Merge branch 'tip/perf/urgent-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 static int sleep_on_buffer(void *word)
65 {
66 io_schedule();
67 return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 EXPORT_SYMBOL(__wait_on_buffer);
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
102 }
103
104
105 static int quiet_error(struct buffer_head *bh)
106 {
107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108 return 0;
109 return 1;
110 }
111
112
113 static void buffer_io_error(struct buffer_head *bh)
114 {
115 char b[BDEVNAME_SIZE];
116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117 bdevname(bh->b_bdev, b),
118 (unsigned long long)bh->b_blocknr);
119 }
120
121 /*
122 * End-of-IO handler helper function which does not touch the bh after
123 * unlocking it.
124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125 * a race there is benign: unlock_buffer() only use the bh's address for
126 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 * itself.
128 */
129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 {
131 if (uptodate) {
132 set_buffer_uptodate(bh);
133 } else {
134 /* This happens, due to failed READA attempts. */
135 clear_buffer_uptodate(bh);
136 }
137 unlock_buffer(bh);
138 }
139
140 /*
141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
142 * unlock the buffer. This is what ll_rw_block uses too.
143 */
144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145 {
146 __end_buffer_read_notouch(bh, uptodate);
147 put_bh(bh);
148 }
149 EXPORT_SYMBOL(end_buffer_read_sync);
150
151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152 {
153 char b[BDEVNAME_SIZE];
154
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 if (!quiet_error(bh)) {
159 buffer_io_error(bh);
160 printk(KERN_WARNING "lost page write due to "
161 "I/O error on %s\n",
162 bdevname(bh->b_bdev, b));
163 }
164 set_buffer_write_io_error(bh);
165 clear_buffer_uptodate(bh);
166 }
167 unlock_buffer(bh);
168 put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_write_sync);
171
172 /*
173 * Various filesystems appear to want __find_get_block to be non-blocking.
174 * But it's the page lock which protects the buffers. To get around this,
175 * we get exclusion from try_to_free_buffers with the blockdev mapping's
176 * private_lock.
177 *
178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179 * may be quite high. This code could TryLock the page, and if that
180 * succeeds, there is no need to take private_lock. (But if
181 * private_lock is contended then so is mapping->tree_lock).
182 */
183 static struct buffer_head *
184 __find_get_block_slow(struct block_device *bdev, sector_t block)
185 {
186 struct inode *bd_inode = bdev->bd_inode;
187 struct address_space *bd_mapping = bd_inode->i_mapping;
188 struct buffer_head *ret = NULL;
189 pgoff_t index;
190 struct buffer_head *bh;
191 struct buffer_head *head;
192 struct page *page;
193 int all_mapped = 1;
194
195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196 page = find_get_page(bd_mapping, index);
197 if (!page)
198 goto out;
199
200 spin_lock(&bd_mapping->private_lock);
201 if (!page_has_buffers(page))
202 goto out_unlock;
203 head = page_buffers(page);
204 bh = head;
205 do {
206 if (!buffer_mapped(bh))
207 all_mapped = 0;
208 else if (bh->b_blocknr == block) {
209 ret = bh;
210 get_bh(bh);
211 goto out_unlock;
212 }
213 bh = bh->b_this_page;
214 } while (bh != head);
215
216 /* we might be here because some of the buffers on this page are
217 * not mapped. This is due to various races between
218 * file io on the block device and getblk. It gets dealt with
219 * elsewhere, don't buffer_error if we had some unmapped buffers
220 */
221 if (all_mapped) {
222 char b[BDEVNAME_SIZE];
223
224 printk("__find_get_block_slow() failed. "
225 "block=%llu, b_blocknr=%llu\n",
226 (unsigned long long)block,
227 (unsigned long long)bh->b_blocknr);
228 printk("b_state=0x%08lx, b_size=%zu\n",
229 bh->b_state, bh->b_size);
230 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231 1 << bd_inode->i_blkbits);
232 }
233 out_unlock:
234 spin_unlock(&bd_mapping->private_lock);
235 page_cache_release(page);
236 out:
237 return ret;
238 }
239
240 /*
241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
242 */
243 static void free_more_memory(void)
244 {
245 struct zone *zone;
246 int nid;
247
248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249 yield();
250
251 for_each_online_node(nid) {
252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253 gfp_zone(GFP_NOFS), NULL,
254 &zone);
255 if (zone)
256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257 GFP_NOFS, NULL);
258 }
259 }
260
261 /*
262 * I/O completion handler for block_read_full_page() - pages
263 * which come unlocked at the end of I/O.
264 */
265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266 {
267 unsigned long flags;
268 struct buffer_head *first;
269 struct buffer_head *tmp;
270 struct page *page;
271 int page_uptodate = 1;
272
273 BUG_ON(!buffer_async_read(bh));
274
275 page = bh->b_page;
276 if (uptodate) {
277 set_buffer_uptodate(bh);
278 } else {
279 clear_buffer_uptodate(bh);
280 if (!quiet_error(bh))
281 buffer_io_error(bh);
282 SetPageError(page);
283 }
284
285 /*
286 * Be _very_ careful from here on. Bad things can happen if
287 * two buffer heads end IO at almost the same time and both
288 * decide that the page is now completely done.
289 */
290 first = page_buffers(page);
291 local_irq_save(flags);
292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293 clear_buffer_async_read(bh);
294 unlock_buffer(bh);
295 tmp = bh;
296 do {
297 if (!buffer_uptodate(tmp))
298 page_uptodate = 0;
299 if (buffer_async_read(tmp)) {
300 BUG_ON(!buffer_locked(tmp));
301 goto still_busy;
302 }
303 tmp = tmp->b_this_page;
304 } while (tmp != bh);
305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 local_irq_restore(flags);
307
308 /*
309 * If none of the buffers had errors and they are all
310 * uptodate then we can set the page uptodate.
311 */
312 if (page_uptodate && !PageError(page))
313 SetPageUptodate(page);
314 unlock_page(page);
315 return;
316
317 still_busy:
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
320 return;
321 }
322
323 /*
324 * Completion handler for block_write_full_page() - pages which are unlocked
325 * during I/O, and which have PageWriteback cleared upon I/O completion.
326 */
327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
328 {
329 char b[BDEVNAME_SIZE];
330 unsigned long flags;
331 struct buffer_head *first;
332 struct buffer_head *tmp;
333 struct page *page;
334
335 BUG_ON(!buffer_async_write(bh));
336
337 page = bh->b_page;
338 if (uptodate) {
339 set_buffer_uptodate(bh);
340 } else {
341 if (!quiet_error(bh)) {
342 buffer_io_error(bh);
343 printk(KERN_WARNING "lost page write due to "
344 "I/O error on %s\n",
345 bdevname(bh->b_bdev, b));
346 }
347 set_bit(AS_EIO, &page->mapping->flags);
348 set_buffer_write_io_error(bh);
349 clear_buffer_uptodate(bh);
350 SetPageError(page);
351 }
352
353 first = page_buffers(page);
354 local_irq_save(flags);
355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356
357 clear_buffer_async_write(bh);
358 unlock_buffer(bh);
359 tmp = bh->b_this_page;
360 while (tmp != bh) {
361 if (buffer_async_write(tmp)) {
362 BUG_ON(!buffer_locked(tmp));
363 goto still_busy;
364 }
365 tmp = tmp->b_this_page;
366 }
367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368 local_irq_restore(flags);
369 end_page_writeback(page);
370 return;
371
372 still_busy:
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
375 return;
376 }
377 EXPORT_SYMBOL(end_buffer_async_write);
378
379 /*
380 * If a page's buffers are under async readin (end_buffer_async_read
381 * completion) then there is a possibility that another thread of
382 * control could lock one of the buffers after it has completed
383 * but while some of the other buffers have not completed. This
384 * locked buffer would confuse end_buffer_async_read() into not unlocking
385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
386 * that this buffer is not under async I/O.
387 *
388 * The page comes unlocked when it has no locked buffer_async buffers
389 * left.
390 *
391 * PageLocked prevents anyone starting new async I/O reads any of
392 * the buffers.
393 *
394 * PageWriteback is used to prevent simultaneous writeout of the same
395 * page.
396 *
397 * PageLocked prevents anyone from starting writeback of a page which is
398 * under read I/O (PageWriteback is only ever set against a locked page).
399 */
400 static void mark_buffer_async_read(struct buffer_head *bh)
401 {
402 bh->b_end_io = end_buffer_async_read;
403 set_buffer_async_read(bh);
404 }
405
406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407 bh_end_io_t *handler)
408 {
409 bh->b_end_io = handler;
410 set_buffer_async_write(bh);
411 }
412
413 void mark_buffer_async_write(struct buffer_head *bh)
414 {
415 mark_buffer_async_write_endio(bh, end_buffer_async_write);
416 }
417 EXPORT_SYMBOL(mark_buffer_async_write);
418
419
420 /*
421 * fs/buffer.c contains helper functions for buffer-backed address space's
422 * fsync functions. A common requirement for buffer-based filesystems is
423 * that certain data from the backing blockdev needs to be written out for
424 * a successful fsync(). For example, ext2 indirect blocks need to be
425 * written back and waited upon before fsync() returns.
426 *
427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429 * management of a list of dependent buffers at ->i_mapping->private_list.
430 *
431 * Locking is a little subtle: try_to_free_buffers() will remove buffers
432 * from their controlling inode's queue when they are being freed. But
433 * try_to_free_buffers() will be operating against the *blockdev* mapping
434 * at the time, not against the S_ISREG file which depends on those buffers.
435 * So the locking for private_list is via the private_lock in the address_space
436 * which backs the buffers. Which is different from the address_space
437 * against which the buffers are listed. So for a particular address_space,
438 * mapping->private_lock does *not* protect mapping->private_list! In fact,
439 * mapping->private_list will always be protected by the backing blockdev's
440 * ->private_lock.
441 *
442 * Which introduces a requirement: all buffers on an address_space's
443 * ->private_list must be from the same address_space: the blockdev's.
444 *
445 * address_spaces which do not place buffers at ->private_list via these
446 * utility functions are free to use private_lock and private_list for
447 * whatever they want. The only requirement is that list_empty(private_list)
448 * be true at clear_inode() time.
449 *
450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
451 * filesystems should do that. invalidate_inode_buffers() should just go
452 * BUG_ON(!list_empty).
453 *
454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
455 * take an address_space, not an inode. And it should be called
456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457 * queued up.
458 *
459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460 * list if it is already on a list. Because if the buffer is on a list,
461 * it *must* already be on the right one. If not, the filesystem is being
462 * silly. This will save a ton of locking. But first we have to ensure
463 * that buffers are taken *off* the old inode's list when they are freed
464 * (presumably in truncate). That requires careful auditing of all
465 * filesystems (do it inside bforget()). It could also be done by bringing
466 * b_inode back.
467 */
468
469 /*
470 * The buffer's backing address_space's private_lock must be held
471 */
472 static void __remove_assoc_queue(struct buffer_head *bh)
473 {
474 list_del_init(&bh->b_assoc_buffers);
475 WARN_ON(!bh->b_assoc_map);
476 if (buffer_write_io_error(bh))
477 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478 bh->b_assoc_map = NULL;
479 }
480
481 int inode_has_buffers(struct inode *inode)
482 {
483 return !list_empty(&inode->i_data.private_list);
484 }
485
486 /*
487 * osync is designed to support O_SYNC io. It waits synchronously for
488 * all already-submitted IO to complete, but does not queue any new
489 * writes to the disk.
490 *
491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492 * you dirty the buffers, and then use osync_inode_buffers to wait for
493 * completion. Any other dirty buffers which are not yet queued for
494 * write will not be flushed to disk by the osync.
495 */
496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497 {
498 struct buffer_head *bh;
499 struct list_head *p;
500 int err = 0;
501
502 spin_lock(lock);
503 repeat:
504 list_for_each_prev(p, list) {
505 bh = BH_ENTRY(p);
506 if (buffer_locked(bh)) {
507 get_bh(bh);
508 spin_unlock(lock);
509 wait_on_buffer(bh);
510 if (!buffer_uptodate(bh))
511 err = -EIO;
512 brelse(bh);
513 spin_lock(lock);
514 goto repeat;
515 }
516 }
517 spin_unlock(lock);
518 return err;
519 }
520
521 static void do_thaw_one(struct super_block *sb, void *unused)
522 {
523 char b[BDEVNAME_SIZE];
524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525 printk(KERN_WARNING "Emergency Thaw on %s\n",
526 bdevname(sb->s_bdev, b));
527 }
528
529 static void do_thaw_all(struct work_struct *work)
530 {
531 iterate_supers(do_thaw_one, NULL);
532 kfree(work);
533 printk(KERN_WARNING "Emergency Thaw complete\n");
534 }
535
536 /**
537 * emergency_thaw_all -- forcibly thaw every frozen filesystem
538 *
539 * Used for emergency unfreeze of all filesystems via SysRq
540 */
541 void emergency_thaw_all(void)
542 {
543 struct work_struct *work;
544
545 work = kmalloc(sizeof(*work), GFP_ATOMIC);
546 if (work) {
547 INIT_WORK(work, do_thaw_all);
548 schedule_work(work);
549 }
550 }
551
552 /**
553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554 * @mapping: the mapping which wants those buffers written
555 *
556 * Starts I/O against the buffers at mapping->private_list, and waits upon
557 * that I/O.
558 *
559 * Basically, this is a convenience function for fsync().
560 * @mapping is a file or directory which needs those buffers to be written for
561 * a successful fsync().
562 */
563 int sync_mapping_buffers(struct address_space *mapping)
564 {
565 struct address_space *buffer_mapping = mapping->private_data;
566
567 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 return 0;
569
570 return fsync_buffers_list(&buffer_mapping->private_lock,
571 &mapping->private_list);
572 }
573 EXPORT_SYMBOL(sync_mapping_buffers);
574
575 /*
576 * Called when we've recently written block `bblock', and it is known that
577 * `bblock' was for a buffer_boundary() buffer. This means that the block at
578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
579 * dirty, schedule it for IO. So that indirects merge nicely with their data.
580 */
581 void write_boundary_block(struct block_device *bdev,
582 sector_t bblock, unsigned blocksize)
583 {
584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585 if (bh) {
586 if (buffer_dirty(bh))
587 ll_rw_block(WRITE, 1, &bh);
588 put_bh(bh);
589 }
590 }
591
592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593 {
594 struct address_space *mapping = inode->i_mapping;
595 struct address_space *buffer_mapping = bh->b_page->mapping;
596
597 mark_buffer_dirty(bh);
598 if (!mapping->private_data) {
599 mapping->private_data = buffer_mapping;
600 } else {
601 BUG_ON(mapping->private_data != buffer_mapping);
602 }
603 if (!bh->b_assoc_map) {
604 spin_lock(&buffer_mapping->private_lock);
605 list_move_tail(&bh->b_assoc_buffers,
606 &mapping->private_list);
607 bh->b_assoc_map = mapping;
608 spin_unlock(&buffer_mapping->private_lock);
609 }
610 }
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612
613 /*
614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615 * dirty.
616 *
617 * If warn is true, then emit a warning if the page is not uptodate and has
618 * not been truncated.
619 */
620 static void __set_page_dirty(struct page *page,
621 struct address_space *mapping, int warn)
622 {
623 spin_lock_irq(&mapping->tree_lock);
624 if (page->mapping) { /* Race with truncate? */
625 WARN_ON_ONCE(warn && !PageUptodate(page));
626 account_page_dirtied(page, mapping);
627 radix_tree_tag_set(&mapping->page_tree,
628 page_index(page), PAGECACHE_TAG_DIRTY);
629 }
630 spin_unlock_irq(&mapping->tree_lock);
631 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
632 }
633
634 /*
635 * Add a page to the dirty page list.
636 *
637 * It is a sad fact of life that this function is called from several places
638 * deeply under spinlocking. It may not sleep.
639 *
640 * If the page has buffers, the uptodate buffers are set dirty, to preserve
641 * dirty-state coherency between the page and the buffers. It the page does
642 * not have buffers then when they are later attached they will all be set
643 * dirty.
644 *
645 * The buffers are dirtied before the page is dirtied. There's a small race
646 * window in which a writepage caller may see the page cleanness but not the
647 * buffer dirtiness. That's fine. If this code were to set the page dirty
648 * before the buffers, a concurrent writepage caller could clear the page dirty
649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650 * page on the dirty page list.
651 *
652 * We use private_lock to lock against try_to_free_buffers while using the
653 * page's buffer list. Also use this to protect against clean buffers being
654 * added to the page after it was set dirty.
655 *
656 * FIXME: may need to call ->reservepage here as well. That's rather up to the
657 * address_space though.
658 */
659 int __set_page_dirty_buffers(struct page *page)
660 {
661 int newly_dirty;
662 struct address_space *mapping = page_mapping(page);
663
664 if (unlikely(!mapping))
665 return !TestSetPageDirty(page);
666
667 spin_lock(&mapping->private_lock);
668 if (page_has_buffers(page)) {
669 struct buffer_head *head = page_buffers(page);
670 struct buffer_head *bh = head;
671
672 do {
673 set_buffer_dirty(bh);
674 bh = bh->b_this_page;
675 } while (bh != head);
676 }
677 newly_dirty = !TestSetPageDirty(page);
678 spin_unlock(&mapping->private_lock);
679
680 if (newly_dirty)
681 __set_page_dirty(page, mapping, 1);
682 return newly_dirty;
683 }
684 EXPORT_SYMBOL(__set_page_dirty_buffers);
685
686 /*
687 * Write out and wait upon a list of buffers.
688 *
689 * We have conflicting pressures: we want to make sure that all
690 * initially dirty buffers get waited on, but that any subsequently
691 * dirtied buffers don't. After all, we don't want fsync to last
692 * forever if somebody is actively writing to the file.
693 *
694 * Do this in two main stages: first we copy dirty buffers to a
695 * temporary inode list, queueing the writes as we go. Then we clean
696 * up, waiting for those writes to complete.
697 *
698 * During this second stage, any subsequent updates to the file may end
699 * up refiling the buffer on the original inode's dirty list again, so
700 * there is a chance we will end up with a buffer queued for write but
701 * not yet completed on that list. So, as a final cleanup we go through
702 * the osync code to catch these locked, dirty buffers without requeuing
703 * any newly dirty buffers for write.
704 */
705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
706 {
707 struct buffer_head *bh;
708 struct list_head tmp;
709 struct address_space *mapping;
710 int err = 0, err2;
711 struct blk_plug plug;
712
713 INIT_LIST_HEAD(&tmp);
714 blk_start_plug(&plug);
715
716 spin_lock(lock);
717 while (!list_empty(list)) {
718 bh = BH_ENTRY(list->next);
719 mapping = bh->b_assoc_map;
720 __remove_assoc_queue(bh);
721 /* Avoid race with mark_buffer_dirty_inode() which does
722 * a lockless check and we rely on seeing the dirty bit */
723 smp_mb();
724 if (buffer_dirty(bh) || buffer_locked(bh)) {
725 list_add(&bh->b_assoc_buffers, &tmp);
726 bh->b_assoc_map = mapping;
727 if (buffer_dirty(bh)) {
728 get_bh(bh);
729 spin_unlock(lock);
730 /*
731 * Ensure any pending I/O completes so that
732 * write_dirty_buffer() actually writes the
733 * current contents - it is a noop if I/O is
734 * still in flight on potentially older
735 * contents.
736 */
737 write_dirty_buffer(bh, WRITE_SYNC);
738
739 /*
740 * Kick off IO for the previous mapping. Note
741 * that we will not run the very last mapping,
742 * wait_on_buffer() will do that for us
743 * through sync_buffer().
744 */
745 brelse(bh);
746 spin_lock(lock);
747 }
748 }
749 }
750
751 spin_unlock(lock);
752 blk_finish_plug(&plug);
753 spin_lock(lock);
754
755 while (!list_empty(&tmp)) {
756 bh = BH_ENTRY(tmp.prev);
757 get_bh(bh);
758 mapping = bh->b_assoc_map;
759 __remove_assoc_queue(bh);
760 /* Avoid race with mark_buffer_dirty_inode() which does
761 * a lockless check and we rely on seeing the dirty bit */
762 smp_mb();
763 if (buffer_dirty(bh)) {
764 list_add(&bh->b_assoc_buffers,
765 &mapping->private_list);
766 bh->b_assoc_map = mapping;
767 }
768 spin_unlock(lock);
769 wait_on_buffer(bh);
770 if (!buffer_uptodate(bh))
771 err = -EIO;
772 brelse(bh);
773 spin_lock(lock);
774 }
775
776 spin_unlock(lock);
777 err2 = osync_buffers_list(lock, list);
778 if (err)
779 return err;
780 else
781 return err2;
782 }
783
784 /*
785 * Invalidate any and all dirty buffers on a given inode. We are
786 * probably unmounting the fs, but that doesn't mean we have already
787 * done a sync(). Just drop the buffers from the inode list.
788 *
789 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
790 * assumes that all the buffers are against the blockdev. Not true
791 * for reiserfs.
792 */
793 void invalidate_inode_buffers(struct inode *inode)
794 {
795 if (inode_has_buffers(inode)) {
796 struct address_space *mapping = &inode->i_data;
797 struct list_head *list = &mapping->private_list;
798 struct address_space *buffer_mapping = mapping->private_data;
799
800 spin_lock(&buffer_mapping->private_lock);
801 while (!list_empty(list))
802 __remove_assoc_queue(BH_ENTRY(list->next));
803 spin_unlock(&buffer_mapping->private_lock);
804 }
805 }
806 EXPORT_SYMBOL(invalidate_inode_buffers);
807
808 /*
809 * Remove any clean buffers from the inode's buffer list. This is called
810 * when we're trying to free the inode itself. Those buffers can pin it.
811 *
812 * Returns true if all buffers were removed.
813 */
814 int remove_inode_buffers(struct inode *inode)
815 {
816 int ret = 1;
817
818 if (inode_has_buffers(inode)) {
819 struct address_space *mapping = &inode->i_data;
820 struct list_head *list = &mapping->private_list;
821 struct address_space *buffer_mapping = mapping->private_data;
822
823 spin_lock(&buffer_mapping->private_lock);
824 while (!list_empty(list)) {
825 struct buffer_head *bh = BH_ENTRY(list->next);
826 if (buffer_dirty(bh)) {
827 ret = 0;
828 break;
829 }
830 __remove_assoc_queue(bh);
831 }
832 spin_unlock(&buffer_mapping->private_lock);
833 }
834 return ret;
835 }
836
837 /*
838 * Create the appropriate buffers when given a page for data area and
839 * the size of each buffer.. Use the bh->b_this_page linked list to
840 * follow the buffers created. Return NULL if unable to create more
841 * buffers.
842 *
843 * The retry flag is used to differentiate async IO (paging, swapping)
844 * which may not fail from ordinary buffer allocations.
845 */
846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
847 int retry)
848 {
849 struct buffer_head *bh, *head;
850 long offset;
851
852 try_again:
853 head = NULL;
854 offset = PAGE_SIZE;
855 while ((offset -= size) >= 0) {
856 bh = alloc_buffer_head(GFP_NOFS);
857 if (!bh)
858 goto no_grow;
859
860 bh->b_this_page = head;
861 bh->b_blocknr = -1;
862 head = bh;
863
864 bh->b_size = size;
865
866 /* Link the buffer to its page */
867 set_bh_page(bh, page, offset);
868
869 init_buffer(bh, NULL, NULL);
870 }
871 return head;
872 /*
873 * In case anything failed, we just free everything we got.
874 */
875 no_grow:
876 if (head) {
877 do {
878 bh = head;
879 head = head->b_this_page;
880 free_buffer_head(bh);
881 } while (head);
882 }
883
884 /*
885 * Return failure for non-async IO requests. Async IO requests
886 * are not allowed to fail, so we have to wait until buffer heads
887 * become available. But we don't want tasks sleeping with
888 * partially complete buffers, so all were released above.
889 */
890 if (!retry)
891 return NULL;
892
893 /* We're _really_ low on memory. Now we just
894 * wait for old buffer heads to become free due to
895 * finishing IO. Since this is an async request and
896 * the reserve list is empty, we're sure there are
897 * async buffer heads in use.
898 */
899 free_more_memory();
900 goto try_again;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907 struct buffer_head *bh, *tail;
908
909 bh = head;
910 do {
911 tail = bh;
912 bh = bh->b_this_page;
913 } while (bh);
914 tail->b_this_page = head;
915 attach_page_buffers(page, head);
916 }
917
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920 sector_t retval = ~((sector_t)0);
921 loff_t sz = i_size_read(bdev->bd_inode);
922
923 if (sz) {
924 unsigned int sizebits = blksize_bits(size);
925 retval = (sz >> sizebits);
926 }
927 return retval;
928 }
929
930 /*
931 * Initialise the state of a blockdev page's buffers.
932 */
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935 sector_t block, int size)
936 {
937 struct buffer_head *head = page_buffers(page);
938 struct buffer_head *bh = head;
939 int uptodate = PageUptodate(page);
940 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
941
942 do {
943 if (!buffer_mapped(bh)) {
944 init_buffer(bh, NULL, NULL);
945 bh->b_bdev = bdev;
946 bh->b_blocknr = block;
947 if (uptodate)
948 set_buffer_uptodate(bh);
949 if (block < end_block)
950 set_buffer_mapped(bh);
951 }
952 block++;
953 bh = bh->b_this_page;
954 } while (bh != head);
955
956 /*
957 * Caller needs to validate requested block against end of device.
958 */
959 return end_block;
960 }
961
962 /*
963 * Create the page-cache page that contains the requested block.
964 *
965 * This is used purely for blockdev mappings.
966 */
967 static int
968 grow_dev_page(struct block_device *bdev, sector_t block,
969 pgoff_t index, int size, int sizebits)
970 {
971 struct inode *inode = bdev->bd_inode;
972 struct page *page;
973 struct buffer_head *bh;
974 sector_t end_block;
975 int ret = 0; /* Will call free_more_memory() */
976
977 page = find_or_create_page(inode->i_mapping, index,
978 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
979 if (!page)
980 return ret;
981
982 BUG_ON(!PageLocked(page));
983
984 if (page_has_buffers(page)) {
985 bh = page_buffers(page);
986 if (bh->b_size == size) {
987 end_block = init_page_buffers(page, bdev,
988 index << sizebits, size);
989 goto done;
990 }
991 if (!try_to_free_buffers(page))
992 goto failed;
993 }
994
995 /*
996 * Allocate some buffers for this page
997 */
998 bh = alloc_page_buffers(page, size, 0);
999 if (!bh)
1000 goto failed;
1001
1002 /*
1003 * Link the page to the buffers and initialise them. Take the
1004 * lock to be atomic wrt __find_get_block(), which does not
1005 * run under the page lock.
1006 */
1007 spin_lock(&inode->i_mapping->private_lock);
1008 link_dev_buffers(page, bh);
1009 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1010 spin_unlock(&inode->i_mapping->private_lock);
1011 done:
1012 ret = (block < end_block) ? 1 : -ENXIO;
1013 failed:
1014 unlock_page(page);
1015 page_cache_release(page);
1016 return ret;
1017 }
1018
1019 /*
1020 * Create buffers for the specified block device block's page. If
1021 * that page was dirty, the buffers are set dirty also.
1022 */
1023 static int
1024 grow_buffers(struct block_device *bdev, sector_t block, int size)
1025 {
1026 pgoff_t index;
1027 int sizebits;
1028
1029 sizebits = -1;
1030 do {
1031 sizebits++;
1032 } while ((size << sizebits) < PAGE_SIZE);
1033
1034 index = block >> sizebits;
1035
1036 /*
1037 * Check for a block which wants to lie outside our maximum possible
1038 * pagecache index. (this comparison is done using sector_t types).
1039 */
1040 if (unlikely(index != block >> sizebits)) {
1041 char b[BDEVNAME_SIZE];
1042
1043 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1044 "device %s\n",
1045 __func__, (unsigned long long)block,
1046 bdevname(bdev, b));
1047 return -EIO;
1048 }
1049
1050 /* Create a page with the proper size buffers.. */
1051 return grow_dev_page(bdev, block, index, size, sizebits);
1052 }
1053
1054 static struct buffer_head *
1055 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1056 {
1057 /* Size must be multiple of hard sectorsize */
1058 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1059 (size < 512 || size > PAGE_SIZE))) {
1060 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1061 size);
1062 printk(KERN_ERR "logical block size: %d\n",
1063 bdev_logical_block_size(bdev));
1064
1065 dump_stack();
1066 return NULL;
1067 }
1068
1069 for (;;) {
1070 struct buffer_head *bh;
1071 int ret;
1072
1073 bh = __find_get_block(bdev, block, size);
1074 if (bh)
1075 return bh;
1076
1077 ret = grow_buffers(bdev, block, size);
1078 if (ret < 0)
1079 return NULL;
1080 if (ret == 0)
1081 free_more_memory();
1082 }
1083 }
1084
1085 /*
1086 * The relationship between dirty buffers and dirty pages:
1087 *
1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089 * the page is tagged dirty in its radix tree.
1090 *
1091 * At all times, the dirtiness of the buffers represents the dirtiness of
1092 * subsections of the page. If the page has buffers, the page dirty bit is
1093 * merely a hint about the true dirty state.
1094 *
1095 * When a page is set dirty in its entirety, all its buffers are marked dirty
1096 * (if the page has buffers).
1097 *
1098 * When a buffer is marked dirty, its page is dirtied, but the page's other
1099 * buffers are not.
1100 *
1101 * Also. When blockdev buffers are explicitly read with bread(), they
1102 * individually become uptodate. But their backing page remains not
1103 * uptodate - even if all of its buffers are uptodate. A subsequent
1104 * block_read_full_page() against that page will discover all the uptodate
1105 * buffers, will set the page uptodate and will perform no I/O.
1106 */
1107
1108 /**
1109 * mark_buffer_dirty - mark a buffer_head as needing writeout
1110 * @bh: the buffer_head to mark dirty
1111 *
1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1113 * backing page dirty, then tag the page as dirty in its address_space's radix
1114 * tree and then attach the address_space's inode to its superblock's dirty
1115 * inode list.
1116 *
1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1118 * mapping->tree_lock and mapping->host->i_lock.
1119 */
1120 void mark_buffer_dirty(struct buffer_head *bh)
1121 {
1122 WARN_ON_ONCE(!buffer_uptodate(bh));
1123
1124 trace_block_dirty_buffer(bh);
1125
1126 /*
1127 * Very *carefully* optimize the it-is-already-dirty case.
1128 *
1129 * Don't let the final "is it dirty" escape to before we
1130 * perhaps modified the buffer.
1131 */
1132 if (buffer_dirty(bh)) {
1133 smp_mb();
1134 if (buffer_dirty(bh))
1135 return;
1136 }
1137
1138 if (!test_set_buffer_dirty(bh)) {
1139 struct page *page = bh->b_page;
1140 if (!TestSetPageDirty(page)) {
1141 struct address_space *mapping = page_mapping(page);
1142 if (mapping)
1143 __set_page_dirty(page, mapping, 0);
1144 }
1145 }
1146 }
1147 EXPORT_SYMBOL(mark_buffer_dirty);
1148
1149 /*
1150 * Decrement a buffer_head's reference count. If all buffers against a page
1151 * have zero reference count, are clean and unlocked, and if the page is clean
1152 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1153 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1154 * a page but it ends up not being freed, and buffers may later be reattached).
1155 */
1156 void __brelse(struct buffer_head * buf)
1157 {
1158 if (atomic_read(&buf->b_count)) {
1159 put_bh(buf);
1160 return;
1161 }
1162 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1163 }
1164 EXPORT_SYMBOL(__brelse);
1165
1166 /*
1167 * bforget() is like brelse(), except it discards any
1168 * potentially dirty data.
1169 */
1170 void __bforget(struct buffer_head *bh)
1171 {
1172 clear_buffer_dirty(bh);
1173 if (bh->b_assoc_map) {
1174 struct address_space *buffer_mapping = bh->b_page->mapping;
1175
1176 spin_lock(&buffer_mapping->private_lock);
1177 list_del_init(&bh->b_assoc_buffers);
1178 bh->b_assoc_map = NULL;
1179 spin_unlock(&buffer_mapping->private_lock);
1180 }
1181 __brelse(bh);
1182 }
1183 EXPORT_SYMBOL(__bforget);
1184
1185 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1186 {
1187 lock_buffer(bh);
1188 if (buffer_uptodate(bh)) {
1189 unlock_buffer(bh);
1190 return bh;
1191 } else {
1192 get_bh(bh);
1193 bh->b_end_io = end_buffer_read_sync;
1194 submit_bh(READ, bh);
1195 wait_on_buffer(bh);
1196 if (buffer_uptodate(bh))
1197 return bh;
1198 }
1199 brelse(bh);
1200 return NULL;
1201 }
1202
1203 /*
1204 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1205 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1206 * refcount elevated by one when they're in an LRU. A buffer can only appear
1207 * once in a particular CPU's LRU. A single buffer can be present in multiple
1208 * CPU's LRUs at the same time.
1209 *
1210 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1211 * sb_find_get_block().
1212 *
1213 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1214 * a local interrupt disable for that.
1215 */
1216
1217 #define BH_LRU_SIZE 8
1218
1219 struct bh_lru {
1220 struct buffer_head *bhs[BH_LRU_SIZE];
1221 };
1222
1223 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1224
1225 #ifdef CONFIG_SMP
1226 #define bh_lru_lock() local_irq_disable()
1227 #define bh_lru_unlock() local_irq_enable()
1228 #else
1229 #define bh_lru_lock() preempt_disable()
1230 #define bh_lru_unlock() preempt_enable()
1231 #endif
1232
1233 static inline void check_irqs_on(void)
1234 {
1235 #ifdef irqs_disabled
1236 BUG_ON(irqs_disabled());
1237 #endif
1238 }
1239
1240 /*
1241 * The LRU management algorithm is dopey-but-simple. Sorry.
1242 */
1243 static void bh_lru_install(struct buffer_head *bh)
1244 {
1245 struct buffer_head *evictee = NULL;
1246
1247 check_irqs_on();
1248 bh_lru_lock();
1249 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1250 struct buffer_head *bhs[BH_LRU_SIZE];
1251 int in;
1252 int out = 0;
1253
1254 get_bh(bh);
1255 bhs[out++] = bh;
1256 for (in = 0; in < BH_LRU_SIZE; in++) {
1257 struct buffer_head *bh2 =
1258 __this_cpu_read(bh_lrus.bhs[in]);
1259
1260 if (bh2 == bh) {
1261 __brelse(bh2);
1262 } else {
1263 if (out >= BH_LRU_SIZE) {
1264 BUG_ON(evictee != NULL);
1265 evictee = bh2;
1266 } else {
1267 bhs[out++] = bh2;
1268 }
1269 }
1270 }
1271 while (out < BH_LRU_SIZE)
1272 bhs[out++] = NULL;
1273 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1274 }
1275 bh_lru_unlock();
1276
1277 if (evictee)
1278 __brelse(evictee);
1279 }
1280
1281 /*
1282 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1283 */
1284 static struct buffer_head *
1285 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1286 {
1287 struct buffer_head *ret = NULL;
1288 unsigned int i;
1289
1290 check_irqs_on();
1291 bh_lru_lock();
1292 for (i = 0; i < BH_LRU_SIZE; i++) {
1293 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1294
1295 if (bh && bh->b_bdev == bdev &&
1296 bh->b_blocknr == block && bh->b_size == size) {
1297 if (i) {
1298 while (i) {
1299 __this_cpu_write(bh_lrus.bhs[i],
1300 __this_cpu_read(bh_lrus.bhs[i - 1]));
1301 i--;
1302 }
1303 __this_cpu_write(bh_lrus.bhs[0], bh);
1304 }
1305 get_bh(bh);
1306 ret = bh;
1307 break;
1308 }
1309 }
1310 bh_lru_unlock();
1311 return ret;
1312 }
1313
1314 /*
1315 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1316 * it in the LRU and mark it as accessed. If it is not present then return
1317 * NULL
1318 */
1319 struct buffer_head *
1320 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1321 {
1322 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1323
1324 if (bh == NULL) {
1325 bh = __find_get_block_slow(bdev, block);
1326 if (bh)
1327 bh_lru_install(bh);
1328 }
1329 if (bh)
1330 touch_buffer(bh);
1331 return bh;
1332 }
1333 EXPORT_SYMBOL(__find_get_block);
1334
1335 /*
1336 * __getblk will locate (and, if necessary, create) the buffer_head
1337 * which corresponds to the passed block_device, block and size. The
1338 * returned buffer has its reference count incremented.
1339 *
1340 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1341 * attempt is failing. FIXME, perhaps?
1342 */
1343 struct buffer_head *
1344 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 struct buffer_head *bh = __find_get_block(bdev, block, size);
1347
1348 might_sleep();
1349 if (bh == NULL)
1350 bh = __getblk_slow(bdev, block, size);
1351 return bh;
1352 }
1353 EXPORT_SYMBOL(__getblk);
1354
1355 /*
1356 * Do async read-ahead on a buffer..
1357 */
1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1359 {
1360 struct buffer_head *bh = __getblk(bdev, block, size);
1361 if (likely(bh)) {
1362 ll_rw_block(READA, 1, &bh);
1363 brelse(bh);
1364 }
1365 }
1366 EXPORT_SYMBOL(__breadahead);
1367
1368 /**
1369 * __bread() - reads a specified block and returns the bh
1370 * @bdev: the block_device to read from
1371 * @block: number of block
1372 * @size: size (in bytes) to read
1373 *
1374 * Reads a specified block, and returns buffer head that contains it.
1375 * It returns NULL if the block was unreadable.
1376 */
1377 struct buffer_head *
1378 __bread(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380 struct buffer_head *bh = __getblk(bdev, block, size);
1381
1382 if (likely(bh) && !buffer_uptodate(bh))
1383 bh = __bread_slow(bh);
1384 return bh;
1385 }
1386 EXPORT_SYMBOL(__bread);
1387
1388 /*
1389 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1390 * This doesn't race because it runs in each cpu either in irq
1391 * or with preempt disabled.
1392 */
1393 static void invalidate_bh_lru(void *arg)
1394 {
1395 struct bh_lru *b = &get_cpu_var(bh_lrus);
1396 int i;
1397
1398 for (i = 0; i < BH_LRU_SIZE; i++) {
1399 brelse(b->bhs[i]);
1400 b->bhs[i] = NULL;
1401 }
1402 put_cpu_var(bh_lrus);
1403 }
1404
1405 static bool has_bh_in_lru(int cpu, void *dummy)
1406 {
1407 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1408 int i;
1409
1410 for (i = 0; i < BH_LRU_SIZE; i++) {
1411 if (b->bhs[i])
1412 return 1;
1413 }
1414
1415 return 0;
1416 }
1417
1418 void invalidate_bh_lrus(void)
1419 {
1420 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1421 }
1422 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1423
1424 void set_bh_page(struct buffer_head *bh,
1425 struct page *page, unsigned long offset)
1426 {
1427 bh->b_page = page;
1428 BUG_ON(offset >= PAGE_SIZE);
1429 if (PageHighMem(page))
1430 /*
1431 * This catches illegal uses and preserves the offset:
1432 */
1433 bh->b_data = (char *)(0 + offset);
1434 else
1435 bh->b_data = page_address(page) + offset;
1436 }
1437 EXPORT_SYMBOL(set_bh_page);
1438
1439 /*
1440 * Called when truncating a buffer on a page completely.
1441 */
1442 static void discard_buffer(struct buffer_head * bh)
1443 {
1444 lock_buffer(bh);
1445 clear_buffer_dirty(bh);
1446 bh->b_bdev = NULL;
1447 clear_buffer_mapped(bh);
1448 clear_buffer_req(bh);
1449 clear_buffer_new(bh);
1450 clear_buffer_delay(bh);
1451 clear_buffer_unwritten(bh);
1452 unlock_buffer(bh);
1453 }
1454
1455 /**
1456 * block_invalidatepage - invalidate part or all of a buffer-backed page
1457 *
1458 * @page: the page which is affected
1459 * @offset: the index of the truncation point
1460 *
1461 * block_invalidatepage() is called when all or part of the page has become
1462 * invalidated by a truncate operation.
1463 *
1464 * block_invalidatepage() does not have to release all buffers, but it must
1465 * ensure that no dirty buffer is left outside @offset and that no I/O
1466 * is underway against any of the blocks which are outside the truncation
1467 * point. Because the caller is about to free (and possibly reuse) those
1468 * blocks on-disk.
1469 */
1470 void block_invalidatepage(struct page *page, unsigned long offset)
1471 {
1472 struct buffer_head *head, *bh, *next;
1473 unsigned int curr_off = 0;
1474
1475 BUG_ON(!PageLocked(page));
1476 if (!page_has_buffers(page))
1477 goto out;
1478
1479 head = page_buffers(page);
1480 bh = head;
1481 do {
1482 unsigned int next_off = curr_off + bh->b_size;
1483 next = bh->b_this_page;
1484
1485 /*
1486 * is this block fully invalidated?
1487 */
1488 if (offset <= curr_off)
1489 discard_buffer(bh);
1490 curr_off = next_off;
1491 bh = next;
1492 } while (bh != head);
1493
1494 /*
1495 * We release buffers only if the entire page is being invalidated.
1496 * The get_block cached value has been unconditionally invalidated,
1497 * so real IO is not possible anymore.
1498 */
1499 if (offset == 0)
1500 try_to_release_page(page, 0);
1501 out:
1502 return;
1503 }
1504 EXPORT_SYMBOL(block_invalidatepage);
1505
1506 /*
1507 * We attach and possibly dirty the buffers atomically wrt
1508 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1509 * is already excluded via the page lock.
1510 */
1511 void create_empty_buffers(struct page *page,
1512 unsigned long blocksize, unsigned long b_state)
1513 {
1514 struct buffer_head *bh, *head, *tail;
1515
1516 head = alloc_page_buffers(page, blocksize, 1);
1517 bh = head;
1518 do {
1519 bh->b_state |= b_state;
1520 tail = bh;
1521 bh = bh->b_this_page;
1522 } while (bh);
1523 tail->b_this_page = head;
1524
1525 spin_lock(&page->mapping->private_lock);
1526 if (PageUptodate(page) || PageDirty(page)) {
1527 bh = head;
1528 do {
1529 if (PageDirty(page))
1530 set_buffer_dirty(bh);
1531 if (PageUptodate(page))
1532 set_buffer_uptodate(bh);
1533 bh = bh->b_this_page;
1534 } while (bh != head);
1535 }
1536 attach_page_buffers(page, head);
1537 spin_unlock(&page->mapping->private_lock);
1538 }
1539 EXPORT_SYMBOL(create_empty_buffers);
1540
1541 /*
1542 * We are taking a block for data and we don't want any output from any
1543 * buffer-cache aliases starting from return from that function and
1544 * until the moment when something will explicitly mark the buffer
1545 * dirty (hopefully that will not happen until we will free that block ;-)
1546 * We don't even need to mark it not-uptodate - nobody can expect
1547 * anything from a newly allocated buffer anyway. We used to used
1548 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1549 * don't want to mark the alias unmapped, for example - it would confuse
1550 * anyone who might pick it with bread() afterwards...
1551 *
1552 * Also.. Note that bforget() doesn't lock the buffer. So there can
1553 * be writeout I/O going on against recently-freed buffers. We don't
1554 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1555 * only if we really need to. That happens here.
1556 */
1557 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1558 {
1559 struct buffer_head *old_bh;
1560
1561 might_sleep();
1562
1563 old_bh = __find_get_block_slow(bdev, block);
1564 if (old_bh) {
1565 clear_buffer_dirty(old_bh);
1566 wait_on_buffer(old_bh);
1567 clear_buffer_req(old_bh);
1568 __brelse(old_bh);
1569 }
1570 }
1571 EXPORT_SYMBOL(unmap_underlying_metadata);
1572
1573 /*
1574 * Size is a power-of-two in the range 512..PAGE_SIZE,
1575 * and the case we care about most is PAGE_SIZE.
1576 *
1577 * So this *could* possibly be written with those
1578 * constraints in mind (relevant mostly if some
1579 * architecture has a slow bit-scan instruction)
1580 */
1581 static inline int block_size_bits(unsigned int blocksize)
1582 {
1583 return ilog2(blocksize);
1584 }
1585
1586 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1587 {
1588 BUG_ON(!PageLocked(page));
1589
1590 if (!page_has_buffers(page))
1591 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1592 return page_buffers(page);
1593 }
1594
1595 /*
1596 * NOTE! All mapped/uptodate combinations are valid:
1597 *
1598 * Mapped Uptodate Meaning
1599 *
1600 * No No "unknown" - must do get_block()
1601 * No Yes "hole" - zero-filled
1602 * Yes No "allocated" - allocated on disk, not read in
1603 * Yes Yes "valid" - allocated and up-to-date in memory.
1604 *
1605 * "Dirty" is valid only with the last case (mapped+uptodate).
1606 */
1607
1608 /*
1609 * While block_write_full_page is writing back the dirty buffers under
1610 * the page lock, whoever dirtied the buffers may decide to clean them
1611 * again at any time. We handle that by only looking at the buffer
1612 * state inside lock_buffer().
1613 *
1614 * If block_write_full_page() is called for regular writeback
1615 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1616 * locked buffer. This only can happen if someone has written the buffer
1617 * directly, with submit_bh(). At the address_space level PageWriteback
1618 * prevents this contention from occurring.
1619 *
1620 * If block_write_full_page() is called with wbc->sync_mode ==
1621 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1622 * causes the writes to be flagged as synchronous writes.
1623 */
1624 static int __block_write_full_page(struct inode *inode, struct page *page,
1625 get_block_t *get_block, struct writeback_control *wbc,
1626 bh_end_io_t *handler)
1627 {
1628 int err;
1629 sector_t block;
1630 sector_t last_block;
1631 struct buffer_head *bh, *head;
1632 unsigned int blocksize, bbits;
1633 int nr_underway = 0;
1634 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1635 WRITE_SYNC : WRITE);
1636
1637 head = create_page_buffers(page, inode,
1638 (1 << BH_Dirty)|(1 << BH_Uptodate));
1639
1640 /*
1641 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1642 * here, and the (potentially unmapped) buffers may become dirty at
1643 * any time. If a buffer becomes dirty here after we've inspected it
1644 * then we just miss that fact, and the page stays dirty.
1645 *
1646 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1647 * handle that here by just cleaning them.
1648 */
1649
1650 bh = head;
1651 blocksize = bh->b_size;
1652 bbits = block_size_bits(blocksize);
1653
1654 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1655 last_block = (i_size_read(inode) - 1) >> bbits;
1656
1657 /*
1658 * Get all the dirty buffers mapped to disk addresses and
1659 * handle any aliases from the underlying blockdev's mapping.
1660 */
1661 do {
1662 if (block > last_block) {
1663 /*
1664 * mapped buffers outside i_size will occur, because
1665 * this page can be outside i_size when there is a
1666 * truncate in progress.
1667 */
1668 /*
1669 * The buffer was zeroed by block_write_full_page()
1670 */
1671 clear_buffer_dirty(bh);
1672 set_buffer_uptodate(bh);
1673 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1674 buffer_dirty(bh)) {
1675 WARN_ON(bh->b_size != blocksize);
1676 err = get_block(inode, block, bh, 1);
1677 if (err)
1678 goto recover;
1679 clear_buffer_delay(bh);
1680 if (buffer_new(bh)) {
1681 /* blockdev mappings never come here */
1682 clear_buffer_new(bh);
1683 unmap_underlying_metadata(bh->b_bdev,
1684 bh->b_blocknr);
1685 }
1686 }
1687 bh = bh->b_this_page;
1688 block++;
1689 } while (bh != head);
1690
1691 do {
1692 if (!buffer_mapped(bh))
1693 continue;
1694 /*
1695 * If it's a fully non-blocking write attempt and we cannot
1696 * lock the buffer then redirty the page. Note that this can
1697 * potentially cause a busy-wait loop from writeback threads
1698 * and kswapd activity, but those code paths have their own
1699 * higher-level throttling.
1700 */
1701 if (wbc->sync_mode != WB_SYNC_NONE) {
1702 lock_buffer(bh);
1703 } else if (!trylock_buffer(bh)) {
1704 redirty_page_for_writepage(wbc, page);
1705 continue;
1706 }
1707 if (test_clear_buffer_dirty(bh)) {
1708 mark_buffer_async_write_endio(bh, handler);
1709 } else {
1710 unlock_buffer(bh);
1711 }
1712 } while ((bh = bh->b_this_page) != head);
1713
1714 /*
1715 * The page and its buffers are protected by PageWriteback(), so we can
1716 * drop the bh refcounts early.
1717 */
1718 BUG_ON(PageWriteback(page));
1719 set_page_writeback(page);
1720
1721 do {
1722 struct buffer_head *next = bh->b_this_page;
1723 if (buffer_async_write(bh)) {
1724 submit_bh(write_op, bh);
1725 nr_underway++;
1726 }
1727 bh = next;
1728 } while (bh != head);
1729 unlock_page(page);
1730
1731 err = 0;
1732 done:
1733 if (nr_underway == 0) {
1734 /*
1735 * The page was marked dirty, but the buffers were
1736 * clean. Someone wrote them back by hand with
1737 * ll_rw_block/submit_bh. A rare case.
1738 */
1739 end_page_writeback(page);
1740
1741 /*
1742 * The page and buffer_heads can be released at any time from
1743 * here on.
1744 */
1745 }
1746 return err;
1747
1748 recover:
1749 /*
1750 * ENOSPC, or some other error. We may already have added some
1751 * blocks to the file, so we need to write these out to avoid
1752 * exposing stale data.
1753 * The page is currently locked and not marked for writeback
1754 */
1755 bh = head;
1756 /* Recovery: lock and submit the mapped buffers */
1757 do {
1758 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1759 !buffer_delay(bh)) {
1760 lock_buffer(bh);
1761 mark_buffer_async_write_endio(bh, handler);
1762 } else {
1763 /*
1764 * The buffer may have been set dirty during
1765 * attachment to a dirty page.
1766 */
1767 clear_buffer_dirty(bh);
1768 }
1769 } while ((bh = bh->b_this_page) != head);
1770 SetPageError(page);
1771 BUG_ON(PageWriteback(page));
1772 mapping_set_error(page->mapping, err);
1773 set_page_writeback(page);
1774 do {
1775 struct buffer_head *next = bh->b_this_page;
1776 if (buffer_async_write(bh)) {
1777 clear_buffer_dirty(bh);
1778 submit_bh(write_op, bh);
1779 nr_underway++;
1780 }
1781 bh = next;
1782 } while (bh != head);
1783 unlock_page(page);
1784 goto done;
1785 }
1786
1787 /*
1788 * If a page has any new buffers, zero them out here, and mark them uptodate
1789 * and dirty so they'll be written out (in order to prevent uninitialised
1790 * block data from leaking). And clear the new bit.
1791 */
1792 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1793 {
1794 unsigned int block_start, block_end;
1795 struct buffer_head *head, *bh;
1796
1797 BUG_ON(!PageLocked(page));
1798 if (!page_has_buffers(page))
1799 return;
1800
1801 bh = head = page_buffers(page);
1802 block_start = 0;
1803 do {
1804 block_end = block_start + bh->b_size;
1805
1806 if (buffer_new(bh)) {
1807 if (block_end > from && block_start < to) {
1808 if (!PageUptodate(page)) {
1809 unsigned start, size;
1810
1811 start = max(from, block_start);
1812 size = min(to, block_end) - start;
1813
1814 zero_user(page, start, size);
1815 set_buffer_uptodate(bh);
1816 }
1817
1818 clear_buffer_new(bh);
1819 mark_buffer_dirty(bh);
1820 }
1821 }
1822
1823 block_start = block_end;
1824 bh = bh->b_this_page;
1825 } while (bh != head);
1826 }
1827 EXPORT_SYMBOL(page_zero_new_buffers);
1828
1829 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1830 get_block_t *get_block)
1831 {
1832 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1833 unsigned to = from + len;
1834 struct inode *inode = page->mapping->host;
1835 unsigned block_start, block_end;
1836 sector_t block;
1837 int err = 0;
1838 unsigned blocksize, bbits;
1839 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1840
1841 BUG_ON(!PageLocked(page));
1842 BUG_ON(from > PAGE_CACHE_SIZE);
1843 BUG_ON(to > PAGE_CACHE_SIZE);
1844 BUG_ON(from > to);
1845
1846 head = create_page_buffers(page, inode, 0);
1847 blocksize = head->b_size;
1848 bbits = block_size_bits(blocksize);
1849
1850 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1851
1852 for(bh = head, block_start = 0; bh != head || !block_start;
1853 block++, block_start=block_end, bh = bh->b_this_page) {
1854 block_end = block_start + blocksize;
1855 if (block_end <= from || block_start >= to) {
1856 if (PageUptodate(page)) {
1857 if (!buffer_uptodate(bh))
1858 set_buffer_uptodate(bh);
1859 }
1860 continue;
1861 }
1862 if (buffer_new(bh))
1863 clear_buffer_new(bh);
1864 if (!buffer_mapped(bh)) {
1865 WARN_ON(bh->b_size != blocksize);
1866 err = get_block(inode, block, bh, 1);
1867 if (err)
1868 break;
1869 if (buffer_new(bh)) {
1870 unmap_underlying_metadata(bh->b_bdev,
1871 bh->b_blocknr);
1872 if (PageUptodate(page)) {
1873 clear_buffer_new(bh);
1874 set_buffer_uptodate(bh);
1875 mark_buffer_dirty(bh);
1876 continue;
1877 }
1878 if (block_end > to || block_start < from)
1879 zero_user_segments(page,
1880 to, block_end,
1881 block_start, from);
1882 continue;
1883 }
1884 }
1885 if (PageUptodate(page)) {
1886 if (!buffer_uptodate(bh))
1887 set_buffer_uptodate(bh);
1888 continue;
1889 }
1890 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1891 !buffer_unwritten(bh) &&
1892 (block_start < from || block_end > to)) {
1893 ll_rw_block(READ, 1, &bh);
1894 *wait_bh++=bh;
1895 }
1896 }
1897 /*
1898 * If we issued read requests - let them complete.
1899 */
1900 while(wait_bh > wait) {
1901 wait_on_buffer(*--wait_bh);
1902 if (!buffer_uptodate(*wait_bh))
1903 err = -EIO;
1904 }
1905 if (unlikely(err))
1906 page_zero_new_buffers(page, from, to);
1907 return err;
1908 }
1909 EXPORT_SYMBOL(__block_write_begin);
1910
1911 static int __block_commit_write(struct inode *inode, struct page *page,
1912 unsigned from, unsigned to)
1913 {
1914 unsigned block_start, block_end;
1915 int partial = 0;
1916 unsigned blocksize;
1917 struct buffer_head *bh, *head;
1918
1919 bh = head = page_buffers(page);
1920 blocksize = bh->b_size;
1921
1922 block_start = 0;
1923 do {
1924 block_end = block_start + blocksize;
1925 if (block_end <= from || block_start >= to) {
1926 if (!buffer_uptodate(bh))
1927 partial = 1;
1928 } else {
1929 set_buffer_uptodate(bh);
1930 mark_buffer_dirty(bh);
1931 }
1932 clear_buffer_new(bh);
1933
1934 block_start = block_end;
1935 bh = bh->b_this_page;
1936 } while (bh != head);
1937
1938 /*
1939 * If this is a partial write which happened to make all buffers
1940 * uptodate then we can optimize away a bogus readpage() for
1941 * the next read(). Here we 'discover' whether the page went
1942 * uptodate as a result of this (potentially partial) write.
1943 */
1944 if (!partial)
1945 SetPageUptodate(page);
1946 return 0;
1947 }
1948
1949 /*
1950 * block_write_begin takes care of the basic task of block allocation and
1951 * bringing partial write blocks uptodate first.
1952 *
1953 * The filesystem needs to handle block truncation upon failure.
1954 */
1955 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1956 unsigned flags, struct page **pagep, get_block_t *get_block)
1957 {
1958 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1959 struct page *page;
1960 int status;
1961
1962 page = grab_cache_page_write_begin(mapping, index, flags);
1963 if (!page)
1964 return -ENOMEM;
1965
1966 status = __block_write_begin(page, pos, len, get_block);
1967 if (unlikely(status)) {
1968 unlock_page(page);
1969 page_cache_release(page);
1970 page = NULL;
1971 }
1972
1973 *pagep = page;
1974 return status;
1975 }
1976 EXPORT_SYMBOL(block_write_begin);
1977
1978 int block_write_end(struct file *file, struct address_space *mapping,
1979 loff_t pos, unsigned len, unsigned copied,
1980 struct page *page, void *fsdata)
1981 {
1982 struct inode *inode = mapping->host;
1983 unsigned start;
1984
1985 start = pos & (PAGE_CACHE_SIZE - 1);
1986
1987 if (unlikely(copied < len)) {
1988 /*
1989 * The buffers that were written will now be uptodate, so we
1990 * don't have to worry about a readpage reading them and
1991 * overwriting a partial write. However if we have encountered
1992 * a short write and only partially written into a buffer, it
1993 * will not be marked uptodate, so a readpage might come in and
1994 * destroy our partial write.
1995 *
1996 * Do the simplest thing, and just treat any short write to a
1997 * non uptodate page as a zero-length write, and force the
1998 * caller to redo the whole thing.
1999 */
2000 if (!PageUptodate(page))
2001 copied = 0;
2002
2003 page_zero_new_buffers(page, start+copied, start+len);
2004 }
2005 flush_dcache_page(page);
2006
2007 /* This could be a short (even 0-length) commit */
2008 __block_commit_write(inode, page, start, start+copied);
2009
2010 return copied;
2011 }
2012 EXPORT_SYMBOL(block_write_end);
2013
2014 int generic_write_end(struct file *file, struct address_space *mapping,
2015 loff_t pos, unsigned len, unsigned copied,
2016 struct page *page, void *fsdata)
2017 {
2018 struct inode *inode = mapping->host;
2019 int i_size_changed = 0;
2020
2021 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2022
2023 /*
2024 * No need to use i_size_read() here, the i_size
2025 * cannot change under us because we hold i_mutex.
2026 *
2027 * But it's important to update i_size while still holding page lock:
2028 * page writeout could otherwise come in and zero beyond i_size.
2029 */
2030 if (pos+copied > inode->i_size) {
2031 i_size_write(inode, pos+copied);
2032 i_size_changed = 1;
2033 }
2034
2035 unlock_page(page);
2036 page_cache_release(page);
2037
2038 /*
2039 * Don't mark the inode dirty under page lock. First, it unnecessarily
2040 * makes the holding time of page lock longer. Second, it forces lock
2041 * ordering of page lock and transaction start for journaling
2042 * filesystems.
2043 */
2044 if (i_size_changed)
2045 mark_inode_dirty(inode);
2046
2047 return copied;
2048 }
2049 EXPORT_SYMBOL(generic_write_end);
2050
2051 /*
2052 * block_is_partially_uptodate checks whether buffers within a page are
2053 * uptodate or not.
2054 *
2055 * Returns true if all buffers which correspond to a file portion
2056 * we want to read are uptodate.
2057 */
2058 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2059 unsigned long from)
2060 {
2061 unsigned block_start, block_end, blocksize;
2062 unsigned to;
2063 struct buffer_head *bh, *head;
2064 int ret = 1;
2065
2066 if (!page_has_buffers(page))
2067 return 0;
2068
2069 head = page_buffers(page);
2070 blocksize = head->b_size;
2071 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2072 to = from + to;
2073 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2074 return 0;
2075
2076 bh = head;
2077 block_start = 0;
2078 do {
2079 block_end = block_start + blocksize;
2080 if (block_end > from && block_start < to) {
2081 if (!buffer_uptodate(bh)) {
2082 ret = 0;
2083 break;
2084 }
2085 if (block_end >= to)
2086 break;
2087 }
2088 block_start = block_end;
2089 bh = bh->b_this_page;
2090 } while (bh != head);
2091
2092 return ret;
2093 }
2094 EXPORT_SYMBOL(block_is_partially_uptodate);
2095
2096 /*
2097 * Generic "read page" function for block devices that have the normal
2098 * get_block functionality. This is most of the block device filesystems.
2099 * Reads the page asynchronously --- the unlock_buffer() and
2100 * set/clear_buffer_uptodate() functions propagate buffer state into the
2101 * page struct once IO has completed.
2102 */
2103 int block_read_full_page(struct page *page, get_block_t *get_block)
2104 {
2105 struct inode *inode = page->mapping->host;
2106 sector_t iblock, lblock;
2107 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2108 unsigned int blocksize, bbits;
2109 int nr, i;
2110 int fully_mapped = 1;
2111
2112 head = create_page_buffers(page, inode, 0);
2113 blocksize = head->b_size;
2114 bbits = block_size_bits(blocksize);
2115
2116 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2117 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2118 bh = head;
2119 nr = 0;
2120 i = 0;
2121
2122 do {
2123 if (buffer_uptodate(bh))
2124 continue;
2125
2126 if (!buffer_mapped(bh)) {
2127 int err = 0;
2128
2129 fully_mapped = 0;
2130 if (iblock < lblock) {
2131 WARN_ON(bh->b_size != blocksize);
2132 err = get_block(inode, iblock, bh, 0);
2133 if (err)
2134 SetPageError(page);
2135 }
2136 if (!buffer_mapped(bh)) {
2137 zero_user(page, i * blocksize, blocksize);
2138 if (!err)
2139 set_buffer_uptodate(bh);
2140 continue;
2141 }
2142 /*
2143 * get_block() might have updated the buffer
2144 * synchronously
2145 */
2146 if (buffer_uptodate(bh))
2147 continue;
2148 }
2149 arr[nr++] = bh;
2150 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2151
2152 if (fully_mapped)
2153 SetPageMappedToDisk(page);
2154
2155 if (!nr) {
2156 /*
2157 * All buffers are uptodate - we can set the page uptodate
2158 * as well. But not if get_block() returned an error.
2159 */
2160 if (!PageError(page))
2161 SetPageUptodate(page);
2162 unlock_page(page);
2163 return 0;
2164 }
2165
2166 /* Stage two: lock the buffers */
2167 for (i = 0; i < nr; i++) {
2168 bh = arr[i];
2169 lock_buffer(bh);
2170 mark_buffer_async_read(bh);
2171 }
2172
2173 /*
2174 * Stage 3: start the IO. Check for uptodateness
2175 * inside the buffer lock in case another process reading
2176 * the underlying blockdev brought it uptodate (the sct fix).
2177 */
2178 for (i = 0; i < nr; i++) {
2179 bh = arr[i];
2180 if (buffer_uptodate(bh))
2181 end_buffer_async_read(bh, 1);
2182 else
2183 submit_bh(READ, bh);
2184 }
2185 return 0;
2186 }
2187 EXPORT_SYMBOL(block_read_full_page);
2188
2189 /* utility function for filesystems that need to do work on expanding
2190 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2191 * deal with the hole.
2192 */
2193 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2194 {
2195 struct address_space *mapping = inode->i_mapping;
2196 struct page *page;
2197 void *fsdata;
2198 int err;
2199
2200 err = inode_newsize_ok(inode, size);
2201 if (err)
2202 goto out;
2203
2204 err = pagecache_write_begin(NULL, mapping, size, 0,
2205 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2206 &page, &fsdata);
2207 if (err)
2208 goto out;
2209
2210 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2211 BUG_ON(err > 0);
2212
2213 out:
2214 return err;
2215 }
2216 EXPORT_SYMBOL(generic_cont_expand_simple);
2217
2218 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2219 loff_t pos, loff_t *bytes)
2220 {
2221 struct inode *inode = mapping->host;
2222 unsigned blocksize = 1 << inode->i_blkbits;
2223 struct page *page;
2224 void *fsdata;
2225 pgoff_t index, curidx;
2226 loff_t curpos;
2227 unsigned zerofrom, offset, len;
2228 int err = 0;
2229
2230 index = pos >> PAGE_CACHE_SHIFT;
2231 offset = pos & ~PAGE_CACHE_MASK;
2232
2233 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2234 zerofrom = curpos & ~PAGE_CACHE_MASK;
2235 if (zerofrom & (blocksize-1)) {
2236 *bytes |= (blocksize-1);
2237 (*bytes)++;
2238 }
2239 len = PAGE_CACHE_SIZE - zerofrom;
2240
2241 err = pagecache_write_begin(file, mapping, curpos, len,
2242 AOP_FLAG_UNINTERRUPTIBLE,
2243 &page, &fsdata);
2244 if (err)
2245 goto out;
2246 zero_user(page, zerofrom, len);
2247 err = pagecache_write_end(file, mapping, curpos, len, len,
2248 page, fsdata);
2249 if (err < 0)
2250 goto out;
2251 BUG_ON(err != len);
2252 err = 0;
2253
2254 balance_dirty_pages_ratelimited(mapping);
2255 }
2256
2257 /* page covers the boundary, find the boundary offset */
2258 if (index == curidx) {
2259 zerofrom = curpos & ~PAGE_CACHE_MASK;
2260 /* if we will expand the thing last block will be filled */
2261 if (offset <= zerofrom) {
2262 goto out;
2263 }
2264 if (zerofrom & (blocksize-1)) {
2265 *bytes |= (blocksize-1);
2266 (*bytes)++;
2267 }
2268 len = offset - zerofrom;
2269
2270 err = pagecache_write_begin(file, mapping, curpos, len,
2271 AOP_FLAG_UNINTERRUPTIBLE,
2272 &page, &fsdata);
2273 if (err)
2274 goto out;
2275 zero_user(page, zerofrom, len);
2276 err = pagecache_write_end(file, mapping, curpos, len, len,
2277 page, fsdata);
2278 if (err < 0)
2279 goto out;
2280 BUG_ON(err != len);
2281 err = 0;
2282 }
2283 out:
2284 return err;
2285 }
2286
2287 /*
2288 * For moronic filesystems that do not allow holes in file.
2289 * We may have to extend the file.
2290 */
2291 int cont_write_begin(struct file *file, struct address_space *mapping,
2292 loff_t pos, unsigned len, unsigned flags,
2293 struct page **pagep, void **fsdata,
2294 get_block_t *get_block, loff_t *bytes)
2295 {
2296 struct inode *inode = mapping->host;
2297 unsigned blocksize = 1 << inode->i_blkbits;
2298 unsigned zerofrom;
2299 int err;
2300
2301 err = cont_expand_zero(file, mapping, pos, bytes);
2302 if (err)
2303 return err;
2304
2305 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2306 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2307 *bytes |= (blocksize-1);
2308 (*bytes)++;
2309 }
2310
2311 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2312 }
2313 EXPORT_SYMBOL(cont_write_begin);
2314
2315 int block_commit_write(struct page *page, unsigned from, unsigned to)
2316 {
2317 struct inode *inode = page->mapping->host;
2318 __block_commit_write(inode,page,from,to);
2319 return 0;
2320 }
2321 EXPORT_SYMBOL(block_commit_write);
2322
2323 /*
2324 * block_page_mkwrite() is not allowed to change the file size as it gets
2325 * called from a page fault handler when a page is first dirtied. Hence we must
2326 * be careful to check for EOF conditions here. We set the page up correctly
2327 * for a written page which means we get ENOSPC checking when writing into
2328 * holes and correct delalloc and unwritten extent mapping on filesystems that
2329 * support these features.
2330 *
2331 * We are not allowed to take the i_mutex here so we have to play games to
2332 * protect against truncate races as the page could now be beyond EOF. Because
2333 * truncate writes the inode size before removing pages, once we have the
2334 * page lock we can determine safely if the page is beyond EOF. If it is not
2335 * beyond EOF, then the page is guaranteed safe against truncation until we
2336 * unlock the page.
2337 *
2338 * Direct callers of this function should protect against filesystem freezing
2339 * using sb_start_write() - sb_end_write() functions.
2340 */
2341 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2342 get_block_t get_block)
2343 {
2344 struct page *page = vmf->page;
2345 struct inode *inode = file_inode(vma->vm_file);
2346 unsigned long end;
2347 loff_t size;
2348 int ret;
2349
2350 lock_page(page);
2351 size = i_size_read(inode);
2352 if ((page->mapping != inode->i_mapping) ||
2353 (page_offset(page) > size)) {
2354 /* We overload EFAULT to mean page got truncated */
2355 ret = -EFAULT;
2356 goto out_unlock;
2357 }
2358
2359 /* page is wholly or partially inside EOF */
2360 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2361 end = size & ~PAGE_CACHE_MASK;
2362 else
2363 end = PAGE_CACHE_SIZE;
2364
2365 ret = __block_write_begin(page, 0, end, get_block);
2366 if (!ret)
2367 ret = block_commit_write(page, 0, end);
2368
2369 if (unlikely(ret < 0))
2370 goto out_unlock;
2371 set_page_dirty(page);
2372 wait_for_stable_page(page);
2373 return 0;
2374 out_unlock:
2375 unlock_page(page);
2376 return ret;
2377 }
2378 EXPORT_SYMBOL(__block_page_mkwrite);
2379
2380 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2381 get_block_t get_block)
2382 {
2383 int ret;
2384 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2385
2386 sb_start_pagefault(sb);
2387
2388 /*
2389 * Update file times before taking page lock. We may end up failing the
2390 * fault so this update may be superfluous but who really cares...
2391 */
2392 file_update_time(vma->vm_file);
2393
2394 ret = __block_page_mkwrite(vma, vmf, get_block);
2395 sb_end_pagefault(sb);
2396 return block_page_mkwrite_return(ret);
2397 }
2398 EXPORT_SYMBOL(block_page_mkwrite);
2399
2400 /*
2401 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2402 * immediately, while under the page lock. So it needs a special end_io
2403 * handler which does not touch the bh after unlocking it.
2404 */
2405 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2406 {
2407 __end_buffer_read_notouch(bh, uptodate);
2408 }
2409
2410 /*
2411 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2412 * the page (converting it to circular linked list and taking care of page
2413 * dirty races).
2414 */
2415 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2416 {
2417 struct buffer_head *bh;
2418
2419 BUG_ON(!PageLocked(page));
2420
2421 spin_lock(&page->mapping->private_lock);
2422 bh = head;
2423 do {
2424 if (PageDirty(page))
2425 set_buffer_dirty(bh);
2426 if (!bh->b_this_page)
2427 bh->b_this_page = head;
2428 bh = bh->b_this_page;
2429 } while (bh != head);
2430 attach_page_buffers(page, head);
2431 spin_unlock(&page->mapping->private_lock);
2432 }
2433
2434 /*
2435 * On entry, the page is fully not uptodate.
2436 * On exit the page is fully uptodate in the areas outside (from,to)
2437 * The filesystem needs to handle block truncation upon failure.
2438 */
2439 int nobh_write_begin(struct address_space *mapping,
2440 loff_t pos, unsigned len, unsigned flags,
2441 struct page **pagep, void **fsdata,
2442 get_block_t *get_block)
2443 {
2444 struct inode *inode = mapping->host;
2445 const unsigned blkbits = inode->i_blkbits;
2446 const unsigned blocksize = 1 << blkbits;
2447 struct buffer_head *head, *bh;
2448 struct page *page;
2449 pgoff_t index;
2450 unsigned from, to;
2451 unsigned block_in_page;
2452 unsigned block_start, block_end;
2453 sector_t block_in_file;
2454 int nr_reads = 0;
2455 int ret = 0;
2456 int is_mapped_to_disk = 1;
2457
2458 index = pos >> PAGE_CACHE_SHIFT;
2459 from = pos & (PAGE_CACHE_SIZE - 1);
2460 to = from + len;
2461
2462 page = grab_cache_page_write_begin(mapping, index, flags);
2463 if (!page)
2464 return -ENOMEM;
2465 *pagep = page;
2466 *fsdata = NULL;
2467
2468 if (page_has_buffers(page)) {
2469 ret = __block_write_begin(page, pos, len, get_block);
2470 if (unlikely(ret))
2471 goto out_release;
2472 return ret;
2473 }
2474
2475 if (PageMappedToDisk(page))
2476 return 0;
2477
2478 /*
2479 * Allocate buffers so that we can keep track of state, and potentially
2480 * attach them to the page if an error occurs. In the common case of
2481 * no error, they will just be freed again without ever being attached
2482 * to the page (which is all OK, because we're under the page lock).
2483 *
2484 * Be careful: the buffer linked list is a NULL terminated one, rather
2485 * than the circular one we're used to.
2486 */
2487 head = alloc_page_buffers(page, blocksize, 0);
2488 if (!head) {
2489 ret = -ENOMEM;
2490 goto out_release;
2491 }
2492
2493 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2494
2495 /*
2496 * We loop across all blocks in the page, whether or not they are
2497 * part of the affected region. This is so we can discover if the
2498 * page is fully mapped-to-disk.
2499 */
2500 for (block_start = 0, block_in_page = 0, bh = head;
2501 block_start < PAGE_CACHE_SIZE;
2502 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2503 int create;
2504
2505 block_end = block_start + blocksize;
2506 bh->b_state = 0;
2507 create = 1;
2508 if (block_start >= to)
2509 create = 0;
2510 ret = get_block(inode, block_in_file + block_in_page,
2511 bh, create);
2512 if (ret)
2513 goto failed;
2514 if (!buffer_mapped(bh))
2515 is_mapped_to_disk = 0;
2516 if (buffer_new(bh))
2517 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2518 if (PageUptodate(page)) {
2519 set_buffer_uptodate(bh);
2520 continue;
2521 }
2522 if (buffer_new(bh) || !buffer_mapped(bh)) {
2523 zero_user_segments(page, block_start, from,
2524 to, block_end);
2525 continue;
2526 }
2527 if (buffer_uptodate(bh))
2528 continue; /* reiserfs does this */
2529 if (block_start < from || block_end > to) {
2530 lock_buffer(bh);
2531 bh->b_end_io = end_buffer_read_nobh;
2532 submit_bh(READ, bh);
2533 nr_reads++;
2534 }
2535 }
2536
2537 if (nr_reads) {
2538 /*
2539 * The page is locked, so these buffers are protected from
2540 * any VM or truncate activity. Hence we don't need to care
2541 * for the buffer_head refcounts.
2542 */
2543 for (bh = head; bh; bh = bh->b_this_page) {
2544 wait_on_buffer(bh);
2545 if (!buffer_uptodate(bh))
2546 ret = -EIO;
2547 }
2548 if (ret)
2549 goto failed;
2550 }
2551
2552 if (is_mapped_to_disk)
2553 SetPageMappedToDisk(page);
2554
2555 *fsdata = head; /* to be released by nobh_write_end */
2556
2557 return 0;
2558
2559 failed:
2560 BUG_ON(!ret);
2561 /*
2562 * Error recovery is a bit difficult. We need to zero out blocks that
2563 * were newly allocated, and dirty them to ensure they get written out.
2564 * Buffers need to be attached to the page at this point, otherwise
2565 * the handling of potential IO errors during writeout would be hard
2566 * (could try doing synchronous writeout, but what if that fails too?)
2567 */
2568 attach_nobh_buffers(page, head);
2569 page_zero_new_buffers(page, from, to);
2570
2571 out_release:
2572 unlock_page(page);
2573 page_cache_release(page);
2574 *pagep = NULL;
2575
2576 return ret;
2577 }
2578 EXPORT_SYMBOL(nobh_write_begin);
2579
2580 int nobh_write_end(struct file *file, struct address_space *mapping,
2581 loff_t pos, unsigned len, unsigned copied,
2582 struct page *page, void *fsdata)
2583 {
2584 struct inode *inode = page->mapping->host;
2585 struct buffer_head *head = fsdata;
2586 struct buffer_head *bh;
2587 BUG_ON(fsdata != NULL && page_has_buffers(page));
2588
2589 if (unlikely(copied < len) && head)
2590 attach_nobh_buffers(page, head);
2591 if (page_has_buffers(page))
2592 return generic_write_end(file, mapping, pos, len,
2593 copied, page, fsdata);
2594
2595 SetPageUptodate(page);
2596 set_page_dirty(page);
2597 if (pos+copied > inode->i_size) {
2598 i_size_write(inode, pos+copied);
2599 mark_inode_dirty(inode);
2600 }
2601
2602 unlock_page(page);
2603 page_cache_release(page);
2604
2605 while (head) {
2606 bh = head;
2607 head = head->b_this_page;
2608 free_buffer_head(bh);
2609 }
2610
2611 return copied;
2612 }
2613 EXPORT_SYMBOL(nobh_write_end);
2614
2615 /*
2616 * nobh_writepage() - based on block_full_write_page() except
2617 * that it tries to operate without attaching bufferheads to
2618 * the page.
2619 */
2620 int nobh_writepage(struct page *page, get_block_t *get_block,
2621 struct writeback_control *wbc)
2622 {
2623 struct inode * const inode = page->mapping->host;
2624 loff_t i_size = i_size_read(inode);
2625 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2626 unsigned offset;
2627 int ret;
2628
2629 /* Is the page fully inside i_size? */
2630 if (page->index < end_index)
2631 goto out;
2632
2633 /* Is the page fully outside i_size? (truncate in progress) */
2634 offset = i_size & (PAGE_CACHE_SIZE-1);
2635 if (page->index >= end_index+1 || !offset) {
2636 /*
2637 * The page may have dirty, unmapped buffers. For example,
2638 * they may have been added in ext3_writepage(). Make them
2639 * freeable here, so the page does not leak.
2640 */
2641 #if 0
2642 /* Not really sure about this - do we need this ? */
2643 if (page->mapping->a_ops->invalidatepage)
2644 page->mapping->a_ops->invalidatepage(page, offset);
2645 #endif
2646 unlock_page(page);
2647 return 0; /* don't care */
2648 }
2649
2650 /*
2651 * The page straddles i_size. It must be zeroed out on each and every
2652 * writepage invocation because it may be mmapped. "A file is mapped
2653 * in multiples of the page size. For a file that is not a multiple of
2654 * the page size, the remaining memory is zeroed when mapped, and
2655 * writes to that region are not written out to the file."
2656 */
2657 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2658 out:
2659 ret = mpage_writepage(page, get_block, wbc);
2660 if (ret == -EAGAIN)
2661 ret = __block_write_full_page(inode, page, get_block, wbc,
2662 end_buffer_async_write);
2663 return ret;
2664 }
2665 EXPORT_SYMBOL(nobh_writepage);
2666
2667 int nobh_truncate_page(struct address_space *mapping,
2668 loff_t from, get_block_t *get_block)
2669 {
2670 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2671 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2672 unsigned blocksize;
2673 sector_t iblock;
2674 unsigned length, pos;
2675 struct inode *inode = mapping->host;
2676 struct page *page;
2677 struct buffer_head map_bh;
2678 int err;
2679
2680 blocksize = 1 << inode->i_blkbits;
2681 length = offset & (blocksize - 1);
2682
2683 /* Block boundary? Nothing to do */
2684 if (!length)
2685 return 0;
2686
2687 length = blocksize - length;
2688 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2689
2690 page = grab_cache_page(mapping, index);
2691 err = -ENOMEM;
2692 if (!page)
2693 goto out;
2694
2695 if (page_has_buffers(page)) {
2696 has_buffers:
2697 unlock_page(page);
2698 page_cache_release(page);
2699 return block_truncate_page(mapping, from, get_block);
2700 }
2701
2702 /* Find the buffer that contains "offset" */
2703 pos = blocksize;
2704 while (offset >= pos) {
2705 iblock++;
2706 pos += blocksize;
2707 }
2708
2709 map_bh.b_size = blocksize;
2710 map_bh.b_state = 0;
2711 err = get_block(inode, iblock, &map_bh, 0);
2712 if (err)
2713 goto unlock;
2714 /* unmapped? It's a hole - nothing to do */
2715 if (!buffer_mapped(&map_bh))
2716 goto unlock;
2717
2718 /* Ok, it's mapped. Make sure it's up-to-date */
2719 if (!PageUptodate(page)) {
2720 err = mapping->a_ops->readpage(NULL, page);
2721 if (err) {
2722 page_cache_release(page);
2723 goto out;
2724 }
2725 lock_page(page);
2726 if (!PageUptodate(page)) {
2727 err = -EIO;
2728 goto unlock;
2729 }
2730 if (page_has_buffers(page))
2731 goto has_buffers;
2732 }
2733 zero_user(page, offset, length);
2734 set_page_dirty(page);
2735 err = 0;
2736
2737 unlock:
2738 unlock_page(page);
2739 page_cache_release(page);
2740 out:
2741 return err;
2742 }
2743 EXPORT_SYMBOL(nobh_truncate_page);
2744
2745 int block_truncate_page(struct address_space *mapping,
2746 loff_t from, get_block_t *get_block)
2747 {
2748 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2749 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2750 unsigned blocksize;
2751 sector_t iblock;
2752 unsigned length, pos;
2753 struct inode *inode = mapping->host;
2754 struct page *page;
2755 struct buffer_head *bh;
2756 int err;
2757
2758 blocksize = 1 << inode->i_blkbits;
2759 length = offset & (blocksize - 1);
2760
2761 /* Block boundary? Nothing to do */
2762 if (!length)
2763 return 0;
2764
2765 length = blocksize - length;
2766 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2767
2768 page = grab_cache_page(mapping, index);
2769 err = -ENOMEM;
2770 if (!page)
2771 goto out;
2772
2773 if (!page_has_buffers(page))
2774 create_empty_buffers(page, blocksize, 0);
2775
2776 /* Find the buffer that contains "offset" */
2777 bh = page_buffers(page);
2778 pos = blocksize;
2779 while (offset >= pos) {
2780 bh = bh->b_this_page;
2781 iblock++;
2782 pos += blocksize;
2783 }
2784
2785 err = 0;
2786 if (!buffer_mapped(bh)) {
2787 WARN_ON(bh->b_size != blocksize);
2788 err = get_block(inode, iblock, bh, 0);
2789 if (err)
2790 goto unlock;
2791 /* unmapped? It's a hole - nothing to do */
2792 if (!buffer_mapped(bh))
2793 goto unlock;
2794 }
2795
2796 /* Ok, it's mapped. Make sure it's up-to-date */
2797 if (PageUptodate(page))
2798 set_buffer_uptodate(bh);
2799
2800 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2801 err = -EIO;
2802 ll_rw_block(READ, 1, &bh);
2803 wait_on_buffer(bh);
2804 /* Uhhuh. Read error. Complain and punt. */
2805 if (!buffer_uptodate(bh))
2806 goto unlock;
2807 }
2808
2809 zero_user(page, offset, length);
2810 mark_buffer_dirty(bh);
2811 err = 0;
2812
2813 unlock:
2814 unlock_page(page);
2815 page_cache_release(page);
2816 out:
2817 return err;
2818 }
2819 EXPORT_SYMBOL(block_truncate_page);
2820
2821 /*
2822 * The generic ->writepage function for buffer-backed address_spaces
2823 * this form passes in the end_io handler used to finish the IO.
2824 */
2825 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2826 struct writeback_control *wbc, bh_end_io_t *handler)
2827 {
2828 struct inode * const inode = page->mapping->host;
2829 loff_t i_size = i_size_read(inode);
2830 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2831 unsigned offset;
2832
2833 /* Is the page fully inside i_size? */
2834 if (page->index < end_index)
2835 return __block_write_full_page(inode, page, get_block, wbc,
2836 handler);
2837
2838 /* Is the page fully outside i_size? (truncate in progress) */
2839 offset = i_size & (PAGE_CACHE_SIZE-1);
2840 if (page->index >= end_index+1 || !offset) {
2841 /*
2842 * The page may have dirty, unmapped buffers. For example,
2843 * they may have been added in ext3_writepage(). Make them
2844 * freeable here, so the page does not leak.
2845 */
2846 do_invalidatepage(page, 0);
2847 unlock_page(page);
2848 return 0; /* don't care */
2849 }
2850
2851 /*
2852 * The page straddles i_size. It must be zeroed out on each and every
2853 * writepage invocation because it may be mmapped. "A file is mapped
2854 * in multiples of the page size. For a file that is not a multiple of
2855 * the page size, the remaining memory is zeroed when mapped, and
2856 * writes to that region are not written out to the file."
2857 */
2858 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2859 return __block_write_full_page(inode, page, get_block, wbc, handler);
2860 }
2861 EXPORT_SYMBOL(block_write_full_page_endio);
2862
2863 /*
2864 * The generic ->writepage function for buffer-backed address_spaces
2865 */
2866 int block_write_full_page(struct page *page, get_block_t *get_block,
2867 struct writeback_control *wbc)
2868 {
2869 return block_write_full_page_endio(page, get_block, wbc,
2870 end_buffer_async_write);
2871 }
2872 EXPORT_SYMBOL(block_write_full_page);
2873
2874 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2875 get_block_t *get_block)
2876 {
2877 struct buffer_head tmp;
2878 struct inode *inode = mapping->host;
2879 tmp.b_state = 0;
2880 tmp.b_blocknr = 0;
2881 tmp.b_size = 1 << inode->i_blkbits;
2882 get_block(inode, block, &tmp, 0);
2883 return tmp.b_blocknr;
2884 }
2885 EXPORT_SYMBOL(generic_block_bmap);
2886
2887 static void end_bio_bh_io_sync(struct bio *bio, int err)
2888 {
2889 struct buffer_head *bh = bio->bi_private;
2890
2891 if (err == -EOPNOTSUPP) {
2892 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2893 }
2894
2895 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2896 set_bit(BH_Quiet, &bh->b_state);
2897
2898 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2899 bio_put(bio);
2900 }
2901
2902 /*
2903 * This allows us to do IO even on the odd last sectors
2904 * of a device, even if the bh block size is some multiple
2905 * of the physical sector size.
2906 *
2907 * We'll just truncate the bio to the size of the device,
2908 * and clear the end of the buffer head manually.
2909 *
2910 * Truly out-of-range accesses will turn into actual IO
2911 * errors, this only handles the "we need to be able to
2912 * do IO at the final sector" case.
2913 */
2914 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2915 {
2916 sector_t maxsector;
2917 unsigned bytes;
2918
2919 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2920 if (!maxsector)
2921 return;
2922
2923 /*
2924 * If the *whole* IO is past the end of the device,
2925 * let it through, and the IO layer will turn it into
2926 * an EIO.
2927 */
2928 if (unlikely(bio->bi_sector >= maxsector))
2929 return;
2930
2931 maxsector -= bio->bi_sector;
2932 bytes = bio->bi_size;
2933 if (likely((bytes >> 9) <= maxsector))
2934 return;
2935
2936 /* Uhhuh. We've got a bh that straddles the device size! */
2937 bytes = maxsector << 9;
2938
2939 /* Truncate the bio.. */
2940 bio->bi_size = bytes;
2941 bio->bi_io_vec[0].bv_len = bytes;
2942
2943 /* ..and clear the end of the buffer for reads */
2944 if ((rw & RW_MASK) == READ) {
2945 void *kaddr = kmap_atomic(bh->b_page);
2946 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2947 kunmap_atomic(kaddr);
2948 flush_dcache_page(bh->b_page);
2949 }
2950 }
2951
2952 int submit_bh(int rw, struct buffer_head * bh)
2953 {
2954 struct bio *bio;
2955 int ret = 0;
2956
2957 BUG_ON(!buffer_locked(bh));
2958 BUG_ON(!buffer_mapped(bh));
2959 BUG_ON(!bh->b_end_io);
2960 BUG_ON(buffer_delay(bh));
2961 BUG_ON(buffer_unwritten(bh));
2962
2963 /*
2964 * Only clear out a write error when rewriting
2965 */
2966 if (test_set_buffer_req(bh) && (rw & WRITE))
2967 clear_buffer_write_io_error(bh);
2968
2969 /*
2970 * from here on down, it's all bio -- do the initial mapping,
2971 * submit_bio -> generic_make_request may further map this bio around
2972 */
2973 bio = bio_alloc(GFP_NOIO, 1);
2974
2975 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2976 bio->bi_bdev = bh->b_bdev;
2977 bio->bi_io_vec[0].bv_page = bh->b_page;
2978 bio->bi_io_vec[0].bv_len = bh->b_size;
2979 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2980
2981 bio->bi_vcnt = 1;
2982 bio->bi_idx = 0;
2983 bio->bi_size = bh->b_size;
2984
2985 bio->bi_end_io = end_bio_bh_io_sync;
2986 bio->bi_private = bh;
2987
2988 /* Take care of bh's that straddle the end of the device */
2989 guard_bh_eod(rw, bio, bh);
2990
2991 bio_get(bio);
2992 submit_bio(rw, bio);
2993
2994 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2995 ret = -EOPNOTSUPP;
2996
2997 bio_put(bio);
2998 return ret;
2999 }
3000 EXPORT_SYMBOL(submit_bh);
3001
3002 /**
3003 * ll_rw_block: low-level access to block devices (DEPRECATED)
3004 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3005 * @nr: number of &struct buffer_heads in the array
3006 * @bhs: array of pointers to &struct buffer_head
3007 *
3008 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3009 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3010 * %READA option is described in the documentation for generic_make_request()
3011 * which ll_rw_block() calls.
3012 *
3013 * This function drops any buffer that it cannot get a lock on (with the
3014 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3015 * request, and any buffer that appears to be up-to-date when doing read
3016 * request. Further it marks as clean buffers that are processed for
3017 * writing (the buffer cache won't assume that they are actually clean
3018 * until the buffer gets unlocked).
3019 *
3020 * ll_rw_block sets b_end_io to simple completion handler that marks
3021 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3022 * any waiters.
3023 *
3024 * All of the buffers must be for the same device, and must also be a
3025 * multiple of the current approved size for the device.
3026 */
3027 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3028 {
3029 int i;
3030
3031 for (i = 0; i < nr; i++) {
3032 struct buffer_head *bh = bhs[i];
3033
3034 if (!trylock_buffer(bh))
3035 continue;
3036 if (rw == WRITE) {
3037 if (test_clear_buffer_dirty(bh)) {
3038 bh->b_end_io = end_buffer_write_sync;
3039 get_bh(bh);
3040 submit_bh(WRITE, bh);
3041 continue;
3042 }
3043 } else {
3044 if (!buffer_uptodate(bh)) {
3045 bh->b_end_io = end_buffer_read_sync;
3046 get_bh(bh);
3047 submit_bh(rw, bh);
3048 continue;
3049 }
3050 }
3051 unlock_buffer(bh);
3052 }
3053 }
3054 EXPORT_SYMBOL(ll_rw_block);
3055
3056 void write_dirty_buffer(struct buffer_head *bh, int rw)
3057 {
3058 lock_buffer(bh);
3059 if (!test_clear_buffer_dirty(bh)) {
3060 unlock_buffer(bh);
3061 return;
3062 }
3063 bh->b_end_io = end_buffer_write_sync;
3064 get_bh(bh);
3065 submit_bh(rw, bh);
3066 }
3067 EXPORT_SYMBOL(write_dirty_buffer);
3068
3069 /*
3070 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3071 * and then start new I/O and then wait upon it. The caller must have a ref on
3072 * the buffer_head.
3073 */
3074 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3075 {
3076 int ret = 0;
3077
3078 WARN_ON(atomic_read(&bh->b_count) < 1);
3079 lock_buffer(bh);
3080 if (test_clear_buffer_dirty(bh)) {
3081 get_bh(bh);
3082 bh->b_end_io = end_buffer_write_sync;
3083 ret = submit_bh(rw, bh);
3084 wait_on_buffer(bh);
3085 if (!ret && !buffer_uptodate(bh))
3086 ret = -EIO;
3087 } else {
3088 unlock_buffer(bh);
3089 }
3090 return ret;
3091 }
3092 EXPORT_SYMBOL(__sync_dirty_buffer);
3093
3094 int sync_dirty_buffer(struct buffer_head *bh)
3095 {
3096 return __sync_dirty_buffer(bh, WRITE_SYNC);
3097 }
3098 EXPORT_SYMBOL(sync_dirty_buffer);
3099
3100 /*
3101 * try_to_free_buffers() checks if all the buffers on this particular page
3102 * are unused, and releases them if so.
3103 *
3104 * Exclusion against try_to_free_buffers may be obtained by either
3105 * locking the page or by holding its mapping's private_lock.
3106 *
3107 * If the page is dirty but all the buffers are clean then we need to
3108 * be sure to mark the page clean as well. This is because the page
3109 * may be against a block device, and a later reattachment of buffers
3110 * to a dirty page will set *all* buffers dirty. Which would corrupt
3111 * filesystem data on the same device.
3112 *
3113 * The same applies to regular filesystem pages: if all the buffers are
3114 * clean then we set the page clean and proceed. To do that, we require
3115 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3116 * private_lock.
3117 *
3118 * try_to_free_buffers() is non-blocking.
3119 */
3120 static inline int buffer_busy(struct buffer_head *bh)
3121 {
3122 return atomic_read(&bh->b_count) |
3123 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3124 }
3125
3126 static int
3127 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3128 {
3129 struct buffer_head *head = page_buffers(page);
3130 struct buffer_head *bh;
3131
3132 bh = head;
3133 do {
3134 if (buffer_write_io_error(bh) && page->mapping)
3135 set_bit(AS_EIO, &page->mapping->flags);
3136 if (buffer_busy(bh))
3137 goto failed;
3138 bh = bh->b_this_page;
3139 } while (bh != head);
3140
3141 do {
3142 struct buffer_head *next = bh->b_this_page;
3143
3144 if (bh->b_assoc_map)
3145 __remove_assoc_queue(bh);
3146 bh = next;
3147 } while (bh != head);
3148 *buffers_to_free = head;
3149 __clear_page_buffers(page);
3150 return 1;
3151 failed:
3152 return 0;
3153 }
3154
3155 int try_to_free_buffers(struct page *page)
3156 {
3157 struct address_space * const mapping = page->mapping;
3158 struct buffer_head *buffers_to_free = NULL;
3159 int ret = 0;
3160
3161 BUG_ON(!PageLocked(page));
3162 if (PageWriteback(page))
3163 return 0;
3164
3165 if (mapping == NULL) { /* can this still happen? */
3166 ret = drop_buffers(page, &buffers_to_free);
3167 goto out;
3168 }
3169
3170 spin_lock(&mapping->private_lock);
3171 ret = drop_buffers(page, &buffers_to_free);
3172
3173 /*
3174 * If the filesystem writes its buffers by hand (eg ext3)
3175 * then we can have clean buffers against a dirty page. We
3176 * clean the page here; otherwise the VM will never notice
3177 * that the filesystem did any IO at all.
3178 *
3179 * Also, during truncate, discard_buffer will have marked all
3180 * the page's buffers clean. We discover that here and clean
3181 * the page also.
3182 *
3183 * private_lock must be held over this entire operation in order
3184 * to synchronise against __set_page_dirty_buffers and prevent the
3185 * dirty bit from being lost.
3186 */
3187 if (ret)
3188 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3189 spin_unlock(&mapping->private_lock);
3190 out:
3191 if (buffers_to_free) {
3192 struct buffer_head *bh = buffers_to_free;
3193
3194 do {
3195 struct buffer_head *next = bh->b_this_page;
3196 free_buffer_head(bh);
3197 bh = next;
3198 } while (bh != buffers_to_free);
3199 }
3200 return ret;
3201 }
3202 EXPORT_SYMBOL(try_to_free_buffers);
3203
3204 /*
3205 * There are no bdflush tunables left. But distributions are
3206 * still running obsolete flush daemons, so we terminate them here.
3207 *
3208 * Use of bdflush() is deprecated and will be removed in a future kernel.
3209 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3210 */
3211 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3212 {
3213 static int msg_count;
3214
3215 if (!capable(CAP_SYS_ADMIN))
3216 return -EPERM;
3217
3218 if (msg_count < 5) {
3219 msg_count++;
3220 printk(KERN_INFO
3221 "warning: process `%s' used the obsolete bdflush"
3222 " system call\n", current->comm);
3223 printk(KERN_INFO "Fix your initscripts?\n");
3224 }
3225
3226 if (func == 1)
3227 do_exit(0);
3228 return 0;
3229 }
3230
3231 /*
3232 * Buffer-head allocation
3233 */
3234 static struct kmem_cache *bh_cachep __read_mostly;
3235
3236 /*
3237 * Once the number of bh's in the machine exceeds this level, we start
3238 * stripping them in writeback.
3239 */
3240 static unsigned long max_buffer_heads;
3241
3242 int buffer_heads_over_limit;
3243
3244 struct bh_accounting {
3245 int nr; /* Number of live bh's */
3246 int ratelimit; /* Limit cacheline bouncing */
3247 };
3248
3249 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3250
3251 static void recalc_bh_state(void)
3252 {
3253 int i;
3254 int tot = 0;
3255
3256 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3257 return;
3258 __this_cpu_write(bh_accounting.ratelimit, 0);
3259 for_each_online_cpu(i)
3260 tot += per_cpu(bh_accounting, i).nr;
3261 buffer_heads_over_limit = (tot > max_buffer_heads);
3262 }
3263
3264 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3265 {
3266 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3267 if (ret) {
3268 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3269 preempt_disable();
3270 __this_cpu_inc(bh_accounting.nr);
3271 recalc_bh_state();
3272 preempt_enable();
3273 }
3274 return ret;
3275 }
3276 EXPORT_SYMBOL(alloc_buffer_head);
3277
3278 void free_buffer_head(struct buffer_head *bh)
3279 {
3280 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3281 kmem_cache_free(bh_cachep, bh);
3282 preempt_disable();
3283 __this_cpu_dec(bh_accounting.nr);
3284 recalc_bh_state();
3285 preempt_enable();
3286 }
3287 EXPORT_SYMBOL(free_buffer_head);
3288
3289 static void buffer_exit_cpu(int cpu)
3290 {
3291 int i;
3292 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3293
3294 for (i = 0; i < BH_LRU_SIZE; i++) {
3295 brelse(b->bhs[i]);
3296 b->bhs[i] = NULL;
3297 }
3298 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3299 per_cpu(bh_accounting, cpu).nr = 0;
3300 }
3301
3302 static int buffer_cpu_notify(struct notifier_block *self,
3303 unsigned long action, void *hcpu)
3304 {
3305 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3306 buffer_exit_cpu((unsigned long)hcpu);
3307 return NOTIFY_OK;
3308 }
3309
3310 /**
3311 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3312 * @bh: struct buffer_head
3313 *
3314 * Return true if the buffer is up-to-date and false,
3315 * with the buffer locked, if not.
3316 */
3317 int bh_uptodate_or_lock(struct buffer_head *bh)
3318 {
3319 if (!buffer_uptodate(bh)) {
3320 lock_buffer(bh);
3321 if (!buffer_uptodate(bh))
3322 return 0;
3323 unlock_buffer(bh);
3324 }
3325 return 1;
3326 }
3327 EXPORT_SYMBOL(bh_uptodate_or_lock);
3328
3329 /**
3330 * bh_submit_read - Submit a locked buffer for reading
3331 * @bh: struct buffer_head
3332 *
3333 * Returns zero on success and -EIO on error.
3334 */
3335 int bh_submit_read(struct buffer_head *bh)
3336 {
3337 BUG_ON(!buffer_locked(bh));
3338
3339 if (buffer_uptodate(bh)) {
3340 unlock_buffer(bh);
3341 return 0;
3342 }
3343
3344 get_bh(bh);
3345 bh->b_end_io = end_buffer_read_sync;
3346 submit_bh(READ, bh);
3347 wait_on_buffer(bh);
3348 if (buffer_uptodate(bh))
3349 return 0;
3350 return -EIO;
3351 }
3352 EXPORT_SYMBOL(bh_submit_read);
3353
3354 void __init buffer_init(void)
3355 {
3356 unsigned long nrpages;
3357
3358 bh_cachep = kmem_cache_create("buffer_head",
3359 sizeof(struct buffer_head), 0,
3360 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3361 SLAB_MEM_SPREAD),
3362 NULL);
3363
3364 /*
3365 * Limit the bh occupancy to 10% of ZONE_NORMAL
3366 */
3367 nrpages = (nr_free_buffer_pages() * 10) / 100;
3368 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3369 hotcpu_notifier(buffer_cpu_notify, 0);
3370 }