vfs: remove DCACHE_NEED_LOOKUP
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /**
498 * unlazy_walk - try to switch to ref-walk mode.
499 * @nd: nameidata pathwalk data
500 * @dentry: child of nd->path.dentry or NULL
501 * Returns: 0 on success, -ECHILD on failure
502 *
503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
505 * @nd or NULL. Must be called from rcu-walk context.
506 */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 struct fs_struct *fs = current->fs;
510 struct dentry *parent = nd->path.dentry;
511 int want_root = 0;
512
513 BUG_ON(!(nd->flags & LOOKUP_RCU));
514 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 want_root = 1;
516 spin_lock(&fs->lock);
517 if (nd->root.mnt != fs->root.mnt ||
518 nd->root.dentry != fs->root.dentry)
519 goto err_root;
520 }
521 spin_lock(&parent->d_lock);
522 if (!dentry) {
523 if (!__d_rcu_to_refcount(parent, nd->seq))
524 goto err_parent;
525 BUG_ON(nd->inode != parent->d_inode);
526 } else {
527 if (dentry->d_parent != parent)
528 goto err_parent;
529 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 if (!__d_rcu_to_refcount(dentry, nd->seq))
531 goto err_child;
532 /*
533 * If the sequence check on the child dentry passed, then
534 * the child has not been removed from its parent. This
535 * means the parent dentry must be valid and able to take
536 * a reference at this point.
537 */
538 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 BUG_ON(!parent->d_count);
540 parent->d_count++;
541 spin_unlock(&dentry->d_lock);
542 }
543 spin_unlock(&parent->d_lock);
544 if (want_root) {
545 path_get(&nd->root);
546 spin_unlock(&fs->lock);
547 }
548 mntget(nd->path.mnt);
549
550 unlock_rcu_walk();
551 nd->flags &= ~LOOKUP_RCU;
552 return 0;
553
554 err_child:
555 spin_unlock(&dentry->d_lock);
556 err_parent:
557 spin_unlock(&parent->d_lock);
558 err_root:
559 if (want_root)
560 spin_unlock(&fs->lock);
561 return -ECHILD;
562 }
563
564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565 {
566 return dentry->d_op->d_revalidate(dentry, flags);
567 }
568
569 /**
570 * complete_walk - successful completion of path walk
571 * @nd: pointer nameidata
572 *
573 * If we had been in RCU mode, drop out of it and legitimize nd->path.
574 * Revalidate the final result, unless we'd already done that during
575 * the path walk or the filesystem doesn't ask for it. Return 0 on
576 * success, -error on failure. In case of failure caller does not
577 * need to drop nd->path.
578 */
579 static int complete_walk(struct nameidata *nd)
580 {
581 struct dentry *dentry = nd->path.dentry;
582 int status;
583
584 if (nd->flags & LOOKUP_RCU) {
585 nd->flags &= ~LOOKUP_RCU;
586 if (!(nd->flags & LOOKUP_ROOT))
587 nd->root.mnt = NULL;
588 spin_lock(&dentry->d_lock);
589 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 spin_unlock(&dentry->d_lock);
591 unlock_rcu_walk();
592 return -ECHILD;
593 }
594 BUG_ON(nd->inode != dentry->d_inode);
595 spin_unlock(&dentry->d_lock);
596 mntget(nd->path.mnt);
597 unlock_rcu_walk();
598 }
599
600 if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 return 0;
602
603 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
604 return 0;
605
606 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
607 return 0;
608
609 /* Note: we do not d_invalidate() */
610 status = d_revalidate(dentry, nd->flags);
611 if (status > 0)
612 return 0;
613
614 if (!status)
615 status = -ESTALE;
616
617 path_put(&nd->path);
618 return status;
619 }
620
621 static __always_inline void set_root(struct nameidata *nd)
622 {
623 if (!nd->root.mnt)
624 get_fs_root(current->fs, &nd->root);
625 }
626
627 static int link_path_walk(const char *, struct nameidata *);
628
629 static __always_inline void set_root_rcu(struct nameidata *nd)
630 {
631 if (!nd->root.mnt) {
632 struct fs_struct *fs = current->fs;
633 unsigned seq;
634
635 do {
636 seq = read_seqcount_begin(&fs->seq);
637 nd->root = fs->root;
638 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
639 } while (read_seqcount_retry(&fs->seq, seq));
640 }
641 }
642
643 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
644 {
645 int ret;
646
647 if (IS_ERR(link))
648 goto fail;
649
650 if (*link == '/') {
651 set_root(nd);
652 path_put(&nd->path);
653 nd->path = nd->root;
654 path_get(&nd->root);
655 nd->flags |= LOOKUP_JUMPED;
656 }
657 nd->inode = nd->path.dentry->d_inode;
658
659 ret = link_path_walk(link, nd);
660 return ret;
661 fail:
662 path_put(&nd->path);
663 return PTR_ERR(link);
664 }
665
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 dput(path->dentry);
669 if (path->mnt != nd->path.mnt)
670 mntput(path->mnt);
671 }
672
673 static inline void path_to_nameidata(const struct path *path,
674 struct nameidata *nd)
675 {
676 if (!(nd->flags & LOOKUP_RCU)) {
677 dput(nd->path.dentry);
678 if (nd->path.mnt != path->mnt)
679 mntput(nd->path.mnt);
680 }
681 nd->path.mnt = path->mnt;
682 nd->path.dentry = path->dentry;
683 }
684
685 /*
686 * Helper to directly jump to a known parsed path from ->follow_link,
687 * caller must have taken a reference to path beforehand.
688 */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 path_put(&nd->path);
692
693 nd->path = *path;
694 nd->inode = nd->path.dentry->d_inode;
695 nd->flags |= LOOKUP_JUMPED;
696
697 BUG_ON(nd->inode->i_op->follow_link);
698 }
699
700 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
701 {
702 struct inode *inode = link->dentry->d_inode;
703 if (inode->i_op->put_link)
704 inode->i_op->put_link(link->dentry, nd, cookie);
705 path_put(link);
706 }
707
708 int sysctl_protected_symlinks __read_mostly = 0;
709 int sysctl_protected_hardlinks __read_mostly = 0;
710
711 /**
712 * may_follow_link - Check symlink following for unsafe situations
713 * @link: The path of the symlink
714 * @nd: nameidata pathwalk data
715 *
716 * In the case of the sysctl_protected_symlinks sysctl being enabled,
717 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
718 * in a sticky world-writable directory. This is to protect privileged
719 * processes from failing races against path names that may change out
720 * from under them by way of other users creating malicious symlinks.
721 * It will permit symlinks to be followed only when outside a sticky
722 * world-writable directory, or when the uid of the symlink and follower
723 * match, or when the directory owner matches the symlink's owner.
724 *
725 * Returns 0 if following the symlink is allowed, -ve on error.
726 */
727 static inline int may_follow_link(struct path *link, struct nameidata *nd)
728 {
729 const struct inode *inode;
730 const struct inode *parent;
731
732 if (!sysctl_protected_symlinks)
733 return 0;
734
735 /* Allowed if owner and follower match. */
736 inode = link->dentry->d_inode;
737 if (uid_eq(current_cred()->fsuid, inode->i_uid))
738 return 0;
739
740 /* Allowed if parent directory not sticky and world-writable. */
741 parent = nd->path.dentry->d_inode;
742 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
743 return 0;
744
745 /* Allowed if parent directory and link owner match. */
746 if (uid_eq(parent->i_uid, inode->i_uid))
747 return 0;
748
749 audit_log_link_denied("follow_link", link);
750 path_put_conditional(link, nd);
751 path_put(&nd->path);
752 return -EACCES;
753 }
754
755 /**
756 * safe_hardlink_source - Check for safe hardlink conditions
757 * @inode: the source inode to hardlink from
758 *
759 * Return false if at least one of the following conditions:
760 * - inode is not a regular file
761 * - inode is setuid
762 * - inode is setgid and group-exec
763 * - access failure for read and write
764 *
765 * Otherwise returns true.
766 */
767 static bool safe_hardlink_source(struct inode *inode)
768 {
769 umode_t mode = inode->i_mode;
770
771 /* Special files should not get pinned to the filesystem. */
772 if (!S_ISREG(mode))
773 return false;
774
775 /* Setuid files should not get pinned to the filesystem. */
776 if (mode & S_ISUID)
777 return false;
778
779 /* Executable setgid files should not get pinned to the filesystem. */
780 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
781 return false;
782
783 /* Hardlinking to unreadable or unwritable sources is dangerous. */
784 if (inode_permission(inode, MAY_READ | MAY_WRITE))
785 return false;
786
787 return true;
788 }
789
790 /**
791 * may_linkat - Check permissions for creating a hardlink
792 * @link: the source to hardlink from
793 *
794 * Block hardlink when all of:
795 * - sysctl_protected_hardlinks enabled
796 * - fsuid does not match inode
797 * - hardlink source is unsafe (see safe_hardlink_source() above)
798 * - not CAP_FOWNER
799 *
800 * Returns 0 if successful, -ve on error.
801 */
802 static int may_linkat(struct path *link)
803 {
804 const struct cred *cred;
805 struct inode *inode;
806
807 if (!sysctl_protected_hardlinks)
808 return 0;
809
810 cred = current_cred();
811 inode = link->dentry->d_inode;
812
813 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
814 * otherwise, it must be a safe source.
815 */
816 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
817 capable(CAP_FOWNER))
818 return 0;
819
820 audit_log_link_denied("linkat", link);
821 return -EPERM;
822 }
823
824 static __always_inline int
825 follow_link(struct path *link, struct nameidata *nd, void **p)
826 {
827 struct dentry *dentry = link->dentry;
828 int error;
829 char *s;
830
831 BUG_ON(nd->flags & LOOKUP_RCU);
832
833 if (link->mnt == nd->path.mnt)
834 mntget(link->mnt);
835
836 error = -ELOOP;
837 if (unlikely(current->total_link_count >= 40))
838 goto out_put_nd_path;
839
840 cond_resched();
841 current->total_link_count++;
842
843 touch_atime(link);
844 nd_set_link(nd, NULL);
845
846 error = security_inode_follow_link(link->dentry, nd);
847 if (error)
848 goto out_put_nd_path;
849
850 nd->last_type = LAST_BIND;
851 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
852 error = PTR_ERR(*p);
853 if (IS_ERR(*p))
854 goto out_put_nd_path;
855
856 error = 0;
857 s = nd_get_link(nd);
858 if (s) {
859 error = __vfs_follow_link(nd, s);
860 if (unlikely(error))
861 put_link(nd, link, *p);
862 }
863
864 return error;
865
866 out_put_nd_path:
867 *p = NULL;
868 path_put(&nd->path);
869 path_put(link);
870 return error;
871 }
872
873 static int follow_up_rcu(struct path *path)
874 {
875 struct mount *mnt = real_mount(path->mnt);
876 struct mount *parent;
877 struct dentry *mountpoint;
878
879 parent = mnt->mnt_parent;
880 if (&parent->mnt == path->mnt)
881 return 0;
882 mountpoint = mnt->mnt_mountpoint;
883 path->dentry = mountpoint;
884 path->mnt = &parent->mnt;
885 return 1;
886 }
887
888 /*
889 * follow_up - Find the mountpoint of path's vfsmount
890 *
891 * Given a path, find the mountpoint of its source file system.
892 * Replace @path with the path of the mountpoint in the parent mount.
893 * Up is towards /.
894 *
895 * Return 1 if we went up a level and 0 if we were already at the
896 * root.
897 */
898 int follow_up(struct path *path)
899 {
900 struct mount *mnt = real_mount(path->mnt);
901 struct mount *parent;
902 struct dentry *mountpoint;
903
904 br_read_lock(&vfsmount_lock);
905 parent = mnt->mnt_parent;
906 if (parent == mnt) {
907 br_read_unlock(&vfsmount_lock);
908 return 0;
909 }
910 mntget(&parent->mnt);
911 mountpoint = dget(mnt->mnt_mountpoint);
912 br_read_unlock(&vfsmount_lock);
913 dput(path->dentry);
914 path->dentry = mountpoint;
915 mntput(path->mnt);
916 path->mnt = &parent->mnt;
917 return 1;
918 }
919
920 /*
921 * Perform an automount
922 * - return -EISDIR to tell follow_managed() to stop and return the path we
923 * were called with.
924 */
925 static int follow_automount(struct path *path, unsigned flags,
926 bool *need_mntput)
927 {
928 struct vfsmount *mnt;
929 int err;
930
931 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
932 return -EREMOTE;
933
934 /* We don't want to mount if someone's just doing a stat -
935 * unless they're stat'ing a directory and appended a '/' to
936 * the name.
937 *
938 * We do, however, want to mount if someone wants to open or
939 * create a file of any type under the mountpoint, wants to
940 * traverse through the mountpoint or wants to open the
941 * mounted directory. Also, autofs may mark negative dentries
942 * as being automount points. These will need the attentions
943 * of the daemon to instantiate them before they can be used.
944 */
945 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
946 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
947 path->dentry->d_inode)
948 return -EISDIR;
949
950 current->total_link_count++;
951 if (current->total_link_count >= 40)
952 return -ELOOP;
953
954 mnt = path->dentry->d_op->d_automount(path);
955 if (IS_ERR(mnt)) {
956 /*
957 * The filesystem is allowed to return -EISDIR here to indicate
958 * it doesn't want to automount. For instance, autofs would do
959 * this so that its userspace daemon can mount on this dentry.
960 *
961 * However, we can only permit this if it's a terminal point in
962 * the path being looked up; if it wasn't then the remainder of
963 * the path is inaccessible and we should say so.
964 */
965 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
966 return -EREMOTE;
967 return PTR_ERR(mnt);
968 }
969
970 if (!mnt) /* mount collision */
971 return 0;
972
973 if (!*need_mntput) {
974 /* lock_mount() may release path->mnt on error */
975 mntget(path->mnt);
976 *need_mntput = true;
977 }
978 err = finish_automount(mnt, path);
979
980 switch (err) {
981 case -EBUSY:
982 /* Someone else made a mount here whilst we were busy */
983 return 0;
984 case 0:
985 path_put(path);
986 path->mnt = mnt;
987 path->dentry = dget(mnt->mnt_root);
988 return 0;
989 default:
990 return err;
991 }
992
993 }
994
995 /*
996 * Handle a dentry that is managed in some way.
997 * - Flagged for transit management (autofs)
998 * - Flagged as mountpoint
999 * - Flagged as automount point
1000 *
1001 * This may only be called in refwalk mode.
1002 *
1003 * Serialization is taken care of in namespace.c
1004 */
1005 static int follow_managed(struct path *path, unsigned flags)
1006 {
1007 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1008 unsigned managed;
1009 bool need_mntput = false;
1010 int ret = 0;
1011
1012 /* Given that we're not holding a lock here, we retain the value in a
1013 * local variable for each dentry as we look at it so that we don't see
1014 * the components of that value change under us */
1015 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1016 managed &= DCACHE_MANAGED_DENTRY,
1017 unlikely(managed != 0)) {
1018 /* Allow the filesystem to manage the transit without i_mutex
1019 * being held. */
1020 if (managed & DCACHE_MANAGE_TRANSIT) {
1021 BUG_ON(!path->dentry->d_op);
1022 BUG_ON(!path->dentry->d_op->d_manage);
1023 ret = path->dentry->d_op->d_manage(path->dentry, false);
1024 if (ret < 0)
1025 break;
1026 }
1027
1028 /* Transit to a mounted filesystem. */
1029 if (managed & DCACHE_MOUNTED) {
1030 struct vfsmount *mounted = lookup_mnt(path);
1031 if (mounted) {
1032 dput(path->dentry);
1033 if (need_mntput)
1034 mntput(path->mnt);
1035 path->mnt = mounted;
1036 path->dentry = dget(mounted->mnt_root);
1037 need_mntput = true;
1038 continue;
1039 }
1040
1041 /* Something is mounted on this dentry in another
1042 * namespace and/or whatever was mounted there in this
1043 * namespace got unmounted before we managed to get the
1044 * vfsmount_lock */
1045 }
1046
1047 /* Handle an automount point */
1048 if (managed & DCACHE_NEED_AUTOMOUNT) {
1049 ret = follow_automount(path, flags, &need_mntput);
1050 if (ret < 0)
1051 break;
1052 continue;
1053 }
1054
1055 /* We didn't change the current path point */
1056 break;
1057 }
1058
1059 if (need_mntput && path->mnt == mnt)
1060 mntput(path->mnt);
1061 if (ret == -EISDIR)
1062 ret = 0;
1063 return ret < 0 ? ret : need_mntput;
1064 }
1065
1066 int follow_down_one(struct path *path)
1067 {
1068 struct vfsmount *mounted;
1069
1070 mounted = lookup_mnt(path);
1071 if (mounted) {
1072 dput(path->dentry);
1073 mntput(path->mnt);
1074 path->mnt = mounted;
1075 path->dentry = dget(mounted->mnt_root);
1076 return 1;
1077 }
1078 return 0;
1079 }
1080
1081 static inline bool managed_dentry_might_block(struct dentry *dentry)
1082 {
1083 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1084 dentry->d_op->d_manage(dentry, true) < 0);
1085 }
1086
1087 /*
1088 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1089 * we meet a managed dentry that would need blocking.
1090 */
1091 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1092 struct inode **inode)
1093 {
1094 for (;;) {
1095 struct mount *mounted;
1096 /*
1097 * Don't forget we might have a non-mountpoint managed dentry
1098 * that wants to block transit.
1099 */
1100 if (unlikely(managed_dentry_might_block(path->dentry)))
1101 return false;
1102
1103 if (!d_mountpoint(path->dentry))
1104 break;
1105
1106 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1107 if (!mounted)
1108 break;
1109 path->mnt = &mounted->mnt;
1110 path->dentry = mounted->mnt.mnt_root;
1111 nd->flags |= LOOKUP_JUMPED;
1112 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1113 /*
1114 * Update the inode too. We don't need to re-check the
1115 * dentry sequence number here after this d_inode read,
1116 * because a mount-point is always pinned.
1117 */
1118 *inode = path->dentry->d_inode;
1119 }
1120 return true;
1121 }
1122
1123 static void follow_mount_rcu(struct nameidata *nd)
1124 {
1125 while (d_mountpoint(nd->path.dentry)) {
1126 struct mount *mounted;
1127 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1128 if (!mounted)
1129 break;
1130 nd->path.mnt = &mounted->mnt;
1131 nd->path.dentry = mounted->mnt.mnt_root;
1132 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1133 }
1134 }
1135
1136 static int follow_dotdot_rcu(struct nameidata *nd)
1137 {
1138 set_root_rcu(nd);
1139
1140 while (1) {
1141 if (nd->path.dentry == nd->root.dentry &&
1142 nd->path.mnt == nd->root.mnt) {
1143 break;
1144 }
1145 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1146 struct dentry *old = nd->path.dentry;
1147 struct dentry *parent = old->d_parent;
1148 unsigned seq;
1149
1150 seq = read_seqcount_begin(&parent->d_seq);
1151 if (read_seqcount_retry(&old->d_seq, nd->seq))
1152 goto failed;
1153 nd->path.dentry = parent;
1154 nd->seq = seq;
1155 break;
1156 }
1157 if (!follow_up_rcu(&nd->path))
1158 break;
1159 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1160 }
1161 follow_mount_rcu(nd);
1162 nd->inode = nd->path.dentry->d_inode;
1163 return 0;
1164
1165 failed:
1166 nd->flags &= ~LOOKUP_RCU;
1167 if (!(nd->flags & LOOKUP_ROOT))
1168 nd->root.mnt = NULL;
1169 unlock_rcu_walk();
1170 return -ECHILD;
1171 }
1172
1173 /*
1174 * Follow down to the covering mount currently visible to userspace. At each
1175 * point, the filesystem owning that dentry may be queried as to whether the
1176 * caller is permitted to proceed or not.
1177 */
1178 int follow_down(struct path *path)
1179 {
1180 unsigned managed;
1181 int ret;
1182
1183 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1184 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1185 /* Allow the filesystem to manage the transit without i_mutex
1186 * being held.
1187 *
1188 * We indicate to the filesystem if someone is trying to mount
1189 * something here. This gives autofs the chance to deny anyone
1190 * other than its daemon the right to mount on its
1191 * superstructure.
1192 *
1193 * The filesystem may sleep at this point.
1194 */
1195 if (managed & DCACHE_MANAGE_TRANSIT) {
1196 BUG_ON(!path->dentry->d_op);
1197 BUG_ON(!path->dentry->d_op->d_manage);
1198 ret = path->dentry->d_op->d_manage(
1199 path->dentry, false);
1200 if (ret < 0)
1201 return ret == -EISDIR ? 0 : ret;
1202 }
1203
1204 /* Transit to a mounted filesystem. */
1205 if (managed & DCACHE_MOUNTED) {
1206 struct vfsmount *mounted = lookup_mnt(path);
1207 if (!mounted)
1208 break;
1209 dput(path->dentry);
1210 mntput(path->mnt);
1211 path->mnt = mounted;
1212 path->dentry = dget(mounted->mnt_root);
1213 continue;
1214 }
1215
1216 /* Don't handle automount points here */
1217 break;
1218 }
1219 return 0;
1220 }
1221
1222 /*
1223 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1224 */
1225 static void follow_mount(struct path *path)
1226 {
1227 while (d_mountpoint(path->dentry)) {
1228 struct vfsmount *mounted = lookup_mnt(path);
1229 if (!mounted)
1230 break;
1231 dput(path->dentry);
1232 mntput(path->mnt);
1233 path->mnt = mounted;
1234 path->dentry = dget(mounted->mnt_root);
1235 }
1236 }
1237
1238 static void follow_dotdot(struct nameidata *nd)
1239 {
1240 set_root(nd);
1241
1242 while(1) {
1243 struct dentry *old = nd->path.dentry;
1244
1245 if (nd->path.dentry == nd->root.dentry &&
1246 nd->path.mnt == nd->root.mnt) {
1247 break;
1248 }
1249 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1250 /* rare case of legitimate dget_parent()... */
1251 nd->path.dentry = dget_parent(nd->path.dentry);
1252 dput(old);
1253 break;
1254 }
1255 if (!follow_up(&nd->path))
1256 break;
1257 }
1258 follow_mount(&nd->path);
1259 nd->inode = nd->path.dentry->d_inode;
1260 }
1261
1262 /*
1263 * This looks up the name in dcache, possibly revalidates the old dentry and
1264 * allocates a new one if not found or not valid. In the need_lookup argument
1265 * returns whether i_op->lookup is necessary.
1266 *
1267 * dir->d_inode->i_mutex must be held
1268 */
1269 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1270 unsigned int flags, bool *need_lookup)
1271 {
1272 struct dentry *dentry;
1273 int error;
1274
1275 *need_lookup = false;
1276 dentry = d_lookup(dir, name);
1277 if (dentry) {
1278 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1279 error = d_revalidate(dentry, flags);
1280 if (unlikely(error <= 0)) {
1281 if (error < 0) {
1282 dput(dentry);
1283 return ERR_PTR(error);
1284 } else if (!d_invalidate(dentry)) {
1285 dput(dentry);
1286 dentry = NULL;
1287 }
1288 }
1289 }
1290 }
1291
1292 if (!dentry) {
1293 dentry = d_alloc(dir, name);
1294 if (unlikely(!dentry))
1295 return ERR_PTR(-ENOMEM);
1296
1297 *need_lookup = true;
1298 }
1299 return dentry;
1300 }
1301
1302 /*
1303 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1304 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1305 *
1306 * dir->d_inode->i_mutex must be held
1307 */
1308 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1309 unsigned int flags)
1310 {
1311 struct dentry *old;
1312
1313 /* Don't create child dentry for a dead directory. */
1314 if (unlikely(IS_DEADDIR(dir))) {
1315 dput(dentry);
1316 return ERR_PTR(-ENOENT);
1317 }
1318
1319 old = dir->i_op->lookup(dir, dentry, flags);
1320 if (unlikely(old)) {
1321 dput(dentry);
1322 dentry = old;
1323 }
1324 return dentry;
1325 }
1326
1327 static struct dentry *__lookup_hash(struct qstr *name,
1328 struct dentry *base, unsigned int flags)
1329 {
1330 bool need_lookup;
1331 struct dentry *dentry;
1332
1333 dentry = lookup_dcache(name, base, flags, &need_lookup);
1334 if (!need_lookup)
1335 return dentry;
1336
1337 return lookup_real(base->d_inode, dentry, flags);
1338 }
1339
1340 /*
1341 * It's more convoluted than I'd like it to be, but... it's still fairly
1342 * small and for now I'd prefer to have fast path as straight as possible.
1343 * It _is_ time-critical.
1344 */
1345 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1346 struct path *path, struct inode **inode)
1347 {
1348 struct vfsmount *mnt = nd->path.mnt;
1349 struct dentry *dentry, *parent = nd->path.dentry;
1350 int need_reval = 1;
1351 int status = 1;
1352 int err;
1353
1354 /*
1355 * Rename seqlock is not required here because in the off chance
1356 * of a false negative due to a concurrent rename, we're going to
1357 * do the non-racy lookup, below.
1358 */
1359 if (nd->flags & LOOKUP_RCU) {
1360 unsigned seq;
1361 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1362 if (!dentry)
1363 goto unlazy;
1364
1365 /*
1366 * This sequence count validates that the inode matches
1367 * the dentry name information from lookup.
1368 */
1369 *inode = dentry->d_inode;
1370 if (read_seqcount_retry(&dentry->d_seq, seq))
1371 return -ECHILD;
1372
1373 /*
1374 * This sequence count validates that the parent had no
1375 * changes while we did the lookup of the dentry above.
1376 *
1377 * The memory barrier in read_seqcount_begin of child is
1378 * enough, we can use __read_seqcount_retry here.
1379 */
1380 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1381 return -ECHILD;
1382 nd->seq = seq;
1383
1384 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1385 status = d_revalidate(dentry, nd->flags);
1386 if (unlikely(status <= 0)) {
1387 if (status != -ECHILD)
1388 need_reval = 0;
1389 goto unlazy;
1390 }
1391 }
1392 path->mnt = mnt;
1393 path->dentry = dentry;
1394 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1395 goto unlazy;
1396 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1397 goto unlazy;
1398 return 0;
1399 unlazy:
1400 if (unlazy_walk(nd, dentry))
1401 return -ECHILD;
1402 } else {
1403 dentry = __d_lookup(parent, name);
1404 }
1405
1406 if (unlikely(!dentry))
1407 goto need_lookup;
1408
1409 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1410 status = d_revalidate(dentry, nd->flags);
1411 if (unlikely(status <= 0)) {
1412 if (status < 0) {
1413 dput(dentry);
1414 return status;
1415 }
1416 if (!d_invalidate(dentry)) {
1417 dput(dentry);
1418 goto need_lookup;
1419 }
1420 }
1421
1422 path->mnt = mnt;
1423 path->dentry = dentry;
1424 err = follow_managed(path, nd->flags);
1425 if (unlikely(err < 0)) {
1426 path_put_conditional(path, nd);
1427 return err;
1428 }
1429 if (err)
1430 nd->flags |= LOOKUP_JUMPED;
1431 *inode = path->dentry->d_inode;
1432 return 0;
1433
1434 need_lookup:
1435 return 1;
1436 }
1437
1438 /* Fast lookup failed, do it the slow way */
1439 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1440 struct path *path)
1441 {
1442 struct dentry *dentry, *parent;
1443 int err;
1444
1445 parent = nd->path.dentry;
1446 BUG_ON(nd->inode != parent->d_inode);
1447
1448 mutex_lock(&parent->d_inode->i_mutex);
1449 dentry = __lookup_hash(name, parent, nd->flags);
1450 mutex_unlock(&parent->d_inode->i_mutex);
1451 if (IS_ERR(dentry))
1452 return PTR_ERR(dentry);
1453 path->mnt = nd->path.mnt;
1454 path->dentry = dentry;
1455 err = follow_managed(path, nd->flags);
1456 if (unlikely(err < 0)) {
1457 path_put_conditional(path, nd);
1458 return err;
1459 }
1460 if (err)
1461 nd->flags |= LOOKUP_JUMPED;
1462 return 0;
1463 }
1464
1465 static inline int may_lookup(struct nameidata *nd)
1466 {
1467 if (nd->flags & LOOKUP_RCU) {
1468 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1469 if (err != -ECHILD)
1470 return err;
1471 if (unlazy_walk(nd, NULL))
1472 return -ECHILD;
1473 }
1474 return inode_permission(nd->inode, MAY_EXEC);
1475 }
1476
1477 static inline int handle_dots(struct nameidata *nd, int type)
1478 {
1479 if (type == LAST_DOTDOT) {
1480 if (nd->flags & LOOKUP_RCU) {
1481 if (follow_dotdot_rcu(nd))
1482 return -ECHILD;
1483 } else
1484 follow_dotdot(nd);
1485 }
1486 return 0;
1487 }
1488
1489 static void terminate_walk(struct nameidata *nd)
1490 {
1491 if (!(nd->flags & LOOKUP_RCU)) {
1492 path_put(&nd->path);
1493 } else {
1494 nd->flags &= ~LOOKUP_RCU;
1495 if (!(nd->flags & LOOKUP_ROOT))
1496 nd->root.mnt = NULL;
1497 unlock_rcu_walk();
1498 }
1499 }
1500
1501 /*
1502 * Do we need to follow links? We _really_ want to be able
1503 * to do this check without having to look at inode->i_op,
1504 * so we keep a cache of "no, this doesn't need follow_link"
1505 * for the common case.
1506 */
1507 static inline int should_follow_link(struct inode *inode, int follow)
1508 {
1509 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1510 if (likely(inode->i_op->follow_link))
1511 return follow;
1512
1513 /* This gets set once for the inode lifetime */
1514 spin_lock(&inode->i_lock);
1515 inode->i_opflags |= IOP_NOFOLLOW;
1516 spin_unlock(&inode->i_lock);
1517 }
1518 return 0;
1519 }
1520
1521 static inline int walk_component(struct nameidata *nd, struct path *path,
1522 struct qstr *name, int type, int follow)
1523 {
1524 struct inode *inode;
1525 int err;
1526 /*
1527 * "." and ".." are special - ".." especially so because it has
1528 * to be able to know about the current root directory and
1529 * parent relationships.
1530 */
1531 if (unlikely(type != LAST_NORM))
1532 return handle_dots(nd, type);
1533 err = lookup_fast(nd, name, path, &inode);
1534 if (unlikely(err)) {
1535 if (err < 0)
1536 goto out_err;
1537
1538 err = lookup_slow(nd, name, path);
1539 if (err < 0)
1540 goto out_err;
1541
1542 inode = path->dentry->d_inode;
1543 }
1544 err = -ENOENT;
1545 if (!inode)
1546 goto out_path_put;
1547
1548 if (should_follow_link(inode, follow)) {
1549 if (nd->flags & LOOKUP_RCU) {
1550 if (unlikely(unlazy_walk(nd, path->dentry))) {
1551 err = -ECHILD;
1552 goto out_err;
1553 }
1554 }
1555 BUG_ON(inode != path->dentry->d_inode);
1556 return 1;
1557 }
1558 path_to_nameidata(path, nd);
1559 nd->inode = inode;
1560 return 0;
1561
1562 out_path_put:
1563 path_to_nameidata(path, nd);
1564 out_err:
1565 terminate_walk(nd);
1566 return err;
1567 }
1568
1569 /*
1570 * This limits recursive symlink follows to 8, while
1571 * limiting consecutive symlinks to 40.
1572 *
1573 * Without that kind of total limit, nasty chains of consecutive
1574 * symlinks can cause almost arbitrarily long lookups.
1575 */
1576 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1577 {
1578 int res;
1579
1580 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1581 path_put_conditional(path, nd);
1582 path_put(&nd->path);
1583 return -ELOOP;
1584 }
1585 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1586
1587 nd->depth++;
1588 current->link_count++;
1589
1590 do {
1591 struct path link = *path;
1592 void *cookie;
1593
1594 res = follow_link(&link, nd, &cookie);
1595 if (res)
1596 break;
1597 res = walk_component(nd, path, &nd->last,
1598 nd->last_type, LOOKUP_FOLLOW);
1599 put_link(nd, &link, cookie);
1600 } while (res > 0);
1601
1602 current->link_count--;
1603 nd->depth--;
1604 return res;
1605 }
1606
1607 /*
1608 * We really don't want to look at inode->i_op->lookup
1609 * when we don't have to. So we keep a cache bit in
1610 * the inode ->i_opflags field that says "yes, we can
1611 * do lookup on this inode".
1612 */
1613 static inline int can_lookup(struct inode *inode)
1614 {
1615 if (likely(inode->i_opflags & IOP_LOOKUP))
1616 return 1;
1617 if (likely(!inode->i_op->lookup))
1618 return 0;
1619
1620 /* We do this once for the lifetime of the inode */
1621 spin_lock(&inode->i_lock);
1622 inode->i_opflags |= IOP_LOOKUP;
1623 spin_unlock(&inode->i_lock);
1624 return 1;
1625 }
1626
1627 /*
1628 * We can do the critical dentry name comparison and hashing
1629 * operations one word at a time, but we are limited to:
1630 *
1631 * - Architectures with fast unaligned word accesses. We could
1632 * do a "get_unaligned()" if this helps and is sufficiently
1633 * fast.
1634 *
1635 * - Little-endian machines (so that we can generate the mask
1636 * of low bytes efficiently). Again, we *could* do a byte
1637 * swapping load on big-endian architectures if that is not
1638 * expensive enough to make the optimization worthless.
1639 *
1640 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1641 * do not trap on the (extremely unlikely) case of a page
1642 * crossing operation.
1643 *
1644 * - Furthermore, we need an efficient 64-bit compile for the
1645 * 64-bit case in order to generate the "number of bytes in
1646 * the final mask". Again, that could be replaced with a
1647 * efficient population count instruction or similar.
1648 */
1649 #ifdef CONFIG_DCACHE_WORD_ACCESS
1650
1651 #include <asm/word-at-a-time.h>
1652
1653 #ifdef CONFIG_64BIT
1654
1655 static inline unsigned int fold_hash(unsigned long hash)
1656 {
1657 hash += hash >> (8*sizeof(int));
1658 return hash;
1659 }
1660
1661 #else /* 32-bit case */
1662
1663 #define fold_hash(x) (x)
1664
1665 #endif
1666
1667 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1668 {
1669 unsigned long a, mask;
1670 unsigned long hash = 0;
1671
1672 for (;;) {
1673 a = load_unaligned_zeropad(name);
1674 if (len < sizeof(unsigned long))
1675 break;
1676 hash += a;
1677 hash *= 9;
1678 name += sizeof(unsigned long);
1679 len -= sizeof(unsigned long);
1680 if (!len)
1681 goto done;
1682 }
1683 mask = ~(~0ul << len*8);
1684 hash += mask & a;
1685 done:
1686 return fold_hash(hash);
1687 }
1688 EXPORT_SYMBOL(full_name_hash);
1689
1690 /*
1691 * Calculate the length and hash of the path component, and
1692 * return the length of the component;
1693 */
1694 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1695 {
1696 unsigned long a, b, adata, bdata, mask, hash, len;
1697 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1698
1699 hash = a = 0;
1700 len = -sizeof(unsigned long);
1701 do {
1702 hash = (hash + a) * 9;
1703 len += sizeof(unsigned long);
1704 a = load_unaligned_zeropad(name+len);
1705 b = a ^ REPEAT_BYTE('/');
1706 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1707
1708 adata = prep_zero_mask(a, adata, &constants);
1709 bdata = prep_zero_mask(b, bdata, &constants);
1710
1711 mask = create_zero_mask(adata | bdata);
1712
1713 hash += a & zero_bytemask(mask);
1714 *hashp = fold_hash(hash);
1715
1716 return len + find_zero(mask);
1717 }
1718
1719 #else
1720
1721 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1722 {
1723 unsigned long hash = init_name_hash();
1724 while (len--)
1725 hash = partial_name_hash(*name++, hash);
1726 return end_name_hash(hash);
1727 }
1728 EXPORT_SYMBOL(full_name_hash);
1729
1730 /*
1731 * We know there's a real path component here of at least
1732 * one character.
1733 */
1734 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1735 {
1736 unsigned long hash = init_name_hash();
1737 unsigned long len = 0, c;
1738
1739 c = (unsigned char)*name;
1740 do {
1741 len++;
1742 hash = partial_name_hash(c, hash);
1743 c = (unsigned char)name[len];
1744 } while (c && c != '/');
1745 *hashp = end_name_hash(hash);
1746 return len;
1747 }
1748
1749 #endif
1750
1751 /*
1752 * Name resolution.
1753 * This is the basic name resolution function, turning a pathname into
1754 * the final dentry. We expect 'base' to be positive and a directory.
1755 *
1756 * Returns 0 and nd will have valid dentry and mnt on success.
1757 * Returns error and drops reference to input namei data on failure.
1758 */
1759 static int link_path_walk(const char *name, struct nameidata *nd)
1760 {
1761 struct path next;
1762 int err;
1763
1764 while (*name=='/')
1765 name++;
1766 if (!*name)
1767 return 0;
1768
1769 /* At this point we know we have a real path component. */
1770 for(;;) {
1771 struct qstr this;
1772 long len;
1773 int type;
1774
1775 err = may_lookup(nd);
1776 if (err)
1777 break;
1778
1779 len = hash_name(name, &this.hash);
1780 this.name = name;
1781 this.len = len;
1782
1783 type = LAST_NORM;
1784 if (name[0] == '.') switch (len) {
1785 case 2:
1786 if (name[1] == '.') {
1787 type = LAST_DOTDOT;
1788 nd->flags |= LOOKUP_JUMPED;
1789 }
1790 break;
1791 case 1:
1792 type = LAST_DOT;
1793 }
1794 if (likely(type == LAST_NORM)) {
1795 struct dentry *parent = nd->path.dentry;
1796 nd->flags &= ~LOOKUP_JUMPED;
1797 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1798 err = parent->d_op->d_hash(parent, nd->inode,
1799 &this);
1800 if (err < 0)
1801 break;
1802 }
1803 }
1804
1805 if (!name[len])
1806 goto last_component;
1807 /*
1808 * If it wasn't NUL, we know it was '/'. Skip that
1809 * slash, and continue until no more slashes.
1810 */
1811 do {
1812 len++;
1813 } while (unlikely(name[len] == '/'));
1814 if (!name[len])
1815 goto last_component;
1816 name += len;
1817
1818 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1819 if (err < 0)
1820 return err;
1821
1822 if (err) {
1823 err = nested_symlink(&next, nd);
1824 if (err)
1825 return err;
1826 }
1827 if (can_lookup(nd->inode))
1828 continue;
1829 err = -ENOTDIR;
1830 break;
1831 /* here ends the main loop */
1832
1833 last_component:
1834 nd->last = this;
1835 nd->last_type = type;
1836 return 0;
1837 }
1838 terminate_walk(nd);
1839 return err;
1840 }
1841
1842 static int path_init(int dfd, const char *name, unsigned int flags,
1843 struct nameidata *nd, struct file **fp)
1844 {
1845 int retval = 0;
1846
1847 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1848 nd->flags = flags | LOOKUP_JUMPED;
1849 nd->depth = 0;
1850 if (flags & LOOKUP_ROOT) {
1851 struct inode *inode = nd->root.dentry->d_inode;
1852 if (*name) {
1853 if (!can_lookup(inode))
1854 return -ENOTDIR;
1855 retval = inode_permission(inode, MAY_EXEC);
1856 if (retval)
1857 return retval;
1858 }
1859 nd->path = nd->root;
1860 nd->inode = inode;
1861 if (flags & LOOKUP_RCU) {
1862 lock_rcu_walk();
1863 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1864 } else {
1865 path_get(&nd->path);
1866 }
1867 return 0;
1868 }
1869
1870 nd->root.mnt = NULL;
1871
1872 if (*name=='/') {
1873 if (flags & LOOKUP_RCU) {
1874 lock_rcu_walk();
1875 set_root_rcu(nd);
1876 } else {
1877 set_root(nd);
1878 path_get(&nd->root);
1879 }
1880 nd->path = nd->root;
1881 } else if (dfd == AT_FDCWD) {
1882 if (flags & LOOKUP_RCU) {
1883 struct fs_struct *fs = current->fs;
1884 unsigned seq;
1885
1886 lock_rcu_walk();
1887
1888 do {
1889 seq = read_seqcount_begin(&fs->seq);
1890 nd->path = fs->pwd;
1891 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1892 } while (read_seqcount_retry(&fs->seq, seq));
1893 } else {
1894 get_fs_pwd(current->fs, &nd->path);
1895 }
1896 } else {
1897 /* Caller must check execute permissions on the starting path component */
1898 struct fd f = fdget_raw(dfd);
1899 struct dentry *dentry;
1900
1901 if (!f.file)
1902 return -EBADF;
1903
1904 dentry = f.file->f_path.dentry;
1905
1906 if (*name) {
1907 if (!can_lookup(dentry->d_inode)) {
1908 fdput(f);
1909 return -ENOTDIR;
1910 }
1911 }
1912
1913 nd->path = f.file->f_path;
1914 if (flags & LOOKUP_RCU) {
1915 if (f.need_put)
1916 *fp = f.file;
1917 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1918 lock_rcu_walk();
1919 } else {
1920 path_get(&nd->path);
1921 fdput(f);
1922 }
1923 }
1924
1925 nd->inode = nd->path.dentry->d_inode;
1926 return 0;
1927 }
1928
1929 static inline int lookup_last(struct nameidata *nd, struct path *path)
1930 {
1931 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1932 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1933
1934 nd->flags &= ~LOOKUP_PARENT;
1935 return walk_component(nd, path, &nd->last, nd->last_type,
1936 nd->flags & LOOKUP_FOLLOW);
1937 }
1938
1939 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1940 static int path_lookupat(int dfd, const char *name,
1941 unsigned int flags, struct nameidata *nd)
1942 {
1943 struct file *base = NULL;
1944 struct path path;
1945 int err;
1946
1947 /*
1948 * Path walking is largely split up into 2 different synchronisation
1949 * schemes, rcu-walk and ref-walk (explained in
1950 * Documentation/filesystems/path-lookup.txt). These share much of the
1951 * path walk code, but some things particularly setup, cleanup, and
1952 * following mounts are sufficiently divergent that functions are
1953 * duplicated. Typically there is a function foo(), and its RCU
1954 * analogue, foo_rcu().
1955 *
1956 * -ECHILD is the error number of choice (just to avoid clashes) that
1957 * is returned if some aspect of an rcu-walk fails. Such an error must
1958 * be handled by restarting a traditional ref-walk (which will always
1959 * be able to complete).
1960 */
1961 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1962
1963 if (unlikely(err))
1964 return err;
1965
1966 current->total_link_count = 0;
1967 err = link_path_walk(name, nd);
1968
1969 if (!err && !(flags & LOOKUP_PARENT)) {
1970 err = lookup_last(nd, &path);
1971 while (err > 0) {
1972 void *cookie;
1973 struct path link = path;
1974 err = may_follow_link(&link, nd);
1975 if (unlikely(err))
1976 break;
1977 nd->flags |= LOOKUP_PARENT;
1978 err = follow_link(&link, nd, &cookie);
1979 if (err)
1980 break;
1981 err = lookup_last(nd, &path);
1982 put_link(nd, &link, cookie);
1983 }
1984 }
1985
1986 if (!err)
1987 err = complete_walk(nd);
1988
1989 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1990 if (!nd->inode->i_op->lookup) {
1991 path_put(&nd->path);
1992 err = -ENOTDIR;
1993 }
1994 }
1995
1996 if (base)
1997 fput(base);
1998
1999 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2000 path_put(&nd->root);
2001 nd->root.mnt = NULL;
2002 }
2003 return err;
2004 }
2005
2006 static int filename_lookup(int dfd, struct filename *name,
2007 unsigned int flags, struct nameidata *nd)
2008 {
2009 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2010 if (unlikely(retval == -ECHILD))
2011 retval = path_lookupat(dfd, name->name, flags, nd);
2012 if (unlikely(retval == -ESTALE))
2013 retval = path_lookupat(dfd, name->name,
2014 flags | LOOKUP_REVAL, nd);
2015
2016 if (likely(!retval))
2017 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2018 return retval;
2019 }
2020
2021 static int do_path_lookup(int dfd, const char *name,
2022 unsigned int flags, struct nameidata *nd)
2023 {
2024 struct filename filename = { .name = name };
2025
2026 return filename_lookup(dfd, &filename, flags, nd);
2027 }
2028
2029 /* does lookup, returns the object with parent locked */
2030 struct dentry *kern_path_locked(const char *name, struct path *path)
2031 {
2032 struct nameidata nd;
2033 struct dentry *d;
2034 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2035 if (err)
2036 return ERR_PTR(err);
2037 if (nd.last_type != LAST_NORM) {
2038 path_put(&nd.path);
2039 return ERR_PTR(-EINVAL);
2040 }
2041 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2042 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2043 if (IS_ERR(d)) {
2044 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2045 path_put(&nd.path);
2046 return d;
2047 }
2048 *path = nd.path;
2049 return d;
2050 }
2051
2052 int kern_path(const char *name, unsigned int flags, struct path *path)
2053 {
2054 struct nameidata nd;
2055 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2056 if (!res)
2057 *path = nd.path;
2058 return res;
2059 }
2060
2061 /**
2062 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2063 * @dentry: pointer to dentry of the base directory
2064 * @mnt: pointer to vfs mount of the base directory
2065 * @name: pointer to file name
2066 * @flags: lookup flags
2067 * @path: pointer to struct path to fill
2068 */
2069 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2070 const char *name, unsigned int flags,
2071 struct path *path)
2072 {
2073 struct nameidata nd;
2074 int err;
2075 nd.root.dentry = dentry;
2076 nd.root.mnt = mnt;
2077 BUG_ON(flags & LOOKUP_PARENT);
2078 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2079 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2080 if (!err)
2081 *path = nd.path;
2082 return err;
2083 }
2084
2085 /*
2086 * Restricted form of lookup. Doesn't follow links, single-component only,
2087 * needs parent already locked. Doesn't follow mounts.
2088 * SMP-safe.
2089 */
2090 static struct dentry *lookup_hash(struct nameidata *nd)
2091 {
2092 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2093 }
2094
2095 /**
2096 * lookup_one_len - filesystem helper to lookup single pathname component
2097 * @name: pathname component to lookup
2098 * @base: base directory to lookup from
2099 * @len: maximum length @len should be interpreted to
2100 *
2101 * Note that this routine is purely a helper for filesystem usage and should
2102 * not be called by generic code. Also note that by using this function the
2103 * nameidata argument is passed to the filesystem methods and a filesystem
2104 * using this helper needs to be prepared for that.
2105 */
2106 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2107 {
2108 struct qstr this;
2109 unsigned int c;
2110 int err;
2111
2112 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2113
2114 this.name = name;
2115 this.len = len;
2116 this.hash = full_name_hash(name, len);
2117 if (!len)
2118 return ERR_PTR(-EACCES);
2119
2120 if (unlikely(name[0] == '.')) {
2121 if (len < 2 || (len == 2 && name[1] == '.'))
2122 return ERR_PTR(-EACCES);
2123 }
2124
2125 while (len--) {
2126 c = *(const unsigned char *)name++;
2127 if (c == '/' || c == '\0')
2128 return ERR_PTR(-EACCES);
2129 }
2130 /*
2131 * See if the low-level filesystem might want
2132 * to use its own hash..
2133 */
2134 if (base->d_flags & DCACHE_OP_HASH) {
2135 int err = base->d_op->d_hash(base, base->d_inode, &this);
2136 if (err < 0)
2137 return ERR_PTR(err);
2138 }
2139
2140 err = inode_permission(base->d_inode, MAY_EXEC);
2141 if (err)
2142 return ERR_PTR(err);
2143
2144 return __lookup_hash(&this, base, 0);
2145 }
2146
2147 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2148 struct path *path, int *empty)
2149 {
2150 struct nameidata nd;
2151 struct filename *tmp = getname_flags(name, flags, empty);
2152 int err = PTR_ERR(tmp);
2153 if (!IS_ERR(tmp)) {
2154
2155 BUG_ON(flags & LOOKUP_PARENT);
2156
2157 err = filename_lookup(dfd, tmp, flags, &nd);
2158 putname(tmp);
2159 if (!err)
2160 *path = nd.path;
2161 }
2162 return err;
2163 }
2164
2165 int user_path_at(int dfd, const char __user *name, unsigned flags,
2166 struct path *path)
2167 {
2168 return user_path_at_empty(dfd, name, flags, path, NULL);
2169 }
2170
2171 /*
2172 * NB: most callers don't do anything directly with the reference to the
2173 * to struct filename, but the nd->last pointer points into the name string
2174 * allocated by getname. So we must hold the reference to it until all
2175 * path-walking is complete.
2176 */
2177 static struct filename *
2178 user_path_parent(int dfd, const char __user *path, struct nameidata *nd)
2179 {
2180 struct filename *s = getname(path);
2181 int error;
2182
2183 if (IS_ERR(s))
2184 return s;
2185
2186 error = filename_lookup(dfd, s, LOOKUP_PARENT, nd);
2187 if (error) {
2188 putname(s);
2189 return ERR_PTR(error);
2190 }
2191
2192 return s;
2193 }
2194
2195 /*
2196 * It's inline, so penalty for filesystems that don't use sticky bit is
2197 * minimal.
2198 */
2199 static inline int check_sticky(struct inode *dir, struct inode *inode)
2200 {
2201 kuid_t fsuid = current_fsuid();
2202
2203 if (!(dir->i_mode & S_ISVTX))
2204 return 0;
2205 if (uid_eq(inode->i_uid, fsuid))
2206 return 0;
2207 if (uid_eq(dir->i_uid, fsuid))
2208 return 0;
2209 return !inode_capable(inode, CAP_FOWNER);
2210 }
2211
2212 /*
2213 * Check whether we can remove a link victim from directory dir, check
2214 * whether the type of victim is right.
2215 * 1. We can't do it if dir is read-only (done in permission())
2216 * 2. We should have write and exec permissions on dir
2217 * 3. We can't remove anything from append-only dir
2218 * 4. We can't do anything with immutable dir (done in permission())
2219 * 5. If the sticky bit on dir is set we should either
2220 * a. be owner of dir, or
2221 * b. be owner of victim, or
2222 * c. have CAP_FOWNER capability
2223 * 6. If the victim is append-only or immutable we can't do antyhing with
2224 * links pointing to it.
2225 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2226 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2227 * 9. We can't remove a root or mountpoint.
2228 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2229 * nfs_async_unlink().
2230 */
2231 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2232 {
2233 int error;
2234
2235 if (!victim->d_inode)
2236 return -ENOENT;
2237
2238 BUG_ON(victim->d_parent->d_inode != dir);
2239 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2240
2241 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2242 if (error)
2243 return error;
2244 if (IS_APPEND(dir))
2245 return -EPERM;
2246 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2247 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2248 return -EPERM;
2249 if (isdir) {
2250 if (!S_ISDIR(victim->d_inode->i_mode))
2251 return -ENOTDIR;
2252 if (IS_ROOT(victim))
2253 return -EBUSY;
2254 } else if (S_ISDIR(victim->d_inode->i_mode))
2255 return -EISDIR;
2256 if (IS_DEADDIR(dir))
2257 return -ENOENT;
2258 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2259 return -EBUSY;
2260 return 0;
2261 }
2262
2263 /* Check whether we can create an object with dentry child in directory
2264 * dir.
2265 * 1. We can't do it if child already exists (open has special treatment for
2266 * this case, but since we are inlined it's OK)
2267 * 2. We can't do it if dir is read-only (done in permission())
2268 * 3. We should have write and exec permissions on dir
2269 * 4. We can't do it if dir is immutable (done in permission())
2270 */
2271 static inline int may_create(struct inode *dir, struct dentry *child)
2272 {
2273 if (child->d_inode)
2274 return -EEXIST;
2275 if (IS_DEADDIR(dir))
2276 return -ENOENT;
2277 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2278 }
2279
2280 /*
2281 * p1 and p2 should be directories on the same fs.
2282 */
2283 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2284 {
2285 struct dentry *p;
2286
2287 if (p1 == p2) {
2288 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2289 return NULL;
2290 }
2291
2292 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2293
2294 p = d_ancestor(p2, p1);
2295 if (p) {
2296 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2297 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2298 return p;
2299 }
2300
2301 p = d_ancestor(p1, p2);
2302 if (p) {
2303 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2304 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2305 return p;
2306 }
2307
2308 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2309 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2310 return NULL;
2311 }
2312
2313 void unlock_rename(struct dentry *p1, struct dentry *p2)
2314 {
2315 mutex_unlock(&p1->d_inode->i_mutex);
2316 if (p1 != p2) {
2317 mutex_unlock(&p2->d_inode->i_mutex);
2318 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2319 }
2320 }
2321
2322 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2323 bool want_excl)
2324 {
2325 int error = may_create(dir, dentry);
2326 if (error)
2327 return error;
2328
2329 if (!dir->i_op->create)
2330 return -EACCES; /* shouldn't it be ENOSYS? */
2331 mode &= S_IALLUGO;
2332 mode |= S_IFREG;
2333 error = security_inode_create(dir, dentry, mode);
2334 if (error)
2335 return error;
2336 error = dir->i_op->create(dir, dentry, mode, want_excl);
2337 if (!error)
2338 fsnotify_create(dir, dentry);
2339 return error;
2340 }
2341
2342 static int may_open(struct path *path, int acc_mode, int flag)
2343 {
2344 struct dentry *dentry = path->dentry;
2345 struct inode *inode = dentry->d_inode;
2346 int error;
2347
2348 /* O_PATH? */
2349 if (!acc_mode)
2350 return 0;
2351
2352 if (!inode)
2353 return -ENOENT;
2354
2355 switch (inode->i_mode & S_IFMT) {
2356 case S_IFLNK:
2357 return -ELOOP;
2358 case S_IFDIR:
2359 if (acc_mode & MAY_WRITE)
2360 return -EISDIR;
2361 break;
2362 case S_IFBLK:
2363 case S_IFCHR:
2364 if (path->mnt->mnt_flags & MNT_NODEV)
2365 return -EACCES;
2366 /*FALLTHRU*/
2367 case S_IFIFO:
2368 case S_IFSOCK:
2369 flag &= ~O_TRUNC;
2370 break;
2371 }
2372
2373 error = inode_permission(inode, acc_mode);
2374 if (error)
2375 return error;
2376
2377 /*
2378 * An append-only file must be opened in append mode for writing.
2379 */
2380 if (IS_APPEND(inode)) {
2381 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2382 return -EPERM;
2383 if (flag & O_TRUNC)
2384 return -EPERM;
2385 }
2386
2387 /* O_NOATIME can only be set by the owner or superuser */
2388 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2389 return -EPERM;
2390
2391 return 0;
2392 }
2393
2394 static int handle_truncate(struct file *filp)
2395 {
2396 struct path *path = &filp->f_path;
2397 struct inode *inode = path->dentry->d_inode;
2398 int error = get_write_access(inode);
2399 if (error)
2400 return error;
2401 /*
2402 * Refuse to truncate files with mandatory locks held on them.
2403 */
2404 error = locks_verify_locked(inode);
2405 if (!error)
2406 error = security_path_truncate(path);
2407 if (!error) {
2408 error = do_truncate(path->dentry, 0,
2409 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2410 filp);
2411 }
2412 put_write_access(inode);
2413 return error;
2414 }
2415
2416 static inline int open_to_namei_flags(int flag)
2417 {
2418 if ((flag & O_ACCMODE) == 3)
2419 flag--;
2420 return flag;
2421 }
2422
2423 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2424 {
2425 int error = security_path_mknod(dir, dentry, mode, 0);
2426 if (error)
2427 return error;
2428
2429 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2430 if (error)
2431 return error;
2432
2433 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2434 }
2435
2436 /*
2437 * Attempt to atomically look up, create and open a file from a negative
2438 * dentry.
2439 *
2440 * Returns 0 if successful. The file will have been created and attached to
2441 * @file by the filesystem calling finish_open().
2442 *
2443 * Returns 1 if the file was looked up only or didn't need creating. The
2444 * caller will need to perform the open themselves. @path will have been
2445 * updated to point to the new dentry. This may be negative.
2446 *
2447 * Returns an error code otherwise.
2448 */
2449 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2450 struct path *path, struct file *file,
2451 const struct open_flags *op,
2452 bool got_write, bool need_lookup,
2453 int *opened)
2454 {
2455 struct inode *dir = nd->path.dentry->d_inode;
2456 unsigned open_flag = open_to_namei_flags(op->open_flag);
2457 umode_t mode;
2458 int error;
2459 int acc_mode;
2460 int create_error = 0;
2461 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2462
2463 BUG_ON(dentry->d_inode);
2464
2465 /* Don't create child dentry for a dead directory. */
2466 if (unlikely(IS_DEADDIR(dir))) {
2467 error = -ENOENT;
2468 goto out;
2469 }
2470
2471 mode = op->mode;
2472 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2473 mode &= ~current_umask();
2474
2475 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2476 open_flag &= ~O_TRUNC;
2477 *opened |= FILE_CREATED;
2478 }
2479
2480 /*
2481 * Checking write permission is tricky, bacuse we don't know if we are
2482 * going to actually need it: O_CREAT opens should work as long as the
2483 * file exists. But checking existence breaks atomicity. The trick is
2484 * to check access and if not granted clear O_CREAT from the flags.
2485 *
2486 * Another problem is returing the "right" error value (e.g. for an
2487 * O_EXCL open we want to return EEXIST not EROFS).
2488 */
2489 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2490 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2491 if (!(open_flag & O_CREAT)) {
2492 /*
2493 * No O_CREATE -> atomicity not a requirement -> fall
2494 * back to lookup + open
2495 */
2496 goto no_open;
2497 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2498 /* Fall back and fail with the right error */
2499 create_error = -EROFS;
2500 goto no_open;
2501 } else {
2502 /* No side effects, safe to clear O_CREAT */
2503 create_error = -EROFS;
2504 open_flag &= ~O_CREAT;
2505 }
2506 }
2507
2508 if (open_flag & O_CREAT) {
2509 error = may_o_create(&nd->path, dentry, mode);
2510 if (error) {
2511 create_error = error;
2512 if (open_flag & O_EXCL)
2513 goto no_open;
2514 open_flag &= ~O_CREAT;
2515 }
2516 }
2517
2518 if (nd->flags & LOOKUP_DIRECTORY)
2519 open_flag |= O_DIRECTORY;
2520
2521 file->f_path.dentry = DENTRY_NOT_SET;
2522 file->f_path.mnt = nd->path.mnt;
2523 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2524 opened);
2525 if (error < 0) {
2526 if (create_error && error == -ENOENT)
2527 error = create_error;
2528 goto out;
2529 }
2530
2531 acc_mode = op->acc_mode;
2532 if (*opened & FILE_CREATED) {
2533 fsnotify_create(dir, dentry);
2534 acc_mode = MAY_OPEN;
2535 }
2536
2537 if (error) { /* returned 1, that is */
2538 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2539 error = -EIO;
2540 goto out;
2541 }
2542 if (file->f_path.dentry) {
2543 dput(dentry);
2544 dentry = file->f_path.dentry;
2545 }
2546 if (create_error && dentry->d_inode == NULL) {
2547 error = create_error;
2548 goto out;
2549 }
2550 goto looked_up;
2551 }
2552
2553 /*
2554 * We didn't have the inode before the open, so check open permission
2555 * here.
2556 */
2557 error = may_open(&file->f_path, acc_mode, open_flag);
2558 if (error)
2559 fput(file);
2560
2561 out:
2562 dput(dentry);
2563 return error;
2564
2565 no_open:
2566 if (need_lookup) {
2567 dentry = lookup_real(dir, dentry, nd->flags);
2568 if (IS_ERR(dentry))
2569 return PTR_ERR(dentry);
2570
2571 if (create_error) {
2572 int open_flag = op->open_flag;
2573
2574 error = create_error;
2575 if ((open_flag & O_EXCL)) {
2576 if (!dentry->d_inode)
2577 goto out;
2578 } else if (!dentry->d_inode) {
2579 goto out;
2580 } else if ((open_flag & O_TRUNC) &&
2581 S_ISREG(dentry->d_inode->i_mode)) {
2582 goto out;
2583 }
2584 /* will fail later, go on to get the right error */
2585 }
2586 }
2587 looked_up:
2588 path->dentry = dentry;
2589 path->mnt = nd->path.mnt;
2590 return 1;
2591 }
2592
2593 /*
2594 * Look up and maybe create and open the last component.
2595 *
2596 * Must be called with i_mutex held on parent.
2597 *
2598 * Returns 0 if the file was successfully atomically created (if necessary) and
2599 * opened. In this case the file will be returned attached to @file.
2600 *
2601 * Returns 1 if the file was not completely opened at this time, though lookups
2602 * and creations will have been performed and the dentry returned in @path will
2603 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2604 * specified then a negative dentry may be returned.
2605 *
2606 * An error code is returned otherwise.
2607 *
2608 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2609 * cleared otherwise prior to returning.
2610 */
2611 static int lookup_open(struct nameidata *nd, struct path *path,
2612 struct file *file,
2613 const struct open_flags *op,
2614 bool got_write, int *opened)
2615 {
2616 struct dentry *dir = nd->path.dentry;
2617 struct inode *dir_inode = dir->d_inode;
2618 struct dentry *dentry;
2619 int error;
2620 bool need_lookup;
2621
2622 *opened &= ~FILE_CREATED;
2623 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2624 if (IS_ERR(dentry))
2625 return PTR_ERR(dentry);
2626
2627 /* Cached positive dentry: will open in f_op->open */
2628 if (!need_lookup && dentry->d_inode)
2629 goto out_no_open;
2630
2631 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2632 return atomic_open(nd, dentry, path, file, op, got_write,
2633 need_lookup, opened);
2634 }
2635
2636 if (need_lookup) {
2637 BUG_ON(dentry->d_inode);
2638
2639 dentry = lookup_real(dir_inode, dentry, nd->flags);
2640 if (IS_ERR(dentry))
2641 return PTR_ERR(dentry);
2642 }
2643
2644 /* Negative dentry, just create the file */
2645 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2646 umode_t mode = op->mode;
2647 if (!IS_POSIXACL(dir->d_inode))
2648 mode &= ~current_umask();
2649 /*
2650 * This write is needed to ensure that a
2651 * rw->ro transition does not occur between
2652 * the time when the file is created and when
2653 * a permanent write count is taken through
2654 * the 'struct file' in finish_open().
2655 */
2656 if (!got_write) {
2657 error = -EROFS;
2658 goto out_dput;
2659 }
2660 *opened |= FILE_CREATED;
2661 error = security_path_mknod(&nd->path, dentry, mode, 0);
2662 if (error)
2663 goto out_dput;
2664 error = vfs_create(dir->d_inode, dentry, mode,
2665 nd->flags & LOOKUP_EXCL);
2666 if (error)
2667 goto out_dput;
2668 }
2669 out_no_open:
2670 path->dentry = dentry;
2671 path->mnt = nd->path.mnt;
2672 return 1;
2673
2674 out_dput:
2675 dput(dentry);
2676 return error;
2677 }
2678
2679 /*
2680 * Handle the last step of open()
2681 */
2682 static int do_last(struct nameidata *nd, struct path *path,
2683 struct file *file, const struct open_flags *op,
2684 int *opened, struct filename *name)
2685 {
2686 struct dentry *dir = nd->path.dentry;
2687 int open_flag = op->open_flag;
2688 bool will_truncate = (open_flag & O_TRUNC) != 0;
2689 bool got_write = false;
2690 int acc_mode = op->acc_mode;
2691 struct inode *inode;
2692 bool symlink_ok = false;
2693 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2694 bool retried = false;
2695 int error;
2696
2697 nd->flags &= ~LOOKUP_PARENT;
2698 nd->flags |= op->intent;
2699
2700 switch (nd->last_type) {
2701 case LAST_DOTDOT:
2702 case LAST_DOT:
2703 error = handle_dots(nd, nd->last_type);
2704 if (error)
2705 return error;
2706 /* fallthrough */
2707 case LAST_ROOT:
2708 error = complete_walk(nd);
2709 if (error)
2710 return error;
2711 audit_inode(name, nd->path.dentry, 0);
2712 if (open_flag & O_CREAT) {
2713 error = -EISDIR;
2714 goto out;
2715 }
2716 goto finish_open;
2717 case LAST_BIND:
2718 error = complete_walk(nd);
2719 if (error)
2720 return error;
2721 audit_inode(name, dir, 0);
2722 goto finish_open;
2723 }
2724
2725 if (!(open_flag & O_CREAT)) {
2726 if (nd->last.name[nd->last.len])
2727 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2728 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2729 symlink_ok = true;
2730 /* we _can_ be in RCU mode here */
2731 error = lookup_fast(nd, &nd->last, path, &inode);
2732 if (likely(!error))
2733 goto finish_lookup;
2734
2735 if (error < 0)
2736 goto out;
2737
2738 BUG_ON(nd->inode != dir->d_inode);
2739 } else {
2740 /* create side of things */
2741 /*
2742 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2743 * has been cleared when we got to the last component we are
2744 * about to look up
2745 */
2746 error = complete_walk(nd);
2747 if (error)
2748 return error;
2749
2750 audit_inode(name, dir, 0);
2751 error = -EISDIR;
2752 /* trailing slashes? */
2753 if (nd->last.name[nd->last.len])
2754 goto out;
2755 }
2756
2757 retry_lookup:
2758 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2759 error = mnt_want_write(nd->path.mnt);
2760 if (!error)
2761 got_write = true;
2762 /*
2763 * do _not_ fail yet - we might not need that or fail with
2764 * a different error; let lookup_open() decide; we'll be
2765 * dropping this one anyway.
2766 */
2767 }
2768 mutex_lock(&dir->d_inode->i_mutex);
2769 error = lookup_open(nd, path, file, op, got_write, opened);
2770 mutex_unlock(&dir->d_inode->i_mutex);
2771
2772 if (error <= 0) {
2773 if (error)
2774 goto out;
2775
2776 if ((*opened & FILE_CREATED) ||
2777 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2778 will_truncate = false;
2779
2780 audit_inode(name, file->f_path.dentry, 0);
2781 goto opened;
2782 }
2783
2784 if (*opened & FILE_CREATED) {
2785 /* Don't check for write permission, don't truncate */
2786 open_flag &= ~O_TRUNC;
2787 will_truncate = false;
2788 acc_mode = MAY_OPEN;
2789 path_to_nameidata(path, nd);
2790 goto finish_open_created;
2791 }
2792
2793 /*
2794 * create/update audit record if it already exists.
2795 */
2796 if (path->dentry->d_inode)
2797 audit_inode(name, path->dentry, 0);
2798
2799 /*
2800 * If atomic_open() acquired write access it is dropped now due to
2801 * possible mount and symlink following (this might be optimized away if
2802 * necessary...)
2803 */
2804 if (got_write) {
2805 mnt_drop_write(nd->path.mnt);
2806 got_write = false;
2807 }
2808
2809 error = -EEXIST;
2810 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2811 goto exit_dput;
2812
2813 error = follow_managed(path, nd->flags);
2814 if (error < 0)
2815 goto exit_dput;
2816
2817 if (error)
2818 nd->flags |= LOOKUP_JUMPED;
2819
2820 BUG_ON(nd->flags & LOOKUP_RCU);
2821 inode = path->dentry->d_inode;
2822 finish_lookup:
2823 /* we _can_ be in RCU mode here */
2824 error = -ENOENT;
2825 if (!inode) {
2826 path_to_nameidata(path, nd);
2827 goto out;
2828 }
2829
2830 if (should_follow_link(inode, !symlink_ok)) {
2831 if (nd->flags & LOOKUP_RCU) {
2832 if (unlikely(unlazy_walk(nd, path->dentry))) {
2833 error = -ECHILD;
2834 goto out;
2835 }
2836 }
2837 BUG_ON(inode != path->dentry->d_inode);
2838 return 1;
2839 }
2840
2841 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2842 path_to_nameidata(path, nd);
2843 } else {
2844 save_parent.dentry = nd->path.dentry;
2845 save_parent.mnt = mntget(path->mnt);
2846 nd->path.dentry = path->dentry;
2847
2848 }
2849 nd->inode = inode;
2850 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2851 error = complete_walk(nd);
2852 if (error) {
2853 path_put(&save_parent);
2854 return error;
2855 }
2856 error = -EISDIR;
2857 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2858 goto out;
2859 error = -ENOTDIR;
2860 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2861 goto out;
2862 audit_inode(name, nd->path.dentry, 0);
2863 finish_open:
2864 if (!S_ISREG(nd->inode->i_mode))
2865 will_truncate = false;
2866
2867 if (will_truncate) {
2868 error = mnt_want_write(nd->path.mnt);
2869 if (error)
2870 goto out;
2871 got_write = true;
2872 }
2873 finish_open_created:
2874 error = may_open(&nd->path, acc_mode, open_flag);
2875 if (error)
2876 goto out;
2877 file->f_path.mnt = nd->path.mnt;
2878 error = finish_open(file, nd->path.dentry, NULL, opened);
2879 if (error) {
2880 if (error == -EOPENSTALE)
2881 goto stale_open;
2882 goto out;
2883 }
2884 opened:
2885 error = open_check_o_direct(file);
2886 if (error)
2887 goto exit_fput;
2888 error = ima_file_check(file, op->acc_mode);
2889 if (error)
2890 goto exit_fput;
2891
2892 if (will_truncate) {
2893 error = handle_truncate(file);
2894 if (error)
2895 goto exit_fput;
2896 }
2897 out:
2898 if (got_write)
2899 mnt_drop_write(nd->path.mnt);
2900 path_put(&save_parent);
2901 terminate_walk(nd);
2902 return error;
2903
2904 exit_dput:
2905 path_put_conditional(path, nd);
2906 goto out;
2907 exit_fput:
2908 fput(file);
2909 goto out;
2910
2911 stale_open:
2912 /* If no saved parent or already retried then can't retry */
2913 if (!save_parent.dentry || retried)
2914 goto out;
2915
2916 BUG_ON(save_parent.dentry != dir);
2917 path_put(&nd->path);
2918 nd->path = save_parent;
2919 nd->inode = dir->d_inode;
2920 save_parent.mnt = NULL;
2921 save_parent.dentry = NULL;
2922 if (got_write) {
2923 mnt_drop_write(nd->path.mnt);
2924 got_write = false;
2925 }
2926 retried = true;
2927 goto retry_lookup;
2928 }
2929
2930 static struct file *path_openat(int dfd, struct filename *pathname,
2931 struct nameidata *nd, const struct open_flags *op, int flags)
2932 {
2933 struct file *base = NULL;
2934 struct file *file;
2935 struct path path;
2936 int opened = 0;
2937 int error;
2938
2939 file = get_empty_filp();
2940 if (!file)
2941 return ERR_PTR(-ENFILE);
2942
2943 file->f_flags = op->open_flag;
2944
2945 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2946 if (unlikely(error))
2947 goto out;
2948
2949 current->total_link_count = 0;
2950 error = link_path_walk(pathname->name, nd);
2951 if (unlikely(error))
2952 goto out;
2953
2954 error = do_last(nd, &path, file, op, &opened, pathname);
2955 while (unlikely(error > 0)) { /* trailing symlink */
2956 struct path link = path;
2957 void *cookie;
2958 if (!(nd->flags & LOOKUP_FOLLOW)) {
2959 path_put_conditional(&path, nd);
2960 path_put(&nd->path);
2961 error = -ELOOP;
2962 break;
2963 }
2964 error = may_follow_link(&link, nd);
2965 if (unlikely(error))
2966 break;
2967 nd->flags |= LOOKUP_PARENT;
2968 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2969 error = follow_link(&link, nd, &cookie);
2970 if (unlikely(error))
2971 break;
2972 error = do_last(nd, &path, file, op, &opened, pathname);
2973 put_link(nd, &link, cookie);
2974 }
2975 out:
2976 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2977 path_put(&nd->root);
2978 if (base)
2979 fput(base);
2980 if (!(opened & FILE_OPENED)) {
2981 BUG_ON(!error);
2982 put_filp(file);
2983 }
2984 if (unlikely(error)) {
2985 if (error == -EOPENSTALE) {
2986 if (flags & LOOKUP_RCU)
2987 error = -ECHILD;
2988 else
2989 error = -ESTALE;
2990 }
2991 file = ERR_PTR(error);
2992 }
2993 return file;
2994 }
2995
2996 struct file *do_filp_open(int dfd, struct filename *pathname,
2997 const struct open_flags *op, int flags)
2998 {
2999 struct nameidata nd;
3000 struct file *filp;
3001
3002 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3003 if (unlikely(filp == ERR_PTR(-ECHILD)))
3004 filp = path_openat(dfd, pathname, &nd, op, flags);
3005 if (unlikely(filp == ERR_PTR(-ESTALE)))
3006 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3007 return filp;
3008 }
3009
3010 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3011 const char *name, const struct open_flags *op, int flags)
3012 {
3013 struct nameidata nd;
3014 struct file *file;
3015 struct filename filename = { .name = name };
3016
3017 nd.root.mnt = mnt;
3018 nd.root.dentry = dentry;
3019
3020 flags |= LOOKUP_ROOT;
3021
3022 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3023 return ERR_PTR(-ELOOP);
3024
3025 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3026 if (unlikely(file == ERR_PTR(-ECHILD)))
3027 file = path_openat(-1, &filename, &nd, op, flags);
3028 if (unlikely(file == ERR_PTR(-ESTALE)))
3029 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3030 return file;
3031 }
3032
3033 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
3034 {
3035 struct dentry *dentry = ERR_PTR(-EEXIST);
3036 struct nameidata nd;
3037 int err2;
3038 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
3039 if (error)
3040 return ERR_PTR(error);
3041
3042 /*
3043 * Yucky last component or no last component at all?
3044 * (foo/., foo/.., /////)
3045 */
3046 if (nd.last_type != LAST_NORM)
3047 goto out;
3048 nd.flags &= ~LOOKUP_PARENT;
3049 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3050
3051 /* don't fail immediately if it's r/o, at least try to report other errors */
3052 err2 = mnt_want_write(nd.path.mnt);
3053 /*
3054 * Do the final lookup.
3055 */
3056 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3057 dentry = lookup_hash(&nd);
3058 if (IS_ERR(dentry))
3059 goto unlock;
3060
3061 error = -EEXIST;
3062 if (dentry->d_inode)
3063 goto fail;
3064 /*
3065 * Special case - lookup gave negative, but... we had foo/bar/
3066 * From the vfs_mknod() POV we just have a negative dentry -
3067 * all is fine. Let's be bastards - you had / on the end, you've
3068 * been asking for (non-existent) directory. -ENOENT for you.
3069 */
3070 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3071 error = -ENOENT;
3072 goto fail;
3073 }
3074 if (unlikely(err2)) {
3075 error = err2;
3076 goto fail;
3077 }
3078 *path = nd.path;
3079 return dentry;
3080 fail:
3081 dput(dentry);
3082 dentry = ERR_PTR(error);
3083 unlock:
3084 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3085 if (!err2)
3086 mnt_drop_write(nd.path.mnt);
3087 out:
3088 path_put(&nd.path);
3089 return dentry;
3090 }
3091 EXPORT_SYMBOL(kern_path_create);
3092
3093 void done_path_create(struct path *path, struct dentry *dentry)
3094 {
3095 dput(dentry);
3096 mutex_unlock(&path->dentry->d_inode->i_mutex);
3097 mnt_drop_write(path->mnt);
3098 path_put(path);
3099 }
3100 EXPORT_SYMBOL(done_path_create);
3101
3102 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3103 {
3104 struct filename *tmp = getname(pathname);
3105 struct dentry *res;
3106 if (IS_ERR(tmp))
3107 return ERR_CAST(tmp);
3108 res = kern_path_create(dfd, tmp->name, path, is_dir);
3109 putname(tmp);
3110 return res;
3111 }
3112 EXPORT_SYMBOL(user_path_create);
3113
3114 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3115 {
3116 int error = may_create(dir, dentry);
3117
3118 if (error)
3119 return error;
3120
3121 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3122 return -EPERM;
3123
3124 if (!dir->i_op->mknod)
3125 return -EPERM;
3126
3127 error = devcgroup_inode_mknod(mode, dev);
3128 if (error)
3129 return error;
3130
3131 error = security_inode_mknod(dir, dentry, mode, dev);
3132 if (error)
3133 return error;
3134
3135 error = dir->i_op->mknod(dir, dentry, mode, dev);
3136 if (!error)
3137 fsnotify_create(dir, dentry);
3138 return error;
3139 }
3140
3141 static int may_mknod(umode_t mode)
3142 {
3143 switch (mode & S_IFMT) {
3144 case S_IFREG:
3145 case S_IFCHR:
3146 case S_IFBLK:
3147 case S_IFIFO:
3148 case S_IFSOCK:
3149 case 0: /* zero mode translates to S_IFREG */
3150 return 0;
3151 case S_IFDIR:
3152 return -EPERM;
3153 default:
3154 return -EINVAL;
3155 }
3156 }
3157
3158 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3159 unsigned, dev)
3160 {
3161 struct dentry *dentry;
3162 struct path path;
3163 int error;
3164
3165 error = may_mknod(mode);
3166 if (error)
3167 return error;
3168
3169 dentry = user_path_create(dfd, filename, &path, 0);
3170 if (IS_ERR(dentry))
3171 return PTR_ERR(dentry);
3172
3173 if (!IS_POSIXACL(path.dentry->d_inode))
3174 mode &= ~current_umask();
3175 error = security_path_mknod(&path, dentry, mode, dev);
3176 if (error)
3177 goto out;
3178 switch (mode & S_IFMT) {
3179 case 0: case S_IFREG:
3180 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3181 break;
3182 case S_IFCHR: case S_IFBLK:
3183 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3184 new_decode_dev(dev));
3185 break;
3186 case S_IFIFO: case S_IFSOCK:
3187 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3188 break;
3189 }
3190 out:
3191 done_path_create(&path, dentry);
3192 return error;
3193 }
3194
3195 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3196 {
3197 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3198 }
3199
3200 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3201 {
3202 int error = may_create(dir, dentry);
3203 unsigned max_links = dir->i_sb->s_max_links;
3204
3205 if (error)
3206 return error;
3207
3208 if (!dir->i_op->mkdir)
3209 return -EPERM;
3210
3211 mode &= (S_IRWXUGO|S_ISVTX);
3212 error = security_inode_mkdir(dir, dentry, mode);
3213 if (error)
3214 return error;
3215
3216 if (max_links && dir->i_nlink >= max_links)
3217 return -EMLINK;
3218
3219 error = dir->i_op->mkdir(dir, dentry, mode);
3220 if (!error)
3221 fsnotify_mkdir(dir, dentry);
3222 return error;
3223 }
3224
3225 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3226 {
3227 struct dentry *dentry;
3228 struct path path;
3229 int error;
3230
3231 dentry = user_path_create(dfd, pathname, &path, 1);
3232 if (IS_ERR(dentry))
3233 return PTR_ERR(dentry);
3234
3235 if (!IS_POSIXACL(path.dentry->d_inode))
3236 mode &= ~current_umask();
3237 error = security_path_mkdir(&path, dentry, mode);
3238 if (!error)
3239 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3240 done_path_create(&path, dentry);
3241 return error;
3242 }
3243
3244 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3245 {
3246 return sys_mkdirat(AT_FDCWD, pathname, mode);
3247 }
3248
3249 /*
3250 * The dentry_unhash() helper will try to drop the dentry early: we
3251 * should have a usage count of 1 if we're the only user of this
3252 * dentry, and if that is true (possibly after pruning the dcache),
3253 * then we drop the dentry now.
3254 *
3255 * A low-level filesystem can, if it choses, legally
3256 * do a
3257 *
3258 * if (!d_unhashed(dentry))
3259 * return -EBUSY;
3260 *
3261 * if it cannot handle the case of removing a directory
3262 * that is still in use by something else..
3263 */
3264 void dentry_unhash(struct dentry *dentry)
3265 {
3266 shrink_dcache_parent(dentry);
3267 spin_lock(&dentry->d_lock);
3268 if (dentry->d_count == 1)
3269 __d_drop(dentry);
3270 spin_unlock(&dentry->d_lock);
3271 }
3272
3273 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3274 {
3275 int error = may_delete(dir, dentry, 1);
3276
3277 if (error)
3278 return error;
3279
3280 if (!dir->i_op->rmdir)
3281 return -EPERM;
3282
3283 dget(dentry);
3284 mutex_lock(&dentry->d_inode->i_mutex);
3285
3286 error = -EBUSY;
3287 if (d_mountpoint(dentry))
3288 goto out;
3289
3290 error = security_inode_rmdir(dir, dentry);
3291 if (error)
3292 goto out;
3293
3294 shrink_dcache_parent(dentry);
3295 error = dir->i_op->rmdir(dir, dentry);
3296 if (error)
3297 goto out;
3298
3299 dentry->d_inode->i_flags |= S_DEAD;
3300 dont_mount(dentry);
3301
3302 out:
3303 mutex_unlock(&dentry->d_inode->i_mutex);
3304 dput(dentry);
3305 if (!error)
3306 d_delete(dentry);
3307 return error;
3308 }
3309
3310 static long do_rmdir(int dfd, const char __user *pathname)
3311 {
3312 int error = 0;
3313 struct filename *name;
3314 struct dentry *dentry;
3315 struct nameidata nd;
3316
3317 name = user_path_parent(dfd, pathname, &nd);
3318 if (IS_ERR(name))
3319 return PTR_ERR(name);
3320
3321 switch(nd.last_type) {
3322 case LAST_DOTDOT:
3323 error = -ENOTEMPTY;
3324 goto exit1;
3325 case LAST_DOT:
3326 error = -EINVAL;
3327 goto exit1;
3328 case LAST_ROOT:
3329 error = -EBUSY;
3330 goto exit1;
3331 }
3332
3333 nd.flags &= ~LOOKUP_PARENT;
3334 error = mnt_want_write(nd.path.mnt);
3335 if (error)
3336 goto exit1;
3337
3338 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3339 dentry = lookup_hash(&nd);
3340 error = PTR_ERR(dentry);
3341 if (IS_ERR(dentry))
3342 goto exit2;
3343 if (!dentry->d_inode) {
3344 error = -ENOENT;
3345 goto exit3;
3346 }
3347 error = security_path_rmdir(&nd.path, dentry);
3348 if (error)
3349 goto exit3;
3350 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3351 exit3:
3352 dput(dentry);
3353 exit2:
3354 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3355 mnt_drop_write(nd.path.mnt);
3356 exit1:
3357 path_put(&nd.path);
3358 putname(name);
3359 return error;
3360 }
3361
3362 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3363 {
3364 return do_rmdir(AT_FDCWD, pathname);
3365 }
3366
3367 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3368 {
3369 int error = may_delete(dir, dentry, 0);
3370
3371 if (error)
3372 return error;
3373
3374 if (!dir->i_op->unlink)
3375 return -EPERM;
3376
3377 mutex_lock(&dentry->d_inode->i_mutex);
3378 if (d_mountpoint(dentry))
3379 error = -EBUSY;
3380 else {
3381 error = security_inode_unlink(dir, dentry);
3382 if (!error) {
3383 error = dir->i_op->unlink(dir, dentry);
3384 if (!error)
3385 dont_mount(dentry);
3386 }
3387 }
3388 mutex_unlock(&dentry->d_inode->i_mutex);
3389
3390 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3391 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3392 fsnotify_link_count(dentry->d_inode);
3393 d_delete(dentry);
3394 }
3395
3396 return error;
3397 }
3398
3399 /*
3400 * Make sure that the actual truncation of the file will occur outside its
3401 * directory's i_mutex. Truncate can take a long time if there is a lot of
3402 * writeout happening, and we don't want to prevent access to the directory
3403 * while waiting on the I/O.
3404 */
3405 static long do_unlinkat(int dfd, const char __user *pathname)
3406 {
3407 int error;
3408 struct filename *name;
3409 struct dentry *dentry;
3410 struct nameidata nd;
3411 struct inode *inode = NULL;
3412
3413 name = user_path_parent(dfd, pathname, &nd);
3414 if (IS_ERR(name))
3415 return PTR_ERR(name);
3416
3417 error = -EISDIR;
3418 if (nd.last_type != LAST_NORM)
3419 goto exit1;
3420
3421 nd.flags &= ~LOOKUP_PARENT;
3422 error = mnt_want_write(nd.path.mnt);
3423 if (error)
3424 goto exit1;
3425
3426 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3427 dentry = lookup_hash(&nd);
3428 error = PTR_ERR(dentry);
3429 if (!IS_ERR(dentry)) {
3430 /* Why not before? Because we want correct error value */
3431 if (nd.last.name[nd.last.len])
3432 goto slashes;
3433 inode = dentry->d_inode;
3434 if (!inode)
3435 goto slashes;
3436 ihold(inode);
3437 error = security_path_unlink(&nd.path, dentry);
3438 if (error)
3439 goto exit2;
3440 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3441 exit2:
3442 dput(dentry);
3443 }
3444 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3445 if (inode)
3446 iput(inode); /* truncate the inode here */
3447 mnt_drop_write(nd.path.mnt);
3448 exit1:
3449 path_put(&nd.path);
3450 putname(name);
3451 return error;
3452
3453 slashes:
3454 error = !dentry->d_inode ? -ENOENT :
3455 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3456 goto exit2;
3457 }
3458
3459 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3460 {
3461 if ((flag & ~AT_REMOVEDIR) != 0)
3462 return -EINVAL;
3463
3464 if (flag & AT_REMOVEDIR)
3465 return do_rmdir(dfd, pathname);
3466
3467 return do_unlinkat(dfd, pathname);
3468 }
3469
3470 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3471 {
3472 return do_unlinkat(AT_FDCWD, pathname);
3473 }
3474
3475 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3476 {
3477 int error = may_create(dir, dentry);
3478
3479 if (error)
3480 return error;
3481
3482 if (!dir->i_op->symlink)
3483 return -EPERM;
3484
3485 error = security_inode_symlink(dir, dentry, oldname);
3486 if (error)
3487 return error;
3488
3489 error = dir->i_op->symlink(dir, dentry, oldname);
3490 if (!error)
3491 fsnotify_create(dir, dentry);
3492 return error;
3493 }
3494
3495 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3496 int, newdfd, const char __user *, newname)
3497 {
3498 int error;
3499 struct filename *from;
3500 struct dentry *dentry;
3501 struct path path;
3502
3503 from = getname(oldname);
3504 if (IS_ERR(from))
3505 return PTR_ERR(from);
3506
3507 dentry = user_path_create(newdfd, newname, &path, 0);
3508 error = PTR_ERR(dentry);
3509 if (IS_ERR(dentry))
3510 goto out_putname;
3511
3512 error = security_path_symlink(&path, dentry, from->name);
3513 if (!error)
3514 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3515 done_path_create(&path, dentry);
3516 out_putname:
3517 putname(from);
3518 return error;
3519 }
3520
3521 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3522 {
3523 return sys_symlinkat(oldname, AT_FDCWD, newname);
3524 }
3525
3526 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3527 {
3528 struct inode *inode = old_dentry->d_inode;
3529 unsigned max_links = dir->i_sb->s_max_links;
3530 int error;
3531
3532 if (!inode)
3533 return -ENOENT;
3534
3535 error = may_create(dir, new_dentry);
3536 if (error)
3537 return error;
3538
3539 if (dir->i_sb != inode->i_sb)
3540 return -EXDEV;
3541
3542 /*
3543 * A link to an append-only or immutable file cannot be created.
3544 */
3545 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3546 return -EPERM;
3547 if (!dir->i_op->link)
3548 return -EPERM;
3549 if (S_ISDIR(inode->i_mode))
3550 return -EPERM;
3551
3552 error = security_inode_link(old_dentry, dir, new_dentry);
3553 if (error)
3554 return error;
3555
3556 mutex_lock(&inode->i_mutex);
3557 /* Make sure we don't allow creating hardlink to an unlinked file */
3558 if (inode->i_nlink == 0)
3559 error = -ENOENT;
3560 else if (max_links && inode->i_nlink >= max_links)
3561 error = -EMLINK;
3562 else
3563 error = dir->i_op->link(old_dentry, dir, new_dentry);
3564 mutex_unlock(&inode->i_mutex);
3565 if (!error)
3566 fsnotify_link(dir, inode, new_dentry);
3567 return error;
3568 }
3569
3570 /*
3571 * Hardlinks are often used in delicate situations. We avoid
3572 * security-related surprises by not following symlinks on the
3573 * newname. --KAB
3574 *
3575 * We don't follow them on the oldname either to be compatible
3576 * with linux 2.0, and to avoid hard-linking to directories
3577 * and other special files. --ADM
3578 */
3579 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3580 int, newdfd, const char __user *, newname, int, flags)
3581 {
3582 struct dentry *new_dentry;
3583 struct path old_path, new_path;
3584 int how = 0;
3585 int error;
3586
3587 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3588 return -EINVAL;
3589 /*
3590 * To use null names we require CAP_DAC_READ_SEARCH
3591 * This ensures that not everyone will be able to create
3592 * handlink using the passed filedescriptor.
3593 */
3594 if (flags & AT_EMPTY_PATH) {
3595 if (!capable(CAP_DAC_READ_SEARCH))
3596 return -ENOENT;
3597 how = LOOKUP_EMPTY;
3598 }
3599
3600 if (flags & AT_SYMLINK_FOLLOW)
3601 how |= LOOKUP_FOLLOW;
3602
3603 error = user_path_at(olddfd, oldname, how, &old_path);
3604 if (error)
3605 return error;
3606
3607 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3608 error = PTR_ERR(new_dentry);
3609 if (IS_ERR(new_dentry))
3610 goto out;
3611
3612 error = -EXDEV;
3613 if (old_path.mnt != new_path.mnt)
3614 goto out_dput;
3615 error = may_linkat(&old_path);
3616 if (unlikely(error))
3617 goto out_dput;
3618 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3619 if (error)
3620 goto out_dput;
3621 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3622 out_dput:
3623 done_path_create(&new_path, new_dentry);
3624 out:
3625 path_put(&old_path);
3626
3627 return error;
3628 }
3629
3630 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3631 {
3632 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3633 }
3634
3635 /*
3636 * The worst of all namespace operations - renaming directory. "Perverted"
3637 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3638 * Problems:
3639 * a) we can get into loop creation. Check is done in is_subdir().
3640 * b) race potential - two innocent renames can create a loop together.
3641 * That's where 4.4 screws up. Current fix: serialization on
3642 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3643 * story.
3644 * c) we have to lock _three_ objects - parents and victim (if it exists).
3645 * And that - after we got ->i_mutex on parents (until then we don't know
3646 * whether the target exists). Solution: try to be smart with locking
3647 * order for inodes. We rely on the fact that tree topology may change
3648 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3649 * move will be locked. Thus we can rank directories by the tree
3650 * (ancestors first) and rank all non-directories after them.
3651 * That works since everybody except rename does "lock parent, lookup,
3652 * lock child" and rename is under ->s_vfs_rename_mutex.
3653 * HOWEVER, it relies on the assumption that any object with ->lookup()
3654 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3655 * we'd better make sure that there's no link(2) for them.
3656 * d) conversion from fhandle to dentry may come in the wrong moment - when
3657 * we are removing the target. Solution: we will have to grab ->i_mutex
3658 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3659 * ->i_mutex on parents, which works but leads to some truly excessive
3660 * locking].
3661 */
3662 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3663 struct inode *new_dir, struct dentry *new_dentry)
3664 {
3665 int error = 0;
3666 struct inode *target = new_dentry->d_inode;
3667 unsigned max_links = new_dir->i_sb->s_max_links;
3668
3669 /*
3670 * If we are going to change the parent - check write permissions,
3671 * we'll need to flip '..'.
3672 */
3673 if (new_dir != old_dir) {
3674 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3675 if (error)
3676 return error;
3677 }
3678
3679 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3680 if (error)
3681 return error;
3682
3683 dget(new_dentry);
3684 if (target)
3685 mutex_lock(&target->i_mutex);
3686
3687 error = -EBUSY;
3688 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3689 goto out;
3690
3691 error = -EMLINK;
3692 if (max_links && !target && new_dir != old_dir &&
3693 new_dir->i_nlink >= max_links)
3694 goto out;
3695
3696 if (target)
3697 shrink_dcache_parent(new_dentry);
3698 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3699 if (error)
3700 goto out;
3701
3702 if (target) {
3703 target->i_flags |= S_DEAD;
3704 dont_mount(new_dentry);
3705 }
3706 out:
3707 if (target)
3708 mutex_unlock(&target->i_mutex);
3709 dput(new_dentry);
3710 if (!error)
3711 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3712 d_move(old_dentry,new_dentry);
3713 return error;
3714 }
3715
3716 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3717 struct inode *new_dir, struct dentry *new_dentry)
3718 {
3719 struct inode *target = new_dentry->d_inode;
3720 int error;
3721
3722 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3723 if (error)
3724 return error;
3725
3726 dget(new_dentry);
3727 if (target)
3728 mutex_lock(&target->i_mutex);
3729
3730 error = -EBUSY;
3731 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3732 goto out;
3733
3734 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3735 if (error)
3736 goto out;
3737
3738 if (target)
3739 dont_mount(new_dentry);
3740 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3741 d_move(old_dentry, new_dentry);
3742 out:
3743 if (target)
3744 mutex_unlock(&target->i_mutex);
3745 dput(new_dentry);
3746 return error;
3747 }
3748
3749 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3750 struct inode *new_dir, struct dentry *new_dentry)
3751 {
3752 int error;
3753 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3754 const unsigned char *old_name;
3755
3756 if (old_dentry->d_inode == new_dentry->d_inode)
3757 return 0;
3758
3759 error = may_delete(old_dir, old_dentry, is_dir);
3760 if (error)
3761 return error;
3762
3763 if (!new_dentry->d_inode)
3764 error = may_create(new_dir, new_dentry);
3765 else
3766 error = may_delete(new_dir, new_dentry, is_dir);
3767 if (error)
3768 return error;
3769
3770 if (!old_dir->i_op->rename)
3771 return -EPERM;
3772
3773 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3774
3775 if (is_dir)
3776 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3777 else
3778 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3779 if (!error)
3780 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3781 new_dentry->d_inode, old_dentry);
3782 fsnotify_oldname_free(old_name);
3783
3784 return error;
3785 }
3786
3787 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3788 int, newdfd, const char __user *, newname)
3789 {
3790 struct dentry *old_dir, *new_dir;
3791 struct dentry *old_dentry, *new_dentry;
3792 struct dentry *trap;
3793 struct nameidata oldnd, newnd;
3794 struct filename *from;
3795 struct filename *to;
3796 int error;
3797
3798 from = user_path_parent(olddfd, oldname, &oldnd);
3799 if (IS_ERR(from)) {
3800 error = PTR_ERR(from);
3801 goto exit;
3802 }
3803
3804 to = user_path_parent(newdfd, newname, &newnd);
3805 if (IS_ERR(to)) {
3806 error = PTR_ERR(to);
3807 goto exit1;
3808 }
3809
3810 error = -EXDEV;
3811 if (oldnd.path.mnt != newnd.path.mnt)
3812 goto exit2;
3813
3814 old_dir = oldnd.path.dentry;
3815 error = -EBUSY;
3816 if (oldnd.last_type != LAST_NORM)
3817 goto exit2;
3818
3819 new_dir = newnd.path.dentry;
3820 if (newnd.last_type != LAST_NORM)
3821 goto exit2;
3822
3823 error = mnt_want_write(oldnd.path.mnt);
3824 if (error)
3825 goto exit2;
3826
3827 oldnd.flags &= ~LOOKUP_PARENT;
3828 newnd.flags &= ~LOOKUP_PARENT;
3829 newnd.flags |= LOOKUP_RENAME_TARGET;
3830
3831 trap = lock_rename(new_dir, old_dir);
3832
3833 old_dentry = lookup_hash(&oldnd);
3834 error = PTR_ERR(old_dentry);
3835 if (IS_ERR(old_dentry))
3836 goto exit3;
3837 /* source must exist */
3838 error = -ENOENT;
3839 if (!old_dentry->d_inode)
3840 goto exit4;
3841 /* unless the source is a directory trailing slashes give -ENOTDIR */
3842 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3843 error = -ENOTDIR;
3844 if (oldnd.last.name[oldnd.last.len])
3845 goto exit4;
3846 if (newnd.last.name[newnd.last.len])
3847 goto exit4;
3848 }
3849 /* source should not be ancestor of target */
3850 error = -EINVAL;
3851 if (old_dentry == trap)
3852 goto exit4;
3853 new_dentry = lookup_hash(&newnd);
3854 error = PTR_ERR(new_dentry);
3855 if (IS_ERR(new_dentry))
3856 goto exit4;
3857 /* target should not be an ancestor of source */
3858 error = -ENOTEMPTY;
3859 if (new_dentry == trap)
3860 goto exit5;
3861
3862 error = security_path_rename(&oldnd.path, old_dentry,
3863 &newnd.path, new_dentry);
3864 if (error)
3865 goto exit5;
3866 error = vfs_rename(old_dir->d_inode, old_dentry,
3867 new_dir->d_inode, new_dentry);
3868 exit5:
3869 dput(new_dentry);
3870 exit4:
3871 dput(old_dentry);
3872 exit3:
3873 unlock_rename(new_dir, old_dir);
3874 mnt_drop_write(oldnd.path.mnt);
3875 exit2:
3876 path_put(&newnd.path);
3877 putname(to);
3878 exit1:
3879 path_put(&oldnd.path);
3880 putname(from);
3881 exit:
3882 return error;
3883 }
3884
3885 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3886 {
3887 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3888 }
3889
3890 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3891 {
3892 int len;
3893
3894 len = PTR_ERR(link);
3895 if (IS_ERR(link))
3896 goto out;
3897
3898 len = strlen(link);
3899 if (len > (unsigned) buflen)
3900 len = buflen;
3901 if (copy_to_user(buffer, link, len))
3902 len = -EFAULT;
3903 out:
3904 return len;
3905 }
3906
3907 /*
3908 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3909 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3910 * using) it for any given inode is up to filesystem.
3911 */
3912 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3913 {
3914 struct nameidata nd;
3915 void *cookie;
3916 int res;
3917
3918 nd.depth = 0;
3919 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3920 if (IS_ERR(cookie))
3921 return PTR_ERR(cookie);
3922
3923 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3924 if (dentry->d_inode->i_op->put_link)
3925 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3926 return res;
3927 }
3928
3929 int vfs_follow_link(struct nameidata *nd, const char *link)
3930 {
3931 return __vfs_follow_link(nd, link);
3932 }
3933
3934 /* get the link contents into pagecache */
3935 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3936 {
3937 char *kaddr;
3938 struct page *page;
3939 struct address_space *mapping = dentry->d_inode->i_mapping;
3940 page = read_mapping_page(mapping, 0, NULL);
3941 if (IS_ERR(page))
3942 return (char*)page;
3943 *ppage = page;
3944 kaddr = kmap(page);
3945 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3946 return kaddr;
3947 }
3948
3949 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3950 {
3951 struct page *page = NULL;
3952 char *s = page_getlink(dentry, &page);
3953 int res = vfs_readlink(dentry,buffer,buflen,s);
3954 if (page) {
3955 kunmap(page);
3956 page_cache_release(page);
3957 }
3958 return res;
3959 }
3960
3961 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3962 {
3963 struct page *page = NULL;
3964 nd_set_link(nd, page_getlink(dentry, &page));
3965 return page;
3966 }
3967
3968 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3969 {
3970 struct page *page = cookie;
3971
3972 if (page) {
3973 kunmap(page);
3974 page_cache_release(page);
3975 }
3976 }
3977
3978 /*
3979 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3980 */
3981 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3982 {
3983 struct address_space *mapping = inode->i_mapping;
3984 struct page *page;
3985 void *fsdata;
3986 int err;
3987 char *kaddr;
3988 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3989 if (nofs)
3990 flags |= AOP_FLAG_NOFS;
3991
3992 retry:
3993 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3994 flags, &page, &fsdata);
3995 if (err)
3996 goto fail;
3997
3998 kaddr = kmap_atomic(page);
3999 memcpy(kaddr, symname, len-1);
4000 kunmap_atomic(kaddr);
4001
4002 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4003 page, fsdata);
4004 if (err < 0)
4005 goto fail;
4006 if (err < len-1)
4007 goto retry;
4008
4009 mark_inode_dirty(inode);
4010 return 0;
4011 fail:
4012 return err;
4013 }
4014
4015 int page_symlink(struct inode *inode, const char *symname, int len)
4016 {
4017 return __page_symlink(inode, symname, len,
4018 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4019 }
4020
4021 const struct inode_operations page_symlink_inode_operations = {
4022 .readlink = generic_readlink,
4023 .follow_link = page_follow_link_light,
4024 .put_link = page_put_link,
4025 };
4026
4027 EXPORT_SYMBOL(user_path_at);
4028 EXPORT_SYMBOL(follow_down_one);
4029 EXPORT_SYMBOL(follow_down);
4030 EXPORT_SYMBOL(follow_up);
4031 EXPORT_SYMBOL(get_write_access); /* nfsd */
4032 EXPORT_SYMBOL(lock_rename);
4033 EXPORT_SYMBOL(lookup_one_len);
4034 EXPORT_SYMBOL(page_follow_link_light);
4035 EXPORT_SYMBOL(page_put_link);
4036 EXPORT_SYMBOL(page_readlink);
4037 EXPORT_SYMBOL(__page_symlink);
4038 EXPORT_SYMBOL(page_symlink);
4039 EXPORT_SYMBOL(page_symlink_inode_operations);
4040 EXPORT_SYMBOL(kern_path);
4041 EXPORT_SYMBOL(vfs_path_lookup);
4042 EXPORT_SYMBOL(inode_permission);
4043 EXPORT_SYMBOL(unlock_rename);
4044 EXPORT_SYMBOL(vfs_create);
4045 EXPORT_SYMBOL(vfs_follow_link);
4046 EXPORT_SYMBOL(vfs_link);
4047 EXPORT_SYMBOL(vfs_mkdir);
4048 EXPORT_SYMBOL(vfs_mknod);
4049 EXPORT_SYMBOL(generic_permission);
4050 EXPORT_SYMBOL(vfs_readlink);
4051 EXPORT_SYMBOL(vfs_rename);
4052 EXPORT_SYMBOL(vfs_rmdir);
4053 EXPORT_SYMBOL(vfs_symlink);
4054 EXPORT_SYMBOL(vfs_unlink);
4055 EXPORT_SYMBOL(dentry_unhash);
4056 EXPORT_SYMBOL(generic_readlink);