Merge remote-tracking branch 'pfdo/drm-fixes' into drm-next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/io_apic.h>
38 #include <asm/apic.h>
39 #include <asm/hw_irq.h>
40 #include <asm/msidef.h>
41 #include <asm/proto.h>
42 #include <asm/iommu.h>
43 #include <asm/gart.h>
44 #include <asm/dma.h>
45
46 #include "amd_iommu_proto.h"
47 #include "amd_iommu_types.h"
48 #include "irq_remapping.h"
49 #include "pci.h"
50
51 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52
53 #define LOOP_TIMEOUT 100000
54
55 /*
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support.
60 *
61 * 512GB Pages are not supported due to a hardware bug
62 */
63 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
64
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock);
74
75 LIST_HEAD(ioapic_map);
76 LIST_HEAD(hpet_map);
77
78 /*
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
81 */
82 static struct protection_domain *pt_domain;
83
84 static struct iommu_ops amd_iommu_ops;
85
86 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87 int amd_iommu_max_glx_val = -1;
88
89 static struct dma_map_ops amd_iommu_dma_ops;
90
91 /*
92 * general struct to manage commands send to an IOMMU
93 */
94 struct iommu_cmd {
95 u32 data[4];
96 };
97
98 struct kmem_cache *amd_iommu_irq_cache;
99
100 static void update_domain(struct protection_domain *domain);
101 static int __init alloc_passthrough_domain(void);
102
103 /****************************************************************************
104 *
105 * Helper functions
106 *
107 ****************************************************************************/
108
109 static struct iommu_dev_data *alloc_dev_data(u16 devid)
110 {
111 struct iommu_dev_data *dev_data;
112 unsigned long flags;
113
114 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
115 if (!dev_data)
116 return NULL;
117
118 dev_data->devid = devid;
119 atomic_set(&dev_data->bind, 0);
120
121 spin_lock_irqsave(&dev_data_list_lock, flags);
122 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
123 spin_unlock_irqrestore(&dev_data_list_lock, flags);
124
125 return dev_data;
126 }
127
128 static void free_dev_data(struct iommu_dev_data *dev_data)
129 {
130 unsigned long flags;
131
132 spin_lock_irqsave(&dev_data_list_lock, flags);
133 list_del(&dev_data->dev_data_list);
134 spin_unlock_irqrestore(&dev_data_list_lock, flags);
135
136 if (dev_data->group)
137 iommu_group_put(dev_data->group);
138
139 kfree(dev_data);
140 }
141
142 static struct iommu_dev_data *search_dev_data(u16 devid)
143 {
144 struct iommu_dev_data *dev_data;
145 unsigned long flags;
146
147 spin_lock_irqsave(&dev_data_list_lock, flags);
148 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
149 if (dev_data->devid == devid)
150 goto out_unlock;
151 }
152
153 dev_data = NULL;
154
155 out_unlock:
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 return dev_data;
159 }
160
161 static struct iommu_dev_data *find_dev_data(u16 devid)
162 {
163 struct iommu_dev_data *dev_data;
164
165 dev_data = search_dev_data(devid);
166
167 if (dev_data == NULL)
168 dev_data = alloc_dev_data(devid);
169
170 return dev_data;
171 }
172
173 static inline u16 get_device_id(struct device *dev)
174 {
175 struct pci_dev *pdev = to_pci_dev(dev);
176
177 return PCI_DEVID(pdev->bus->number, pdev->devfn);
178 }
179
180 static struct iommu_dev_data *get_dev_data(struct device *dev)
181 {
182 return dev->archdata.iommu;
183 }
184
185 static bool pci_iommuv2_capable(struct pci_dev *pdev)
186 {
187 static const int caps[] = {
188 PCI_EXT_CAP_ID_ATS,
189 PCI_EXT_CAP_ID_PRI,
190 PCI_EXT_CAP_ID_PASID,
191 };
192 int i, pos;
193
194 for (i = 0; i < 3; ++i) {
195 pos = pci_find_ext_capability(pdev, caps[i]);
196 if (pos == 0)
197 return false;
198 }
199
200 return true;
201 }
202
203 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
204 {
205 struct iommu_dev_data *dev_data;
206
207 dev_data = get_dev_data(&pdev->dev);
208
209 return dev_data->errata & (1 << erratum) ? true : false;
210 }
211
212 /*
213 * In this function the list of preallocated protection domains is traversed to
214 * find the domain for a specific device
215 */
216 static struct dma_ops_domain *find_protection_domain(u16 devid)
217 {
218 struct dma_ops_domain *entry, *ret = NULL;
219 unsigned long flags;
220 u16 alias = amd_iommu_alias_table[devid];
221
222 if (list_empty(&iommu_pd_list))
223 return NULL;
224
225 spin_lock_irqsave(&iommu_pd_list_lock, flags);
226
227 list_for_each_entry(entry, &iommu_pd_list, list) {
228 if (entry->target_dev == devid ||
229 entry->target_dev == alias) {
230 ret = entry;
231 break;
232 }
233 }
234
235 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
236
237 return ret;
238 }
239
240 /*
241 * This function checks if the driver got a valid device from the caller to
242 * avoid dereferencing invalid pointers.
243 */
244 static bool check_device(struct device *dev)
245 {
246 u16 devid;
247
248 if (!dev || !dev->dma_mask)
249 return false;
250
251 /* No device or no PCI device */
252 if (dev->bus != &pci_bus_type)
253 return false;
254
255 devid = get_device_id(dev);
256
257 /* Out of our scope? */
258 if (devid > amd_iommu_last_bdf)
259 return false;
260
261 if (amd_iommu_rlookup_table[devid] == NULL)
262 return false;
263
264 return true;
265 }
266
267 static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
268 {
269 while (!bus->self) {
270 if (!pci_is_root_bus(bus))
271 bus = bus->parent;
272 else
273 return ERR_PTR(-ENODEV);
274 }
275
276 return bus;
277 }
278
279 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
280
281 static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
282 {
283 struct pci_dev *dma_pdev = pdev;
284
285 /* Account for quirked devices */
286 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
287
288 /*
289 * If it's a multifunction device that does not support our
290 * required ACS flags, add to the same group as function 0.
291 */
292 if (dma_pdev->multifunction &&
293 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
294 swap_pci_ref(&dma_pdev,
295 pci_get_slot(dma_pdev->bus,
296 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
297 0)));
298
299 /*
300 * Devices on the root bus go through the iommu. If that's not us,
301 * find the next upstream device and test ACS up to the root bus.
302 * Finding the next device may require skipping virtual buses.
303 */
304 while (!pci_is_root_bus(dma_pdev->bus)) {
305 struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
306 if (IS_ERR(bus))
307 break;
308
309 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
310 break;
311
312 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
313 }
314
315 return dma_pdev;
316 }
317
318 static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
319 {
320 struct iommu_group *group = iommu_group_get(&pdev->dev);
321 int ret;
322
323 if (!group) {
324 group = iommu_group_alloc();
325 if (IS_ERR(group))
326 return PTR_ERR(group);
327
328 WARN_ON(&pdev->dev != dev);
329 }
330
331 ret = iommu_group_add_device(group, dev);
332 iommu_group_put(group);
333 return ret;
334 }
335
336 static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
337 struct device *dev)
338 {
339 if (!dev_data->group) {
340 struct iommu_group *group = iommu_group_alloc();
341 if (IS_ERR(group))
342 return PTR_ERR(group);
343
344 dev_data->group = group;
345 }
346
347 return iommu_group_add_device(dev_data->group, dev);
348 }
349
350 static int init_iommu_group(struct device *dev)
351 {
352 struct iommu_dev_data *dev_data;
353 struct iommu_group *group;
354 struct pci_dev *dma_pdev;
355 int ret;
356
357 group = iommu_group_get(dev);
358 if (group) {
359 iommu_group_put(group);
360 return 0;
361 }
362
363 dev_data = find_dev_data(get_device_id(dev));
364 if (!dev_data)
365 return -ENOMEM;
366
367 if (dev_data->alias_data) {
368 u16 alias;
369 struct pci_bus *bus;
370
371 if (dev_data->alias_data->group)
372 goto use_group;
373
374 /*
375 * If the alias device exists, it's effectively just a first
376 * level quirk for finding the DMA source.
377 */
378 alias = amd_iommu_alias_table[dev_data->devid];
379 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
380 if (dma_pdev) {
381 dma_pdev = get_isolation_root(dma_pdev);
382 goto use_pdev;
383 }
384
385 /*
386 * If the alias is virtual, try to find a parent device
387 * and test whether the IOMMU group is actualy rooted above
388 * the alias. Be careful to also test the parent device if
389 * we think the alias is the root of the group.
390 */
391 bus = pci_find_bus(0, alias >> 8);
392 if (!bus)
393 goto use_group;
394
395 bus = find_hosted_bus(bus);
396 if (IS_ERR(bus) || !bus->self)
397 goto use_group;
398
399 dma_pdev = get_isolation_root(pci_dev_get(bus->self));
400 if (dma_pdev != bus->self || (dma_pdev->multifunction &&
401 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
402 goto use_pdev;
403
404 pci_dev_put(dma_pdev);
405 goto use_group;
406 }
407
408 dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
409 use_pdev:
410 ret = use_pdev_iommu_group(dma_pdev, dev);
411 pci_dev_put(dma_pdev);
412 return ret;
413 use_group:
414 return use_dev_data_iommu_group(dev_data->alias_data, dev);
415 }
416
417 static int iommu_init_device(struct device *dev)
418 {
419 struct pci_dev *pdev = to_pci_dev(dev);
420 struct iommu_dev_data *dev_data;
421 u16 alias;
422 int ret;
423
424 if (dev->archdata.iommu)
425 return 0;
426
427 dev_data = find_dev_data(get_device_id(dev));
428 if (!dev_data)
429 return -ENOMEM;
430
431 alias = amd_iommu_alias_table[dev_data->devid];
432 if (alias != dev_data->devid) {
433 struct iommu_dev_data *alias_data;
434
435 alias_data = find_dev_data(alias);
436 if (alias_data == NULL) {
437 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
438 dev_name(dev));
439 free_dev_data(dev_data);
440 return -ENOTSUPP;
441 }
442 dev_data->alias_data = alias_data;
443 }
444
445 ret = init_iommu_group(dev);
446 if (ret)
447 return ret;
448
449 if (pci_iommuv2_capable(pdev)) {
450 struct amd_iommu *iommu;
451
452 iommu = amd_iommu_rlookup_table[dev_data->devid];
453 dev_data->iommu_v2 = iommu->is_iommu_v2;
454 }
455
456 dev->archdata.iommu = dev_data;
457
458 return 0;
459 }
460
461 static void iommu_ignore_device(struct device *dev)
462 {
463 u16 devid, alias;
464
465 devid = get_device_id(dev);
466 alias = amd_iommu_alias_table[devid];
467
468 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
469 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
470
471 amd_iommu_rlookup_table[devid] = NULL;
472 amd_iommu_rlookup_table[alias] = NULL;
473 }
474
475 static void iommu_uninit_device(struct device *dev)
476 {
477 iommu_group_remove_device(dev);
478
479 /*
480 * Nothing to do here - we keep dev_data around for unplugged devices
481 * and reuse it when the device is re-plugged - not doing so would
482 * introduce a ton of races.
483 */
484 }
485
486 void __init amd_iommu_uninit_devices(void)
487 {
488 struct iommu_dev_data *dev_data, *n;
489 struct pci_dev *pdev = NULL;
490
491 for_each_pci_dev(pdev) {
492
493 if (!check_device(&pdev->dev))
494 continue;
495
496 iommu_uninit_device(&pdev->dev);
497 }
498
499 /* Free all of our dev_data structures */
500 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
501 free_dev_data(dev_data);
502 }
503
504 int __init amd_iommu_init_devices(void)
505 {
506 struct pci_dev *pdev = NULL;
507 int ret = 0;
508
509 for_each_pci_dev(pdev) {
510
511 if (!check_device(&pdev->dev))
512 continue;
513
514 ret = iommu_init_device(&pdev->dev);
515 if (ret == -ENOTSUPP)
516 iommu_ignore_device(&pdev->dev);
517 else if (ret)
518 goto out_free;
519 }
520
521 return 0;
522
523 out_free:
524
525 amd_iommu_uninit_devices();
526
527 return ret;
528 }
529 #ifdef CONFIG_AMD_IOMMU_STATS
530
531 /*
532 * Initialization code for statistics collection
533 */
534
535 DECLARE_STATS_COUNTER(compl_wait);
536 DECLARE_STATS_COUNTER(cnt_map_single);
537 DECLARE_STATS_COUNTER(cnt_unmap_single);
538 DECLARE_STATS_COUNTER(cnt_map_sg);
539 DECLARE_STATS_COUNTER(cnt_unmap_sg);
540 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
541 DECLARE_STATS_COUNTER(cnt_free_coherent);
542 DECLARE_STATS_COUNTER(cross_page);
543 DECLARE_STATS_COUNTER(domain_flush_single);
544 DECLARE_STATS_COUNTER(domain_flush_all);
545 DECLARE_STATS_COUNTER(alloced_io_mem);
546 DECLARE_STATS_COUNTER(total_map_requests);
547 DECLARE_STATS_COUNTER(complete_ppr);
548 DECLARE_STATS_COUNTER(invalidate_iotlb);
549 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
550 DECLARE_STATS_COUNTER(pri_requests);
551
552 static struct dentry *stats_dir;
553 static struct dentry *de_fflush;
554
555 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
556 {
557 if (stats_dir == NULL)
558 return;
559
560 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
561 &cnt->value);
562 }
563
564 static void amd_iommu_stats_init(void)
565 {
566 stats_dir = debugfs_create_dir("amd-iommu", NULL);
567 if (stats_dir == NULL)
568 return;
569
570 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
571 &amd_iommu_unmap_flush);
572
573 amd_iommu_stats_add(&compl_wait);
574 amd_iommu_stats_add(&cnt_map_single);
575 amd_iommu_stats_add(&cnt_unmap_single);
576 amd_iommu_stats_add(&cnt_map_sg);
577 amd_iommu_stats_add(&cnt_unmap_sg);
578 amd_iommu_stats_add(&cnt_alloc_coherent);
579 amd_iommu_stats_add(&cnt_free_coherent);
580 amd_iommu_stats_add(&cross_page);
581 amd_iommu_stats_add(&domain_flush_single);
582 amd_iommu_stats_add(&domain_flush_all);
583 amd_iommu_stats_add(&alloced_io_mem);
584 amd_iommu_stats_add(&total_map_requests);
585 amd_iommu_stats_add(&complete_ppr);
586 amd_iommu_stats_add(&invalidate_iotlb);
587 amd_iommu_stats_add(&invalidate_iotlb_all);
588 amd_iommu_stats_add(&pri_requests);
589 }
590
591 #endif
592
593 /****************************************************************************
594 *
595 * Interrupt handling functions
596 *
597 ****************************************************************************/
598
599 static void dump_dte_entry(u16 devid)
600 {
601 int i;
602
603 for (i = 0; i < 4; ++i)
604 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
605 amd_iommu_dev_table[devid].data[i]);
606 }
607
608 static void dump_command(unsigned long phys_addr)
609 {
610 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
611 int i;
612
613 for (i = 0; i < 4; ++i)
614 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
615 }
616
617 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
618 {
619 int type, devid, domid, flags;
620 volatile u32 *event = __evt;
621 int count = 0;
622 u64 address;
623
624 retry:
625 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
626 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
627 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
628 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
629 address = (u64)(((u64)event[3]) << 32) | event[2];
630
631 if (type == 0) {
632 /* Did we hit the erratum? */
633 if (++count == LOOP_TIMEOUT) {
634 pr_err("AMD-Vi: No event written to event log\n");
635 return;
636 }
637 udelay(1);
638 goto retry;
639 }
640
641 printk(KERN_ERR "AMD-Vi: Event logged [");
642
643 switch (type) {
644 case EVENT_TYPE_ILL_DEV:
645 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
646 "address=0x%016llx flags=0x%04x]\n",
647 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
648 address, flags);
649 dump_dte_entry(devid);
650 break;
651 case EVENT_TYPE_IO_FAULT:
652 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
653 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
654 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
655 domid, address, flags);
656 break;
657 case EVENT_TYPE_DEV_TAB_ERR:
658 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
659 "address=0x%016llx flags=0x%04x]\n",
660 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
661 address, flags);
662 break;
663 case EVENT_TYPE_PAGE_TAB_ERR:
664 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
665 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
666 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
667 domid, address, flags);
668 break;
669 case EVENT_TYPE_ILL_CMD:
670 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
671 dump_command(address);
672 break;
673 case EVENT_TYPE_CMD_HARD_ERR:
674 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
675 "flags=0x%04x]\n", address, flags);
676 break;
677 case EVENT_TYPE_IOTLB_INV_TO:
678 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
679 "address=0x%016llx]\n",
680 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
681 address);
682 break;
683 case EVENT_TYPE_INV_DEV_REQ:
684 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
685 "address=0x%016llx flags=0x%04x]\n",
686 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
687 address, flags);
688 break;
689 default:
690 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
691 }
692
693 memset(__evt, 0, 4 * sizeof(u32));
694 }
695
696 static void iommu_poll_events(struct amd_iommu *iommu)
697 {
698 u32 head, tail;
699
700 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
701 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
702
703 while (head != tail) {
704 iommu_print_event(iommu, iommu->evt_buf + head);
705 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
706 }
707
708 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
709 }
710
711 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
712 {
713 struct amd_iommu_fault fault;
714
715 INC_STATS_COUNTER(pri_requests);
716
717 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
718 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
719 return;
720 }
721
722 fault.address = raw[1];
723 fault.pasid = PPR_PASID(raw[0]);
724 fault.device_id = PPR_DEVID(raw[0]);
725 fault.tag = PPR_TAG(raw[0]);
726 fault.flags = PPR_FLAGS(raw[0]);
727
728 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
729 }
730
731 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
732 {
733 u32 head, tail;
734
735 if (iommu->ppr_log == NULL)
736 return;
737
738 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
740
741 while (head != tail) {
742 volatile u64 *raw;
743 u64 entry[2];
744 int i;
745
746 raw = (u64 *)(iommu->ppr_log + head);
747
748 /*
749 * Hardware bug: Interrupt may arrive before the entry is
750 * written to memory. If this happens we need to wait for the
751 * entry to arrive.
752 */
753 for (i = 0; i < LOOP_TIMEOUT; ++i) {
754 if (PPR_REQ_TYPE(raw[0]) != 0)
755 break;
756 udelay(1);
757 }
758
759 /* Avoid memcpy function-call overhead */
760 entry[0] = raw[0];
761 entry[1] = raw[1];
762
763 /*
764 * To detect the hardware bug we need to clear the entry
765 * back to zero.
766 */
767 raw[0] = raw[1] = 0UL;
768
769 /* Update head pointer of hardware ring-buffer */
770 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
771 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
772
773 /* Handle PPR entry */
774 iommu_handle_ppr_entry(iommu, entry);
775
776 /* Refresh ring-buffer information */
777 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
778 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
779 }
780 }
781
782 irqreturn_t amd_iommu_int_thread(int irq, void *data)
783 {
784 struct amd_iommu *iommu = (struct amd_iommu *) data;
785 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
786
787 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
788 /* Enable EVT and PPR interrupts again */
789 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
790 iommu->mmio_base + MMIO_STATUS_OFFSET);
791
792 if (status & MMIO_STATUS_EVT_INT_MASK) {
793 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
794 iommu_poll_events(iommu);
795 }
796
797 if (status & MMIO_STATUS_PPR_INT_MASK) {
798 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
799 iommu_poll_ppr_log(iommu);
800 }
801
802 /*
803 * Hardware bug: ERBT1312
804 * When re-enabling interrupt (by writing 1
805 * to clear the bit), the hardware might also try to set
806 * the interrupt bit in the event status register.
807 * In this scenario, the bit will be set, and disable
808 * subsequent interrupts.
809 *
810 * Workaround: The IOMMU driver should read back the
811 * status register and check if the interrupt bits are cleared.
812 * If not, driver will need to go through the interrupt handler
813 * again and re-clear the bits
814 */
815 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
816 }
817 return IRQ_HANDLED;
818 }
819
820 irqreturn_t amd_iommu_int_handler(int irq, void *data)
821 {
822 return IRQ_WAKE_THREAD;
823 }
824
825 /****************************************************************************
826 *
827 * IOMMU command queuing functions
828 *
829 ****************************************************************************/
830
831 static int wait_on_sem(volatile u64 *sem)
832 {
833 int i = 0;
834
835 while (*sem == 0 && i < LOOP_TIMEOUT) {
836 udelay(1);
837 i += 1;
838 }
839
840 if (i == LOOP_TIMEOUT) {
841 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
842 return -EIO;
843 }
844
845 return 0;
846 }
847
848 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
849 struct iommu_cmd *cmd,
850 u32 tail)
851 {
852 u8 *target;
853
854 target = iommu->cmd_buf + tail;
855 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
856
857 /* Copy command to buffer */
858 memcpy(target, cmd, sizeof(*cmd));
859
860 /* Tell the IOMMU about it */
861 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
862 }
863
864 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
865 {
866 WARN_ON(address & 0x7ULL);
867
868 memset(cmd, 0, sizeof(*cmd));
869 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
870 cmd->data[1] = upper_32_bits(__pa(address));
871 cmd->data[2] = 1;
872 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
873 }
874
875 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
876 {
877 memset(cmd, 0, sizeof(*cmd));
878 cmd->data[0] = devid;
879 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
880 }
881
882 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
883 size_t size, u16 domid, int pde)
884 {
885 u64 pages;
886 int s;
887
888 pages = iommu_num_pages(address, size, PAGE_SIZE);
889 s = 0;
890
891 if (pages > 1) {
892 /*
893 * If we have to flush more than one page, flush all
894 * TLB entries for this domain
895 */
896 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
897 s = 1;
898 }
899
900 address &= PAGE_MASK;
901
902 memset(cmd, 0, sizeof(*cmd));
903 cmd->data[1] |= domid;
904 cmd->data[2] = lower_32_bits(address);
905 cmd->data[3] = upper_32_bits(address);
906 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
907 if (s) /* size bit - we flush more than one 4kb page */
908 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
909 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
910 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
911 }
912
913 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
914 u64 address, size_t size)
915 {
916 u64 pages;
917 int s;
918
919 pages = iommu_num_pages(address, size, PAGE_SIZE);
920 s = 0;
921
922 if (pages > 1) {
923 /*
924 * If we have to flush more than one page, flush all
925 * TLB entries for this domain
926 */
927 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
928 s = 1;
929 }
930
931 address &= PAGE_MASK;
932
933 memset(cmd, 0, sizeof(*cmd));
934 cmd->data[0] = devid;
935 cmd->data[0] |= (qdep & 0xff) << 24;
936 cmd->data[1] = devid;
937 cmd->data[2] = lower_32_bits(address);
938 cmd->data[3] = upper_32_bits(address);
939 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
940 if (s)
941 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
942 }
943
944 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
945 u64 address, bool size)
946 {
947 memset(cmd, 0, sizeof(*cmd));
948
949 address &= ~(0xfffULL);
950
951 cmd->data[0] = pasid & PASID_MASK;
952 cmd->data[1] = domid;
953 cmd->data[2] = lower_32_bits(address);
954 cmd->data[3] = upper_32_bits(address);
955 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
956 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
957 if (size)
958 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
959 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
960 }
961
962 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
963 int qdep, u64 address, bool size)
964 {
965 memset(cmd, 0, sizeof(*cmd));
966
967 address &= ~(0xfffULL);
968
969 cmd->data[0] = devid;
970 cmd->data[0] |= (pasid & 0xff) << 16;
971 cmd->data[0] |= (qdep & 0xff) << 24;
972 cmd->data[1] = devid;
973 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
974 cmd->data[2] = lower_32_bits(address);
975 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
976 cmd->data[3] = upper_32_bits(address);
977 if (size)
978 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
979 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
980 }
981
982 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
983 int status, int tag, bool gn)
984 {
985 memset(cmd, 0, sizeof(*cmd));
986
987 cmd->data[0] = devid;
988 if (gn) {
989 cmd->data[1] = pasid & PASID_MASK;
990 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
991 }
992 cmd->data[3] = tag & 0x1ff;
993 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
994
995 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
996 }
997
998 static void build_inv_all(struct iommu_cmd *cmd)
999 {
1000 memset(cmd, 0, sizeof(*cmd));
1001 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1002 }
1003
1004 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1005 {
1006 memset(cmd, 0, sizeof(*cmd));
1007 cmd->data[0] = devid;
1008 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1009 }
1010
1011 /*
1012 * Writes the command to the IOMMUs command buffer and informs the
1013 * hardware about the new command.
1014 */
1015 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1016 struct iommu_cmd *cmd,
1017 bool sync)
1018 {
1019 u32 left, tail, head, next_tail;
1020 unsigned long flags;
1021
1022 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1023
1024 again:
1025 spin_lock_irqsave(&iommu->lock, flags);
1026
1027 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1028 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1029 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1030 left = (head - next_tail) % iommu->cmd_buf_size;
1031
1032 if (left <= 2) {
1033 struct iommu_cmd sync_cmd;
1034 volatile u64 sem = 0;
1035 int ret;
1036
1037 build_completion_wait(&sync_cmd, (u64)&sem);
1038 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1039
1040 spin_unlock_irqrestore(&iommu->lock, flags);
1041
1042 if ((ret = wait_on_sem(&sem)) != 0)
1043 return ret;
1044
1045 goto again;
1046 }
1047
1048 copy_cmd_to_buffer(iommu, cmd, tail);
1049
1050 /* We need to sync now to make sure all commands are processed */
1051 iommu->need_sync = sync;
1052
1053 spin_unlock_irqrestore(&iommu->lock, flags);
1054
1055 return 0;
1056 }
1057
1058 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1059 {
1060 return iommu_queue_command_sync(iommu, cmd, true);
1061 }
1062
1063 /*
1064 * This function queues a completion wait command into the command
1065 * buffer of an IOMMU
1066 */
1067 static int iommu_completion_wait(struct amd_iommu *iommu)
1068 {
1069 struct iommu_cmd cmd;
1070 volatile u64 sem = 0;
1071 int ret;
1072
1073 if (!iommu->need_sync)
1074 return 0;
1075
1076 build_completion_wait(&cmd, (u64)&sem);
1077
1078 ret = iommu_queue_command_sync(iommu, &cmd, false);
1079 if (ret)
1080 return ret;
1081
1082 return wait_on_sem(&sem);
1083 }
1084
1085 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1086 {
1087 struct iommu_cmd cmd;
1088
1089 build_inv_dte(&cmd, devid);
1090
1091 return iommu_queue_command(iommu, &cmd);
1092 }
1093
1094 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1095 {
1096 u32 devid;
1097
1098 for (devid = 0; devid <= 0xffff; ++devid)
1099 iommu_flush_dte(iommu, devid);
1100
1101 iommu_completion_wait(iommu);
1102 }
1103
1104 /*
1105 * This function uses heavy locking and may disable irqs for some time. But
1106 * this is no issue because it is only called during resume.
1107 */
1108 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1109 {
1110 u32 dom_id;
1111
1112 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1113 struct iommu_cmd cmd;
1114 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1115 dom_id, 1);
1116 iommu_queue_command(iommu, &cmd);
1117 }
1118
1119 iommu_completion_wait(iommu);
1120 }
1121
1122 static void iommu_flush_all(struct amd_iommu *iommu)
1123 {
1124 struct iommu_cmd cmd;
1125
1126 build_inv_all(&cmd);
1127
1128 iommu_queue_command(iommu, &cmd);
1129 iommu_completion_wait(iommu);
1130 }
1131
1132 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1133 {
1134 struct iommu_cmd cmd;
1135
1136 build_inv_irt(&cmd, devid);
1137
1138 iommu_queue_command(iommu, &cmd);
1139 }
1140
1141 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1142 {
1143 u32 devid;
1144
1145 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1146 iommu_flush_irt(iommu, devid);
1147
1148 iommu_completion_wait(iommu);
1149 }
1150
1151 void iommu_flush_all_caches(struct amd_iommu *iommu)
1152 {
1153 if (iommu_feature(iommu, FEATURE_IA)) {
1154 iommu_flush_all(iommu);
1155 } else {
1156 iommu_flush_dte_all(iommu);
1157 iommu_flush_irt_all(iommu);
1158 iommu_flush_tlb_all(iommu);
1159 }
1160 }
1161
1162 /*
1163 * Command send function for flushing on-device TLB
1164 */
1165 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1166 u64 address, size_t size)
1167 {
1168 struct amd_iommu *iommu;
1169 struct iommu_cmd cmd;
1170 int qdep;
1171
1172 qdep = dev_data->ats.qdep;
1173 iommu = amd_iommu_rlookup_table[dev_data->devid];
1174
1175 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1176
1177 return iommu_queue_command(iommu, &cmd);
1178 }
1179
1180 /*
1181 * Command send function for invalidating a device table entry
1182 */
1183 static int device_flush_dte(struct iommu_dev_data *dev_data)
1184 {
1185 struct amd_iommu *iommu;
1186 int ret;
1187
1188 iommu = amd_iommu_rlookup_table[dev_data->devid];
1189
1190 ret = iommu_flush_dte(iommu, dev_data->devid);
1191 if (ret)
1192 return ret;
1193
1194 if (dev_data->ats.enabled)
1195 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1196
1197 return ret;
1198 }
1199
1200 /*
1201 * TLB invalidation function which is called from the mapping functions.
1202 * It invalidates a single PTE if the range to flush is within a single
1203 * page. Otherwise it flushes the whole TLB of the IOMMU.
1204 */
1205 static void __domain_flush_pages(struct protection_domain *domain,
1206 u64 address, size_t size, int pde)
1207 {
1208 struct iommu_dev_data *dev_data;
1209 struct iommu_cmd cmd;
1210 int ret = 0, i;
1211
1212 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1213
1214 for (i = 0; i < amd_iommus_present; ++i) {
1215 if (!domain->dev_iommu[i])
1216 continue;
1217
1218 /*
1219 * Devices of this domain are behind this IOMMU
1220 * We need a TLB flush
1221 */
1222 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1223 }
1224
1225 list_for_each_entry(dev_data, &domain->dev_list, list) {
1226
1227 if (!dev_data->ats.enabled)
1228 continue;
1229
1230 ret |= device_flush_iotlb(dev_data, address, size);
1231 }
1232
1233 WARN_ON(ret);
1234 }
1235
1236 static void domain_flush_pages(struct protection_domain *domain,
1237 u64 address, size_t size)
1238 {
1239 __domain_flush_pages(domain, address, size, 0);
1240 }
1241
1242 /* Flush the whole IO/TLB for a given protection domain */
1243 static void domain_flush_tlb(struct protection_domain *domain)
1244 {
1245 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1246 }
1247
1248 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1249 static void domain_flush_tlb_pde(struct protection_domain *domain)
1250 {
1251 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1252 }
1253
1254 static void domain_flush_complete(struct protection_domain *domain)
1255 {
1256 int i;
1257
1258 for (i = 0; i < amd_iommus_present; ++i) {
1259 if (!domain->dev_iommu[i])
1260 continue;
1261
1262 /*
1263 * Devices of this domain are behind this IOMMU
1264 * We need to wait for completion of all commands.
1265 */
1266 iommu_completion_wait(amd_iommus[i]);
1267 }
1268 }
1269
1270
1271 /*
1272 * This function flushes the DTEs for all devices in domain
1273 */
1274 static void domain_flush_devices(struct protection_domain *domain)
1275 {
1276 struct iommu_dev_data *dev_data;
1277
1278 list_for_each_entry(dev_data, &domain->dev_list, list)
1279 device_flush_dte(dev_data);
1280 }
1281
1282 /****************************************************************************
1283 *
1284 * The functions below are used the create the page table mappings for
1285 * unity mapped regions.
1286 *
1287 ****************************************************************************/
1288
1289 /*
1290 * This function is used to add another level to an IO page table. Adding
1291 * another level increases the size of the address space by 9 bits to a size up
1292 * to 64 bits.
1293 */
1294 static bool increase_address_space(struct protection_domain *domain,
1295 gfp_t gfp)
1296 {
1297 u64 *pte;
1298
1299 if (domain->mode == PAGE_MODE_6_LEVEL)
1300 /* address space already 64 bit large */
1301 return false;
1302
1303 pte = (void *)get_zeroed_page(gfp);
1304 if (!pte)
1305 return false;
1306
1307 *pte = PM_LEVEL_PDE(domain->mode,
1308 virt_to_phys(domain->pt_root));
1309 domain->pt_root = pte;
1310 domain->mode += 1;
1311 domain->updated = true;
1312
1313 return true;
1314 }
1315
1316 static u64 *alloc_pte(struct protection_domain *domain,
1317 unsigned long address,
1318 unsigned long page_size,
1319 u64 **pte_page,
1320 gfp_t gfp)
1321 {
1322 int level, end_lvl;
1323 u64 *pte, *page;
1324
1325 BUG_ON(!is_power_of_2(page_size));
1326
1327 while (address > PM_LEVEL_SIZE(domain->mode))
1328 increase_address_space(domain, gfp);
1329
1330 level = domain->mode - 1;
1331 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1332 address = PAGE_SIZE_ALIGN(address, page_size);
1333 end_lvl = PAGE_SIZE_LEVEL(page_size);
1334
1335 while (level > end_lvl) {
1336 if (!IOMMU_PTE_PRESENT(*pte)) {
1337 page = (u64 *)get_zeroed_page(gfp);
1338 if (!page)
1339 return NULL;
1340 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1341 }
1342
1343 /* No level skipping support yet */
1344 if (PM_PTE_LEVEL(*pte) != level)
1345 return NULL;
1346
1347 level -= 1;
1348
1349 pte = IOMMU_PTE_PAGE(*pte);
1350
1351 if (pte_page && level == end_lvl)
1352 *pte_page = pte;
1353
1354 pte = &pte[PM_LEVEL_INDEX(level, address)];
1355 }
1356
1357 return pte;
1358 }
1359
1360 /*
1361 * This function checks if there is a PTE for a given dma address. If
1362 * there is one, it returns the pointer to it.
1363 */
1364 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1365 {
1366 int level;
1367 u64 *pte;
1368
1369 if (address > PM_LEVEL_SIZE(domain->mode))
1370 return NULL;
1371
1372 level = domain->mode - 1;
1373 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1374
1375 while (level > 0) {
1376
1377 /* Not Present */
1378 if (!IOMMU_PTE_PRESENT(*pte))
1379 return NULL;
1380
1381 /* Large PTE */
1382 if (PM_PTE_LEVEL(*pte) == 0x07) {
1383 unsigned long pte_mask, __pte;
1384
1385 /*
1386 * If we have a series of large PTEs, make
1387 * sure to return a pointer to the first one.
1388 */
1389 pte_mask = PTE_PAGE_SIZE(*pte);
1390 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1391 __pte = ((unsigned long)pte) & pte_mask;
1392
1393 return (u64 *)__pte;
1394 }
1395
1396 /* No level skipping support yet */
1397 if (PM_PTE_LEVEL(*pte) != level)
1398 return NULL;
1399
1400 level -= 1;
1401
1402 /* Walk to the next level */
1403 pte = IOMMU_PTE_PAGE(*pte);
1404 pte = &pte[PM_LEVEL_INDEX(level, address)];
1405 }
1406
1407 return pte;
1408 }
1409
1410 /*
1411 * Generic mapping functions. It maps a physical address into a DMA
1412 * address space. It allocates the page table pages if necessary.
1413 * In the future it can be extended to a generic mapping function
1414 * supporting all features of AMD IOMMU page tables like level skipping
1415 * and full 64 bit address spaces.
1416 */
1417 static int iommu_map_page(struct protection_domain *dom,
1418 unsigned long bus_addr,
1419 unsigned long phys_addr,
1420 int prot,
1421 unsigned long page_size)
1422 {
1423 u64 __pte, *pte;
1424 int i, count;
1425
1426 if (!(prot & IOMMU_PROT_MASK))
1427 return -EINVAL;
1428
1429 bus_addr = PAGE_ALIGN(bus_addr);
1430 phys_addr = PAGE_ALIGN(phys_addr);
1431 count = PAGE_SIZE_PTE_COUNT(page_size);
1432 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1433
1434 for (i = 0; i < count; ++i)
1435 if (IOMMU_PTE_PRESENT(pte[i]))
1436 return -EBUSY;
1437
1438 if (page_size > PAGE_SIZE) {
1439 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1440 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1441 } else
1442 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1443
1444 if (prot & IOMMU_PROT_IR)
1445 __pte |= IOMMU_PTE_IR;
1446 if (prot & IOMMU_PROT_IW)
1447 __pte |= IOMMU_PTE_IW;
1448
1449 for (i = 0; i < count; ++i)
1450 pte[i] = __pte;
1451
1452 update_domain(dom);
1453
1454 return 0;
1455 }
1456
1457 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1458 unsigned long bus_addr,
1459 unsigned long page_size)
1460 {
1461 unsigned long long unmap_size, unmapped;
1462 u64 *pte;
1463
1464 BUG_ON(!is_power_of_2(page_size));
1465
1466 unmapped = 0;
1467
1468 while (unmapped < page_size) {
1469
1470 pte = fetch_pte(dom, bus_addr);
1471
1472 if (!pte) {
1473 /*
1474 * No PTE for this address
1475 * move forward in 4kb steps
1476 */
1477 unmap_size = PAGE_SIZE;
1478 } else if (PM_PTE_LEVEL(*pte) == 0) {
1479 /* 4kb PTE found for this address */
1480 unmap_size = PAGE_SIZE;
1481 *pte = 0ULL;
1482 } else {
1483 int count, i;
1484
1485 /* Large PTE found which maps this address */
1486 unmap_size = PTE_PAGE_SIZE(*pte);
1487 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1488 for (i = 0; i < count; i++)
1489 pte[i] = 0ULL;
1490 }
1491
1492 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1493 unmapped += unmap_size;
1494 }
1495
1496 BUG_ON(!is_power_of_2(unmapped));
1497
1498 return unmapped;
1499 }
1500
1501 /*
1502 * This function checks if a specific unity mapping entry is needed for
1503 * this specific IOMMU.
1504 */
1505 static int iommu_for_unity_map(struct amd_iommu *iommu,
1506 struct unity_map_entry *entry)
1507 {
1508 u16 bdf, i;
1509
1510 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1511 bdf = amd_iommu_alias_table[i];
1512 if (amd_iommu_rlookup_table[bdf] == iommu)
1513 return 1;
1514 }
1515
1516 return 0;
1517 }
1518
1519 /*
1520 * This function actually applies the mapping to the page table of the
1521 * dma_ops domain.
1522 */
1523 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1524 struct unity_map_entry *e)
1525 {
1526 u64 addr;
1527 int ret;
1528
1529 for (addr = e->address_start; addr < e->address_end;
1530 addr += PAGE_SIZE) {
1531 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1532 PAGE_SIZE);
1533 if (ret)
1534 return ret;
1535 /*
1536 * if unity mapping is in aperture range mark the page
1537 * as allocated in the aperture
1538 */
1539 if (addr < dma_dom->aperture_size)
1540 __set_bit(addr >> PAGE_SHIFT,
1541 dma_dom->aperture[0]->bitmap);
1542 }
1543
1544 return 0;
1545 }
1546
1547 /*
1548 * Init the unity mappings for a specific IOMMU in the system
1549 *
1550 * Basically iterates over all unity mapping entries and applies them to
1551 * the default domain DMA of that IOMMU if necessary.
1552 */
1553 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1554 {
1555 struct unity_map_entry *entry;
1556 int ret;
1557
1558 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1559 if (!iommu_for_unity_map(iommu, entry))
1560 continue;
1561 ret = dma_ops_unity_map(iommu->default_dom, entry);
1562 if (ret)
1563 return ret;
1564 }
1565
1566 return 0;
1567 }
1568
1569 /*
1570 * Inits the unity mappings required for a specific device
1571 */
1572 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1573 u16 devid)
1574 {
1575 struct unity_map_entry *e;
1576 int ret;
1577
1578 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1579 if (!(devid >= e->devid_start && devid <= e->devid_end))
1580 continue;
1581 ret = dma_ops_unity_map(dma_dom, e);
1582 if (ret)
1583 return ret;
1584 }
1585
1586 return 0;
1587 }
1588
1589 /****************************************************************************
1590 *
1591 * The next functions belong to the address allocator for the dma_ops
1592 * interface functions. They work like the allocators in the other IOMMU
1593 * drivers. Its basically a bitmap which marks the allocated pages in
1594 * the aperture. Maybe it could be enhanced in the future to a more
1595 * efficient allocator.
1596 *
1597 ****************************************************************************/
1598
1599 /*
1600 * The address allocator core functions.
1601 *
1602 * called with domain->lock held
1603 */
1604
1605 /*
1606 * Used to reserve address ranges in the aperture (e.g. for exclusion
1607 * ranges.
1608 */
1609 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1610 unsigned long start_page,
1611 unsigned int pages)
1612 {
1613 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1614
1615 if (start_page + pages > last_page)
1616 pages = last_page - start_page;
1617
1618 for (i = start_page; i < start_page + pages; ++i) {
1619 int index = i / APERTURE_RANGE_PAGES;
1620 int page = i % APERTURE_RANGE_PAGES;
1621 __set_bit(page, dom->aperture[index]->bitmap);
1622 }
1623 }
1624
1625 /*
1626 * This function is used to add a new aperture range to an existing
1627 * aperture in case of dma_ops domain allocation or address allocation
1628 * failure.
1629 */
1630 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1631 bool populate, gfp_t gfp)
1632 {
1633 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1634 struct amd_iommu *iommu;
1635 unsigned long i, old_size;
1636
1637 #ifdef CONFIG_IOMMU_STRESS
1638 populate = false;
1639 #endif
1640
1641 if (index >= APERTURE_MAX_RANGES)
1642 return -ENOMEM;
1643
1644 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1645 if (!dma_dom->aperture[index])
1646 return -ENOMEM;
1647
1648 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1649 if (!dma_dom->aperture[index]->bitmap)
1650 goto out_free;
1651
1652 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1653
1654 if (populate) {
1655 unsigned long address = dma_dom->aperture_size;
1656 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1657 u64 *pte, *pte_page;
1658
1659 for (i = 0; i < num_ptes; ++i) {
1660 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1661 &pte_page, gfp);
1662 if (!pte)
1663 goto out_free;
1664
1665 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1666
1667 address += APERTURE_RANGE_SIZE / 64;
1668 }
1669 }
1670
1671 old_size = dma_dom->aperture_size;
1672 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1673
1674 /* Reserve address range used for MSI messages */
1675 if (old_size < MSI_ADDR_BASE_LO &&
1676 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1677 unsigned long spage;
1678 int pages;
1679
1680 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1681 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1682
1683 dma_ops_reserve_addresses(dma_dom, spage, pages);
1684 }
1685
1686 /* Initialize the exclusion range if necessary */
1687 for_each_iommu(iommu) {
1688 if (iommu->exclusion_start &&
1689 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1690 && iommu->exclusion_start < dma_dom->aperture_size) {
1691 unsigned long startpage;
1692 int pages = iommu_num_pages(iommu->exclusion_start,
1693 iommu->exclusion_length,
1694 PAGE_SIZE);
1695 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1696 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1697 }
1698 }
1699
1700 /*
1701 * Check for areas already mapped as present in the new aperture
1702 * range and mark those pages as reserved in the allocator. Such
1703 * mappings may already exist as a result of requested unity
1704 * mappings for devices.
1705 */
1706 for (i = dma_dom->aperture[index]->offset;
1707 i < dma_dom->aperture_size;
1708 i += PAGE_SIZE) {
1709 u64 *pte = fetch_pte(&dma_dom->domain, i);
1710 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1711 continue;
1712
1713 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1714 }
1715
1716 update_domain(&dma_dom->domain);
1717
1718 return 0;
1719
1720 out_free:
1721 update_domain(&dma_dom->domain);
1722
1723 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1724
1725 kfree(dma_dom->aperture[index]);
1726 dma_dom->aperture[index] = NULL;
1727
1728 return -ENOMEM;
1729 }
1730
1731 static unsigned long dma_ops_area_alloc(struct device *dev,
1732 struct dma_ops_domain *dom,
1733 unsigned int pages,
1734 unsigned long align_mask,
1735 u64 dma_mask,
1736 unsigned long start)
1737 {
1738 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1739 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1740 int i = start >> APERTURE_RANGE_SHIFT;
1741 unsigned long boundary_size;
1742 unsigned long address = -1;
1743 unsigned long limit;
1744
1745 next_bit >>= PAGE_SHIFT;
1746
1747 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1748 PAGE_SIZE) >> PAGE_SHIFT;
1749
1750 for (;i < max_index; ++i) {
1751 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1752
1753 if (dom->aperture[i]->offset >= dma_mask)
1754 break;
1755
1756 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1757 dma_mask >> PAGE_SHIFT);
1758
1759 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1760 limit, next_bit, pages, 0,
1761 boundary_size, align_mask);
1762 if (address != -1) {
1763 address = dom->aperture[i]->offset +
1764 (address << PAGE_SHIFT);
1765 dom->next_address = address + (pages << PAGE_SHIFT);
1766 break;
1767 }
1768
1769 next_bit = 0;
1770 }
1771
1772 return address;
1773 }
1774
1775 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1776 struct dma_ops_domain *dom,
1777 unsigned int pages,
1778 unsigned long align_mask,
1779 u64 dma_mask)
1780 {
1781 unsigned long address;
1782
1783 #ifdef CONFIG_IOMMU_STRESS
1784 dom->next_address = 0;
1785 dom->need_flush = true;
1786 #endif
1787
1788 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1789 dma_mask, dom->next_address);
1790
1791 if (address == -1) {
1792 dom->next_address = 0;
1793 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1794 dma_mask, 0);
1795 dom->need_flush = true;
1796 }
1797
1798 if (unlikely(address == -1))
1799 address = DMA_ERROR_CODE;
1800
1801 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1802
1803 return address;
1804 }
1805
1806 /*
1807 * The address free function.
1808 *
1809 * called with domain->lock held
1810 */
1811 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1812 unsigned long address,
1813 unsigned int pages)
1814 {
1815 unsigned i = address >> APERTURE_RANGE_SHIFT;
1816 struct aperture_range *range = dom->aperture[i];
1817
1818 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1819
1820 #ifdef CONFIG_IOMMU_STRESS
1821 if (i < 4)
1822 return;
1823 #endif
1824
1825 if (address >= dom->next_address)
1826 dom->need_flush = true;
1827
1828 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1829
1830 bitmap_clear(range->bitmap, address, pages);
1831
1832 }
1833
1834 /****************************************************************************
1835 *
1836 * The next functions belong to the domain allocation. A domain is
1837 * allocated for every IOMMU as the default domain. If device isolation
1838 * is enabled, every device get its own domain. The most important thing
1839 * about domains is the page table mapping the DMA address space they
1840 * contain.
1841 *
1842 ****************************************************************************/
1843
1844 /*
1845 * This function adds a protection domain to the global protection domain list
1846 */
1847 static void add_domain_to_list(struct protection_domain *domain)
1848 {
1849 unsigned long flags;
1850
1851 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1852 list_add(&domain->list, &amd_iommu_pd_list);
1853 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1854 }
1855
1856 /*
1857 * This function removes a protection domain to the global
1858 * protection domain list
1859 */
1860 static void del_domain_from_list(struct protection_domain *domain)
1861 {
1862 unsigned long flags;
1863
1864 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1865 list_del(&domain->list);
1866 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1867 }
1868
1869 static u16 domain_id_alloc(void)
1870 {
1871 unsigned long flags;
1872 int id;
1873
1874 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1875 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1876 BUG_ON(id == 0);
1877 if (id > 0 && id < MAX_DOMAIN_ID)
1878 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1879 else
1880 id = 0;
1881 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1882
1883 return id;
1884 }
1885
1886 static void domain_id_free(int id)
1887 {
1888 unsigned long flags;
1889
1890 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1891 if (id > 0 && id < MAX_DOMAIN_ID)
1892 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1893 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1894 }
1895
1896 static void free_pagetable(struct protection_domain *domain)
1897 {
1898 int i, j;
1899 u64 *p1, *p2, *p3;
1900
1901 p1 = domain->pt_root;
1902
1903 if (!p1)
1904 return;
1905
1906 for (i = 0; i < 512; ++i) {
1907 if (!IOMMU_PTE_PRESENT(p1[i]))
1908 continue;
1909
1910 p2 = IOMMU_PTE_PAGE(p1[i]);
1911 for (j = 0; j < 512; ++j) {
1912 if (!IOMMU_PTE_PRESENT(p2[j]))
1913 continue;
1914 p3 = IOMMU_PTE_PAGE(p2[j]);
1915 free_page((unsigned long)p3);
1916 }
1917
1918 free_page((unsigned long)p2);
1919 }
1920
1921 free_page((unsigned long)p1);
1922
1923 domain->pt_root = NULL;
1924 }
1925
1926 static void free_gcr3_tbl_level1(u64 *tbl)
1927 {
1928 u64 *ptr;
1929 int i;
1930
1931 for (i = 0; i < 512; ++i) {
1932 if (!(tbl[i] & GCR3_VALID))
1933 continue;
1934
1935 ptr = __va(tbl[i] & PAGE_MASK);
1936
1937 free_page((unsigned long)ptr);
1938 }
1939 }
1940
1941 static void free_gcr3_tbl_level2(u64 *tbl)
1942 {
1943 u64 *ptr;
1944 int i;
1945
1946 for (i = 0; i < 512; ++i) {
1947 if (!(tbl[i] & GCR3_VALID))
1948 continue;
1949
1950 ptr = __va(tbl[i] & PAGE_MASK);
1951
1952 free_gcr3_tbl_level1(ptr);
1953 }
1954 }
1955
1956 static void free_gcr3_table(struct protection_domain *domain)
1957 {
1958 if (domain->glx == 2)
1959 free_gcr3_tbl_level2(domain->gcr3_tbl);
1960 else if (domain->glx == 1)
1961 free_gcr3_tbl_level1(domain->gcr3_tbl);
1962 else if (domain->glx != 0)
1963 BUG();
1964
1965 free_page((unsigned long)domain->gcr3_tbl);
1966 }
1967
1968 /*
1969 * Free a domain, only used if something went wrong in the
1970 * allocation path and we need to free an already allocated page table
1971 */
1972 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1973 {
1974 int i;
1975
1976 if (!dom)
1977 return;
1978
1979 del_domain_from_list(&dom->domain);
1980
1981 free_pagetable(&dom->domain);
1982
1983 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1984 if (!dom->aperture[i])
1985 continue;
1986 free_page((unsigned long)dom->aperture[i]->bitmap);
1987 kfree(dom->aperture[i]);
1988 }
1989
1990 kfree(dom);
1991 }
1992
1993 /*
1994 * Allocates a new protection domain usable for the dma_ops functions.
1995 * It also initializes the page table and the address allocator data
1996 * structures required for the dma_ops interface
1997 */
1998 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1999 {
2000 struct dma_ops_domain *dma_dom;
2001
2002 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2003 if (!dma_dom)
2004 return NULL;
2005
2006 spin_lock_init(&dma_dom->domain.lock);
2007
2008 dma_dom->domain.id = domain_id_alloc();
2009 if (dma_dom->domain.id == 0)
2010 goto free_dma_dom;
2011 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2012 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2013 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2014 dma_dom->domain.flags = PD_DMA_OPS_MASK;
2015 dma_dom->domain.priv = dma_dom;
2016 if (!dma_dom->domain.pt_root)
2017 goto free_dma_dom;
2018
2019 dma_dom->need_flush = false;
2020 dma_dom->target_dev = 0xffff;
2021
2022 add_domain_to_list(&dma_dom->domain);
2023
2024 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2025 goto free_dma_dom;
2026
2027 /*
2028 * mark the first page as allocated so we never return 0 as
2029 * a valid dma-address. So we can use 0 as error value
2030 */
2031 dma_dom->aperture[0]->bitmap[0] = 1;
2032 dma_dom->next_address = 0;
2033
2034
2035 return dma_dom;
2036
2037 free_dma_dom:
2038 dma_ops_domain_free(dma_dom);
2039
2040 return NULL;
2041 }
2042
2043 /*
2044 * little helper function to check whether a given protection domain is a
2045 * dma_ops domain
2046 */
2047 static bool dma_ops_domain(struct protection_domain *domain)
2048 {
2049 return domain->flags & PD_DMA_OPS_MASK;
2050 }
2051
2052 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2053 {
2054 u64 pte_root = 0;
2055 u64 flags = 0;
2056
2057 if (domain->mode != PAGE_MODE_NONE)
2058 pte_root = virt_to_phys(domain->pt_root);
2059
2060 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2061 << DEV_ENTRY_MODE_SHIFT;
2062 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2063
2064 flags = amd_iommu_dev_table[devid].data[1];
2065
2066 if (ats)
2067 flags |= DTE_FLAG_IOTLB;
2068
2069 if (domain->flags & PD_IOMMUV2_MASK) {
2070 u64 gcr3 = __pa(domain->gcr3_tbl);
2071 u64 glx = domain->glx;
2072 u64 tmp;
2073
2074 pte_root |= DTE_FLAG_GV;
2075 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2076
2077 /* First mask out possible old values for GCR3 table */
2078 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2079 flags &= ~tmp;
2080
2081 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2082 flags &= ~tmp;
2083
2084 /* Encode GCR3 table into DTE */
2085 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2086 pte_root |= tmp;
2087
2088 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2089 flags |= tmp;
2090
2091 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2092 flags |= tmp;
2093 }
2094
2095 flags &= ~(0xffffUL);
2096 flags |= domain->id;
2097
2098 amd_iommu_dev_table[devid].data[1] = flags;
2099 amd_iommu_dev_table[devid].data[0] = pte_root;
2100 }
2101
2102 static void clear_dte_entry(u16 devid)
2103 {
2104 /* remove entry from the device table seen by the hardware */
2105 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2106 amd_iommu_dev_table[devid].data[1] = 0;
2107
2108 amd_iommu_apply_erratum_63(devid);
2109 }
2110
2111 static void do_attach(struct iommu_dev_data *dev_data,
2112 struct protection_domain *domain)
2113 {
2114 struct amd_iommu *iommu;
2115 bool ats;
2116
2117 iommu = amd_iommu_rlookup_table[dev_data->devid];
2118 ats = dev_data->ats.enabled;
2119
2120 /* Update data structures */
2121 dev_data->domain = domain;
2122 list_add(&dev_data->list, &domain->dev_list);
2123 set_dte_entry(dev_data->devid, domain, ats);
2124
2125 /* Do reference counting */
2126 domain->dev_iommu[iommu->index] += 1;
2127 domain->dev_cnt += 1;
2128
2129 /* Flush the DTE entry */
2130 device_flush_dte(dev_data);
2131 }
2132
2133 static void do_detach(struct iommu_dev_data *dev_data)
2134 {
2135 struct amd_iommu *iommu;
2136
2137 iommu = amd_iommu_rlookup_table[dev_data->devid];
2138
2139 /* decrease reference counters */
2140 dev_data->domain->dev_iommu[iommu->index] -= 1;
2141 dev_data->domain->dev_cnt -= 1;
2142
2143 /* Update data structures */
2144 dev_data->domain = NULL;
2145 list_del(&dev_data->list);
2146 clear_dte_entry(dev_data->devid);
2147
2148 /* Flush the DTE entry */
2149 device_flush_dte(dev_data);
2150 }
2151
2152 /*
2153 * If a device is not yet associated with a domain, this function does
2154 * assigns it visible for the hardware
2155 */
2156 static int __attach_device(struct iommu_dev_data *dev_data,
2157 struct protection_domain *domain)
2158 {
2159 int ret;
2160
2161 /* lock domain */
2162 spin_lock(&domain->lock);
2163
2164 if (dev_data->alias_data != NULL) {
2165 struct iommu_dev_data *alias_data = dev_data->alias_data;
2166
2167 /* Some sanity checks */
2168 ret = -EBUSY;
2169 if (alias_data->domain != NULL &&
2170 alias_data->domain != domain)
2171 goto out_unlock;
2172
2173 if (dev_data->domain != NULL &&
2174 dev_data->domain != domain)
2175 goto out_unlock;
2176
2177 /* Do real assignment */
2178 if (alias_data->domain == NULL)
2179 do_attach(alias_data, domain);
2180
2181 atomic_inc(&alias_data->bind);
2182 }
2183
2184 if (dev_data->domain == NULL)
2185 do_attach(dev_data, domain);
2186
2187 atomic_inc(&dev_data->bind);
2188
2189 ret = 0;
2190
2191 out_unlock:
2192
2193 /* ready */
2194 spin_unlock(&domain->lock);
2195
2196 return ret;
2197 }
2198
2199
2200 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2201 {
2202 pci_disable_ats(pdev);
2203 pci_disable_pri(pdev);
2204 pci_disable_pasid(pdev);
2205 }
2206
2207 /* FIXME: Change generic reset-function to do the same */
2208 static int pri_reset_while_enabled(struct pci_dev *pdev)
2209 {
2210 u16 control;
2211 int pos;
2212
2213 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2214 if (!pos)
2215 return -EINVAL;
2216
2217 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2218 control |= PCI_PRI_CTRL_RESET;
2219 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2220
2221 return 0;
2222 }
2223
2224 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2225 {
2226 bool reset_enable;
2227 int reqs, ret;
2228
2229 /* FIXME: Hardcode number of outstanding requests for now */
2230 reqs = 32;
2231 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2232 reqs = 1;
2233 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2234
2235 /* Only allow access to user-accessible pages */
2236 ret = pci_enable_pasid(pdev, 0);
2237 if (ret)
2238 goto out_err;
2239
2240 /* First reset the PRI state of the device */
2241 ret = pci_reset_pri(pdev);
2242 if (ret)
2243 goto out_err;
2244
2245 /* Enable PRI */
2246 ret = pci_enable_pri(pdev, reqs);
2247 if (ret)
2248 goto out_err;
2249
2250 if (reset_enable) {
2251 ret = pri_reset_while_enabled(pdev);
2252 if (ret)
2253 goto out_err;
2254 }
2255
2256 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2257 if (ret)
2258 goto out_err;
2259
2260 return 0;
2261
2262 out_err:
2263 pci_disable_pri(pdev);
2264 pci_disable_pasid(pdev);
2265
2266 return ret;
2267 }
2268
2269 /* FIXME: Move this to PCI code */
2270 #define PCI_PRI_TLP_OFF (1 << 15)
2271
2272 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2273 {
2274 u16 status;
2275 int pos;
2276
2277 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2278 if (!pos)
2279 return false;
2280
2281 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2282
2283 return (status & PCI_PRI_TLP_OFF) ? true : false;
2284 }
2285
2286 /*
2287 * If a device is not yet associated with a domain, this function
2288 * assigns it visible for the hardware
2289 */
2290 static int attach_device(struct device *dev,
2291 struct protection_domain *domain)
2292 {
2293 struct pci_dev *pdev = to_pci_dev(dev);
2294 struct iommu_dev_data *dev_data;
2295 unsigned long flags;
2296 int ret;
2297
2298 dev_data = get_dev_data(dev);
2299
2300 if (domain->flags & PD_IOMMUV2_MASK) {
2301 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2302 return -EINVAL;
2303
2304 if (pdev_iommuv2_enable(pdev) != 0)
2305 return -EINVAL;
2306
2307 dev_data->ats.enabled = true;
2308 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2309 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2310 } else if (amd_iommu_iotlb_sup &&
2311 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2312 dev_data->ats.enabled = true;
2313 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2314 }
2315
2316 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2317 ret = __attach_device(dev_data, domain);
2318 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2319
2320 /*
2321 * We might boot into a crash-kernel here. The crashed kernel
2322 * left the caches in the IOMMU dirty. So we have to flush
2323 * here to evict all dirty stuff.
2324 */
2325 domain_flush_tlb_pde(domain);
2326
2327 return ret;
2328 }
2329
2330 /*
2331 * Removes a device from a protection domain (unlocked)
2332 */
2333 static void __detach_device(struct iommu_dev_data *dev_data)
2334 {
2335 struct protection_domain *domain;
2336 unsigned long flags;
2337
2338 BUG_ON(!dev_data->domain);
2339
2340 domain = dev_data->domain;
2341
2342 spin_lock_irqsave(&domain->lock, flags);
2343
2344 if (dev_data->alias_data != NULL) {
2345 struct iommu_dev_data *alias_data = dev_data->alias_data;
2346
2347 if (atomic_dec_and_test(&alias_data->bind))
2348 do_detach(alias_data);
2349 }
2350
2351 if (atomic_dec_and_test(&dev_data->bind))
2352 do_detach(dev_data);
2353
2354 spin_unlock_irqrestore(&domain->lock, flags);
2355
2356 /*
2357 * If we run in passthrough mode the device must be assigned to the
2358 * passthrough domain if it is detached from any other domain.
2359 * Make sure we can deassign from the pt_domain itself.
2360 */
2361 if (dev_data->passthrough &&
2362 (dev_data->domain == NULL && domain != pt_domain))
2363 __attach_device(dev_data, pt_domain);
2364 }
2365
2366 /*
2367 * Removes a device from a protection domain (with devtable_lock held)
2368 */
2369 static void detach_device(struct device *dev)
2370 {
2371 struct protection_domain *domain;
2372 struct iommu_dev_data *dev_data;
2373 unsigned long flags;
2374
2375 dev_data = get_dev_data(dev);
2376 domain = dev_data->domain;
2377
2378 /* lock device table */
2379 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2380 __detach_device(dev_data);
2381 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2382
2383 if (domain->flags & PD_IOMMUV2_MASK)
2384 pdev_iommuv2_disable(to_pci_dev(dev));
2385 else if (dev_data->ats.enabled)
2386 pci_disable_ats(to_pci_dev(dev));
2387
2388 dev_data->ats.enabled = false;
2389 }
2390
2391 /*
2392 * Find out the protection domain structure for a given PCI device. This
2393 * will give us the pointer to the page table root for example.
2394 */
2395 static struct protection_domain *domain_for_device(struct device *dev)
2396 {
2397 struct iommu_dev_data *dev_data;
2398 struct protection_domain *dom = NULL;
2399 unsigned long flags;
2400
2401 dev_data = get_dev_data(dev);
2402
2403 if (dev_data->domain)
2404 return dev_data->domain;
2405
2406 if (dev_data->alias_data != NULL) {
2407 struct iommu_dev_data *alias_data = dev_data->alias_data;
2408
2409 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2410 if (alias_data->domain != NULL) {
2411 __attach_device(dev_data, alias_data->domain);
2412 dom = alias_data->domain;
2413 }
2414 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2415 }
2416
2417 return dom;
2418 }
2419
2420 static int device_change_notifier(struct notifier_block *nb,
2421 unsigned long action, void *data)
2422 {
2423 struct dma_ops_domain *dma_domain;
2424 struct protection_domain *domain;
2425 struct iommu_dev_data *dev_data;
2426 struct device *dev = data;
2427 struct amd_iommu *iommu;
2428 unsigned long flags;
2429 u16 devid;
2430
2431 if (!check_device(dev))
2432 return 0;
2433
2434 devid = get_device_id(dev);
2435 iommu = amd_iommu_rlookup_table[devid];
2436 dev_data = get_dev_data(dev);
2437
2438 switch (action) {
2439 case BUS_NOTIFY_UNBOUND_DRIVER:
2440
2441 domain = domain_for_device(dev);
2442
2443 if (!domain)
2444 goto out;
2445 if (dev_data->passthrough)
2446 break;
2447 detach_device(dev);
2448 break;
2449 case BUS_NOTIFY_ADD_DEVICE:
2450
2451 iommu_init_device(dev);
2452
2453 /*
2454 * dev_data is still NULL and
2455 * got initialized in iommu_init_device
2456 */
2457 dev_data = get_dev_data(dev);
2458
2459 if (iommu_pass_through || dev_data->iommu_v2) {
2460 dev_data->passthrough = true;
2461 attach_device(dev, pt_domain);
2462 break;
2463 }
2464
2465 domain = domain_for_device(dev);
2466
2467 /* allocate a protection domain if a device is added */
2468 dma_domain = find_protection_domain(devid);
2469 if (!dma_domain) {
2470 dma_domain = dma_ops_domain_alloc();
2471 if (!dma_domain)
2472 goto out;
2473 dma_domain->target_dev = devid;
2474
2475 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2476 list_add_tail(&dma_domain->list, &iommu_pd_list);
2477 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2478 }
2479
2480 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2481
2482 break;
2483 case BUS_NOTIFY_DEL_DEVICE:
2484
2485 iommu_uninit_device(dev);
2486
2487 default:
2488 goto out;
2489 }
2490
2491 iommu_completion_wait(iommu);
2492
2493 out:
2494 return 0;
2495 }
2496
2497 static struct notifier_block device_nb = {
2498 .notifier_call = device_change_notifier,
2499 };
2500
2501 void amd_iommu_init_notifier(void)
2502 {
2503 bus_register_notifier(&pci_bus_type, &device_nb);
2504 }
2505
2506 /*****************************************************************************
2507 *
2508 * The next functions belong to the dma_ops mapping/unmapping code.
2509 *
2510 *****************************************************************************/
2511
2512 /*
2513 * In the dma_ops path we only have the struct device. This function
2514 * finds the corresponding IOMMU, the protection domain and the
2515 * requestor id for a given device.
2516 * If the device is not yet associated with a domain this is also done
2517 * in this function.
2518 */
2519 static struct protection_domain *get_domain(struct device *dev)
2520 {
2521 struct protection_domain *domain;
2522 struct dma_ops_domain *dma_dom;
2523 u16 devid = get_device_id(dev);
2524
2525 if (!check_device(dev))
2526 return ERR_PTR(-EINVAL);
2527
2528 domain = domain_for_device(dev);
2529 if (domain != NULL && !dma_ops_domain(domain))
2530 return ERR_PTR(-EBUSY);
2531
2532 if (domain != NULL)
2533 return domain;
2534
2535 /* Device not bound yet - bind it */
2536 dma_dom = find_protection_domain(devid);
2537 if (!dma_dom)
2538 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2539 attach_device(dev, &dma_dom->domain);
2540 DUMP_printk("Using protection domain %d for device %s\n",
2541 dma_dom->domain.id, dev_name(dev));
2542
2543 return &dma_dom->domain;
2544 }
2545
2546 static void update_device_table(struct protection_domain *domain)
2547 {
2548 struct iommu_dev_data *dev_data;
2549
2550 list_for_each_entry(dev_data, &domain->dev_list, list)
2551 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2552 }
2553
2554 static void update_domain(struct protection_domain *domain)
2555 {
2556 if (!domain->updated)
2557 return;
2558
2559 update_device_table(domain);
2560
2561 domain_flush_devices(domain);
2562 domain_flush_tlb_pde(domain);
2563
2564 domain->updated = false;
2565 }
2566
2567 /*
2568 * This function fetches the PTE for a given address in the aperture
2569 */
2570 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2571 unsigned long address)
2572 {
2573 struct aperture_range *aperture;
2574 u64 *pte, *pte_page;
2575
2576 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2577 if (!aperture)
2578 return NULL;
2579
2580 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2581 if (!pte) {
2582 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2583 GFP_ATOMIC);
2584 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2585 } else
2586 pte += PM_LEVEL_INDEX(0, address);
2587
2588 update_domain(&dom->domain);
2589
2590 return pte;
2591 }
2592
2593 /*
2594 * This is the generic map function. It maps one 4kb page at paddr to
2595 * the given address in the DMA address space for the domain.
2596 */
2597 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2598 unsigned long address,
2599 phys_addr_t paddr,
2600 int direction)
2601 {
2602 u64 *pte, __pte;
2603
2604 WARN_ON(address > dom->aperture_size);
2605
2606 paddr &= PAGE_MASK;
2607
2608 pte = dma_ops_get_pte(dom, address);
2609 if (!pte)
2610 return DMA_ERROR_CODE;
2611
2612 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2613
2614 if (direction == DMA_TO_DEVICE)
2615 __pte |= IOMMU_PTE_IR;
2616 else if (direction == DMA_FROM_DEVICE)
2617 __pte |= IOMMU_PTE_IW;
2618 else if (direction == DMA_BIDIRECTIONAL)
2619 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2620
2621 WARN_ON(*pte);
2622
2623 *pte = __pte;
2624
2625 return (dma_addr_t)address;
2626 }
2627
2628 /*
2629 * The generic unmapping function for on page in the DMA address space.
2630 */
2631 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2632 unsigned long address)
2633 {
2634 struct aperture_range *aperture;
2635 u64 *pte;
2636
2637 if (address >= dom->aperture_size)
2638 return;
2639
2640 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2641 if (!aperture)
2642 return;
2643
2644 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2645 if (!pte)
2646 return;
2647
2648 pte += PM_LEVEL_INDEX(0, address);
2649
2650 WARN_ON(!*pte);
2651
2652 *pte = 0ULL;
2653 }
2654
2655 /*
2656 * This function contains common code for mapping of a physically
2657 * contiguous memory region into DMA address space. It is used by all
2658 * mapping functions provided with this IOMMU driver.
2659 * Must be called with the domain lock held.
2660 */
2661 static dma_addr_t __map_single(struct device *dev,
2662 struct dma_ops_domain *dma_dom,
2663 phys_addr_t paddr,
2664 size_t size,
2665 int dir,
2666 bool align,
2667 u64 dma_mask)
2668 {
2669 dma_addr_t offset = paddr & ~PAGE_MASK;
2670 dma_addr_t address, start, ret;
2671 unsigned int pages;
2672 unsigned long align_mask = 0;
2673 int i;
2674
2675 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2676 paddr &= PAGE_MASK;
2677
2678 INC_STATS_COUNTER(total_map_requests);
2679
2680 if (pages > 1)
2681 INC_STATS_COUNTER(cross_page);
2682
2683 if (align)
2684 align_mask = (1UL << get_order(size)) - 1;
2685
2686 retry:
2687 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2688 dma_mask);
2689 if (unlikely(address == DMA_ERROR_CODE)) {
2690 /*
2691 * setting next_address here will let the address
2692 * allocator only scan the new allocated range in the
2693 * first run. This is a small optimization.
2694 */
2695 dma_dom->next_address = dma_dom->aperture_size;
2696
2697 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2698 goto out;
2699
2700 /*
2701 * aperture was successfully enlarged by 128 MB, try
2702 * allocation again
2703 */
2704 goto retry;
2705 }
2706
2707 start = address;
2708 for (i = 0; i < pages; ++i) {
2709 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2710 if (ret == DMA_ERROR_CODE)
2711 goto out_unmap;
2712
2713 paddr += PAGE_SIZE;
2714 start += PAGE_SIZE;
2715 }
2716 address += offset;
2717
2718 ADD_STATS_COUNTER(alloced_io_mem, size);
2719
2720 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2721 domain_flush_tlb(&dma_dom->domain);
2722 dma_dom->need_flush = false;
2723 } else if (unlikely(amd_iommu_np_cache))
2724 domain_flush_pages(&dma_dom->domain, address, size);
2725
2726 out:
2727 return address;
2728
2729 out_unmap:
2730
2731 for (--i; i >= 0; --i) {
2732 start -= PAGE_SIZE;
2733 dma_ops_domain_unmap(dma_dom, start);
2734 }
2735
2736 dma_ops_free_addresses(dma_dom, address, pages);
2737
2738 return DMA_ERROR_CODE;
2739 }
2740
2741 /*
2742 * Does the reverse of the __map_single function. Must be called with
2743 * the domain lock held too
2744 */
2745 static void __unmap_single(struct dma_ops_domain *dma_dom,
2746 dma_addr_t dma_addr,
2747 size_t size,
2748 int dir)
2749 {
2750 dma_addr_t flush_addr;
2751 dma_addr_t i, start;
2752 unsigned int pages;
2753
2754 if ((dma_addr == DMA_ERROR_CODE) ||
2755 (dma_addr + size > dma_dom->aperture_size))
2756 return;
2757
2758 flush_addr = dma_addr;
2759 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2760 dma_addr &= PAGE_MASK;
2761 start = dma_addr;
2762
2763 for (i = 0; i < pages; ++i) {
2764 dma_ops_domain_unmap(dma_dom, start);
2765 start += PAGE_SIZE;
2766 }
2767
2768 SUB_STATS_COUNTER(alloced_io_mem, size);
2769
2770 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2771
2772 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2773 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2774 dma_dom->need_flush = false;
2775 }
2776 }
2777
2778 /*
2779 * The exported map_single function for dma_ops.
2780 */
2781 static dma_addr_t map_page(struct device *dev, struct page *page,
2782 unsigned long offset, size_t size,
2783 enum dma_data_direction dir,
2784 struct dma_attrs *attrs)
2785 {
2786 unsigned long flags;
2787 struct protection_domain *domain;
2788 dma_addr_t addr;
2789 u64 dma_mask;
2790 phys_addr_t paddr = page_to_phys(page) + offset;
2791
2792 INC_STATS_COUNTER(cnt_map_single);
2793
2794 domain = get_domain(dev);
2795 if (PTR_ERR(domain) == -EINVAL)
2796 return (dma_addr_t)paddr;
2797 else if (IS_ERR(domain))
2798 return DMA_ERROR_CODE;
2799
2800 dma_mask = *dev->dma_mask;
2801
2802 spin_lock_irqsave(&domain->lock, flags);
2803
2804 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2805 dma_mask);
2806 if (addr == DMA_ERROR_CODE)
2807 goto out;
2808
2809 domain_flush_complete(domain);
2810
2811 out:
2812 spin_unlock_irqrestore(&domain->lock, flags);
2813
2814 return addr;
2815 }
2816
2817 /*
2818 * The exported unmap_single function for dma_ops.
2819 */
2820 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2821 enum dma_data_direction dir, struct dma_attrs *attrs)
2822 {
2823 unsigned long flags;
2824 struct protection_domain *domain;
2825
2826 INC_STATS_COUNTER(cnt_unmap_single);
2827
2828 domain = get_domain(dev);
2829 if (IS_ERR(domain))
2830 return;
2831
2832 spin_lock_irqsave(&domain->lock, flags);
2833
2834 __unmap_single(domain->priv, dma_addr, size, dir);
2835
2836 domain_flush_complete(domain);
2837
2838 spin_unlock_irqrestore(&domain->lock, flags);
2839 }
2840
2841 /*
2842 * The exported map_sg function for dma_ops (handles scatter-gather
2843 * lists).
2844 */
2845 static int map_sg(struct device *dev, struct scatterlist *sglist,
2846 int nelems, enum dma_data_direction dir,
2847 struct dma_attrs *attrs)
2848 {
2849 unsigned long flags;
2850 struct protection_domain *domain;
2851 int i;
2852 struct scatterlist *s;
2853 phys_addr_t paddr;
2854 int mapped_elems = 0;
2855 u64 dma_mask;
2856
2857 INC_STATS_COUNTER(cnt_map_sg);
2858
2859 domain = get_domain(dev);
2860 if (IS_ERR(domain))
2861 return 0;
2862
2863 dma_mask = *dev->dma_mask;
2864
2865 spin_lock_irqsave(&domain->lock, flags);
2866
2867 for_each_sg(sglist, s, nelems, i) {
2868 paddr = sg_phys(s);
2869
2870 s->dma_address = __map_single(dev, domain->priv,
2871 paddr, s->length, dir, false,
2872 dma_mask);
2873
2874 if (s->dma_address) {
2875 s->dma_length = s->length;
2876 mapped_elems++;
2877 } else
2878 goto unmap;
2879 }
2880
2881 domain_flush_complete(domain);
2882
2883 out:
2884 spin_unlock_irqrestore(&domain->lock, flags);
2885
2886 return mapped_elems;
2887 unmap:
2888 for_each_sg(sglist, s, mapped_elems, i) {
2889 if (s->dma_address)
2890 __unmap_single(domain->priv, s->dma_address,
2891 s->dma_length, dir);
2892 s->dma_address = s->dma_length = 0;
2893 }
2894
2895 mapped_elems = 0;
2896
2897 goto out;
2898 }
2899
2900 /*
2901 * The exported map_sg function for dma_ops (handles scatter-gather
2902 * lists).
2903 */
2904 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2905 int nelems, enum dma_data_direction dir,
2906 struct dma_attrs *attrs)
2907 {
2908 unsigned long flags;
2909 struct protection_domain *domain;
2910 struct scatterlist *s;
2911 int i;
2912
2913 INC_STATS_COUNTER(cnt_unmap_sg);
2914
2915 domain = get_domain(dev);
2916 if (IS_ERR(domain))
2917 return;
2918
2919 spin_lock_irqsave(&domain->lock, flags);
2920
2921 for_each_sg(sglist, s, nelems, i) {
2922 __unmap_single(domain->priv, s->dma_address,
2923 s->dma_length, dir);
2924 s->dma_address = s->dma_length = 0;
2925 }
2926
2927 domain_flush_complete(domain);
2928
2929 spin_unlock_irqrestore(&domain->lock, flags);
2930 }
2931
2932 /*
2933 * The exported alloc_coherent function for dma_ops.
2934 */
2935 static void *alloc_coherent(struct device *dev, size_t size,
2936 dma_addr_t *dma_addr, gfp_t flag,
2937 struct dma_attrs *attrs)
2938 {
2939 unsigned long flags;
2940 void *virt_addr;
2941 struct protection_domain *domain;
2942 phys_addr_t paddr;
2943 u64 dma_mask = dev->coherent_dma_mask;
2944
2945 INC_STATS_COUNTER(cnt_alloc_coherent);
2946
2947 domain = get_domain(dev);
2948 if (PTR_ERR(domain) == -EINVAL) {
2949 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2950 *dma_addr = __pa(virt_addr);
2951 return virt_addr;
2952 } else if (IS_ERR(domain))
2953 return NULL;
2954
2955 dma_mask = dev->coherent_dma_mask;
2956 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2957 flag |= __GFP_ZERO;
2958
2959 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2960 if (!virt_addr)
2961 return NULL;
2962
2963 paddr = virt_to_phys(virt_addr);
2964
2965 if (!dma_mask)
2966 dma_mask = *dev->dma_mask;
2967
2968 spin_lock_irqsave(&domain->lock, flags);
2969
2970 *dma_addr = __map_single(dev, domain->priv, paddr,
2971 size, DMA_BIDIRECTIONAL, true, dma_mask);
2972
2973 if (*dma_addr == DMA_ERROR_CODE) {
2974 spin_unlock_irqrestore(&domain->lock, flags);
2975 goto out_free;
2976 }
2977
2978 domain_flush_complete(domain);
2979
2980 spin_unlock_irqrestore(&domain->lock, flags);
2981
2982 return virt_addr;
2983
2984 out_free:
2985
2986 free_pages((unsigned long)virt_addr, get_order(size));
2987
2988 return NULL;
2989 }
2990
2991 /*
2992 * The exported free_coherent function for dma_ops.
2993 */
2994 static void free_coherent(struct device *dev, size_t size,
2995 void *virt_addr, dma_addr_t dma_addr,
2996 struct dma_attrs *attrs)
2997 {
2998 unsigned long flags;
2999 struct protection_domain *domain;
3000
3001 INC_STATS_COUNTER(cnt_free_coherent);
3002
3003 domain = get_domain(dev);
3004 if (IS_ERR(domain))
3005 goto free_mem;
3006
3007 spin_lock_irqsave(&domain->lock, flags);
3008
3009 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3010
3011 domain_flush_complete(domain);
3012
3013 spin_unlock_irqrestore(&domain->lock, flags);
3014
3015 free_mem:
3016 free_pages((unsigned long)virt_addr, get_order(size));
3017 }
3018
3019 /*
3020 * This function is called by the DMA layer to find out if we can handle a
3021 * particular device. It is part of the dma_ops.
3022 */
3023 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3024 {
3025 return check_device(dev);
3026 }
3027
3028 /*
3029 * The function for pre-allocating protection domains.
3030 *
3031 * If the driver core informs the DMA layer if a driver grabs a device
3032 * we don't need to preallocate the protection domains anymore.
3033 * For now we have to.
3034 */
3035 static void __init prealloc_protection_domains(void)
3036 {
3037 struct iommu_dev_data *dev_data;
3038 struct dma_ops_domain *dma_dom;
3039 struct pci_dev *dev = NULL;
3040 u16 devid;
3041
3042 for_each_pci_dev(dev) {
3043
3044 /* Do we handle this device? */
3045 if (!check_device(&dev->dev))
3046 continue;
3047
3048 dev_data = get_dev_data(&dev->dev);
3049 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3050 /* Make sure passthrough domain is allocated */
3051 alloc_passthrough_domain();
3052 dev_data->passthrough = true;
3053 attach_device(&dev->dev, pt_domain);
3054 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3055 dev_name(&dev->dev));
3056 }
3057
3058 /* Is there already any domain for it? */
3059 if (domain_for_device(&dev->dev))
3060 continue;
3061
3062 devid = get_device_id(&dev->dev);
3063
3064 dma_dom = dma_ops_domain_alloc();
3065 if (!dma_dom)
3066 continue;
3067 init_unity_mappings_for_device(dma_dom, devid);
3068 dma_dom->target_dev = devid;
3069
3070 attach_device(&dev->dev, &dma_dom->domain);
3071
3072 list_add_tail(&dma_dom->list, &iommu_pd_list);
3073 }
3074 }
3075
3076 static struct dma_map_ops amd_iommu_dma_ops = {
3077 .alloc = alloc_coherent,
3078 .free = free_coherent,
3079 .map_page = map_page,
3080 .unmap_page = unmap_page,
3081 .map_sg = map_sg,
3082 .unmap_sg = unmap_sg,
3083 .dma_supported = amd_iommu_dma_supported,
3084 };
3085
3086 static unsigned device_dma_ops_init(void)
3087 {
3088 struct iommu_dev_data *dev_data;
3089 struct pci_dev *pdev = NULL;
3090 unsigned unhandled = 0;
3091
3092 for_each_pci_dev(pdev) {
3093 if (!check_device(&pdev->dev)) {
3094
3095 iommu_ignore_device(&pdev->dev);
3096
3097 unhandled += 1;
3098 continue;
3099 }
3100
3101 dev_data = get_dev_data(&pdev->dev);
3102
3103 if (!dev_data->passthrough)
3104 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3105 else
3106 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3107 }
3108
3109 return unhandled;
3110 }
3111
3112 /*
3113 * The function which clues the AMD IOMMU driver into dma_ops.
3114 */
3115
3116 void __init amd_iommu_init_api(void)
3117 {
3118 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3119 }
3120
3121 int __init amd_iommu_init_dma_ops(void)
3122 {
3123 struct amd_iommu *iommu;
3124 int ret, unhandled;
3125
3126 /*
3127 * first allocate a default protection domain for every IOMMU we
3128 * found in the system. Devices not assigned to any other
3129 * protection domain will be assigned to the default one.
3130 */
3131 for_each_iommu(iommu) {
3132 iommu->default_dom = dma_ops_domain_alloc();
3133 if (iommu->default_dom == NULL)
3134 return -ENOMEM;
3135 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3136 ret = iommu_init_unity_mappings(iommu);
3137 if (ret)
3138 goto free_domains;
3139 }
3140
3141 /*
3142 * Pre-allocate the protection domains for each device.
3143 */
3144 prealloc_protection_domains();
3145
3146 iommu_detected = 1;
3147 swiotlb = 0;
3148
3149 /* Make the driver finally visible to the drivers */
3150 unhandled = device_dma_ops_init();
3151 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3152 /* There are unhandled devices - initialize swiotlb for them */
3153 swiotlb = 1;
3154 }
3155
3156 amd_iommu_stats_init();
3157
3158 if (amd_iommu_unmap_flush)
3159 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3160 else
3161 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3162
3163 return 0;
3164
3165 free_domains:
3166
3167 for_each_iommu(iommu) {
3168 dma_ops_domain_free(iommu->default_dom);
3169 }
3170
3171 return ret;
3172 }
3173
3174 /*****************************************************************************
3175 *
3176 * The following functions belong to the exported interface of AMD IOMMU
3177 *
3178 * This interface allows access to lower level functions of the IOMMU
3179 * like protection domain handling and assignement of devices to domains
3180 * which is not possible with the dma_ops interface.
3181 *
3182 *****************************************************************************/
3183
3184 static void cleanup_domain(struct protection_domain *domain)
3185 {
3186 struct iommu_dev_data *dev_data, *next;
3187 unsigned long flags;
3188
3189 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3190
3191 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3192 __detach_device(dev_data);
3193 atomic_set(&dev_data->bind, 0);
3194 }
3195
3196 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3197 }
3198
3199 static void protection_domain_free(struct protection_domain *domain)
3200 {
3201 if (!domain)
3202 return;
3203
3204 del_domain_from_list(domain);
3205
3206 if (domain->id)
3207 domain_id_free(domain->id);
3208
3209 kfree(domain);
3210 }
3211
3212 static struct protection_domain *protection_domain_alloc(void)
3213 {
3214 struct protection_domain *domain;
3215
3216 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3217 if (!domain)
3218 return NULL;
3219
3220 spin_lock_init(&domain->lock);
3221 mutex_init(&domain->api_lock);
3222 domain->id = domain_id_alloc();
3223 if (!domain->id)
3224 goto out_err;
3225 INIT_LIST_HEAD(&domain->dev_list);
3226
3227 add_domain_to_list(domain);
3228
3229 return domain;
3230
3231 out_err:
3232 kfree(domain);
3233
3234 return NULL;
3235 }
3236
3237 static int __init alloc_passthrough_domain(void)
3238 {
3239 if (pt_domain != NULL)
3240 return 0;
3241
3242 /* allocate passthrough domain */
3243 pt_domain = protection_domain_alloc();
3244 if (!pt_domain)
3245 return -ENOMEM;
3246
3247 pt_domain->mode = PAGE_MODE_NONE;
3248
3249 return 0;
3250 }
3251 static int amd_iommu_domain_init(struct iommu_domain *dom)
3252 {
3253 struct protection_domain *domain;
3254
3255 domain = protection_domain_alloc();
3256 if (!domain)
3257 goto out_free;
3258
3259 domain->mode = PAGE_MODE_3_LEVEL;
3260 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3261 if (!domain->pt_root)
3262 goto out_free;
3263
3264 domain->iommu_domain = dom;
3265
3266 dom->priv = domain;
3267
3268 dom->geometry.aperture_start = 0;
3269 dom->geometry.aperture_end = ~0ULL;
3270 dom->geometry.force_aperture = true;
3271
3272 return 0;
3273
3274 out_free:
3275 protection_domain_free(domain);
3276
3277 return -ENOMEM;
3278 }
3279
3280 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3281 {
3282 struct protection_domain *domain = dom->priv;
3283
3284 if (!domain)
3285 return;
3286
3287 if (domain->dev_cnt > 0)
3288 cleanup_domain(domain);
3289
3290 BUG_ON(domain->dev_cnt != 0);
3291
3292 if (domain->mode != PAGE_MODE_NONE)
3293 free_pagetable(domain);
3294
3295 if (domain->flags & PD_IOMMUV2_MASK)
3296 free_gcr3_table(domain);
3297
3298 protection_domain_free(domain);
3299
3300 dom->priv = NULL;
3301 }
3302
3303 static void amd_iommu_detach_device(struct iommu_domain *dom,
3304 struct device *dev)
3305 {
3306 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3307 struct amd_iommu *iommu;
3308 u16 devid;
3309
3310 if (!check_device(dev))
3311 return;
3312
3313 devid = get_device_id(dev);
3314
3315 if (dev_data->domain != NULL)
3316 detach_device(dev);
3317
3318 iommu = amd_iommu_rlookup_table[devid];
3319 if (!iommu)
3320 return;
3321
3322 iommu_completion_wait(iommu);
3323 }
3324
3325 static int amd_iommu_attach_device(struct iommu_domain *dom,
3326 struct device *dev)
3327 {
3328 struct protection_domain *domain = dom->priv;
3329 struct iommu_dev_data *dev_data;
3330 struct amd_iommu *iommu;
3331 int ret;
3332
3333 if (!check_device(dev))
3334 return -EINVAL;
3335
3336 dev_data = dev->archdata.iommu;
3337
3338 iommu = amd_iommu_rlookup_table[dev_data->devid];
3339 if (!iommu)
3340 return -EINVAL;
3341
3342 if (dev_data->domain)
3343 detach_device(dev);
3344
3345 ret = attach_device(dev, domain);
3346
3347 iommu_completion_wait(iommu);
3348
3349 return ret;
3350 }
3351
3352 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3353 phys_addr_t paddr, size_t page_size, int iommu_prot)
3354 {
3355 struct protection_domain *domain = dom->priv;
3356 int prot = 0;
3357 int ret;
3358
3359 if (domain->mode == PAGE_MODE_NONE)
3360 return -EINVAL;
3361
3362 if (iommu_prot & IOMMU_READ)
3363 prot |= IOMMU_PROT_IR;
3364 if (iommu_prot & IOMMU_WRITE)
3365 prot |= IOMMU_PROT_IW;
3366
3367 mutex_lock(&domain->api_lock);
3368 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3369 mutex_unlock(&domain->api_lock);
3370
3371 return ret;
3372 }
3373
3374 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3375 size_t page_size)
3376 {
3377 struct protection_domain *domain = dom->priv;
3378 size_t unmap_size;
3379
3380 if (domain->mode == PAGE_MODE_NONE)
3381 return -EINVAL;
3382
3383 mutex_lock(&domain->api_lock);
3384 unmap_size = iommu_unmap_page(domain, iova, page_size);
3385 mutex_unlock(&domain->api_lock);
3386
3387 domain_flush_tlb_pde(domain);
3388
3389 return unmap_size;
3390 }
3391
3392 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3393 dma_addr_t iova)
3394 {
3395 struct protection_domain *domain = dom->priv;
3396 unsigned long offset_mask;
3397 phys_addr_t paddr;
3398 u64 *pte, __pte;
3399
3400 if (domain->mode == PAGE_MODE_NONE)
3401 return iova;
3402
3403 pte = fetch_pte(domain, iova);
3404
3405 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3406 return 0;
3407
3408 if (PM_PTE_LEVEL(*pte) == 0)
3409 offset_mask = PAGE_SIZE - 1;
3410 else
3411 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3412
3413 __pte = *pte & PM_ADDR_MASK;
3414 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3415
3416 return paddr;
3417 }
3418
3419 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3420 unsigned long cap)
3421 {
3422 switch (cap) {
3423 case IOMMU_CAP_CACHE_COHERENCY:
3424 return 1;
3425 case IOMMU_CAP_INTR_REMAP:
3426 return irq_remapping_enabled;
3427 }
3428
3429 return 0;
3430 }
3431
3432 static struct iommu_ops amd_iommu_ops = {
3433 .domain_init = amd_iommu_domain_init,
3434 .domain_destroy = amd_iommu_domain_destroy,
3435 .attach_dev = amd_iommu_attach_device,
3436 .detach_dev = amd_iommu_detach_device,
3437 .map = amd_iommu_map,
3438 .unmap = amd_iommu_unmap,
3439 .iova_to_phys = amd_iommu_iova_to_phys,
3440 .domain_has_cap = amd_iommu_domain_has_cap,
3441 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3442 };
3443
3444 /*****************************************************************************
3445 *
3446 * The next functions do a basic initialization of IOMMU for pass through
3447 * mode
3448 *
3449 * In passthrough mode the IOMMU is initialized and enabled but not used for
3450 * DMA-API translation.
3451 *
3452 *****************************************************************************/
3453
3454 int __init amd_iommu_init_passthrough(void)
3455 {
3456 struct iommu_dev_data *dev_data;
3457 struct pci_dev *dev = NULL;
3458 struct amd_iommu *iommu;
3459 u16 devid;
3460 int ret;
3461
3462 ret = alloc_passthrough_domain();
3463 if (ret)
3464 return ret;
3465
3466 for_each_pci_dev(dev) {
3467 if (!check_device(&dev->dev))
3468 continue;
3469
3470 dev_data = get_dev_data(&dev->dev);
3471 dev_data->passthrough = true;
3472
3473 devid = get_device_id(&dev->dev);
3474
3475 iommu = amd_iommu_rlookup_table[devid];
3476 if (!iommu)
3477 continue;
3478
3479 attach_device(&dev->dev, pt_domain);
3480 }
3481
3482 amd_iommu_stats_init();
3483
3484 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3485
3486 return 0;
3487 }
3488
3489 /* IOMMUv2 specific functions */
3490 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3491 {
3492 return atomic_notifier_chain_register(&ppr_notifier, nb);
3493 }
3494 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3495
3496 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3497 {
3498 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3499 }
3500 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3501
3502 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3503 {
3504 struct protection_domain *domain = dom->priv;
3505 unsigned long flags;
3506
3507 spin_lock_irqsave(&domain->lock, flags);
3508
3509 /* Update data structure */
3510 domain->mode = PAGE_MODE_NONE;
3511 domain->updated = true;
3512
3513 /* Make changes visible to IOMMUs */
3514 update_domain(domain);
3515
3516 /* Page-table is not visible to IOMMU anymore, so free it */
3517 free_pagetable(domain);
3518
3519 spin_unlock_irqrestore(&domain->lock, flags);
3520 }
3521 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3522
3523 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3524 {
3525 struct protection_domain *domain = dom->priv;
3526 unsigned long flags;
3527 int levels, ret;
3528
3529 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3530 return -EINVAL;
3531
3532 /* Number of GCR3 table levels required */
3533 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3534 levels += 1;
3535
3536 if (levels > amd_iommu_max_glx_val)
3537 return -EINVAL;
3538
3539 spin_lock_irqsave(&domain->lock, flags);
3540
3541 /*
3542 * Save us all sanity checks whether devices already in the
3543 * domain support IOMMUv2. Just force that the domain has no
3544 * devices attached when it is switched into IOMMUv2 mode.
3545 */
3546 ret = -EBUSY;
3547 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3548 goto out;
3549
3550 ret = -ENOMEM;
3551 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3552 if (domain->gcr3_tbl == NULL)
3553 goto out;
3554
3555 domain->glx = levels;
3556 domain->flags |= PD_IOMMUV2_MASK;
3557 domain->updated = true;
3558
3559 update_domain(domain);
3560
3561 ret = 0;
3562
3563 out:
3564 spin_unlock_irqrestore(&domain->lock, flags);
3565
3566 return ret;
3567 }
3568 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3569
3570 static int __flush_pasid(struct protection_domain *domain, int pasid,
3571 u64 address, bool size)
3572 {
3573 struct iommu_dev_data *dev_data;
3574 struct iommu_cmd cmd;
3575 int i, ret;
3576
3577 if (!(domain->flags & PD_IOMMUV2_MASK))
3578 return -EINVAL;
3579
3580 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3581
3582 /*
3583 * IOMMU TLB needs to be flushed before Device TLB to
3584 * prevent device TLB refill from IOMMU TLB
3585 */
3586 for (i = 0; i < amd_iommus_present; ++i) {
3587 if (domain->dev_iommu[i] == 0)
3588 continue;
3589
3590 ret = iommu_queue_command(amd_iommus[i], &cmd);
3591 if (ret != 0)
3592 goto out;
3593 }
3594
3595 /* Wait until IOMMU TLB flushes are complete */
3596 domain_flush_complete(domain);
3597
3598 /* Now flush device TLBs */
3599 list_for_each_entry(dev_data, &domain->dev_list, list) {
3600 struct amd_iommu *iommu;
3601 int qdep;
3602
3603 BUG_ON(!dev_data->ats.enabled);
3604
3605 qdep = dev_data->ats.qdep;
3606 iommu = amd_iommu_rlookup_table[dev_data->devid];
3607
3608 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3609 qdep, address, size);
3610
3611 ret = iommu_queue_command(iommu, &cmd);
3612 if (ret != 0)
3613 goto out;
3614 }
3615
3616 /* Wait until all device TLBs are flushed */
3617 domain_flush_complete(domain);
3618
3619 ret = 0;
3620
3621 out:
3622
3623 return ret;
3624 }
3625
3626 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3627 u64 address)
3628 {
3629 INC_STATS_COUNTER(invalidate_iotlb);
3630
3631 return __flush_pasid(domain, pasid, address, false);
3632 }
3633
3634 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3635 u64 address)
3636 {
3637 struct protection_domain *domain = dom->priv;
3638 unsigned long flags;
3639 int ret;
3640
3641 spin_lock_irqsave(&domain->lock, flags);
3642 ret = __amd_iommu_flush_page(domain, pasid, address);
3643 spin_unlock_irqrestore(&domain->lock, flags);
3644
3645 return ret;
3646 }
3647 EXPORT_SYMBOL(amd_iommu_flush_page);
3648
3649 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3650 {
3651 INC_STATS_COUNTER(invalidate_iotlb_all);
3652
3653 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3654 true);
3655 }
3656
3657 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3658 {
3659 struct protection_domain *domain = dom->priv;
3660 unsigned long flags;
3661 int ret;
3662
3663 spin_lock_irqsave(&domain->lock, flags);
3664 ret = __amd_iommu_flush_tlb(domain, pasid);
3665 spin_unlock_irqrestore(&domain->lock, flags);
3666
3667 return ret;
3668 }
3669 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3670
3671 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3672 {
3673 int index;
3674 u64 *pte;
3675
3676 while (true) {
3677
3678 index = (pasid >> (9 * level)) & 0x1ff;
3679 pte = &root[index];
3680
3681 if (level == 0)
3682 break;
3683
3684 if (!(*pte & GCR3_VALID)) {
3685 if (!alloc)
3686 return NULL;
3687
3688 root = (void *)get_zeroed_page(GFP_ATOMIC);
3689 if (root == NULL)
3690 return NULL;
3691
3692 *pte = __pa(root) | GCR3_VALID;
3693 }
3694
3695 root = __va(*pte & PAGE_MASK);
3696
3697 level -= 1;
3698 }
3699
3700 return pte;
3701 }
3702
3703 static int __set_gcr3(struct protection_domain *domain, int pasid,
3704 unsigned long cr3)
3705 {
3706 u64 *pte;
3707
3708 if (domain->mode != PAGE_MODE_NONE)
3709 return -EINVAL;
3710
3711 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3712 if (pte == NULL)
3713 return -ENOMEM;
3714
3715 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3716
3717 return __amd_iommu_flush_tlb(domain, pasid);
3718 }
3719
3720 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3721 {
3722 u64 *pte;
3723
3724 if (domain->mode != PAGE_MODE_NONE)
3725 return -EINVAL;
3726
3727 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3728 if (pte == NULL)
3729 return 0;
3730
3731 *pte = 0;
3732
3733 return __amd_iommu_flush_tlb(domain, pasid);
3734 }
3735
3736 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3737 unsigned long cr3)
3738 {
3739 struct protection_domain *domain = dom->priv;
3740 unsigned long flags;
3741 int ret;
3742
3743 spin_lock_irqsave(&domain->lock, flags);
3744 ret = __set_gcr3(domain, pasid, cr3);
3745 spin_unlock_irqrestore(&domain->lock, flags);
3746
3747 return ret;
3748 }
3749 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3750
3751 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3752 {
3753 struct protection_domain *domain = dom->priv;
3754 unsigned long flags;
3755 int ret;
3756
3757 spin_lock_irqsave(&domain->lock, flags);
3758 ret = __clear_gcr3(domain, pasid);
3759 spin_unlock_irqrestore(&domain->lock, flags);
3760
3761 return ret;
3762 }
3763 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3764
3765 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3766 int status, int tag)
3767 {
3768 struct iommu_dev_data *dev_data;
3769 struct amd_iommu *iommu;
3770 struct iommu_cmd cmd;
3771
3772 INC_STATS_COUNTER(complete_ppr);
3773
3774 dev_data = get_dev_data(&pdev->dev);
3775 iommu = amd_iommu_rlookup_table[dev_data->devid];
3776
3777 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3778 tag, dev_data->pri_tlp);
3779
3780 return iommu_queue_command(iommu, &cmd);
3781 }
3782 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3783
3784 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3785 {
3786 struct protection_domain *domain;
3787
3788 domain = get_domain(&pdev->dev);
3789 if (IS_ERR(domain))
3790 return NULL;
3791
3792 /* Only return IOMMUv2 domains */
3793 if (!(domain->flags & PD_IOMMUV2_MASK))
3794 return NULL;
3795
3796 return domain->iommu_domain;
3797 }
3798 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3799
3800 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3801 {
3802 struct iommu_dev_data *dev_data;
3803
3804 if (!amd_iommu_v2_supported())
3805 return;
3806
3807 dev_data = get_dev_data(&pdev->dev);
3808 dev_data->errata |= (1 << erratum);
3809 }
3810 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3811
3812 int amd_iommu_device_info(struct pci_dev *pdev,
3813 struct amd_iommu_device_info *info)
3814 {
3815 int max_pasids;
3816 int pos;
3817
3818 if (pdev == NULL || info == NULL)
3819 return -EINVAL;
3820
3821 if (!amd_iommu_v2_supported())
3822 return -EINVAL;
3823
3824 memset(info, 0, sizeof(*info));
3825
3826 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3827 if (pos)
3828 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3829
3830 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3831 if (pos)
3832 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3833
3834 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3835 if (pos) {
3836 int features;
3837
3838 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3839 max_pasids = min(max_pasids, (1 << 20));
3840
3841 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3842 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3843
3844 features = pci_pasid_features(pdev);
3845 if (features & PCI_PASID_CAP_EXEC)
3846 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3847 if (features & PCI_PASID_CAP_PRIV)
3848 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3849 }
3850
3851 return 0;
3852 }
3853 EXPORT_SYMBOL(amd_iommu_device_info);
3854
3855 #ifdef CONFIG_IRQ_REMAP
3856
3857 /*****************************************************************************
3858 *
3859 * Interrupt Remapping Implementation
3860 *
3861 *****************************************************************************/
3862
3863 union irte {
3864 u32 val;
3865 struct {
3866 u32 valid : 1,
3867 no_fault : 1,
3868 int_type : 3,
3869 rq_eoi : 1,
3870 dm : 1,
3871 rsvd_1 : 1,
3872 destination : 8,
3873 vector : 8,
3874 rsvd_2 : 8;
3875 } fields;
3876 };
3877
3878 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3879 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3880 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3881 #define DTE_IRQ_REMAP_ENABLE 1ULL
3882
3883 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3884 {
3885 u64 dte;
3886
3887 dte = amd_iommu_dev_table[devid].data[2];
3888 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3889 dte |= virt_to_phys(table->table);
3890 dte |= DTE_IRQ_REMAP_INTCTL;
3891 dte |= DTE_IRQ_TABLE_LEN;
3892 dte |= DTE_IRQ_REMAP_ENABLE;
3893
3894 amd_iommu_dev_table[devid].data[2] = dte;
3895 }
3896
3897 #define IRTE_ALLOCATED (~1U)
3898
3899 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3900 {
3901 struct irq_remap_table *table = NULL;
3902 struct amd_iommu *iommu;
3903 unsigned long flags;
3904 u16 alias;
3905
3906 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3907
3908 iommu = amd_iommu_rlookup_table[devid];
3909 if (!iommu)
3910 goto out_unlock;
3911
3912 table = irq_lookup_table[devid];
3913 if (table)
3914 goto out;
3915
3916 alias = amd_iommu_alias_table[devid];
3917 table = irq_lookup_table[alias];
3918 if (table) {
3919 irq_lookup_table[devid] = table;
3920 set_dte_irq_entry(devid, table);
3921 iommu_flush_dte(iommu, devid);
3922 goto out;
3923 }
3924
3925 /* Nothing there yet, allocate new irq remapping table */
3926 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3927 if (!table)
3928 goto out;
3929
3930 /* Initialize table spin-lock */
3931 spin_lock_init(&table->lock);
3932
3933 if (ioapic)
3934 /* Keep the first 32 indexes free for IOAPIC interrupts */
3935 table->min_index = 32;
3936
3937 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3938 if (!table->table) {
3939 kfree(table);
3940 table = NULL;
3941 goto out;
3942 }
3943
3944 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3945
3946 if (ioapic) {
3947 int i;
3948
3949 for (i = 0; i < 32; ++i)
3950 table->table[i] = IRTE_ALLOCATED;
3951 }
3952
3953 irq_lookup_table[devid] = table;
3954 set_dte_irq_entry(devid, table);
3955 iommu_flush_dte(iommu, devid);
3956 if (devid != alias) {
3957 irq_lookup_table[alias] = table;
3958 set_dte_irq_entry(devid, table);
3959 iommu_flush_dte(iommu, alias);
3960 }
3961
3962 out:
3963 iommu_completion_wait(iommu);
3964
3965 out_unlock:
3966 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3967
3968 return table;
3969 }
3970
3971 static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3972 {
3973 struct irq_remap_table *table;
3974 unsigned long flags;
3975 int index, c;
3976
3977 table = get_irq_table(devid, false);
3978 if (!table)
3979 return -ENODEV;
3980
3981 spin_lock_irqsave(&table->lock, flags);
3982
3983 /* Scan table for free entries */
3984 for (c = 0, index = table->min_index;
3985 index < MAX_IRQS_PER_TABLE;
3986 ++index) {
3987 if (table->table[index] == 0)
3988 c += 1;
3989 else
3990 c = 0;
3991
3992 if (c == count) {
3993 struct irq_2_irte *irte_info;
3994
3995 for (; c != 0; --c)
3996 table->table[index - c + 1] = IRTE_ALLOCATED;
3997
3998 index -= count - 1;
3999
4000 cfg->remapped = 1;
4001 irte_info = &cfg->irq_2_irte;
4002 irte_info->devid = devid;
4003 irte_info->index = index;
4004
4005 goto out;
4006 }
4007 }
4008
4009 index = -ENOSPC;
4010
4011 out:
4012 spin_unlock_irqrestore(&table->lock, flags);
4013
4014 return index;
4015 }
4016
4017 static int get_irte(u16 devid, int index, union irte *irte)
4018 {
4019 struct irq_remap_table *table;
4020 unsigned long flags;
4021
4022 table = get_irq_table(devid, false);
4023 if (!table)
4024 return -ENOMEM;
4025
4026 spin_lock_irqsave(&table->lock, flags);
4027 irte->val = table->table[index];
4028 spin_unlock_irqrestore(&table->lock, flags);
4029
4030 return 0;
4031 }
4032
4033 static int modify_irte(u16 devid, int index, union irte irte)
4034 {
4035 struct irq_remap_table *table;
4036 struct amd_iommu *iommu;
4037 unsigned long flags;
4038
4039 iommu = amd_iommu_rlookup_table[devid];
4040 if (iommu == NULL)
4041 return -EINVAL;
4042
4043 table = get_irq_table(devid, false);
4044 if (!table)
4045 return -ENOMEM;
4046
4047 spin_lock_irqsave(&table->lock, flags);
4048 table->table[index] = irte.val;
4049 spin_unlock_irqrestore(&table->lock, flags);
4050
4051 iommu_flush_irt(iommu, devid);
4052 iommu_completion_wait(iommu);
4053
4054 return 0;
4055 }
4056
4057 static void free_irte(u16 devid, int index)
4058 {
4059 struct irq_remap_table *table;
4060 struct amd_iommu *iommu;
4061 unsigned long flags;
4062
4063 iommu = amd_iommu_rlookup_table[devid];
4064 if (iommu == NULL)
4065 return;
4066
4067 table = get_irq_table(devid, false);
4068 if (!table)
4069 return;
4070
4071 spin_lock_irqsave(&table->lock, flags);
4072 table->table[index] = 0;
4073 spin_unlock_irqrestore(&table->lock, flags);
4074
4075 iommu_flush_irt(iommu, devid);
4076 iommu_completion_wait(iommu);
4077 }
4078
4079 static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4080 unsigned int destination, int vector,
4081 struct io_apic_irq_attr *attr)
4082 {
4083 struct irq_remap_table *table;
4084 struct irq_2_irte *irte_info;
4085 struct irq_cfg *cfg;
4086 union irte irte;
4087 int ioapic_id;
4088 int index;
4089 int devid;
4090 int ret;
4091
4092 cfg = irq_get_chip_data(irq);
4093 if (!cfg)
4094 return -EINVAL;
4095
4096 irte_info = &cfg->irq_2_irte;
4097 ioapic_id = mpc_ioapic_id(attr->ioapic);
4098 devid = get_ioapic_devid(ioapic_id);
4099
4100 if (devid < 0)
4101 return devid;
4102
4103 table = get_irq_table(devid, true);
4104 if (table == NULL)
4105 return -ENOMEM;
4106
4107 index = attr->ioapic_pin;
4108
4109 /* Setup IRQ remapping info */
4110 cfg->remapped = 1;
4111 irte_info->devid = devid;
4112 irte_info->index = index;
4113
4114 /* Setup IRTE for IOMMU */
4115 irte.val = 0;
4116 irte.fields.vector = vector;
4117 irte.fields.int_type = apic->irq_delivery_mode;
4118 irte.fields.destination = destination;
4119 irte.fields.dm = apic->irq_dest_mode;
4120 irte.fields.valid = 1;
4121
4122 ret = modify_irte(devid, index, irte);
4123 if (ret)
4124 return ret;
4125
4126 /* Setup IOAPIC entry */
4127 memset(entry, 0, sizeof(*entry));
4128
4129 entry->vector = index;
4130 entry->mask = 0;
4131 entry->trigger = attr->trigger;
4132 entry->polarity = attr->polarity;
4133
4134 /*
4135 * Mask level triggered irqs.
4136 */
4137 if (attr->trigger)
4138 entry->mask = 1;
4139
4140 return 0;
4141 }
4142
4143 static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4144 bool force)
4145 {
4146 struct irq_2_irte *irte_info;
4147 unsigned int dest, irq;
4148 struct irq_cfg *cfg;
4149 union irte irte;
4150 int err;
4151
4152 if (!config_enabled(CONFIG_SMP))
4153 return -1;
4154
4155 cfg = data->chip_data;
4156 irq = data->irq;
4157 irte_info = &cfg->irq_2_irte;
4158
4159 if (!cpumask_intersects(mask, cpu_online_mask))
4160 return -EINVAL;
4161
4162 if (get_irte(irte_info->devid, irte_info->index, &irte))
4163 return -EBUSY;
4164
4165 if (assign_irq_vector(irq, cfg, mask))
4166 return -EBUSY;
4167
4168 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4169 if (err) {
4170 if (assign_irq_vector(irq, cfg, data->affinity))
4171 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4172 return err;
4173 }
4174
4175 irte.fields.vector = cfg->vector;
4176 irte.fields.destination = dest;
4177
4178 modify_irte(irte_info->devid, irte_info->index, irte);
4179
4180 if (cfg->move_in_progress)
4181 send_cleanup_vector(cfg);
4182
4183 cpumask_copy(data->affinity, mask);
4184
4185 return 0;
4186 }
4187
4188 static int free_irq(int irq)
4189 {
4190 struct irq_2_irte *irte_info;
4191 struct irq_cfg *cfg;
4192
4193 cfg = irq_get_chip_data(irq);
4194 if (!cfg)
4195 return -EINVAL;
4196
4197 irte_info = &cfg->irq_2_irte;
4198
4199 free_irte(irte_info->devid, irte_info->index);
4200
4201 return 0;
4202 }
4203
4204 static void compose_msi_msg(struct pci_dev *pdev,
4205 unsigned int irq, unsigned int dest,
4206 struct msi_msg *msg, u8 hpet_id)
4207 {
4208 struct irq_2_irte *irte_info;
4209 struct irq_cfg *cfg;
4210 union irte irte;
4211
4212 cfg = irq_get_chip_data(irq);
4213 if (!cfg)
4214 return;
4215
4216 irte_info = &cfg->irq_2_irte;
4217
4218 irte.val = 0;
4219 irte.fields.vector = cfg->vector;
4220 irte.fields.int_type = apic->irq_delivery_mode;
4221 irte.fields.destination = dest;
4222 irte.fields.dm = apic->irq_dest_mode;
4223 irte.fields.valid = 1;
4224
4225 modify_irte(irte_info->devid, irte_info->index, irte);
4226
4227 msg->address_hi = MSI_ADDR_BASE_HI;
4228 msg->address_lo = MSI_ADDR_BASE_LO;
4229 msg->data = irte_info->index;
4230 }
4231
4232 static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4233 {
4234 struct irq_cfg *cfg;
4235 int index;
4236 u16 devid;
4237
4238 if (!pdev)
4239 return -EINVAL;
4240
4241 cfg = irq_get_chip_data(irq);
4242 if (!cfg)
4243 return -EINVAL;
4244
4245 devid = get_device_id(&pdev->dev);
4246 index = alloc_irq_index(cfg, devid, nvec);
4247
4248 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4249 }
4250
4251 static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4252 int index, int offset)
4253 {
4254 struct irq_2_irte *irte_info;
4255 struct irq_cfg *cfg;
4256 u16 devid;
4257
4258 if (!pdev)
4259 return -EINVAL;
4260
4261 cfg = irq_get_chip_data(irq);
4262 if (!cfg)
4263 return -EINVAL;
4264
4265 if (index >= MAX_IRQS_PER_TABLE)
4266 return 0;
4267
4268 devid = get_device_id(&pdev->dev);
4269 irte_info = &cfg->irq_2_irte;
4270
4271 cfg->remapped = 1;
4272 irte_info->devid = devid;
4273 irte_info->index = index + offset;
4274
4275 return 0;
4276 }
4277
4278 static int setup_hpet_msi(unsigned int irq, unsigned int id)
4279 {
4280 struct irq_2_irte *irte_info;
4281 struct irq_cfg *cfg;
4282 int index, devid;
4283
4284 cfg = irq_get_chip_data(irq);
4285 if (!cfg)
4286 return -EINVAL;
4287
4288 irte_info = &cfg->irq_2_irte;
4289 devid = get_hpet_devid(id);
4290 if (devid < 0)
4291 return devid;
4292
4293 index = alloc_irq_index(cfg, devid, 1);
4294 if (index < 0)
4295 return index;
4296
4297 cfg->remapped = 1;
4298 irte_info->devid = devid;
4299 irte_info->index = index;
4300
4301 return 0;
4302 }
4303
4304 struct irq_remap_ops amd_iommu_irq_ops = {
4305 .supported = amd_iommu_supported,
4306 .prepare = amd_iommu_prepare,
4307 .enable = amd_iommu_enable,
4308 .disable = amd_iommu_disable,
4309 .reenable = amd_iommu_reenable,
4310 .enable_faulting = amd_iommu_enable_faulting,
4311 .setup_ioapic_entry = setup_ioapic_entry,
4312 .set_affinity = set_affinity,
4313 .free_irq = free_irq,
4314 .compose_msi_msg = compose_msi_msg,
4315 .msi_alloc_irq = msi_alloc_irq,
4316 .msi_setup_irq = msi_setup_irq,
4317 .setup_hpet_msi = setup_hpet_msi,
4318 };
4319 #endif