userns: rename is_owner_or_cap to inode_owner_or_capable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
160 char *getname(const char __user * filename)
161 {
162 return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177 * This does basic POSIX ACL permission checking
178 */
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 umode_t mode = inode->i_mode;
183
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
188
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask, flags);
194 if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 other_perms:
203 /*
204 * If the DACs are ok we don't need any capability check.
205 */
206 if ((mask & ~mode) == 0)
207 return 0;
208 return -EACCES;
209 }
210
211 /**
212 * generic_permission - check for access rights on a Posix-like filesystem
213 * @inode: inode to check access rights for
214 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215 * @check_acl: optional callback to check for Posix ACLs
216 * @flags: IPERM_FLAG_ flags.
217 *
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
222 *
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
226 */
227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
229 {
230 int ret;
231
232 /*
233 * Do the basic POSIX ACL permission checks.
234 */
235 ret = acl_permission_check(inode, mask, flags, check_acl);
236 if (ret != -EACCES)
237 return ret;
238
239 /*
240 * Read/write DACs are always overridable.
241 * Executable DACs are overridable if at least one exec bit is set.
242 */
243 if (!(mask & MAY_EXEC) || execute_ok(inode))
244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 return 0;
246
247 /*
248 * Searching includes executable on directories, else just read.
249 */
250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 return 0;
254
255 return -EACCES;
256 }
257
258 /**
259 * inode_permission - check for access rights to a given inode
260 * @inode: inode to check permission on
261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
262 *
263 * Used to check for read/write/execute permissions on an inode.
264 * We use "fsuid" for this, letting us set arbitrary permissions
265 * for filesystem access without changing the "normal" uids which
266 * are used for other things.
267 */
268 int inode_permission(struct inode *inode, int mask)
269 {
270 int retval;
271
272 if (mask & MAY_WRITE) {
273 umode_t mode = inode->i_mode;
274
275 /*
276 * Nobody gets write access to a read-only fs.
277 */
278 if (IS_RDONLY(inode) &&
279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 return -EROFS;
281
282 /*
283 * Nobody gets write access to an immutable file.
284 */
285 if (IS_IMMUTABLE(inode))
286 return -EACCES;
287 }
288
289 if (inode->i_op->permission)
290 retval = inode->i_op->permission(inode, mask, 0);
291 else
292 retval = generic_permission(inode, mask, 0,
293 inode->i_op->check_acl);
294
295 if (retval)
296 return retval;
297
298 retval = devcgroup_inode_permission(inode, mask);
299 if (retval)
300 return retval;
301
302 return security_inode_permission(inode, mask);
303 }
304
305 /**
306 * file_permission - check for additional access rights to a given file
307 * @file: file to check access rights for
308 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
309 *
310 * Used to check for read/write/execute permissions on an already opened
311 * file.
312 *
313 * Note:
314 * Do not use this function in new code. All access checks should
315 * be done using inode_permission().
316 */
317 int file_permission(struct file *file, int mask)
318 {
319 return inode_permission(file->f_path.dentry->d_inode, mask);
320 }
321
322 /*
323 * get_write_access() gets write permission for a file.
324 * put_write_access() releases this write permission.
325 * This is used for regular files.
326 * We cannot support write (and maybe mmap read-write shared) accesses and
327 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
328 * can have the following values:
329 * 0: no writers, no VM_DENYWRITE mappings
330 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
331 * > 0: (i_writecount) users are writing to the file.
332 *
333 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
334 * except for the cases where we don't hold i_writecount yet. Then we need to
335 * use {get,deny}_write_access() - these functions check the sign and refuse
336 * to do the change if sign is wrong. Exclusion between them is provided by
337 * the inode->i_lock spinlock.
338 */
339
340 int get_write_access(struct inode * inode)
341 {
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) < 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
346 }
347 atomic_inc(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
349
350 return 0;
351 }
352
353 int deny_write_access(struct file * file)
354 {
355 struct inode *inode = file->f_path.dentry->d_inode;
356
357 spin_lock(&inode->i_lock);
358 if (atomic_read(&inode->i_writecount) > 0) {
359 spin_unlock(&inode->i_lock);
360 return -ETXTBSY;
361 }
362 atomic_dec(&inode->i_writecount);
363 spin_unlock(&inode->i_lock);
364
365 return 0;
366 }
367
368 /**
369 * path_get - get a reference to a path
370 * @path: path to get the reference to
371 *
372 * Given a path increment the reference count to the dentry and the vfsmount.
373 */
374 void path_get(struct path *path)
375 {
376 mntget(path->mnt);
377 dget(path->dentry);
378 }
379 EXPORT_SYMBOL(path_get);
380
381 /**
382 * path_put - put a reference to a path
383 * @path: path to put the reference to
384 *
385 * Given a path decrement the reference count to the dentry and the vfsmount.
386 */
387 void path_put(struct path *path)
388 {
389 dput(path->dentry);
390 mntput(path->mnt);
391 }
392 EXPORT_SYMBOL(path_put);
393
394 /**
395 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
396 * @nd: nameidata pathwalk data to drop
397 * Returns: 0 on success, -ECHILD on failure
398 *
399 * Path walking has 2 modes, rcu-walk and ref-walk (see
400 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
401 * to drop out of rcu-walk mode and take normal reference counts on dentries
402 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
403 * refcounts at the last known good point before rcu-walk got stuck, so
404 * ref-walk may continue from there. If this is not successful (eg. a seqcount
405 * has changed), then failure is returned and path walk restarts from the
406 * beginning in ref-walk mode.
407 *
408 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
409 * ref-walk. Must be called from rcu-walk context.
410 */
411 static int nameidata_drop_rcu(struct nameidata *nd)
412 {
413 struct fs_struct *fs = current->fs;
414 struct dentry *dentry = nd->path.dentry;
415 int want_root = 0;
416
417 BUG_ON(!(nd->flags & LOOKUP_RCU));
418 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
419 want_root = 1;
420 spin_lock(&fs->lock);
421 if (nd->root.mnt != fs->root.mnt ||
422 nd->root.dentry != fs->root.dentry)
423 goto err_root;
424 }
425 spin_lock(&dentry->d_lock);
426 if (!__d_rcu_to_refcount(dentry, nd->seq))
427 goto err;
428 BUG_ON(nd->inode != dentry->d_inode);
429 spin_unlock(&dentry->d_lock);
430 if (want_root) {
431 path_get(&nd->root);
432 spin_unlock(&fs->lock);
433 }
434 mntget(nd->path.mnt);
435
436 rcu_read_unlock();
437 br_read_unlock(vfsmount_lock);
438 nd->flags &= ~LOOKUP_RCU;
439 return 0;
440 err:
441 spin_unlock(&dentry->d_lock);
442 err_root:
443 if (want_root)
444 spin_unlock(&fs->lock);
445 return -ECHILD;
446 }
447
448 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
449 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
450 {
451 if (nd->flags & LOOKUP_RCU)
452 return nameidata_drop_rcu(nd);
453 return 0;
454 }
455
456 /**
457 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
458 * @nd: nameidata pathwalk data to drop
459 * @dentry: dentry to drop
460 * Returns: 0 on success, -ECHILD on failure
461 *
462 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
463 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
464 * @nd. Must be called from rcu-walk context.
465 */
466 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
467 {
468 struct fs_struct *fs = current->fs;
469 struct dentry *parent = nd->path.dentry;
470 int want_root = 0;
471
472 BUG_ON(!(nd->flags & LOOKUP_RCU));
473 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
474 want_root = 1;
475 spin_lock(&fs->lock);
476 if (nd->root.mnt != fs->root.mnt ||
477 nd->root.dentry != fs->root.dentry)
478 goto err_root;
479 }
480 spin_lock(&parent->d_lock);
481 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
482 if (!__d_rcu_to_refcount(dentry, nd->seq))
483 goto err;
484 /*
485 * If the sequence check on the child dentry passed, then the child has
486 * not been removed from its parent. This means the parent dentry must
487 * be valid and able to take a reference at this point.
488 */
489 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
490 BUG_ON(!parent->d_count);
491 parent->d_count++;
492 spin_unlock(&dentry->d_lock);
493 spin_unlock(&parent->d_lock);
494 if (want_root) {
495 path_get(&nd->root);
496 spin_unlock(&fs->lock);
497 }
498 mntget(nd->path.mnt);
499
500 rcu_read_unlock();
501 br_read_unlock(vfsmount_lock);
502 nd->flags &= ~LOOKUP_RCU;
503 return 0;
504 err:
505 spin_unlock(&dentry->d_lock);
506 spin_unlock(&parent->d_lock);
507 err_root:
508 if (want_root)
509 spin_unlock(&fs->lock);
510 return -ECHILD;
511 }
512
513 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
514 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
515 {
516 if (nd->flags & LOOKUP_RCU) {
517 if (unlikely(nameidata_dentry_drop_rcu(nd, dentry))) {
518 nd->flags &= ~LOOKUP_RCU;
519 if (!(nd->flags & LOOKUP_ROOT))
520 nd->root.mnt = NULL;
521 rcu_read_unlock();
522 br_read_unlock(vfsmount_lock);
523 return -ECHILD;
524 }
525 }
526 return 0;
527 }
528
529 /**
530 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
531 * @nd: nameidata pathwalk data to drop
532 * Returns: 0 on success, -ECHILD on failure
533 *
534 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
535 * nd->path should be the final element of the lookup, so nd->root is discarded.
536 * Must be called from rcu-walk context.
537 */
538 static int nameidata_drop_rcu_last(struct nameidata *nd)
539 {
540 struct dentry *dentry = nd->path.dentry;
541
542 BUG_ON(!(nd->flags & LOOKUP_RCU));
543 nd->flags &= ~LOOKUP_RCU;
544 if (!(nd->flags & LOOKUP_ROOT))
545 nd->root.mnt = NULL;
546 spin_lock(&dentry->d_lock);
547 if (!__d_rcu_to_refcount(dentry, nd->seq))
548 goto err_unlock;
549 BUG_ON(nd->inode != dentry->d_inode);
550 spin_unlock(&dentry->d_lock);
551
552 mntget(nd->path.mnt);
553
554 rcu_read_unlock();
555 br_read_unlock(vfsmount_lock);
556
557 return 0;
558
559 err_unlock:
560 spin_unlock(&dentry->d_lock);
561 rcu_read_unlock();
562 br_read_unlock(vfsmount_lock);
563 return -ECHILD;
564 }
565
566 /**
567 * release_open_intent - free up open intent resources
568 * @nd: pointer to nameidata
569 */
570 void release_open_intent(struct nameidata *nd)
571 {
572 struct file *file = nd->intent.open.file;
573
574 if (file && !IS_ERR(file)) {
575 if (file->f_path.dentry == NULL)
576 put_filp(file);
577 else
578 fput(file);
579 }
580 }
581
582 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
583 {
584 return dentry->d_op->d_revalidate(dentry, nd);
585 }
586
587 static struct dentry *
588 do_revalidate(struct dentry *dentry, struct nameidata *nd)
589 {
590 int status = d_revalidate(dentry, nd);
591 if (unlikely(status <= 0)) {
592 /*
593 * The dentry failed validation.
594 * If d_revalidate returned 0 attempt to invalidate
595 * the dentry otherwise d_revalidate is asking us
596 * to return a fail status.
597 */
598 if (status < 0) {
599 dput(dentry);
600 dentry = ERR_PTR(status);
601 } else if (!d_invalidate(dentry)) {
602 dput(dentry);
603 dentry = NULL;
604 }
605 }
606 return dentry;
607 }
608
609 /*
610 * handle_reval_path - force revalidation of a dentry
611 *
612 * In some situations the path walking code will trust dentries without
613 * revalidating them. This causes problems for filesystems that depend on
614 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
615 * (which indicates that it's possible for the dentry to go stale), force
616 * a d_revalidate call before proceeding.
617 *
618 * Returns 0 if the revalidation was successful. If the revalidation fails,
619 * either return the error returned by d_revalidate or -ESTALE if the
620 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
621 * invalidate the dentry. It's up to the caller to handle putting references
622 * to the path if necessary.
623 */
624 static inline int handle_reval_path(struct nameidata *nd)
625 {
626 struct dentry *dentry = nd->path.dentry;
627 int status;
628
629 if (likely(!(nd->flags & LOOKUP_JUMPED)))
630 return 0;
631
632 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
633 return 0;
634
635 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
636 return 0;
637
638 /* Note: we do not d_invalidate() */
639 status = d_revalidate(dentry, nd);
640 if (status > 0)
641 return 0;
642
643 if (!status)
644 status = -ESTALE;
645
646 return status;
647 }
648
649 /*
650 * Short-cut version of permission(), for calling on directories
651 * during pathname resolution. Combines parts of permission()
652 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
653 *
654 * If appropriate, check DAC only. If not appropriate, or
655 * short-cut DAC fails, then call ->permission() to do more
656 * complete permission check.
657 */
658 static inline int exec_permission(struct inode *inode, unsigned int flags)
659 {
660 int ret;
661 struct user_namespace *ns = inode_userns(inode);
662
663 if (inode->i_op->permission) {
664 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
665 } else {
666 ret = acl_permission_check(inode, MAY_EXEC, flags,
667 inode->i_op->check_acl);
668 }
669 if (likely(!ret))
670 goto ok;
671 if (ret == -ECHILD)
672 return ret;
673
674 if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
675 ns_capable(ns, CAP_DAC_READ_SEARCH))
676 goto ok;
677
678 return ret;
679 ok:
680 return security_inode_exec_permission(inode, flags);
681 }
682
683 static __always_inline void set_root(struct nameidata *nd)
684 {
685 if (!nd->root.mnt)
686 get_fs_root(current->fs, &nd->root);
687 }
688
689 static int link_path_walk(const char *, struct nameidata *);
690
691 static __always_inline void set_root_rcu(struct nameidata *nd)
692 {
693 if (!nd->root.mnt) {
694 struct fs_struct *fs = current->fs;
695 unsigned seq;
696
697 do {
698 seq = read_seqcount_begin(&fs->seq);
699 nd->root = fs->root;
700 } while (read_seqcount_retry(&fs->seq, seq));
701 }
702 }
703
704 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
705 {
706 int ret;
707
708 if (IS_ERR(link))
709 goto fail;
710
711 if (*link == '/') {
712 set_root(nd);
713 path_put(&nd->path);
714 nd->path = nd->root;
715 path_get(&nd->root);
716 nd->flags |= LOOKUP_JUMPED;
717 }
718 nd->inode = nd->path.dentry->d_inode;
719
720 ret = link_path_walk(link, nd);
721 return ret;
722 fail:
723 path_put(&nd->path);
724 return PTR_ERR(link);
725 }
726
727 static void path_put_conditional(struct path *path, struct nameidata *nd)
728 {
729 dput(path->dentry);
730 if (path->mnt != nd->path.mnt)
731 mntput(path->mnt);
732 }
733
734 static inline void path_to_nameidata(const struct path *path,
735 struct nameidata *nd)
736 {
737 if (!(nd->flags & LOOKUP_RCU)) {
738 dput(nd->path.dentry);
739 if (nd->path.mnt != path->mnt)
740 mntput(nd->path.mnt);
741 }
742 nd->path.mnt = path->mnt;
743 nd->path.dentry = path->dentry;
744 }
745
746 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
747 {
748 struct inode *inode = link->dentry->d_inode;
749 if (!IS_ERR(cookie) && inode->i_op->put_link)
750 inode->i_op->put_link(link->dentry, nd, cookie);
751 path_put(link);
752 }
753
754 static __always_inline int
755 follow_link(struct path *link, struct nameidata *nd, void **p)
756 {
757 int error;
758 struct dentry *dentry = link->dentry;
759
760 BUG_ON(nd->flags & LOOKUP_RCU);
761
762 if (link->mnt == nd->path.mnt)
763 mntget(link->mnt);
764
765 if (unlikely(current->total_link_count >= 40)) {
766 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
767 path_put(&nd->path);
768 return -ELOOP;
769 }
770 cond_resched();
771 current->total_link_count++;
772
773 touch_atime(link->mnt, dentry);
774 nd_set_link(nd, NULL);
775
776 error = security_inode_follow_link(link->dentry, nd);
777 if (error) {
778 *p = ERR_PTR(error); /* no ->put_link(), please */
779 path_put(&nd->path);
780 return error;
781 }
782
783 nd->last_type = LAST_BIND;
784 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
785 error = PTR_ERR(*p);
786 if (!IS_ERR(*p)) {
787 char *s = nd_get_link(nd);
788 error = 0;
789 if (s)
790 error = __vfs_follow_link(nd, s);
791 else if (nd->last_type == LAST_BIND) {
792 nd->flags |= LOOKUP_JUMPED;
793 nd->inode = nd->path.dentry->d_inode;
794 if (nd->inode->i_op->follow_link) {
795 /* stepped on a _really_ weird one */
796 path_put(&nd->path);
797 error = -ELOOP;
798 }
799 }
800 }
801 return error;
802 }
803
804 static int follow_up_rcu(struct path *path)
805 {
806 struct vfsmount *parent;
807 struct dentry *mountpoint;
808
809 parent = path->mnt->mnt_parent;
810 if (parent == path->mnt)
811 return 0;
812 mountpoint = path->mnt->mnt_mountpoint;
813 path->dentry = mountpoint;
814 path->mnt = parent;
815 return 1;
816 }
817
818 int follow_up(struct path *path)
819 {
820 struct vfsmount *parent;
821 struct dentry *mountpoint;
822
823 br_read_lock(vfsmount_lock);
824 parent = path->mnt->mnt_parent;
825 if (parent == path->mnt) {
826 br_read_unlock(vfsmount_lock);
827 return 0;
828 }
829 mntget(parent);
830 mountpoint = dget(path->mnt->mnt_mountpoint);
831 br_read_unlock(vfsmount_lock);
832 dput(path->dentry);
833 path->dentry = mountpoint;
834 mntput(path->mnt);
835 path->mnt = parent;
836 return 1;
837 }
838
839 /*
840 * Perform an automount
841 * - return -EISDIR to tell follow_managed() to stop and return the path we
842 * were called with.
843 */
844 static int follow_automount(struct path *path, unsigned flags,
845 bool *need_mntput)
846 {
847 struct vfsmount *mnt;
848 int err;
849
850 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
851 return -EREMOTE;
852
853 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
854 * and this is the terminal part of the path.
855 */
856 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
857 return -EISDIR; /* we actually want to stop here */
858
859 /* We want to mount if someone is trying to open/create a file of any
860 * type under the mountpoint, wants to traverse through the mountpoint
861 * or wants to open the mounted directory.
862 *
863 * We don't want to mount if someone's just doing a stat and they've
864 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
865 * appended a '/' to the name.
866 */
867 if (!(flags & LOOKUP_FOLLOW) &&
868 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
869 LOOKUP_OPEN | LOOKUP_CREATE)))
870 return -EISDIR;
871
872 current->total_link_count++;
873 if (current->total_link_count >= 40)
874 return -ELOOP;
875
876 mnt = path->dentry->d_op->d_automount(path);
877 if (IS_ERR(mnt)) {
878 /*
879 * The filesystem is allowed to return -EISDIR here to indicate
880 * it doesn't want to automount. For instance, autofs would do
881 * this so that its userspace daemon can mount on this dentry.
882 *
883 * However, we can only permit this if it's a terminal point in
884 * the path being looked up; if it wasn't then the remainder of
885 * the path is inaccessible and we should say so.
886 */
887 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
888 return -EREMOTE;
889 return PTR_ERR(mnt);
890 }
891
892 if (!mnt) /* mount collision */
893 return 0;
894
895 err = finish_automount(mnt, path);
896
897 switch (err) {
898 case -EBUSY:
899 /* Someone else made a mount here whilst we were busy */
900 return 0;
901 case 0:
902 dput(path->dentry);
903 if (*need_mntput)
904 mntput(path->mnt);
905 path->mnt = mnt;
906 path->dentry = dget(mnt->mnt_root);
907 *need_mntput = true;
908 return 0;
909 default:
910 return err;
911 }
912
913 }
914
915 /*
916 * Handle a dentry that is managed in some way.
917 * - Flagged for transit management (autofs)
918 * - Flagged as mountpoint
919 * - Flagged as automount point
920 *
921 * This may only be called in refwalk mode.
922 *
923 * Serialization is taken care of in namespace.c
924 */
925 static int follow_managed(struct path *path, unsigned flags)
926 {
927 unsigned managed;
928 bool need_mntput = false;
929 int ret;
930
931 /* Given that we're not holding a lock here, we retain the value in a
932 * local variable for each dentry as we look at it so that we don't see
933 * the components of that value change under us */
934 while (managed = ACCESS_ONCE(path->dentry->d_flags),
935 managed &= DCACHE_MANAGED_DENTRY,
936 unlikely(managed != 0)) {
937 /* Allow the filesystem to manage the transit without i_mutex
938 * being held. */
939 if (managed & DCACHE_MANAGE_TRANSIT) {
940 BUG_ON(!path->dentry->d_op);
941 BUG_ON(!path->dentry->d_op->d_manage);
942 ret = path->dentry->d_op->d_manage(path->dentry, false);
943 if (ret < 0)
944 return ret == -EISDIR ? 0 : ret;
945 }
946
947 /* Transit to a mounted filesystem. */
948 if (managed & DCACHE_MOUNTED) {
949 struct vfsmount *mounted = lookup_mnt(path);
950 if (mounted) {
951 dput(path->dentry);
952 if (need_mntput)
953 mntput(path->mnt);
954 path->mnt = mounted;
955 path->dentry = dget(mounted->mnt_root);
956 need_mntput = true;
957 continue;
958 }
959
960 /* Something is mounted on this dentry in another
961 * namespace and/or whatever was mounted there in this
962 * namespace got unmounted before we managed to get the
963 * vfsmount_lock */
964 }
965
966 /* Handle an automount point */
967 if (managed & DCACHE_NEED_AUTOMOUNT) {
968 ret = follow_automount(path, flags, &need_mntput);
969 if (ret < 0)
970 return ret == -EISDIR ? 0 : ret;
971 continue;
972 }
973
974 /* We didn't change the current path point */
975 break;
976 }
977 return 0;
978 }
979
980 int follow_down_one(struct path *path)
981 {
982 struct vfsmount *mounted;
983
984 mounted = lookup_mnt(path);
985 if (mounted) {
986 dput(path->dentry);
987 mntput(path->mnt);
988 path->mnt = mounted;
989 path->dentry = dget(mounted->mnt_root);
990 return 1;
991 }
992 return 0;
993 }
994
995 /*
996 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
997 * meet a managed dentry and we're not walking to "..". True is returned to
998 * continue, false to abort.
999 */
1000 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1001 struct inode **inode, bool reverse_transit)
1002 {
1003 while (d_mountpoint(path->dentry)) {
1004 struct vfsmount *mounted;
1005 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1006 !reverse_transit &&
1007 path->dentry->d_op->d_manage(path->dentry, true) < 0)
1008 return false;
1009 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1010 if (!mounted)
1011 break;
1012 path->mnt = mounted;
1013 path->dentry = mounted->mnt_root;
1014 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1015 *inode = path->dentry->d_inode;
1016 }
1017
1018 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1019 return reverse_transit;
1020 return true;
1021 }
1022
1023 static int follow_dotdot_rcu(struct nameidata *nd)
1024 {
1025 struct inode *inode = nd->inode;
1026
1027 set_root_rcu(nd);
1028
1029 while (1) {
1030 if (nd->path.dentry == nd->root.dentry &&
1031 nd->path.mnt == nd->root.mnt) {
1032 break;
1033 }
1034 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1035 struct dentry *old = nd->path.dentry;
1036 struct dentry *parent = old->d_parent;
1037 unsigned seq;
1038
1039 seq = read_seqcount_begin(&parent->d_seq);
1040 if (read_seqcount_retry(&old->d_seq, nd->seq))
1041 goto failed;
1042 inode = parent->d_inode;
1043 nd->path.dentry = parent;
1044 nd->seq = seq;
1045 break;
1046 }
1047 if (!follow_up_rcu(&nd->path))
1048 break;
1049 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1050 inode = nd->path.dentry->d_inode;
1051 }
1052 __follow_mount_rcu(nd, &nd->path, &inode, true);
1053 nd->inode = inode;
1054 return 0;
1055
1056 failed:
1057 nd->flags &= ~LOOKUP_RCU;
1058 if (!(nd->flags & LOOKUP_ROOT))
1059 nd->root.mnt = NULL;
1060 rcu_read_unlock();
1061 br_read_unlock(vfsmount_lock);
1062 return -ECHILD;
1063 }
1064
1065 /*
1066 * Follow down to the covering mount currently visible to userspace. At each
1067 * point, the filesystem owning that dentry may be queried as to whether the
1068 * caller is permitted to proceed or not.
1069 *
1070 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1071 * being true).
1072 */
1073 int follow_down(struct path *path)
1074 {
1075 unsigned managed;
1076 int ret;
1077
1078 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1079 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1080 /* Allow the filesystem to manage the transit without i_mutex
1081 * being held.
1082 *
1083 * We indicate to the filesystem if someone is trying to mount
1084 * something here. This gives autofs the chance to deny anyone
1085 * other than its daemon the right to mount on its
1086 * superstructure.
1087 *
1088 * The filesystem may sleep at this point.
1089 */
1090 if (managed & DCACHE_MANAGE_TRANSIT) {
1091 BUG_ON(!path->dentry->d_op);
1092 BUG_ON(!path->dentry->d_op->d_manage);
1093 ret = path->dentry->d_op->d_manage(
1094 path->dentry, false);
1095 if (ret < 0)
1096 return ret == -EISDIR ? 0 : ret;
1097 }
1098
1099 /* Transit to a mounted filesystem. */
1100 if (managed & DCACHE_MOUNTED) {
1101 struct vfsmount *mounted = lookup_mnt(path);
1102 if (!mounted)
1103 break;
1104 dput(path->dentry);
1105 mntput(path->mnt);
1106 path->mnt = mounted;
1107 path->dentry = dget(mounted->mnt_root);
1108 continue;
1109 }
1110
1111 /* Don't handle automount points here */
1112 break;
1113 }
1114 return 0;
1115 }
1116
1117 /*
1118 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1119 */
1120 static void follow_mount(struct path *path)
1121 {
1122 while (d_mountpoint(path->dentry)) {
1123 struct vfsmount *mounted = lookup_mnt(path);
1124 if (!mounted)
1125 break;
1126 dput(path->dentry);
1127 mntput(path->mnt);
1128 path->mnt = mounted;
1129 path->dentry = dget(mounted->mnt_root);
1130 }
1131 }
1132
1133 static void follow_dotdot(struct nameidata *nd)
1134 {
1135 set_root(nd);
1136
1137 while(1) {
1138 struct dentry *old = nd->path.dentry;
1139
1140 if (nd->path.dentry == nd->root.dentry &&
1141 nd->path.mnt == nd->root.mnt) {
1142 break;
1143 }
1144 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1145 /* rare case of legitimate dget_parent()... */
1146 nd->path.dentry = dget_parent(nd->path.dentry);
1147 dput(old);
1148 break;
1149 }
1150 if (!follow_up(&nd->path))
1151 break;
1152 }
1153 follow_mount(&nd->path);
1154 nd->inode = nd->path.dentry->d_inode;
1155 }
1156
1157 /*
1158 * Allocate a dentry with name and parent, and perform a parent
1159 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1160 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1161 * have verified that no child exists while under i_mutex.
1162 */
1163 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1164 struct qstr *name, struct nameidata *nd)
1165 {
1166 struct inode *inode = parent->d_inode;
1167 struct dentry *dentry;
1168 struct dentry *old;
1169
1170 /* Don't create child dentry for a dead directory. */
1171 if (unlikely(IS_DEADDIR(inode)))
1172 return ERR_PTR(-ENOENT);
1173
1174 dentry = d_alloc(parent, name);
1175 if (unlikely(!dentry))
1176 return ERR_PTR(-ENOMEM);
1177
1178 old = inode->i_op->lookup(inode, dentry, nd);
1179 if (unlikely(old)) {
1180 dput(dentry);
1181 dentry = old;
1182 }
1183 return dentry;
1184 }
1185
1186 /*
1187 * It's more convoluted than I'd like it to be, but... it's still fairly
1188 * small and for now I'd prefer to have fast path as straight as possible.
1189 * It _is_ time-critical.
1190 */
1191 static int do_lookup(struct nameidata *nd, struct qstr *name,
1192 struct path *path, struct inode **inode)
1193 {
1194 struct vfsmount *mnt = nd->path.mnt;
1195 struct dentry *dentry, *parent = nd->path.dentry;
1196 int need_reval = 1;
1197 int status = 1;
1198 int err;
1199
1200 /*
1201 * Rename seqlock is not required here because in the off chance
1202 * of a false negative due to a concurrent rename, we're going to
1203 * do the non-racy lookup, below.
1204 */
1205 if (nd->flags & LOOKUP_RCU) {
1206 unsigned seq;
1207 *inode = nd->inode;
1208 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1209 if (!dentry)
1210 goto unlazy;
1211
1212 /* Memory barrier in read_seqcount_begin of child is enough */
1213 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1214 return -ECHILD;
1215 nd->seq = seq;
1216
1217 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1218 status = d_revalidate(dentry, nd);
1219 if (unlikely(status <= 0)) {
1220 if (status != -ECHILD)
1221 need_reval = 0;
1222 goto unlazy;
1223 }
1224 }
1225 path->mnt = mnt;
1226 path->dentry = dentry;
1227 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1228 return 0;
1229 unlazy:
1230 if (dentry) {
1231 if (nameidata_dentry_drop_rcu(nd, dentry))
1232 return -ECHILD;
1233 } else {
1234 if (nameidata_drop_rcu(nd))
1235 return -ECHILD;
1236 }
1237 } else {
1238 dentry = __d_lookup(parent, name);
1239 }
1240
1241 retry:
1242 if (unlikely(!dentry)) {
1243 struct inode *dir = parent->d_inode;
1244 BUG_ON(nd->inode != dir);
1245
1246 mutex_lock(&dir->i_mutex);
1247 dentry = d_lookup(parent, name);
1248 if (likely(!dentry)) {
1249 dentry = d_alloc_and_lookup(parent, name, nd);
1250 if (IS_ERR(dentry)) {
1251 mutex_unlock(&dir->i_mutex);
1252 return PTR_ERR(dentry);
1253 }
1254 /* known good */
1255 need_reval = 0;
1256 status = 1;
1257 }
1258 mutex_unlock(&dir->i_mutex);
1259 }
1260 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1261 status = d_revalidate(dentry, nd);
1262 if (unlikely(status <= 0)) {
1263 if (status < 0) {
1264 dput(dentry);
1265 return status;
1266 }
1267 if (!d_invalidate(dentry)) {
1268 dput(dentry);
1269 dentry = NULL;
1270 need_reval = 1;
1271 goto retry;
1272 }
1273 }
1274
1275 path->mnt = mnt;
1276 path->dentry = dentry;
1277 err = follow_managed(path, nd->flags);
1278 if (unlikely(err < 0)) {
1279 path_put_conditional(path, nd);
1280 return err;
1281 }
1282 *inode = path->dentry->d_inode;
1283 return 0;
1284 }
1285
1286 static inline int may_lookup(struct nameidata *nd)
1287 {
1288 if (nd->flags & LOOKUP_RCU) {
1289 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1290 if (err != -ECHILD)
1291 return err;
1292 if (nameidata_drop_rcu(nd))
1293 return -ECHILD;
1294 }
1295 return exec_permission(nd->inode, 0);
1296 }
1297
1298 static inline int handle_dots(struct nameidata *nd, int type)
1299 {
1300 if (type == LAST_DOTDOT) {
1301 if (nd->flags & LOOKUP_RCU) {
1302 if (follow_dotdot_rcu(nd))
1303 return -ECHILD;
1304 } else
1305 follow_dotdot(nd);
1306 }
1307 return 0;
1308 }
1309
1310 static void terminate_walk(struct nameidata *nd)
1311 {
1312 if (!(nd->flags & LOOKUP_RCU)) {
1313 path_put(&nd->path);
1314 } else {
1315 nd->flags &= ~LOOKUP_RCU;
1316 if (!(nd->flags & LOOKUP_ROOT))
1317 nd->root.mnt = NULL;
1318 rcu_read_unlock();
1319 br_read_unlock(vfsmount_lock);
1320 }
1321 }
1322
1323 static inline int walk_component(struct nameidata *nd, struct path *path,
1324 struct qstr *name, int type, int follow)
1325 {
1326 struct inode *inode;
1327 int err;
1328 /*
1329 * "." and ".." are special - ".." especially so because it has
1330 * to be able to know about the current root directory and
1331 * parent relationships.
1332 */
1333 if (unlikely(type != LAST_NORM))
1334 return handle_dots(nd, type);
1335 err = do_lookup(nd, name, path, &inode);
1336 if (unlikely(err)) {
1337 terminate_walk(nd);
1338 return err;
1339 }
1340 if (!inode) {
1341 path_to_nameidata(path, nd);
1342 terminate_walk(nd);
1343 return -ENOENT;
1344 }
1345 if (unlikely(inode->i_op->follow_link) && follow) {
1346 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
1347 return -ECHILD;
1348 BUG_ON(inode != path->dentry->d_inode);
1349 return 1;
1350 }
1351 path_to_nameidata(path, nd);
1352 nd->inode = inode;
1353 return 0;
1354 }
1355
1356 /*
1357 * This limits recursive symlink follows to 8, while
1358 * limiting consecutive symlinks to 40.
1359 *
1360 * Without that kind of total limit, nasty chains of consecutive
1361 * symlinks can cause almost arbitrarily long lookups.
1362 */
1363 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1364 {
1365 int res;
1366
1367 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1368 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1369 path_put_conditional(path, nd);
1370 path_put(&nd->path);
1371 return -ELOOP;
1372 }
1373
1374 nd->depth++;
1375 current->link_count++;
1376
1377 do {
1378 struct path link = *path;
1379 void *cookie;
1380
1381 res = follow_link(&link, nd, &cookie);
1382 if (!res)
1383 res = walk_component(nd, path, &nd->last,
1384 nd->last_type, LOOKUP_FOLLOW);
1385 put_link(nd, &link, cookie);
1386 } while (res > 0);
1387
1388 current->link_count--;
1389 nd->depth--;
1390 return res;
1391 }
1392
1393 /*
1394 * Name resolution.
1395 * This is the basic name resolution function, turning a pathname into
1396 * the final dentry. We expect 'base' to be positive and a directory.
1397 *
1398 * Returns 0 and nd will have valid dentry and mnt on success.
1399 * Returns error and drops reference to input namei data on failure.
1400 */
1401 static int link_path_walk(const char *name, struct nameidata *nd)
1402 {
1403 struct path next;
1404 int err;
1405 unsigned int lookup_flags = nd->flags;
1406
1407 while (*name=='/')
1408 name++;
1409 if (!*name)
1410 return 0;
1411
1412 /* At this point we know we have a real path component. */
1413 for(;;) {
1414 unsigned long hash;
1415 struct qstr this;
1416 unsigned int c;
1417 int type;
1418
1419 nd->flags |= LOOKUP_CONTINUE;
1420
1421 err = may_lookup(nd);
1422 if (err)
1423 break;
1424
1425 this.name = name;
1426 c = *(const unsigned char *)name;
1427
1428 hash = init_name_hash();
1429 do {
1430 name++;
1431 hash = partial_name_hash(c, hash);
1432 c = *(const unsigned char *)name;
1433 } while (c && (c != '/'));
1434 this.len = name - (const char *) this.name;
1435 this.hash = end_name_hash(hash);
1436
1437 type = LAST_NORM;
1438 if (this.name[0] == '.') switch (this.len) {
1439 case 2:
1440 if (this.name[1] == '.') {
1441 type = LAST_DOTDOT;
1442 nd->flags |= LOOKUP_JUMPED;
1443 }
1444 break;
1445 case 1:
1446 type = LAST_DOT;
1447 }
1448 if (likely(type == LAST_NORM)) {
1449 struct dentry *parent = nd->path.dentry;
1450 nd->flags &= ~LOOKUP_JUMPED;
1451 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1452 err = parent->d_op->d_hash(parent, nd->inode,
1453 &this);
1454 if (err < 0)
1455 break;
1456 }
1457 }
1458
1459 /* remove trailing slashes? */
1460 if (!c)
1461 goto last_component;
1462 while (*++name == '/');
1463 if (!*name)
1464 goto last_component;
1465
1466 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1467 if (err < 0)
1468 return err;
1469
1470 if (err) {
1471 err = nested_symlink(&next, nd);
1472 if (err)
1473 return err;
1474 }
1475 err = -ENOTDIR;
1476 if (!nd->inode->i_op->lookup)
1477 break;
1478 continue;
1479 /* here ends the main loop */
1480
1481 last_component:
1482 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1483 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1484 nd->last = this;
1485 nd->last_type = type;
1486 return 0;
1487 }
1488 terminate_walk(nd);
1489 return err;
1490 }
1491
1492 static int path_init(int dfd, const char *name, unsigned int flags,
1493 struct nameidata *nd, struct file **fp)
1494 {
1495 int retval = 0;
1496 int fput_needed;
1497 struct file *file;
1498
1499 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1500 nd->flags = flags | LOOKUP_JUMPED;
1501 nd->depth = 0;
1502 if (flags & LOOKUP_ROOT) {
1503 struct inode *inode = nd->root.dentry->d_inode;
1504 if (*name) {
1505 if (!inode->i_op->lookup)
1506 return -ENOTDIR;
1507 retval = inode_permission(inode, MAY_EXEC);
1508 if (retval)
1509 return retval;
1510 }
1511 nd->path = nd->root;
1512 nd->inode = inode;
1513 if (flags & LOOKUP_RCU) {
1514 br_read_lock(vfsmount_lock);
1515 rcu_read_lock();
1516 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1517 } else {
1518 path_get(&nd->path);
1519 }
1520 return 0;
1521 }
1522
1523 nd->root.mnt = NULL;
1524
1525 if (*name=='/') {
1526 if (flags & LOOKUP_RCU) {
1527 br_read_lock(vfsmount_lock);
1528 rcu_read_lock();
1529 set_root_rcu(nd);
1530 } else {
1531 set_root(nd);
1532 path_get(&nd->root);
1533 }
1534 nd->path = nd->root;
1535 } else if (dfd == AT_FDCWD) {
1536 if (flags & LOOKUP_RCU) {
1537 struct fs_struct *fs = current->fs;
1538 unsigned seq;
1539
1540 br_read_lock(vfsmount_lock);
1541 rcu_read_lock();
1542
1543 do {
1544 seq = read_seqcount_begin(&fs->seq);
1545 nd->path = fs->pwd;
1546 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1547 } while (read_seqcount_retry(&fs->seq, seq));
1548 } else {
1549 get_fs_pwd(current->fs, &nd->path);
1550 }
1551 } else {
1552 struct dentry *dentry;
1553
1554 file = fget_raw_light(dfd, &fput_needed);
1555 retval = -EBADF;
1556 if (!file)
1557 goto out_fail;
1558
1559 dentry = file->f_path.dentry;
1560
1561 if (*name) {
1562 retval = -ENOTDIR;
1563 if (!S_ISDIR(dentry->d_inode->i_mode))
1564 goto fput_fail;
1565
1566 retval = file_permission(file, MAY_EXEC);
1567 if (retval)
1568 goto fput_fail;
1569 }
1570
1571 nd->path = file->f_path;
1572 if (flags & LOOKUP_RCU) {
1573 if (fput_needed)
1574 *fp = file;
1575 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1576 br_read_lock(vfsmount_lock);
1577 rcu_read_lock();
1578 } else {
1579 path_get(&file->f_path);
1580 fput_light(file, fput_needed);
1581 }
1582 }
1583
1584 nd->inode = nd->path.dentry->d_inode;
1585 return 0;
1586
1587 fput_fail:
1588 fput_light(file, fput_needed);
1589 out_fail:
1590 return retval;
1591 }
1592
1593 static inline int lookup_last(struct nameidata *nd, struct path *path)
1594 {
1595 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1596 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1597
1598 nd->flags &= ~LOOKUP_PARENT;
1599 return walk_component(nd, path, &nd->last, nd->last_type,
1600 nd->flags & LOOKUP_FOLLOW);
1601 }
1602
1603 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1604 static int path_lookupat(int dfd, const char *name,
1605 unsigned int flags, struct nameidata *nd)
1606 {
1607 struct file *base = NULL;
1608 struct path path;
1609 int err;
1610
1611 /*
1612 * Path walking is largely split up into 2 different synchronisation
1613 * schemes, rcu-walk and ref-walk (explained in
1614 * Documentation/filesystems/path-lookup.txt). These share much of the
1615 * path walk code, but some things particularly setup, cleanup, and
1616 * following mounts are sufficiently divergent that functions are
1617 * duplicated. Typically there is a function foo(), and its RCU
1618 * analogue, foo_rcu().
1619 *
1620 * -ECHILD is the error number of choice (just to avoid clashes) that
1621 * is returned if some aspect of an rcu-walk fails. Such an error must
1622 * be handled by restarting a traditional ref-walk (which will always
1623 * be able to complete).
1624 */
1625 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1626
1627 if (unlikely(err))
1628 return err;
1629
1630 current->total_link_count = 0;
1631 err = link_path_walk(name, nd);
1632
1633 if (!err && !(flags & LOOKUP_PARENT)) {
1634 err = lookup_last(nd, &path);
1635 while (err > 0) {
1636 void *cookie;
1637 struct path link = path;
1638 nd->flags |= LOOKUP_PARENT;
1639 err = follow_link(&link, nd, &cookie);
1640 if (!err)
1641 err = lookup_last(nd, &path);
1642 put_link(nd, &link, cookie);
1643 }
1644 }
1645
1646 if (nd->flags & LOOKUP_RCU) {
1647 /* went all way through without dropping RCU */
1648 BUG_ON(err);
1649 if (nameidata_drop_rcu_last(nd))
1650 err = -ECHILD;
1651 }
1652
1653 if (!err)
1654 err = handle_reval_path(nd);
1655
1656 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1657 if (!nd->inode->i_op->lookup) {
1658 path_put(&nd->path);
1659 return -ENOTDIR;
1660 }
1661 }
1662
1663 if (base)
1664 fput(base);
1665
1666 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1667 path_put(&nd->root);
1668 nd->root.mnt = NULL;
1669 }
1670 return err;
1671 }
1672
1673 static int do_path_lookup(int dfd, const char *name,
1674 unsigned int flags, struct nameidata *nd)
1675 {
1676 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1677 if (unlikely(retval == -ECHILD))
1678 retval = path_lookupat(dfd, name, flags, nd);
1679 if (unlikely(retval == -ESTALE))
1680 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1681
1682 if (likely(!retval)) {
1683 if (unlikely(!audit_dummy_context())) {
1684 if (nd->path.dentry && nd->inode)
1685 audit_inode(name, nd->path.dentry);
1686 }
1687 }
1688 return retval;
1689 }
1690
1691 int kern_path_parent(const char *name, struct nameidata *nd)
1692 {
1693 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1694 }
1695
1696 int kern_path(const char *name, unsigned int flags, struct path *path)
1697 {
1698 struct nameidata nd;
1699 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1700 if (!res)
1701 *path = nd.path;
1702 return res;
1703 }
1704
1705 /**
1706 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1707 * @dentry: pointer to dentry of the base directory
1708 * @mnt: pointer to vfs mount of the base directory
1709 * @name: pointer to file name
1710 * @flags: lookup flags
1711 * @nd: pointer to nameidata
1712 */
1713 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1714 const char *name, unsigned int flags,
1715 struct nameidata *nd)
1716 {
1717 nd->root.dentry = dentry;
1718 nd->root.mnt = mnt;
1719 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1720 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1721 }
1722
1723 static struct dentry *__lookup_hash(struct qstr *name,
1724 struct dentry *base, struct nameidata *nd)
1725 {
1726 struct inode *inode = base->d_inode;
1727 struct dentry *dentry;
1728 int err;
1729
1730 err = exec_permission(inode, 0);
1731 if (err)
1732 return ERR_PTR(err);
1733
1734 /*
1735 * Don't bother with __d_lookup: callers are for creat as
1736 * well as unlink, so a lot of the time it would cost
1737 * a double lookup.
1738 */
1739 dentry = d_lookup(base, name);
1740
1741 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1742 dentry = do_revalidate(dentry, nd);
1743
1744 if (!dentry)
1745 dentry = d_alloc_and_lookup(base, name, nd);
1746
1747 return dentry;
1748 }
1749
1750 /*
1751 * Restricted form of lookup. Doesn't follow links, single-component only,
1752 * needs parent already locked. Doesn't follow mounts.
1753 * SMP-safe.
1754 */
1755 static struct dentry *lookup_hash(struct nameidata *nd)
1756 {
1757 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1758 }
1759
1760 /**
1761 * lookup_one_len - filesystem helper to lookup single pathname component
1762 * @name: pathname component to lookup
1763 * @base: base directory to lookup from
1764 * @len: maximum length @len should be interpreted to
1765 *
1766 * Note that this routine is purely a helper for filesystem usage and should
1767 * not be called by generic code. Also note that by using this function the
1768 * nameidata argument is passed to the filesystem methods and a filesystem
1769 * using this helper needs to be prepared for that.
1770 */
1771 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1772 {
1773 struct qstr this;
1774 unsigned long hash;
1775 unsigned int c;
1776
1777 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1778
1779 this.name = name;
1780 this.len = len;
1781 if (!len)
1782 return ERR_PTR(-EACCES);
1783
1784 hash = init_name_hash();
1785 while (len--) {
1786 c = *(const unsigned char *)name++;
1787 if (c == '/' || c == '\0')
1788 return ERR_PTR(-EACCES);
1789 hash = partial_name_hash(c, hash);
1790 }
1791 this.hash = end_name_hash(hash);
1792 /*
1793 * See if the low-level filesystem might want
1794 * to use its own hash..
1795 */
1796 if (base->d_flags & DCACHE_OP_HASH) {
1797 int err = base->d_op->d_hash(base, base->d_inode, &this);
1798 if (err < 0)
1799 return ERR_PTR(err);
1800 }
1801
1802 return __lookup_hash(&this, base, NULL);
1803 }
1804
1805 int user_path_at(int dfd, const char __user *name, unsigned flags,
1806 struct path *path)
1807 {
1808 struct nameidata nd;
1809 char *tmp = getname_flags(name, flags);
1810 int err = PTR_ERR(tmp);
1811 if (!IS_ERR(tmp)) {
1812
1813 BUG_ON(flags & LOOKUP_PARENT);
1814
1815 err = do_path_lookup(dfd, tmp, flags, &nd);
1816 putname(tmp);
1817 if (!err)
1818 *path = nd.path;
1819 }
1820 return err;
1821 }
1822
1823 static int user_path_parent(int dfd, const char __user *path,
1824 struct nameidata *nd, char **name)
1825 {
1826 char *s = getname(path);
1827 int error;
1828
1829 if (IS_ERR(s))
1830 return PTR_ERR(s);
1831
1832 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1833 if (error)
1834 putname(s);
1835 else
1836 *name = s;
1837
1838 return error;
1839 }
1840
1841 /*
1842 * It's inline, so penalty for filesystems that don't use sticky bit is
1843 * minimal.
1844 */
1845 static inline int check_sticky(struct inode *dir, struct inode *inode)
1846 {
1847 uid_t fsuid = current_fsuid();
1848
1849 if (!(dir->i_mode & S_ISVTX))
1850 return 0;
1851 if (current_user_ns() != inode_userns(inode))
1852 goto other_userns;
1853 if (inode->i_uid == fsuid)
1854 return 0;
1855 if (dir->i_uid == fsuid)
1856 return 0;
1857
1858 other_userns:
1859 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1860 }
1861
1862 /*
1863 * Check whether we can remove a link victim from directory dir, check
1864 * whether the type of victim is right.
1865 * 1. We can't do it if dir is read-only (done in permission())
1866 * 2. We should have write and exec permissions on dir
1867 * 3. We can't remove anything from append-only dir
1868 * 4. We can't do anything with immutable dir (done in permission())
1869 * 5. If the sticky bit on dir is set we should either
1870 * a. be owner of dir, or
1871 * b. be owner of victim, or
1872 * c. have CAP_FOWNER capability
1873 * 6. If the victim is append-only or immutable we can't do antyhing with
1874 * links pointing to it.
1875 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1876 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1877 * 9. We can't remove a root or mountpoint.
1878 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1879 * nfs_async_unlink().
1880 */
1881 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1882 {
1883 int error;
1884
1885 if (!victim->d_inode)
1886 return -ENOENT;
1887
1888 BUG_ON(victim->d_parent->d_inode != dir);
1889 audit_inode_child(victim, dir);
1890
1891 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1892 if (error)
1893 return error;
1894 if (IS_APPEND(dir))
1895 return -EPERM;
1896 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1897 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1898 return -EPERM;
1899 if (isdir) {
1900 if (!S_ISDIR(victim->d_inode->i_mode))
1901 return -ENOTDIR;
1902 if (IS_ROOT(victim))
1903 return -EBUSY;
1904 } else if (S_ISDIR(victim->d_inode->i_mode))
1905 return -EISDIR;
1906 if (IS_DEADDIR(dir))
1907 return -ENOENT;
1908 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1909 return -EBUSY;
1910 return 0;
1911 }
1912
1913 /* Check whether we can create an object with dentry child in directory
1914 * dir.
1915 * 1. We can't do it if child already exists (open has special treatment for
1916 * this case, but since we are inlined it's OK)
1917 * 2. We can't do it if dir is read-only (done in permission())
1918 * 3. We should have write and exec permissions on dir
1919 * 4. We can't do it if dir is immutable (done in permission())
1920 */
1921 static inline int may_create(struct inode *dir, struct dentry *child)
1922 {
1923 if (child->d_inode)
1924 return -EEXIST;
1925 if (IS_DEADDIR(dir))
1926 return -ENOENT;
1927 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1928 }
1929
1930 /*
1931 * p1 and p2 should be directories on the same fs.
1932 */
1933 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1934 {
1935 struct dentry *p;
1936
1937 if (p1 == p2) {
1938 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1939 return NULL;
1940 }
1941
1942 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1943
1944 p = d_ancestor(p2, p1);
1945 if (p) {
1946 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1947 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1948 return p;
1949 }
1950
1951 p = d_ancestor(p1, p2);
1952 if (p) {
1953 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1954 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1955 return p;
1956 }
1957
1958 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1959 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1960 return NULL;
1961 }
1962
1963 void unlock_rename(struct dentry *p1, struct dentry *p2)
1964 {
1965 mutex_unlock(&p1->d_inode->i_mutex);
1966 if (p1 != p2) {
1967 mutex_unlock(&p2->d_inode->i_mutex);
1968 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1969 }
1970 }
1971
1972 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1973 struct nameidata *nd)
1974 {
1975 int error = may_create(dir, dentry);
1976
1977 if (error)
1978 return error;
1979
1980 if (!dir->i_op->create)
1981 return -EACCES; /* shouldn't it be ENOSYS? */
1982 mode &= S_IALLUGO;
1983 mode |= S_IFREG;
1984 error = security_inode_create(dir, dentry, mode);
1985 if (error)
1986 return error;
1987 error = dir->i_op->create(dir, dentry, mode, nd);
1988 if (!error)
1989 fsnotify_create(dir, dentry);
1990 return error;
1991 }
1992
1993 static int may_open(struct path *path, int acc_mode, int flag)
1994 {
1995 struct dentry *dentry = path->dentry;
1996 struct inode *inode = dentry->d_inode;
1997 int error;
1998
1999 /* O_PATH? */
2000 if (!acc_mode)
2001 return 0;
2002
2003 if (!inode)
2004 return -ENOENT;
2005
2006 switch (inode->i_mode & S_IFMT) {
2007 case S_IFLNK:
2008 return -ELOOP;
2009 case S_IFDIR:
2010 if (acc_mode & MAY_WRITE)
2011 return -EISDIR;
2012 break;
2013 case S_IFBLK:
2014 case S_IFCHR:
2015 if (path->mnt->mnt_flags & MNT_NODEV)
2016 return -EACCES;
2017 /*FALLTHRU*/
2018 case S_IFIFO:
2019 case S_IFSOCK:
2020 flag &= ~O_TRUNC;
2021 break;
2022 }
2023
2024 error = inode_permission(inode, acc_mode);
2025 if (error)
2026 return error;
2027
2028 /*
2029 * An append-only file must be opened in append mode for writing.
2030 */
2031 if (IS_APPEND(inode)) {
2032 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2033 return -EPERM;
2034 if (flag & O_TRUNC)
2035 return -EPERM;
2036 }
2037
2038 /* O_NOATIME can only be set by the owner or superuser */
2039 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2040 return -EPERM;
2041
2042 /*
2043 * Ensure there are no outstanding leases on the file.
2044 */
2045 return break_lease(inode, flag);
2046 }
2047
2048 static int handle_truncate(struct file *filp)
2049 {
2050 struct path *path = &filp->f_path;
2051 struct inode *inode = path->dentry->d_inode;
2052 int error = get_write_access(inode);
2053 if (error)
2054 return error;
2055 /*
2056 * Refuse to truncate files with mandatory locks held on them.
2057 */
2058 error = locks_verify_locked(inode);
2059 if (!error)
2060 error = security_path_truncate(path);
2061 if (!error) {
2062 error = do_truncate(path->dentry, 0,
2063 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2064 filp);
2065 }
2066 put_write_access(inode);
2067 return error;
2068 }
2069
2070 /*
2071 * Note that while the flag value (low two bits) for sys_open means:
2072 * 00 - read-only
2073 * 01 - write-only
2074 * 10 - read-write
2075 * 11 - special
2076 * it is changed into
2077 * 00 - no permissions needed
2078 * 01 - read-permission
2079 * 10 - write-permission
2080 * 11 - read-write
2081 * for the internal routines (ie open_namei()/follow_link() etc)
2082 * This is more logical, and also allows the 00 "no perm needed"
2083 * to be used for symlinks (where the permissions are checked
2084 * later).
2085 *
2086 */
2087 static inline int open_to_namei_flags(int flag)
2088 {
2089 if ((flag+1) & O_ACCMODE)
2090 flag++;
2091 return flag;
2092 }
2093
2094 /*
2095 * Handle the last step of open()
2096 */
2097 static struct file *do_last(struct nameidata *nd, struct path *path,
2098 const struct open_flags *op, const char *pathname)
2099 {
2100 struct dentry *dir = nd->path.dentry;
2101 struct dentry *dentry;
2102 int open_flag = op->open_flag;
2103 int will_truncate = open_flag & O_TRUNC;
2104 int want_write = 0;
2105 int acc_mode = op->acc_mode;
2106 struct file *filp;
2107 int error;
2108
2109 nd->flags &= ~LOOKUP_PARENT;
2110 nd->flags |= op->intent;
2111
2112 switch (nd->last_type) {
2113 case LAST_DOTDOT:
2114 case LAST_DOT:
2115 error = handle_dots(nd, nd->last_type);
2116 if (error)
2117 return ERR_PTR(error);
2118 /* fallthrough */
2119 case LAST_ROOT:
2120 if (nd->flags & LOOKUP_RCU) {
2121 if (nameidata_drop_rcu_last(nd))
2122 return ERR_PTR(-ECHILD);
2123 }
2124 error = handle_reval_path(nd);
2125 if (error)
2126 goto exit;
2127 audit_inode(pathname, nd->path.dentry);
2128 if (open_flag & O_CREAT) {
2129 error = -EISDIR;
2130 goto exit;
2131 }
2132 goto ok;
2133 case LAST_BIND:
2134 /* can't be RCU mode here */
2135 error = handle_reval_path(nd);
2136 if (error)
2137 goto exit;
2138 audit_inode(pathname, dir);
2139 goto ok;
2140 }
2141
2142 if (!(open_flag & O_CREAT)) {
2143 int symlink_ok = 0;
2144 if (nd->last.name[nd->last.len])
2145 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2146 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2147 symlink_ok = 1;
2148 /* we _can_ be in RCU mode here */
2149 error = walk_component(nd, path, &nd->last, LAST_NORM,
2150 !symlink_ok);
2151 if (error < 0)
2152 return ERR_PTR(error);
2153 if (error) /* symlink */
2154 return NULL;
2155 /* sayonara */
2156 if (nd->flags & LOOKUP_RCU) {
2157 if (nameidata_drop_rcu_last(nd))
2158 return ERR_PTR(-ECHILD);
2159 }
2160
2161 error = -ENOTDIR;
2162 if (nd->flags & LOOKUP_DIRECTORY) {
2163 if (!nd->inode->i_op->lookup)
2164 goto exit;
2165 }
2166 audit_inode(pathname, nd->path.dentry);
2167 goto ok;
2168 }
2169
2170 /* create side of things */
2171
2172 if (nd->flags & LOOKUP_RCU) {
2173 if (nameidata_drop_rcu_last(nd))
2174 return ERR_PTR(-ECHILD);
2175 }
2176
2177 audit_inode(pathname, dir);
2178 error = -EISDIR;
2179 /* trailing slashes? */
2180 if (nd->last.name[nd->last.len])
2181 goto exit;
2182
2183 mutex_lock(&dir->d_inode->i_mutex);
2184
2185 dentry = lookup_hash(nd);
2186 error = PTR_ERR(dentry);
2187 if (IS_ERR(dentry)) {
2188 mutex_unlock(&dir->d_inode->i_mutex);
2189 goto exit;
2190 }
2191
2192 path->dentry = dentry;
2193 path->mnt = nd->path.mnt;
2194
2195 /* Negative dentry, just create the file */
2196 if (!dentry->d_inode) {
2197 int mode = op->mode;
2198 if (!IS_POSIXACL(dir->d_inode))
2199 mode &= ~current_umask();
2200 /*
2201 * This write is needed to ensure that a
2202 * rw->ro transition does not occur between
2203 * the time when the file is created and when
2204 * a permanent write count is taken through
2205 * the 'struct file' in nameidata_to_filp().
2206 */
2207 error = mnt_want_write(nd->path.mnt);
2208 if (error)
2209 goto exit_mutex_unlock;
2210 want_write = 1;
2211 /* Don't check for write permission, don't truncate */
2212 open_flag &= ~O_TRUNC;
2213 will_truncate = 0;
2214 acc_mode = MAY_OPEN;
2215 error = security_path_mknod(&nd->path, dentry, mode, 0);
2216 if (error)
2217 goto exit_mutex_unlock;
2218 error = vfs_create(dir->d_inode, dentry, mode, nd);
2219 if (error)
2220 goto exit_mutex_unlock;
2221 mutex_unlock(&dir->d_inode->i_mutex);
2222 dput(nd->path.dentry);
2223 nd->path.dentry = dentry;
2224 goto common;
2225 }
2226
2227 /*
2228 * It already exists.
2229 */
2230 mutex_unlock(&dir->d_inode->i_mutex);
2231 audit_inode(pathname, path->dentry);
2232
2233 error = -EEXIST;
2234 if (open_flag & O_EXCL)
2235 goto exit_dput;
2236
2237 error = follow_managed(path, nd->flags);
2238 if (error < 0)
2239 goto exit_dput;
2240
2241 error = -ENOENT;
2242 if (!path->dentry->d_inode)
2243 goto exit_dput;
2244
2245 if (path->dentry->d_inode->i_op->follow_link)
2246 return NULL;
2247
2248 path_to_nameidata(path, nd);
2249 nd->inode = path->dentry->d_inode;
2250 error = -EISDIR;
2251 if (S_ISDIR(nd->inode->i_mode))
2252 goto exit;
2253 ok:
2254 if (!S_ISREG(nd->inode->i_mode))
2255 will_truncate = 0;
2256
2257 if (will_truncate) {
2258 error = mnt_want_write(nd->path.mnt);
2259 if (error)
2260 goto exit;
2261 want_write = 1;
2262 }
2263 common:
2264 error = may_open(&nd->path, acc_mode, open_flag);
2265 if (error)
2266 goto exit;
2267 filp = nameidata_to_filp(nd);
2268 if (!IS_ERR(filp)) {
2269 error = ima_file_check(filp, op->acc_mode);
2270 if (error) {
2271 fput(filp);
2272 filp = ERR_PTR(error);
2273 }
2274 }
2275 if (!IS_ERR(filp)) {
2276 if (will_truncate) {
2277 error = handle_truncate(filp);
2278 if (error) {
2279 fput(filp);
2280 filp = ERR_PTR(error);
2281 }
2282 }
2283 }
2284 out:
2285 if (want_write)
2286 mnt_drop_write(nd->path.mnt);
2287 path_put(&nd->path);
2288 return filp;
2289
2290 exit_mutex_unlock:
2291 mutex_unlock(&dir->d_inode->i_mutex);
2292 exit_dput:
2293 path_put_conditional(path, nd);
2294 exit:
2295 filp = ERR_PTR(error);
2296 goto out;
2297 }
2298
2299 static struct file *path_openat(int dfd, const char *pathname,
2300 struct nameidata *nd, const struct open_flags *op, int flags)
2301 {
2302 struct file *base = NULL;
2303 struct file *filp;
2304 struct path path;
2305 int error;
2306
2307 filp = get_empty_filp();
2308 if (!filp)
2309 return ERR_PTR(-ENFILE);
2310
2311 filp->f_flags = op->open_flag;
2312 nd->intent.open.file = filp;
2313 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2314 nd->intent.open.create_mode = op->mode;
2315
2316 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2317 if (unlikely(error))
2318 goto out_filp;
2319
2320 current->total_link_count = 0;
2321 error = link_path_walk(pathname, nd);
2322 if (unlikely(error))
2323 goto out_filp;
2324
2325 filp = do_last(nd, &path, op, pathname);
2326 while (unlikely(!filp)) { /* trailing symlink */
2327 struct path link = path;
2328 void *cookie;
2329 if (!(nd->flags & LOOKUP_FOLLOW)) {
2330 path_put_conditional(&path, nd);
2331 path_put(&nd->path);
2332 filp = ERR_PTR(-ELOOP);
2333 break;
2334 }
2335 nd->flags |= LOOKUP_PARENT;
2336 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2337 error = follow_link(&link, nd, &cookie);
2338 if (unlikely(error))
2339 filp = ERR_PTR(error);
2340 else
2341 filp = do_last(nd, &path, op, pathname);
2342 put_link(nd, &link, cookie);
2343 }
2344 out:
2345 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2346 path_put(&nd->root);
2347 if (base)
2348 fput(base);
2349 release_open_intent(nd);
2350 return filp;
2351
2352 out_filp:
2353 filp = ERR_PTR(error);
2354 goto out;
2355 }
2356
2357 struct file *do_filp_open(int dfd, const char *pathname,
2358 const struct open_flags *op, int flags)
2359 {
2360 struct nameidata nd;
2361 struct file *filp;
2362
2363 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2364 if (unlikely(filp == ERR_PTR(-ECHILD)))
2365 filp = path_openat(dfd, pathname, &nd, op, flags);
2366 if (unlikely(filp == ERR_PTR(-ESTALE)))
2367 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2368 return filp;
2369 }
2370
2371 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2372 const char *name, const struct open_flags *op, int flags)
2373 {
2374 struct nameidata nd;
2375 struct file *file;
2376
2377 nd.root.mnt = mnt;
2378 nd.root.dentry = dentry;
2379
2380 flags |= LOOKUP_ROOT;
2381
2382 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2383 return ERR_PTR(-ELOOP);
2384
2385 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2386 if (unlikely(file == ERR_PTR(-ECHILD)))
2387 file = path_openat(-1, name, &nd, op, flags);
2388 if (unlikely(file == ERR_PTR(-ESTALE)))
2389 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2390 return file;
2391 }
2392
2393 /**
2394 * lookup_create - lookup a dentry, creating it if it doesn't exist
2395 * @nd: nameidata info
2396 * @is_dir: directory flag
2397 *
2398 * Simple function to lookup and return a dentry and create it
2399 * if it doesn't exist. Is SMP-safe.
2400 *
2401 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2402 */
2403 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2404 {
2405 struct dentry *dentry = ERR_PTR(-EEXIST);
2406
2407 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2408 /*
2409 * Yucky last component or no last component at all?
2410 * (foo/., foo/.., /////)
2411 */
2412 if (nd->last_type != LAST_NORM)
2413 goto fail;
2414 nd->flags &= ~LOOKUP_PARENT;
2415 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2416 nd->intent.open.flags = O_EXCL;
2417
2418 /*
2419 * Do the final lookup.
2420 */
2421 dentry = lookup_hash(nd);
2422 if (IS_ERR(dentry))
2423 goto fail;
2424
2425 if (dentry->d_inode)
2426 goto eexist;
2427 /*
2428 * Special case - lookup gave negative, but... we had foo/bar/
2429 * From the vfs_mknod() POV we just have a negative dentry -
2430 * all is fine. Let's be bastards - you had / on the end, you've
2431 * been asking for (non-existent) directory. -ENOENT for you.
2432 */
2433 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2434 dput(dentry);
2435 dentry = ERR_PTR(-ENOENT);
2436 }
2437 return dentry;
2438 eexist:
2439 dput(dentry);
2440 dentry = ERR_PTR(-EEXIST);
2441 fail:
2442 return dentry;
2443 }
2444 EXPORT_SYMBOL_GPL(lookup_create);
2445
2446 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2447 {
2448 int error = may_create(dir, dentry);
2449
2450 if (error)
2451 return error;
2452
2453 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2454 !ns_capable(inode_userns(dir), CAP_MKNOD))
2455 return -EPERM;
2456
2457 if (!dir->i_op->mknod)
2458 return -EPERM;
2459
2460 error = devcgroup_inode_mknod(mode, dev);
2461 if (error)
2462 return error;
2463
2464 error = security_inode_mknod(dir, dentry, mode, dev);
2465 if (error)
2466 return error;
2467
2468 error = dir->i_op->mknod(dir, dentry, mode, dev);
2469 if (!error)
2470 fsnotify_create(dir, dentry);
2471 return error;
2472 }
2473
2474 static int may_mknod(mode_t mode)
2475 {
2476 switch (mode & S_IFMT) {
2477 case S_IFREG:
2478 case S_IFCHR:
2479 case S_IFBLK:
2480 case S_IFIFO:
2481 case S_IFSOCK:
2482 case 0: /* zero mode translates to S_IFREG */
2483 return 0;
2484 case S_IFDIR:
2485 return -EPERM;
2486 default:
2487 return -EINVAL;
2488 }
2489 }
2490
2491 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2492 unsigned, dev)
2493 {
2494 int error;
2495 char *tmp;
2496 struct dentry *dentry;
2497 struct nameidata nd;
2498
2499 if (S_ISDIR(mode))
2500 return -EPERM;
2501
2502 error = user_path_parent(dfd, filename, &nd, &tmp);
2503 if (error)
2504 return error;
2505
2506 dentry = lookup_create(&nd, 0);
2507 if (IS_ERR(dentry)) {
2508 error = PTR_ERR(dentry);
2509 goto out_unlock;
2510 }
2511 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2512 mode &= ~current_umask();
2513 error = may_mknod(mode);
2514 if (error)
2515 goto out_dput;
2516 error = mnt_want_write(nd.path.mnt);
2517 if (error)
2518 goto out_dput;
2519 error = security_path_mknod(&nd.path, dentry, mode, dev);
2520 if (error)
2521 goto out_drop_write;
2522 switch (mode & S_IFMT) {
2523 case 0: case S_IFREG:
2524 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2525 break;
2526 case S_IFCHR: case S_IFBLK:
2527 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2528 new_decode_dev(dev));
2529 break;
2530 case S_IFIFO: case S_IFSOCK:
2531 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2532 break;
2533 }
2534 out_drop_write:
2535 mnt_drop_write(nd.path.mnt);
2536 out_dput:
2537 dput(dentry);
2538 out_unlock:
2539 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2540 path_put(&nd.path);
2541 putname(tmp);
2542
2543 return error;
2544 }
2545
2546 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2547 {
2548 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2549 }
2550
2551 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2552 {
2553 int error = may_create(dir, dentry);
2554
2555 if (error)
2556 return error;
2557
2558 if (!dir->i_op->mkdir)
2559 return -EPERM;
2560
2561 mode &= (S_IRWXUGO|S_ISVTX);
2562 error = security_inode_mkdir(dir, dentry, mode);
2563 if (error)
2564 return error;
2565
2566 error = dir->i_op->mkdir(dir, dentry, mode);
2567 if (!error)
2568 fsnotify_mkdir(dir, dentry);
2569 return error;
2570 }
2571
2572 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2573 {
2574 int error = 0;
2575 char * tmp;
2576 struct dentry *dentry;
2577 struct nameidata nd;
2578
2579 error = user_path_parent(dfd, pathname, &nd, &tmp);
2580 if (error)
2581 goto out_err;
2582
2583 dentry = lookup_create(&nd, 1);
2584 error = PTR_ERR(dentry);
2585 if (IS_ERR(dentry))
2586 goto out_unlock;
2587
2588 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2589 mode &= ~current_umask();
2590 error = mnt_want_write(nd.path.mnt);
2591 if (error)
2592 goto out_dput;
2593 error = security_path_mkdir(&nd.path, dentry, mode);
2594 if (error)
2595 goto out_drop_write;
2596 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2597 out_drop_write:
2598 mnt_drop_write(nd.path.mnt);
2599 out_dput:
2600 dput(dentry);
2601 out_unlock:
2602 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2603 path_put(&nd.path);
2604 putname(tmp);
2605 out_err:
2606 return error;
2607 }
2608
2609 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2610 {
2611 return sys_mkdirat(AT_FDCWD, pathname, mode);
2612 }
2613
2614 /*
2615 * We try to drop the dentry early: we should have
2616 * a usage count of 2 if we're the only user of this
2617 * dentry, and if that is true (possibly after pruning
2618 * the dcache), then we drop the dentry now.
2619 *
2620 * A low-level filesystem can, if it choses, legally
2621 * do a
2622 *
2623 * if (!d_unhashed(dentry))
2624 * return -EBUSY;
2625 *
2626 * if it cannot handle the case of removing a directory
2627 * that is still in use by something else..
2628 */
2629 void dentry_unhash(struct dentry *dentry)
2630 {
2631 dget(dentry);
2632 shrink_dcache_parent(dentry);
2633 spin_lock(&dentry->d_lock);
2634 if (dentry->d_count == 2)
2635 __d_drop(dentry);
2636 spin_unlock(&dentry->d_lock);
2637 }
2638
2639 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2640 {
2641 int error = may_delete(dir, dentry, 1);
2642
2643 if (error)
2644 return error;
2645
2646 if (!dir->i_op->rmdir)
2647 return -EPERM;
2648
2649 mutex_lock(&dentry->d_inode->i_mutex);
2650 dentry_unhash(dentry);
2651 if (d_mountpoint(dentry))
2652 error = -EBUSY;
2653 else {
2654 error = security_inode_rmdir(dir, dentry);
2655 if (!error) {
2656 error = dir->i_op->rmdir(dir, dentry);
2657 if (!error) {
2658 dentry->d_inode->i_flags |= S_DEAD;
2659 dont_mount(dentry);
2660 }
2661 }
2662 }
2663 mutex_unlock(&dentry->d_inode->i_mutex);
2664 if (!error) {
2665 d_delete(dentry);
2666 }
2667 dput(dentry);
2668
2669 return error;
2670 }
2671
2672 static long do_rmdir(int dfd, const char __user *pathname)
2673 {
2674 int error = 0;
2675 char * name;
2676 struct dentry *dentry;
2677 struct nameidata nd;
2678
2679 error = user_path_parent(dfd, pathname, &nd, &name);
2680 if (error)
2681 return error;
2682
2683 switch(nd.last_type) {
2684 case LAST_DOTDOT:
2685 error = -ENOTEMPTY;
2686 goto exit1;
2687 case LAST_DOT:
2688 error = -EINVAL;
2689 goto exit1;
2690 case LAST_ROOT:
2691 error = -EBUSY;
2692 goto exit1;
2693 }
2694
2695 nd.flags &= ~LOOKUP_PARENT;
2696
2697 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2698 dentry = lookup_hash(&nd);
2699 error = PTR_ERR(dentry);
2700 if (IS_ERR(dentry))
2701 goto exit2;
2702 error = mnt_want_write(nd.path.mnt);
2703 if (error)
2704 goto exit3;
2705 error = security_path_rmdir(&nd.path, dentry);
2706 if (error)
2707 goto exit4;
2708 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2709 exit4:
2710 mnt_drop_write(nd.path.mnt);
2711 exit3:
2712 dput(dentry);
2713 exit2:
2714 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2715 exit1:
2716 path_put(&nd.path);
2717 putname(name);
2718 return error;
2719 }
2720
2721 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2722 {
2723 return do_rmdir(AT_FDCWD, pathname);
2724 }
2725
2726 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2727 {
2728 int error = may_delete(dir, dentry, 0);
2729
2730 if (error)
2731 return error;
2732
2733 if (!dir->i_op->unlink)
2734 return -EPERM;
2735
2736 mutex_lock(&dentry->d_inode->i_mutex);
2737 if (d_mountpoint(dentry))
2738 error = -EBUSY;
2739 else {
2740 error = security_inode_unlink(dir, dentry);
2741 if (!error) {
2742 error = dir->i_op->unlink(dir, dentry);
2743 if (!error)
2744 dont_mount(dentry);
2745 }
2746 }
2747 mutex_unlock(&dentry->d_inode->i_mutex);
2748
2749 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2750 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2751 fsnotify_link_count(dentry->d_inode);
2752 d_delete(dentry);
2753 }
2754
2755 return error;
2756 }
2757
2758 /*
2759 * Make sure that the actual truncation of the file will occur outside its
2760 * directory's i_mutex. Truncate can take a long time if there is a lot of
2761 * writeout happening, and we don't want to prevent access to the directory
2762 * while waiting on the I/O.
2763 */
2764 static long do_unlinkat(int dfd, const char __user *pathname)
2765 {
2766 int error;
2767 char *name;
2768 struct dentry *dentry;
2769 struct nameidata nd;
2770 struct inode *inode = NULL;
2771
2772 error = user_path_parent(dfd, pathname, &nd, &name);
2773 if (error)
2774 return error;
2775
2776 error = -EISDIR;
2777 if (nd.last_type != LAST_NORM)
2778 goto exit1;
2779
2780 nd.flags &= ~LOOKUP_PARENT;
2781
2782 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2783 dentry = lookup_hash(&nd);
2784 error = PTR_ERR(dentry);
2785 if (!IS_ERR(dentry)) {
2786 /* Why not before? Because we want correct error value */
2787 if (nd.last.name[nd.last.len])
2788 goto slashes;
2789 inode = dentry->d_inode;
2790 if (inode)
2791 ihold(inode);
2792 error = mnt_want_write(nd.path.mnt);
2793 if (error)
2794 goto exit2;
2795 error = security_path_unlink(&nd.path, dentry);
2796 if (error)
2797 goto exit3;
2798 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2799 exit3:
2800 mnt_drop_write(nd.path.mnt);
2801 exit2:
2802 dput(dentry);
2803 }
2804 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2805 if (inode)
2806 iput(inode); /* truncate the inode here */
2807 exit1:
2808 path_put(&nd.path);
2809 putname(name);
2810 return error;
2811
2812 slashes:
2813 error = !dentry->d_inode ? -ENOENT :
2814 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2815 goto exit2;
2816 }
2817
2818 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2819 {
2820 if ((flag & ~AT_REMOVEDIR) != 0)
2821 return -EINVAL;
2822
2823 if (flag & AT_REMOVEDIR)
2824 return do_rmdir(dfd, pathname);
2825
2826 return do_unlinkat(dfd, pathname);
2827 }
2828
2829 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2830 {
2831 return do_unlinkat(AT_FDCWD, pathname);
2832 }
2833
2834 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2835 {
2836 int error = may_create(dir, dentry);
2837
2838 if (error)
2839 return error;
2840
2841 if (!dir->i_op->symlink)
2842 return -EPERM;
2843
2844 error = security_inode_symlink(dir, dentry, oldname);
2845 if (error)
2846 return error;
2847
2848 error = dir->i_op->symlink(dir, dentry, oldname);
2849 if (!error)
2850 fsnotify_create(dir, dentry);
2851 return error;
2852 }
2853
2854 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2855 int, newdfd, const char __user *, newname)
2856 {
2857 int error;
2858 char *from;
2859 char *to;
2860 struct dentry *dentry;
2861 struct nameidata nd;
2862
2863 from = getname(oldname);
2864 if (IS_ERR(from))
2865 return PTR_ERR(from);
2866
2867 error = user_path_parent(newdfd, newname, &nd, &to);
2868 if (error)
2869 goto out_putname;
2870
2871 dentry = lookup_create(&nd, 0);
2872 error = PTR_ERR(dentry);
2873 if (IS_ERR(dentry))
2874 goto out_unlock;
2875
2876 error = mnt_want_write(nd.path.mnt);
2877 if (error)
2878 goto out_dput;
2879 error = security_path_symlink(&nd.path, dentry, from);
2880 if (error)
2881 goto out_drop_write;
2882 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2883 out_drop_write:
2884 mnt_drop_write(nd.path.mnt);
2885 out_dput:
2886 dput(dentry);
2887 out_unlock:
2888 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2889 path_put(&nd.path);
2890 putname(to);
2891 out_putname:
2892 putname(from);
2893 return error;
2894 }
2895
2896 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2897 {
2898 return sys_symlinkat(oldname, AT_FDCWD, newname);
2899 }
2900
2901 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2902 {
2903 struct inode *inode = old_dentry->d_inode;
2904 int error;
2905
2906 if (!inode)
2907 return -ENOENT;
2908
2909 error = may_create(dir, new_dentry);
2910 if (error)
2911 return error;
2912
2913 if (dir->i_sb != inode->i_sb)
2914 return -EXDEV;
2915
2916 /*
2917 * A link to an append-only or immutable file cannot be created.
2918 */
2919 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2920 return -EPERM;
2921 if (!dir->i_op->link)
2922 return -EPERM;
2923 if (S_ISDIR(inode->i_mode))
2924 return -EPERM;
2925
2926 error = security_inode_link(old_dentry, dir, new_dentry);
2927 if (error)
2928 return error;
2929
2930 mutex_lock(&inode->i_mutex);
2931 /* Make sure we don't allow creating hardlink to an unlinked file */
2932 if (inode->i_nlink == 0)
2933 error = -ENOENT;
2934 else
2935 error = dir->i_op->link(old_dentry, dir, new_dentry);
2936 mutex_unlock(&inode->i_mutex);
2937 if (!error)
2938 fsnotify_link(dir, inode, new_dentry);
2939 return error;
2940 }
2941
2942 /*
2943 * Hardlinks are often used in delicate situations. We avoid
2944 * security-related surprises by not following symlinks on the
2945 * newname. --KAB
2946 *
2947 * We don't follow them on the oldname either to be compatible
2948 * with linux 2.0, and to avoid hard-linking to directories
2949 * and other special files. --ADM
2950 */
2951 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2952 int, newdfd, const char __user *, newname, int, flags)
2953 {
2954 struct dentry *new_dentry;
2955 struct nameidata nd;
2956 struct path old_path;
2957 int how = 0;
2958 int error;
2959 char *to;
2960
2961 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2962 return -EINVAL;
2963 /*
2964 * To use null names we require CAP_DAC_READ_SEARCH
2965 * This ensures that not everyone will be able to create
2966 * handlink using the passed filedescriptor.
2967 */
2968 if (flags & AT_EMPTY_PATH) {
2969 if (!capable(CAP_DAC_READ_SEARCH))
2970 return -ENOENT;
2971 how = LOOKUP_EMPTY;
2972 }
2973
2974 if (flags & AT_SYMLINK_FOLLOW)
2975 how |= LOOKUP_FOLLOW;
2976
2977 error = user_path_at(olddfd, oldname, how, &old_path);
2978 if (error)
2979 return error;
2980
2981 error = user_path_parent(newdfd, newname, &nd, &to);
2982 if (error)
2983 goto out;
2984 error = -EXDEV;
2985 if (old_path.mnt != nd.path.mnt)
2986 goto out_release;
2987 new_dentry = lookup_create(&nd, 0);
2988 error = PTR_ERR(new_dentry);
2989 if (IS_ERR(new_dentry))
2990 goto out_unlock;
2991 error = mnt_want_write(nd.path.mnt);
2992 if (error)
2993 goto out_dput;
2994 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2995 if (error)
2996 goto out_drop_write;
2997 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2998 out_drop_write:
2999 mnt_drop_write(nd.path.mnt);
3000 out_dput:
3001 dput(new_dentry);
3002 out_unlock:
3003 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3004 out_release:
3005 path_put(&nd.path);
3006 putname(to);
3007 out:
3008 path_put(&old_path);
3009
3010 return error;
3011 }
3012
3013 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3014 {
3015 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3016 }
3017
3018 /*
3019 * The worst of all namespace operations - renaming directory. "Perverted"
3020 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3021 * Problems:
3022 * a) we can get into loop creation. Check is done in is_subdir().
3023 * b) race potential - two innocent renames can create a loop together.
3024 * That's where 4.4 screws up. Current fix: serialization on
3025 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3026 * story.
3027 * c) we have to lock _three_ objects - parents and victim (if it exists).
3028 * And that - after we got ->i_mutex on parents (until then we don't know
3029 * whether the target exists). Solution: try to be smart with locking
3030 * order for inodes. We rely on the fact that tree topology may change
3031 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3032 * move will be locked. Thus we can rank directories by the tree
3033 * (ancestors first) and rank all non-directories after them.
3034 * That works since everybody except rename does "lock parent, lookup,
3035 * lock child" and rename is under ->s_vfs_rename_mutex.
3036 * HOWEVER, it relies on the assumption that any object with ->lookup()
3037 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3038 * we'd better make sure that there's no link(2) for them.
3039 * d) some filesystems don't support opened-but-unlinked directories,
3040 * either because of layout or because they are not ready to deal with
3041 * all cases correctly. The latter will be fixed (taking this sort of
3042 * stuff into VFS), but the former is not going away. Solution: the same
3043 * trick as in rmdir().
3044 * e) conversion from fhandle to dentry may come in the wrong moment - when
3045 * we are removing the target. Solution: we will have to grab ->i_mutex
3046 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3047 * ->i_mutex on parents, which works but leads to some truly excessive
3048 * locking].
3049 */
3050 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3051 struct inode *new_dir, struct dentry *new_dentry)
3052 {
3053 int error = 0;
3054 struct inode *target;
3055
3056 /*
3057 * If we are going to change the parent - check write permissions,
3058 * we'll need to flip '..'.
3059 */
3060 if (new_dir != old_dir) {
3061 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3062 if (error)
3063 return error;
3064 }
3065
3066 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3067 if (error)
3068 return error;
3069
3070 target = new_dentry->d_inode;
3071 if (target)
3072 mutex_lock(&target->i_mutex);
3073 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3074 error = -EBUSY;
3075 else {
3076 if (target)
3077 dentry_unhash(new_dentry);
3078 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3079 }
3080 if (target) {
3081 if (!error) {
3082 target->i_flags |= S_DEAD;
3083 dont_mount(new_dentry);
3084 }
3085 mutex_unlock(&target->i_mutex);
3086 if (d_unhashed(new_dentry))
3087 d_rehash(new_dentry);
3088 dput(new_dentry);
3089 }
3090 if (!error)
3091 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3092 d_move(old_dentry,new_dentry);
3093 return error;
3094 }
3095
3096 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3097 struct inode *new_dir, struct dentry *new_dentry)
3098 {
3099 struct inode *target;
3100 int error;
3101
3102 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3103 if (error)
3104 return error;
3105
3106 dget(new_dentry);
3107 target = new_dentry->d_inode;
3108 if (target)
3109 mutex_lock(&target->i_mutex);
3110 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3111 error = -EBUSY;
3112 else
3113 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3114 if (!error) {
3115 if (target)
3116 dont_mount(new_dentry);
3117 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3118 d_move(old_dentry, new_dentry);
3119 }
3120 if (target)
3121 mutex_unlock(&target->i_mutex);
3122 dput(new_dentry);
3123 return error;
3124 }
3125
3126 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3127 struct inode *new_dir, struct dentry *new_dentry)
3128 {
3129 int error;
3130 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3131 const unsigned char *old_name;
3132
3133 if (old_dentry->d_inode == new_dentry->d_inode)
3134 return 0;
3135
3136 error = may_delete(old_dir, old_dentry, is_dir);
3137 if (error)
3138 return error;
3139
3140 if (!new_dentry->d_inode)
3141 error = may_create(new_dir, new_dentry);
3142 else
3143 error = may_delete(new_dir, new_dentry, is_dir);
3144 if (error)
3145 return error;
3146
3147 if (!old_dir->i_op->rename)
3148 return -EPERM;
3149
3150 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3151
3152 if (is_dir)
3153 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3154 else
3155 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3156 if (!error)
3157 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3158 new_dentry->d_inode, old_dentry);
3159 fsnotify_oldname_free(old_name);
3160
3161 return error;
3162 }
3163
3164 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3165 int, newdfd, const char __user *, newname)
3166 {
3167 struct dentry *old_dir, *new_dir;
3168 struct dentry *old_dentry, *new_dentry;
3169 struct dentry *trap;
3170 struct nameidata oldnd, newnd;
3171 char *from;
3172 char *to;
3173 int error;
3174
3175 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3176 if (error)
3177 goto exit;
3178
3179 error = user_path_parent(newdfd, newname, &newnd, &to);
3180 if (error)
3181 goto exit1;
3182
3183 error = -EXDEV;
3184 if (oldnd.path.mnt != newnd.path.mnt)
3185 goto exit2;
3186
3187 old_dir = oldnd.path.dentry;
3188 error = -EBUSY;
3189 if (oldnd.last_type != LAST_NORM)
3190 goto exit2;
3191
3192 new_dir = newnd.path.dentry;
3193 if (newnd.last_type != LAST_NORM)
3194 goto exit2;
3195
3196 oldnd.flags &= ~LOOKUP_PARENT;
3197 newnd.flags &= ~LOOKUP_PARENT;
3198 newnd.flags |= LOOKUP_RENAME_TARGET;
3199
3200 trap = lock_rename(new_dir, old_dir);
3201
3202 old_dentry = lookup_hash(&oldnd);
3203 error = PTR_ERR(old_dentry);
3204 if (IS_ERR(old_dentry))
3205 goto exit3;
3206 /* source must exist */
3207 error = -ENOENT;
3208 if (!old_dentry->d_inode)
3209 goto exit4;
3210 /* unless the source is a directory trailing slashes give -ENOTDIR */
3211 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3212 error = -ENOTDIR;
3213 if (oldnd.last.name[oldnd.last.len])
3214 goto exit4;
3215 if (newnd.last.name[newnd.last.len])
3216 goto exit4;
3217 }
3218 /* source should not be ancestor of target */
3219 error = -EINVAL;
3220 if (old_dentry == trap)
3221 goto exit4;
3222 new_dentry = lookup_hash(&newnd);
3223 error = PTR_ERR(new_dentry);
3224 if (IS_ERR(new_dentry))
3225 goto exit4;
3226 /* target should not be an ancestor of source */
3227 error = -ENOTEMPTY;
3228 if (new_dentry == trap)
3229 goto exit5;
3230
3231 error = mnt_want_write(oldnd.path.mnt);
3232 if (error)
3233 goto exit5;
3234 error = security_path_rename(&oldnd.path, old_dentry,
3235 &newnd.path, new_dentry);
3236 if (error)
3237 goto exit6;
3238 error = vfs_rename(old_dir->d_inode, old_dentry,
3239 new_dir->d_inode, new_dentry);
3240 exit6:
3241 mnt_drop_write(oldnd.path.mnt);
3242 exit5:
3243 dput(new_dentry);
3244 exit4:
3245 dput(old_dentry);
3246 exit3:
3247 unlock_rename(new_dir, old_dir);
3248 exit2:
3249 path_put(&newnd.path);
3250 putname(to);
3251 exit1:
3252 path_put(&oldnd.path);
3253 putname(from);
3254 exit:
3255 return error;
3256 }
3257
3258 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3259 {
3260 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3261 }
3262
3263 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3264 {
3265 int len;
3266
3267 len = PTR_ERR(link);
3268 if (IS_ERR(link))
3269 goto out;
3270
3271 len = strlen(link);
3272 if (len > (unsigned) buflen)
3273 len = buflen;
3274 if (copy_to_user(buffer, link, len))
3275 len = -EFAULT;
3276 out:
3277 return len;
3278 }
3279
3280 /*
3281 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3282 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3283 * using) it for any given inode is up to filesystem.
3284 */
3285 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3286 {
3287 struct nameidata nd;
3288 void *cookie;
3289 int res;
3290
3291 nd.depth = 0;
3292 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3293 if (IS_ERR(cookie))
3294 return PTR_ERR(cookie);
3295
3296 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3297 if (dentry->d_inode->i_op->put_link)
3298 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3299 return res;
3300 }
3301
3302 int vfs_follow_link(struct nameidata *nd, const char *link)
3303 {
3304 return __vfs_follow_link(nd, link);
3305 }
3306
3307 /* get the link contents into pagecache */
3308 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3309 {
3310 char *kaddr;
3311 struct page *page;
3312 struct address_space *mapping = dentry->d_inode->i_mapping;
3313 page = read_mapping_page(mapping, 0, NULL);
3314 if (IS_ERR(page))
3315 return (char*)page;
3316 *ppage = page;
3317 kaddr = kmap(page);
3318 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3319 return kaddr;
3320 }
3321
3322 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3323 {
3324 struct page *page = NULL;
3325 char *s = page_getlink(dentry, &page);
3326 int res = vfs_readlink(dentry,buffer,buflen,s);
3327 if (page) {
3328 kunmap(page);
3329 page_cache_release(page);
3330 }
3331 return res;
3332 }
3333
3334 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3335 {
3336 struct page *page = NULL;
3337 nd_set_link(nd, page_getlink(dentry, &page));
3338 return page;
3339 }
3340
3341 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3342 {
3343 struct page *page = cookie;
3344
3345 if (page) {
3346 kunmap(page);
3347 page_cache_release(page);
3348 }
3349 }
3350
3351 /*
3352 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3353 */
3354 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3355 {
3356 struct address_space *mapping = inode->i_mapping;
3357 struct page *page;
3358 void *fsdata;
3359 int err;
3360 char *kaddr;
3361 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3362 if (nofs)
3363 flags |= AOP_FLAG_NOFS;
3364
3365 retry:
3366 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3367 flags, &page, &fsdata);
3368 if (err)
3369 goto fail;
3370
3371 kaddr = kmap_atomic(page, KM_USER0);
3372 memcpy(kaddr, symname, len-1);
3373 kunmap_atomic(kaddr, KM_USER0);
3374
3375 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3376 page, fsdata);
3377 if (err < 0)
3378 goto fail;
3379 if (err < len-1)
3380 goto retry;
3381
3382 mark_inode_dirty(inode);
3383 return 0;
3384 fail:
3385 return err;
3386 }
3387
3388 int page_symlink(struct inode *inode, const char *symname, int len)
3389 {
3390 return __page_symlink(inode, symname, len,
3391 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3392 }
3393
3394 const struct inode_operations page_symlink_inode_operations = {
3395 .readlink = generic_readlink,
3396 .follow_link = page_follow_link_light,
3397 .put_link = page_put_link,
3398 };
3399
3400 EXPORT_SYMBOL(user_path_at);
3401 EXPORT_SYMBOL(follow_down_one);
3402 EXPORT_SYMBOL(follow_down);
3403 EXPORT_SYMBOL(follow_up);
3404 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3405 EXPORT_SYMBOL(getname);
3406 EXPORT_SYMBOL(lock_rename);
3407 EXPORT_SYMBOL(lookup_one_len);
3408 EXPORT_SYMBOL(page_follow_link_light);
3409 EXPORT_SYMBOL(page_put_link);
3410 EXPORT_SYMBOL(page_readlink);
3411 EXPORT_SYMBOL(__page_symlink);
3412 EXPORT_SYMBOL(page_symlink);
3413 EXPORT_SYMBOL(page_symlink_inode_operations);
3414 EXPORT_SYMBOL(kern_path_parent);
3415 EXPORT_SYMBOL(kern_path);
3416 EXPORT_SYMBOL(vfs_path_lookup);
3417 EXPORT_SYMBOL(inode_permission);
3418 EXPORT_SYMBOL(file_permission);
3419 EXPORT_SYMBOL(unlock_rename);
3420 EXPORT_SYMBOL(vfs_create);
3421 EXPORT_SYMBOL(vfs_follow_link);
3422 EXPORT_SYMBOL(vfs_link);
3423 EXPORT_SYMBOL(vfs_mkdir);
3424 EXPORT_SYMBOL(vfs_mknod);
3425 EXPORT_SYMBOL(generic_permission);
3426 EXPORT_SYMBOL(vfs_readlink);
3427 EXPORT_SYMBOL(vfs_rename);
3428 EXPORT_SYMBOL(vfs_rmdir);
3429 EXPORT_SYMBOL(vfs_symlink);
3430 EXPORT_SYMBOL(vfs_unlink);
3431 EXPORT_SYMBOL(dentry_unhash);
3432 EXPORT_SYMBOL(generic_readlink);