drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 static int sleep_on_buffer(void *word)
65 {
66 io_schedule();
67 return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 EXPORT_SYMBOL(__wait_on_buffer);
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
102 }
103
104
105 static int quiet_error(struct buffer_head *bh)
106 {
107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108 return 0;
109 return 1;
110 }
111
112
113 static void buffer_io_error(struct buffer_head *bh)
114 {
115 char b[BDEVNAME_SIZE];
116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117 bdevname(bh->b_bdev, b),
118 (unsigned long long)bh->b_blocknr);
119 }
120
121 /*
122 * End-of-IO handler helper function which does not touch the bh after
123 * unlocking it.
124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125 * a race there is benign: unlock_buffer() only use the bh's address for
126 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 * itself.
128 */
129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 {
131 if (uptodate) {
132 set_buffer_uptodate(bh);
133 } else {
134 /* This happens, due to failed READA attempts. */
135 clear_buffer_uptodate(bh);
136 }
137 unlock_buffer(bh);
138 }
139
140 /*
141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
142 * unlock the buffer. This is what ll_rw_block uses too.
143 */
144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145 {
146 __end_buffer_read_notouch(bh, uptodate);
147 put_bh(bh);
148 }
149 EXPORT_SYMBOL(end_buffer_read_sync);
150
151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152 {
153 char b[BDEVNAME_SIZE];
154
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 if (!quiet_error(bh)) {
159 buffer_io_error(bh);
160 printk(KERN_WARNING "lost page write due to "
161 "I/O error on %s\n",
162 bdevname(bh->b_bdev, b));
163 }
164 set_buffer_write_io_error(bh);
165 clear_buffer_uptodate(bh);
166 }
167 unlock_buffer(bh);
168 put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_write_sync);
171
172 /*
173 * Various filesystems appear to want __find_get_block to be non-blocking.
174 * But it's the page lock which protects the buffers. To get around this,
175 * we get exclusion from try_to_free_buffers with the blockdev mapping's
176 * private_lock.
177 *
178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179 * may be quite high. This code could TryLock the page, and if that
180 * succeeds, there is no need to take private_lock. (But if
181 * private_lock is contended then so is mapping->tree_lock).
182 */
183 static struct buffer_head *
184 __find_get_block_slow(struct block_device *bdev, sector_t block)
185 {
186 struct inode *bd_inode = bdev->bd_inode;
187 struct address_space *bd_mapping = bd_inode->i_mapping;
188 struct buffer_head *ret = NULL;
189 pgoff_t index;
190 struct buffer_head *bh;
191 struct buffer_head *head;
192 struct page *page;
193 int all_mapped = 1;
194
195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196 page = find_get_page(bd_mapping, index);
197 if (!page)
198 goto out;
199
200 spin_lock(&bd_mapping->private_lock);
201 if (!page_has_buffers(page))
202 goto out_unlock;
203 head = page_buffers(page);
204 bh = head;
205 do {
206 if (!buffer_mapped(bh))
207 all_mapped = 0;
208 else if (bh->b_blocknr == block) {
209 ret = bh;
210 get_bh(bh);
211 goto out_unlock;
212 }
213 bh = bh->b_this_page;
214 } while (bh != head);
215
216 /* we might be here because some of the buffers on this page are
217 * not mapped. This is due to various races between
218 * file io on the block device and getblk. It gets dealt with
219 * elsewhere, don't buffer_error if we had some unmapped buffers
220 */
221 if (all_mapped) {
222 char b[BDEVNAME_SIZE];
223
224 printk("__find_get_block_slow() failed. "
225 "block=%llu, b_blocknr=%llu\n",
226 (unsigned long long)block,
227 (unsigned long long)bh->b_blocknr);
228 printk("b_state=0x%08lx, b_size=%zu\n",
229 bh->b_state, bh->b_size);
230 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231 1 << bd_inode->i_blkbits);
232 }
233 out_unlock:
234 spin_unlock(&bd_mapping->private_lock);
235 page_cache_release(page);
236 out:
237 return ret;
238 }
239
240 /*
241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
242 */
243 static void free_more_memory(void)
244 {
245 struct zone *zone;
246 int nid;
247
248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249 yield();
250
251 for_each_online_node(nid) {
252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253 gfp_zone(GFP_NOFS), NULL,
254 &zone);
255 if (zone)
256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257 GFP_NOFS, NULL);
258 }
259 }
260
261 /*
262 * I/O completion handler for block_read_full_page() - pages
263 * which come unlocked at the end of I/O.
264 */
265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266 {
267 unsigned long flags;
268 struct buffer_head *first;
269 struct buffer_head *tmp;
270 struct page *page;
271 int page_uptodate = 1;
272
273 BUG_ON(!buffer_async_read(bh));
274
275 page = bh->b_page;
276 if (uptodate) {
277 set_buffer_uptodate(bh);
278 } else {
279 clear_buffer_uptodate(bh);
280 if (!quiet_error(bh))
281 buffer_io_error(bh);
282 SetPageError(page);
283 }
284
285 /*
286 * Be _very_ careful from here on. Bad things can happen if
287 * two buffer heads end IO at almost the same time and both
288 * decide that the page is now completely done.
289 */
290 first = page_buffers(page);
291 local_irq_save(flags);
292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293 clear_buffer_async_read(bh);
294 unlock_buffer(bh);
295 tmp = bh;
296 do {
297 if (!buffer_uptodate(tmp))
298 page_uptodate = 0;
299 if (buffer_async_read(tmp)) {
300 BUG_ON(!buffer_locked(tmp));
301 goto still_busy;
302 }
303 tmp = tmp->b_this_page;
304 } while (tmp != bh);
305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 local_irq_restore(flags);
307
308 /*
309 * If none of the buffers had errors and they are all
310 * uptodate then we can set the page uptodate.
311 */
312 if (page_uptodate && !PageError(page))
313 SetPageUptodate(page);
314 unlock_page(page);
315 return;
316
317 still_busy:
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
320 return;
321 }
322
323 /*
324 * Completion handler for block_write_full_page() - pages which are unlocked
325 * during I/O, and which have PageWriteback cleared upon I/O completion.
326 */
327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
328 {
329 char b[BDEVNAME_SIZE];
330 unsigned long flags;
331 struct buffer_head *first;
332 struct buffer_head *tmp;
333 struct page *page;
334
335 BUG_ON(!buffer_async_write(bh));
336
337 page = bh->b_page;
338 if (uptodate) {
339 set_buffer_uptodate(bh);
340 } else {
341 if (!quiet_error(bh)) {
342 buffer_io_error(bh);
343 printk(KERN_WARNING "lost page write due to "
344 "I/O error on %s\n",
345 bdevname(bh->b_bdev, b));
346 }
347 set_bit(AS_EIO, &page->mapping->flags);
348 set_buffer_write_io_error(bh);
349 clear_buffer_uptodate(bh);
350 SetPageError(page);
351 }
352
353 first = page_buffers(page);
354 local_irq_save(flags);
355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356
357 clear_buffer_async_write(bh);
358 unlock_buffer(bh);
359 tmp = bh->b_this_page;
360 while (tmp != bh) {
361 if (buffer_async_write(tmp)) {
362 BUG_ON(!buffer_locked(tmp));
363 goto still_busy;
364 }
365 tmp = tmp->b_this_page;
366 }
367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368 local_irq_restore(flags);
369 end_page_writeback(page);
370 return;
371
372 still_busy:
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
375 return;
376 }
377 EXPORT_SYMBOL(end_buffer_async_write);
378
379 /*
380 * If a page's buffers are under async readin (end_buffer_async_read
381 * completion) then there is a possibility that another thread of
382 * control could lock one of the buffers after it has completed
383 * but while some of the other buffers have not completed. This
384 * locked buffer would confuse end_buffer_async_read() into not unlocking
385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
386 * that this buffer is not under async I/O.
387 *
388 * The page comes unlocked when it has no locked buffer_async buffers
389 * left.
390 *
391 * PageLocked prevents anyone starting new async I/O reads any of
392 * the buffers.
393 *
394 * PageWriteback is used to prevent simultaneous writeout of the same
395 * page.
396 *
397 * PageLocked prevents anyone from starting writeback of a page which is
398 * under read I/O (PageWriteback is only ever set against a locked page).
399 */
400 static void mark_buffer_async_read(struct buffer_head *bh)
401 {
402 bh->b_end_io = end_buffer_async_read;
403 set_buffer_async_read(bh);
404 }
405
406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407 bh_end_io_t *handler)
408 {
409 bh->b_end_io = handler;
410 set_buffer_async_write(bh);
411 }
412
413 void mark_buffer_async_write(struct buffer_head *bh)
414 {
415 mark_buffer_async_write_endio(bh, end_buffer_async_write);
416 }
417 EXPORT_SYMBOL(mark_buffer_async_write);
418
419
420 /*
421 * fs/buffer.c contains helper functions for buffer-backed address space's
422 * fsync functions. A common requirement for buffer-based filesystems is
423 * that certain data from the backing blockdev needs to be written out for
424 * a successful fsync(). For example, ext2 indirect blocks need to be
425 * written back and waited upon before fsync() returns.
426 *
427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429 * management of a list of dependent buffers at ->i_mapping->private_list.
430 *
431 * Locking is a little subtle: try_to_free_buffers() will remove buffers
432 * from their controlling inode's queue when they are being freed. But
433 * try_to_free_buffers() will be operating against the *blockdev* mapping
434 * at the time, not against the S_ISREG file which depends on those buffers.
435 * So the locking for private_list is via the private_lock in the address_space
436 * which backs the buffers. Which is different from the address_space
437 * against which the buffers are listed. So for a particular address_space,
438 * mapping->private_lock does *not* protect mapping->private_list! In fact,
439 * mapping->private_list will always be protected by the backing blockdev's
440 * ->private_lock.
441 *
442 * Which introduces a requirement: all buffers on an address_space's
443 * ->private_list must be from the same address_space: the blockdev's.
444 *
445 * address_spaces which do not place buffers at ->private_list via these
446 * utility functions are free to use private_lock and private_list for
447 * whatever they want. The only requirement is that list_empty(private_list)
448 * be true at clear_inode() time.
449 *
450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
451 * filesystems should do that. invalidate_inode_buffers() should just go
452 * BUG_ON(!list_empty).
453 *
454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
455 * take an address_space, not an inode. And it should be called
456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457 * queued up.
458 *
459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460 * list if it is already on a list. Because if the buffer is on a list,
461 * it *must* already be on the right one. If not, the filesystem is being
462 * silly. This will save a ton of locking. But first we have to ensure
463 * that buffers are taken *off* the old inode's list when they are freed
464 * (presumably in truncate). That requires careful auditing of all
465 * filesystems (do it inside bforget()). It could also be done by bringing
466 * b_inode back.
467 */
468
469 /*
470 * The buffer's backing address_space's private_lock must be held
471 */
472 static void __remove_assoc_queue(struct buffer_head *bh)
473 {
474 list_del_init(&bh->b_assoc_buffers);
475 WARN_ON(!bh->b_assoc_map);
476 if (buffer_write_io_error(bh))
477 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478 bh->b_assoc_map = NULL;
479 }
480
481 int inode_has_buffers(struct inode *inode)
482 {
483 return !list_empty(&inode->i_data.private_list);
484 }
485
486 /*
487 * osync is designed to support O_SYNC io. It waits synchronously for
488 * all already-submitted IO to complete, but does not queue any new
489 * writes to the disk.
490 *
491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492 * you dirty the buffers, and then use osync_inode_buffers to wait for
493 * completion. Any other dirty buffers which are not yet queued for
494 * write will not be flushed to disk by the osync.
495 */
496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497 {
498 struct buffer_head *bh;
499 struct list_head *p;
500 int err = 0;
501
502 spin_lock(lock);
503 repeat:
504 list_for_each_prev(p, list) {
505 bh = BH_ENTRY(p);
506 if (buffer_locked(bh)) {
507 get_bh(bh);
508 spin_unlock(lock);
509 wait_on_buffer(bh);
510 if (!buffer_uptodate(bh))
511 err = -EIO;
512 brelse(bh);
513 spin_lock(lock);
514 goto repeat;
515 }
516 }
517 spin_unlock(lock);
518 return err;
519 }
520
521 static void do_thaw_one(struct super_block *sb, void *unused)
522 {
523 char b[BDEVNAME_SIZE];
524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525 printk(KERN_WARNING "Emergency Thaw on %s\n",
526 bdevname(sb->s_bdev, b));
527 }
528
529 static void do_thaw_all(struct work_struct *work)
530 {
531 iterate_supers(do_thaw_one, NULL);
532 kfree(work);
533 printk(KERN_WARNING "Emergency Thaw complete\n");
534 }
535
536 /**
537 * emergency_thaw_all -- forcibly thaw every frozen filesystem
538 *
539 * Used for emergency unfreeze of all filesystems via SysRq
540 */
541 void emergency_thaw_all(void)
542 {
543 struct work_struct *work;
544
545 work = kmalloc(sizeof(*work), GFP_ATOMIC);
546 if (work) {
547 INIT_WORK(work, do_thaw_all);
548 schedule_work(work);
549 }
550 }
551
552 /**
553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554 * @mapping: the mapping which wants those buffers written
555 *
556 * Starts I/O against the buffers at mapping->private_list, and waits upon
557 * that I/O.
558 *
559 * Basically, this is a convenience function for fsync().
560 * @mapping is a file or directory which needs those buffers to be written for
561 * a successful fsync().
562 */
563 int sync_mapping_buffers(struct address_space *mapping)
564 {
565 struct address_space *buffer_mapping = mapping->private_data;
566
567 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 return 0;
569
570 return fsync_buffers_list(&buffer_mapping->private_lock,
571 &mapping->private_list);
572 }
573 EXPORT_SYMBOL(sync_mapping_buffers);
574
575 /*
576 * Called when we've recently written block `bblock', and it is known that
577 * `bblock' was for a buffer_boundary() buffer. This means that the block at
578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
579 * dirty, schedule it for IO. So that indirects merge nicely with their data.
580 */
581 void write_boundary_block(struct block_device *bdev,
582 sector_t bblock, unsigned blocksize)
583 {
584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585 if (bh) {
586 if (buffer_dirty(bh))
587 ll_rw_block(WRITE, 1, &bh);
588 put_bh(bh);
589 }
590 }
591
592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593 {
594 struct address_space *mapping = inode->i_mapping;
595 struct address_space *buffer_mapping = bh->b_page->mapping;
596
597 mark_buffer_dirty(bh);
598 if (!mapping->private_data) {
599 mapping->private_data = buffer_mapping;
600 } else {
601 BUG_ON(mapping->private_data != buffer_mapping);
602 }
603 if (!bh->b_assoc_map) {
604 spin_lock(&buffer_mapping->private_lock);
605 list_move_tail(&bh->b_assoc_buffers,
606 &mapping->private_list);
607 bh->b_assoc_map = mapping;
608 spin_unlock(&buffer_mapping->private_lock);
609 }
610 }
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612
613 /*
614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615 * dirty.
616 *
617 * If warn is true, then emit a warning if the page is not uptodate and has
618 * not been truncated.
619 */
620 static void __set_page_dirty(struct page *page,
621 struct address_space *mapping, int warn)
622 {
623 unsigned long flags;
624
625 spin_lock_irqsave(&mapping->tree_lock, flags);
626 if (page->mapping) { /* Race with truncate? */
627 WARN_ON_ONCE(warn && !PageUptodate(page));
628 account_page_dirtied(page, mapping);
629 radix_tree_tag_set(&mapping->page_tree,
630 page_index(page), PAGECACHE_TAG_DIRTY);
631 }
632 spin_unlock_irqrestore(&mapping->tree_lock, flags);
633 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
634 }
635
636 /*
637 * Add a page to the dirty page list.
638 *
639 * It is a sad fact of life that this function is called from several places
640 * deeply under spinlocking. It may not sleep.
641 *
642 * If the page has buffers, the uptodate buffers are set dirty, to preserve
643 * dirty-state coherency between the page and the buffers. It the page does
644 * not have buffers then when they are later attached they will all be set
645 * dirty.
646 *
647 * The buffers are dirtied before the page is dirtied. There's a small race
648 * window in which a writepage caller may see the page cleanness but not the
649 * buffer dirtiness. That's fine. If this code were to set the page dirty
650 * before the buffers, a concurrent writepage caller could clear the page dirty
651 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
652 * page on the dirty page list.
653 *
654 * We use private_lock to lock against try_to_free_buffers while using the
655 * page's buffer list. Also use this to protect against clean buffers being
656 * added to the page after it was set dirty.
657 *
658 * FIXME: may need to call ->reservepage here as well. That's rather up to the
659 * address_space though.
660 */
661 int __set_page_dirty_buffers(struct page *page)
662 {
663 int newly_dirty;
664 struct address_space *mapping = page_mapping(page);
665
666 if (unlikely(!mapping))
667 return !TestSetPageDirty(page);
668
669 spin_lock(&mapping->private_lock);
670 if (page_has_buffers(page)) {
671 struct buffer_head *head = page_buffers(page);
672 struct buffer_head *bh = head;
673
674 do {
675 set_buffer_dirty(bh);
676 bh = bh->b_this_page;
677 } while (bh != head);
678 }
679 newly_dirty = !TestSetPageDirty(page);
680 spin_unlock(&mapping->private_lock);
681
682 if (newly_dirty)
683 __set_page_dirty(page, mapping, 1);
684 return newly_dirty;
685 }
686 EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688 /*
689 * Write out and wait upon a list of buffers.
690 *
691 * We have conflicting pressures: we want to make sure that all
692 * initially dirty buffers get waited on, but that any subsequently
693 * dirtied buffers don't. After all, we don't want fsync to last
694 * forever if somebody is actively writing to the file.
695 *
696 * Do this in two main stages: first we copy dirty buffers to a
697 * temporary inode list, queueing the writes as we go. Then we clean
698 * up, waiting for those writes to complete.
699 *
700 * During this second stage, any subsequent updates to the file may end
701 * up refiling the buffer on the original inode's dirty list again, so
702 * there is a chance we will end up with a buffer queued for write but
703 * not yet completed on that list. So, as a final cleanup we go through
704 * the osync code to catch these locked, dirty buffers without requeuing
705 * any newly dirty buffers for write.
706 */
707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708 {
709 struct buffer_head *bh;
710 struct list_head tmp;
711 struct address_space *mapping;
712 int err = 0, err2;
713 struct blk_plug plug;
714
715 INIT_LIST_HEAD(&tmp);
716 blk_start_plug(&plug);
717
718 spin_lock(lock);
719 while (!list_empty(list)) {
720 bh = BH_ENTRY(list->next);
721 mapping = bh->b_assoc_map;
722 __remove_assoc_queue(bh);
723 /* Avoid race with mark_buffer_dirty_inode() which does
724 * a lockless check and we rely on seeing the dirty bit */
725 smp_mb();
726 if (buffer_dirty(bh) || buffer_locked(bh)) {
727 list_add(&bh->b_assoc_buffers, &tmp);
728 bh->b_assoc_map = mapping;
729 if (buffer_dirty(bh)) {
730 get_bh(bh);
731 spin_unlock(lock);
732 /*
733 * Ensure any pending I/O completes so that
734 * write_dirty_buffer() actually writes the
735 * current contents - it is a noop if I/O is
736 * still in flight on potentially older
737 * contents.
738 */
739 write_dirty_buffer(bh, WRITE_SYNC);
740
741 /*
742 * Kick off IO for the previous mapping. Note
743 * that we will not run the very last mapping,
744 * wait_on_buffer() will do that for us
745 * through sync_buffer().
746 */
747 brelse(bh);
748 spin_lock(lock);
749 }
750 }
751 }
752
753 spin_unlock(lock);
754 blk_finish_plug(&plug);
755 spin_lock(lock);
756
757 while (!list_empty(&tmp)) {
758 bh = BH_ENTRY(tmp.prev);
759 get_bh(bh);
760 mapping = bh->b_assoc_map;
761 __remove_assoc_queue(bh);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
765 if (buffer_dirty(bh)) {
766 list_add(&bh->b_assoc_buffers,
767 &mapping->private_list);
768 bh->b_assoc_map = mapping;
769 }
770 spin_unlock(lock);
771 wait_on_buffer(bh);
772 if (!buffer_uptodate(bh))
773 err = -EIO;
774 brelse(bh);
775 spin_lock(lock);
776 }
777
778 spin_unlock(lock);
779 err2 = osync_buffers_list(lock, list);
780 if (err)
781 return err;
782 else
783 return err2;
784 }
785
786 /*
787 * Invalidate any and all dirty buffers on a given inode. We are
788 * probably unmounting the fs, but that doesn't mean we have already
789 * done a sync(). Just drop the buffers from the inode list.
790 *
791 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
792 * assumes that all the buffers are against the blockdev. Not true
793 * for reiserfs.
794 */
795 void invalidate_inode_buffers(struct inode *inode)
796 {
797 if (inode_has_buffers(inode)) {
798 struct address_space *mapping = &inode->i_data;
799 struct list_head *list = &mapping->private_list;
800 struct address_space *buffer_mapping = mapping->private_data;
801
802 spin_lock(&buffer_mapping->private_lock);
803 while (!list_empty(list))
804 __remove_assoc_queue(BH_ENTRY(list->next));
805 spin_unlock(&buffer_mapping->private_lock);
806 }
807 }
808 EXPORT_SYMBOL(invalidate_inode_buffers);
809
810 /*
811 * Remove any clean buffers from the inode's buffer list. This is called
812 * when we're trying to free the inode itself. Those buffers can pin it.
813 *
814 * Returns true if all buffers were removed.
815 */
816 int remove_inode_buffers(struct inode *inode)
817 {
818 int ret = 1;
819
820 if (inode_has_buffers(inode)) {
821 struct address_space *mapping = &inode->i_data;
822 struct list_head *list = &mapping->private_list;
823 struct address_space *buffer_mapping = mapping->private_data;
824
825 spin_lock(&buffer_mapping->private_lock);
826 while (!list_empty(list)) {
827 struct buffer_head *bh = BH_ENTRY(list->next);
828 if (buffer_dirty(bh)) {
829 ret = 0;
830 break;
831 }
832 __remove_assoc_queue(bh);
833 }
834 spin_unlock(&buffer_mapping->private_lock);
835 }
836 return ret;
837 }
838
839 /*
840 * Create the appropriate buffers when given a page for data area and
841 * the size of each buffer.. Use the bh->b_this_page linked list to
842 * follow the buffers created. Return NULL if unable to create more
843 * buffers.
844 *
845 * The retry flag is used to differentiate async IO (paging, swapping)
846 * which may not fail from ordinary buffer allocations.
847 */
848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849 int retry)
850 {
851 struct buffer_head *bh, *head;
852 long offset;
853
854 try_again:
855 head = NULL;
856 offset = PAGE_SIZE;
857 while ((offset -= size) >= 0) {
858 bh = alloc_buffer_head(GFP_NOFS);
859 if (!bh)
860 goto no_grow;
861
862 bh->b_this_page = head;
863 bh->b_blocknr = -1;
864 head = bh;
865
866 bh->b_size = size;
867
868 /* Link the buffer to its page */
869 set_bh_page(bh, page, offset);
870 }
871 return head;
872 /*
873 * In case anything failed, we just free everything we got.
874 */
875 no_grow:
876 if (head) {
877 do {
878 bh = head;
879 head = head->b_this_page;
880 free_buffer_head(bh);
881 } while (head);
882 }
883
884 /*
885 * Return failure for non-async IO requests. Async IO requests
886 * are not allowed to fail, so we have to wait until buffer heads
887 * become available. But we don't want tasks sleeping with
888 * partially complete buffers, so all were released above.
889 */
890 if (!retry)
891 return NULL;
892
893 /* We're _really_ low on memory. Now we just
894 * wait for old buffer heads to become free due to
895 * finishing IO. Since this is an async request and
896 * the reserve list is empty, we're sure there are
897 * async buffer heads in use.
898 */
899 free_more_memory();
900 goto try_again;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907 struct buffer_head *bh, *tail;
908
909 bh = head;
910 do {
911 tail = bh;
912 bh = bh->b_this_page;
913 } while (bh);
914 tail->b_this_page = head;
915 attach_page_buffers(page, head);
916 }
917
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920 sector_t retval = ~((sector_t)0);
921 loff_t sz = i_size_read(bdev->bd_inode);
922
923 if (sz) {
924 unsigned int sizebits = blksize_bits(size);
925 retval = (sz >> sizebits);
926 }
927 return retval;
928 }
929
930 /*
931 * Initialise the state of a blockdev page's buffers.
932 */
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935 sector_t block, int size)
936 {
937 struct buffer_head *head = page_buffers(page);
938 struct buffer_head *bh = head;
939 int uptodate = PageUptodate(page);
940 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
941
942 do {
943 if (!buffer_mapped(bh)) {
944 init_buffer(bh, NULL, NULL);
945 bh->b_bdev = bdev;
946 bh->b_blocknr = block;
947 if (uptodate)
948 set_buffer_uptodate(bh);
949 if (block < end_block)
950 set_buffer_mapped(bh);
951 }
952 block++;
953 bh = bh->b_this_page;
954 } while (bh != head);
955
956 /*
957 * Caller needs to validate requested block against end of device.
958 */
959 return end_block;
960 }
961
962 /*
963 * Create the page-cache page that contains the requested block.
964 *
965 * This is used purely for blockdev mappings.
966 */
967 static int
968 grow_dev_page(struct block_device *bdev, sector_t block,
969 pgoff_t index, int size, int sizebits)
970 {
971 struct inode *inode = bdev->bd_inode;
972 struct page *page;
973 struct buffer_head *bh;
974 sector_t end_block;
975 int ret = 0; /* Will call free_more_memory() */
976
977 page = find_or_create_page(inode->i_mapping, index,
978 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
979 if (!page)
980 return ret;
981
982 BUG_ON(!PageLocked(page));
983
984 if (page_has_buffers(page)) {
985 bh = page_buffers(page);
986 if (bh->b_size == size) {
987 end_block = init_page_buffers(page, bdev,
988 (sector_t)index << sizebits,
989 size);
990 goto done;
991 }
992 if (!try_to_free_buffers(page))
993 goto failed;
994 }
995
996 /*
997 * Allocate some buffers for this page
998 */
999 bh = alloc_page_buffers(page, size, 0);
1000 if (!bh)
1001 goto failed;
1002
1003 /*
1004 * Link the page to the buffers and initialise them. Take the
1005 * lock to be atomic wrt __find_get_block(), which does not
1006 * run under the page lock.
1007 */
1008 spin_lock(&inode->i_mapping->private_lock);
1009 link_dev_buffers(page, bh);
1010 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1011 size);
1012 spin_unlock(&inode->i_mapping->private_lock);
1013 done:
1014 ret = (block < end_block) ? 1 : -ENXIO;
1015 failed:
1016 unlock_page(page);
1017 page_cache_release(page);
1018 return ret;
1019 }
1020
1021 /*
1022 * Create buffers for the specified block device block's page. If
1023 * that page was dirty, the buffers are set dirty also.
1024 */
1025 static int
1026 grow_buffers(struct block_device *bdev, sector_t block, int size)
1027 {
1028 pgoff_t index;
1029 int sizebits;
1030
1031 sizebits = -1;
1032 do {
1033 sizebits++;
1034 } while ((size << sizebits) < PAGE_SIZE);
1035
1036 index = block >> sizebits;
1037
1038 /*
1039 * Check for a block which wants to lie outside our maximum possible
1040 * pagecache index. (this comparison is done using sector_t types).
1041 */
1042 if (unlikely(index != block >> sizebits)) {
1043 char b[BDEVNAME_SIZE];
1044
1045 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1046 "device %s\n",
1047 __func__, (unsigned long long)block,
1048 bdevname(bdev, b));
1049 return -EIO;
1050 }
1051
1052 /* Create a page with the proper size buffers.. */
1053 return grow_dev_page(bdev, block, index, size, sizebits);
1054 }
1055
1056 static struct buffer_head *
1057 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1058 {
1059 /* Size must be multiple of hard sectorsize */
1060 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1061 (size < 512 || size > PAGE_SIZE))) {
1062 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063 size);
1064 printk(KERN_ERR "logical block size: %d\n",
1065 bdev_logical_block_size(bdev));
1066
1067 dump_stack();
1068 return NULL;
1069 }
1070
1071 for (;;) {
1072 struct buffer_head *bh;
1073 int ret;
1074
1075 bh = __find_get_block(bdev, block, size);
1076 if (bh)
1077 return bh;
1078
1079 ret = grow_buffers(bdev, block, size);
1080 if (ret < 0)
1081 return NULL;
1082 if (ret == 0)
1083 free_more_memory();
1084 }
1085 }
1086
1087 /*
1088 * The relationship between dirty buffers and dirty pages:
1089 *
1090 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1091 * the page is tagged dirty in its radix tree.
1092 *
1093 * At all times, the dirtiness of the buffers represents the dirtiness of
1094 * subsections of the page. If the page has buffers, the page dirty bit is
1095 * merely a hint about the true dirty state.
1096 *
1097 * When a page is set dirty in its entirety, all its buffers are marked dirty
1098 * (if the page has buffers).
1099 *
1100 * When a buffer is marked dirty, its page is dirtied, but the page's other
1101 * buffers are not.
1102 *
1103 * Also. When blockdev buffers are explicitly read with bread(), they
1104 * individually become uptodate. But their backing page remains not
1105 * uptodate - even if all of its buffers are uptodate. A subsequent
1106 * block_read_full_page() against that page will discover all the uptodate
1107 * buffers, will set the page uptodate and will perform no I/O.
1108 */
1109
1110 /**
1111 * mark_buffer_dirty - mark a buffer_head as needing writeout
1112 * @bh: the buffer_head to mark dirty
1113 *
1114 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1115 * backing page dirty, then tag the page as dirty in its address_space's radix
1116 * tree and then attach the address_space's inode to its superblock's dirty
1117 * inode list.
1118 *
1119 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1120 * mapping->tree_lock and mapping->host->i_lock.
1121 */
1122 void mark_buffer_dirty(struct buffer_head *bh)
1123 {
1124 WARN_ON_ONCE(!buffer_uptodate(bh));
1125
1126 trace_block_dirty_buffer(bh);
1127
1128 /*
1129 * Very *carefully* optimize the it-is-already-dirty case.
1130 *
1131 * Don't let the final "is it dirty" escape to before we
1132 * perhaps modified the buffer.
1133 */
1134 if (buffer_dirty(bh)) {
1135 smp_mb();
1136 if (buffer_dirty(bh))
1137 return;
1138 }
1139
1140 if (!test_set_buffer_dirty(bh)) {
1141 struct page *page = bh->b_page;
1142 if (!TestSetPageDirty(page)) {
1143 struct address_space *mapping = page_mapping(page);
1144 if (mapping)
1145 __set_page_dirty(page, mapping, 0);
1146 }
1147 }
1148 }
1149 EXPORT_SYMBOL(mark_buffer_dirty);
1150
1151 /*
1152 * Decrement a buffer_head's reference count. If all buffers against a page
1153 * have zero reference count, are clean and unlocked, and if the page is clean
1154 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1155 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1156 * a page but it ends up not being freed, and buffers may later be reattached).
1157 */
1158 void __brelse(struct buffer_head * buf)
1159 {
1160 if (atomic_read(&buf->b_count)) {
1161 put_bh(buf);
1162 return;
1163 }
1164 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1165 }
1166 EXPORT_SYMBOL(__brelse);
1167
1168 /*
1169 * bforget() is like brelse(), except it discards any
1170 * potentially dirty data.
1171 */
1172 void __bforget(struct buffer_head *bh)
1173 {
1174 clear_buffer_dirty(bh);
1175 if (bh->b_assoc_map) {
1176 struct address_space *buffer_mapping = bh->b_page->mapping;
1177
1178 spin_lock(&buffer_mapping->private_lock);
1179 list_del_init(&bh->b_assoc_buffers);
1180 bh->b_assoc_map = NULL;
1181 spin_unlock(&buffer_mapping->private_lock);
1182 }
1183 __brelse(bh);
1184 }
1185 EXPORT_SYMBOL(__bforget);
1186
1187 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1188 {
1189 lock_buffer(bh);
1190 if (buffer_uptodate(bh)) {
1191 unlock_buffer(bh);
1192 #ifdef FEATURE_STORAGE_META_LOG
1193 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
1194 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, HIT_READ_CNT);
1195 #endif
1196 return bh;
1197 } else {
1198 get_bh(bh);
1199 bh->b_end_io = end_buffer_read_sync;
1200 #ifdef FEATURE_STORAGE_META_LOG
1201 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
1202 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
1203 #endif
1204 submit_bh(READ, bh);
1205 wait_on_buffer(bh);
1206 if (buffer_uptodate(bh))
1207 return bh;
1208 }
1209 brelse(bh);
1210 return NULL;
1211 }
1212
1213 /*
1214 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1215 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1216 * refcount elevated by one when they're in an LRU. A buffer can only appear
1217 * once in a particular CPU's LRU. A single buffer can be present in multiple
1218 * CPU's LRUs at the same time.
1219 *
1220 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1221 * sb_find_get_block().
1222 *
1223 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1224 * a local interrupt disable for that.
1225 */
1226
1227 #define BH_LRU_SIZE 8
1228
1229 struct bh_lru {
1230 struct buffer_head *bhs[BH_LRU_SIZE];
1231 };
1232
1233 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1234
1235 #ifdef CONFIG_SMP
1236 #define bh_lru_lock() local_irq_disable()
1237 #define bh_lru_unlock() local_irq_enable()
1238 #else
1239 #define bh_lru_lock() preempt_disable()
1240 #define bh_lru_unlock() preempt_enable()
1241 #endif
1242
1243 static inline void check_irqs_on(void)
1244 {
1245 #ifdef irqs_disabled
1246 BUG_ON(irqs_disabled());
1247 #endif
1248 }
1249
1250 /*
1251 * The LRU management algorithm is dopey-but-simple. Sorry.
1252 */
1253 static void bh_lru_install(struct buffer_head *bh)
1254 {
1255 struct buffer_head *evictee = NULL;
1256
1257 check_irqs_on();
1258 bh_lru_lock();
1259 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1260 struct buffer_head *bhs[BH_LRU_SIZE];
1261 int in;
1262 int out = 0;
1263
1264 get_bh(bh);
1265 bhs[out++] = bh;
1266 for (in = 0; in < BH_LRU_SIZE; in++) {
1267 struct buffer_head *bh2 =
1268 __this_cpu_read(bh_lrus.bhs[in]);
1269
1270 if (bh2 == bh) {
1271 __brelse(bh2);
1272 } else {
1273 if (out >= BH_LRU_SIZE) {
1274 BUG_ON(evictee != NULL);
1275 evictee = bh2;
1276 } else {
1277 bhs[out++] = bh2;
1278 }
1279 }
1280 }
1281 while (out < BH_LRU_SIZE)
1282 bhs[out++] = NULL;
1283 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1284 }
1285 bh_lru_unlock();
1286
1287 if (evictee)
1288 __brelse(evictee);
1289 }
1290
1291 /*
1292 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1293 */
1294 static struct buffer_head *
1295 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1296 {
1297 struct buffer_head *ret = NULL;
1298 unsigned int i;
1299
1300 check_irqs_on();
1301 bh_lru_lock();
1302 for (i = 0; i < BH_LRU_SIZE; i++) {
1303 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1304
1305 if (bh && bh->b_bdev == bdev &&
1306 bh->b_blocknr == block && bh->b_size == size) {
1307 if (i) {
1308 while (i) {
1309 __this_cpu_write(bh_lrus.bhs[i],
1310 __this_cpu_read(bh_lrus.bhs[i - 1]));
1311 i--;
1312 }
1313 __this_cpu_write(bh_lrus.bhs[0], bh);
1314 }
1315 get_bh(bh);
1316 ret = bh;
1317 break;
1318 }
1319 }
1320 bh_lru_unlock();
1321 return ret;
1322 }
1323
1324 /*
1325 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1326 * it in the LRU and mark it as accessed. If it is not present then return
1327 * NULL
1328 */
1329 struct buffer_head *
1330 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1331 {
1332 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1333
1334 if (bh == NULL) {
1335 bh = __find_get_block_slow(bdev, block);
1336 if (bh)
1337 bh_lru_install(bh);
1338 }
1339 if (bh)
1340 touch_buffer(bh);
1341 return bh;
1342 }
1343 EXPORT_SYMBOL(__find_get_block);
1344
1345 /*
1346 * __getblk will locate (and, if necessary, create) the buffer_head
1347 * which corresponds to the passed block_device, block and size. The
1348 * returned buffer has its reference count incremented.
1349 *
1350 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1351 * attempt is failing. FIXME, perhaps?
1352 */
1353 struct buffer_head *
1354 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1355 {
1356 struct buffer_head *bh = __find_get_block(bdev, block, size);
1357
1358 might_sleep();
1359 if (bh == NULL)
1360 bh = __getblk_slow(bdev, block, size);
1361 return bh;
1362 }
1363 EXPORT_SYMBOL(__getblk);
1364
1365 /*
1366 * Do async read-ahead on a buffer..
1367 */
1368 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1369 {
1370 struct buffer_head *bh = __getblk(bdev, block, size);
1371 if (likely(bh)) {
1372 ll_rw_block(READA, 1, &bh);
1373 brelse(bh);
1374 }
1375 }
1376 EXPORT_SYMBOL(__breadahead);
1377
1378 /**
1379 * __bread() - reads a specified block and returns the bh
1380 * @bdev: the block_device to read from
1381 * @block: number of block
1382 * @size: size (in bytes) to read
1383 *
1384 * Reads a specified block, and returns buffer head that contains it.
1385 * It returns NULL if the block was unreadable.
1386 */
1387 struct buffer_head *
1388 __bread(struct block_device *bdev, sector_t block, unsigned size)
1389 {
1390 struct buffer_head *bh = __getblk(bdev, block, size);
1391
1392 if (likely(bh) && !buffer_uptodate(bh))
1393 bh = __bread_slow(bh);
1394 return bh;
1395 }
1396 EXPORT_SYMBOL(__bread);
1397
1398 /*
1399 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1400 * This doesn't race because it runs in each cpu either in irq
1401 * or with preempt disabled.
1402 */
1403 static void invalidate_bh_lru(void *arg)
1404 {
1405 struct bh_lru *b = &get_cpu_var(bh_lrus);
1406 int i;
1407
1408 for (i = 0; i < BH_LRU_SIZE; i++) {
1409 brelse(b->bhs[i]);
1410 b->bhs[i] = NULL;
1411 }
1412 put_cpu_var(bh_lrus);
1413 }
1414
1415 static bool has_bh_in_lru(int cpu, void *dummy)
1416 {
1417 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1418 int i;
1419
1420 for (i = 0; i < BH_LRU_SIZE; i++) {
1421 if (b->bhs[i])
1422 return 1;
1423 }
1424
1425 return 0;
1426 }
1427
1428 void invalidate_bh_lrus(void)
1429 {
1430 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1431 }
1432 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1433
1434 void set_bh_page(struct buffer_head *bh,
1435 struct page *page, unsigned long offset)
1436 {
1437 bh->b_page = page;
1438 BUG_ON(offset >= PAGE_SIZE);
1439 if (PageHighMem(page))
1440 /*
1441 * This catches illegal uses and preserves the offset:
1442 */
1443 bh->b_data = (char *)(0 + offset);
1444 else
1445 bh->b_data = page_address(page) + offset;
1446 }
1447 EXPORT_SYMBOL(set_bh_page);
1448
1449 /*
1450 * Called when truncating a buffer on a page completely.
1451 */
1452 static void discard_buffer(struct buffer_head * bh)
1453 {
1454 lock_buffer(bh);
1455 clear_buffer_dirty(bh);
1456 bh->b_bdev = NULL;
1457 clear_buffer_mapped(bh);
1458 clear_buffer_req(bh);
1459 clear_buffer_new(bh);
1460 clear_buffer_delay(bh);
1461 clear_buffer_unwritten(bh);
1462 unlock_buffer(bh);
1463 }
1464
1465 /**
1466 * block_invalidatepage - invalidate part or all of a buffer-backed page
1467 *
1468 * @page: the page which is affected
1469 * @offset: the index of the truncation point
1470 *
1471 * block_invalidatepage() is called when all or part of the page has become
1472 * invalidated by a truncate operation.
1473 *
1474 * block_invalidatepage() does not have to release all buffers, but it must
1475 * ensure that no dirty buffer is left outside @offset and that no I/O
1476 * is underway against any of the blocks which are outside the truncation
1477 * point. Because the caller is about to free (and possibly reuse) those
1478 * blocks on-disk.
1479 */
1480 void block_invalidatepage(struct page *page, unsigned long offset)
1481 {
1482 struct buffer_head *head, *bh, *next;
1483 unsigned int curr_off = 0;
1484
1485 BUG_ON(!PageLocked(page));
1486 if (!page_has_buffers(page))
1487 goto out;
1488
1489 head = page_buffers(page);
1490 bh = head;
1491 do {
1492 unsigned int next_off = curr_off + bh->b_size;
1493 next = bh->b_this_page;
1494
1495 /*
1496 * is this block fully invalidated?
1497 */
1498 if (offset <= curr_off)
1499 discard_buffer(bh);
1500 curr_off = next_off;
1501 bh = next;
1502 } while (bh != head);
1503
1504 /*
1505 * We release buffers only if the entire page is being invalidated.
1506 * The get_block cached value has been unconditionally invalidated,
1507 * so real IO is not possible anymore.
1508 */
1509 if (offset == 0)
1510 try_to_release_page(page, 0);
1511 out:
1512 return;
1513 }
1514 EXPORT_SYMBOL(block_invalidatepage);
1515
1516 /*
1517 * We attach and possibly dirty the buffers atomically wrt
1518 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1519 * is already excluded via the page lock.
1520 */
1521 void create_empty_buffers(struct page *page,
1522 unsigned long blocksize, unsigned long b_state)
1523 {
1524 struct buffer_head *bh, *head, *tail;
1525
1526 head = alloc_page_buffers(page, blocksize, 1);
1527 bh = head;
1528 do {
1529 bh->b_state |= b_state;
1530 tail = bh;
1531 bh = bh->b_this_page;
1532 } while (bh);
1533 tail->b_this_page = head;
1534
1535 spin_lock(&page->mapping->private_lock);
1536 if (PageUptodate(page) || PageDirty(page)) {
1537 bh = head;
1538 do {
1539 if (PageDirty(page))
1540 set_buffer_dirty(bh);
1541 if (PageUptodate(page))
1542 set_buffer_uptodate(bh);
1543 bh = bh->b_this_page;
1544 } while (bh != head);
1545 }
1546 attach_page_buffers(page, head);
1547 spin_unlock(&page->mapping->private_lock);
1548 }
1549 EXPORT_SYMBOL(create_empty_buffers);
1550
1551 /*
1552 * We are taking a block for data and we don't want any output from any
1553 * buffer-cache aliases starting from return from that function and
1554 * until the moment when something will explicitly mark the buffer
1555 * dirty (hopefully that will not happen until we will free that block ;-)
1556 * We don't even need to mark it not-uptodate - nobody can expect
1557 * anything from a newly allocated buffer anyway. We used to used
1558 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1559 * don't want to mark the alias unmapped, for example - it would confuse
1560 * anyone who might pick it with bread() afterwards...
1561 *
1562 * Also.. Note that bforget() doesn't lock the buffer. So there can
1563 * be writeout I/O going on against recently-freed buffers. We don't
1564 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1565 * only if we really need to. That happens here.
1566 */
1567 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1568 {
1569 struct buffer_head *old_bh;
1570
1571 might_sleep();
1572
1573 old_bh = __find_get_block_slow(bdev, block);
1574 if (old_bh) {
1575 clear_buffer_dirty(old_bh);
1576 wait_on_buffer(old_bh);
1577 clear_buffer_req(old_bh);
1578 __brelse(old_bh);
1579 }
1580 }
1581 EXPORT_SYMBOL(unmap_underlying_metadata);
1582
1583 /*
1584 * Size is a power-of-two in the range 512..PAGE_SIZE,
1585 * and the case we care about most is PAGE_SIZE.
1586 *
1587 * So this *could* possibly be written with those
1588 * constraints in mind (relevant mostly if some
1589 * architecture has a slow bit-scan instruction)
1590 */
1591 static inline int block_size_bits(unsigned int blocksize)
1592 {
1593 return ilog2(blocksize);
1594 }
1595
1596 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1597 {
1598 BUG_ON(!PageLocked(page));
1599
1600 if (!page_has_buffers(page))
1601 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1602 return page_buffers(page);
1603 }
1604
1605 /*
1606 * NOTE! All mapped/uptodate combinations are valid:
1607 *
1608 * Mapped Uptodate Meaning
1609 *
1610 * No No "unknown" - must do get_block()
1611 * No Yes "hole" - zero-filled
1612 * Yes No "allocated" - allocated on disk, not read in
1613 * Yes Yes "valid" - allocated and up-to-date in memory.
1614 *
1615 * "Dirty" is valid only with the last case (mapped+uptodate).
1616 */
1617
1618 /*
1619 * While block_write_full_page is writing back the dirty buffers under
1620 * the page lock, whoever dirtied the buffers may decide to clean them
1621 * again at any time. We handle that by only looking at the buffer
1622 * state inside lock_buffer().
1623 *
1624 * If block_write_full_page() is called for regular writeback
1625 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1626 * locked buffer. This only can happen if someone has written the buffer
1627 * directly, with submit_bh(). At the address_space level PageWriteback
1628 * prevents this contention from occurring.
1629 *
1630 * If block_write_full_page() is called with wbc->sync_mode ==
1631 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1632 * causes the writes to be flagged as synchronous writes.
1633 */
1634 static int __block_write_full_page(struct inode *inode, struct page *page,
1635 get_block_t *get_block, struct writeback_control *wbc,
1636 bh_end_io_t *handler)
1637 {
1638 int err;
1639 sector_t block;
1640 sector_t last_block;
1641 struct buffer_head *bh, *head;
1642 unsigned int blocksize, bbits;
1643 int nr_underway = 0;
1644 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1645 WRITE_SYNC : WRITE);
1646
1647 head = create_page_buffers(page, inode,
1648 (1 << BH_Dirty)|(1 << BH_Uptodate));
1649
1650 /*
1651 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1652 * here, and the (potentially unmapped) buffers may become dirty at
1653 * any time. If a buffer becomes dirty here after we've inspected it
1654 * then we just miss that fact, and the page stays dirty.
1655 *
1656 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1657 * handle that here by just cleaning them.
1658 */
1659
1660 bh = head;
1661 blocksize = bh->b_size;
1662 bbits = block_size_bits(blocksize);
1663
1664 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1665 last_block = (i_size_read(inode) - 1) >> bbits;
1666
1667 /*
1668 * Get all the dirty buffers mapped to disk addresses and
1669 * handle any aliases from the underlying blockdev's mapping.
1670 */
1671 do {
1672 if (block > last_block) {
1673 /*
1674 * mapped buffers outside i_size will occur, because
1675 * this page can be outside i_size when there is a
1676 * truncate in progress.
1677 */
1678 /*
1679 * The buffer was zeroed by block_write_full_page()
1680 */
1681 clear_buffer_dirty(bh);
1682 set_buffer_uptodate(bh);
1683 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1684 buffer_dirty(bh)) {
1685 WARN_ON(bh->b_size != blocksize);
1686 err = get_block(inode, block, bh, 1);
1687 if (err)
1688 goto recover;
1689 clear_buffer_delay(bh);
1690 if (buffer_new(bh)) {
1691 /* blockdev mappings never come here */
1692 clear_buffer_new(bh);
1693 unmap_underlying_metadata(bh->b_bdev,
1694 bh->b_blocknr);
1695 }
1696 }
1697 bh = bh->b_this_page;
1698 block++;
1699 } while (bh != head);
1700
1701 do {
1702 if (!buffer_mapped(bh))
1703 continue;
1704 /*
1705 * If it's a fully non-blocking write attempt and we cannot
1706 * lock the buffer then redirty the page. Note that this can
1707 * potentially cause a busy-wait loop from writeback threads
1708 * and kswapd activity, but those code paths have their own
1709 * higher-level throttling.
1710 */
1711 if (wbc->sync_mode != WB_SYNC_NONE) {
1712 lock_buffer(bh);
1713 } else if (!trylock_buffer(bh)) {
1714 redirty_page_for_writepage(wbc, page);
1715 continue;
1716 }
1717 if (test_clear_buffer_dirty(bh)) {
1718 mark_buffer_async_write_endio(bh, handler);
1719 } else {
1720 unlock_buffer(bh);
1721 }
1722 } while ((bh = bh->b_this_page) != head);
1723
1724 /*
1725 * The page and its buffers are protected by PageWriteback(), so we can
1726 * drop the bh refcounts early.
1727 */
1728 BUG_ON(PageWriteback(page));
1729 set_page_writeback(page);
1730
1731 do {
1732 struct buffer_head *next = bh->b_this_page;
1733 if (buffer_async_write(bh)) {
1734 submit_bh(write_op, bh);
1735 nr_underway++;
1736 }
1737 bh = next;
1738 } while (bh != head);
1739 unlock_page(page);
1740
1741 err = 0;
1742 done:
1743 if (nr_underway == 0) {
1744 /*
1745 * The page was marked dirty, but the buffers were
1746 * clean. Someone wrote them back by hand with
1747 * ll_rw_block/submit_bh. A rare case.
1748 */
1749 end_page_writeback(page);
1750
1751 /*
1752 * The page and buffer_heads can be released at any time from
1753 * here on.
1754 */
1755 }
1756 return err;
1757
1758 recover:
1759 /*
1760 * ENOSPC, or some other error. We may already have added some
1761 * blocks to the file, so we need to write these out to avoid
1762 * exposing stale data.
1763 * The page is currently locked and not marked for writeback
1764 */
1765 bh = head;
1766 /* Recovery: lock and submit the mapped buffers */
1767 do {
1768 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1769 !buffer_delay(bh)) {
1770 lock_buffer(bh);
1771 mark_buffer_async_write_endio(bh, handler);
1772 } else {
1773 /*
1774 * The buffer may have been set dirty during
1775 * attachment to a dirty page.
1776 */
1777 clear_buffer_dirty(bh);
1778 }
1779 } while ((bh = bh->b_this_page) != head);
1780 SetPageError(page);
1781 BUG_ON(PageWriteback(page));
1782 mapping_set_error(page->mapping, err);
1783 set_page_writeback(page);
1784 do {
1785 struct buffer_head *next = bh->b_this_page;
1786 if (buffer_async_write(bh)) {
1787 clear_buffer_dirty(bh);
1788 submit_bh(write_op, bh);
1789 nr_underway++;
1790 }
1791 bh = next;
1792 } while (bh != head);
1793 unlock_page(page);
1794 goto done;
1795 }
1796
1797 /*
1798 * If a page has any new buffers, zero them out here, and mark them uptodate
1799 * and dirty so they'll be written out (in order to prevent uninitialised
1800 * block data from leaking). And clear the new bit.
1801 */
1802 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1803 {
1804 unsigned int block_start, block_end;
1805 struct buffer_head *head, *bh;
1806
1807 BUG_ON(!PageLocked(page));
1808 if (!page_has_buffers(page))
1809 return;
1810
1811 bh = head = page_buffers(page);
1812 block_start = 0;
1813 do {
1814 block_end = block_start + bh->b_size;
1815
1816 if (buffer_new(bh)) {
1817 if (block_end > from && block_start < to) {
1818 if (!PageUptodate(page)) {
1819 unsigned start, size;
1820
1821 start = max(from, block_start);
1822 size = min(to, block_end) - start;
1823
1824 zero_user(page, start, size);
1825 set_buffer_uptodate(bh);
1826 }
1827
1828 clear_buffer_new(bh);
1829 mark_buffer_dirty(bh);
1830 }
1831 }
1832
1833 block_start = block_end;
1834 bh = bh->b_this_page;
1835 } while (bh != head);
1836 }
1837 EXPORT_SYMBOL(page_zero_new_buffers);
1838
1839 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1840 get_block_t *get_block)
1841 {
1842 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1843 unsigned to = from + len;
1844 struct inode *inode = page->mapping->host;
1845 unsigned block_start, block_end;
1846 sector_t block;
1847 int err = 0;
1848 unsigned blocksize, bbits;
1849 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1850
1851 BUG_ON(!PageLocked(page));
1852 BUG_ON(from > PAGE_CACHE_SIZE);
1853 BUG_ON(to > PAGE_CACHE_SIZE);
1854 BUG_ON(from > to);
1855
1856 head = create_page_buffers(page, inode, 0);
1857 blocksize = head->b_size;
1858 bbits = block_size_bits(blocksize);
1859
1860 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1861
1862 for(bh = head, block_start = 0; bh != head || !block_start;
1863 block++, block_start=block_end, bh = bh->b_this_page) {
1864 block_end = block_start + blocksize;
1865 if (block_end <= from || block_start >= to) {
1866 if (PageUptodate(page)) {
1867 if (!buffer_uptodate(bh))
1868 set_buffer_uptodate(bh);
1869 }
1870 continue;
1871 }
1872 if (buffer_new(bh))
1873 clear_buffer_new(bh);
1874 if (!buffer_mapped(bh)) {
1875 WARN_ON(bh->b_size != blocksize);
1876 err = get_block(inode, block, bh, 1);
1877 if (err)
1878 break;
1879 if (buffer_new(bh)) {
1880 unmap_underlying_metadata(bh->b_bdev,
1881 bh->b_blocknr);
1882 if (PageUptodate(page)) {
1883 clear_buffer_new(bh);
1884 set_buffer_uptodate(bh);
1885 mark_buffer_dirty(bh);
1886 continue;
1887 }
1888 if (block_end > to || block_start < from)
1889 zero_user_segments(page,
1890 to, block_end,
1891 block_start, from);
1892 continue;
1893 }
1894 }
1895 if (PageUptodate(page)) {
1896 if (!buffer_uptodate(bh))
1897 set_buffer_uptodate(bh);
1898 continue;
1899 }
1900 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1901 !buffer_unwritten(bh) &&
1902 (block_start < from || block_end > to)) {
1903 ll_rw_block(READ, 1, &bh);
1904 *wait_bh++=bh;
1905 }
1906 }
1907 /*
1908 * If we issued read requests - let them complete.
1909 */
1910 while(wait_bh > wait) {
1911 wait_on_buffer(*--wait_bh);
1912 if (!buffer_uptodate(*wait_bh))
1913 err = -EIO;
1914 }
1915 if (unlikely(err))
1916 page_zero_new_buffers(page, from, to);
1917 return err;
1918 }
1919 EXPORT_SYMBOL(__block_write_begin);
1920
1921 static int __block_commit_write(struct inode *inode, struct page *page,
1922 unsigned from, unsigned to)
1923 {
1924 unsigned block_start, block_end;
1925 int partial = 0;
1926 unsigned blocksize;
1927 struct buffer_head *bh, *head;
1928
1929 bh = head = page_buffers(page);
1930 blocksize = bh->b_size;
1931
1932 block_start = 0;
1933 do {
1934 block_end = block_start + blocksize;
1935 if (block_end <= from || block_start >= to) {
1936 if (!buffer_uptodate(bh))
1937 partial = 1;
1938 } else {
1939 set_buffer_uptodate(bh);
1940 mark_buffer_dirty(bh);
1941 }
1942 clear_buffer_new(bh);
1943
1944 block_start = block_end;
1945 bh = bh->b_this_page;
1946 } while (bh != head);
1947
1948 /*
1949 * If this is a partial write which happened to make all buffers
1950 * uptodate then we can optimize away a bogus readpage() for
1951 * the next read(). Here we 'discover' whether the page went
1952 * uptodate as a result of this (potentially partial) write.
1953 */
1954 if (!partial)
1955 SetPageUptodate(page);
1956 return 0;
1957 }
1958
1959 /*
1960 * block_write_begin takes care of the basic task of block allocation and
1961 * bringing partial write blocks uptodate first.
1962 *
1963 * The filesystem needs to handle block truncation upon failure.
1964 */
1965 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1966 unsigned flags, struct page **pagep, get_block_t *get_block)
1967 {
1968 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1969 struct page *page;
1970 int status;
1971
1972 page = grab_cache_page_write_begin(mapping, index, flags);
1973 if (!page)
1974 return -ENOMEM;
1975
1976 status = __block_write_begin(page, pos, len, get_block);
1977 if (unlikely(status)) {
1978 unlock_page(page);
1979 page_cache_release(page);
1980 page = NULL;
1981 }
1982
1983 *pagep = page;
1984 return status;
1985 }
1986 EXPORT_SYMBOL(block_write_begin);
1987
1988 int block_write_end(struct file *file, struct address_space *mapping,
1989 loff_t pos, unsigned len, unsigned copied,
1990 struct page *page, void *fsdata)
1991 {
1992 struct inode *inode = mapping->host;
1993 unsigned start;
1994
1995 start = pos & (PAGE_CACHE_SIZE - 1);
1996
1997 if (unlikely(copied < len)) {
1998 /*
1999 * The buffers that were written will now be uptodate, so we
2000 * don't have to worry about a readpage reading them and
2001 * overwriting a partial write. However if we have encountered
2002 * a short write and only partially written into a buffer, it
2003 * will not be marked uptodate, so a readpage might come in and
2004 * destroy our partial write.
2005 *
2006 * Do the simplest thing, and just treat any short write to a
2007 * non uptodate page as a zero-length write, and force the
2008 * caller to redo the whole thing.
2009 */
2010 if (!PageUptodate(page))
2011 copied = 0;
2012
2013 page_zero_new_buffers(page, start+copied, start+len);
2014 }
2015 flush_dcache_page(page);
2016
2017 /* This could be a short (even 0-length) commit */
2018 __block_commit_write(inode, page, start, start+copied);
2019
2020 return copied;
2021 }
2022 EXPORT_SYMBOL(block_write_end);
2023
2024 int generic_write_end(struct file *file, struct address_space *mapping,
2025 loff_t pos, unsigned len, unsigned copied,
2026 struct page *page, void *fsdata)
2027 {
2028 struct inode *inode = mapping->host;
2029 loff_t old_size = inode->i_size;
2030 int i_size_changed = 0;
2031
2032 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2033
2034 /*
2035 * No need to use i_size_read() here, the i_size
2036 * cannot change under us because we hold i_mutex.
2037 *
2038 * But it's important to update i_size while still holding page lock:
2039 * page writeout could otherwise come in and zero beyond i_size.
2040 */
2041 if (pos+copied > inode->i_size) {
2042 i_size_write(inode, pos+copied);
2043 i_size_changed = 1;
2044 }
2045
2046 unlock_page(page);
2047 page_cache_release(page);
2048
2049 if (old_size < pos)
2050 pagecache_isize_extended(inode, old_size, pos);
2051 /*
2052 * Don't mark the inode dirty under page lock. First, it unnecessarily
2053 * makes the holding time of page lock longer. Second, it forces lock
2054 * ordering of page lock and transaction start for journaling
2055 * filesystems.
2056 */
2057 if (i_size_changed)
2058 mark_inode_dirty(inode);
2059
2060 return copied;
2061 }
2062 EXPORT_SYMBOL(generic_write_end);
2063
2064 /*
2065 * block_is_partially_uptodate checks whether buffers within a page are
2066 * uptodate or not.
2067 *
2068 * Returns true if all buffers which correspond to a file portion
2069 * we want to read are uptodate.
2070 */
2071 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2072 unsigned long from)
2073 {
2074 unsigned block_start, block_end, blocksize;
2075 unsigned to;
2076 struct buffer_head *bh, *head;
2077 int ret = 1;
2078
2079 if (!page_has_buffers(page))
2080 return 0;
2081
2082 head = page_buffers(page);
2083 blocksize = head->b_size;
2084 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2085 to = from + to;
2086 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2087 return 0;
2088
2089 bh = head;
2090 block_start = 0;
2091 do {
2092 block_end = block_start + blocksize;
2093 if (block_end > from && block_start < to) {
2094 if (!buffer_uptodate(bh)) {
2095 ret = 0;
2096 break;
2097 }
2098 if (block_end >= to)
2099 break;
2100 }
2101 block_start = block_end;
2102 bh = bh->b_this_page;
2103 } while (bh != head);
2104
2105 return ret;
2106 }
2107 EXPORT_SYMBOL(block_is_partially_uptodate);
2108
2109 /*
2110 * Generic "read page" function for block devices that have the normal
2111 * get_block functionality. This is most of the block device filesystems.
2112 * Reads the page asynchronously --- the unlock_buffer() and
2113 * set/clear_buffer_uptodate() functions propagate buffer state into the
2114 * page struct once IO has completed.
2115 */
2116 int block_read_full_page(struct page *page, get_block_t *get_block)
2117 {
2118 struct inode *inode = page->mapping->host;
2119 sector_t iblock, lblock;
2120 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2121 unsigned int blocksize, bbits;
2122 int nr, i;
2123 int fully_mapped = 1;
2124
2125 head = create_page_buffers(page, inode, 0);
2126 blocksize = head->b_size;
2127 bbits = block_size_bits(blocksize);
2128
2129 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2130 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2131 bh = head;
2132 nr = 0;
2133 i = 0;
2134
2135 do {
2136 if (buffer_uptodate(bh))
2137 continue;
2138
2139 if (!buffer_mapped(bh)) {
2140 int err = 0;
2141
2142 fully_mapped = 0;
2143 if (iblock < lblock) {
2144 WARN_ON(bh->b_size != blocksize);
2145 err = get_block(inode, iblock, bh, 0);
2146 if (err)
2147 SetPageError(page);
2148 }
2149 if (!buffer_mapped(bh)) {
2150 zero_user(page, i * blocksize, blocksize);
2151 if (!err)
2152 set_buffer_uptodate(bh);
2153 continue;
2154 }
2155 /*
2156 * get_block() might have updated the buffer
2157 * synchronously
2158 */
2159 if (buffer_uptodate(bh))
2160 continue;
2161 }
2162 arr[nr++] = bh;
2163 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2164
2165 if (fully_mapped)
2166 SetPageMappedToDisk(page);
2167
2168 if (!nr) {
2169 /*
2170 * All buffers are uptodate - we can set the page uptodate
2171 * as well. But not if get_block() returned an error.
2172 */
2173 if (!PageError(page))
2174 SetPageUptodate(page);
2175 unlock_page(page);
2176 return 0;
2177 }
2178
2179 /* Stage two: lock the buffers */
2180 for (i = 0; i < nr; i++) {
2181 bh = arr[i];
2182 lock_buffer(bh);
2183 mark_buffer_async_read(bh);
2184 }
2185
2186 /*
2187 * Stage 3: start the IO. Check for uptodateness
2188 * inside the buffer lock in case another process reading
2189 * the underlying blockdev brought it uptodate (the sct fix).
2190 */
2191 for (i = 0; i < nr; i++) {
2192 bh = arr[i];
2193 if (buffer_uptodate(bh))
2194 end_buffer_async_read(bh, 1);
2195 else
2196 submit_bh(READ, bh);
2197 }
2198 return 0;
2199 }
2200 EXPORT_SYMBOL(block_read_full_page);
2201
2202 /* utility function for filesystems that need to do work on expanding
2203 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2204 * deal with the hole.
2205 */
2206 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2207 {
2208 struct address_space *mapping = inode->i_mapping;
2209 struct page *page;
2210 void *fsdata;
2211 int err;
2212
2213 err = inode_newsize_ok(inode, size);
2214 if (err)
2215 goto out;
2216
2217 err = pagecache_write_begin(NULL, mapping, size, 0,
2218 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2219 &page, &fsdata);
2220 if (err)
2221 goto out;
2222
2223 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2224 BUG_ON(err > 0);
2225
2226 out:
2227 return err;
2228 }
2229 EXPORT_SYMBOL(generic_cont_expand_simple);
2230
2231 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2232 loff_t pos, loff_t *bytes)
2233 {
2234 struct inode *inode = mapping->host;
2235 unsigned blocksize = 1 << inode->i_blkbits;
2236 struct page *page;
2237 void *fsdata;
2238 pgoff_t index, curidx;
2239 loff_t curpos;
2240 unsigned zerofrom, offset, len;
2241 int err = 0;
2242
2243 index = pos >> PAGE_CACHE_SHIFT;
2244 offset = pos & ~PAGE_CACHE_MASK;
2245
2246 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2247 zerofrom = curpos & ~PAGE_CACHE_MASK;
2248 if (zerofrom & (blocksize-1)) {
2249 *bytes |= (blocksize-1);
2250 (*bytes)++;
2251 }
2252 len = PAGE_CACHE_SIZE - zerofrom;
2253
2254 err = pagecache_write_begin(file, mapping, curpos, len,
2255 AOP_FLAG_UNINTERRUPTIBLE,
2256 &page, &fsdata);
2257 if (err)
2258 goto out;
2259 zero_user(page, zerofrom, len);
2260 err = pagecache_write_end(file, mapping, curpos, len, len,
2261 page, fsdata);
2262 if (err < 0)
2263 goto out;
2264 BUG_ON(err != len);
2265 err = 0;
2266
2267 balance_dirty_pages_ratelimited(mapping);
2268
2269 if (unlikely(fatal_signal_pending(current))) {
2270 err = -EINTR;
2271 goto out;
2272 }
2273 }
2274
2275 /* page covers the boundary, find the boundary offset */
2276 if (index == curidx) {
2277 zerofrom = curpos & ~PAGE_CACHE_MASK;
2278 /* if we will expand the thing last block will be filled */
2279 if (offset <= zerofrom) {
2280 goto out;
2281 }
2282 if (zerofrom & (blocksize-1)) {
2283 *bytes |= (blocksize-1);
2284 (*bytes)++;
2285 }
2286 len = offset - zerofrom;
2287
2288 err = pagecache_write_begin(file, mapping, curpos, len,
2289 AOP_FLAG_UNINTERRUPTIBLE,
2290 &page, &fsdata);
2291 if (err)
2292 goto out;
2293 zero_user(page, zerofrom, len);
2294 err = pagecache_write_end(file, mapping, curpos, len, len,
2295 page, fsdata);
2296 if (err < 0)
2297 goto out;
2298 BUG_ON(err != len);
2299 err = 0;
2300 }
2301 out:
2302 return err;
2303 }
2304
2305 /*
2306 * For moronic filesystems that do not allow holes in file.
2307 * We may have to extend the file.
2308 */
2309 int cont_write_begin(struct file *file, struct address_space *mapping,
2310 loff_t pos, unsigned len, unsigned flags,
2311 struct page **pagep, void **fsdata,
2312 get_block_t *get_block, loff_t *bytes)
2313 {
2314 struct inode *inode = mapping->host;
2315 unsigned blocksize = 1 << inode->i_blkbits;
2316 unsigned zerofrom;
2317 int err;
2318
2319 err = cont_expand_zero(file, mapping, pos, bytes);
2320 if (err)
2321 return err;
2322
2323 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2324 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2325 *bytes |= (blocksize-1);
2326 (*bytes)++;
2327 }
2328
2329 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2330 }
2331 EXPORT_SYMBOL(cont_write_begin);
2332
2333 int block_commit_write(struct page *page, unsigned from, unsigned to)
2334 {
2335 struct inode *inode = page->mapping->host;
2336 __block_commit_write(inode,page,from,to);
2337 return 0;
2338 }
2339 EXPORT_SYMBOL(block_commit_write);
2340
2341 /*
2342 * block_page_mkwrite() is not allowed to change the file size as it gets
2343 * called from a page fault handler when a page is first dirtied. Hence we must
2344 * be careful to check for EOF conditions here. We set the page up correctly
2345 * for a written page which means we get ENOSPC checking when writing into
2346 * holes and correct delalloc and unwritten extent mapping on filesystems that
2347 * support these features.
2348 *
2349 * We are not allowed to take the i_mutex here so we have to play games to
2350 * protect against truncate races as the page could now be beyond EOF. Because
2351 * truncate writes the inode size before removing pages, once we have the
2352 * page lock we can determine safely if the page is beyond EOF. If it is not
2353 * beyond EOF, then the page is guaranteed safe against truncation until we
2354 * unlock the page.
2355 *
2356 * Direct callers of this function should protect against filesystem freezing
2357 * using sb_start_write() - sb_end_write() functions.
2358 */
2359 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2360 get_block_t get_block)
2361 {
2362 struct page *page = vmf->page;
2363 struct inode *inode = file_inode(vma->vm_file);
2364 unsigned long end;
2365 loff_t size;
2366 int ret;
2367
2368 lock_page(page);
2369 size = i_size_read(inode);
2370 if ((page->mapping != inode->i_mapping) ||
2371 (page_offset(page) > size)) {
2372 /* We overload EFAULT to mean page got truncated */
2373 ret = -EFAULT;
2374 goto out_unlock;
2375 }
2376
2377 /* page is wholly or partially inside EOF */
2378 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2379 end = size & ~PAGE_CACHE_MASK;
2380 else
2381 end = PAGE_CACHE_SIZE;
2382
2383 ret = __block_write_begin(page, 0, end, get_block);
2384 if (!ret)
2385 ret = block_commit_write(page, 0, end);
2386
2387 if (unlikely(ret < 0))
2388 goto out_unlock;
2389 set_page_dirty(page);
2390 wait_for_stable_page(page);
2391 return 0;
2392 out_unlock:
2393 unlock_page(page);
2394 return ret;
2395 }
2396 EXPORT_SYMBOL(__block_page_mkwrite);
2397
2398 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2399 get_block_t get_block)
2400 {
2401 int ret;
2402 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2403
2404 sb_start_pagefault(sb);
2405
2406 /*
2407 * Update file times before taking page lock. We may end up failing the
2408 * fault so this update may be superfluous but who really cares...
2409 */
2410 file_update_time(vma->vm_file);
2411
2412 ret = __block_page_mkwrite(vma, vmf, get_block);
2413 sb_end_pagefault(sb);
2414 return block_page_mkwrite_return(ret);
2415 }
2416 EXPORT_SYMBOL(block_page_mkwrite);
2417
2418 /*
2419 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2420 * immediately, while under the page lock. So it needs a special end_io
2421 * handler which does not touch the bh after unlocking it.
2422 */
2423 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2424 {
2425 __end_buffer_read_notouch(bh, uptodate);
2426 }
2427
2428 /*
2429 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2430 * the page (converting it to circular linked list and taking care of page
2431 * dirty races).
2432 */
2433 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2434 {
2435 struct buffer_head *bh;
2436
2437 BUG_ON(!PageLocked(page));
2438
2439 spin_lock(&page->mapping->private_lock);
2440 bh = head;
2441 do {
2442 if (PageDirty(page))
2443 set_buffer_dirty(bh);
2444 if (!bh->b_this_page)
2445 bh->b_this_page = head;
2446 bh = bh->b_this_page;
2447 } while (bh != head);
2448 attach_page_buffers(page, head);
2449 spin_unlock(&page->mapping->private_lock);
2450 }
2451
2452 /*
2453 * On entry, the page is fully not uptodate.
2454 * On exit the page is fully uptodate in the areas outside (from,to)
2455 * The filesystem needs to handle block truncation upon failure.
2456 */
2457 int nobh_write_begin(struct address_space *mapping,
2458 loff_t pos, unsigned len, unsigned flags,
2459 struct page **pagep, void **fsdata,
2460 get_block_t *get_block)
2461 {
2462 struct inode *inode = mapping->host;
2463 const unsigned blkbits = inode->i_blkbits;
2464 const unsigned blocksize = 1 << blkbits;
2465 struct buffer_head *head, *bh;
2466 struct page *page;
2467 pgoff_t index;
2468 unsigned from, to;
2469 unsigned block_in_page;
2470 unsigned block_start, block_end;
2471 sector_t block_in_file;
2472 int nr_reads = 0;
2473 int ret = 0;
2474 int is_mapped_to_disk = 1;
2475
2476 index = pos >> PAGE_CACHE_SHIFT;
2477 from = pos & (PAGE_CACHE_SIZE - 1);
2478 to = from + len;
2479
2480 page = grab_cache_page_write_begin(mapping, index, flags);
2481 if (!page)
2482 return -ENOMEM;
2483 *pagep = page;
2484 *fsdata = NULL;
2485
2486 if (page_has_buffers(page)) {
2487 ret = __block_write_begin(page, pos, len, get_block);
2488 if (unlikely(ret))
2489 goto out_release;
2490 return ret;
2491 }
2492
2493 if (PageMappedToDisk(page))
2494 return 0;
2495
2496 /*
2497 * Allocate buffers so that we can keep track of state, and potentially
2498 * attach them to the page if an error occurs. In the common case of
2499 * no error, they will just be freed again without ever being attached
2500 * to the page (which is all OK, because we're under the page lock).
2501 *
2502 * Be careful: the buffer linked list is a NULL terminated one, rather
2503 * than the circular one we're used to.
2504 */
2505 head = alloc_page_buffers(page, blocksize, 0);
2506 if (!head) {
2507 ret = -ENOMEM;
2508 goto out_release;
2509 }
2510
2511 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2512
2513 /*
2514 * We loop across all blocks in the page, whether or not they are
2515 * part of the affected region. This is so we can discover if the
2516 * page is fully mapped-to-disk.
2517 */
2518 for (block_start = 0, block_in_page = 0, bh = head;
2519 block_start < PAGE_CACHE_SIZE;
2520 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2521 int create;
2522
2523 block_end = block_start + blocksize;
2524 bh->b_state = 0;
2525 create = 1;
2526 if (block_start >= to)
2527 create = 0;
2528 ret = get_block(inode, block_in_file + block_in_page,
2529 bh, create);
2530 if (ret)
2531 goto failed;
2532 if (!buffer_mapped(bh))
2533 is_mapped_to_disk = 0;
2534 if (buffer_new(bh))
2535 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2536 if (PageUptodate(page)) {
2537 set_buffer_uptodate(bh);
2538 continue;
2539 }
2540 if (buffer_new(bh) || !buffer_mapped(bh)) {
2541 zero_user_segments(page, block_start, from,
2542 to, block_end);
2543 continue;
2544 }
2545 if (buffer_uptodate(bh))
2546 continue; /* reiserfs does this */
2547 if (block_start < from || block_end > to) {
2548 lock_buffer(bh);
2549 bh->b_end_io = end_buffer_read_nobh;
2550 submit_bh(READ, bh);
2551 nr_reads++;
2552 }
2553 }
2554
2555 if (nr_reads) {
2556 /*
2557 * The page is locked, so these buffers are protected from
2558 * any VM or truncate activity. Hence we don't need to care
2559 * for the buffer_head refcounts.
2560 */
2561 for (bh = head; bh; bh = bh->b_this_page) {
2562 wait_on_buffer(bh);
2563 if (!buffer_uptodate(bh))
2564 ret = -EIO;
2565 }
2566 if (ret)
2567 goto failed;
2568 }
2569
2570 if (is_mapped_to_disk)
2571 SetPageMappedToDisk(page);
2572
2573 *fsdata = head; /* to be released by nobh_write_end */
2574
2575 return 0;
2576
2577 failed:
2578 BUG_ON(!ret);
2579 /*
2580 * Error recovery is a bit difficult. We need to zero out blocks that
2581 * were newly allocated, and dirty them to ensure they get written out.
2582 * Buffers need to be attached to the page at this point, otherwise
2583 * the handling of potential IO errors during writeout would be hard
2584 * (could try doing synchronous writeout, but what if that fails too?)
2585 */
2586 attach_nobh_buffers(page, head);
2587 page_zero_new_buffers(page, from, to);
2588
2589 out_release:
2590 unlock_page(page);
2591 page_cache_release(page);
2592 *pagep = NULL;
2593
2594 return ret;
2595 }
2596 EXPORT_SYMBOL(nobh_write_begin);
2597
2598 int nobh_write_end(struct file *file, struct address_space *mapping,
2599 loff_t pos, unsigned len, unsigned copied,
2600 struct page *page, void *fsdata)
2601 {
2602 struct inode *inode = page->mapping->host;
2603 struct buffer_head *head = fsdata;
2604 struct buffer_head *bh;
2605 BUG_ON(fsdata != NULL && page_has_buffers(page));
2606
2607 if (unlikely(copied < len) && head)
2608 attach_nobh_buffers(page, head);
2609 if (page_has_buffers(page))
2610 return generic_write_end(file, mapping, pos, len,
2611 copied, page, fsdata);
2612
2613 SetPageUptodate(page);
2614 set_page_dirty(page);
2615 if (pos+copied > inode->i_size) {
2616 i_size_write(inode, pos+copied);
2617 mark_inode_dirty(inode);
2618 }
2619
2620 unlock_page(page);
2621 page_cache_release(page);
2622
2623 while (head) {
2624 bh = head;
2625 head = head->b_this_page;
2626 free_buffer_head(bh);
2627 }
2628
2629 return copied;
2630 }
2631 EXPORT_SYMBOL(nobh_write_end);
2632
2633 /*
2634 * nobh_writepage() - based on block_full_write_page() except
2635 * that it tries to operate without attaching bufferheads to
2636 * the page.
2637 */
2638 int nobh_writepage(struct page *page, get_block_t *get_block,
2639 struct writeback_control *wbc)
2640 {
2641 struct inode * const inode = page->mapping->host;
2642 loff_t i_size = i_size_read(inode);
2643 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2644 unsigned offset;
2645 int ret;
2646
2647 /* Is the page fully inside i_size? */
2648 if (page->index < end_index)
2649 goto out;
2650
2651 /* Is the page fully outside i_size? (truncate in progress) */
2652 offset = i_size & (PAGE_CACHE_SIZE-1);
2653 if (page->index >= end_index+1 || !offset) {
2654 /*
2655 * The page may have dirty, unmapped buffers. For example,
2656 * they may have been added in ext3_writepage(). Make them
2657 * freeable here, so the page does not leak.
2658 */
2659 #if 0
2660 /* Not really sure about this - do we need this ? */
2661 if (page->mapping->a_ops->invalidatepage)
2662 page->mapping->a_ops->invalidatepage(page, offset);
2663 #endif
2664 unlock_page(page);
2665 return 0; /* don't care */
2666 }
2667
2668 /*
2669 * The page straddles i_size. It must be zeroed out on each and every
2670 * writepage invocation because it may be mmapped. "A file is mapped
2671 * in multiples of the page size. For a file that is not a multiple of
2672 * the page size, the remaining memory is zeroed when mapped, and
2673 * writes to that region are not written out to the file."
2674 */
2675 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2676 out:
2677 ret = mpage_writepage(page, get_block, wbc);
2678 if (ret == -EAGAIN)
2679 ret = __block_write_full_page(inode, page, get_block, wbc,
2680 end_buffer_async_write);
2681 return ret;
2682 }
2683 EXPORT_SYMBOL(nobh_writepage);
2684
2685 int nobh_truncate_page(struct address_space *mapping,
2686 loff_t from, get_block_t *get_block)
2687 {
2688 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2689 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2690 unsigned blocksize;
2691 sector_t iblock;
2692 unsigned length, pos;
2693 struct inode *inode = mapping->host;
2694 struct page *page;
2695 struct buffer_head map_bh;
2696 int err;
2697
2698 blocksize = 1 << inode->i_blkbits;
2699 length = offset & (blocksize - 1);
2700
2701 /* Block boundary? Nothing to do */
2702 if (!length)
2703 return 0;
2704
2705 length = blocksize - length;
2706 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2707
2708 page = grab_cache_page(mapping, index);
2709 err = -ENOMEM;
2710 if (!page)
2711 goto out;
2712
2713 if (page_has_buffers(page)) {
2714 has_buffers:
2715 unlock_page(page);
2716 page_cache_release(page);
2717 return block_truncate_page(mapping, from, get_block);
2718 }
2719
2720 /* Find the buffer that contains "offset" */
2721 pos = blocksize;
2722 while (offset >= pos) {
2723 iblock++;
2724 pos += blocksize;
2725 }
2726
2727 map_bh.b_size = blocksize;
2728 map_bh.b_state = 0;
2729 err = get_block(inode, iblock, &map_bh, 0);
2730 if (err)
2731 goto unlock;
2732 /* unmapped? It's a hole - nothing to do */
2733 if (!buffer_mapped(&map_bh))
2734 goto unlock;
2735
2736 /* Ok, it's mapped. Make sure it's up-to-date */
2737 if (!PageUptodate(page)) {
2738 err = mapping->a_ops->readpage(NULL, page);
2739 if (err) {
2740 page_cache_release(page);
2741 goto out;
2742 }
2743 lock_page(page);
2744 if (!PageUptodate(page)) {
2745 err = -EIO;
2746 goto unlock;
2747 }
2748 if (page_has_buffers(page))
2749 goto has_buffers;
2750 }
2751 zero_user(page, offset, length);
2752 set_page_dirty(page);
2753 err = 0;
2754
2755 unlock:
2756 unlock_page(page);
2757 page_cache_release(page);
2758 out:
2759 return err;
2760 }
2761 EXPORT_SYMBOL(nobh_truncate_page);
2762
2763 int block_truncate_page(struct address_space *mapping,
2764 loff_t from, get_block_t *get_block)
2765 {
2766 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2767 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2768 unsigned blocksize;
2769 sector_t iblock;
2770 unsigned length, pos;
2771 struct inode *inode = mapping->host;
2772 struct page *page;
2773 struct buffer_head *bh;
2774 int err;
2775
2776 blocksize = 1 << inode->i_blkbits;
2777 length = offset & (blocksize - 1);
2778
2779 /* Block boundary? Nothing to do */
2780 if (!length)
2781 return 0;
2782
2783 length = blocksize - length;
2784 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2785
2786 page = grab_cache_page(mapping, index);
2787 err = -ENOMEM;
2788 if (!page)
2789 goto out;
2790
2791 if (!page_has_buffers(page))
2792 create_empty_buffers(page, blocksize, 0);
2793
2794 /* Find the buffer that contains "offset" */
2795 bh = page_buffers(page);
2796 pos = blocksize;
2797 while (offset >= pos) {
2798 bh = bh->b_this_page;
2799 iblock++;
2800 pos += blocksize;
2801 }
2802
2803 err = 0;
2804 if (!buffer_mapped(bh)) {
2805 WARN_ON(bh->b_size != blocksize);
2806 err = get_block(inode, iblock, bh, 0);
2807 if (err)
2808 goto unlock;
2809 /* unmapped? It's a hole - nothing to do */
2810 if (!buffer_mapped(bh))
2811 goto unlock;
2812 }
2813
2814 /* Ok, it's mapped. Make sure it's up-to-date */
2815 if (PageUptodate(page))
2816 set_buffer_uptodate(bh);
2817
2818 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2819 err = -EIO;
2820 ll_rw_block(READ, 1, &bh);
2821 wait_on_buffer(bh);
2822 /* Uhhuh. Read error. Complain and punt. */
2823 if (!buffer_uptodate(bh))
2824 goto unlock;
2825 }
2826
2827 zero_user(page, offset, length);
2828 mark_buffer_dirty(bh);
2829 err = 0;
2830
2831 unlock:
2832 unlock_page(page);
2833 page_cache_release(page);
2834 out:
2835 return err;
2836 }
2837 EXPORT_SYMBOL(block_truncate_page);
2838
2839 /*
2840 * The generic ->writepage function for buffer-backed address_spaces
2841 * this form passes in the end_io handler used to finish the IO.
2842 */
2843 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2844 struct writeback_control *wbc, bh_end_io_t *handler)
2845 {
2846 struct inode * const inode = page->mapping->host;
2847 loff_t i_size = i_size_read(inode);
2848 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2849 unsigned offset;
2850
2851 /* Is the page fully inside i_size? */
2852 if (page->index < end_index)
2853 return __block_write_full_page(inode, page, get_block, wbc,
2854 handler);
2855
2856 /* Is the page fully outside i_size? (truncate in progress) */
2857 offset = i_size & (PAGE_CACHE_SIZE-1);
2858 if (page->index >= end_index+1 || !offset) {
2859 /*
2860 * The page may have dirty, unmapped buffers. For example,
2861 * they may have been added in ext3_writepage(). Make them
2862 * freeable here, so the page does not leak.
2863 */
2864 do_invalidatepage(page, 0);
2865 unlock_page(page);
2866 return 0; /* don't care */
2867 }
2868
2869 /*
2870 * The page straddles i_size. It must be zeroed out on each and every
2871 * writepage invocation because it may be mmapped. "A file is mapped
2872 * in multiples of the page size. For a file that is not a multiple of
2873 * the page size, the remaining memory is zeroed when mapped, and
2874 * writes to that region are not written out to the file."
2875 */
2876 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2877 return __block_write_full_page(inode, page, get_block, wbc, handler);
2878 }
2879 EXPORT_SYMBOL(block_write_full_page_endio);
2880
2881 /*
2882 * The generic ->writepage function for buffer-backed address_spaces
2883 */
2884 int block_write_full_page(struct page *page, get_block_t *get_block,
2885 struct writeback_control *wbc)
2886 {
2887 return block_write_full_page_endio(page, get_block, wbc,
2888 end_buffer_async_write);
2889 }
2890 EXPORT_SYMBOL(block_write_full_page);
2891
2892 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2893 get_block_t *get_block)
2894 {
2895 struct buffer_head tmp;
2896 struct inode *inode = mapping->host;
2897 tmp.b_state = 0;
2898 tmp.b_blocknr = 0;
2899 tmp.b_size = 1 << inode->i_blkbits;
2900 get_block(inode, block, &tmp, 0);
2901 return tmp.b_blocknr;
2902 }
2903 EXPORT_SYMBOL(generic_block_bmap);
2904
2905 static void end_bio_bh_io_sync(struct bio *bio, int err)
2906 {
2907 struct buffer_head *bh = bio->bi_private;
2908
2909 if (err == -EOPNOTSUPP) {
2910 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2911 }
2912
2913 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2914 set_bit(BH_Quiet, &bh->b_state);
2915
2916 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2917 bio_put(bio);
2918 }
2919
2920 /*
2921 * This allows us to do IO even on the odd last sectors
2922 * of a device, even if the bh block size is some multiple
2923 * of the physical sector size.
2924 *
2925 * We'll just truncate the bio to the size of the device,
2926 * and clear the end of the buffer head manually.
2927 *
2928 * Truly out-of-range accesses will turn into actual IO
2929 * errors, this only handles the "we need to be able to
2930 * do IO at the final sector" case.
2931 */
2932 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2933 {
2934 sector_t maxsector;
2935 unsigned bytes;
2936
2937 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2938 if (!maxsector)
2939 return;
2940
2941 /*
2942 * If the *whole* IO is past the end of the device,
2943 * let it through, and the IO layer will turn it into
2944 * an EIO.
2945 */
2946 if (unlikely(bio->bi_sector >= maxsector))
2947 return;
2948
2949 maxsector -= bio->bi_sector;
2950 bytes = bio->bi_size;
2951 if (likely((bytes >> 9) <= maxsector))
2952 return;
2953
2954 /* Uhhuh. We've got a bh that straddles the device size! */
2955 bytes = maxsector << 9;
2956
2957 /* Truncate the bio.. */
2958 bio->bi_size = bytes;
2959 bio->bi_io_vec[0].bv_len = bytes;
2960
2961 /* ..and clear the end of the buffer for reads */
2962 if ((rw & RW_MASK) == READ) {
2963 void *kaddr = kmap_atomic(bh->b_page);
2964 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2965 kunmap_atomic(kaddr);
2966 flush_dcache_page(bh->b_page);
2967 }
2968 }
2969
2970 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
2971 {
2972 struct bio *bio;
2973 int ret = 0;
2974
2975 BUG_ON(!buffer_locked(bh));
2976 BUG_ON(!buffer_mapped(bh));
2977 BUG_ON(!bh->b_end_io);
2978 BUG_ON(buffer_delay(bh));
2979 BUG_ON(buffer_unwritten(bh));
2980
2981 /*
2982 * Only clear out a write error when rewriting
2983 */
2984 if (test_set_buffer_req(bh) && (rw & WRITE))
2985 clear_buffer_write_io_error(bh);
2986
2987 /*
2988 * from here on down, it's all bio -- do the initial mapping,
2989 * submit_bio -> generic_make_request may further map this bio around
2990 */
2991 bio = bio_alloc(GFP_NOIO, 1);
2992
2993 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2994 bio->bi_bdev = bh->b_bdev;
2995 bio->bi_io_vec[0].bv_page = bh->b_page;
2996 bio->bi_io_vec[0].bv_len = bh->b_size;
2997 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2998
2999 bio->bi_vcnt = 1;
3000 bio->bi_size = bh->b_size;
3001
3002 bio->bi_end_io = end_bio_bh_io_sync;
3003 bio->bi_private = bh;
3004 bio->bi_flags |= bio_flags;
3005
3006 /* Take care of bh's that straddle the end of the device */
3007 guard_bh_eod(rw, bio, bh);
3008
3009 if (buffer_meta(bh))
3010 rw |= REQ_META;
3011 if (buffer_prio(bh))
3012 rw |= REQ_PRIO;
3013
3014 bio_get(bio);
3015 submit_bio(rw, bio);
3016
3017 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3018 ret = -EOPNOTSUPP;
3019
3020 bio_put(bio);
3021 return ret;
3022 }
3023 EXPORT_SYMBOL_GPL(_submit_bh);
3024
3025 int submit_bh(int rw, struct buffer_head *bh)
3026 {
3027 return _submit_bh(rw, bh, 0);
3028 }
3029 EXPORT_SYMBOL(submit_bh);
3030
3031 /**
3032 * ll_rw_block: low-level access to block devices (DEPRECATED)
3033 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3034 * @nr: number of &struct buffer_heads in the array
3035 * @bhs: array of pointers to &struct buffer_head
3036 *
3037 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3038 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3039 * %READA option is described in the documentation for generic_make_request()
3040 * which ll_rw_block() calls.
3041 *
3042 * This function drops any buffer that it cannot get a lock on (with the
3043 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3044 * request, and any buffer that appears to be up-to-date when doing read
3045 * request. Further it marks as clean buffers that are processed for
3046 * writing (the buffer cache won't assume that they are actually clean
3047 * until the buffer gets unlocked).
3048 *
3049 * ll_rw_block sets b_end_io to simple completion handler that marks
3050 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3051 * any waiters.
3052 *
3053 * All of the buffers must be for the same device, and must also be a
3054 * multiple of the current approved size for the device.
3055 */
3056 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3057 {
3058 int i;
3059
3060 for (i = 0; i < nr; i++) {
3061 struct buffer_head *bh = bhs[i];
3062
3063 if (!trylock_buffer(bh))
3064 continue;
3065 if (rw == WRITE) {
3066 if (test_clear_buffer_dirty(bh)) {
3067 bh->b_end_io = end_buffer_write_sync;
3068 get_bh(bh);
3069 submit_bh(WRITE, bh);
3070 continue;
3071 }
3072 } else {
3073 if (!buffer_uptodate(bh)) {
3074 bh->b_end_io = end_buffer_read_sync;
3075 get_bh(bh);
3076 submit_bh(rw, bh);
3077 continue;
3078 }
3079 }
3080 unlock_buffer(bh);
3081 }
3082 }
3083 EXPORT_SYMBOL(ll_rw_block);
3084
3085 void write_dirty_buffer(struct buffer_head *bh, int rw)
3086 {
3087 lock_buffer(bh);
3088 if (!test_clear_buffer_dirty(bh)) {
3089 unlock_buffer(bh);
3090 return;
3091 }
3092 bh->b_end_io = end_buffer_write_sync;
3093 get_bh(bh);
3094 submit_bh(rw, bh);
3095 }
3096 EXPORT_SYMBOL(write_dirty_buffer);
3097
3098 /*
3099 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3100 * and then start new I/O and then wait upon it. The caller must have a ref on
3101 * the buffer_head.
3102 */
3103 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3104 {
3105 int ret = 0;
3106
3107 WARN_ON(atomic_read(&bh->b_count) < 1);
3108 lock_buffer(bh);
3109 if (test_clear_buffer_dirty(bh)) {
3110 get_bh(bh);
3111 bh->b_end_io = end_buffer_write_sync;
3112 #ifdef FEATURE_STORAGE_META_LOG
3113 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
3114 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_WRITE_CNT);
3115 #endif
3116 ret = submit_bh(rw, bh);
3117 wait_on_buffer(bh);
3118 if (!ret && !buffer_uptodate(bh))
3119 ret = -EIO;
3120 } else {
3121 unlock_buffer(bh);
3122 }
3123 return ret;
3124 }
3125 EXPORT_SYMBOL(__sync_dirty_buffer);
3126
3127 int sync_dirty_buffer(struct buffer_head *bh)
3128 {
3129 return __sync_dirty_buffer(bh, WRITE_SYNC);
3130 }
3131 EXPORT_SYMBOL(sync_dirty_buffer);
3132
3133 /*
3134 * try_to_free_buffers() checks if all the buffers on this particular page
3135 * are unused, and releases them if so.
3136 *
3137 * Exclusion against try_to_free_buffers may be obtained by either
3138 * locking the page or by holding its mapping's private_lock.
3139 *
3140 * If the page is dirty but all the buffers are clean then we need to
3141 * be sure to mark the page clean as well. This is because the page
3142 * may be against a block device, and a later reattachment of buffers
3143 * to a dirty page will set *all* buffers dirty. Which would corrupt
3144 * filesystem data on the same device.
3145 *
3146 * The same applies to regular filesystem pages: if all the buffers are
3147 * clean then we set the page clean and proceed. To do that, we require
3148 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3149 * private_lock.
3150 *
3151 * try_to_free_buffers() is non-blocking.
3152 */
3153 static inline int buffer_busy(struct buffer_head *bh)
3154 {
3155 return atomic_read(&bh->b_count) |
3156 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3157 }
3158
3159 static int
3160 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3161 {
3162 struct buffer_head *head = page_buffers(page);
3163 struct buffer_head *bh;
3164
3165 bh = head;
3166 do {
3167 if (buffer_write_io_error(bh) && page->mapping)
3168 set_bit(AS_EIO, &page->mapping->flags);
3169 if (buffer_busy(bh))
3170 goto failed;
3171 bh = bh->b_this_page;
3172 } while (bh != head);
3173
3174 do {
3175 struct buffer_head *next = bh->b_this_page;
3176
3177 if (bh->b_assoc_map)
3178 __remove_assoc_queue(bh);
3179 bh = next;
3180 } while (bh != head);
3181 *buffers_to_free = head;
3182 __clear_page_buffers(page);
3183 return 1;
3184 failed:
3185 return 0;
3186 }
3187
3188 int try_to_free_buffers(struct page *page)
3189 {
3190 struct address_space * const mapping = page->mapping;
3191 struct buffer_head *buffers_to_free = NULL;
3192 int ret = 0;
3193
3194 BUG_ON(!PageLocked(page));
3195 if (PageWriteback(page))
3196 return 0;
3197
3198 if (mapping == NULL) { /* can this still happen? */
3199 ret = drop_buffers(page, &buffers_to_free);
3200 goto out;
3201 }
3202
3203 spin_lock(&mapping->private_lock);
3204 ret = drop_buffers(page, &buffers_to_free);
3205
3206 /*
3207 * If the filesystem writes its buffers by hand (eg ext3)
3208 * then we can have clean buffers against a dirty page. We
3209 * clean the page here; otherwise the VM will never notice
3210 * that the filesystem did any IO at all.
3211 *
3212 * Also, during truncate, discard_buffer will have marked all
3213 * the page's buffers clean. We discover that here and clean
3214 * the page also.
3215 *
3216 * private_lock must be held over this entire operation in order
3217 * to synchronise against __set_page_dirty_buffers and prevent the
3218 * dirty bit from being lost.
3219 */
3220 if (ret)
3221 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3222 spin_unlock(&mapping->private_lock);
3223 out:
3224 if (buffers_to_free) {
3225 struct buffer_head *bh = buffers_to_free;
3226
3227 do {
3228 struct buffer_head *next = bh->b_this_page;
3229 free_buffer_head(bh);
3230 bh = next;
3231 } while (bh != buffers_to_free);
3232 }
3233 return ret;
3234 }
3235 EXPORT_SYMBOL(try_to_free_buffers);
3236
3237 /*
3238 * There are no bdflush tunables left. But distributions are
3239 * still running obsolete flush daemons, so we terminate them here.
3240 *
3241 * Use of bdflush() is deprecated and will be removed in a future kernel.
3242 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3243 */
3244 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3245 {
3246 static int msg_count;
3247
3248 if (!capable(CAP_SYS_ADMIN))
3249 return -EPERM;
3250
3251 if (msg_count < 5) {
3252 msg_count++;
3253 printk(KERN_INFO
3254 "warning: process `%s' used the obsolete bdflush"
3255 " system call\n", current->comm);
3256 printk(KERN_INFO "Fix your initscripts?\n");
3257 }
3258
3259 if (func == 1)
3260 do_exit(0);
3261 return 0;
3262 }
3263
3264 /*
3265 * Buffer-head allocation
3266 */
3267 static struct kmem_cache *bh_cachep __read_mostly;
3268
3269 /*
3270 * Once the number of bh's in the machine exceeds this level, we start
3271 * stripping them in writeback.
3272 */
3273 static unsigned long max_buffer_heads;
3274
3275 int buffer_heads_over_limit;
3276
3277 struct bh_accounting {
3278 int nr; /* Number of live bh's */
3279 int ratelimit; /* Limit cacheline bouncing */
3280 };
3281
3282 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3283
3284 static void recalc_bh_state(void)
3285 {
3286 int i;
3287 int tot = 0;
3288
3289 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3290 return;
3291 __this_cpu_write(bh_accounting.ratelimit, 0);
3292 for_each_online_cpu(i)
3293 tot += per_cpu(bh_accounting, i).nr;
3294 buffer_heads_over_limit = (tot > max_buffer_heads);
3295 }
3296
3297 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3298 {
3299 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3300 if (ret) {
3301 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3302 preempt_disable();
3303 __this_cpu_inc(bh_accounting.nr);
3304 recalc_bh_state();
3305 preempt_enable();
3306 }
3307 return ret;
3308 }
3309 EXPORT_SYMBOL(alloc_buffer_head);
3310
3311 void free_buffer_head(struct buffer_head *bh)
3312 {
3313 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3314 kmem_cache_free(bh_cachep, bh);
3315 preempt_disable();
3316 __this_cpu_dec(bh_accounting.nr);
3317 recalc_bh_state();
3318 preempt_enable();
3319 }
3320 EXPORT_SYMBOL(free_buffer_head);
3321
3322 static void buffer_exit_cpu(int cpu)
3323 {
3324 int i;
3325 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3326
3327 for (i = 0; i < BH_LRU_SIZE; i++) {
3328 brelse(b->bhs[i]);
3329 b->bhs[i] = NULL;
3330 }
3331 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3332 per_cpu(bh_accounting, cpu).nr = 0;
3333 }
3334
3335 static int buffer_cpu_notify(struct notifier_block *self,
3336 unsigned long action, void *hcpu)
3337 {
3338 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3339 buffer_exit_cpu((unsigned long)hcpu);
3340 return NOTIFY_OK;
3341 }
3342
3343 /**
3344 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3345 * @bh: struct buffer_head
3346 *
3347 * Return true if the buffer is up-to-date and false,
3348 * with the buffer locked, if not.
3349 */
3350 int bh_uptodate_or_lock(struct buffer_head *bh)
3351 {
3352 if (!buffer_uptodate(bh)) {
3353 lock_buffer(bh);
3354 if (!buffer_uptodate(bh))
3355 return 0;
3356 unlock_buffer(bh);
3357 }
3358 return 1;
3359 }
3360 EXPORT_SYMBOL(bh_uptodate_or_lock);
3361
3362 /**
3363 * bh_submit_read - Submit a locked buffer for reading
3364 * @bh: struct buffer_head
3365 *
3366 * Returns zero on success and -EIO on error.
3367 */
3368 int bh_submit_read(struct buffer_head *bh)
3369 {
3370 BUG_ON(!buffer_locked(bh));
3371
3372 if (buffer_uptodate(bh)) {
3373 unlock_buffer(bh);
3374 return 0;
3375 }
3376
3377 get_bh(bh);
3378 bh->b_end_io = end_buffer_read_sync;
3379 #ifdef FEATURE_STORAGE_META_LOG
3380 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
3381 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
3382 #endif
3383 submit_bh(READ, bh);
3384 wait_on_buffer(bh);
3385 if (buffer_uptodate(bh))
3386 return 0;
3387 return -EIO;
3388 }
3389 EXPORT_SYMBOL(bh_submit_read);
3390
3391 void __init buffer_init(void)
3392 {
3393 unsigned long nrpages;
3394
3395 bh_cachep = kmem_cache_create("buffer_head",
3396 sizeof(struct buffer_head), 0,
3397 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3398 SLAB_MEM_SPREAD),
3399 NULL);
3400
3401 /*
3402 * Limit the bh occupancy to 10% of ZONE_NORMAL
3403 */
3404 nrpages = (nr_free_buffer_pages() * 10) / 100;
3405 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3406 hotcpu_notifier(buffer_cpu_notify, 0);
3407 }