_reval = 0;
1181 status = 1;
1182 } else if (unlikely(d_need_lookup(dentry))) {
1183 dentry = d_inode_lookup(parent, dentry, nd);
1184 if (IS_ERR(dentry)) {
1185 mutex_unlock(&dir->i_mutex);
1186 return PTR_ERR(dentry);
1187 }
1188 /* known good */
1189 need_reval = 0;
1190 status = 1;
1191 }
1192 mutex_unlock(&dir->i_mutex);
1193 }
1194 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1195 status = d_revalidate(dentry, nd);
1196 if (unlikely(status <= 0)) {
1197 if (status < 0) {
1198 dput(dentry);
1199 return status;
1200 }
1201 if (!d_invalidate(dentry)) {
1202 dput(dentry);
1203 dentry = NULL;
1204 need_reval = 1;
1205 goto retry;
1206 }
1207 }
1208
1209 path->mnt = mnt;
1210 path->dentry = dentry;
1211 err = follow_managed(path, nd->flags);
1212 if (unlikely(err < 0)) {
1213 path_put_conditional(path, nd);
1214 return err;
1215 }
1216 *inode = path->dentry->d_inode;
1217 return 0;
1218 }
1219
1220 static inline int may_lookup(struct nameidata *nd)
1221 {
1222 if (nd->flags & LOOKUP_RCU) {
1223 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1224 if (err != -ECHILD)
1225 return err;
1226 if (unlazy_walk(nd, NULL))
1227 return -ECHILD;
1228 }
1229 return inode_permission(nd->inode, MAY_EXEC);
1230 }
1231
1232 static inline int handle_dots(struct nameidata *nd, int type)
1233 {
1234 if (type == LAST_DOTDOT) {
1235 if (nd->flags & LOOKUP_RCU) {
1236 if (follow_dotdot_rcu(nd))
1237 return -ECHILD;
1238 } else
1239 follow_dotdot(nd);
1240 }
1241 return 0;
1242 }
1243
1244 static void terminate_walk(struct nameidata *nd)
1245 {
1246 if (!(nd->flags & LOOKUP_RCU)) {
1247 path_put(&nd->path);
1248 } else {
1249 nd->flags &= ~LOOKUP_RCU;
1250 if (!(nd->flags & LOOKUP_ROOT))
1251 nd->root.mnt = NULL;
1252 rcu_read_unlock();
1253 br_read_unlock(vfsmount_lock);
1254 }
1255 }
1256
1257 /*
1258 * Do we need to follow links? We _really_ want to be able
1259 * to do this check without having to look at inode->i_op,
1260 * so we keep a cache of "no, this doesn't need follow_link"
1261 * for the common case.
1262 */
1263 static inline int should_follow_link(struct inode *inode, int follow)
1264 {
1265 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1266 if (likely(inode->i_op->follow_link))
1267 return follow;
1268
1269 /* This gets set once for the inode lifetime */
1270 spin_lock(&inode->i_lock);
1271 inode->i_opflags |= IOP_NOFOLLOW;
1272 spin_unlock(&inode->i_lock);
1273 }
1274 return 0;
1275 }
1276
1277 static inline int walk_component(struct nameidata *nd, struct path *path,
1278 struct qstr *name, int type, int follow)
1279 {
1280 struct inode *inode;
1281 int err;
1282 /*
1283 * "." and ".." are special - ".." especially so because it has
1284 * to be able to know about the current root directory and
1285 * parent relationships.
1286 */
1287 if (unlikely(type != LAST_NORM))
1288 return handle_dots(nd, type);
1289 err = do_lookup(nd, name, path, &inode);
1290 if (unlikely(err)) {
1291 terminate_walk(nd);
1292 return err;
1293 }
1294 if (!inode) {
1295 path_to_nameidata(path, nd);
1296 terminate_walk(nd);
1297 return -ENOENT;
1298 }
1299 if (should_follow_link(inode, follow)) {
1300 if (nd->flags & LOOKUP_RCU) {
1301 if (unlikely(unlazy_walk(nd, path->dentry))) {
1302 terminate_walk(nd);
1303 return -ECHILD;
1304 }
1305 }
1306 BUG_ON(inode != path->dentry->d_inode);
1307 return 1;
1308 }
1309 path_to_nameidata(path, nd);
1310 nd->inode = inode;
1311 return 0;
1312 }
1313
1314 /*
1315 * This limits recursive symlink follows to 8, while
1316 * limiting consecutive symlinks to 40.
1317 *
1318 * Without that kind of total limit, nasty chains of consecutive
1319 * symlinks can cause almost arbitrarily long lookups.
1320 */
1321 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1322 {
1323 int res;
1324
1325 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1326 path_put_conditional(path, nd);
1327 path_put(&nd->path);
1328 return -ELOOP;
1329 }
1330 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1331
1332 nd->depth++;
1333 current->link_count++;
1334
1335 do {
1336 struct path link = *path;
1337 void *cookie;
1338
1339 res = follow_link(&link, nd, &cookie);
1340 if (!res)
1341 res = walk_component(nd, path, &nd->last,
1342 nd->last_type, LOOKUP_FOLLOW);
1343 put_link(nd, &link, cookie);
1344 } while (res > 0);
1345
1346 current->link_count--;
1347 nd->depth--;
1348 return res;
1349 }
1350
1351 /*
1352 * We really don't want to look at inode->i_op->lookup
1353 * when we don't have to. So we keep a cache bit in
1354 * the inode ->i_opflags field that says "yes, we can
1355 * do lookup on this inode".
1356 */
1357 static inline int can_lookup(struct inode *inode)
1358 {
1359 if (likely(inode->i_opflags & IOP_LOOKUP))
1360 return 1;
1361 if (likely(!inode->i_op->lookup))
1362 return 0;
1363
1364 /* We do this once for the lifetime of the inode */
1365 spin_lock(&inode->i_lock);
1366 inode->i_opflags |= IOP_LOOKUP;
1367 spin_unlock(&inode->i_lock);
1368 return 1;
1369 }
1370
1371 /*
1372 * Name resolution.
1373 * This is the basic name resolution function, turning a pathname into
1374 * the final dentry. We expect 'base' to be positive and a directory.
1375 *
1376 * Returns 0 and nd will have valid dentry and mnt on success.
1377 * Returns error and drops reference to input namei data on failure.
1378 */
1379 static int link_path_walk(const char *name, struct nameidata *nd)
1380 {
1381 struct path next;
1382 int err;
1383
1384 while (*name=='/')
1385 name++;
1386 if (!*name)
1387 return 0;
1388
1389 /* At this point we know we have a real path component. */
1390 for(;;) {
1391 unsigned long hash;
1392 struct qstr this;
1393 unsigned int c;
1394 int type;
1395
1396 err = may_lookup(nd);
1397 if (err)
1398 break;
1399
1400 this.name = name;
1401 c = *(const unsigned char *)name;
1402
1403 hash = init_name_hash();
1404 do {
1405 name++;
1406 hash = partial_name_hash(c, hash);
1407 c = *(const unsigned char *)name;
1408 } while (c && (c != '/'));
1409 this.len = name - (const char *) this.name;
1410 this.hash = end_name_hash(hash);
1411
1412 type = LAST_NORM;
1413 if (this.name[0] == '.') switch (this.len) {
1414 case 2:
1415 if (this.name[1] == '.') {
1416 type = LAST_DOTDOT;
1417 nd->flags |= LOOKUP_JUMPED;
1418 }
1419 break;
1420 case 1:
1421 type = LAST_DOT;
1422 }
1423 if (likely(type == LAST_NORM)) {
1424 struct dentry *parent = nd->path.dentry;
1425 nd->flags &= ~LOOKUP_JUMPED;
1426 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1427 err = parent->d_op->d_hash(parent, nd->inode,
1428 &this);
1429 if (err < 0)
1430 break;
1431 }
1432 }
1433
1434 /* remove trailing slashes? */
1435 if (!c)
1436 goto last_component;
1437 while (*++name == '/');
1438 if (!*name)
1439 goto last_component;
1440
1441 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1442 if (err < 0)
1443 return err;
1444
1445 if (err) {
1446 err = nested_symlink(&next, nd);
1447 if (err)
1448 return err;
1449 }
1450 if (can_lookup(nd->inode))
1451 continue;
1452 err = -ENOTDIR;
1453 break;
1454 /* here ends the main loop */
1455
1456 last_component:
1457 nd->last = this;
1458 nd->last_type = type;
1459 return 0;
1460 }
1461 terminate_walk(nd);
1462 return err;
1463 }
1464
1465 static int path_init(int dfd, const char *name, unsigned int flags,
1466 struct nameidata *nd, struct file **fp)
1467 {
1468 int retval = 0;
1469 int fput_needed;
1470 struct file *file;
1471
1472 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1473 nd->flags = flags | LOOKUP_JUMPED;
1474 nd->depth = 0;
1475 if (flags & LOOKUP_ROOT) {
1476 struct inode *inode = nd->root.dentry->d_inode;
1477 if (*name) {
1478 if (!inode->i_op->lookup)
1479 return -ENOTDIR;
1480 retval = inode_permission(inode, MAY_EXEC);
1481 if (retval)
1482 return retval;
1483 }
1484 nd->path = nd->root;
1485 nd->inode = inode;
1486 if (flags & LOOKUP_RCU) {
1487 br_read_lock(vfsmount_lock);
1488 rcu_read_lock();
1489 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1490 } else {
1491 path_get(&nd->path);
1492 }
1493 return 0;
1494 }
1495
1496 nd->root.mnt = NULL;
1497
1498 if (*name=='/') {
1499 if (flags & LOOKUP_RCU) {
1500 br_read_lock(vfsmount_lock);
1501 rcu_read_lock();
1502 set_root_rcu(nd);
1503 } else {
1504 set_root(nd);
1505 path_get(&nd->root);
1506 }
1507 nd->path = nd->root;
1508 } else if (dfd == AT_FDCWD) {
1509 if (flags & LOOKUP_RCU) {
1510 struct fs_struct *fs = current->fs;
1511 unsigned seq;
1512
1513 br_read_lock(vfsmount_lock);
1514 rcu_read_lock();
1515
1516 do {
1517 seq = read_seqcount_begin(&fs->seq);
1518 nd->path = fs->pwd;
1519 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1520 } while (read_seqcount_retry(&fs->seq, seq));
1521 } else {
1522 get_fs_pwd(current->fs, &nd->path);
1523 }
1524 } else {
1525 struct dentry *dentry;
1526
1527 file = fget_raw_light(dfd, &fput_needed);
1528 retval = -EBADF;
1529 if (!file)
1530 goto out_fail;
1531
1532 dentry = file->f_path.dentry;
1533
1534 if (*name) {
1535 retval = -ENOTDIR;
1536 if (!S_ISDIR(dentry->d_inode->i_mode))
1537 goto fput_fail;
1538
1539 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1540 if (retval)
1541 goto fput_fail;
1542 }
1543
1544 nd->path = file->f_path;
1545 if (flags & LOOKUP_RCU) {
1546 if (fput_needed)
1547 *fp = file;
1548 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1549 br_read_lock(vfsmount_lock);
1550 rcu_read_lock();
1551 } else {
1552 path_get(&file->f_path);
1553 fput_light(file, fput_needed);
1554 }
1555 }
1556
1557 nd->inode = nd->path.dentry->d_inode;
1558 return 0;
1559
1560 fput_fail:
1561 fput_light(file, fput_needed);
1562 out_fail:
1563 return retval;
1564 }
1565
1566 static inline int lookup_last(struct nameidata *nd, struct path *path)
1567 {
1568 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1569 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1570
1571 nd->flags &= ~LOOKUP_PARENT;
1572 return walk_component(nd, path, &nd->last, nd->last_type,
1573 nd->flags & LOOKUP_FOLLOW);
1574 }
1575
1576 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1577 static int path_lookupat(int dfd, const char *name,
1578 unsigned int flags, struct nameidata *nd)
1579 {
1580 struct file *base = NULL;
1581 struct path path;
1582 int err;
1583
1584 /*
1585 * Path walking is largely split up into 2 different synchronisation
1586 * schemes, rcu-walk and ref-walk (explained in
1587 * Documentation/filesystems/path-lookup.txt). These share much of the
1588 * path walk code, but some things particularly setup, cleanup, and
1589 * following mounts are sufficiently divergent that functions are
1590 * duplicated. Typically there is a function foo(), and its RCU
1591 * analogue, foo_rcu().
1592 *
1593 * -ECHILD is the error number of choice (just to avoid clashes) that
1594 * is returned if some aspect of an rcu-walk fails. Such an error must
1595 * be handled by restarting a traditional ref-walk (which will always
1596 * be able to complete).
1597 */
1598 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1599
1600 if (unlikely(err))
1601 return err;
1602
1603 current->total_link_count = 0;
1604 err = link_path_walk(name, nd);
1605
1606 if (!err && !(flags & LOOKUP_PARENT)) {
1607 err = lookup_last(nd, &path);
1608 while (err > 0) {
1609 void *cookie;
1610 struct path link = path;
1611 nd->flags |= LOOKUP_PARENT;
1612 err = follow_link(&link, nd, &cookie);
1613 if (!err)
1614 err = lookup_last(nd, &path);
1615 put_link(nd, &link, cookie);
1616 }
1617 }
1618
1619 if (!err)
1620 err = complete_walk(nd);
1621
1622 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1623 if (!nd->inode->i_op->lookup) {
1624 path_put(&nd->path);
1625 err = -ENOTDIR;
1626 }
1627 }
1628
1629 if (base)
1630 fput(base);
1631
1632 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1633 path_put(&nd->root);
1634 nd->root.mnt = NULL;
1635 }
1636 return err;
1637 }
1638
1639 static int do_path_lookup(int dfd, const char *name,
1640 unsigned int flags, struct nameidata *nd)
1641 {
1642 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1643 if (unlikely(retval == -ECHILD))
1644 retval = path_lookupat(dfd, name, flags, nd);
1645 if (unlikely(retval == -ESTALE))
1646 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1647
1648 if (likely(!retval)) {
1649 if (unlikely(!audit_dummy_context())) {
1650 if (nd->path.dentry && nd->inode)
1651 audit_inode(name, nd->path.dentry);
1652 }
1653 }
1654 return retval;
1655 }
1656
1657 int kern_path_parent(const char *name, struct nameidata *nd)
1658 {
1659 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1660 }
1661
1662 int kern_path(const char *name, unsigned int flags, struct path *path)
1663 {
1664 struct nameidata nd;
1665 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1666 if (!res)
1667 *path = nd.path;
1668 return res;
1669 }
1670
1671 /**
1672 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1673 * @dentry: pointer to dentry of the base directory
1674 * @mnt: pointer to vfs mount of the base directory
1675 * @name: pointer to file name
1676 * @flags: lookup flags
1677 * @path: pointer to struct path to fill
1678 */
1679 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1680 const char *name, unsigned int flags,
1681 struct path *path)
1682 {
1683 struct nameidata nd;
1684 int err;
1685 nd.root.dentry = dentry;
1686 nd.root.mnt = mnt;
1687 BUG_ON(flags & LOOKUP_PARENT);
1688 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1689 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1690 if (!err)
1691 *path = nd.path;
1692 return err;
1693 }
1694
1695 static struct dentry *__lookup_hash(struct qstr *name,
1696 struct dentry *base, struct nameidata *nd)
1697 {
1698 struct inode *inode = base->d_inode;
1699 struct dentry *dentry;
1700 int err;
1701
1702 err = inode_permission(inode, MAY_EXEC);
1703 if (err)
1704 return ERR_PTR(err);
1705
1706 /*
1707 * Don't bother with __d_lookup: callers are for creat as
1708 * well as unlink, so a lot of the time it would cost
1709 * a double lookup.
1710 */
1711 dentry = d_lookup(base, name);
1712
1713 if (dentry && d_need_lookup(dentry)) {
1714 /*
1715 * __lookup_hash is called with the parent dir's i_mutex already
1716 * held, so we are good to go here.
1717 */
1718 dentry = d_inode_lookup(base, dentry, nd);
1719 if (IS_ERR(dentry))
1720 return dentry;
1721 }
1722
1723 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1724 int status = d_revalidate(dentry, nd);
1725 if (unlikely(status <= 0)) {
1726 /*
1727 * The dentry failed validation.
1728 * If d_revalidate returned 0 attempt to invalidate
1729 * the dentry otherwise d_revalidate is asking us
1730 * to return a fail status.
1731 */
1732 if (status < 0) {
1733 dput(dentry);
1734 return ERR_PTR(status);
1735 } else if (!d_invalidate(dentry)) {
1736 dput(dentry);
1737 dentry = NULL;
1738 }
1739 }
1740 }
1741
1742 if (!dentry)
1743 dentry = d_alloc_and_lookup(base, name, nd);
1744
1745 return dentry;
1746 }
1747
1748 /*
1749 * Restricted form of lookup. Doesn't follow links, single-component only,
1750 * needs parent already locked. Doesn't follow mounts.
1751 * SMP-safe.
1752 */
1753 static struct dentry *lookup_hash(struct nameidata *nd)
1754 {
1755 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1756 }
1757
1758 /**
1759 * lookup_one_len - filesystem helper to lookup single pathname component
1760 * @name: pathname component to lookup
1761 * @base: base directory to lookup from
1762 * @len: maximum length @len should be interpreted to
1763 *
1764 * Note that this routine is purely a helper for filesystem usage and should
1765 * not be called by generic code. Also note that by using this function the
1766 * nameidata argument is passed to the filesystem methods and a filesystem
1767 * using this helper needs to be prepared for that.
1768 */
1769 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1770 {
1771 struct qstr this;
1772 unsigned long hash;
1773 unsigned int c;
1774
1775 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1776
1777 this.name = name;
1778 this.len = len;
1779 if (!len)
1780 return ERR_PTR(-EACCES);
1781
1782 hash = init_name_hash();
1783 while (len--) {
1784 c = *(const unsigned char *)name++;
1785 if (c == '/' || c == '\0')
1786 return ERR_PTR(-EACCES);
1787 hash = partial_name_hash(c, hash);
1788 }
1789 this.hash = end_name_hash(hash);
1790 /*
1791 * See if the low-level filesystem might want
1792 * to use its own hash..
1793 */
1794 if (base->d_flags & DCACHE_OP_HASH) {
1795 int err = base->d_op->d_hash(base, base->d_inode, &this);
1796 if (err < 0)
1797 return ERR_PTR(err);
1798 }
1799
1800 return __lookup_hash(&this, base, NULL);
1801 }
1802
1803 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1804 struct path *path, int *empty)
1805 {
1806 struct nameidata nd;
1807 char *tmp = getname_flags(name, flags, empty);
1808 int err = PTR_ERR(tmp);
1809 if (!IS_ERR(tmp)) {
1810
1811 BUG_ON(flags & LOOKUP_PARENT);
1812
1813 err = do_path_lookup(dfd, tmp, flags, &nd);
1814 putname(tmp);
1815 if (!err)
1816 *path = nd.path;
1817 }
1818 return err;
1819 }
1820
1821 int user_path_at(int dfd, const char __user *name, unsigned flags,
1822 struct path *path)
1823 {
1824 return user_path_at_empty(dfd, name, flags, path, 0);
1825 }
1826
1827 static int user_path_parent(int dfd, const char __user *path,
1828 struct nameidata *nd, char **name)
1829 {
1830 char *s = getname(path);
1831 int error;
1832
1833 if (IS_ERR(s))
1834 return PTR_ERR(s);
1835
1836 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1837 if (error)
1838 putname(s);
1839 else
1840 *name = s;
1841
1842 return error;
1843 }
1844
1845 /*
1846 * It's inline, so penalty for filesystems that don't use sticky bit is
1847 * minimal.
1848 */
1849 static inline int check_sticky(struct inode *dir, struct inode *inode)
1850 {
1851 uid_t fsuid = current_fsuid();
1852
1853 if (!(dir->i_mode & S_ISVTX))
1854 return 0;
1855 if (current_user_ns() != inode_userns(inode))
1856 goto other_userns;
1857 if (inode->i_uid == fsuid)
1858 return 0;
1859 if (dir->i_uid == fsuid)
1860 return 0;
1861
1862 other_userns:
1863 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1864 }
1865
1866 /*
1867 * Check whether we can remove a link victim from directory dir, check
1868 * whether the type of victim is right.
1869 * 1. We can't do it if dir is read-only (done in permission())
1870 * 2. We should have write and exec permissions on dir
1871 * 3. We can't remove anything from append-only dir
1872 * 4. We can't do anything with immutable dir (done in permission())
1873 * 5. If the sticky bit on dir is set we should either
1874 * a. be owner of dir, or
1875 * b. be owner of victim, or
1876 * c. have CAP_FOWNER capability
1877 * 6. If the victim is append-only or immutable we can't do antyhing with
1878 * links pointing to it.
1879 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1880 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1881 * 9. We can't remove a root or mountpoint.
1882 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1883 * nfs_async_unlink().
1884 */
1885 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1886 {
1887 int error;
1888
1889 if (!victim->d_inode)
1890 return -ENOENT;
1891
1892 BUG_ON(victim->d_parent->d_inode != dir);
1893 audit_inode_child(victim, dir);
1894
1895 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1896 if (error)
1897 return error;
1898 if (IS_APPEND(dir))
1899 return -EPERM;
1900 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1901 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1902 return -EPERM;
1903 if (isdir) {
1904 if (!S_ISDIR(victim->d_inode->i_mode))
1905 return -ENOTDIR;
1906 if (IS_ROOT(victim))
1907 return -EBUSY;
1908 } else if (S_ISDIR(victim->d_inode->i_mode))
1909 return -EISDIR;
1910 if (IS_DEADDIR(dir))
1911 return -ENOENT;
1912 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1913 return -EBUSY;
1914 return 0;
1915 }
1916
1917 /* Check whether we can create an object with dentry child in directory
1918 * dir.
1919 * 1. We can't do it if child already exists (open has special treatment for
1920 * this case, but since we are inlined it's OK)
1921 * 2. We can't do it if dir is read-only (done in permission())
1922 * 3. We should have write and exec permissions on dir
1923 * 4. We can't do it if dir is immutable (done in permission())
1924 */
1925 static inline int may_create(struct inode *dir, struct dentry *child)
1926 {
1927 if (child->d_inode)
1928 return -EEXIST;
1929 if (IS_DEADDIR(dir))
1930 return -ENOENT;
1931 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1932 }
1933
1934 /*
1935 * p1 and p2 should be directories on the same fs.
1936 */
1937 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1938 {
1939 struct dentry *p;
1940
1941 if (p1 == p2) {
1942 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1943 return NULL;
1944 }
1945
1946 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1947
1948 p = d_ancestor(p2, p1);
1949 if (p) {
1950 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1951 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1952 return p;
1953 }
1954
1955 p = d_ancestor(p1, p2);
1956 if (p) {
1957 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1958 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1959 return p;
1960 }
1961
1962 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1963 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1964 return NULL;
1965 }
1966
1967 void unlock_rename(struct dentry *p1, struct dentry *p2)
1968 {
1969 mutex_unlock(&p1->d_inode->i_mutex);
1970 if (p1 != p2) {
1971 mutex_unlock(&p2->d_inode->i_mutex);
1972 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1973 }
1974 }
1975
1976 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1977 struct nameidata *nd)
1978 {
1979 int error = may_create(dir, dentry);
1980
1981 if (error)
1982 return error;
1983
1984 if (!dir->i_op->create)
1985 return -EACCES; /* shouldn't it be ENOSYS? */
1986 mode &= S_IALLUGO;
1987 mode |= S_IFREG;
1988 error = security_inode_create(dir, dentry, mode);
1989 if (error)
1990 return error;
1991 error = dir->i_op->create(dir, dentry, mode, nd);
1992 if (!error)
1993 fsnotify_create(dir, dentry);
1994 return error;
1995 }
1996
1997 static int may_open(struct path *path, int acc_mode, int flag)
1998 {
1999 struct dentry *dentry = path->dentry;
2000 struct inode *inode = dentry->d_inode;
2001 int error;
2002
2003 /* O_PATH? */
2004 if (!acc_mode)
2005 return 0;
2006
2007 if (!inode)
2008 return -ENOENT;
2009
2010 switch (inode->i_mode & S_IFMT) {
2011 case S_IFLNK:
2012 return -ELOOP;
2013 case S_IFDIR:
2014 if (acc_mode & MAY_WRITE)
2015 return -EISDIR;
2016 break;
2017 case S_IFBLK:
2018 case S_IFCHR:
2019 if (path->mnt->mnt_flags & MNT_NODEV)
2020 return -EACCES;
2021 /*FALLTHRU*/
2022 case S_IFIFO:
2023 case S_IFSOCK:
2024 flag &= ~O_TRUNC;
2025 break;
2026 }
2027
2028 error = inode_permission(inode, acc_mode);
2029 if (error)
2030 return error;
2031
2032 /*
2033 * An append-only file must be opened in append mode for writing.
2034 */
2035 if (IS_APPEND(inode)) {
2036 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2037 return -EPERM;
2038 if (flag & O_TRUNC)
2039 return -EPERM;
2040 }
2041
2042 /* O_NOATIME can only be set by the owner or superuser */
2043 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2044 return -EPERM;
2045
2046 return 0;
2047 }
2048
2049 static int handle_truncate(struct file *filp)
2050 {
2051 struct path *path = &filp->f_path;
2052 struct inode *inode = path->dentry->d_inode;
2053 int error = get_write_access(inode);
2054 if (error)
2055 return error;
2056 /*
2057 * Refuse to truncate files with mandatory locks held on them.
2058 */
2059 error = locks_verify_locked(inode);
2060 if (!error)
2061 error = security_path_truncate(path);
2062 if (!error) {
2063 error = do_truncate(path->dentry, 0,
2064 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2065 filp);
2066 }
2067 put_write_access(inode);
2068 return error;
2069 }
2070
2071 static inline int open_to_namei_flags(int flag)
2072 {
2073 if ((flag & O_ACCMODE) == 3)
2074 flag--;
2075 return flag;
2076 }
2077
2078 /*
2079 * Handle the last step of open()
2080 */
2081 static struct file *do_last(struct nameidata *nd, struct path *path,
2082 const struct open_flags *op, const char *pathname)
2083 {
2084 struct dentry *dir = nd->path.dentry;
2085 struct dentry *dentry;
2086 int open_flag = op->open_flag;
2087 int will_truncate = open_flag & O_TRUNC;
2088 int want_write = 0;
2089 int acc_mode = op->acc_mode;
2090 struct file *filp;
2091 int error;
2092
2093 nd->flags &= ~LOOKUP_PARENT;
2094 nd->flags |= op->intent;
2095
2096 switch (nd->last_type) {
2097 case LAST_DOTDOT:
2098 case LAST_DOT:
2099 error = handle_dots(nd, nd->last_type);
2100 if (error)
2101 return ERR_PTR(error);
2102 /* fallthrough */
2103 case LAST_ROOT:
2104 error = complete_walk(nd);
2105 if (error)
2106 return ERR_PTR(error);
2107 audit_inode(pathname, nd->path.dentry);
2108 if (open_flag & O_CREAT) {
2109 error = -EISDIR;
2110 goto exit;
2111 }
2112 goto ok;
2113 case LAST_BIND:
2114 error = complete_walk(nd);
2115 if (error)
2116 return ERR_PTR(error);
2117 audit_inode(pathname, dir);
2118 goto ok;
2119 }
2120
2121 if (!(open_flag & O_CREAT)) {
2122 int symlink_ok = 0;
2123 if (nd->last.name[nd->last.len])
2124 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2125 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2126 symlink_ok = 1;
2127 /* we _can_ be in RCU mode here */
2128 error = walk_component(nd, path, &nd->last, LAST_NORM,
2129 !symlink_ok);
2130 if (error < 0)
2131 return ERR_PTR(error);
2132 if (error) /* symlink */
2133 return NULL;
2134 /* sayonara */
2135 error = complete_walk(nd);
2136 if (error)
2137 return ERR_PTR(-ECHILD);
2138
2139 error = -ENOTDIR;
2140 if (nd->flags & LOOKUP_DIRECTORY) {
2141 if (!nd->inode->i_op->lookup)
2142 goto exit;
2143 }
2144 audit_inode(pathname, nd->path.dentry);
2145 goto ok;
2146 }
2147
2148 /* create side of things */
2149 error = complete_walk(nd);
2150 if (error)
2151 return ERR_PTR(error);
2152
2153 audit_inode(pathname, dir);
2154 error = -EISDIR;
2155 /* trailing slashes? */
2156 if (nd->last.name[nd->last.len])
2157 goto exit;
2158
2159 mutex_lock(&dir->d_inode->i_mutex);
2160
2161 dentry = lookup_hash(nd);
2162 error = PTR_ERR(dentry);
2163 if (IS_ERR(dentry)) {
2164 mutex_unlock(&dir->d_inode->i_mutex);
2165 goto exit;
2166 }
2167
2168 path->dentry = dentry;
2169 path->mnt = nd->path.mnt;
2170
2171 /* Negative dentry, just create the file */
2172 if (!dentry->d_inode) {
2173 int mode = op->mode;
2174 if (!IS_POSIXACL(dir->d_inode))
2175 mode &= ~current_umask();
2176 /*
2177 * This write is needed to ensure that a
2178 * rw->ro transition does not occur between
2179 * the time when the file is created and when
2180 * a permanent write count is taken through
2181 * the 'struct file' in nameidata_to_filp().
2182 */
2183 error = mnt_want_write(nd->path.mnt);
2184 if (error)
2185 goto exit_mutex_unlock;
2186 want_write = 1;
2187 /* Don't check for write permission, don't truncate */
2188 open_flag &= ~O_TRUNC;
2189 will_truncate = 0;
2190 acc_mode = MAY_OPEN;
2191 error = security_path_mknod(&nd->path, dentry, mode, 0);
2192 if (error)
2193 goto exit_mutex_unlock;
2194 error = vfs_create(dir->d_inode, dentry, mode, nd);
2195 if (error)
2196 goto exit_mutex_unlock;
2197 mutex_unlock(&dir->d_inode->i_mutex);
2198 dput(nd->path.dentry);
2199 nd->path.dentry = dentry;
2200 goto common;
2201 }
2202
2203 /*
2204 * It already exists.
2205 */
2206 mutex_unlock(&dir->d_inode->i_mutex);
2207 audit_inode(pathname, path->dentry);
2208
2209 error = -EEXIST;
2210 if (open_flag & O_EXCL)
2211 goto exit_dput;
2212
2213 error = follow_managed(path, nd->flags);
2214 if (error < 0)
2215 goto exit_dput;
2216
2217 error = -ENOENT;
2218 if (!path->dentry->d_inode)
2219 goto exit_dput;
2220
2221 if (path->dentry->d_inode->i_op->follow_link)
2222 return NULL;
2223
2224 path_to_nameidata(path, nd);
2225 nd->inode = path->dentry->d_inode;
2226 error = -EISDIR;
2227 if (S_ISDIR(nd->inode->i_mode))
2228 goto exit;
2229 ok:
2230 if (!S_ISREG(nd->inode->i_mode))
2231 will_truncate = 0;
2232
2233 if (will_truncate) {
2234 error = mnt_want_write(nd->path.mnt);
2235 if (error)
2236 goto exit;
2237 want_write = 1;
2238 }
2239 common:
2240 error = may_open(&nd->path, acc_mode, open_flag);
2241 if (error)
2242 goto exit;
2243 filp = nameidata_to_filp(nd);
2244 if (!IS_ERR(filp)) {
2245 error = ima_file_check(filp, op->acc_mode);
2246 if (error) {
2247 fput(filp);
2248 filp = ERR_PTR(error);
2249 }
2250 }
2251 if (!IS_ERR(filp)) {
2252 if (will_truncate) {
2253 error = handle_truncate(filp);
2254 if (error) {
2255 fput(filp);
2256 filp = ERR_PTR(error);
2257 }
2258 }
2259 }
2260 out:
2261 if (want_write)
2262 mnt_drop_write(nd->path.mnt);
2263 path_put(&nd->path);
2264 return filp;
2265
2266 exit_mutex_unlock:
2267 mutex_unlock(&dir->d_inode->i_mutex);
2268 exit_dput:
2269 path_put_conditional(path, nd);
2270 exit:
2271 filp = ERR_PTR(error);
2272 goto out;
2273 }
2274
2275 static struct file *path_openat(int dfd, const char *pathname,
2276 struct nameidata *nd, const struct open_flags *op, int flags)
2277 {
2278 struct file *base = NULL;
2279 struct file *filp;
2280 struct path path;
2281 int error;
2282
2283 filp = get_empty_filp();
2284 if (!filp)
2285 return ERR_PTR(-ENFILE);
2286
2287 filp->f_flags = op->open_flag;
2288 nd->intent.open.file = filp;
2289 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2290 nd->intent.open.create_mode = op->mode;
2291
2292 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2293 if (unlikely(error))
2294 goto out_filp;
2295
2296 current->total_link_count = 0;
2297 error = link_path_walk(pathname, nd);
2298 if (unlikely(error))
2299 goto out_filp;
2300
2301 filp = do_last(nd, &path, op, pathname);
2302 while (unlikely(!filp)) { /* trailing symlink */
2303 struct path link = path;
2304 void *cookie;
2305 if (!(nd->flags & LOOKUP_FOLLOW)) {
2306 path_put_conditional(&path, nd);
2307 path_put(&nd->path);
2308 filp = ERR_PTR(-ELOOP);
2309 break;
2310 }
2311 nd->flags |= LOOKUP_PARENT;
2312 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2313 error = follow_link(&link, nd, &cookie);
2314 if (unlikely(error))
2315 filp = ERR_PTR(error);
2316 else
2317 filp = do_last(nd, &path, op, pathname);
2318 put_link(nd, &link, cookie);
2319 }
2320 out:
2321 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2322 path_put(&nd->root);
2323 if (base)
2324 fput(base);
2325 release_open_intent(nd);
2326 return filp;
2327
2328 out_filp:
2329 filp = ERR_PTR(error);
2330 goto out;
2331 }
2332
2333 struct file *do_filp_open(int dfd, const char *pathname,
2334 const struct open_flags *op, int flags)
2335 {
2336 struct nameidata nd;
2337 struct file *filp;
2338
2339 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2340 if (unlikely(filp == ERR_PTR(-ECHILD)))
2341 filp = path_openat(dfd, pathname, &nd, op, flags);
2342 if (unlikely(filp == ERR_PTR(-ESTALE)))
2343 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2344 return filp;
2345 }
2346
2347 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2348 const char *name, const struct open_flags *op, int flags)
2349 {
2350 struct nameidata nd;
2351 struct file *file;
2352
2353 nd.root.mnt = mnt;
2354 nd.root.dentry = dentry;
2355
2356 flags |= LOOKUP_ROOT;
2357
2358 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2359 return ERR_PTR(-ELOOP);
2360
2361 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2362 if (unlikely(file == ERR_PTR(-ECHILD)))
2363 file = path_openat(-1, name, &nd, op, flags);
2364 if (unlikely(file == ERR_PTR(-ESTALE)))
2365 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2366 return file;
2367 }
2368
2369 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2370 {
2371 struct dentry *dentry = ERR_PTR(-EEXIST);
2372 struct nameidata nd;
2373 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2374 if (error)
2375 return ERR_PTR(error);
2376
2377 /*
2378 * Yucky last component or no last component at all?
2379 * (foo/., foo/.., /////)
2380 */
2381 if (nd.last_type != LAST_NORM)
2382 goto out;
2383 nd.flags &= ~LOOKUP_PARENT;
2384 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2385 nd.intent.open.flags = O_EXCL;
2386
2387 /*
2388 * Do the final lookup.
2389 */
2390 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2391 dentry = lookup_hash(&nd);
2392 if (IS_ERR(dentry))
2393 goto fail;
2394
2395 if (dentry->d_inode)
2396 goto eexist;
2397 /*
2398 * Special case - lookup gave negative, but... we had foo/bar/
2399 * From the vfs_mknod() POV we just have a negative dentry -
2400 * all is fine. Let's be bastards - you had / on the end, you've
2401 * been asking for (non-existent) directory. -ENOENT for you.
2402 */
2403 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2404 dput(dentry);
2405 dentry = ERR_PTR(-ENOENT);
2406 goto fail;
2407 }
2408 *path = nd.path;
2409 return dentry;
2410 eexist:
2411 dput(dentry);
2412 dentry = ERR_PTR(-EEXIST);
2413 fail:
2414 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2415 out:
2416 path_put(&nd.path);
2417 return dentry;
2418 }
2419 EXPORT_SYMBOL(kern_path_create);
2420
2421 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2422 {
2423 char *tmp = getname(pathname);
2424 struct dentry *res;
2425 if (IS_ERR(tmp))
2426 return ERR_CAST(tmp);
2427 res = kern_path_create(dfd, tmp, path, is_dir);
2428 putname(tmp);
2429 return res;
2430 }
2431 EXPORT_SYMBOL(user_path_create);
2432
2433 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2434 {
2435 int error = may_create(dir, dentry);
2436
2437 if (error)
2438 return error;
2439
2440 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2441 !ns_capable(inode_userns(dir), CAP_MKNOD))
2442 return -EPERM;
2443
2444 if (!dir->i_op->mknod)
2445 return -EPERM;
2446
2447 error = devcgroup_inode_mknod(mode, dev);
2448 if (error)
2449 return error;
2450
2451 error = security_inode_mknod(dir, dentry, mode, dev);
2452 if (error)
2453 return error;
2454
2455 error = dir->i_op->mknod(dir, dentry, mode, dev);
2456 if (!error)
2457 fsnotify_create(dir, dentry);
2458 return error;
2459 }
2460
2461 static int may_mknod(mode_t mode)
2462 {
2463 switch (mode & S_IFMT) {
2464 case S_IFREG:
2465 case S_IFCHR:
2466 case S_IFBLK:
2467 case S_IFIFO:
2468 case S_IFSOCK:
2469 case 0: /* zero mode translates to S_IFREG */
2470 return 0;
2471 case S_IFDIR:
2472 return -EPERM;
2473 default:
2474 return -EINVAL;
2475 }
2476 }
2477
2478 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2479 unsigned, dev)
2480 {
2481 struct dentry *dentry;
2482 struct path path;
2483 int error;
2484
2485 if (S_ISDIR(mode))
2486 return -EPERM;
2487
2488 dentry = user_path_create(dfd, filename, &path, 0);
2489 if (IS_ERR(dentry))
2490 return PTR_ERR(dentry);
2491
2492 if (!IS_POSIXACL(path.dentry->d_inode))
2493 mode &= ~current_umask();
2494 error = may_mknod(mode);
2495 if (error)
2496 goto out_dput;
2497 error = mnt_want_write(path.mnt);
2498 if (error)
2499 goto out_dput;
2500 error = security_path_mknod(&path, dentry, mode, dev);
2501 if (error)
2502 goto out_drop_write;
2503 switch (mode & S_IFMT) {
2504 case 0: case S_IFREG:
2505 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2506 break;
2507 case S_IFCHR: case S_IFBLK:
2508 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2509 new_decode_dev(dev));
2510 break;
2511 case S_IFIFO: case S_IFSOCK:
2512 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2513 break;
2514 }
2515 out_drop_write:
2516 mnt_drop_write(path.mnt);
2517 out_dput:
2518 dput(dentry);
2519 mutex_unlock(&path.dentry->d_inode->i_mutex);
2520 path_put(&path);
2521
2522 return error;
2523 }
2524
2525 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2526 {
2527 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2528 }
2529
2530 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2531 {
2532 int error = may_create(dir, dentry);
2533
2534 if (error)
2535 return error;
2536
2537 if (!dir->i_op->mkdir)
2538 return -EPERM;
2539
2540 mode &= (S_IRWXUGO|S_ISVTX);
2541 error = security_inode_mkdir(dir, dentry, mode);
2542 if (error)
2543 return error;
2544
2545 error = dir->i_op->mkdir(dir, dentry, mode);
2546 if (!error)
2547 fsnotify_mkdir(dir, dentry);
2548 return error;
2549 }
2550
2551 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2552 {
2553 struct dentry *dentry;
2554 struct path path;
2555 int error;
2556
2557 dentry = user_path_create(dfd, pathname, &path, 1);
2558 if (IS_ERR(dentry))
2559 return PTR_ERR(dentry);
2560
2561 if (!IS_POSIXACL(path.dentry->d_inode))
2562 mode &= ~current_umask();
2563 error = mnt_want_write(path.mnt);
2564 if (error)
2565 goto out_dput;
2566 error = security_path_mkdir(&path, dentry, mode);
2567 if (error)
2568 goto out_drop_write;
2569 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2570 out_drop_write:
2571 mnt_drop_write(path.mnt);
2572 out_dput:
2573 dput(dentry);
2574 mutex_unlock(&path.dentry->d_inode->i_mutex);
2575 path_put(&path);
2576 return error;
2577 }
2578
2579 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2580 {
2581 return sys_mkdirat(AT_FDCWD, pathname, mode);
2582 }
2583
2584 /*
2585 * The dentry_unhash() helper will try to drop the dentry early: we
2586 * should have a usage count of 2 if we're the only user of this
2587 * dentry, and if that is true (possibly after pruning the dcache),
2588 * then we drop the dentry now.
2589 *
2590 * A low-level filesystem can, if it choses, legally
2591 * do a
2592 *
2593 * if (!d_unhashed(dentry))
2594 * return -EBUSY;
2595 *
2596 * if it cannot handle the case of removing a directory
2597 * that is still in use by something else..
2598 */
2599 void dentry_unhash(struct dentry *dentry)
2600 {
2601 shrink_dcache_parent(dentry);
2602 spin_lock(&dentry->d_lock);
2603 if (dentry->d_count == 1)
2604 __d_drop(dentry);
2605 spin_unlock(&dentry->d_lock);
2606 }
2607
2608 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2609 {
2610 int error = may_delete(dir, dentry, 1);
2611
2612 if (error)
2613 return error;
2614
2615 if (!dir->i_op->rmdir)
2616 return -EPERM;
2617
2618 dget(dentry);
2619 mutex_lock(&dentry->d_inode->i_mutex);
2620
2621 error = -EBUSY;
2622 if (d_mountpoint(dentry))
2623 goto out;
2624
2625 error = security_inode_rmdir(dir, dentry);
2626 if (error)
2627 goto out;
2628
2629 shrink_dcache_parent(dentry);
2630 error = dir->i_op->rmdir(dir, dentry);
2631 if (error)
2632 goto out;
2633
2634 dentry->d_inode->i_flags |= S_DEAD;
2635 dont_mount(dentry);
2636
2637 out:
2638 mutex_unlock(&dentry->d_inode->i_mutex);
2639 dput(dentry);
2640 if (!error)
2641 d_delete(dentry);
2642 return error;
2643 }
2644
2645 static long do_rmdir(int dfd, const char __user *pathname)
2646 {
2647 int error = 0;
2648 char * name;
2649 struct dentry *dentry;
2650 struct nameidata nd;
2651
2652 error = user_path_parent(dfd, pathname, &nd, &name);
2653 if (error)
2654 return error;
2655
2656 switch(nd.last_type) {
2657 case LAST_DOTDOT:
2658 error = -ENOTEMPTY;
2659 goto exit1;
2660 case LAST_DOT:
2661 error = -EINVAL;
2662 goto exit1;
2663 case LAST_ROOT:
2664 error = -EBUSY;
2665 goto exit1;
2666 }
2667
2668 nd.flags &= ~LOOKUP_PARENT;
2669
2670 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2671 dentry = lookup_hash(&nd);
2672 error = PTR_ERR(dentry);
2673 if (IS_ERR(dentry))
2674 goto exit2;
2675 if (!dentry->d_inode) {
2676 error = -ENOENT;
2677 goto exit3;
2678 }
2679 error = mnt_want_write(nd.path.mnt);
2680 if (error)
2681 goto exit3;
2682 error = security_path_rmdir(&nd.path, dentry);
2683 if (error)
2684 goto exit4;
2685 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2686 exit4:
2687 mnt_drop_write(nd.path.mnt);
2688 exit3:
2689 dput(dentry);
2690 exit2:
2691 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2692 exit1:
2693 path_put(&nd.path);
2694 putname(name);
2695 return error;
2696 }
2697
2698 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2699 {
2700 return do_rmdir(AT_FDCWD, pathname);
2701 }
2702
2703 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2704 {
2705 int error = may_delete(dir, dentry, 0);
2706
2707 if (error)
2708 return error;
2709
2710 if (!dir->i_op->unlink)
2711 return -EPERM;
2712
2713 mutex_lock(&dentry->d_inode->i_mutex);
2714 if (d_mountpoint(dentry))
2715 error = -EBUSY;
2716 else {
2717 error = security_inode_unlink(dir, dentry);
2718 if (!error) {
2719 error = dir->i_op->unlink(dir, dentry);
2720 if (!error)
2721 dont_mount(dentry);
2722 }
2723 }
2724 mutex_unlock(&dentry->d_inode->i_mutex);
2725
2726 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2727 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2728 fsnotify_link_count(dentry->d_inode);
2729 d_delete(dentry);
2730 }
2731
2732 return error;
2733 }
2734
2735 /*
2736 * Make sure that the actual truncation of the file will occur outside its
2737 * directory's i_mutex. Truncate can take a long time if there is a lot of
2738 * writeout happening, and we don't want to prevent access to the directory
2739 * while waiting on the I/O.
2740 */
2741 static long do_unlinkat(int dfd, const char __user *pathname)
2742 {
2743 int error;
2744 char *name;
2745 struct dentry *dentry;
2746 struct nameidata nd;
2747 struct inode *inode = NULL;
2748
2749 error = user_path_parent(dfd, pathname, &nd, &name);
2750 if (error)
2751 return error;
2752
2753 error = -EISDIR;
2754 if (nd.last_type != LAST_NORM)
2755 goto exit1;
2756
2757 nd.flags &= ~LOOKUP_PARENT;
2758
2759 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2760 dentry = lookup_hash(&nd);
2761 error = PTR_ERR(dentry);
2762 if (!IS_ERR(dentry)) {
2763 /* Why not before? Because we want correct error value */
2764 if (nd.last.name[nd.last.len])
2765 goto slashes;
2766 inode = dentry->d_inode;
2767 if (!inode)
2768 goto slashes;
2769 ihold(inode);
2770 error = mnt_want_write(nd.path.mnt);
2771 if (error)
2772 goto exit2;
2773 error = security_path_unlink(&nd.path, dentry);
2774 if (error)
2775 goto exit3;
2776 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2777 exit3:
2778 mnt_drop_write(nd.path.mnt);
2779 exit2:
2780 dput(dentry);
2781 }
2782 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2783 if (inode)
2784 iput(inode); /* truncate the inode here */
2785 exit1:
2786 path_put(&nd.path);
2787 putname(name);
2788 return error;
2789
2790 slashes:
2791 error = !dentry->d_inode ? -ENOENT :
2792 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2793 goto exit2;
2794 }
2795
2796 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2797 {
2798 if ((flag & ~AT_REMOVEDIR) != 0)
2799 return -EINVAL;
2800
2801 if (flag & AT_REMOVEDIR)
2802 return do_rmdir(dfd, pathname);
2803
2804 return do_unlinkat(dfd, pathname);
2805 }
2806
2807 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2808 {
2809 return do_unlinkat(AT_FDCWD, pathname);
2810 }
2811
2812 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2813 {
2814 int error = may_create(dir, dentry);
2815
2816 if (error)
2817 return error;
2818
2819 if (!dir->i_op->symlink)
2820 return -EPERM;
2821
2822 error = security_inode_symlink(dir, dentry, oldname);
2823 if (error)
2824 return error;
2825
2826 error = dir->i_op->symlink(dir, dentry, oldname);
2827 if (!error)
2828 fsnotify_create(dir, dentry);
2829 return error;
2830 }
2831
2832 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2833 int, newdfd, const char __user *, newname)
2834 {
2835 int error;
2836 char *from;
2837 struct dentry *dentry;
2838 struct path path;
2839
2840 from = getname(oldname);
2841 if (IS_ERR(from))
2842 return PTR_ERR(from);
2843
2844 dentry = user_path_create(newdfd, newname, &path, 0);
2845 error = PTR_ERR(dentry);
2846 if (IS_ERR(dentry))
2847 goto out_putname;
2848
2849 error = mnt_want_write(path.mnt);
2850 if (error)
2851 goto out_dput;
2852 error = security_path_symlink(&path, dentry, from);
2853 if (error)
2854 goto out_drop_write;
2855 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2856 out_drop_write:
2857 mnt_drop_write(path.mnt);
2858 out_dput:
2859 dput(dentry);
2860 mutex_unlock(&path.dentry->d_inode->i_mutex);
2861 path_put(&path);
2862 out_putname:
2863 putname(from);
2864 return error;
2865 }
2866
2867 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2868 {
2869 return sys_symlinkat(oldname, AT_FDCWD, newname);
2870 }
2871
2872 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2873 {
2874 struct inode *inode = old_dentry->d_inode;
2875 int error;
2876
2877 if (!inode)
2878 return -ENOENT;
2879
2880 error = may_create(dir, new_dentry);
2881 if (error)
2882 return error;
2883
2884 if (dir->i_sb != inode->i_sb)
2885 return -EXDEV;
2886
2887 /*
2888 * A link to an append-only or immutable file cannot be created.
2889 */
2890 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2891 return -EPERM;
2892 if (!dir->i_op->link)
2893 return -EPERM;
2894 if (S_ISDIR(inode->i_mode))
2895 return -EPERM;
2896
2897 error = security_inode_link(old_dentry, dir, new_dentry);
2898 if (error)
2899 return error;
2900
2901 mutex_lock(&inode->i_mutex);
2902 /* Make sure we don't allow creating hardlink to an unlinked file */
2903 if (inode->i_nlink == 0)
2904 error = -ENOENT;
2905 else
2906 error = dir->i_op->link(old_dentry, dir, new_dentry);
2907 mutex_unlock(&inode->i_mutex);
2908 if (!error)
2909 fsnotify_link(dir, inode, new_dentry);
2910 return error;
2911 }
2912
2913 /*
2914 * Hardlinks are often used in delicate situations. We avoid
2915 * security-related surprises by not following symlinks on the
2916 * newname. --KAB
2917 *
2918 * We don't follow them on the oldname either to be compatible
2919 * with linux 2.0, and to avoid hard-linking to directories
2920 * and other special files. --ADM
2921 */
2922 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2923 int, newdfd, const char __user *, newname, int, flags)
2924 {
2925 struct dentry *new_dentry;
2926 struct path old_path, new_path;
2927 int how = 0;
2928 int error;
2929
2930 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2931 return -EINVAL;
2932 /*
2933 * To use null names we require CAP_DAC_READ_SEARCH
2934 * This ensures that not everyone will be able to create
2935 * handlink using the passed filedescriptor.
2936 */
2937 if (flags & AT_EMPTY_PATH) {
2938 if (!capable(CAP_DAC_READ_SEARCH))
2939 return -ENOENT;
2940 how = LOOKUP_EMPTY;
2941 }
2942
2943 if (flags & AT_SYMLINK_FOLLOW)
2944 how |= LOOKUP_FOLLOW;
2945
2946 error = user_path_at(olddfd, oldname, how, &old_path);
2947 if (error)
2948 return error;
2949
2950 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2951 error = PTR_ERR(new_dentry);
2952 if (IS_ERR(new_dentry))
2953 goto out;
2954
2955 error = -EXDEV;
2956 if (old_path.mnt != new_path.mnt)
2957 goto out_dput;
2958 error = mnt_want_write(new_path.mnt);
2959 if (error)
2960 goto out_dput;
2961 error = security_path_link(old_path.dentry, &new_path, new_dentry);
2962 if (error)
2963 goto out_drop_write;
2964 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2965 out_drop_write:
2966 mnt_drop_write(new_path.mnt);
2967 out_dput:
2968 dput(new_dentry);
2969 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2970 path_put(&new_path);
2971 out:
2972 path_put(&old_path);
2973
2974 return error;
2975 }
2976
2977 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2978 {
2979 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2980 }
2981
2982 /*
2983 * The worst of all namespace operations - renaming directory. "Perverted"
2984 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2985 * Problems:
2986 * a) we can get into loop creation. Check is done in is_subdir().
2987 * b) race potential - two innocent renames can create a loop together.
2988 * That's where 4.4 screws up. Current fix: serialization on
2989 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2990 * story.
2991 * c) we have to lock _three_ objects - parents and victim (if it exists).
2992 * And that - after we got ->i_mutex on parents (until then we don't know
2993 * whether the target exists). Solution: try to be smart with locking
2994 * order for inodes. We rely on the fact that tree topology may change
2995 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2996 * move will be locked. Thus we can rank directories by the tree
2997 * (ancestors first) and rank all non-directories after them.
2998 * That works since everybody except rename does "lock parent, lookup,
2999 * lock child" and rename is under ->s_vfs_rename_mutex.
3000 * HOWEVER, it relies on the assumption that any object with ->lookup()
3001 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3002 * we'd better make sure that there's no link(2) for them.
3003 * d) conversion from fhandle to dentry may come in the wrong moment - when
3004 * we are removing the target. Solution: we will have to grab ->i_mutex
3005 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3006 * ->i_mutex on parents, which works but leads to some truly excessive
3007 * locking].
3008 */
3009 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3010 struct inode *new_dir, struct dentry *new_dentry)
3011 {
3012 int error = 0;
3013 struct inode *target = new_dentry->d_inode;
3014
3015 /*
3016 * If we are going to change the parent - check write permissions,
3017 * we'll need to flip '..'.
3018 */
3019 if (new_dir != old_dir) {
3020 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3021 if (error)
3022 return error;
3023 }
3024
3025 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3026 if (error)
3027 return error;
3028
3029 dget(new_dentry);
3030 if (target)
3031 mutex_lock(&target->i_mutex);
3032
3033 error = -EBUSY;
3034 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3035 goto out;
3036
3037 if (target)
3038 shrink_dcache_parent(new_dentry);
3039 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3040 if (error)
3041 goto out;
3042
3043 if (target) {
3044 target->i_flags |= S_DEAD;
3045 dont_mount(new_dentry);
3046 }
3047 out:
3048 if (target)
3049 mutex_unlock(&target->i_mutex);
3050 dput(new_dentry);
3051 if (!error)
3052 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3053 d_move(old_dentry,new_dentry);
3054 return error;
3055 }
3056
3057 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3058 struct inode *new_dir, struct dentry *new_dentry)
3059 {
3060 struct inode *target = new_dentry->d_inode;
3061 int error;
3062
3063 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3064 if (error)
3065 return error;
3066
3067 dget(new_dentry);
3068 if (target)
3069 mutex_lock(&target->i_mutex);
3070
3071 error = -EBUSY;
3072 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3073 goto out;
3074
3075 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3076 if (error)
3077 goto out;
3078
3079 if (target)
3080 dont_mount(new_dentry);
3081 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3082 d_move(old_dentry, new_dentry);
3083 out:
3084 if (target)
3085 mutex_unlock(&target->i_mutex);
3086 dput(new_dentry);
3087 return error;
3088 }
3089
3090 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3091 struct inode *new_dir, struct dentry *new_dentry)
3092 {
3093 int error;
3094 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3095 const unsigned char *old_name;
3096
3097 if (old_dentry->d_inode == new_dentry->d_inode)
3098 return 0;
3099
3100 error = may_delete(old_dir, old_dentry, is_dir);
3101 if (error)
3102 return error;
3103
3104 if (!new_dentry->d_inode)
3105 error = may_create(new_dir, new_dentry);
3106 else
3107 error = may_delete(new_dir, new_dentry, is_dir);
3108 if (error)
3109 return error;
3110
3111 if (!old_dir->i_op->rename)
3112 return -EPERM;
3113
3114 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3115
3116 if (is_dir)
3117 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3118 else
3119 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3120 if (!error)
3121 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3122 new_dentry->d_inode, old_dentry);
3123 fsnotify_oldname_free(old_name);
3124
3125 return error;
3126 }
3127
3128 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3129 int, newdfd, const char __user *, newname)
3130 {
3131 struct dentry *old_dir, *new_dir;
3132 struct dentry *old_dentry, *new_dentry;
3133 struct dentry *trap;
3134 struct nameidata oldnd, newnd;
3135 char *from;
3136 char *to;
3137 int error;
3138
3139 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3140 if (error)
3141 goto exit;
3142
3143 error = user_path_parent(newdfd, newname, &newnd, &to);
3144 if (error)
3145 goto exit1;
3146
3147 error = -EXDEV;
3148 if (oldnd.path.mnt != newnd.path.mnt)
3149 goto exit2;
3150
3151 old_dir = oldnd.path.dentry;
3152 error = -EBUSY;
3153 if (oldnd.last_type != LAST_NORM)
3154 goto exit2;
3155
3156 new_dir = newnd.path.dentry;
3157 if (newnd.last_type != LAST_NORM)
3158 goto exit2;
3159
3160 oldnd.flags &= ~LOOKUP_PARENT;
3161 newnd.flags &= ~LOOKUP_PARENT;
3162 newnd.flags |= LOOKUP_RENAME_TARGET;
3163
3164 trap = lock_rename(new_dir, old_dir);
3165
3166 old_dentry = lookup_hash(&oldnd);
3167 error = PTR_ERR(old_dentry);
3168 if (IS_ERR(old_dentry))
3169 goto exit3;
3170 /* source must exist */
3171 error = -ENOENT;
3172 if (!old_dentry->d_inode)
3173 goto exit4;
3174 /* unless the source is a directory trailing slashes give -ENOTDIR */
3175 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3176 error = -ENOTDIR;
3177 if (oldnd.last.name[oldnd.last.len])
3178 goto exit4;
3179 if (newnd.last.name[newnd.last.len])
3180 goto exit4;
3181 }
3182 /* source should not be ancestor of target */
3183 error = -EINVAL;
3184 if (old_dentry == trap)
3185 goto exit4;
3186 new_dentry = lookup_hash(&newnd);
3187 error = PTR_ERR(new_dentry);
3188 if (IS_ERR(new_dentry))
3189 goto exit4;
3190 /* target should not be an ancestor of source */
3191 error = -ENOTEMPTY;
3192 if (new_dentry == trap)
3193 goto exit5;
3194
3195 error = mnt_want_write(oldnd.path.mnt);
3196 if (error)
3197 goto exit5;
3198 error = security_path_rename(&oldnd.path, old_dentry,
3199 &newnd.path, new_dentry);
3200 if (error)
3201 goto exit6;
3202 error = vfs_rename(old_dir->d_inode, old_dentry,
3203 new_dir->d_inode, new_dentry);
3204 exit6:
3205 mnt_drop_write(oldnd.path.mnt);
3206 exit5:
3207 dput(new_dentry);
3208 exit4:
3209 dput(old_dentry);
3210 exit3:
3211 unlock_rename(new_dir, old_dir);
3212 exit2:
3213 path_put(&newnd.path);
3214 putname(to);
3215 exit1:
3216 path_put(&oldnd.path);
3217 putname(from);
3218 exit:
3219 return error;
3220 }
3221
3222 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3223 {
3224 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3225 }
3226
3227 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3228 {
3229 int len;
3230
3231 len = PTR_ERR(link);
3232 if (IS_ERR(link))
3233 goto out;
3234
3235 len = strlen(link);
3236 if (len > (unsigned) buflen)
3237 len = buflen;
3238 if (copy_to_user(buffer, link, len))
3239 len = -EFAULT;
3240 out:
3241 return len;
3242 }
3243
3244 /*
3245 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3246 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3247 * using) it for any given inode is up to filesystem.
3248 */
3249 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3250 {
3251 struct nameidata nd;
3252 void *cookie;
3253 int res;
3254
3255 nd.depth = 0;
3256 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3257 if (IS_ERR(cookie))
3258 return PTR_ERR(cookie);
3259
3260 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3261 if (dentry->d_inode->i_op->put_link)
3262 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3263 return res;
3264 }
3265
3266 int vfs_follow_link(struct nameidata *nd, const char *link)
3267 {
3268 return __vfs_follow_link(nd, link);
3269 }
3270
3271 /* get the link contents into pagecache */
3272 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3273 {
3274 char *kaddr;
3275 struct page *page;
3276 struct address_space *mapping = dentry->d_inode->i_mapping;
3277 page = read_mapping_page(mapping, 0, NULL);
3278 if (IS_ERR(page))
3279 return (char*)page;
3280 *ppage = page;
3281 kaddr = kmap(page);
3282 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3283 return kaddr;
3284 }
3285
3286 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3287 {
3288 struct page *page = NULL;
3289 char *s = page_getlink(dentry, &page);
3290 int res = vfs_readlink(dentry,buffer,buflen,s);
3291 if (page) {
3292 kunmap(page);
3293 page_cache_release(page);
3294 }
3295 return res;
3296 }
3297
3298 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3299 {
3300 struct page *page = NULL;
3301 nd_set_link(nd, page_getlink(dentry, &page));
3302 return page;
3303 }
3304
3305 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3306 {
3307 struct page *page = cookie;
3308
3309 if (page) {
3310 kunmap(page);
3311 page_cache_release(page);
3312 }
3313 }
3314
3315 /*
3316 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3317 */
3318 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3319 {
3320 struct address_space *mapping = inode->i_mapping;
3321 struct page *page;
3322 void *fsdata;
3323 int err;
3324 char *kaddr;
3325 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3326 if (nofs)
3327 flags |= AOP_FLAG_NOFS;
3328
3329 retry:
3330 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3331 flags, &page, &fsdata);
3332 if (err)
3333 goto fail;
3334
3335 kaddr = kmap_atomic(page, KM_USER0);
3336 memcpy(kaddr, symname, len-1);
3337 kunmap_atomic(kaddr, KM_USER0);
3338
3339 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3340 page, fsdata);
3341 if (err < 0)
3342 goto fail;
3343 if (err < len-1)
3344 goto retry;
3345
3346 mark_inode_dirty(inode);
3347 return 0;
3348 fail:
3349 return err;
3350 }
3351
3352 int page_symlink(struct inode *inode, const char *symname, int len)
3353 {
3354 return __page_symlink(inode, symname, len,
3355 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3356 }
3357
3358 const struct inode_operations page_symlink_inode_operations = {
3359 .readlink = generic_readlink,
3360 .follow_link = page_follow_link_light,
3361 .put_link = page_put_link,
3362 };
3363
3364 EXPORT_SYMBOL(user_path_at);
3365 EXPORT_SYMBOL(follow_down_one);
3366 EXPORT_SYMBOL(follow_down);
3367 EXPORT_SYMBOL(follow_up);
3368 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3369 EXPORT_SYMBOL(getname);
3370 EXPORT_SYMBOL(lock_rename);
3371 EXPORT_SYMBOL(lookup_one_len);
3372 EXPORT_SYMBOL(page_follow_link_light);
3373 EXPORT_SYMBOL(page_put_link);
3374 EXPORT_SYMBOL(page_readlink);
3375 EXPORT_SYMBOL(__page_symlink);
3376 EXPORT_SYMBOL(page_symlink);
3377 EXPORT_SYMBOL(page_symlink_inode_operations);
3378 EXPORT_SYMBOL(kern_path);
3379 EXPORT_SYMBOL(vfs_path_lookup);
3380 EXPORT_SYMBOL(inode_permission);
3381 EXPORT_SYMBOL(unlock_rename);
3382 EXPORT_SYMBOL(vfs_create);
3383 EXPORT_SYMBOL(vfs_follow_link);
3384 EXPORT_SYMBOL(vfs_link);
3385 EXPORT_SYMBOL(vfs_mkdir);
3386 EXPORT_SYMBOL(vfs_mknod);
3387 EXPORT_SYMBOL(generic_permission);
3388 EXPORT_SYMBOL(vfs_readlink);
3389 EXPORT_SYMBOL(vfs_rename);
3390 EXPORT_SYMBOL(vfs_rmdir);
3391 EXPORT_SYMBOL(vfs_symlink);
3392 EXPORT_SYMBOL(vfs_unlink);
3393 EXPORT_SYMBOL(dentry_unhash);
3394 EXPORT_SYMBOL(generic_readlink);