block: don't mark buffers beyond end of disk as mapped
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 static int sleep_on_buffer(void *word)
58 {
59 io_schedule();
60 return 0;
61 }
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_clear_bit();
74 wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79 * Block until a buffer comes unlocked. This doesn't stop it
80 * from becoming locked again - you have to lock it yourself
81 * if you want to preserve its state.
82 */
83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88
89 static void
90 __clear_page_buffers(struct page *page)
91 {
92 ClearPagePrivate(page);
93 set_page_private(page, 0);
94 page_cache_release(page);
95 }
96
97
98 static int quiet_error(struct buffer_head *bh)
99 {
100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 return 0;
102 return 1;
103 }
104
105
106 static void buffer_io_error(struct buffer_head *bh)
107 {
108 char b[BDEVNAME_SIZE];
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
112 }
113
114 /*
115 * End-of-IO handler helper function which does not touch the bh after
116 * unlocking it.
117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118 * a race there is benign: unlock_buffer() only use the bh's address for
119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 * itself.
121 */
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124 if (uptodate) {
125 set_buffer_uptodate(bh);
126 } else {
127 /* This happens, due to failed READA attempts. */
128 clear_buffer_uptodate(bh);
129 }
130 unlock_buffer(bh);
131 }
132
133 /*
134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
135 * unlock the buffer. This is what ll_rw_block uses too.
136 */
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139 __end_buffer_read_notouch(bh, uptodate);
140 put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146 char b[BDEVNAME_SIZE];
147
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
151 if (!quiet_error(bh)) {
152 buffer_io_error(bh);
153 printk(KERN_WARNING "lost page write due to "
154 "I/O error on %s\n",
155 bdevname(bh->b_bdev, b));
156 }
157 set_buffer_write_io_error(bh);
158 clear_buffer_uptodate(bh);
159 }
160 unlock_buffer(bh);
161 put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164
165 /*
166 * Various filesystems appear to want __find_get_block to be non-blocking.
167 * But it's the page lock which protects the buffers. To get around this,
168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
169 * private_lock.
170 *
171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172 * may be quite high. This code could TryLock the page, and if that
173 * succeeds, there is no need to take private_lock. (But if
174 * private_lock is contended then so is mapping->tree_lock).
175 */
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179 struct inode *bd_inode = bdev->bd_inode;
180 struct address_space *bd_mapping = bd_inode->i_mapping;
181 struct buffer_head *ret = NULL;
182 pgoff_t index;
183 struct buffer_head *bh;
184 struct buffer_head *head;
185 struct page *page;
186 int all_mapped = 1;
187
188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 page = find_get_page(bd_mapping, index);
190 if (!page)
191 goto out;
192
193 spin_lock(&bd_mapping->private_lock);
194 if (!page_has_buffers(page))
195 goto out_unlock;
196 head = page_buffers(page);
197 bh = head;
198 do {
199 if (!buffer_mapped(bh))
200 all_mapped = 0;
201 else if (bh->b_blocknr == block) {
202 ret = bh;
203 get_bh(bh);
204 goto out_unlock;
205 }
206 bh = bh->b_this_page;
207 } while (bh != head);
208
209 /* we might be here because some of the buffers on this page are
210 * not mapped. This is due to various races between
211 * file io on the block device and getblk. It gets dealt with
212 * elsewhere, don't buffer_error if we had some unmapped buffers
213 */
214 if (all_mapped) {
215 char b[BDEVNAME_SIZE];
216
217 printk("__find_get_block_slow() failed. "
218 "block=%llu, b_blocknr=%llu\n",
219 (unsigned long long)block,
220 (unsigned long long)bh->b_blocknr);
221 printk("b_state=0x%08lx, b_size=%zu\n",
222 bh->b_state, bh->b_size);
223 printk("device %s blocksize: %d\n", bdevname(bdev, b),
224 1 << bd_inode->i_blkbits);
225 }
226 out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229 out:
230 return ret;
231 }
232
233 /*
234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235 */
236 static void free_more_memory(void)
237 {
238 struct zone *zone;
239 int nid;
240
241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
242 yield();
243
244 for_each_online_node(nid) {
245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246 gfp_zone(GFP_NOFS), NULL,
247 &zone);
248 if (zone)
249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
250 GFP_NOFS, NULL);
251 }
252 }
253
254 /*
255 * I/O completion handler for block_read_full_page() - pages
256 * which come unlocked at the end of I/O.
257 */
258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
259 {
260 unsigned long flags;
261 struct buffer_head *first;
262 struct buffer_head *tmp;
263 struct page *page;
264 int page_uptodate = 1;
265
266 BUG_ON(!buffer_async_read(bh));
267
268 page = bh->b_page;
269 if (uptodate) {
270 set_buffer_uptodate(bh);
271 } else {
272 clear_buffer_uptodate(bh);
273 if (!quiet_error(bh))
274 buffer_io_error(bh);
275 SetPageError(page);
276 }
277
278 /*
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
282 */
283 first = page_buffers(page);
284 local_irq_save(flags);
285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 clear_buffer_async_read(bh);
287 unlock_buffer(bh);
288 tmp = bh;
289 do {
290 if (!buffer_uptodate(tmp))
291 page_uptodate = 0;
292 if (buffer_async_read(tmp)) {
293 BUG_ON(!buffer_locked(tmp));
294 goto still_busy;
295 }
296 tmp = tmp->b_this_page;
297 } while (tmp != bh);
298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 local_irq_restore(flags);
300
301 /*
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
304 */
305 if (page_uptodate && !PageError(page))
306 SetPageUptodate(page);
307 unlock_page(page);
308 return;
309
310 still_busy:
311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 local_irq_restore(flags);
313 return;
314 }
315
316 /*
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
319 */
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322 char b[BDEVNAME_SIZE];
323 unsigned long flags;
324 struct buffer_head *first;
325 struct buffer_head *tmp;
326 struct page *page;
327
328 BUG_ON(!buffer_async_write(bh));
329
330 page = bh->b_page;
331 if (uptodate) {
332 set_buffer_uptodate(bh);
333 } else {
334 if (!quiet_error(bh)) {
335 buffer_io_error(bh);
336 printk(KERN_WARNING "lost page write due to "
337 "I/O error on %s\n",
338 bdevname(bh->b_bdev, b));
339 }
340 set_bit(AS_EIO, &page->mapping->flags);
341 set_buffer_write_io_error(bh);
342 clear_buffer_uptodate(bh);
343 SetPageError(page);
344 }
345
346 first = page_buffers(page);
347 local_irq_save(flags);
348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349
350 clear_buffer_async_write(bh);
351 unlock_buffer(bh);
352 tmp = bh->b_this_page;
353 while (tmp != bh) {
354 if (buffer_async_write(tmp)) {
355 BUG_ON(!buffer_locked(tmp));
356 goto still_busy;
357 }
358 tmp = tmp->b_this_page;
359 }
360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 local_irq_restore(flags);
362 end_page_writeback(page);
363 return;
364
365 still_busy:
366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367 local_irq_restore(flags);
368 return;
369 }
370 EXPORT_SYMBOL(end_buffer_async_write);
371
372 /*
373 * If a page's buffers are under async readin (end_buffer_async_read
374 * completion) then there is a possibility that another thread of
375 * control could lock one of the buffers after it has completed
376 * but while some of the other buffers have not completed. This
377 * locked buffer would confuse end_buffer_async_read() into not unlocking
378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
379 * that this buffer is not under async I/O.
380 *
381 * The page comes unlocked when it has no locked buffer_async buffers
382 * left.
383 *
384 * PageLocked prevents anyone starting new async I/O reads any of
385 * the buffers.
386 *
387 * PageWriteback is used to prevent simultaneous writeout of the same
388 * page.
389 *
390 * PageLocked prevents anyone from starting writeback of a page which is
391 * under read I/O (PageWriteback is only ever set against a locked page).
392 */
393 static void mark_buffer_async_read(struct buffer_head *bh)
394 {
395 bh->b_end_io = end_buffer_async_read;
396 set_buffer_async_read(bh);
397 }
398
399 static void mark_buffer_async_write_endio(struct buffer_head *bh,
400 bh_end_io_t *handler)
401 {
402 bh->b_end_io = handler;
403 set_buffer_async_write(bh);
404 }
405
406 void mark_buffer_async_write(struct buffer_head *bh)
407 {
408 mark_buffer_async_write_endio(bh, end_buffer_async_write);
409 }
410 EXPORT_SYMBOL(mark_buffer_async_write);
411
412
413 /*
414 * fs/buffer.c contains helper functions for buffer-backed address space's
415 * fsync functions. A common requirement for buffer-based filesystems is
416 * that certain data from the backing blockdev needs to be written out for
417 * a successful fsync(). For example, ext2 indirect blocks need to be
418 * written back and waited upon before fsync() returns.
419 *
420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422 * management of a list of dependent buffers at ->i_mapping->private_list.
423 *
424 * Locking is a little subtle: try_to_free_buffers() will remove buffers
425 * from their controlling inode's queue when they are being freed. But
426 * try_to_free_buffers() will be operating against the *blockdev* mapping
427 * at the time, not against the S_ISREG file which depends on those buffers.
428 * So the locking for private_list is via the private_lock in the address_space
429 * which backs the buffers. Which is different from the address_space
430 * against which the buffers are listed. So for a particular address_space,
431 * mapping->private_lock does *not* protect mapping->private_list! In fact,
432 * mapping->private_list will always be protected by the backing blockdev's
433 * ->private_lock.
434 *
435 * Which introduces a requirement: all buffers on an address_space's
436 * ->private_list must be from the same address_space: the blockdev's.
437 *
438 * address_spaces which do not place buffers at ->private_list via these
439 * utility functions are free to use private_lock and private_list for
440 * whatever they want. The only requirement is that list_empty(private_list)
441 * be true at clear_inode() time.
442 *
443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
444 * filesystems should do that. invalidate_inode_buffers() should just go
445 * BUG_ON(!list_empty).
446 *
447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
448 * take an address_space, not an inode. And it should be called
449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450 * queued up.
451 *
452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453 * list if it is already on a list. Because if the buffer is on a list,
454 * it *must* already be on the right one. If not, the filesystem is being
455 * silly. This will save a ton of locking. But first we have to ensure
456 * that buffers are taken *off* the old inode's list when they are freed
457 * (presumably in truncate). That requires careful auditing of all
458 * filesystems (do it inside bforget()). It could also be done by bringing
459 * b_inode back.
460 */
461
462 /*
463 * The buffer's backing address_space's private_lock must be held
464 */
465 static void __remove_assoc_queue(struct buffer_head *bh)
466 {
467 list_del_init(&bh->b_assoc_buffers);
468 WARN_ON(!bh->b_assoc_map);
469 if (buffer_write_io_error(bh))
470 set_bit(AS_EIO, &bh->b_assoc_map->flags);
471 bh->b_assoc_map = NULL;
472 }
473
474 int inode_has_buffers(struct inode *inode)
475 {
476 return !list_empty(&inode->i_data.private_list);
477 }
478
479 /*
480 * osync is designed to support O_SYNC io. It waits synchronously for
481 * all already-submitted IO to complete, but does not queue any new
482 * writes to the disk.
483 *
484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485 * you dirty the buffers, and then use osync_inode_buffers to wait for
486 * completion. Any other dirty buffers which are not yet queued for
487 * write will not be flushed to disk by the osync.
488 */
489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490 {
491 struct buffer_head *bh;
492 struct list_head *p;
493 int err = 0;
494
495 spin_lock(lock);
496 repeat:
497 list_for_each_prev(p, list) {
498 bh = BH_ENTRY(p);
499 if (buffer_locked(bh)) {
500 get_bh(bh);
501 spin_unlock(lock);
502 wait_on_buffer(bh);
503 if (!buffer_uptodate(bh))
504 err = -EIO;
505 brelse(bh);
506 spin_lock(lock);
507 goto repeat;
508 }
509 }
510 spin_unlock(lock);
511 return err;
512 }
513
514 static void do_thaw_one(struct super_block *sb, void *unused)
515 {
516 char b[BDEVNAME_SIZE];
517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518 printk(KERN_WARNING "Emergency Thaw on %s\n",
519 bdevname(sb->s_bdev, b));
520 }
521
522 static void do_thaw_all(struct work_struct *work)
523 {
524 iterate_supers(do_thaw_one, NULL);
525 kfree(work);
526 printk(KERN_WARNING "Emergency Thaw complete\n");
527 }
528
529 /**
530 * emergency_thaw_all -- forcibly thaw every frozen filesystem
531 *
532 * Used for emergency unfreeze of all filesystems via SysRq
533 */
534 void emergency_thaw_all(void)
535 {
536 struct work_struct *work;
537
538 work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 if (work) {
540 INIT_WORK(work, do_thaw_all);
541 schedule_work(work);
542 }
543 }
544
545 /**
546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547 * @mapping: the mapping which wants those buffers written
548 *
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
550 * that I/O.
551 *
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
555 */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558 struct address_space *buffer_mapping = mapping->assoc_mapping;
559
560 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 return 0;
562
563 return fsync_buffers_list(&buffer_mapping->private_lock,
564 &mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567
568 /*
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
573 */
574 void write_boundary_block(struct block_device *bdev,
575 sector_t bblock, unsigned blocksize)
576 {
577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 if (bh) {
579 if (buffer_dirty(bh))
580 ll_rw_block(WRITE, 1, &bh);
581 put_bh(bh);
582 }
583 }
584
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587 struct address_space *mapping = inode->i_mapping;
588 struct address_space *buffer_mapping = bh->b_page->mapping;
589
590 mark_buffer_dirty(bh);
591 if (!mapping->assoc_mapping) {
592 mapping->assoc_mapping = buffer_mapping;
593 } else {
594 BUG_ON(mapping->assoc_mapping != buffer_mapping);
595 }
596 if (!bh->b_assoc_map) {
597 spin_lock(&buffer_mapping->private_lock);
598 list_move_tail(&bh->b_assoc_buffers,
599 &mapping->private_list);
600 bh->b_assoc_map = mapping;
601 spin_unlock(&buffer_mapping->private_lock);
602 }
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605
606 /*
607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608 * dirty.
609 *
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
612 */
613 static void __set_page_dirty(struct page *page,
614 struct address_space *mapping, int warn)
615 {
616 spin_lock_irq(&mapping->tree_lock);
617 if (page->mapping) { /* Race with truncate? */
618 WARN_ON_ONCE(warn && !PageUptodate(page));
619 account_page_dirtied(page, mapping);
620 radix_tree_tag_set(&mapping->page_tree,
621 page_index(page), PAGECACHE_TAG_DIRTY);
622 }
623 spin_unlock_irq(&mapping->tree_lock);
624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
625 }
626
627 /*
628 * Add a page to the dirty page list.
629 *
630 * It is a sad fact of life that this function is called from several places
631 * deeply under spinlocking. It may not sleep.
632 *
633 * If the page has buffers, the uptodate buffers are set dirty, to preserve
634 * dirty-state coherency between the page and the buffers. It the page does
635 * not have buffers then when they are later attached they will all be set
636 * dirty.
637 *
638 * The buffers are dirtied before the page is dirtied. There's a small race
639 * window in which a writepage caller may see the page cleanness but not the
640 * buffer dirtiness. That's fine. If this code were to set the page dirty
641 * before the buffers, a concurrent writepage caller could clear the page dirty
642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643 * page on the dirty page list.
644 *
645 * We use private_lock to lock against try_to_free_buffers while using the
646 * page's buffer list. Also use this to protect against clean buffers being
647 * added to the page after it was set dirty.
648 *
649 * FIXME: may need to call ->reservepage here as well. That's rather up to the
650 * address_space though.
651 */
652 int __set_page_dirty_buffers(struct page *page)
653 {
654 int newly_dirty;
655 struct address_space *mapping = page_mapping(page);
656
657 if (unlikely(!mapping))
658 return !TestSetPageDirty(page);
659
660 spin_lock(&mapping->private_lock);
661 if (page_has_buffers(page)) {
662 struct buffer_head *head = page_buffers(page);
663 struct buffer_head *bh = head;
664
665 do {
666 set_buffer_dirty(bh);
667 bh = bh->b_this_page;
668 } while (bh != head);
669 }
670 newly_dirty = !TestSetPageDirty(page);
671 spin_unlock(&mapping->private_lock);
672
673 if (newly_dirty)
674 __set_page_dirty(page, mapping, 1);
675 return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 struct buffer_head *bh;
701 struct list_head tmp;
702 struct address_space *mapping;
703 int err = 0, err2;
704 struct blk_plug plug;
705
706 INIT_LIST_HEAD(&tmp);
707 blk_start_plug(&plug);
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
712 mapping = bh->b_assoc_map;
713 __remove_assoc_queue(bh);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
719 bh->b_assoc_map = mapping;
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
729 */
730 write_dirty_buffer(bh, WRITE_SYNC);
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
750 get_bh(bh);
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
758 &mapping->private_list);
759 bh->b_assoc_map = mapping;
760 }
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775 }
776
777 /*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->assoc_mapping;
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->assoc_mapping;
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828 }
829
830 /*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 int retry)
841 {
842 struct buffer_head *bh, *head;
843 long offset;
844
845 try_again:
846 head = NULL;
847 offset = PAGE_SIZE;
848 while ((offset -= size) >= 0) {
849 bh = alloc_buffer_head(GFP_NOFS);
850 if (!bh)
851 goto no_grow;
852
853 bh->b_bdev = NULL;
854 bh->b_this_page = head;
855 bh->b_blocknr = -1;
856 head = bh;
857
858 bh->b_state = 0;
859 atomic_set(&bh->b_count, 0);
860 bh->b_size = size;
861
862 /* Link the buffer to its page */
863 set_bh_page(bh, page, offset);
864
865 init_buffer(bh, NULL, NULL);
866 }
867 return head;
868 /*
869 * In case anything failed, we just free everything we got.
870 */
871 no_grow:
872 if (head) {
873 do {
874 bh = head;
875 head = head->b_this_page;
876 free_buffer_head(bh);
877 } while (head);
878 }
879
880 /*
881 * Return failure for non-async IO requests. Async IO requests
882 * are not allowed to fail, so we have to wait until buffer heads
883 * become available. But we don't want tasks sleeping with
884 * partially complete buffers, so all were released above.
885 */
886 if (!retry)
887 return NULL;
888
889 /* We're _really_ low on memory. Now we just
890 * wait for old buffer heads to become free due to
891 * finishing IO. Since this is an async request and
892 * the reserve list is empty, we're sure there are
893 * async buffer heads in use.
894 */
895 free_more_memory();
896 goto try_again;
897 }
898 EXPORT_SYMBOL_GPL(alloc_page_buffers);
899
900 static inline void
901 link_dev_buffers(struct page *page, struct buffer_head *head)
902 {
903 struct buffer_head *bh, *tail;
904
905 bh = head;
906 do {
907 tail = bh;
908 bh = bh->b_this_page;
909 } while (bh);
910 tail->b_this_page = head;
911 attach_page_buffers(page, head);
912 }
913
914 /*
915 * Initialise the state of a blockdev page's buffers.
916 */
917 static void
918 init_page_buffers(struct page *page, struct block_device *bdev,
919 sector_t block, int size)
920 {
921 struct buffer_head *head = page_buffers(page);
922 struct buffer_head *bh = head;
923 int uptodate = PageUptodate(page);
924 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
925
926 do {
927 if (!buffer_mapped(bh)) {
928 init_buffer(bh, NULL, NULL);
929 bh->b_bdev = bdev;
930 bh->b_blocknr = block;
931 if (uptodate)
932 set_buffer_uptodate(bh);
933 if (block < end_block)
934 set_buffer_mapped(bh);
935 }
936 block++;
937 bh = bh->b_this_page;
938 } while (bh != head);
939 }
940
941 /*
942 * Create the page-cache page that contains the requested block.
943 *
944 * This is user purely for blockdev mappings.
945 */
946 static struct page *
947 grow_dev_page(struct block_device *bdev, sector_t block,
948 pgoff_t index, int size)
949 {
950 struct inode *inode = bdev->bd_inode;
951 struct page *page;
952 struct buffer_head *bh;
953
954 page = find_or_create_page(inode->i_mapping, index,
955 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
956 if (!page)
957 return NULL;
958
959 BUG_ON(!PageLocked(page));
960
961 if (page_has_buffers(page)) {
962 bh = page_buffers(page);
963 if (bh->b_size == size) {
964 init_page_buffers(page, bdev, block, size);
965 return page;
966 }
967 if (!try_to_free_buffers(page))
968 goto failed;
969 }
970
971 /*
972 * Allocate some buffers for this page
973 */
974 bh = alloc_page_buffers(page, size, 0);
975 if (!bh)
976 goto failed;
977
978 /*
979 * Link the page to the buffers and initialise them. Take the
980 * lock to be atomic wrt __find_get_block(), which does not
981 * run under the page lock.
982 */
983 spin_lock(&inode->i_mapping->private_lock);
984 link_dev_buffers(page, bh);
985 init_page_buffers(page, bdev, block, size);
986 spin_unlock(&inode->i_mapping->private_lock);
987 return page;
988
989 failed:
990 unlock_page(page);
991 page_cache_release(page);
992 return NULL;
993 }
994
995 /*
996 * Create buffers for the specified block device block's page. If
997 * that page was dirty, the buffers are set dirty also.
998 */
999 static int
1000 grow_buffers(struct block_device *bdev, sector_t block, int size)
1001 {
1002 struct page *page;
1003 pgoff_t index;
1004 int sizebits;
1005
1006 sizebits = -1;
1007 do {
1008 sizebits++;
1009 } while ((size << sizebits) < PAGE_SIZE);
1010
1011 index = block >> sizebits;
1012
1013 /*
1014 * Check for a block which wants to lie outside our maximum possible
1015 * pagecache index. (this comparison is done using sector_t types).
1016 */
1017 if (unlikely(index != block >> sizebits)) {
1018 char b[BDEVNAME_SIZE];
1019
1020 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1021 "device %s\n",
1022 __func__, (unsigned long long)block,
1023 bdevname(bdev, b));
1024 return -EIO;
1025 }
1026 block = index << sizebits;
1027 /* Create a page with the proper size buffers.. */
1028 page = grow_dev_page(bdev, block, index, size);
1029 if (!page)
1030 return 0;
1031 unlock_page(page);
1032 page_cache_release(page);
1033 return 1;
1034 }
1035
1036 static struct buffer_head *
1037 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1038 {
1039 /* Size must be multiple of hard sectorsize */
1040 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1041 (size < 512 || size > PAGE_SIZE))) {
1042 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1043 size);
1044 printk(KERN_ERR "logical block size: %d\n",
1045 bdev_logical_block_size(bdev));
1046
1047 dump_stack();
1048 return NULL;
1049 }
1050
1051 for (;;) {
1052 struct buffer_head * bh;
1053 int ret;
1054
1055 bh = __find_get_block(bdev, block, size);
1056 if (bh)
1057 return bh;
1058
1059 ret = grow_buffers(bdev, block, size);
1060 if (ret < 0)
1061 return NULL;
1062 if (ret == 0)
1063 free_more_memory();
1064 }
1065 }
1066
1067 /*
1068 * The relationship between dirty buffers and dirty pages:
1069 *
1070 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1071 * the page is tagged dirty in its radix tree.
1072 *
1073 * At all times, the dirtiness of the buffers represents the dirtiness of
1074 * subsections of the page. If the page has buffers, the page dirty bit is
1075 * merely a hint about the true dirty state.
1076 *
1077 * When a page is set dirty in its entirety, all its buffers are marked dirty
1078 * (if the page has buffers).
1079 *
1080 * When a buffer is marked dirty, its page is dirtied, but the page's other
1081 * buffers are not.
1082 *
1083 * Also. When blockdev buffers are explicitly read with bread(), they
1084 * individually become uptodate. But their backing page remains not
1085 * uptodate - even if all of its buffers are uptodate. A subsequent
1086 * block_read_full_page() against that page will discover all the uptodate
1087 * buffers, will set the page uptodate and will perform no I/O.
1088 */
1089
1090 /**
1091 * mark_buffer_dirty - mark a buffer_head as needing writeout
1092 * @bh: the buffer_head to mark dirty
1093 *
1094 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1095 * backing page dirty, then tag the page as dirty in its address_space's radix
1096 * tree and then attach the address_space's inode to its superblock's dirty
1097 * inode list.
1098 *
1099 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1100 * mapping->tree_lock and mapping->host->i_lock.
1101 */
1102 void mark_buffer_dirty(struct buffer_head *bh)
1103 {
1104 WARN_ON_ONCE(!buffer_uptodate(bh));
1105
1106 /*
1107 * Very *carefully* optimize the it-is-already-dirty case.
1108 *
1109 * Don't let the final "is it dirty" escape to before we
1110 * perhaps modified the buffer.
1111 */
1112 if (buffer_dirty(bh)) {
1113 smp_mb();
1114 if (buffer_dirty(bh))
1115 return;
1116 }
1117
1118 if (!test_set_buffer_dirty(bh)) {
1119 struct page *page = bh->b_page;
1120 if (!TestSetPageDirty(page)) {
1121 struct address_space *mapping = page_mapping(page);
1122 if (mapping)
1123 __set_page_dirty(page, mapping, 0);
1124 }
1125 }
1126 }
1127 EXPORT_SYMBOL(mark_buffer_dirty);
1128
1129 /*
1130 * Decrement a buffer_head's reference count. If all buffers against a page
1131 * have zero reference count, are clean and unlocked, and if the page is clean
1132 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1133 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1134 * a page but it ends up not being freed, and buffers may later be reattached).
1135 */
1136 void __brelse(struct buffer_head * buf)
1137 {
1138 if (atomic_read(&buf->b_count)) {
1139 put_bh(buf);
1140 return;
1141 }
1142 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1143 }
1144 EXPORT_SYMBOL(__brelse);
1145
1146 /*
1147 * bforget() is like brelse(), except it discards any
1148 * potentially dirty data.
1149 */
1150 void __bforget(struct buffer_head *bh)
1151 {
1152 clear_buffer_dirty(bh);
1153 if (bh->b_assoc_map) {
1154 struct address_space *buffer_mapping = bh->b_page->mapping;
1155
1156 spin_lock(&buffer_mapping->private_lock);
1157 list_del_init(&bh->b_assoc_buffers);
1158 bh->b_assoc_map = NULL;
1159 spin_unlock(&buffer_mapping->private_lock);
1160 }
1161 __brelse(bh);
1162 }
1163 EXPORT_SYMBOL(__bforget);
1164
1165 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1166 {
1167 lock_buffer(bh);
1168 if (buffer_uptodate(bh)) {
1169 unlock_buffer(bh);
1170 return bh;
1171 } else {
1172 get_bh(bh);
1173 bh->b_end_io = end_buffer_read_sync;
1174 submit_bh(READ, bh);
1175 wait_on_buffer(bh);
1176 if (buffer_uptodate(bh))
1177 return bh;
1178 }
1179 brelse(bh);
1180 return NULL;
1181 }
1182
1183 /*
1184 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1185 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1186 * refcount elevated by one when they're in an LRU. A buffer can only appear
1187 * once in a particular CPU's LRU. A single buffer can be present in multiple
1188 * CPU's LRUs at the same time.
1189 *
1190 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1191 * sb_find_get_block().
1192 *
1193 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1194 * a local interrupt disable for that.
1195 */
1196
1197 #define BH_LRU_SIZE 8
1198
1199 struct bh_lru {
1200 struct buffer_head *bhs[BH_LRU_SIZE];
1201 };
1202
1203 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1204
1205 #ifdef CONFIG_SMP
1206 #define bh_lru_lock() local_irq_disable()
1207 #define bh_lru_unlock() local_irq_enable()
1208 #else
1209 #define bh_lru_lock() preempt_disable()
1210 #define bh_lru_unlock() preempt_enable()
1211 #endif
1212
1213 static inline void check_irqs_on(void)
1214 {
1215 #ifdef irqs_disabled
1216 BUG_ON(irqs_disabled());
1217 #endif
1218 }
1219
1220 /*
1221 * The LRU management algorithm is dopey-but-simple. Sorry.
1222 */
1223 static void bh_lru_install(struct buffer_head *bh)
1224 {
1225 struct buffer_head *evictee = NULL;
1226
1227 check_irqs_on();
1228 bh_lru_lock();
1229 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1230 struct buffer_head *bhs[BH_LRU_SIZE];
1231 int in;
1232 int out = 0;
1233
1234 get_bh(bh);
1235 bhs[out++] = bh;
1236 for (in = 0; in < BH_LRU_SIZE; in++) {
1237 struct buffer_head *bh2 =
1238 __this_cpu_read(bh_lrus.bhs[in]);
1239
1240 if (bh2 == bh) {
1241 __brelse(bh2);
1242 } else {
1243 if (out >= BH_LRU_SIZE) {
1244 BUG_ON(evictee != NULL);
1245 evictee = bh2;
1246 } else {
1247 bhs[out++] = bh2;
1248 }
1249 }
1250 }
1251 while (out < BH_LRU_SIZE)
1252 bhs[out++] = NULL;
1253 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1254 }
1255 bh_lru_unlock();
1256
1257 if (evictee)
1258 __brelse(evictee);
1259 }
1260
1261 /*
1262 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1263 */
1264 static struct buffer_head *
1265 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1266 {
1267 struct buffer_head *ret = NULL;
1268 unsigned int i;
1269
1270 check_irqs_on();
1271 bh_lru_lock();
1272 for (i = 0; i < BH_LRU_SIZE; i++) {
1273 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1274
1275 if (bh && bh->b_bdev == bdev &&
1276 bh->b_blocknr == block && bh->b_size == size) {
1277 if (i) {
1278 while (i) {
1279 __this_cpu_write(bh_lrus.bhs[i],
1280 __this_cpu_read(bh_lrus.bhs[i - 1]));
1281 i--;
1282 }
1283 __this_cpu_write(bh_lrus.bhs[0], bh);
1284 }
1285 get_bh(bh);
1286 ret = bh;
1287 break;
1288 }
1289 }
1290 bh_lru_unlock();
1291 return ret;
1292 }
1293
1294 /*
1295 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1296 * it in the LRU and mark it as accessed. If it is not present then return
1297 * NULL
1298 */
1299 struct buffer_head *
1300 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1301 {
1302 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1303
1304 if (bh == NULL) {
1305 bh = __find_get_block_slow(bdev, block);
1306 if (bh)
1307 bh_lru_install(bh);
1308 }
1309 if (bh)
1310 touch_buffer(bh);
1311 return bh;
1312 }
1313 EXPORT_SYMBOL(__find_get_block);
1314
1315 /*
1316 * __getblk will locate (and, if necessary, create) the buffer_head
1317 * which corresponds to the passed block_device, block and size. The
1318 * returned buffer has its reference count incremented.
1319 *
1320 * __getblk() cannot fail - it just keeps trying. If you pass it an
1321 * illegal block number, __getblk() will happily return a buffer_head
1322 * which represents the non-existent block. Very weird.
1323 *
1324 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1325 * attempt is failing. FIXME, perhaps?
1326 */
1327 struct buffer_head *
1328 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1329 {
1330 struct buffer_head *bh = __find_get_block(bdev, block, size);
1331
1332 might_sleep();
1333 if (bh == NULL)
1334 bh = __getblk_slow(bdev, block, size);
1335 return bh;
1336 }
1337 EXPORT_SYMBOL(__getblk);
1338
1339 /*
1340 * Do async read-ahead on a buffer..
1341 */
1342 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1343 {
1344 struct buffer_head *bh = __getblk(bdev, block, size);
1345 if (likely(bh)) {
1346 ll_rw_block(READA, 1, &bh);
1347 brelse(bh);
1348 }
1349 }
1350 EXPORT_SYMBOL(__breadahead);
1351
1352 /**
1353 * __bread() - reads a specified block and returns the bh
1354 * @bdev: the block_device to read from
1355 * @block: number of block
1356 * @size: size (in bytes) to read
1357 *
1358 * Reads a specified block, and returns buffer head that contains it.
1359 * It returns NULL if the block was unreadable.
1360 */
1361 struct buffer_head *
1362 __bread(struct block_device *bdev, sector_t block, unsigned size)
1363 {
1364 struct buffer_head *bh = __getblk(bdev, block, size);
1365
1366 if (likely(bh) && !buffer_uptodate(bh))
1367 bh = __bread_slow(bh);
1368 return bh;
1369 }
1370 EXPORT_SYMBOL(__bread);
1371
1372 /*
1373 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1374 * This doesn't race because it runs in each cpu either in irq
1375 * or with preempt disabled.
1376 */
1377 static void invalidate_bh_lru(void *arg)
1378 {
1379 struct bh_lru *b = &get_cpu_var(bh_lrus);
1380 int i;
1381
1382 for (i = 0; i < BH_LRU_SIZE; i++) {
1383 brelse(b->bhs[i]);
1384 b->bhs[i] = NULL;
1385 }
1386 put_cpu_var(bh_lrus);
1387 }
1388
1389 static bool has_bh_in_lru(int cpu, void *dummy)
1390 {
1391 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1392 int i;
1393
1394 for (i = 0; i < BH_LRU_SIZE; i++) {
1395 if (b->bhs[i])
1396 return 1;
1397 }
1398
1399 return 0;
1400 }
1401
1402 void invalidate_bh_lrus(void)
1403 {
1404 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1405 }
1406 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1407
1408 void set_bh_page(struct buffer_head *bh,
1409 struct page *page, unsigned long offset)
1410 {
1411 bh->b_page = page;
1412 BUG_ON(offset >= PAGE_SIZE);
1413 if (PageHighMem(page))
1414 /*
1415 * This catches illegal uses and preserves the offset:
1416 */
1417 bh->b_data = (char *)(0 + offset);
1418 else
1419 bh->b_data = page_address(page) + offset;
1420 }
1421 EXPORT_SYMBOL(set_bh_page);
1422
1423 /*
1424 * Called when truncating a buffer on a page completely.
1425 */
1426 static void discard_buffer(struct buffer_head * bh)
1427 {
1428 lock_buffer(bh);
1429 clear_buffer_dirty(bh);
1430 bh->b_bdev = NULL;
1431 clear_buffer_mapped(bh);
1432 clear_buffer_req(bh);
1433 clear_buffer_new(bh);
1434 clear_buffer_delay(bh);
1435 clear_buffer_unwritten(bh);
1436 unlock_buffer(bh);
1437 }
1438
1439 /**
1440 * block_invalidatepage - invalidate part or all of a buffer-backed page
1441 *
1442 * @page: the page which is affected
1443 * @offset: the index of the truncation point
1444 *
1445 * block_invalidatepage() is called when all or part of the page has become
1446 * invalidated by a truncate operation.
1447 *
1448 * block_invalidatepage() does not have to release all buffers, but it must
1449 * ensure that no dirty buffer is left outside @offset and that no I/O
1450 * is underway against any of the blocks which are outside the truncation
1451 * point. Because the caller is about to free (and possibly reuse) those
1452 * blocks on-disk.
1453 */
1454 void block_invalidatepage(struct page *page, unsigned long offset)
1455 {
1456 struct buffer_head *head, *bh, *next;
1457 unsigned int curr_off = 0;
1458
1459 BUG_ON(!PageLocked(page));
1460 if (!page_has_buffers(page))
1461 goto out;
1462
1463 head = page_buffers(page);
1464 bh = head;
1465 do {
1466 unsigned int next_off = curr_off + bh->b_size;
1467 next = bh->b_this_page;
1468
1469 /*
1470 * is this block fully invalidated?
1471 */
1472 if (offset <= curr_off)
1473 discard_buffer(bh);
1474 curr_off = next_off;
1475 bh = next;
1476 } while (bh != head);
1477
1478 /*
1479 * We release buffers only if the entire page is being invalidated.
1480 * The get_block cached value has been unconditionally invalidated,
1481 * so real IO is not possible anymore.
1482 */
1483 if (offset == 0)
1484 try_to_release_page(page, 0);
1485 out:
1486 return;
1487 }
1488 EXPORT_SYMBOL(block_invalidatepage);
1489
1490 /*
1491 * We attach and possibly dirty the buffers atomically wrt
1492 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1493 * is already excluded via the page lock.
1494 */
1495 void create_empty_buffers(struct page *page,
1496 unsigned long blocksize, unsigned long b_state)
1497 {
1498 struct buffer_head *bh, *head, *tail;
1499
1500 head = alloc_page_buffers(page, blocksize, 1);
1501 bh = head;
1502 do {
1503 bh->b_state |= b_state;
1504 tail = bh;
1505 bh = bh->b_this_page;
1506 } while (bh);
1507 tail->b_this_page = head;
1508
1509 spin_lock(&page->mapping->private_lock);
1510 if (PageUptodate(page) || PageDirty(page)) {
1511 bh = head;
1512 do {
1513 if (PageDirty(page))
1514 set_buffer_dirty(bh);
1515 if (PageUptodate(page))
1516 set_buffer_uptodate(bh);
1517 bh = bh->b_this_page;
1518 } while (bh != head);
1519 }
1520 attach_page_buffers(page, head);
1521 spin_unlock(&page->mapping->private_lock);
1522 }
1523 EXPORT_SYMBOL(create_empty_buffers);
1524
1525 /*
1526 * We are taking a block for data and we don't want any output from any
1527 * buffer-cache aliases starting from return from that function and
1528 * until the moment when something will explicitly mark the buffer
1529 * dirty (hopefully that will not happen until we will free that block ;-)
1530 * We don't even need to mark it not-uptodate - nobody can expect
1531 * anything from a newly allocated buffer anyway. We used to used
1532 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1533 * don't want to mark the alias unmapped, for example - it would confuse
1534 * anyone who might pick it with bread() afterwards...
1535 *
1536 * Also.. Note that bforget() doesn't lock the buffer. So there can
1537 * be writeout I/O going on against recently-freed buffers. We don't
1538 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1539 * only if we really need to. That happens here.
1540 */
1541 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1542 {
1543 struct buffer_head *old_bh;
1544
1545 might_sleep();
1546
1547 old_bh = __find_get_block_slow(bdev, block);
1548 if (old_bh) {
1549 clear_buffer_dirty(old_bh);
1550 wait_on_buffer(old_bh);
1551 clear_buffer_req(old_bh);
1552 __brelse(old_bh);
1553 }
1554 }
1555 EXPORT_SYMBOL(unmap_underlying_metadata);
1556
1557 /*
1558 * NOTE! All mapped/uptodate combinations are valid:
1559 *
1560 * Mapped Uptodate Meaning
1561 *
1562 * No No "unknown" - must do get_block()
1563 * No Yes "hole" - zero-filled
1564 * Yes No "allocated" - allocated on disk, not read in
1565 * Yes Yes "valid" - allocated and up-to-date in memory.
1566 *
1567 * "Dirty" is valid only with the last case (mapped+uptodate).
1568 */
1569
1570 /*
1571 * While block_write_full_page is writing back the dirty buffers under
1572 * the page lock, whoever dirtied the buffers may decide to clean them
1573 * again at any time. We handle that by only looking at the buffer
1574 * state inside lock_buffer().
1575 *
1576 * If block_write_full_page() is called for regular writeback
1577 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1578 * locked buffer. This only can happen if someone has written the buffer
1579 * directly, with submit_bh(). At the address_space level PageWriteback
1580 * prevents this contention from occurring.
1581 *
1582 * If block_write_full_page() is called with wbc->sync_mode ==
1583 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1584 * causes the writes to be flagged as synchronous writes.
1585 */
1586 static int __block_write_full_page(struct inode *inode, struct page *page,
1587 get_block_t *get_block, struct writeback_control *wbc,
1588 bh_end_io_t *handler)
1589 {
1590 int err;
1591 sector_t block;
1592 sector_t last_block;
1593 struct buffer_head *bh, *head;
1594 const unsigned blocksize = 1 << inode->i_blkbits;
1595 int nr_underway = 0;
1596 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1597 WRITE_SYNC : WRITE);
1598
1599 BUG_ON(!PageLocked(page));
1600
1601 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1602
1603 if (!page_has_buffers(page)) {
1604 create_empty_buffers(page, blocksize,
1605 (1 << BH_Dirty)|(1 << BH_Uptodate));
1606 }
1607
1608 /*
1609 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1610 * here, and the (potentially unmapped) buffers may become dirty at
1611 * any time. If a buffer becomes dirty here after we've inspected it
1612 * then we just miss that fact, and the page stays dirty.
1613 *
1614 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1615 * handle that here by just cleaning them.
1616 */
1617
1618 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1619 head = page_buffers(page);
1620 bh = head;
1621
1622 /*
1623 * Get all the dirty buffers mapped to disk addresses and
1624 * handle any aliases from the underlying blockdev's mapping.
1625 */
1626 do {
1627 if (block > last_block) {
1628 /*
1629 * mapped buffers outside i_size will occur, because
1630 * this page can be outside i_size when there is a
1631 * truncate in progress.
1632 */
1633 /*
1634 * The buffer was zeroed by block_write_full_page()
1635 */
1636 clear_buffer_dirty(bh);
1637 set_buffer_uptodate(bh);
1638 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1639 buffer_dirty(bh)) {
1640 WARN_ON(bh->b_size != blocksize);
1641 err = get_block(inode, block, bh, 1);
1642 if (err)
1643 goto recover;
1644 clear_buffer_delay(bh);
1645 if (buffer_new(bh)) {
1646 /* blockdev mappings never come here */
1647 clear_buffer_new(bh);
1648 unmap_underlying_metadata(bh->b_bdev,
1649 bh->b_blocknr);
1650 }
1651 }
1652 bh = bh->b_this_page;
1653 block++;
1654 } while (bh != head);
1655
1656 do {
1657 if (!buffer_mapped(bh))
1658 continue;
1659 /*
1660 * If it's a fully non-blocking write attempt and we cannot
1661 * lock the buffer then redirty the page. Note that this can
1662 * potentially cause a busy-wait loop from writeback threads
1663 * and kswapd activity, but those code paths have their own
1664 * higher-level throttling.
1665 */
1666 if (wbc->sync_mode != WB_SYNC_NONE) {
1667 lock_buffer(bh);
1668 } else if (!trylock_buffer(bh)) {
1669 redirty_page_for_writepage(wbc, page);
1670 continue;
1671 }
1672 if (test_clear_buffer_dirty(bh)) {
1673 mark_buffer_async_write_endio(bh, handler);
1674 } else {
1675 unlock_buffer(bh);
1676 }
1677 } while ((bh = bh->b_this_page) != head);
1678
1679 /*
1680 * The page and its buffers are protected by PageWriteback(), so we can
1681 * drop the bh refcounts early.
1682 */
1683 BUG_ON(PageWriteback(page));
1684 set_page_writeback(page);
1685
1686 do {
1687 struct buffer_head *next = bh->b_this_page;
1688 if (buffer_async_write(bh)) {
1689 submit_bh(write_op, bh);
1690 nr_underway++;
1691 }
1692 bh = next;
1693 } while (bh != head);
1694 unlock_page(page);
1695
1696 err = 0;
1697 done:
1698 if (nr_underway == 0) {
1699 /*
1700 * The page was marked dirty, but the buffers were
1701 * clean. Someone wrote them back by hand with
1702 * ll_rw_block/submit_bh. A rare case.
1703 */
1704 end_page_writeback(page);
1705
1706 /*
1707 * The page and buffer_heads can be released at any time from
1708 * here on.
1709 */
1710 }
1711 return err;
1712
1713 recover:
1714 /*
1715 * ENOSPC, or some other error. We may already have added some
1716 * blocks to the file, so we need to write these out to avoid
1717 * exposing stale data.
1718 * The page is currently locked and not marked for writeback
1719 */
1720 bh = head;
1721 /* Recovery: lock and submit the mapped buffers */
1722 do {
1723 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1724 !buffer_delay(bh)) {
1725 lock_buffer(bh);
1726 mark_buffer_async_write_endio(bh, handler);
1727 } else {
1728 /*
1729 * The buffer may have been set dirty during
1730 * attachment to a dirty page.
1731 */
1732 clear_buffer_dirty(bh);
1733 }
1734 } while ((bh = bh->b_this_page) != head);
1735 SetPageError(page);
1736 BUG_ON(PageWriteback(page));
1737 mapping_set_error(page->mapping, err);
1738 set_page_writeback(page);
1739 do {
1740 struct buffer_head *next = bh->b_this_page;
1741 if (buffer_async_write(bh)) {
1742 clear_buffer_dirty(bh);
1743 submit_bh(write_op, bh);
1744 nr_underway++;
1745 }
1746 bh = next;
1747 } while (bh != head);
1748 unlock_page(page);
1749 goto done;
1750 }
1751
1752 /*
1753 * If a page has any new buffers, zero them out here, and mark them uptodate
1754 * and dirty so they'll be written out (in order to prevent uninitialised
1755 * block data from leaking). And clear the new bit.
1756 */
1757 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1758 {
1759 unsigned int block_start, block_end;
1760 struct buffer_head *head, *bh;
1761
1762 BUG_ON(!PageLocked(page));
1763 if (!page_has_buffers(page))
1764 return;
1765
1766 bh = head = page_buffers(page);
1767 block_start = 0;
1768 do {
1769 block_end = block_start + bh->b_size;
1770
1771 if (buffer_new(bh)) {
1772 if (block_end > from && block_start < to) {
1773 if (!PageUptodate(page)) {
1774 unsigned start, size;
1775
1776 start = max(from, block_start);
1777 size = min(to, block_end) - start;
1778
1779 zero_user(page, start, size);
1780 set_buffer_uptodate(bh);
1781 }
1782
1783 clear_buffer_new(bh);
1784 mark_buffer_dirty(bh);
1785 }
1786 }
1787
1788 block_start = block_end;
1789 bh = bh->b_this_page;
1790 } while (bh != head);
1791 }
1792 EXPORT_SYMBOL(page_zero_new_buffers);
1793
1794 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1795 get_block_t *get_block)
1796 {
1797 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1798 unsigned to = from + len;
1799 struct inode *inode = page->mapping->host;
1800 unsigned block_start, block_end;
1801 sector_t block;
1802 int err = 0;
1803 unsigned blocksize, bbits;
1804 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1805
1806 BUG_ON(!PageLocked(page));
1807 BUG_ON(from > PAGE_CACHE_SIZE);
1808 BUG_ON(to > PAGE_CACHE_SIZE);
1809 BUG_ON(from > to);
1810
1811 blocksize = 1 << inode->i_blkbits;
1812 if (!page_has_buffers(page))
1813 create_empty_buffers(page, blocksize, 0);
1814 head = page_buffers(page);
1815
1816 bbits = inode->i_blkbits;
1817 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1818
1819 for(bh = head, block_start = 0; bh != head || !block_start;
1820 block++, block_start=block_end, bh = bh->b_this_page) {
1821 block_end = block_start + blocksize;
1822 if (block_end <= from || block_start >= to) {
1823 if (PageUptodate(page)) {
1824 if (!buffer_uptodate(bh))
1825 set_buffer_uptodate(bh);
1826 }
1827 continue;
1828 }
1829 if (buffer_new(bh))
1830 clear_buffer_new(bh);
1831 if (!buffer_mapped(bh)) {
1832 WARN_ON(bh->b_size != blocksize);
1833 err = get_block(inode, block, bh, 1);
1834 if (err)
1835 break;
1836 if (buffer_new(bh)) {
1837 unmap_underlying_metadata(bh->b_bdev,
1838 bh->b_blocknr);
1839 if (PageUptodate(page)) {
1840 clear_buffer_new(bh);
1841 set_buffer_uptodate(bh);
1842 mark_buffer_dirty(bh);
1843 continue;
1844 }
1845 if (block_end > to || block_start < from)
1846 zero_user_segments(page,
1847 to, block_end,
1848 block_start, from);
1849 continue;
1850 }
1851 }
1852 if (PageUptodate(page)) {
1853 if (!buffer_uptodate(bh))
1854 set_buffer_uptodate(bh);
1855 continue;
1856 }
1857 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1858 !buffer_unwritten(bh) &&
1859 (block_start < from || block_end > to)) {
1860 ll_rw_block(READ, 1, &bh);
1861 *wait_bh++=bh;
1862 }
1863 }
1864 /*
1865 * If we issued read requests - let them complete.
1866 */
1867 while(wait_bh > wait) {
1868 wait_on_buffer(*--wait_bh);
1869 if (!buffer_uptodate(*wait_bh))
1870 err = -EIO;
1871 }
1872 if (unlikely(err))
1873 page_zero_new_buffers(page, from, to);
1874 return err;
1875 }
1876 EXPORT_SYMBOL(__block_write_begin);
1877
1878 static int __block_commit_write(struct inode *inode, struct page *page,
1879 unsigned from, unsigned to)
1880 {
1881 unsigned block_start, block_end;
1882 int partial = 0;
1883 unsigned blocksize;
1884 struct buffer_head *bh, *head;
1885
1886 blocksize = 1 << inode->i_blkbits;
1887
1888 for(bh = head = page_buffers(page), block_start = 0;
1889 bh != head || !block_start;
1890 block_start=block_end, bh = bh->b_this_page) {
1891 block_end = block_start + blocksize;
1892 if (block_end <= from || block_start >= to) {
1893 if (!buffer_uptodate(bh))
1894 partial = 1;
1895 } else {
1896 set_buffer_uptodate(bh);
1897 mark_buffer_dirty(bh);
1898 }
1899 clear_buffer_new(bh);
1900 }
1901
1902 /*
1903 * If this is a partial write which happened to make all buffers
1904 * uptodate then we can optimize away a bogus readpage() for
1905 * the next read(). Here we 'discover' whether the page went
1906 * uptodate as a result of this (potentially partial) write.
1907 */
1908 if (!partial)
1909 SetPageUptodate(page);
1910 return 0;
1911 }
1912
1913 /*
1914 * block_write_begin takes care of the basic task of block allocation and
1915 * bringing partial write blocks uptodate first.
1916 *
1917 * The filesystem needs to handle block truncation upon failure.
1918 */
1919 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1920 unsigned flags, struct page **pagep, get_block_t *get_block)
1921 {
1922 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1923 struct page *page;
1924 int status;
1925
1926 page = grab_cache_page_write_begin(mapping, index, flags);
1927 if (!page)
1928 return -ENOMEM;
1929
1930 status = __block_write_begin(page, pos, len, get_block);
1931 if (unlikely(status)) {
1932 unlock_page(page);
1933 page_cache_release(page);
1934 page = NULL;
1935 }
1936
1937 *pagep = page;
1938 return status;
1939 }
1940 EXPORT_SYMBOL(block_write_begin);
1941
1942 int block_write_end(struct file *file, struct address_space *mapping,
1943 loff_t pos, unsigned len, unsigned copied,
1944 struct page *page, void *fsdata)
1945 {
1946 struct inode *inode = mapping->host;
1947 unsigned start;
1948
1949 start = pos & (PAGE_CACHE_SIZE - 1);
1950
1951 if (unlikely(copied < len)) {
1952 /*
1953 * The buffers that were written will now be uptodate, so we
1954 * don't have to worry about a readpage reading them and
1955 * overwriting a partial write. However if we have encountered
1956 * a short write and only partially written into a buffer, it
1957 * will not be marked uptodate, so a readpage might come in and
1958 * destroy our partial write.
1959 *
1960 * Do the simplest thing, and just treat any short write to a
1961 * non uptodate page as a zero-length write, and force the
1962 * caller to redo the whole thing.
1963 */
1964 if (!PageUptodate(page))
1965 copied = 0;
1966
1967 page_zero_new_buffers(page, start+copied, start+len);
1968 }
1969 flush_dcache_page(page);
1970
1971 /* This could be a short (even 0-length) commit */
1972 __block_commit_write(inode, page, start, start+copied);
1973
1974 return copied;
1975 }
1976 EXPORT_SYMBOL(block_write_end);
1977
1978 int generic_write_end(struct file *file, struct address_space *mapping,
1979 loff_t pos, unsigned len, unsigned copied,
1980 struct page *page, void *fsdata)
1981 {
1982 struct inode *inode = mapping->host;
1983 int i_size_changed = 0;
1984
1985 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1986
1987 /*
1988 * No need to use i_size_read() here, the i_size
1989 * cannot change under us because we hold i_mutex.
1990 *
1991 * But it's important to update i_size while still holding page lock:
1992 * page writeout could otherwise come in and zero beyond i_size.
1993 */
1994 if (pos+copied > inode->i_size) {
1995 i_size_write(inode, pos+copied);
1996 i_size_changed = 1;
1997 }
1998
1999 unlock_page(page);
2000 page_cache_release(page);
2001
2002 /*
2003 * Don't mark the inode dirty under page lock. First, it unnecessarily
2004 * makes the holding time of page lock longer. Second, it forces lock
2005 * ordering of page lock and transaction start for journaling
2006 * filesystems.
2007 */
2008 if (i_size_changed)
2009 mark_inode_dirty(inode);
2010
2011 return copied;
2012 }
2013 EXPORT_SYMBOL(generic_write_end);
2014
2015 /*
2016 * block_is_partially_uptodate checks whether buffers within a page are
2017 * uptodate or not.
2018 *
2019 * Returns true if all buffers which correspond to a file portion
2020 * we want to read are uptodate.
2021 */
2022 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2023 unsigned long from)
2024 {
2025 struct inode *inode = page->mapping->host;
2026 unsigned block_start, block_end, blocksize;
2027 unsigned to;
2028 struct buffer_head *bh, *head;
2029 int ret = 1;
2030
2031 if (!page_has_buffers(page))
2032 return 0;
2033
2034 blocksize = 1 << inode->i_blkbits;
2035 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2036 to = from + to;
2037 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2038 return 0;
2039
2040 head = page_buffers(page);
2041 bh = head;
2042 block_start = 0;
2043 do {
2044 block_end = block_start + blocksize;
2045 if (block_end > from && block_start < to) {
2046 if (!buffer_uptodate(bh)) {
2047 ret = 0;
2048 break;
2049 }
2050 if (block_end >= to)
2051 break;
2052 }
2053 block_start = block_end;
2054 bh = bh->b_this_page;
2055 } while (bh != head);
2056
2057 return ret;
2058 }
2059 EXPORT_SYMBOL(block_is_partially_uptodate);
2060
2061 /*
2062 * Generic "read page" function for block devices that have the normal
2063 * get_block functionality. This is most of the block device filesystems.
2064 * Reads the page asynchronously --- the unlock_buffer() and
2065 * set/clear_buffer_uptodate() functions propagate buffer state into the
2066 * page struct once IO has completed.
2067 */
2068 int block_read_full_page(struct page *page, get_block_t *get_block)
2069 {
2070 struct inode *inode = page->mapping->host;
2071 sector_t iblock, lblock;
2072 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2073 unsigned int blocksize;
2074 int nr, i;
2075 int fully_mapped = 1;
2076
2077 BUG_ON(!PageLocked(page));
2078 blocksize = 1 << inode->i_blkbits;
2079 if (!page_has_buffers(page))
2080 create_empty_buffers(page, blocksize, 0);
2081 head = page_buffers(page);
2082
2083 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2084 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2085 bh = head;
2086 nr = 0;
2087 i = 0;
2088
2089 do {
2090 if (buffer_uptodate(bh))
2091 continue;
2092
2093 if (!buffer_mapped(bh)) {
2094 int err = 0;
2095
2096 fully_mapped = 0;
2097 if (iblock < lblock) {
2098 WARN_ON(bh->b_size != blocksize);
2099 err = get_block(inode, iblock, bh, 0);
2100 if (err)
2101 SetPageError(page);
2102 }
2103 if (!buffer_mapped(bh)) {
2104 zero_user(page, i * blocksize, blocksize);
2105 if (!err)
2106 set_buffer_uptodate(bh);
2107 continue;
2108 }
2109 /*
2110 * get_block() might have updated the buffer
2111 * synchronously
2112 */
2113 if (buffer_uptodate(bh))
2114 continue;
2115 }
2116 arr[nr++] = bh;
2117 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2118
2119 if (fully_mapped)
2120 SetPageMappedToDisk(page);
2121
2122 if (!nr) {
2123 /*
2124 * All buffers are uptodate - we can set the page uptodate
2125 * as well. But not if get_block() returned an error.
2126 */
2127 if (!PageError(page))
2128 SetPageUptodate(page);
2129 unlock_page(page);
2130 return 0;
2131 }
2132
2133 /* Stage two: lock the buffers */
2134 for (i = 0; i < nr; i++) {
2135 bh = arr[i];
2136 lock_buffer(bh);
2137 mark_buffer_async_read(bh);
2138 }
2139
2140 /*
2141 * Stage 3: start the IO. Check for uptodateness
2142 * inside the buffer lock in case another process reading
2143 * the underlying blockdev brought it uptodate (the sct fix).
2144 */
2145 for (i = 0; i < nr; i++) {
2146 bh = arr[i];
2147 if (buffer_uptodate(bh))
2148 end_buffer_async_read(bh, 1);
2149 else
2150 submit_bh(READ, bh);
2151 }
2152 return 0;
2153 }
2154 EXPORT_SYMBOL(block_read_full_page);
2155
2156 /* utility function for filesystems that need to do work on expanding
2157 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2158 * deal with the hole.
2159 */
2160 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2161 {
2162 struct address_space *mapping = inode->i_mapping;
2163 struct page *page;
2164 void *fsdata;
2165 int err;
2166
2167 err = inode_newsize_ok(inode, size);
2168 if (err)
2169 goto out;
2170
2171 err = pagecache_write_begin(NULL, mapping, size, 0,
2172 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2173 &page, &fsdata);
2174 if (err)
2175 goto out;
2176
2177 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2178 BUG_ON(err > 0);
2179
2180 out:
2181 return err;
2182 }
2183 EXPORT_SYMBOL(generic_cont_expand_simple);
2184
2185 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2186 loff_t pos, loff_t *bytes)
2187 {
2188 struct inode *inode = mapping->host;
2189 unsigned blocksize = 1 << inode->i_blkbits;
2190 struct page *page;
2191 void *fsdata;
2192 pgoff_t index, curidx;
2193 loff_t curpos;
2194 unsigned zerofrom, offset, len;
2195 int err = 0;
2196
2197 index = pos >> PAGE_CACHE_SHIFT;
2198 offset = pos & ~PAGE_CACHE_MASK;
2199
2200 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2201 zerofrom = curpos & ~PAGE_CACHE_MASK;
2202 if (zerofrom & (blocksize-1)) {
2203 *bytes |= (blocksize-1);
2204 (*bytes)++;
2205 }
2206 len = PAGE_CACHE_SIZE - zerofrom;
2207
2208 err = pagecache_write_begin(file, mapping, curpos, len,
2209 AOP_FLAG_UNINTERRUPTIBLE,
2210 &page, &fsdata);
2211 if (err)
2212 goto out;
2213 zero_user(page, zerofrom, len);
2214 err = pagecache_write_end(file, mapping, curpos, len, len,
2215 page, fsdata);
2216 if (err < 0)
2217 goto out;
2218 BUG_ON(err != len);
2219 err = 0;
2220
2221 balance_dirty_pages_ratelimited(mapping);
2222 }
2223
2224 /* page covers the boundary, find the boundary offset */
2225 if (index == curidx) {
2226 zerofrom = curpos & ~PAGE_CACHE_MASK;
2227 /* if we will expand the thing last block will be filled */
2228 if (offset <= zerofrom) {
2229 goto out;
2230 }
2231 if (zerofrom & (blocksize-1)) {
2232 *bytes |= (blocksize-1);
2233 (*bytes)++;
2234 }
2235 len = offset - zerofrom;
2236
2237 err = pagecache_write_begin(file, mapping, curpos, len,
2238 AOP_FLAG_UNINTERRUPTIBLE,
2239 &page, &fsdata);
2240 if (err)
2241 goto out;
2242 zero_user(page, zerofrom, len);
2243 err = pagecache_write_end(file, mapping, curpos, len, len,
2244 page, fsdata);
2245 if (err < 0)
2246 goto out;
2247 BUG_ON(err != len);
2248 err = 0;
2249 }
2250 out:
2251 return err;
2252 }
2253
2254 /*
2255 * For moronic filesystems that do not allow holes in file.
2256 * We may have to extend the file.
2257 */
2258 int cont_write_begin(struct file *file, struct address_space *mapping,
2259 loff_t pos, unsigned len, unsigned flags,
2260 struct page **pagep, void **fsdata,
2261 get_block_t *get_block, loff_t *bytes)
2262 {
2263 struct inode *inode = mapping->host;
2264 unsigned blocksize = 1 << inode->i_blkbits;
2265 unsigned zerofrom;
2266 int err;
2267
2268 err = cont_expand_zero(file, mapping, pos, bytes);
2269 if (err)
2270 return err;
2271
2272 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2273 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2274 *bytes |= (blocksize-1);
2275 (*bytes)++;
2276 }
2277
2278 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2279 }
2280 EXPORT_SYMBOL(cont_write_begin);
2281
2282 int block_commit_write(struct page *page, unsigned from, unsigned to)
2283 {
2284 struct inode *inode = page->mapping->host;
2285 __block_commit_write(inode,page,from,to);
2286 return 0;
2287 }
2288 EXPORT_SYMBOL(block_commit_write);
2289
2290 /*
2291 * block_page_mkwrite() is not allowed to change the file size as it gets
2292 * called from a page fault handler when a page is first dirtied. Hence we must
2293 * be careful to check for EOF conditions here. We set the page up correctly
2294 * for a written page which means we get ENOSPC checking when writing into
2295 * holes and correct delalloc and unwritten extent mapping on filesystems that
2296 * support these features.
2297 *
2298 * We are not allowed to take the i_mutex here so we have to play games to
2299 * protect against truncate races as the page could now be beyond EOF. Because
2300 * truncate writes the inode size before removing pages, once we have the
2301 * page lock we can determine safely if the page is beyond EOF. If it is not
2302 * beyond EOF, then the page is guaranteed safe against truncation until we
2303 * unlock the page.
2304 *
2305 * Direct callers of this function should call vfs_check_frozen() so that page
2306 * fault does not busyloop until the fs is thawed.
2307 */
2308 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2309 get_block_t get_block)
2310 {
2311 struct page *page = vmf->page;
2312 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2313 unsigned long end;
2314 loff_t size;
2315 int ret;
2316
2317 lock_page(page);
2318 size = i_size_read(inode);
2319 if ((page->mapping != inode->i_mapping) ||
2320 (page_offset(page) > size)) {
2321 /* We overload EFAULT to mean page got truncated */
2322 ret = -EFAULT;
2323 goto out_unlock;
2324 }
2325
2326 /* page is wholly or partially inside EOF */
2327 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2328 end = size & ~PAGE_CACHE_MASK;
2329 else
2330 end = PAGE_CACHE_SIZE;
2331
2332 ret = __block_write_begin(page, 0, end, get_block);
2333 if (!ret)
2334 ret = block_commit_write(page, 0, end);
2335
2336 if (unlikely(ret < 0))
2337 goto out_unlock;
2338 /*
2339 * Freezing in progress? We check after the page is marked dirty and
2340 * with page lock held so if the test here fails, we are sure freezing
2341 * code will wait during syncing until the page fault is done - at that
2342 * point page will be dirty and unlocked so freezing code will write it
2343 * and writeprotect it again.
2344 */
2345 set_page_dirty(page);
2346 if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2347 ret = -EAGAIN;
2348 goto out_unlock;
2349 }
2350 wait_on_page_writeback(page);
2351 return 0;
2352 out_unlock:
2353 unlock_page(page);
2354 return ret;
2355 }
2356 EXPORT_SYMBOL(__block_page_mkwrite);
2357
2358 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2359 get_block_t get_block)
2360 {
2361 int ret;
2362 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2363
2364 /*
2365 * This check is racy but catches the common case. The check in
2366 * __block_page_mkwrite() is reliable.
2367 */
2368 vfs_check_frozen(sb, SB_FREEZE_WRITE);
2369 ret = __block_page_mkwrite(vma, vmf, get_block);
2370 return block_page_mkwrite_return(ret);
2371 }
2372 EXPORT_SYMBOL(block_page_mkwrite);
2373
2374 /*
2375 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2376 * immediately, while under the page lock. So it needs a special end_io
2377 * handler which does not touch the bh after unlocking it.
2378 */
2379 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2380 {
2381 __end_buffer_read_notouch(bh, uptodate);
2382 }
2383
2384 /*
2385 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2386 * the page (converting it to circular linked list and taking care of page
2387 * dirty races).
2388 */
2389 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2390 {
2391 struct buffer_head *bh;
2392
2393 BUG_ON(!PageLocked(page));
2394
2395 spin_lock(&page->mapping->private_lock);
2396 bh = head;
2397 do {
2398 if (PageDirty(page))
2399 set_buffer_dirty(bh);
2400 if (!bh->b_this_page)
2401 bh->b_this_page = head;
2402 bh = bh->b_this_page;
2403 } while (bh != head);
2404 attach_page_buffers(page, head);
2405 spin_unlock(&page->mapping->private_lock);
2406 }
2407
2408 /*
2409 * On entry, the page is fully not uptodate.
2410 * On exit the page is fully uptodate in the areas outside (from,to)
2411 * The filesystem needs to handle block truncation upon failure.
2412 */
2413 int nobh_write_begin(struct address_space *mapping,
2414 loff_t pos, unsigned len, unsigned flags,
2415 struct page **pagep, void **fsdata,
2416 get_block_t *get_block)
2417 {
2418 struct inode *inode = mapping->host;
2419 const unsigned blkbits = inode->i_blkbits;
2420 const unsigned blocksize = 1 << blkbits;
2421 struct buffer_head *head, *bh;
2422 struct page *page;
2423 pgoff_t index;
2424 unsigned from, to;
2425 unsigned block_in_page;
2426 unsigned block_start, block_end;
2427 sector_t block_in_file;
2428 int nr_reads = 0;
2429 int ret = 0;
2430 int is_mapped_to_disk = 1;
2431
2432 index = pos >> PAGE_CACHE_SHIFT;
2433 from = pos & (PAGE_CACHE_SIZE - 1);
2434 to = from + len;
2435
2436 page = grab_cache_page_write_begin(mapping, index, flags);
2437 if (!page)
2438 return -ENOMEM;
2439 *pagep = page;
2440 *fsdata = NULL;
2441
2442 if (page_has_buffers(page)) {
2443 ret = __block_write_begin(page, pos, len, get_block);
2444 if (unlikely(ret))
2445 goto out_release;
2446 return ret;
2447 }
2448
2449 if (PageMappedToDisk(page))
2450 return 0;
2451
2452 /*
2453 * Allocate buffers so that we can keep track of state, and potentially
2454 * attach them to the page if an error occurs. In the common case of
2455 * no error, they will just be freed again without ever being attached
2456 * to the page (which is all OK, because we're under the page lock).
2457 *
2458 * Be careful: the buffer linked list is a NULL terminated one, rather
2459 * than the circular one we're used to.
2460 */
2461 head = alloc_page_buffers(page, blocksize, 0);
2462 if (!head) {
2463 ret = -ENOMEM;
2464 goto out_release;
2465 }
2466
2467 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2468
2469 /*
2470 * We loop across all blocks in the page, whether or not they are
2471 * part of the affected region. This is so we can discover if the
2472 * page is fully mapped-to-disk.
2473 */
2474 for (block_start = 0, block_in_page = 0, bh = head;
2475 block_start < PAGE_CACHE_SIZE;
2476 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2477 int create;
2478
2479 block_end = block_start + blocksize;
2480 bh->b_state = 0;
2481 create = 1;
2482 if (block_start >= to)
2483 create = 0;
2484 ret = get_block(inode, block_in_file + block_in_page,
2485 bh, create);
2486 if (ret)
2487 goto failed;
2488 if (!buffer_mapped(bh))
2489 is_mapped_to_disk = 0;
2490 if (buffer_new(bh))
2491 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2492 if (PageUptodate(page)) {
2493 set_buffer_uptodate(bh);
2494 continue;
2495 }
2496 if (buffer_new(bh) || !buffer_mapped(bh)) {
2497 zero_user_segments(page, block_start, from,
2498 to, block_end);
2499 continue;
2500 }
2501 if (buffer_uptodate(bh))
2502 continue; /* reiserfs does this */
2503 if (block_start < from || block_end > to) {
2504 lock_buffer(bh);
2505 bh->b_end_io = end_buffer_read_nobh;
2506 submit_bh(READ, bh);
2507 nr_reads++;
2508 }
2509 }
2510
2511 if (nr_reads) {
2512 /*
2513 * The page is locked, so these buffers are protected from
2514 * any VM or truncate activity. Hence we don't need to care
2515 * for the buffer_head refcounts.
2516 */
2517 for (bh = head; bh; bh = bh->b_this_page) {
2518 wait_on_buffer(bh);
2519 if (!buffer_uptodate(bh))
2520 ret = -EIO;
2521 }
2522 if (ret)
2523 goto failed;
2524 }
2525
2526 if (is_mapped_to_disk)
2527 SetPageMappedToDisk(page);
2528
2529 *fsdata = head; /* to be released by nobh_write_end */
2530
2531 return 0;
2532
2533 failed:
2534 BUG_ON(!ret);
2535 /*
2536 * Error recovery is a bit difficult. We need to zero out blocks that
2537 * were newly allocated, and dirty them to ensure they get written out.
2538 * Buffers need to be attached to the page at this point, otherwise
2539 * the handling of potential IO errors during writeout would be hard
2540 * (could try doing synchronous writeout, but what if that fails too?)
2541 */
2542 attach_nobh_buffers(page, head);
2543 page_zero_new_buffers(page, from, to);
2544
2545 out_release:
2546 unlock_page(page);
2547 page_cache_release(page);
2548 *pagep = NULL;
2549
2550 return ret;
2551 }
2552 EXPORT_SYMBOL(nobh_write_begin);
2553
2554 int nobh_write_end(struct file *file, struct address_space *mapping,
2555 loff_t pos, unsigned len, unsigned copied,
2556 struct page *page, void *fsdata)
2557 {
2558 struct inode *inode = page->mapping->host;
2559 struct buffer_head *head = fsdata;
2560 struct buffer_head *bh;
2561 BUG_ON(fsdata != NULL && page_has_buffers(page));
2562
2563 if (unlikely(copied < len) && head)
2564 attach_nobh_buffers(page, head);
2565 if (page_has_buffers(page))
2566 return generic_write_end(file, mapping, pos, len,
2567 copied, page, fsdata);
2568
2569 SetPageUptodate(page);
2570 set_page_dirty(page);
2571 if (pos+copied > inode->i_size) {
2572 i_size_write(inode, pos+copied);
2573 mark_inode_dirty(inode);
2574 }
2575
2576 unlock_page(page);
2577 page_cache_release(page);
2578
2579 while (head) {
2580 bh = head;
2581 head = head->b_this_page;
2582 free_buffer_head(bh);
2583 }
2584
2585 return copied;
2586 }
2587 EXPORT_SYMBOL(nobh_write_end);
2588
2589 /*
2590 * nobh_writepage() - based on block_full_write_page() except
2591 * that it tries to operate without attaching bufferheads to
2592 * the page.
2593 */
2594 int nobh_writepage(struct page *page, get_block_t *get_block,
2595 struct writeback_control *wbc)
2596 {
2597 struct inode * const inode = page->mapping->host;
2598 loff_t i_size = i_size_read(inode);
2599 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2600 unsigned offset;
2601 int ret;
2602
2603 /* Is the page fully inside i_size? */
2604 if (page->index < end_index)
2605 goto out;
2606
2607 /* Is the page fully outside i_size? (truncate in progress) */
2608 offset = i_size & (PAGE_CACHE_SIZE-1);
2609 if (page->index >= end_index+1 || !offset) {
2610 /*
2611 * The page may have dirty, unmapped buffers. For example,
2612 * they may have been added in ext3_writepage(). Make them
2613 * freeable here, so the page does not leak.
2614 */
2615 #if 0
2616 /* Not really sure about this - do we need this ? */
2617 if (page->mapping->a_ops->invalidatepage)
2618 page->mapping->a_ops->invalidatepage(page, offset);
2619 #endif
2620 unlock_page(page);
2621 return 0; /* don't care */
2622 }
2623
2624 /*
2625 * The page straddles i_size. It must be zeroed out on each and every
2626 * writepage invocation because it may be mmapped. "A file is mapped
2627 * in multiples of the page size. For a file that is not a multiple of
2628 * the page size, the remaining memory is zeroed when mapped, and
2629 * writes to that region are not written out to the file."
2630 */
2631 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2632 out:
2633 ret = mpage_writepage(page, get_block, wbc);
2634 if (ret == -EAGAIN)
2635 ret = __block_write_full_page(inode, page, get_block, wbc,
2636 end_buffer_async_write);
2637 return ret;
2638 }
2639 EXPORT_SYMBOL(nobh_writepage);
2640
2641 int nobh_truncate_page(struct address_space *mapping,
2642 loff_t from, get_block_t *get_block)
2643 {
2644 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2645 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2646 unsigned blocksize;
2647 sector_t iblock;
2648 unsigned length, pos;
2649 struct inode *inode = mapping->host;
2650 struct page *page;
2651 struct buffer_head map_bh;
2652 int err;
2653
2654 blocksize = 1 << inode->i_blkbits;
2655 length = offset & (blocksize - 1);
2656
2657 /* Block boundary? Nothing to do */
2658 if (!length)
2659 return 0;
2660
2661 length = blocksize - length;
2662 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2663
2664 page = grab_cache_page(mapping, index);
2665 err = -ENOMEM;
2666 if (!page)
2667 goto out;
2668
2669 if (page_has_buffers(page)) {
2670 has_buffers:
2671 unlock_page(page);
2672 page_cache_release(page);
2673 return block_truncate_page(mapping, from, get_block);
2674 }
2675
2676 /* Find the buffer that contains "offset" */
2677 pos = blocksize;
2678 while (offset >= pos) {
2679 iblock++;
2680 pos += blocksize;
2681 }
2682
2683 map_bh.b_size = blocksize;
2684 map_bh.b_state = 0;
2685 err = get_block(inode, iblock, &map_bh, 0);
2686 if (err)
2687 goto unlock;
2688 /* unmapped? It's a hole - nothing to do */
2689 if (!buffer_mapped(&map_bh))
2690 goto unlock;
2691
2692 /* Ok, it's mapped. Make sure it's up-to-date */
2693 if (!PageUptodate(page)) {
2694 err = mapping->a_ops->readpage(NULL, page);
2695 if (err) {
2696 page_cache_release(page);
2697 goto out;
2698 }
2699 lock_page(page);
2700 if (!PageUptodate(page)) {
2701 err = -EIO;
2702 goto unlock;
2703 }
2704 if (page_has_buffers(page))
2705 goto has_buffers;
2706 }
2707 zero_user(page, offset, length);
2708 set_page_dirty(page);
2709 err = 0;
2710
2711 unlock:
2712 unlock_page(page);
2713 page_cache_release(page);
2714 out:
2715 return err;
2716 }
2717 EXPORT_SYMBOL(nobh_truncate_page);
2718
2719 int block_truncate_page(struct address_space *mapping,
2720 loff_t from, get_block_t *get_block)
2721 {
2722 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2723 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2724 unsigned blocksize;
2725 sector_t iblock;
2726 unsigned length, pos;
2727 struct inode *inode = mapping->host;
2728 struct page *page;
2729 struct buffer_head *bh;
2730 int err;
2731
2732 blocksize = 1 << inode->i_blkbits;
2733 length = offset & (blocksize - 1);
2734
2735 /* Block boundary? Nothing to do */
2736 if (!length)
2737 return 0;
2738
2739 length = blocksize - length;
2740 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2741
2742 page = grab_cache_page(mapping, index);
2743 err = -ENOMEM;
2744 if (!page)
2745 goto out;
2746
2747 if (!page_has_buffers(page))
2748 create_empty_buffers(page, blocksize, 0);
2749
2750 /* Find the buffer that contains "offset" */
2751 bh = page_buffers(page);
2752 pos = blocksize;
2753 while (offset >= pos) {
2754 bh = bh->b_this_page;
2755 iblock++;
2756 pos += blocksize;
2757 }
2758
2759 err = 0;
2760 if (!buffer_mapped(bh)) {
2761 WARN_ON(bh->b_size != blocksize);
2762 err = get_block(inode, iblock, bh, 0);
2763 if (err)
2764 goto unlock;
2765 /* unmapped? It's a hole - nothing to do */
2766 if (!buffer_mapped(bh))
2767 goto unlock;
2768 }
2769
2770 /* Ok, it's mapped. Make sure it's up-to-date */
2771 if (PageUptodate(page))
2772 set_buffer_uptodate(bh);
2773
2774 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2775 err = -EIO;
2776 ll_rw_block(READ, 1, &bh);
2777 wait_on_buffer(bh);
2778 /* Uhhuh. Read error. Complain and punt. */
2779 if (!buffer_uptodate(bh))
2780 goto unlock;
2781 }
2782
2783 zero_user(page, offset, length);
2784 mark_buffer_dirty(bh);
2785 err = 0;
2786
2787 unlock:
2788 unlock_page(page);
2789 page_cache_release(page);
2790 out:
2791 return err;
2792 }
2793 EXPORT_SYMBOL(block_truncate_page);
2794
2795 /*
2796 * The generic ->writepage function for buffer-backed address_spaces
2797 * this form passes in the end_io handler used to finish the IO.
2798 */
2799 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2800 struct writeback_control *wbc, bh_end_io_t *handler)
2801 {
2802 struct inode * const inode = page->mapping->host;
2803 loff_t i_size = i_size_read(inode);
2804 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2805 unsigned offset;
2806
2807 /* Is the page fully inside i_size? */
2808 if (page->index < end_index)
2809 return __block_write_full_page(inode, page, get_block, wbc,
2810 handler);
2811
2812 /* Is the page fully outside i_size? (truncate in progress) */
2813 offset = i_size & (PAGE_CACHE_SIZE-1);
2814 if (page->index >= end_index+1 || !offset) {
2815 /*
2816 * The page may have dirty, unmapped buffers. For example,
2817 * they may have been added in ext3_writepage(). Make them
2818 * freeable here, so the page does not leak.
2819 */
2820 do_invalidatepage(page, 0);
2821 unlock_page(page);
2822 return 0; /* don't care */
2823 }
2824
2825 /*
2826 * The page straddles i_size. It must be zeroed out on each and every
2827 * writepage invocation because it may be mmapped. "A file is mapped
2828 * in multiples of the page size. For a file that is not a multiple of
2829 * the page size, the remaining memory is zeroed when mapped, and
2830 * writes to that region are not written out to the file."
2831 */
2832 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2833 return __block_write_full_page(inode, page, get_block, wbc, handler);
2834 }
2835 EXPORT_SYMBOL(block_write_full_page_endio);
2836
2837 /*
2838 * The generic ->writepage function for buffer-backed address_spaces
2839 */
2840 int block_write_full_page(struct page *page, get_block_t *get_block,
2841 struct writeback_control *wbc)
2842 {
2843 return block_write_full_page_endio(page, get_block, wbc,
2844 end_buffer_async_write);
2845 }
2846 EXPORT_SYMBOL(block_write_full_page);
2847
2848 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2849 get_block_t *get_block)
2850 {
2851 struct buffer_head tmp;
2852 struct inode *inode = mapping->host;
2853 tmp.b_state = 0;
2854 tmp.b_blocknr = 0;
2855 tmp.b_size = 1 << inode->i_blkbits;
2856 get_block(inode, block, &tmp, 0);
2857 return tmp.b_blocknr;
2858 }
2859 EXPORT_SYMBOL(generic_block_bmap);
2860
2861 static void end_bio_bh_io_sync(struct bio *bio, int err)
2862 {
2863 struct buffer_head *bh = bio->bi_private;
2864
2865 if (err == -EOPNOTSUPP) {
2866 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2867 }
2868
2869 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2870 set_bit(BH_Quiet, &bh->b_state);
2871
2872 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2873 bio_put(bio);
2874 }
2875
2876 int submit_bh(int rw, struct buffer_head * bh)
2877 {
2878 struct bio *bio;
2879 int ret = 0;
2880
2881 BUG_ON(!buffer_locked(bh));
2882 BUG_ON(!buffer_mapped(bh));
2883 BUG_ON(!bh->b_end_io);
2884 BUG_ON(buffer_delay(bh));
2885 BUG_ON(buffer_unwritten(bh));
2886
2887 /*
2888 * Only clear out a write error when rewriting
2889 */
2890 if (test_set_buffer_req(bh) && (rw & WRITE))
2891 clear_buffer_write_io_error(bh);
2892
2893 /*
2894 * from here on down, it's all bio -- do the initial mapping,
2895 * submit_bio -> generic_make_request may further map this bio around
2896 */
2897 bio = bio_alloc(GFP_NOIO, 1);
2898
2899 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2900 bio->bi_bdev = bh->b_bdev;
2901 bio->bi_io_vec[0].bv_page = bh->b_page;
2902 bio->bi_io_vec[0].bv_len = bh->b_size;
2903 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2904
2905 bio->bi_vcnt = 1;
2906 bio->bi_idx = 0;
2907 bio->bi_size = bh->b_size;
2908
2909 bio->bi_end_io = end_bio_bh_io_sync;
2910 bio->bi_private = bh;
2911
2912 bio_get(bio);
2913 submit_bio(rw, bio);
2914
2915 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2916 ret = -EOPNOTSUPP;
2917
2918 bio_put(bio);
2919 return ret;
2920 }
2921 EXPORT_SYMBOL(submit_bh);
2922
2923 /**
2924 * ll_rw_block: low-level access to block devices (DEPRECATED)
2925 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2926 * @nr: number of &struct buffer_heads in the array
2927 * @bhs: array of pointers to &struct buffer_head
2928 *
2929 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2930 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2931 * %READA option is described in the documentation for generic_make_request()
2932 * which ll_rw_block() calls.
2933 *
2934 * This function drops any buffer that it cannot get a lock on (with the
2935 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2936 * request, and any buffer that appears to be up-to-date when doing read
2937 * request. Further it marks as clean buffers that are processed for
2938 * writing (the buffer cache won't assume that they are actually clean
2939 * until the buffer gets unlocked).
2940 *
2941 * ll_rw_block sets b_end_io to simple completion handler that marks
2942 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2943 * any waiters.
2944 *
2945 * All of the buffers must be for the same device, and must also be a
2946 * multiple of the current approved size for the device.
2947 */
2948 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2949 {
2950 int i;
2951
2952 for (i = 0; i < nr; i++) {
2953 struct buffer_head *bh = bhs[i];
2954
2955 if (!trylock_buffer(bh))
2956 continue;
2957 if (rw == WRITE) {
2958 if (test_clear_buffer_dirty(bh)) {
2959 bh->b_end_io = end_buffer_write_sync;
2960 get_bh(bh);
2961 submit_bh(WRITE, bh);
2962 continue;
2963 }
2964 } else {
2965 if (!buffer_uptodate(bh)) {
2966 bh->b_end_io = end_buffer_read_sync;
2967 get_bh(bh);
2968 submit_bh(rw, bh);
2969 continue;
2970 }
2971 }
2972 unlock_buffer(bh);
2973 }
2974 }
2975 EXPORT_SYMBOL(ll_rw_block);
2976
2977 void write_dirty_buffer(struct buffer_head *bh, int rw)
2978 {
2979 lock_buffer(bh);
2980 if (!test_clear_buffer_dirty(bh)) {
2981 unlock_buffer(bh);
2982 return;
2983 }
2984 bh->b_end_io = end_buffer_write_sync;
2985 get_bh(bh);
2986 submit_bh(rw, bh);
2987 }
2988 EXPORT_SYMBOL(write_dirty_buffer);
2989
2990 /*
2991 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2992 * and then start new I/O and then wait upon it. The caller must have a ref on
2993 * the buffer_head.
2994 */
2995 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
2996 {
2997 int ret = 0;
2998
2999 WARN_ON(atomic_read(&bh->b_count) < 1);
3000 lock_buffer(bh);
3001 if (test_clear_buffer_dirty(bh)) {
3002 get_bh(bh);
3003 bh->b_end_io = end_buffer_write_sync;
3004 ret = submit_bh(rw, bh);
3005 wait_on_buffer(bh);
3006 if (!ret && !buffer_uptodate(bh))
3007 ret = -EIO;
3008 } else {
3009 unlock_buffer(bh);
3010 }
3011 return ret;
3012 }
3013 EXPORT_SYMBOL(__sync_dirty_buffer);
3014
3015 int sync_dirty_buffer(struct buffer_head *bh)
3016 {
3017 return __sync_dirty_buffer(bh, WRITE_SYNC);
3018 }
3019 EXPORT_SYMBOL(sync_dirty_buffer);
3020
3021 /*
3022 * try_to_free_buffers() checks if all the buffers on this particular page
3023 * are unused, and releases them if so.
3024 *
3025 * Exclusion against try_to_free_buffers may be obtained by either
3026 * locking the page or by holding its mapping's private_lock.
3027 *
3028 * If the page is dirty but all the buffers are clean then we need to
3029 * be sure to mark the page clean as well. This is because the page
3030 * may be against a block device, and a later reattachment of buffers
3031 * to a dirty page will set *all* buffers dirty. Which would corrupt
3032 * filesystem data on the same device.
3033 *
3034 * The same applies to regular filesystem pages: if all the buffers are
3035 * clean then we set the page clean and proceed. To do that, we require
3036 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3037 * private_lock.
3038 *
3039 * try_to_free_buffers() is non-blocking.
3040 */
3041 static inline int buffer_busy(struct buffer_head *bh)
3042 {
3043 return atomic_read(&bh->b_count) |
3044 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3045 }
3046
3047 static int
3048 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3049 {
3050 struct buffer_head *head = page_buffers(page);
3051 struct buffer_head *bh;
3052
3053 bh = head;
3054 do {
3055 if (buffer_write_io_error(bh) && page->mapping)
3056 set_bit(AS_EIO, &page->mapping->flags);
3057 if (buffer_busy(bh))
3058 goto failed;
3059 bh = bh->b_this_page;
3060 } while (bh != head);
3061
3062 do {
3063 struct buffer_head *next = bh->b_this_page;
3064
3065 if (bh->b_assoc_map)
3066 __remove_assoc_queue(bh);
3067 bh = next;
3068 } while (bh != head);
3069 *buffers_to_free = head;
3070 __clear_page_buffers(page);
3071 return 1;
3072 failed:
3073 return 0;
3074 }
3075
3076 int try_to_free_buffers(struct page *page)
3077 {
3078 struct address_space * const mapping = page->mapping;
3079 struct buffer_head *buffers_to_free = NULL;
3080 int ret = 0;
3081
3082 BUG_ON(!PageLocked(page));
3083 if (PageWriteback(page))
3084 return 0;
3085
3086 if (mapping == NULL) { /* can this still happen? */
3087 ret = drop_buffers(page, &buffers_to_free);
3088 goto out;
3089 }
3090
3091 spin_lock(&mapping->private_lock);
3092 ret = drop_buffers(page, &buffers_to_free);
3093
3094 /*
3095 * If the filesystem writes its buffers by hand (eg ext3)
3096 * then we can have clean buffers against a dirty page. We
3097 * clean the page here; otherwise the VM will never notice
3098 * that the filesystem did any IO at all.
3099 *
3100 * Also, during truncate, discard_buffer will have marked all
3101 * the page's buffers clean. We discover that here and clean
3102 * the page also.
3103 *
3104 * private_lock must be held over this entire operation in order
3105 * to synchronise against __set_page_dirty_buffers and prevent the
3106 * dirty bit from being lost.
3107 */
3108 if (ret)
3109 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3110 spin_unlock(&mapping->private_lock);
3111 out:
3112 if (buffers_to_free) {
3113 struct buffer_head *bh = buffers_to_free;
3114
3115 do {
3116 struct buffer_head *next = bh->b_this_page;
3117 free_buffer_head(bh);
3118 bh = next;
3119 } while (bh != buffers_to_free);
3120 }
3121 return ret;
3122 }
3123 EXPORT_SYMBOL(try_to_free_buffers);
3124
3125 /*
3126 * There are no bdflush tunables left. But distributions are
3127 * still running obsolete flush daemons, so we terminate them here.
3128 *
3129 * Use of bdflush() is deprecated and will be removed in a future kernel.
3130 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3131 */
3132 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3133 {
3134 static int msg_count;
3135
3136 if (!capable(CAP_SYS_ADMIN))
3137 return -EPERM;
3138
3139 if (msg_count < 5) {
3140 msg_count++;
3141 printk(KERN_INFO
3142 "warning: process `%s' used the obsolete bdflush"
3143 " system call\n", current->comm);
3144 printk(KERN_INFO "Fix your initscripts?\n");
3145 }
3146
3147 if (func == 1)
3148 do_exit(0);
3149 return 0;
3150 }
3151
3152 /*
3153 * Buffer-head allocation
3154 */
3155 static struct kmem_cache *bh_cachep;
3156
3157 /*
3158 * Once the number of bh's in the machine exceeds this level, we start
3159 * stripping them in writeback.
3160 */
3161 static int max_buffer_heads;
3162
3163 int buffer_heads_over_limit;
3164
3165 struct bh_accounting {
3166 int nr; /* Number of live bh's */
3167 int ratelimit; /* Limit cacheline bouncing */
3168 };
3169
3170 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3171
3172 static void recalc_bh_state(void)
3173 {
3174 int i;
3175 int tot = 0;
3176
3177 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3178 return;
3179 __this_cpu_write(bh_accounting.ratelimit, 0);
3180 for_each_online_cpu(i)
3181 tot += per_cpu(bh_accounting, i).nr;
3182 buffer_heads_over_limit = (tot > max_buffer_heads);
3183 }
3184
3185 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3186 {
3187 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3188 if (ret) {
3189 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3190 preempt_disable();
3191 __this_cpu_inc(bh_accounting.nr);
3192 recalc_bh_state();
3193 preempt_enable();
3194 }
3195 return ret;
3196 }
3197 EXPORT_SYMBOL(alloc_buffer_head);
3198
3199 void free_buffer_head(struct buffer_head *bh)
3200 {
3201 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3202 kmem_cache_free(bh_cachep, bh);
3203 preempt_disable();
3204 __this_cpu_dec(bh_accounting.nr);
3205 recalc_bh_state();
3206 preempt_enable();
3207 }
3208 EXPORT_SYMBOL(free_buffer_head);
3209
3210 static void buffer_exit_cpu(int cpu)
3211 {
3212 int i;
3213 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3214
3215 for (i = 0; i < BH_LRU_SIZE; i++) {
3216 brelse(b->bhs[i]);
3217 b->bhs[i] = NULL;
3218 }
3219 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3220 per_cpu(bh_accounting, cpu).nr = 0;
3221 }
3222
3223 static int buffer_cpu_notify(struct notifier_block *self,
3224 unsigned long action, void *hcpu)
3225 {
3226 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3227 buffer_exit_cpu((unsigned long)hcpu);
3228 return NOTIFY_OK;
3229 }
3230
3231 /**
3232 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3233 * @bh: struct buffer_head
3234 *
3235 * Return true if the buffer is up-to-date and false,
3236 * with the buffer locked, if not.
3237 */
3238 int bh_uptodate_or_lock(struct buffer_head *bh)
3239 {
3240 if (!buffer_uptodate(bh)) {
3241 lock_buffer(bh);
3242 if (!buffer_uptodate(bh))
3243 return 0;
3244 unlock_buffer(bh);
3245 }
3246 return 1;
3247 }
3248 EXPORT_SYMBOL(bh_uptodate_or_lock);
3249
3250 /**
3251 * bh_submit_read - Submit a locked buffer for reading
3252 * @bh: struct buffer_head
3253 *
3254 * Returns zero on success and -EIO on error.
3255 */
3256 int bh_submit_read(struct buffer_head *bh)
3257 {
3258 BUG_ON(!buffer_locked(bh));
3259
3260 if (buffer_uptodate(bh)) {
3261 unlock_buffer(bh);
3262 return 0;
3263 }
3264
3265 get_bh(bh);
3266 bh->b_end_io = end_buffer_read_sync;
3267 submit_bh(READ, bh);
3268 wait_on_buffer(bh);
3269 if (buffer_uptodate(bh))
3270 return 0;
3271 return -EIO;
3272 }
3273 EXPORT_SYMBOL(bh_submit_read);
3274
3275 void __init buffer_init(void)
3276 {
3277 int nrpages;
3278
3279 bh_cachep = kmem_cache_create("buffer_head",
3280 sizeof(struct buffer_head), 0,
3281 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3282 SLAB_MEM_SPREAD),
3283 NULL);
3284
3285 /*
3286 * Limit the bh occupancy to 10% of ZONE_NORMAL
3287 */
3288 nrpages = (nr_free_buffer_pages() * 10) / 100;
3289 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3290 hotcpu_notifier(buffer_cpu_notify, 0);
3291 }