Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / media / tuners / xc5000.c
1 /*
2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3 *
4 * Copyright (c) 2007 Xceive Corporation
5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 *
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/dvb/frontend.h>
29 #include <linux/i2c.h>
30
31 #include "dvb_frontend.h"
32
33 #include "xc5000.h"
34 #include "tuner-i2c.h"
35
36 static int debug;
37 module_param(debug, int, 0644);
38 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
39
40 static int no_poweroff;
41 module_param(no_poweroff, int, 0644);
42 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
43 "\t\t1 keep device energized and with tuner ready all the times.\n"
44 "\t\tFaster, but consumes more power and keeps the device hotter");
45
46 static DEFINE_MUTEX(xc5000_list_mutex);
47 static LIST_HEAD(hybrid_tuner_instance_list);
48
49 #define dprintk(level, fmt, arg...) if (debug >= level) \
50 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
51
52 struct xc5000_priv {
53 struct tuner_i2c_props i2c_props;
54 struct list_head hybrid_tuner_instance_list;
55
56 u32 if_khz;
57 u16 xtal_khz;
58 u32 freq_hz;
59 u32 bandwidth;
60 u8 video_standard;
61 u8 rf_mode;
62 u8 radio_input;
63
64 int chip_id;
65 u16 pll_register_no;
66 u8 init_status_supported;
67 u8 fw_checksum_supported;
68 };
69
70 /* Misc Defines */
71 #define MAX_TV_STANDARD 24
72 #define XC_MAX_I2C_WRITE_LENGTH 64
73
74 /* Signal Types */
75 #define XC_RF_MODE_AIR 0
76 #define XC_RF_MODE_CABLE 1
77
78 /* Result codes */
79 #define XC_RESULT_SUCCESS 0
80 #define XC_RESULT_RESET_FAILURE 1
81 #define XC_RESULT_I2C_WRITE_FAILURE 2
82 #define XC_RESULT_I2C_READ_FAILURE 3
83 #define XC_RESULT_OUT_OF_RANGE 5
84
85 /* Product id */
86 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
87 #define XC_PRODUCT_ID_FW_LOADED 0x1388
88
89 /* Registers */
90 #define XREG_INIT 0x00
91 #define XREG_VIDEO_MODE 0x01
92 #define XREG_AUDIO_MODE 0x02
93 #define XREG_RF_FREQ 0x03
94 #define XREG_D_CODE 0x04
95 #define XREG_IF_OUT 0x05
96 #define XREG_SEEK_MODE 0x07
97 #define XREG_POWER_DOWN 0x0A /* Obsolete */
98 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
99 #define XREG_OUTPUT_AMP 0x0B
100 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
101 #define XREG_SMOOTHEDCVBS 0x0E
102 #define XREG_XTALFREQ 0x0F
103 #define XREG_FINERFREQ 0x10
104 #define XREG_DDIMODE 0x11
105
106 #define XREG_ADC_ENV 0x00
107 #define XREG_QUALITY 0x01
108 #define XREG_FRAME_LINES 0x02
109 #define XREG_HSYNC_FREQ 0x03
110 #define XREG_LOCK 0x04
111 #define XREG_FREQ_ERROR 0x05
112 #define XREG_SNR 0x06
113 #define XREG_VERSION 0x07
114 #define XREG_PRODUCT_ID 0x08
115 #define XREG_BUSY 0x09
116 #define XREG_BUILD 0x0D
117 #define XREG_TOTALGAIN 0x0F
118 #define XREG_FW_CHECKSUM 0x12
119 #define XREG_INIT_STATUS 0x13
120
121 /*
122 Basic firmware description. This will remain with
123 the driver for documentation purposes.
124
125 This represents an I2C firmware file encoded as a
126 string of unsigned char. Format is as follows:
127
128 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
129 char[1 ]=len0_LSB -> length of first write transaction
130 char[2 ]=data0 -> first byte to be sent
131 char[3 ]=data1
132 char[4 ]=data2
133 char[ ]=...
134 char[M ]=dataN -> last byte to be sent
135 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
136 char[M+2]=len1_LSB -> length of second write transaction
137 char[M+3]=data0
138 char[M+4]=data1
139 ...
140 etc.
141
142 The [len] value should be interpreted as follows:
143
144 len= len_MSB _ len_LSB
145 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
146 len=0000_0000_0000_0000 : Reset command: Do hardware reset
147 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
148 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
149
150 For the RESET and WAIT commands, the two following bytes will contain
151 immediately the length of the following transaction.
152
153 */
154 struct XC_TV_STANDARD {
155 char *Name;
156 u16 AudioMode;
157 u16 VideoMode;
158 };
159
160 /* Tuner standards */
161 #define MN_NTSC_PAL_BTSC 0
162 #define MN_NTSC_PAL_A2 1
163 #define MN_NTSC_PAL_EIAJ 2
164 #define MN_NTSC_PAL_Mono 3
165 #define BG_PAL_A2 4
166 #define BG_PAL_NICAM 5
167 #define BG_PAL_MONO 6
168 #define I_PAL_NICAM 7
169 #define I_PAL_NICAM_MONO 8
170 #define DK_PAL_A2 9
171 #define DK_PAL_NICAM 10
172 #define DK_PAL_MONO 11
173 #define DK_SECAM_A2DK1 12
174 #define DK_SECAM_A2LDK3 13
175 #define DK_SECAM_A2MONO 14
176 #define L_SECAM_NICAM 15
177 #define LC_SECAM_NICAM 16
178 #define DTV6 17
179 #define DTV8 18
180 #define DTV7_8 19
181 #define DTV7 20
182 #define FM_Radio_INPUT2 21
183 #define FM_Radio_INPUT1 22
184 #define FM_Radio_INPUT1_MONO 23
185
186 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
187 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
188 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
189 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
190 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
191 {"B/G-PAL-A2", 0x0A00, 0x8049},
192 {"B/G-PAL-NICAM", 0x0C04, 0x8049},
193 {"B/G-PAL-MONO", 0x0878, 0x8059},
194 {"I-PAL-NICAM", 0x1080, 0x8009},
195 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
196 {"D/K-PAL-A2", 0x1600, 0x8009},
197 {"D/K-PAL-NICAM", 0x0E80, 0x8009},
198 {"D/K-PAL-MONO", 0x1478, 0x8009},
199 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
200 {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
201 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
202 {"L-SECAM-NICAM", 0x8E82, 0x0009},
203 {"L'-SECAM-NICAM", 0x8E82, 0x4009},
204 {"DTV6", 0x00C0, 0x8002},
205 {"DTV8", 0x00C0, 0x800B},
206 {"DTV7/8", 0x00C0, 0x801B},
207 {"DTV7", 0x00C0, 0x8007},
208 {"FM Radio-INPUT2", 0x9802, 0x9002},
209 {"FM Radio-INPUT1", 0x0208, 0x9002},
210 {"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
211 };
212
213
214 struct xc5000_fw_cfg {
215 char *name;
216 u16 size;
217 u16 pll_reg;
218 u8 init_status_supported;
219 u8 fw_checksum_supported;
220 };
221
222 #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
223 static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
224 .name = XC5000A_FIRMWARE,
225 .size = 12401,
226 .pll_reg = 0x806c,
227 };
228
229 #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw"
230 static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
231 .name = XC5000C_FIRMWARE,
232 .size = 16497,
233 .pll_reg = 0x13,
234 .init_status_supported = 1,
235 .fw_checksum_supported = 1,
236 };
237
238 static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
239 {
240 switch (chip_id) {
241 default:
242 case XC5000A:
243 return &xc5000a_1_6_114;
244 case XC5000C:
245 return &xc5000c_41_024_5;
246 }
247 }
248
249 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force);
250 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
251 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
252 static int xc5000_TunerReset(struct dvb_frontend *fe);
253
254 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
255 {
256 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
257 .flags = 0, .buf = buf, .len = len };
258
259 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
260 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
261 return XC_RESULT_I2C_WRITE_FAILURE;
262 }
263 return XC_RESULT_SUCCESS;
264 }
265
266 #if 0
267 /* This routine is never used because the only time we read data from the
268 i2c bus is when we read registers, and we want that to be an atomic i2c
269 transaction in case we are on a multi-master bus */
270 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
271 {
272 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
273 .flags = I2C_M_RD, .buf = buf, .len = len };
274
275 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
276 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
277 return -EREMOTEIO;
278 }
279 return 0;
280 }
281 #endif
282
283 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
284 {
285 u8 buf[2] = { reg >> 8, reg & 0xff };
286 u8 bval[2] = { 0, 0 };
287 struct i2c_msg msg[2] = {
288 { .addr = priv->i2c_props.addr,
289 .flags = 0, .buf = &buf[0], .len = 2 },
290 { .addr = priv->i2c_props.addr,
291 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
292 };
293
294 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
295 printk(KERN_WARNING "xc5000: I2C read failed\n");
296 return -EREMOTEIO;
297 }
298
299 *val = (bval[0] << 8) | bval[1];
300 return XC_RESULT_SUCCESS;
301 }
302
303 static void xc_wait(int wait_ms)
304 {
305 msleep(wait_ms);
306 }
307
308 static int xc5000_TunerReset(struct dvb_frontend *fe)
309 {
310 struct xc5000_priv *priv = fe->tuner_priv;
311 int ret;
312
313 dprintk(1, "%s()\n", __func__);
314
315 if (fe->callback) {
316 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
317 fe->dvb->priv :
318 priv->i2c_props.adap->algo_data,
319 DVB_FRONTEND_COMPONENT_TUNER,
320 XC5000_TUNER_RESET, 0);
321 if (ret) {
322 printk(KERN_ERR "xc5000: reset failed\n");
323 return XC_RESULT_RESET_FAILURE;
324 }
325 } else {
326 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
327 return XC_RESULT_RESET_FAILURE;
328 }
329 return XC_RESULT_SUCCESS;
330 }
331
332 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
333 {
334 u8 buf[4];
335 int WatchDogTimer = 100;
336 int result;
337
338 buf[0] = (regAddr >> 8) & 0xFF;
339 buf[1] = regAddr & 0xFF;
340 buf[2] = (i2cData >> 8) & 0xFF;
341 buf[3] = i2cData & 0xFF;
342 result = xc_send_i2c_data(priv, buf, 4);
343 if (result == XC_RESULT_SUCCESS) {
344 /* wait for busy flag to clear */
345 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
346 result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
347 if (result == XC_RESULT_SUCCESS) {
348 if ((buf[0] == 0) && (buf[1] == 0)) {
349 /* busy flag cleared */
350 break;
351 } else {
352 xc_wait(5); /* wait 5 ms */
353 WatchDogTimer--;
354 }
355 }
356 }
357 }
358 if (WatchDogTimer <= 0)
359 result = XC_RESULT_I2C_WRITE_FAILURE;
360
361 return result;
362 }
363
364 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
365 {
366 struct xc5000_priv *priv = fe->tuner_priv;
367
368 int i, nbytes_to_send, result;
369 unsigned int len, pos, index;
370 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
371
372 index = 0;
373 while ((i2c_sequence[index] != 0xFF) ||
374 (i2c_sequence[index + 1] != 0xFF)) {
375 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
376 if (len == 0x0000) {
377 /* RESET command */
378 result = xc5000_TunerReset(fe);
379 index += 2;
380 if (result != XC_RESULT_SUCCESS)
381 return result;
382 } else if (len & 0x8000) {
383 /* WAIT command */
384 xc_wait(len & 0x7FFF);
385 index += 2;
386 } else {
387 /* Send i2c data whilst ensuring individual transactions
388 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
389 */
390 index += 2;
391 buf[0] = i2c_sequence[index];
392 buf[1] = i2c_sequence[index + 1];
393 pos = 2;
394 while (pos < len) {
395 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
396 nbytes_to_send =
397 XC_MAX_I2C_WRITE_LENGTH;
398 else
399 nbytes_to_send = (len - pos + 2);
400 for (i = 2; i < nbytes_to_send; i++) {
401 buf[i] = i2c_sequence[index + pos +
402 i - 2];
403 }
404 result = xc_send_i2c_data(priv, buf,
405 nbytes_to_send);
406
407 if (result != XC_RESULT_SUCCESS)
408 return result;
409
410 pos += nbytes_to_send - 2;
411 }
412 index += len;
413 }
414 }
415 return XC_RESULT_SUCCESS;
416 }
417
418 static int xc_initialize(struct xc5000_priv *priv)
419 {
420 dprintk(1, "%s()\n", __func__);
421 return xc_write_reg(priv, XREG_INIT, 0);
422 }
423
424 static int xc_SetTVStandard(struct xc5000_priv *priv,
425 u16 VideoMode, u16 AudioMode)
426 {
427 int ret;
428 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
429 dprintk(1, "%s() Standard = %s\n",
430 __func__,
431 XC5000_Standard[priv->video_standard].Name);
432
433 ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
434 if (ret == XC_RESULT_SUCCESS)
435 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
436
437 return ret;
438 }
439
440 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
441 {
442 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
443 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
444
445 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
446 rf_mode = XC_RF_MODE_CABLE;
447 printk(KERN_ERR
448 "%s(), Invalid mode, defaulting to CABLE",
449 __func__);
450 }
451 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
452 }
453
454 static const struct dvb_tuner_ops xc5000_tuner_ops;
455
456 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
457 {
458 u16 freq_code;
459
460 dprintk(1, "%s(%u)\n", __func__, freq_hz);
461
462 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
463 (freq_hz < xc5000_tuner_ops.info.frequency_min))
464 return XC_RESULT_OUT_OF_RANGE;
465
466 freq_code = (u16)(freq_hz / 15625);
467
468 /* Starting in firmware version 1.1.44, Xceive recommends using the
469 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
470 only be used for fast scanning for channel lock) */
471 return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
472 }
473
474
475 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
476 {
477 u32 freq_code = (freq_khz * 1024)/1000;
478 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
479 __func__, freq_khz, freq_code);
480
481 return xc_write_reg(priv, XREG_IF_OUT, freq_code);
482 }
483
484
485 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
486 {
487 return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
488 }
489
490 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
491 {
492 int result;
493 u16 regData;
494 u32 tmp;
495
496 result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
497 if (result != XC_RESULT_SUCCESS)
498 return result;
499
500 tmp = (u32)regData;
501 (*freq_error_hz) = (tmp * 15625) / 1000;
502 return result;
503 }
504
505 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
506 {
507 return xc5000_readreg(priv, XREG_LOCK, lock_status);
508 }
509
510 static int xc_get_version(struct xc5000_priv *priv,
511 u8 *hw_majorversion, u8 *hw_minorversion,
512 u8 *fw_majorversion, u8 *fw_minorversion)
513 {
514 u16 data;
515 int result;
516
517 result = xc5000_readreg(priv, XREG_VERSION, &data);
518 if (result != XC_RESULT_SUCCESS)
519 return result;
520
521 (*hw_majorversion) = (data >> 12) & 0x0F;
522 (*hw_minorversion) = (data >> 8) & 0x0F;
523 (*fw_majorversion) = (data >> 4) & 0x0F;
524 (*fw_minorversion) = data & 0x0F;
525
526 return 0;
527 }
528
529 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
530 {
531 return xc5000_readreg(priv, XREG_BUILD, buildrev);
532 }
533
534 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
535 {
536 u16 regData;
537 int result;
538
539 result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
540 if (result != XC_RESULT_SUCCESS)
541 return result;
542
543 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
544 return result;
545 }
546
547 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
548 {
549 return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
550 }
551
552 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
553 {
554 return xc5000_readreg(priv, XREG_QUALITY, quality);
555 }
556
557 static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr)
558 {
559 return xc5000_readreg(priv, XREG_SNR, snr);
560 }
561
562 static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain)
563 {
564 return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain);
565 }
566
567 static u16 WaitForLock(struct xc5000_priv *priv)
568 {
569 u16 lockState = 0;
570 int watchDogCount = 40;
571
572 while ((lockState == 0) && (watchDogCount > 0)) {
573 xc_get_lock_status(priv, &lockState);
574 if (lockState != 1) {
575 xc_wait(5);
576 watchDogCount--;
577 }
578 }
579 return lockState;
580 }
581
582 #define XC_TUNE_ANALOG 0
583 #define XC_TUNE_DIGITAL 1
584 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
585 {
586 int found = 0;
587
588 dprintk(1, "%s(%u)\n", __func__, freq_hz);
589
590 if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
591 return 0;
592
593 if (mode == XC_TUNE_ANALOG) {
594 if (WaitForLock(priv) == 1)
595 found = 1;
596 }
597
598 return found;
599 }
600
601 static int xc_set_xtal(struct dvb_frontend *fe)
602 {
603 struct xc5000_priv *priv = fe->tuner_priv;
604 int ret = XC_RESULT_SUCCESS;
605
606 switch (priv->chip_id) {
607 default:
608 case XC5000A:
609 /* 32.000 MHz xtal is default */
610 break;
611 case XC5000C:
612 switch (priv->xtal_khz) {
613 default:
614 case 32000:
615 /* 32.000 MHz xtal is default */
616 break;
617 case 31875:
618 /* 31.875 MHz xtal configuration */
619 ret = xc_write_reg(priv, 0x000f, 0x8081);
620 break;
621 }
622 break;
623 }
624 return ret;
625 }
626
627 static int xc5000_fwupload(struct dvb_frontend *fe)
628 {
629 struct xc5000_priv *priv = fe->tuner_priv;
630 const struct firmware *fw;
631 int ret;
632 const struct xc5000_fw_cfg *desired_fw =
633 xc5000_assign_firmware(priv->chip_id);
634 priv->pll_register_no = desired_fw->pll_reg;
635 priv->init_status_supported = desired_fw->init_status_supported;
636 priv->fw_checksum_supported = desired_fw->fw_checksum_supported;
637
638 /* request the firmware, this will block and timeout */
639 printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
640 desired_fw->name);
641
642 ret = request_firmware(&fw, desired_fw->name,
643 priv->i2c_props.adap->dev.parent);
644 if (ret) {
645 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
646 ret = XC_RESULT_RESET_FAILURE;
647 goto out;
648 } else {
649 printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
650 fw->size);
651 ret = XC_RESULT_SUCCESS;
652 }
653
654 if (fw->size != desired_fw->size) {
655 printk(KERN_ERR "xc5000: firmware incorrect size\n");
656 ret = XC_RESULT_RESET_FAILURE;
657 } else {
658 printk(KERN_INFO "xc5000: firmware uploading...\n");
659 ret = xc_load_i2c_sequence(fe, fw->data);
660 if (XC_RESULT_SUCCESS == ret)
661 ret = xc_set_xtal(fe);
662 if (XC_RESULT_SUCCESS == ret)
663 printk(KERN_INFO "xc5000: firmware upload complete...\n");
664 else
665 printk(KERN_ERR "xc5000: firmware upload failed...\n");
666 }
667
668 out:
669 release_firmware(fw);
670 return ret;
671 }
672
673 static void xc_debug_dump(struct xc5000_priv *priv)
674 {
675 u16 adc_envelope;
676 u32 freq_error_hz = 0;
677 u16 lock_status;
678 u32 hsync_freq_hz = 0;
679 u16 frame_lines;
680 u16 quality;
681 u16 snr;
682 u16 totalgain;
683 u8 hw_majorversion = 0, hw_minorversion = 0;
684 u8 fw_majorversion = 0, fw_minorversion = 0;
685 u16 fw_buildversion = 0;
686 u16 regval;
687
688 /* Wait for stats to stabilize.
689 * Frame Lines needs two frame times after initial lock
690 * before it is valid.
691 */
692 xc_wait(100);
693
694 xc_get_ADC_Envelope(priv, &adc_envelope);
695 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
696
697 xc_get_frequency_error(priv, &freq_error_hz);
698 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
699
700 xc_get_lock_status(priv, &lock_status);
701 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
702 lock_status);
703
704 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
705 &fw_majorversion, &fw_minorversion);
706 xc_get_buildversion(priv, &fw_buildversion);
707 dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n",
708 hw_majorversion, hw_minorversion,
709 fw_majorversion, fw_minorversion, fw_buildversion);
710
711 xc_get_hsync_freq(priv, &hsync_freq_hz);
712 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
713
714 xc_get_frame_lines(priv, &frame_lines);
715 dprintk(1, "*** Frame lines = %d\n", frame_lines);
716
717 xc_get_quality(priv, &quality);
718 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07);
719
720 xc_get_analogsnr(priv, &snr);
721 dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f);
722
723 xc_get_totalgain(priv, &totalgain);
724 dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256,
725 (totalgain % 256) * 100 / 256);
726
727 if (priv->pll_register_no) {
728 xc5000_readreg(priv, priv->pll_register_no, &regval);
729 dprintk(1, "*** PLL lock status = 0x%04x\n", regval);
730 }
731 }
732
733 static int xc5000_set_params(struct dvb_frontend *fe)
734 {
735 int ret, b;
736 struct xc5000_priv *priv = fe->tuner_priv;
737 u32 bw = fe->dtv_property_cache.bandwidth_hz;
738 u32 freq = fe->dtv_property_cache.frequency;
739 u32 delsys = fe->dtv_property_cache.delivery_system;
740
741 if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
742 dprintk(1, "Unable to load firmware and init tuner\n");
743 return -EINVAL;
744 }
745
746 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
747
748 switch (delsys) {
749 case SYS_ATSC:
750 dprintk(1, "%s() VSB modulation\n", __func__);
751 priv->rf_mode = XC_RF_MODE_AIR;
752 priv->freq_hz = freq - 1750000;
753 priv->video_standard = DTV6;
754 break;
755 case SYS_DVBC_ANNEX_B:
756 dprintk(1, "%s() QAM modulation\n", __func__);
757 priv->rf_mode = XC_RF_MODE_CABLE;
758 priv->freq_hz = freq - 1750000;
759 priv->video_standard = DTV6;
760 break;
761 case SYS_ISDBT:
762 /* All ISDB-T are currently for 6 MHz bw */
763 if (!bw)
764 bw = 6000000;
765 /* fall to OFDM handling */
766 case SYS_DMBTH:
767 case SYS_DVBT:
768 case SYS_DVBT2:
769 dprintk(1, "%s() OFDM\n", __func__);
770 switch (bw) {
771 case 6000000:
772 priv->video_standard = DTV6;
773 priv->freq_hz = freq - 1750000;
774 break;
775 case 7000000:
776 priv->video_standard = DTV7;
777 priv->freq_hz = freq - 2250000;
778 break;
779 case 8000000:
780 priv->video_standard = DTV8;
781 priv->freq_hz = freq - 2750000;
782 break;
783 default:
784 printk(KERN_ERR "xc5000 bandwidth not set!\n");
785 return -EINVAL;
786 }
787 priv->rf_mode = XC_RF_MODE_AIR;
788 break;
789 case SYS_DVBC_ANNEX_A:
790 case SYS_DVBC_ANNEX_C:
791 dprintk(1, "%s() QAM modulation\n", __func__);
792 priv->rf_mode = XC_RF_MODE_CABLE;
793 if (bw <= 6000000) {
794 priv->video_standard = DTV6;
795 priv->freq_hz = freq - 1750000;
796 b = 6;
797 } else if (bw <= 7000000) {
798 priv->video_standard = DTV7;
799 priv->freq_hz = freq - 2250000;
800 b = 7;
801 } else {
802 priv->video_standard = DTV7_8;
803 priv->freq_hz = freq - 2750000;
804 b = 8;
805 }
806 dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
807 b, bw);
808 break;
809 default:
810 printk(KERN_ERR "xc5000: delivery system is not supported!\n");
811 return -EINVAL;
812 }
813
814 dprintk(1, "%s() frequency=%d (compensated to %d)\n",
815 __func__, freq, priv->freq_hz);
816
817 ret = xc_SetSignalSource(priv, priv->rf_mode);
818 if (ret != XC_RESULT_SUCCESS) {
819 printk(KERN_ERR
820 "xc5000: xc_SetSignalSource(%d) failed\n",
821 priv->rf_mode);
822 return -EREMOTEIO;
823 }
824
825 ret = xc_SetTVStandard(priv,
826 XC5000_Standard[priv->video_standard].VideoMode,
827 XC5000_Standard[priv->video_standard].AudioMode);
828 if (ret != XC_RESULT_SUCCESS) {
829 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
830 return -EREMOTEIO;
831 }
832
833 ret = xc_set_IF_frequency(priv, priv->if_khz);
834 if (ret != XC_RESULT_SUCCESS) {
835 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
836 priv->if_khz);
837 return -EIO;
838 }
839
840 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);
841
842 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
843
844 if (debug)
845 xc_debug_dump(priv);
846
847 priv->bandwidth = bw;
848
849 return 0;
850 }
851
852 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
853 {
854 struct xc5000_priv *priv = fe->tuner_priv;
855 int ret;
856 u16 id;
857
858 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
859 if (ret == XC_RESULT_SUCCESS) {
860 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
861 ret = XC_RESULT_RESET_FAILURE;
862 else
863 ret = XC_RESULT_SUCCESS;
864 }
865
866 dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
867 ret == XC_RESULT_SUCCESS ? "True" : "False", id);
868 return ret;
869 }
870
871 static int xc5000_set_tv_freq(struct dvb_frontend *fe,
872 struct analog_parameters *params)
873 {
874 struct xc5000_priv *priv = fe->tuner_priv;
875 u16 pll_lock_status;
876 int ret;
877
878 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
879 __func__, params->frequency);
880
881 /* Fix me: it could be air. */
882 priv->rf_mode = params->mode;
883 if (params->mode > XC_RF_MODE_CABLE)
884 priv->rf_mode = XC_RF_MODE_CABLE;
885
886 /* params->frequency is in units of 62.5khz */
887 priv->freq_hz = params->frequency * 62500;
888
889 /* FIX ME: Some video standards may have several possible audio
890 standards. We simply default to one of them here.
891 */
892 if (params->std & V4L2_STD_MN) {
893 /* default to BTSC audio standard */
894 priv->video_standard = MN_NTSC_PAL_BTSC;
895 goto tune_channel;
896 }
897
898 if (params->std & V4L2_STD_PAL_BG) {
899 /* default to NICAM audio standard */
900 priv->video_standard = BG_PAL_NICAM;
901 goto tune_channel;
902 }
903
904 if (params->std & V4L2_STD_PAL_I) {
905 /* default to NICAM audio standard */
906 priv->video_standard = I_PAL_NICAM;
907 goto tune_channel;
908 }
909
910 if (params->std & V4L2_STD_PAL_DK) {
911 /* default to NICAM audio standard */
912 priv->video_standard = DK_PAL_NICAM;
913 goto tune_channel;
914 }
915
916 if (params->std & V4L2_STD_SECAM_DK) {
917 /* default to A2 DK1 audio standard */
918 priv->video_standard = DK_SECAM_A2DK1;
919 goto tune_channel;
920 }
921
922 if (params->std & V4L2_STD_SECAM_L) {
923 priv->video_standard = L_SECAM_NICAM;
924 goto tune_channel;
925 }
926
927 if (params->std & V4L2_STD_SECAM_LC) {
928 priv->video_standard = LC_SECAM_NICAM;
929 goto tune_channel;
930 }
931
932 tune_channel:
933 ret = xc_SetSignalSource(priv, priv->rf_mode);
934 if (ret != XC_RESULT_SUCCESS) {
935 printk(KERN_ERR
936 "xc5000: xc_SetSignalSource(%d) failed\n",
937 priv->rf_mode);
938 return -EREMOTEIO;
939 }
940
941 ret = xc_SetTVStandard(priv,
942 XC5000_Standard[priv->video_standard].VideoMode,
943 XC5000_Standard[priv->video_standard].AudioMode);
944 if (ret != XC_RESULT_SUCCESS) {
945 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
946 return -EREMOTEIO;
947 }
948
949 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
950
951 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
952
953 if (debug)
954 xc_debug_dump(priv);
955
956 if (priv->pll_register_no != 0) {
957 msleep(20);
958 xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status);
959 if (pll_lock_status > 63) {
960 /* PLL is unlocked, force reload of the firmware */
961 dprintk(1, "xc5000: PLL not locked (0x%x). Reloading...\n",
962 pll_lock_status);
963 if (xc_load_fw_and_init_tuner(fe, 1) != XC_RESULT_SUCCESS) {
964 printk(KERN_ERR "xc5000: Unable to reload fw\n");
965 return -EREMOTEIO;
966 }
967 goto tune_channel;
968 }
969 }
970
971 return 0;
972 }
973
974 static int xc5000_set_radio_freq(struct dvb_frontend *fe,
975 struct analog_parameters *params)
976 {
977 struct xc5000_priv *priv = fe->tuner_priv;
978 int ret = -EINVAL;
979 u8 radio_input;
980
981 dprintk(1, "%s() frequency=%d (in units of khz)\n",
982 __func__, params->frequency);
983
984 if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
985 dprintk(1, "%s() radio input not configured\n", __func__);
986 return -EINVAL;
987 }
988
989 if (priv->radio_input == XC5000_RADIO_FM1)
990 radio_input = FM_Radio_INPUT1;
991 else if (priv->radio_input == XC5000_RADIO_FM2)
992 radio_input = FM_Radio_INPUT2;
993 else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
994 radio_input = FM_Radio_INPUT1_MONO;
995 else {
996 dprintk(1, "%s() unknown radio input %d\n", __func__,
997 priv->radio_input);
998 return -EINVAL;
999 }
1000
1001 priv->freq_hz = params->frequency * 125 / 2;
1002
1003 priv->rf_mode = XC_RF_MODE_AIR;
1004
1005 ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
1006 XC5000_Standard[radio_input].AudioMode);
1007
1008 if (ret != XC_RESULT_SUCCESS) {
1009 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
1010 return -EREMOTEIO;
1011 }
1012
1013 ret = xc_SetSignalSource(priv, priv->rf_mode);
1014 if (ret != XC_RESULT_SUCCESS) {
1015 printk(KERN_ERR
1016 "xc5000: xc_SetSignalSource(%d) failed\n",
1017 priv->rf_mode);
1018 return -EREMOTEIO;
1019 }
1020
1021 if ((priv->radio_input == XC5000_RADIO_FM1) ||
1022 (priv->radio_input == XC5000_RADIO_FM2))
1023 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
1024 else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
1025 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
1026
1027 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
1028
1029 return 0;
1030 }
1031
1032 static int xc5000_set_analog_params(struct dvb_frontend *fe,
1033 struct analog_parameters *params)
1034 {
1035 struct xc5000_priv *priv = fe->tuner_priv;
1036 int ret = -EINVAL;
1037
1038 if (priv->i2c_props.adap == NULL)
1039 return -EINVAL;
1040
1041 if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
1042 dprintk(1, "Unable to load firmware and init tuner\n");
1043 return -EINVAL;
1044 }
1045
1046 switch (params->mode) {
1047 case V4L2_TUNER_RADIO:
1048 ret = xc5000_set_radio_freq(fe, params);
1049 break;
1050 case V4L2_TUNER_ANALOG_TV:
1051 case V4L2_TUNER_DIGITAL_TV:
1052 ret = xc5000_set_tv_freq(fe, params);
1053 break;
1054 }
1055
1056 return ret;
1057 }
1058
1059
1060 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
1061 {
1062 struct xc5000_priv *priv = fe->tuner_priv;
1063 dprintk(1, "%s()\n", __func__);
1064 *freq = priv->freq_hz;
1065 return 0;
1066 }
1067
1068 static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
1069 {
1070 struct xc5000_priv *priv = fe->tuner_priv;
1071 dprintk(1, "%s()\n", __func__);
1072 *freq = priv->if_khz * 1000;
1073 return 0;
1074 }
1075
1076 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
1077 {
1078 struct xc5000_priv *priv = fe->tuner_priv;
1079 dprintk(1, "%s()\n", __func__);
1080
1081 *bw = priv->bandwidth;
1082 return 0;
1083 }
1084
1085 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
1086 {
1087 struct xc5000_priv *priv = fe->tuner_priv;
1088 u16 lock_status = 0;
1089
1090 xc_get_lock_status(priv, &lock_status);
1091
1092 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
1093
1094 *status = lock_status;
1095
1096 return 0;
1097 }
1098
1099 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force)
1100 {
1101 struct xc5000_priv *priv = fe->tuner_priv;
1102 int ret = XC_RESULT_SUCCESS;
1103 u16 pll_lock_status;
1104 u16 fw_ck;
1105
1106 if (force || xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
1107
1108 fw_retry:
1109
1110 ret = xc5000_fwupload(fe);
1111 if (ret != XC_RESULT_SUCCESS)
1112 return ret;
1113
1114 msleep(20);
1115
1116 if (priv->fw_checksum_supported) {
1117 if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)
1118 != XC_RESULT_SUCCESS) {
1119 dprintk(1, "%s() FW checksum reading failed.\n",
1120 __func__);
1121 goto fw_retry;
1122 }
1123
1124 if (fw_ck == 0) {
1125 dprintk(1, "%s() FW checksum failed = 0x%04x\n",
1126 __func__, fw_ck);
1127 goto fw_retry;
1128 }
1129 }
1130
1131 /* Start the tuner self-calibration process */
1132 ret |= xc_initialize(priv);
1133
1134 if (ret != XC_RESULT_SUCCESS)
1135 goto fw_retry;
1136
1137 /* Wait for calibration to complete.
1138 * We could continue but XC5000 will clock stretch subsequent
1139 * I2C transactions until calibration is complete. This way we
1140 * don't have to rely on clock stretching working.
1141 */
1142 xc_wait(100);
1143
1144 if (priv->init_status_supported) {
1145 if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck) != XC_RESULT_SUCCESS) {
1146 dprintk(1, "%s() FW failed reading init status.\n",
1147 __func__);
1148 goto fw_retry;
1149 }
1150
1151 if (fw_ck == 0) {
1152 dprintk(1, "%s() FW init status failed = 0x%04x\n", __func__, fw_ck);
1153 goto fw_retry;
1154 }
1155 }
1156
1157 if (priv->pll_register_no) {
1158 xc5000_readreg(priv, priv->pll_register_no,
1159 &pll_lock_status);
1160 if (pll_lock_status > 63) {
1161 /* PLL is unlocked, force reload of the firmware */
1162 printk(KERN_ERR "xc5000: PLL not running after fwload.\n");
1163 goto fw_retry;
1164 }
1165 }
1166
1167 /* Default to "CABLE" mode */
1168 ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1169 }
1170
1171 return ret;
1172 }
1173
1174 static int xc5000_sleep(struct dvb_frontend *fe)
1175 {
1176 int ret;
1177
1178 dprintk(1, "%s()\n", __func__);
1179
1180 /* Avoid firmware reload on slow devices */
1181 if (no_poweroff)
1182 return 0;
1183
1184 /* According to Xceive technical support, the "powerdown" register
1185 was removed in newer versions of the firmware. The "supported"
1186 way to sleep the tuner is to pull the reset pin low for 10ms */
1187 ret = xc5000_TunerReset(fe);
1188 if (ret != XC_RESULT_SUCCESS) {
1189 printk(KERN_ERR
1190 "xc5000: %s() unable to shutdown tuner\n",
1191 __func__);
1192 return -EREMOTEIO;
1193 } else
1194 return XC_RESULT_SUCCESS;
1195 }
1196
1197 static int xc5000_init(struct dvb_frontend *fe)
1198 {
1199 struct xc5000_priv *priv = fe->tuner_priv;
1200 dprintk(1, "%s()\n", __func__);
1201
1202 if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
1203 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1204 return -EREMOTEIO;
1205 }
1206
1207 if (debug)
1208 xc_debug_dump(priv);
1209
1210 return 0;
1211 }
1212
1213 static int xc5000_release(struct dvb_frontend *fe)
1214 {
1215 struct xc5000_priv *priv = fe->tuner_priv;
1216
1217 dprintk(1, "%s()\n", __func__);
1218
1219 mutex_lock(&xc5000_list_mutex);
1220
1221 if (priv)
1222 hybrid_tuner_release_state(priv);
1223
1224 mutex_unlock(&xc5000_list_mutex);
1225
1226 fe->tuner_priv = NULL;
1227
1228 return 0;
1229 }
1230
1231 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1232 {
1233 struct xc5000_priv *priv = fe->tuner_priv;
1234 struct xc5000_config *p = priv_cfg;
1235
1236 dprintk(1, "%s()\n", __func__);
1237
1238 if (p->if_khz)
1239 priv->if_khz = p->if_khz;
1240
1241 if (p->radio_input)
1242 priv->radio_input = p->radio_input;
1243
1244 return 0;
1245 }
1246
1247
1248 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1249 .info = {
1250 .name = "Xceive XC5000",
1251 .frequency_min = 1000000,
1252 .frequency_max = 1023000000,
1253 .frequency_step = 50000,
1254 },
1255
1256 .release = xc5000_release,
1257 .init = xc5000_init,
1258 .sleep = xc5000_sleep,
1259
1260 .set_config = xc5000_set_config,
1261 .set_params = xc5000_set_params,
1262 .set_analog_params = xc5000_set_analog_params,
1263 .get_frequency = xc5000_get_frequency,
1264 .get_if_frequency = xc5000_get_if_frequency,
1265 .get_bandwidth = xc5000_get_bandwidth,
1266 .get_status = xc5000_get_status
1267 };
1268
1269 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1270 struct i2c_adapter *i2c,
1271 const struct xc5000_config *cfg)
1272 {
1273 struct xc5000_priv *priv = NULL;
1274 int instance;
1275 u16 id = 0;
1276
1277 dprintk(1, "%s(%d-%04x)\n", __func__,
1278 i2c ? i2c_adapter_id(i2c) : -1,
1279 cfg ? cfg->i2c_address : -1);
1280
1281 mutex_lock(&xc5000_list_mutex);
1282
1283 instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1284 hybrid_tuner_instance_list,
1285 i2c, cfg->i2c_address, "xc5000");
1286 switch (instance) {
1287 case 0:
1288 goto fail;
1289 break;
1290 case 1:
1291 /* new tuner instance */
1292 priv->bandwidth = 6000000;
1293 fe->tuner_priv = priv;
1294 break;
1295 default:
1296 /* existing tuner instance */
1297 fe->tuner_priv = priv;
1298 break;
1299 }
1300
1301 if (priv->if_khz == 0) {
1302 /* If the IF hasn't been set yet, use the value provided by
1303 the caller (occurs in hybrid devices where the analog
1304 call to xc5000_attach occurs before the digital side) */
1305 priv->if_khz = cfg->if_khz;
1306 }
1307
1308 if (priv->xtal_khz == 0)
1309 priv->xtal_khz = cfg->xtal_khz;
1310
1311 if (priv->radio_input == 0)
1312 priv->radio_input = cfg->radio_input;
1313
1314 /* don't override chip id if it's already been set
1315 unless explicitly specified */
1316 if ((priv->chip_id == 0) || (cfg->chip_id))
1317 /* use default chip id if none specified, set to 0 so
1318 it can be overridden if this is a hybrid driver */
1319 priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
1320
1321 /* Check if firmware has been loaded. It is possible that another
1322 instance of the driver has loaded the firmware.
1323 */
1324 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1325 goto fail;
1326
1327 switch (id) {
1328 case XC_PRODUCT_ID_FW_LOADED:
1329 printk(KERN_INFO
1330 "xc5000: Successfully identified at address 0x%02x\n",
1331 cfg->i2c_address);
1332 printk(KERN_INFO
1333 "xc5000: Firmware has been loaded previously\n");
1334 break;
1335 case XC_PRODUCT_ID_FW_NOT_LOADED:
1336 printk(KERN_INFO
1337 "xc5000: Successfully identified at address 0x%02x\n",
1338 cfg->i2c_address);
1339 printk(KERN_INFO
1340 "xc5000: Firmware has not been loaded previously\n");
1341 break;
1342 default:
1343 printk(KERN_ERR
1344 "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1345 cfg->i2c_address, id);
1346 goto fail;
1347 }
1348
1349 mutex_unlock(&xc5000_list_mutex);
1350
1351 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1352 sizeof(struct dvb_tuner_ops));
1353
1354 return fe;
1355 fail:
1356 mutex_unlock(&xc5000_list_mutex);
1357
1358 xc5000_release(fe);
1359 return NULL;
1360 }
1361 EXPORT_SYMBOL(xc5000_attach);
1362
1363 MODULE_AUTHOR("Steven Toth");
1364 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1365 MODULE_LICENSE("GPL");
1366 MODULE_FIRMWARE(XC5000A_FIRMWARE);
1367 MODULE_FIRMWARE(XC5000C_FIRMWARE);