iommu/amd: Fix hotplug with iommu=pt
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <asm/msidef.h>
35 #include <asm/proto.h>
36 #include <asm/iommu.h>
37 #include <asm/gart.h>
38 #include <asm/dma.h>
39
40 #include "amd_iommu_proto.h"
41 #include "amd_iommu_types.h"
42
43 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
45 #define LOOP_TIMEOUT 100000
46
47 /*
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
51 * that we support.
52 *
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
56 *
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
59 *
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
62 */
63 #define AMD_IOMMU_PGSIZES (~0xFFFUL)
64
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock);
74
75 /*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79 static struct protection_domain *pt_domain;
80
81 static struct iommu_ops amd_iommu_ops;
82
83 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84 int amd_iommu_max_glx_val = -1;
85
86 static struct dma_map_ops amd_iommu_dma_ops;
87
88 /*
89 * general struct to manage commands send to an IOMMU
90 */
91 struct iommu_cmd {
92 u32 data[4];
93 };
94
95 static void update_domain(struct protection_domain *domain);
96 static int __init alloc_passthrough_domain(void);
97
98 /****************************************************************************
99 *
100 * Helper functions
101 *
102 ****************************************************************************/
103
104 static struct iommu_dev_data *alloc_dev_data(u16 devid)
105 {
106 struct iommu_dev_data *dev_data;
107 unsigned long flags;
108
109 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
110 if (!dev_data)
111 return NULL;
112
113 dev_data->devid = devid;
114 atomic_set(&dev_data->bind, 0);
115
116 spin_lock_irqsave(&dev_data_list_lock, flags);
117 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
118 spin_unlock_irqrestore(&dev_data_list_lock, flags);
119
120 return dev_data;
121 }
122
123 static void free_dev_data(struct iommu_dev_data *dev_data)
124 {
125 unsigned long flags;
126
127 spin_lock_irqsave(&dev_data_list_lock, flags);
128 list_del(&dev_data->dev_data_list);
129 spin_unlock_irqrestore(&dev_data_list_lock, flags);
130
131 kfree(dev_data);
132 }
133
134 static struct iommu_dev_data *search_dev_data(u16 devid)
135 {
136 struct iommu_dev_data *dev_data;
137 unsigned long flags;
138
139 spin_lock_irqsave(&dev_data_list_lock, flags);
140 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
141 if (dev_data->devid == devid)
142 goto out_unlock;
143 }
144
145 dev_data = NULL;
146
147 out_unlock:
148 spin_unlock_irqrestore(&dev_data_list_lock, flags);
149
150 return dev_data;
151 }
152
153 static struct iommu_dev_data *find_dev_data(u16 devid)
154 {
155 struct iommu_dev_data *dev_data;
156
157 dev_data = search_dev_data(devid);
158
159 if (dev_data == NULL)
160 dev_data = alloc_dev_data(devid);
161
162 return dev_data;
163 }
164
165 static inline u16 get_device_id(struct device *dev)
166 {
167 struct pci_dev *pdev = to_pci_dev(dev);
168
169 return calc_devid(pdev->bus->number, pdev->devfn);
170 }
171
172 static struct iommu_dev_data *get_dev_data(struct device *dev)
173 {
174 return dev->archdata.iommu;
175 }
176
177 static bool pci_iommuv2_capable(struct pci_dev *pdev)
178 {
179 static const int caps[] = {
180 PCI_EXT_CAP_ID_ATS,
181 PCI_EXT_CAP_ID_PRI,
182 PCI_EXT_CAP_ID_PASID,
183 };
184 int i, pos;
185
186 for (i = 0; i < 3; ++i) {
187 pos = pci_find_ext_capability(pdev, caps[i]);
188 if (pos == 0)
189 return false;
190 }
191
192 return true;
193 }
194
195 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
196 {
197 struct iommu_dev_data *dev_data;
198
199 dev_data = get_dev_data(&pdev->dev);
200
201 return dev_data->errata & (1 << erratum) ? true : false;
202 }
203
204 /*
205 * In this function the list of preallocated protection domains is traversed to
206 * find the domain for a specific device
207 */
208 static struct dma_ops_domain *find_protection_domain(u16 devid)
209 {
210 struct dma_ops_domain *entry, *ret = NULL;
211 unsigned long flags;
212 u16 alias = amd_iommu_alias_table[devid];
213
214 if (list_empty(&iommu_pd_list))
215 return NULL;
216
217 spin_lock_irqsave(&iommu_pd_list_lock, flags);
218
219 list_for_each_entry(entry, &iommu_pd_list, list) {
220 if (entry->target_dev == devid ||
221 entry->target_dev == alias) {
222 ret = entry;
223 break;
224 }
225 }
226
227 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
228
229 return ret;
230 }
231
232 /*
233 * This function checks if the driver got a valid device from the caller to
234 * avoid dereferencing invalid pointers.
235 */
236 static bool check_device(struct device *dev)
237 {
238 u16 devid;
239
240 if (!dev || !dev->dma_mask)
241 return false;
242
243 /* No device or no PCI device */
244 if (dev->bus != &pci_bus_type)
245 return false;
246
247 devid = get_device_id(dev);
248
249 /* Out of our scope? */
250 if (devid > amd_iommu_last_bdf)
251 return false;
252
253 if (amd_iommu_rlookup_table[devid] == NULL)
254 return false;
255
256 return true;
257 }
258
259 static int iommu_init_device(struct device *dev)
260 {
261 struct pci_dev *pdev = to_pci_dev(dev);
262 struct iommu_dev_data *dev_data;
263 u16 alias;
264
265 if (dev->archdata.iommu)
266 return 0;
267
268 dev_data = find_dev_data(get_device_id(dev));
269 if (!dev_data)
270 return -ENOMEM;
271
272 alias = amd_iommu_alias_table[dev_data->devid];
273 if (alias != dev_data->devid) {
274 struct iommu_dev_data *alias_data;
275
276 alias_data = find_dev_data(alias);
277 if (alias_data == NULL) {
278 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
279 dev_name(dev));
280 free_dev_data(dev_data);
281 return -ENOTSUPP;
282 }
283 dev_data->alias_data = alias_data;
284 }
285
286 if (pci_iommuv2_capable(pdev)) {
287 struct amd_iommu *iommu;
288
289 iommu = amd_iommu_rlookup_table[dev_data->devid];
290 dev_data->iommu_v2 = iommu->is_iommu_v2;
291 }
292
293 dev->archdata.iommu = dev_data;
294
295 return 0;
296 }
297
298 static void iommu_ignore_device(struct device *dev)
299 {
300 u16 devid, alias;
301
302 devid = get_device_id(dev);
303 alias = amd_iommu_alias_table[devid];
304
305 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
306 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
307
308 amd_iommu_rlookup_table[devid] = NULL;
309 amd_iommu_rlookup_table[alias] = NULL;
310 }
311
312 static void iommu_uninit_device(struct device *dev)
313 {
314 /*
315 * Nothing to do here - we keep dev_data around for unplugged devices
316 * and reuse it when the device is re-plugged - not doing so would
317 * introduce a ton of races.
318 */
319 }
320
321 void __init amd_iommu_uninit_devices(void)
322 {
323 struct iommu_dev_data *dev_data, *n;
324 struct pci_dev *pdev = NULL;
325
326 for_each_pci_dev(pdev) {
327
328 if (!check_device(&pdev->dev))
329 continue;
330
331 iommu_uninit_device(&pdev->dev);
332 }
333
334 /* Free all of our dev_data structures */
335 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
336 free_dev_data(dev_data);
337 }
338
339 int __init amd_iommu_init_devices(void)
340 {
341 struct pci_dev *pdev = NULL;
342 int ret = 0;
343
344 for_each_pci_dev(pdev) {
345
346 if (!check_device(&pdev->dev))
347 continue;
348
349 ret = iommu_init_device(&pdev->dev);
350 if (ret == -ENOTSUPP)
351 iommu_ignore_device(&pdev->dev);
352 else if (ret)
353 goto out_free;
354 }
355
356 return 0;
357
358 out_free:
359
360 amd_iommu_uninit_devices();
361
362 return ret;
363 }
364 #ifdef CONFIG_AMD_IOMMU_STATS
365
366 /*
367 * Initialization code for statistics collection
368 */
369
370 DECLARE_STATS_COUNTER(compl_wait);
371 DECLARE_STATS_COUNTER(cnt_map_single);
372 DECLARE_STATS_COUNTER(cnt_unmap_single);
373 DECLARE_STATS_COUNTER(cnt_map_sg);
374 DECLARE_STATS_COUNTER(cnt_unmap_sg);
375 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
376 DECLARE_STATS_COUNTER(cnt_free_coherent);
377 DECLARE_STATS_COUNTER(cross_page);
378 DECLARE_STATS_COUNTER(domain_flush_single);
379 DECLARE_STATS_COUNTER(domain_flush_all);
380 DECLARE_STATS_COUNTER(alloced_io_mem);
381 DECLARE_STATS_COUNTER(total_map_requests);
382 DECLARE_STATS_COUNTER(complete_ppr);
383 DECLARE_STATS_COUNTER(invalidate_iotlb);
384 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
385 DECLARE_STATS_COUNTER(pri_requests);
386
387
388 static struct dentry *stats_dir;
389 static struct dentry *de_fflush;
390
391 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
392 {
393 if (stats_dir == NULL)
394 return;
395
396 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
397 &cnt->value);
398 }
399
400 static void amd_iommu_stats_init(void)
401 {
402 stats_dir = debugfs_create_dir("amd-iommu", NULL);
403 if (stats_dir == NULL)
404 return;
405
406 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
407 &amd_iommu_unmap_flush);
408
409 amd_iommu_stats_add(&compl_wait);
410 amd_iommu_stats_add(&cnt_map_single);
411 amd_iommu_stats_add(&cnt_unmap_single);
412 amd_iommu_stats_add(&cnt_map_sg);
413 amd_iommu_stats_add(&cnt_unmap_sg);
414 amd_iommu_stats_add(&cnt_alloc_coherent);
415 amd_iommu_stats_add(&cnt_free_coherent);
416 amd_iommu_stats_add(&cross_page);
417 amd_iommu_stats_add(&domain_flush_single);
418 amd_iommu_stats_add(&domain_flush_all);
419 amd_iommu_stats_add(&alloced_io_mem);
420 amd_iommu_stats_add(&total_map_requests);
421 amd_iommu_stats_add(&complete_ppr);
422 amd_iommu_stats_add(&invalidate_iotlb);
423 amd_iommu_stats_add(&invalidate_iotlb_all);
424 amd_iommu_stats_add(&pri_requests);
425 }
426
427 #endif
428
429 /****************************************************************************
430 *
431 * Interrupt handling functions
432 *
433 ****************************************************************************/
434
435 static void dump_dte_entry(u16 devid)
436 {
437 int i;
438
439 for (i = 0; i < 4; ++i)
440 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
441 amd_iommu_dev_table[devid].data[i]);
442 }
443
444 static void dump_command(unsigned long phys_addr)
445 {
446 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
447 int i;
448
449 for (i = 0; i < 4; ++i)
450 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
451 }
452
453 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
454 {
455 int type, devid, domid, flags;
456 volatile u32 *event = __evt;
457 int count = 0;
458 u64 address;
459
460 retry:
461 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
462 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
463 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
464 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
465 address = (u64)(((u64)event[3]) << 32) | event[2];
466
467 if (type == 0) {
468 /* Did we hit the erratum? */
469 if (++count == LOOP_TIMEOUT) {
470 pr_err("AMD-Vi: No event written to event log\n");
471 return;
472 }
473 udelay(1);
474 goto retry;
475 }
476
477 printk(KERN_ERR "AMD-Vi: Event logged [");
478
479 switch (type) {
480 case EVENT_TYPE_ILL_DEV:
481 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
482 "address=0x%016llx flags=0x%04x]\n",
483 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
484 address, flags);
485 dump_dte_entry(devid);
486 break;
487 case EVENT_TYPE_IO_FAULT:
488 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
489 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
490 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
491 domid, address, flags);
492 break;
493 case EVENT_TYPE_DEV_TAB_ERR:
494 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
495 "address=0x%016llx flags=0x%04x]\n",
496 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
497 address, flags);
498 break;
499 case EVENT_TYPE_PAGE_TAB_ERR:
500 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
501 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
502 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
503 domid, address, flags);
504 break;
505 case EVENT_TYPE_ILL_CMD:
506 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
507 dump_command(address);
508 break;
509 case EVENT_TYPE_CMD_HARD_ERR:
510 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
511 "flags=0x%04x]\n", address, flags);
512 break;
513 case EVENT_TYPE_IOTLB_INV_TO:
514 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
515 "address=0x%016llx]\n",
516 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
517 address);
518 break;
519 case EVENT_TYPE_INV_DEV_REQ:
520 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
521 "address=0x%016llx flags=0x%04x]\n",
522 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
523 address, flags);
524 break;
525 default:
526 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
527 }
528
529 memset(__evt, 0, 4 * sizeof(u32));
530 }
531
532 static void iommu_poll_events(struct amd_iommu *iommu)
533 {
534 u32 head, tail;
535 unsigned long flags;
536
537 spin_lock_irqsave(&iommu->lock, flags);
538
539 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
540 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
541
542 while (head != tail) {
543 iommu_print_event(iommu, iommu->evt_buf + head);
544 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
545 }
546
547 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
548
549 spin_unlock_irqrestore(&iommu->lock, flags);
550 }
551
552 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
553 {
554 struct amd_iommu_fault fault;
555
556 INC_STATS_COUNTER(pri_requests);
557
558 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
559 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
560 return;
561 }
562
563 fault.address = raw[1];
564 fault.pasid = PPR_PASID(raw[0]);
565 fault.device_id = PPR_DEVID(raw[0]);
566 fault.tag = PPR_TAG(raw[0]);
567 fault.flags = PPR_FLAGS(raw[0]);
568
569 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
570 }
571
572 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
573 {
574 unsigned long flags;
575 u32 head, tail;
576
577 if (iommu->ppr_log == NULL)
578 return;
579
580 /* enable ppr interrupts again */
581 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
582
583 spin_lock_irqsave(&iommu->lock, flags);
584
585 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
586 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
587
588 while (head != tail) {
589 volatile u64 *raw;
590 u64 entry[2];
591 int i;
592
593 raw = (u64 *)(iommu->ppr_log + head);
594
595 /*
596 * Hardware bug: Interrupt may arrive before the entry is
597 * written to memory. If this happens we need to wait for the
598 * entry to arrive.
599 */
600 for (i = 0; i < LOOP_TIMEOUT; ++i) {
601 if (PPR_REQ_TYPE(raw[0]) != 0)
602 break;
603 udelay(1);
604 }
605
606 /* Avoid memcpy function-call overhead */
607 entry[0] = raw[0];
608 entry[1] = raw[1];
609
610 /*
611 * To detect the hardware bug we need to clear the entry
612 * back to zero.
613 */
614 raw[0] = raw[1] = 0UL;
615
616 /* Update head pointer of hardware ring-buffer */
617 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
618 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
619
620 /*
621 * Release iommu->lock because ppr-handling might need to
622 * re-aquire it
623 */
624 spin_unlock_irqrestore(&iommu->lock, flags);
625
626 /* Handle PPR entry */
627 iommu_handle_ppr_entry(iommu, entry);
628
629 spin_lock_irqsave(&iommu->lock, flags);
630
631 /* Refresh ring-buffer information */
632 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
633 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
634 }
635
636 spin_unlock_irqrestore(&iommu->lock, flags);
637 }
638
639 irqreturn_t amd_iommu_int_thread(int irq, void *data)
640 {
641 struct amd_iommu *iommu;
642
643 for_each_iommu(iommu) {
644 iommu_poll_events(iommu);
645 iommu_poll_ppr_log(iommu);
646 }
647
648 return IRQ_HANDLED;
649 }
650
651 irqreturn_t amd_iommu_int_handler(int irq, void *data)
652 {
653 return IRQ_WAKE_THREAD;
654 }
655
656 /****************************************************************************
657 *
658 * IOMMU command queuing functions
659 *
660 ****************************************************************************/
661
662 static int wait_on_sem(volatile u64 *sem)
663 {
664 int i = 0;
665
666 while (*sem == 0 && i < LOOP_TIMEOUT) {
667 udelay(1);
668 i += 1;
669 }
670
671 if (i == LOOP_TIMEOUT) {
672 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
673 return -EIO;
674 }
675
676 return 0;
677 }
678
679 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
680 struct iommu_cmd *cmd,
681 u32 tail)
682 {
683 u8 *target;
684
685 target = iommu->cmd_buf + tail;
686 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
687
688 /* Copy command to buffer */
689 memcpy(target, cmd, sizeof(*cmd));
690
691 /* Tell the IOMMU about it */
692 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
693 }
694
695 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
696 {
697 WARN_ON(address & 0x7ULL);
698
699 memset(cmd, 0, sizeof(*cmd));
700 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
701 cmd->data[1] = upper_32_bits(__pa(address));
702 cmd->data[2] = 1;
703 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
704 }
705
706 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
707 {
708 memset(cmd, 0, sizeof(*cmd));
709 cmd->data[0] = devid;
710 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
711 }
712
713 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
714 size_t size, u16 domid, int pde)
715 {
716 u64 pages;
717 int s;
718
719 pages = iommu_num_pages(address, size, PAGE_SIZE);
720 s = 0;
721
722 if (pages > 1) {
723 /*
724 * If we have to flush more than one page, flush all
725 * TLB entries for this domain
726 */
727 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
728 s = 1;
729 }
730
731 address &= PAGE_MASK;
732
733 memset(cmd, 0, sizeof(*cmd));
734 cmd->data[1] |= domid;
735 cmd->data[2] = lower_32_bits(address);
736 cmd->data[3] = upper_32_bits(address);
737 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
738 if (s) /* size bit - we flush more than one 4kb page */
739 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
740 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
741 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
742 }
743
744 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
745 u64 address, size_t size)
746 {
747 u64 pages;
748 int s;
749
750 pages = iommu_num_pages(address, size, PAGE_SIZE);
751 s = 0;
752
753 if (pages > 1) {
754 /*
755 * If we have to flush more than one page, flush all
756 * TLB entries for this domain
757 */
758 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
759 s = 1;
760 }
761
762 address &= PAGE_MASK;
763
764 memset(cmd, 0, sizeof(*cmd));
765 cmd->data[0] = devid;
766 cmd->data[0] |= (qdep & 0xff) << 24;
767 cmd->data[1] = devid;
768 cmd->data[2] = lower_32_bits(address);
769 cmd->data[3] = upper_32_bits(address);
770 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
771 if (s)
772 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
773 }
774
775 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
776 u64 address, bool size)
777 {
778 memset(cmd, 0, sizeof(*cmd));
779
780 address &= ~(0xfffULL);
781
782 cmd->data[0] = pasid & PASID_MASK;
783 cmd->data[1] = domid;
784 cmd->data[2] = lower_32_bits(address);
785 cmd->data[3] = upper_32_bits(address);
786 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
787 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
788 if (size)
789 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
790 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
791 }
792
793 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
794 int qdep, u64 address, bool size)
795 {
796 memset(cmd, 0, sizeof(*cmd));
797
798 address &= ~(0xfffULL);
799
800 cmd->data[0] = devid;
801 cmd->data[0] |= (pasid & 0xff) << 16;
802 cmd->data[0] |= (qdep & 0xff) << 24;
803 cmd->data[1] = devid;
804 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
805 cmd->data[2] = lower_32_bits(address);
806 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
807 cmd->data[3] = upper_32_bits(address);
808 if (size)
809 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
810 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
811 }
812
813 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
814 int status, int tag, bool gn)
815 {
816 memset(cmd, 0, sizeof(*cmd));
817
818 cmd->data[0] = devid;
819 if (gn) {
820 cmd->data[1] = pasid & PASID_MASK;
821 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
822 }
823 cmd->data[3] = tag & 0x1ff;
824 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
825
826 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
827 }
828
829 static void build_inv_all(struct iommu_cmd *cmd)
830 {
831 memset(cmd, 0, sizeof(*cmd));
832 CMD_SET_TYPE(cmd, CMD_INV_ALL);
833 }
834
835 /*
836 * Writes the command to the IOMMUs command buffer and informs the
837 * hardware about the new command.
838 */
839 static int iommu_queue_command_sync(struct amd_iommu *iommu,
840 struct iommu_cmd *cmd,
841 bool sync)
842 {
843 u32 left, tail, head, next_tail;
844 unsigned long flags;
845
846 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
847
848 again:
849 spin_lock_irqsave(&iommu->lock, flags);
850
851 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
852 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
853 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
854 left = (head - next_tail) % iommu->cmd_buf_size;
855
856 if (left <= 2) {
857 struct iommu_cmd sync_cmd;
858 volatile u64 sem = 0;
859 int ret;
860
861 build_completion_wait(&sync_cmd, (u64)&sem);
862 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
863
864 spin_unlock_irqrestore(&iommu->lock, flags);
865
866 if ((ret = wait_on_sem(&sem)) != 0)
867 return ret;
868
869 goto again;
870 }
871
872 copy_cmd_to_buffer(iommu, cmd, tail);
873
874 /* We need to sync now to make sure all commands are processed */
875 iommu->need_sync = sync;
876
877 spin_unlock_irqrestore(&iommu->lock, flags);
878
879 return 0;
880 }
881
882 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
883 {
884 return iommu_queue_command_sync(iommu, cmd, true);
885 }
886
887 /*
888 * This function queues a completion wait command into the command
889 * buffer of an IOMMU
890 */
891 static int iommu_completion_wait(struct amd_iommu *iommu)
892 {
893 struct iommu_cmd cmd;
894 volatile u64 sem = 0;
895 int ret;
896
897 if (!iommu->need_sync)
898 return 0;
899
900 build_completion_wait(&cmd, (u64)&sem);
901
902 ret = iommu_queue_command_sync(iommu, &cmd, false);
903 if (ret)
904 return ret;
905
906 return wait_on_sem(&sem);
907 }
908
909 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
910 {
911 struct iommu_cmd cmd;
912
913 build_inv_dte(&cmd, devid);
914
915 return iommu_queue_command(iommu, &cmd);
916 }
917
918 static void iommu_flush_dte_all(struct amd_iommu *iommu)
919 {
920 u32 devid;
921
922 for (devid = 0; devid <= 0xffff; ++devid)
923 iommu_flush_dte(iommu, devid);
924
925 iommu_completion_wait(iommu);
926 }
927
928 /*
929 * This function uses heavy locking and may disable irqs for some time. But
930 * this is no issue because it is only called during resume.
931 */
932 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
933 {
934 u32 dom_id;
935
936 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
937 struct iommu_cmd cmd;
938 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
939 dom_id, 1);
940 iommu_queue_command(iommu, &cmd);
941 }
942
943 iommu_completion_wait(iommu);
944 }
945
946 static void iommu_flush_all(struct amd_iommu *iommu)
947 {
948 struct iommu_cmd cmd;
949
950 build_inv_all(&cmd);
951
952 iommu_queue_command(iommu, &cmd);
953 iommu_completion_wait(iommu);
954 }
955
956 void iommu_flush_all_caches(struct amd_iommu *iommu)
957 {
958 if (iommu_feature(iommu, FEATURE_IA)) {
959 iommu_flush_all(iommu);
960 } else {
961 iommu_flush_dte_all(iommu);
962 iommu_flush_tlb_all(iommu);
963 }
964 }
965
966 /*
967 * Command send function for flushing on-device TLB
968 */
969 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
970 u64 address, size_t size)
971 {
972 struct amd_iommu *iommu;
973 struct iommu_cmd cmd;
974 int qdep;
975
976 qdep = dev_data->ats.qdep;
977 iommu = amd_iommu_rlookup_table[dev_data->devid];
978
979 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
980
981 return iommu_queue_command(iommu, &cmd);
982 }
983
984 /*
985 * Command send function for invalidating a device table entry
986 */
987 static int device_flush_dte(struct iommu_dev_data *dev_data)
988 {
989 struct amd_iommu *iommu;
990 int ret;
991
992 iommu = amd_iommu_rlookup_table[dev_data->devid];
993
994 ret = iommu_flush_dte(iommu, dev_data->devid);
995 if (ret)
996 return ret;
997
998 if (dev_data->ats.enabled)
999 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1000
1001 return ret;
1002 }
1003
1004 /*
1005 * TLB invalidation function which is called from the mapping functions.
1006 * It invalidates a single PTE if the range to flush is within a single
1007 * page. Otherwise it flushes the whole TLB of the IOMMU.
1008 */
1009 static void __domain_flush_pages(struct protection_domain *domain,
1010 u64 address, size_t size, int pde)
1011 {
1012 struct iommu_dev_data *dev_data;
1013 struct iommu_cmd cmd;
1014 int ret = 0, i;
1015
1016 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1017
1018 for (i = 0; i < amd_iommus_present; ++i) {
1019 if (!domain->dev_iommu[i])
1020 continue;
1021
1022 /*
1023 * Devices of this domain are behind this IOMMU
1024 * We need a TLB flush
1025 */
1026 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1027 }
1028
1029 list_for_each_entry(dev_data, &domain->dev_list, list) {
1030
1031 if (!dev_data->ats.enabled)
1032 continue;
1033
1034 ret |= device_flush_iotlb(dev_data, address, size);
1035 }
1036
1037 WARN_ON(ret);
1038 }
1039
1040 static void domain_flush_pages(struct protection_domain *domain,
1041 u64 address, size_t size)
1042 {
1043 __domain_flush_pages(domain, address, size, 0);
1044 }
1045
1046 /* Flush the whole IO/TLB for a given protection domain */
1047 static void domain_flush_tlb(struct protection_domain *domain)
1048 {
1049 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1050 }
1051
1052 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1053 static void domain_flush_tlb_pde(struct protection_domain *domain)
1054 {
1055 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1056 }
1057
1058 static void domain_flush_complete(struct protection_domain *domain)
1059 {
1060 int i;
1061
1062 for (i = 0; i < amd_iommus_present; ++i) {
1063 if (!domain->dev_iommu[i])
1064 continue;
1065
1066 /*
1067 * Devices of this domain are behind this IOMMU
1068 * We need to wait for completion of all commands.
1069 */
1070 iommu_completion_wait(amd_iommus[i]);
1071 }
1072 }
1073
1074
1075 /*
1076 * This function flushes the DTEs for all devices in domain
1077 */
1078 static void domain_flush_devices(struct protection_domain *domain)
1079 {
1080 struct iommu_dev_data *dev_data;
1081
1082 list_for_each_entry(dev_data, &domain->dev_list, list)
1083 device_flush_dte(dev_data);
1084 }
1085
1086 /****************************************************************************
1087 *
1088 * The functions below are used the create the page table mappings for
1089 * unity mapped regions.
1090 *
1091 ****************************************************************************/
1092
1093 /*
1094 * This function is used to add another level to an IO page table. Adding
1095 * another level increases the size of the address space by 9 bits to a size up
1096 * to 64 bits.
1097 */
1098 static bool increase_address_space(struct protection_domain *domain,
1099 gfp_t gfp)
1100 {
1101 u64 *pte;
1102
1103 if (domain->mode == PAGE_MODE_6_LEVEL)
1104 /* address space already 64 bit large */
1105 return false;
1106
1107 pte = (void *)get_zeroed_page(gfp);
1108 if (!pte)
1109 return false;
1110
1111 *pte = PM_LEVEL_PDE(domain->mode,
1112 virt_to_phys(domain->pt_root));
1113 domain->pt_root = pte;
1114 domain->mode += 1;
1115 domain->updated = true;
1116
1117 return true;
1118 }
1119
1120 static u64 *alloc_pte(struct protection_domain *domain,
1121 unsigned long address,
1122 unsigned long page_size,
1123 u64 **pte_page,
1124 gfp_t gfp)
1125 {
1126 int level, end_lvl;
1127 u64 *pte, *page;
1128
1129 BUG_ON(!is_power_of_2(page_size));
1130
1131 while (address > PM_LEVEL_SIZE(domain->mode))
1132 increase_address_space(domain, gfp);
1133
1134 level = domain->mode - 1;
1135 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1136 address = PAGE_SIZE_ALIGN(address, page_size);
1137 end_lvl = PAGE_SIZE_LEVEL(page_size);
1138
1139 while (level > end_lvl) {
1140 if (!IOMMU_PTE_PRESENT(*pte)) {
1141 page = (u64 *)get_zeroed_page(gfp);
1142 if (!page)
1143 return NULL;
1144 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1145 }
1146
1147 /* No level skipping support yet */
1148 if (PM_PTE_LEVEL(*pte) != level)
1149 return NULL;
1150
1151 level -= 1;
1152
1153 pte = IOMMU_PTE_PAGE(*pte);
1154
1155 if (pte_page && level == end_lvl)
1156 *pte_page = pte;
1157
1158 pte = &pte[PM_LEVEL_INDEX(level, address)];
1159 }
1160
1161 return pte;
1162 }
1163
1164 /*
1165 * This function checks if there is a PTE for a given dma address. If
1166 * there is one, it returns the pointer to it.
1167 */
1168 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1169 {
1170 int level;
1171 u64 *pte;
1172
1173 if (address > PM_LEVEL_SIZE(domain->mode))
1174 return NULL;
1175
1176 level = domain->mode - 1;
1177 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1178
1179 while (level > 0) {
1180
1181 /* Not Present */
1182 if (!IOMMU_PTE_PRESENT(*pte))
1183 return NULL;
1184
1185 /* Large PTE */
1186 if (PM_PTE_LEVEL(*pte) == 0x07) {
1187 unsigned long pte_mask, __pte;
1188
1189 /*
1190 * If we have a series of large PTEs, make
1191 * sure to return a pointer to the first one.
1192 */
1193 pte_mask = PTE_PAGE_SIZE(*pte);
1194 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1195 __pte = ((unsigned long)pte) & pte_mask;
1196
1197 return (u64 *)__pte;
1198 }
1199
1200 /* No level skipping support yet */
1201 if (PM_PTE_LEVEL(*pte) != level)
1202 return NULL;
1203
1204 level -= 1;
1205
1206 /* Walk to the next level */
1207 pte = IOMMU_PTE_PAGE(*pte);
1208 pte = &pte[PM_LEVEL_INDEX(level, address)];
1209 }
1210
1211 return pte;
1212 }
1213
1214 /*
1215 * Generic mapping functions. It maps a physical address into a DMA
1216 * address space. It allocates the page table pages if necessary.
1217 * In the future it can be extended to a generic mapping function
1218 * supporting all features of AMD IOMMU page tables like level skipping
1219 * and full 64 bit address spaces.
1220 */
1221 static int iommu_map_page(struct protection_domain *dom,
1222 unsigned long bus_addr,
1223 unsigned long phys_addr,
1224 int prot,
1225 unsigned long page_size)
1226 {
1227 u64 __pte, *pte;
1228 int i, count;
1229
1230 if (!(prot & IOMMU_PROT_MASK))
1231 return -EINVAL;
1232
1233 bus_addr = PAGE_ALIGN(bus_addr);
1234 phys_addr = PAGE_ALIGN(phys_addr);
1235 count = PAGE_SIZE_PTE_COUNT(page_size);
1236 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1237
1238 for (i = 0; i < count; ++i)
1239 if (IOMMU_PTE_PRESENT(pte[i]))
1240 return -EBUSY;
1241
1242 if (page_size > PAGE_SIZE) {
1243 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1244 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1245 } else
1246 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1247
1248 if (prot & IOMMU_PROT_IR)
1249 __pte |= IOMMU_PTE_IR;
1250 if (prot & IOMMU_PROT_IW)
1251 __pte |= IOMMU_PTE_IW;
1252
1253 for (i = 0; i < count; ++i)
1254 pte[i] = __pte;
1255
1256 update_domain(dom);
1257
1258 return 0;
1259 }
1260
1261 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1262 unsigned long bus_addr,
1263 unsigned long page_size)
1264 {
1265 unsigned long long unmap_size, unmapped;
1266 u64 *pte;
1267
1268 BUG_ON(!is_power_of_2(page_size));
1269
1270 unmapped = 0;
1271
1272 while (unmapped < page_size) {
1273
1274 pte = fetch_pte(dom, bus_addr);
1275
1276 if (!pte) {
1277 /*
1278 * No PTE for this address
1279 * move forward in 4kb steps
1280 */
1281 unmap_size = PAGE_SIZE;
1282 } else if (PM_PTE_LEVEL(*pte) == 0) {
1283 /* 4kb PTE found for this address */
1284 unmap_size = PAGE_SIZE;
1285 *pte = 0ULL;
1286 } else {
1287 int count, i;
1288
1289 /* Large PTE found which maps this address */
1290 unmap_size = PTE_PAGE_SIZE(*pte);
1291 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1292 for (i = 0; i < count; i++)
1293 pte[i] = 0ULL;
1294 }
1295
1296 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1297 unmapped += unmap_size;
1298 }
1299
1300 BUG_ON(!is_power_of_2(unmapped));
1301
1302 return unmapped;
1303 }
1304
1305 /*
1306 * This function checks if a specific unity mapping entry is needed for
1307 * this specific IOMMU.
1308 */
1309 static int iommu_for_unity_map(struct amd_iommu *iommu,
1310 struct unity_map_entry *entry)
1311 {
1312 u16 bdf, i;
1313
1314 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1315 bdf = amd_iommu_alias_table[i];
1316 if (amd_iommu_rlookup_table[bdf] == iommu)
1317 return 1;
1318 }
1319
1320 return 0;
1321 }
1322
1323 /*
1324 * This function actually applies the mapping to the page table of the
1325 * dma_ops domain.
1326 */
1327 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1328 struct unity_map_entry *e)
1329 {
1330 u64 addr;
1331 int ret;
1332
1333 for (addr = e->address_start; addr < e->address_end;
1334 addr += PAGE_SIZE) {
1335 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1336 PAGE_SIZE);
1337 if (ret)
1338 return ret;
1339 /*
1340 * if unity mapping is in aperture range mark the page
1341 * as allocated in the aperture
1342 */
1343 if (addr < dma_dom->aperture_size)
1344 __set_bit(addr >> PAGE_SHIFT,
1345 dma_dom->aperture[0]->bitmap);
1346 }
1347
1348 return 0;
1349 }
1350
1351 /*
1352 * Init the unity mappings for a specific IOMMU in the system
1353 *
1354 * Basically iterates over all unity mapping entries and applies them to
1355 * the default domain DMA of that IOMMU if necessary.
1356 */
1357 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1358 {
1359 struct unity_map_entry *entry;
1360 int ret;
1361
1362 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1363 if (!iommu_for_unity_map(iommu, entry))
1364 continue;
1365 ret = dma_ops_unity_map(iommu->default_dom, entry);
1366 if (ret)
1367 return ret;
1368 }
1369
1370 return 0;
1371 }
1372
1373 /*
1374 * Inits the unity mappings required for a specific device
1375 */
1376 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1377 u16 devid)
1378 {
1379 struct unity_map_entry *e;
1380 int ret;
1381
1382 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1383 if (!(devid >= e->devid_start && devid <= e->devid_end))
1384 continue;
1385 ret = dma_ops_unity_map(dma_dom, e);
1386 if (ret)
1387 return ret;
1388 }
1389
1390 return 0;
1391 }
1392
1393 /****************************************************************************
1394 *
1395 * The next functions belong to the address allocator for the dma_ops
1396 * interface functions. They work like the allocators in the other IOMMU
1397 * drivers. Its basically a bitmap which marks the allocated pages in
1398 * the aperture. Maybe it could be enhanced in the future to a more
1399 * efficient allocator.
1400 *
1401 ****************************************************************************/
1402
1403 /*
1404 * The address allocator core functions.
1405 *
1406 * called with domain->lock held
1407 */
1408
1409 /*
1410 * Used to reserve address ranges in the aperture (e.g. for exclusion
1411 * ranges.
1412 */
1413 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1414 unsigned long start_page,
1415 unsigned int pages)
1416 {
1417 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1418
1419 if (start_page + pages > last_page)
1420 pages = last_page - start_page;
1421
1422 for (i = start_page; i < start_page + pages; ++i) {
1423 int index = i / APERTURE_RANGE_PAGES;
1424 int page = i % APERTURE_RANGE_PAGES;
1425 __set_bit(page, dom->aperture[index]->bitmap);
1426 }
1427 }
1428
1429 /*
1430 * This function is used to add a new aperture range to an existing
1431 * aperture in case of dma_ops domain allocation or address allocation
1432 * failure.
1433 */
1434 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1435 bool populate, gfp_t gfp)
1436 {
1437 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1438 struct amd_iommu *iommu;
1439 unsigned long i, old_size;
1440
1441 #ifdef CONFIG_IOMMU_STRESS
1442 populate = false;
1443 #endif
1444
1445 if (index >= APERTURE_MAX_RANGES)
1446 return -ENOMEM;
1447
1448 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1449 if (!dma_dom->aperture[index])
1450 return -ENOMEM;
1451
1452 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1453 if (!dma_dom->aperture[index]->bitmap)
1454 goto out_free;
1455
1456 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1457
1458 if (populate) {
1459 unsigned long address = dma_dom->aperture_size;
1460 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1461 u64 *pte, *pte_page;
1462
1463 for (i = 0; i < num_ptes; ++i) {
1464 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1465 &pte_page, gfp);
1466 if (!pte)
1467 goto out_free;
1468
1469 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1470
1471 address += APERTURE_RANGE_SIZE / 64;
1472 }
1473 }
1474
1475 old_size = dma_dom->aperture_size;
1476 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1477
1478 /* Reserve address range used for MSI messages */
1479 if (old_size < MSI_ADDR_BASE_LO &&
1480 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1481 unsigned long spage;
1482 int pages;
1483
1484 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1485 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1486
1487 dma_ops_reserve_addresses(dma_dom, spage, pages);
1488 }
1489
1490 /* Initialize the exclusion range if necessary */
1491 for_each_iommu(iommu) {
1492 if (iommu->exclusion_start &&
1493 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1494 && iommu->exclusion_start < dma_dom->aperture_size) {
1495 unsigned long startpage;
1496 int pages = iommu_num_pages(iommu->exclusion_start,
1497 iommu->exclusion_length,
1498 PAGE_SIZE);
1499 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1500 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1501 }
1502 }
1503
1504 /*
1505 * Check for areas already mapped as present in the new aperture
1506 * range and mark those pages as reserved in the allocator. Such
1507 * mappings may already exist as a result of requested unity
1508 * mappings for devices.
1509 */
1510 for (i = dma_dom->aperture[index]->offset;
1511 i < dma_dom->aperture_size;
1512 i += PAGE_SIZE) {
1513 u64 *pte = fetch_pte(&dma_dom->domain, i);
1514 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1515 continue;
1516
1517 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1518 }
1519
1520 update_domain(&dma_dom->domain);
1521
1522 return 0;
1523
1524 out_free:
1525 update_domain(&dma_dom->domain);
1526
1527 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1528
1529 kfree(dma_dom->aperture[index]);
1530 dma_dom->aperture[index] = NULL;
1531
1532 return -ENOMEM;
1533 }
1534
1535 static unsigned long dma_ops_area_alloc(struct device *dev,
1536 struct dma_ops_domain *dom,
1537 unsigned int pages,
1538 unsigned long align_mask,
1539 u64 dma_mask,
1540 unsigned long start)
1541 {
1542 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1543 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1544 int i = start >> APERTURE_RANGE_SHIFT;
1545 unsigned long boundary_size;
1546 unsigned long address = -1;
1547 unsigned long limit;
1548
1549 next_bit >>= PAGE_SHIFT;
1550
1551 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1552 PAGE_SIZE) >> PAGE_SHIFT;
1553
1554 for (;i < max_index; ++i) {
1555 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1556
1557 if (dom->aperture[i]->offset >= dma_mask)
1558 break;
1559
1560 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1561 dma_mask >> PAGE_SHIFT);
1562
1563 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1564 limit, next_bit, pages, 0,
1565 boundary_size, align_mask);
1566 if (address != -1) {
1567 address = dom->aperture[i]->offset +
1568 (address << PAGE_SHIFT);
1569 dom->next_address = address + (pages << PAGE_SHIFT);
1570 break;
1571 }
1572
1573 next_bit = 0;
1574 }
1575
1576 return address;
1577 }
1578
1579 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1580 struct dma_ops_domain *dom,
1581 unsigned int pages,
1582 unsigned long align_mask,
1583 u64 dma_mask)
1584 {
1585 unsigned long address;
1586
1587 #ifdef CONFIG_IOMMU_STRESS
1588 dom->next_address = 0;
1589 dom->need_flush = true;
1590 #endif
1591
1592 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1593 dma_mask, dom->next_address);
1594
1595 if (address == -1) {
1596 dom->next_address = 0;
1597 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1598 dma_mask, 0);
1599 dom->need_flush = true;
1600 }
1601
1602 if (unlikely(address == -1))
1603 address = DMA_ERROR_CODE;
1604
1605 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1606
1607 return address;
1608 }
1609
1610 /*
1611 * The address free function.
1612 *
1613 * called with domain->lock held
1614 */
1615 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1616 unsigned long address,
1617 unsigned int pages)
1618 {
1619 unsigned i = address >> APERTURE_RANGE_SHIFT;
1620 struct aperture_range *range = dom->aperture[i];
1621
1622 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1623
1624 #ifdef CONFIG_IOMMU_STRESS
1625 if (i < 4)
1626 return;
1627 #endif
1628
1629 if (address >= dom->next_address)
1630 dom->need_flush = true;
1631
1632 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1633
1634 bitmap_clear(range->bitmap, address, pages);
1635
1636 }
1637
1638 /****************************************************************************
1639 *
1640 * The next functions belong to the domain allocation. A domain is
1641 * allocated for every IOMMU as the default domain. If device isolation
1642 * is enabled, every device get its own domain. The most important thing
1643 * about domains is the page table mapping the DMA address space they
1644 * contain.
1645 *
1646 ****************************************************************************/
1647
1648 /*
1649 * This function adds a protection domain to the global protection domain list
1650 */
1651 static void add_domain_to_list(struct protection_domain *domain)
1652 {
1653 unsigned long flags;
1654
1655 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1656 list_add(&domain->list, &amd_iommu_pd_list);
1657 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1658 }
1659
1660 /*
1661 * This function removes a protection domain to the global
1662 * protection domain list
1663 */
1664 static void del_domain_from_list(struct protection_domain *domain)
1665 {
1666 unsigned long flags;
1667
1668 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1669 list_del(&domain->list);
1670 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1671 }
1672
1673 static u16 domain_id_alloc(void)
1674 {
1675 unsigned long flags;
1676 int id;
1677
1678 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1679 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1680 BUG_ON(id == 0);
1681 if (id > 0 && id < MAX_DOMAIN_ID)
1682 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1683 else
1684 id = 0;
1685 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1686
1687 return id;
1688 }
1689
1690 static void domain_id_free(int id)
1691 {
1692 unsigned long flags;
1693
1694 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1695 if (id > 0 && id < MAX_DOMAIN_ID)
1696 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1697 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1698 }
1699
1700 static void free_pagetable(struct protection_domain *domain)
1701 {
1702 int i, j;
1703 u64 *p1, *p2, *p3;
1704
1705 p1 = domain->pt_root;
1706
1707 if (!p1)
1708 return;
1709
1710 for (i = 0; i < 512; ++i) {
1711 if (!IOMMU_PTE_PRESENT(p1[i]))
1712 continue;
1713
1714 p2 = IOMMU_PTE_PAGE(p1[i]);
1715 for (j = 0; j < 512; ++j) {
1716 if (!IOMMU_PTE_PRESENT(p2[j]))
1717 continue;
1718 p3 = IOMMU_PTE_PAGE(p2[j]);
1719 free_page((unsigned long)p3);
1720 }
1721
1722 free_page((unsigned long)p2);
1723 }
1724
1725 free_page((unsigned long)p1);
1726
1727 domain->pt_root = NULL;
1728 }
1729
1730 static void free_gcr3_tbl_level1(u64 *tbl)
1731 {
1732 u64 *ptr;
1733 int i;
1734
1735 for (i = 0; i < 512; ++i) {
1736 if (!(tbl[i] & GCR3_VALID))
1737 continue;
1738
1739 ptr = __va(tbl[i] & PAGE_MASK);
1740
1741 free_page((unsigned long)ptr);
1742 }
1743 }
1744
1745 static void free_gcr3_tbl_level2(u64 *tbl)
1746 {
1747 u64 *ptr;
1748 int i;
1749
1750 for (i = 0; i < 512; ++i) {
1751 if (!(tbl[i] & GCR3_VALID))
1752 continue;
1753
1754 ptr = __va(tbl[i] & PAGE_MASK);
1755
1756 free_gcr3_tbl_level1(ptr);
1757 }
1758 }
1759
1760 static void free_gcr3_table(struct protection_domain *domain)
1761 {
1762 if (domain->glx == 2)
1763 free_gcr3_tbl_level2(domain->gcr3_tbl);
1764 else if (domain->glx == 1)
1765 free_gcr3_tbl_level1(domain->gcr3_tbl);
1766 else if (domain->glx != 0)
1767 BUG();
1768
1769 free_page((unsigned long)domain->gcr3_tbl);
1770 }
1771
1772 /*
1773 * Free a domain, only used if something went wrong in the
1774 * allocation path and we need to free an already allocated page table
1775 */
1776 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1777 {
1778 int i;
1779
1780 if (!dom)
1781 return;
1782
1783 del_domain_from_list(&dom->domain);
1784
1785 free_pagetable(&dom->domain);
1786
1787 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1788 if (!dom->aperture[i])
1789 continue;
1790 free_page((unsigned long)dom->aperture[i]->bitmap);
1791 kfree(dom->aperture[i]);
1792 }
1793
1794 kfree(dom);
1795 }
1796
1797 /*
1798 * Allocates a new protection domain usable for the dma_ops functions.
1799 * It also initializes the page table and the address allocator data
1800 * structures required for the dma_ops interface
1801 */
1802 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1803 {
1804 struct dma_ops_domain *dma_dom;
1805
1806 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1807 if (!dma_dom)
1808 return NULL;
1809
1810 spin_lock_init(&dma_dom->domain.lock);
1811
1812 dma_dom->domain.id = domain_id_alloc();
1813 if (dma_dom->domain.id == 0)
1814 goto free_dma_dom;
1815 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1816 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1817 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1818 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1819 dma_dom->domain.priv = dma_dom;
1820 if (!dma_dom->domain.pt_root)
1821 goto free_dma_dom;
1822
1823 dma_dom->need_flush = false;
1824 dma_dom->target_dev = 0xffff;
1825
1826 add_domain_to_list(&dma_dom->domain);
1827
1828 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1829 goto free_dma_dom;
1830
1831 /*
1832 * mark the first page as allocated so we never return 0 as
1833 * a valid dma-address. So we can use 0 as error value
1834 */
1835 dma_dom->aperture[0]->bitmap[0] = 1;
1836 dma_dom->next_address = 0;
1837
1838
1839 return dma_dom;
1840
1841 free_dma_dom:
1842 dma_ops_domain_free(dma_dom);
1843
1844 return NULL;
1845 }
1846
1847 /*
1848 * little helper function to check whether a given protection domain is a
1849 * dma_ops domain
1850 */
1851 static bool dma_ops_domain(struct protection_domain *domain)
1852 {
1853 return domain->flags & PD_DMA_OPS_MASK;
1854 }
1855
1856 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1857 {
1858 u64 pte_root = 0;
1859 u64 flags = 0;
1860
1861 if (domain->mode != PAGE_MODE_NONE)
1862 pte_root = virt_to_phys(domain->pt_root);
1863
1864 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1865 << DEV_ENTRY_MODE_SHIFT;
1866 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1867
1868 flags = amd_iommu_dev_table[devid].data[1];
1869
1870 if (ats)
1871 flags |= DTE_FLAG_IOTLB;
1872
1873 if (domain->flags & PD_IOMMUV2_MASK) {
1874 u64 gcr3 = __pa(domain->gcr3_tbl);
1875 u64 glx = domain->glx;
1876 u64 tmp;
1877
1878 pte_root |= DTE_FLAG_GV;
1879 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1880
1881 /* First mask out possible old values for GCR3 table */
1882 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1883 flags &= ~tmp;
1884
1885 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1886 flags &= ~tmp;
1887
1888 /* Encode GCR3 table into DTE */
1889 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1890 pte_root |= tmp;
1891
1892 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1893 flags |= tmp;
1894
1895 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1896 flags |= tmp;
1897 }
1898
1899 flags &= ~(0xffffUL);
1900 flags |= domain->id;
1901
1902 amd_iommu_dev_table[devid].data[1] = flags;
1903 amd_iommu_dev_table[devid].data[0] = pte_root;
1904 }
1905
1906 static void clear_dte_entry(u16 devid)
1907 {
1908 /* remove entry from the device table seen by the hardware */
1909 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1910 amd_iommu_dev_table[devid].data[1] = 0;
1911
1912 amd_iommu_apply_erratum_63(devid);
1913 }
1914
1915 static void do_attach(struct iommu_dev_data *dev_data,
1916 struct protection_domain *domain)
1917 {
1918 struct amd_iommu *iommu;
1919 bool ats;
1920
1921 iommu = amd_iommu_rlookup_table[dev_data->devid];
1922 ats = dev_data->ats.enabled;
1923
1924 /* Update data structures */
1925 dev_data->domain = domain;
1926 list_add(&dev_data->list, &domain->dev_list);
1927 set_dte_entry(dev_data->devid, domain, ats);
1928
1929 /* Do reference counting */
1930 domain->dev_iommu[iommu->index] += 1;
1931 domain->dev_cnt += 1;
1932
1933 /* Flush the DTE entry */
1934 device_flush_dte(dev_data);
1935 }
1936
1937 static void do_detach(struct iommu_dev_data *dev_data)
1938 {
1939 struct amd_iommu *iommu;
1940
1941 iommu = amd_iommu_rlookup_table[dev_data->devid];
1942
1943 /* decrease reference counters */
1944 dev_data->domain->dev_iommu[iommu->index] -= 1;
1945 dev_data->domain->dev_cnt -= 1;
1946
1947 /* Update data structures */
1948 dev_data->domain = NULL;
1949 list_del(&dev_data->list);
1950 clear_dte_entry(dev_data->devid);
1951
1952 /* Flush the DTE entry */
1953 device_flush_dte(dev_data);
1954 }
1955
1956 /*
1957 * If a device is not yet associated with a domain, this function does
1958 * assigns it visible for the hardware
1959 */
1960 static int __attach_device(struct iommu_dev_data *dev_data,
1961 struct protection_domain *domain)
1962 {
1963 int ret;
1964
1965 /* lock domain */
1966 spin_lock(&domain->lock);
1967
1968 if (dev_data->alias_data != NULL) {
1969 struct iommu_dev_data *alias_data = dev_data->alias_data;
1970
1971 /* Some sanity checks */
1972 ret = -EBUSY;
1973 if (alias_data->domain != NULL &&
1974 alias_data->domain != domain)
1975 goto out_unlock;
1976
1977 if (dev_data->domain != NULL &&
1978 dev_data->domain != domain)
1979 goto out_unlock;
1980
1981 /* Do real assignment */
1982 if (alias_data->domain == NULL)
1983 do_attach(alias_data, domain);
1984
1985 atomic_inc(&alias_data->bind);
1986 }
1987
1988 if (dev_data->domain == NULL)
1989 do_attach(dev_data, domain);
1990
1991 atomic_inc(&dev_data->bind);
1992
1993 ret = 0;
1994
1995 out_unlock:
1996
1997 /* ready */
1998 spin_unlock(&domain->lock);
1999
2000 return ret;
2001 }
2002
2003
2004 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2005 {
2006 pci_disable_ats(pdev);
2007 pci_disable_pri(pdev);
2008 pci_disable_pasid(pdev);
2009 }
2010
2011 /* FIXME: Change generic reset-function to do the same */
2012 static int pri_reset_while_enabled(struct pci_dev *pdev)
2013 {
2014 u16 control;
2015 int pos;
2016
2017 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2018 if (!pos)
2019 return -EINVAL;
2020
2021 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2022 control |= PCI_PRI_CTRL_RESET;
2023 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2024
2025 return 0;
2026 }
2027
2028 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2029 {
2030 bool reset_enable;
2031 int reqs, ret;
2032
2033 /* FIXME: Hardcode number of outstanding requests for now */
2034 reqs = 32;
2035 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2036 reqs = 1;
2037 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2038
2039 /* Only allow access to user-accessible pages */
2040 ret = pci_enable_pasid(pdev, 0);
2041 if (ret)
2042 goto out_err;
2043
2044 /* First reset the PRI state of the device */
2045 ret = pci_reset_pri(pdev);
2046 if (ret)
2047 goto out_err;
2048
2049 /* Enable PRI */
2050 ret = pci_enable_pri(pdev, reqs);
2051 if (ret)
2052 goto out_err;
2053
2054 if (reset_enable) {
2055 ret = pri_reset_while_enabled(pdev);
2056 if (ret)
2057 goto out_err;
2058 }
2059
2060 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2061 if (ret)
2062 goto out_err;
2063
2064 return 0;
2065
2066 out_err:
2067 pci_disable_pri(pdev);
2068 pci_disable_pasid(pdev);
2069
2070 return ret;
2071 }
2072
2073 /* FIXME: Move this to PCI code */
2074 #define PCI_PRI_TLP_OFF (1 << 15)
2075
2076 bool pci_pri_tlp_required(struct pci_dev *pdev)
2077 {
2078 u16 status;
2079 int pos;
2080
2081 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2082 if (!pos)
2083 return false;
2084
2085 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2086
2087 return (status & PCI_PRI_TLP_OFF) ? true : false;
2088 }
2089
2090 /*
2091 * If a device is not yet associated with a domain, this function does
2092 * assigns it visible for the hardware
2093 */
2094 static int attach_device(struct device *dev,
2095 struct protection_domain *domain)
2096 {
2097 struct pci_dev *pdev = to_pci_dev(dev);
2098 struct iommu_dev_data *dev_data;
2099 unsigned long flags;
2100 int ret;
2101
2102 dev_data = get_dev_data(dev);
2103
2104 if (domain->flags & PD_IOMMUV2_MASK) {
2105 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2106 return -EINVAL;
2107
2108 if (pdev_iommuv2_enable(pdev) != 0)
2109 return -EINVAL;
2110
2111 dev_data->ats.enabled = true;
2112 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2113 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2114 } else if (amd_iommu_iotlb_sup &&
2115 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2116 dev_data->ats.enabled = true;
2117 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2118 }
2119
2120 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2121 ret = __attach_device(dev_data, domain);
2122 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2123
2124 /*
2125 * We might boot into a crash-kernel here. The crashed kernel
2126 * left the caches in the IOMMU dirty. So we have to flush
2127 * here to evict all dirty stuff.
2128 */
2129 domain_flush_tlb_pde(domain);
2130
2131 return ret;
2132 }
2133
2134 /*
2135 * Removes a device from a protection domain (unlocked)
2136 */
2137 static void __detach_device(struct iommu_dev_data *dev_data)
2138 {
2139 struct protection_domain *domain;
2140 unsigned long flags;
2141
2142 BUG_ON(!dev_data->domain);
2143
2144 domain = dev_data->domain;
2145
2146 spin_lock_irqsave(&domain->lock, flags);
2147
2148 if (dev_data->alias_data != NULL) {
2149 struct iommu_dev_data *alias_data = dev_data->alias_data;
2150
2151 if (atomic_dec_and_test(&alias_data->bind))
2152 do_detach(alias_data);
2153 }
2154
2155 if (atomic_dec_and_test(&dev_data->bind))
2156 do_detach(dev_data);
2157
2158 spin_unlock_irqrestore(&domain->lock, flags);
2159
2160 /*
2161 * If we run in passthrough mode the device must be assigned to the
2162 * passthrough domain if it is detached from any other domain.
2163 * Make sure we can deassign from the pt_domain itself.
2164 */
2165 if (dev_data->passthrough &&
2166 (dev_data->domain == NULL && domain != pt_domain))
2167 __attach_device(dev_data, pt_domain);
2168 }
2169
2170 /*
2171 * Removes a device from a protection domain (with devtable_lock held)
2172 */
2173 static void detach_device(struct device *dev)
2174 {
2175 struct protection_domain *domain;
2176 struct iommu_dev_data *dev_data;
2177 unsigned long flags;
2178
2179 dev_data = get_dev_data(dev);
2180 domain = dev_data->domain;
2181
2182 /* lock device table */
2183 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2184 __detach_device(dev_data);
2185 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2186
2187 if (domain->flags & PD_IOMMUV2_MASK)
2188 pdev_iommuv2_disable(to_pci_dev(dev));
2189 else if (dev_data->ats.enabled)
2190 pci_disable_ats(to_pci_dev(dev));
2191
2192 dev_data->ats.enabled = false;
2193 }
2194
2195 /*
2196 * Find out the protection domain structure for a given PCI device. This
2197 * will give us the pointer to the page table root for example.
2198 */
2199 static struct protection_domain *domain_for_device(struct device *dev)
2200 {
2201 struct iommu_dev_data *dev_data;
2202 struct protection_domain *dom = NULL;
2203 unsigned long flags;
2204
2205 dev_data = get_dev_data(dev);
2206
2207 if (dev_data->domain)
2208 return dev_data->domain;
2209
2210 if (dev_data->alias_data != NULL) {
2211 struct iommu_dev_data *alias_data = dev_data->alias_data;
2212
2213 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2214 if (alias_data->domain != NULL) {
2215 __attach_device(dev_data, alias_data->domain);
2216 dom = alias_data->domain;
2217 }
2218 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2219 }
2220
2221 return dom;
2222 }
2223
2224 static int device_change_notifier(struct notifier_block *nb,
2225 unsigned long action, void *data)
2226 {
2227 struct dma_ops_domain *dma_domain;
2228 struct protection_domain *domain;
2229 struct iommu_dev_data *dev_data;
2230 struct device *dev = data;
2231 struct amd_iommu *iommu;
2232 unsigned long flags;
2233 u16 devid;
2234
2235 if (!check_device(dev))
2236 return 0;
2237
2238 devid = get_device_id(dev);
2239 iommu = amd_iommu_rlookup_table[devid];
2240 dev_data = get_dev_data(dev);
2241
2242 switch (action) {
2243 case BUS_NOTIFY_UNBOUND_DRIVER:
2244
2245 domain = domain_for_device(dev);
2246
2247 if (!domain)
2248 goto out;
2249 if (dev_data->passthrough)
2250 break;
2251 detach_device(dev);
2252 break;
2253 case BUS_NOTIFY_ADD_DEVICE:
2254
2255 iommu_init_device(dev);
2256
2257 /*
2258 * dev_data is still NULL and
2259 * got initialized in iommu_init_device
2260 */
2261 dev_data = get_dev_data(dev);
2262
2263 if (iommu_pass_through || dev_data->iommu_v2) {
2264 dev_data->passthrough = true;
2265 attach_device(dev, pt_domain);
2266 break;
2267 }
2268
2269 domain = domain_for_device(dev);
2270
2271 /* allocate a protection domain if a device is added */
2272 dma_domain = find_protection_domain(devid);
2273 if (dma_domain)
2274 goto out;
2275 dma_domain = dma_ops_domain_alloc();
2276 if (!dma_domain)
2277 goto out;
2278 dma_domain->target_dev = devid;
2279
2280 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2281 list_add_tail(&dma_domain->list, &iommu_pd_list);
2282 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2283
2284 dev_data = get_dev_data(dev);
2285
2286 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2287
2288 break;
2289 case BUS_NOTIFY_DEL_DEVICE:
2290
2291 iommu_uninit_device(dev);
2292
2293 default:
2294 goto out;
2295 }
2296
2297 iommu_completion_wait(iommu);
2298
2299 out:
2300 return 0;
2301 }
2302
2303 static struct notifier_block device_nb = {
2304 .notifier_call = device_change_notifier,
2305 };
2306
2307 void amd_iommu_init_notifier(void)
2308 {
2309 bus_register_notifier(&pci_bus_type, &device_nb);
2310 }
2311
2312 /*****************************************************************************
2313 *
2314 * The next functions belong to the dma_ops mapping/unmapping code.
2315 *
2316 *****************************************************************************/
2317
2318 /*
2319 * In the dma_ops path we only have the struct device. This function
2320 * finds the corresponding IOMMU, the protection domain and the
2321 * requestor id for a given device.
2322 * If the device is not yet associated with a domain this is also done
2323 * in this function.
2324 */
2325 static struct protection_domain *get_domain(struct device *dev)
2326 {
2327 struct protection_domain *domain;
2328 struct dma_ops_domain *dma_dom;
2329 u16 devid = get_device_id(dev);
2330
2331 if (!check_device(dev))
2332 return ERR_PTR(-EINVAL);
2333
2334 domain = domain_for_device(dev);
2335 if (domain != NULL && !dma_ops_domain(domain))
2336 return ERR_PTR(-EBUSY);
2337
2338 if (domain != NULL)
2339 return domain;
2340
2341 /* Device not bount yet - bind it */
2342 dma_dom = find_protection_domain(devid);
2343 if (!dma_dom)
2344 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2345 attach_device(dev, &dma_dom->domain);
2346 DUMP_printk("Using protection domain %d for device %s\n",
2347 dma_dom->domain.id, dev_name(dev));
2348
2349 return &dma_dom->domain;
2350 }
2351
2352 static void update_device_table(struct protection_domain *domain)
2353 {
2354 struct iommu_dev_data *dev_data;
2355
2356 list_for_each_entry(dev_data, &domain->dev_list, list)
2357 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2358 }
2359
2360 static void update_domain(struct protection_domain *domain)
2361 {
2362 if (!domain->updated)
2363 return;
2364
2365 update_device_table(domain);
2366
2367 domain_flush_devices(domain);
2368 domain_flush_tlb_pde(domain);
2369
2370 domain->updated = false;
2371 }
2372
2373 /*
2374 * This function fetches the PTE for a given address in the aperture
2375 */
2376 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2377 unsigned long address)
2378 {
2379 struct aperture_range *aperture;
2380 u64 *pte, *pte_page;
2381
2382 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2383 if (!aperture)
2384 return NULL;
2385
2386 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2387 if (!pte) {
2388 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2389 GFP_ATOMIC);
2390 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2391 } else
2392 pte += PM_LEVEL_INDEX(0, address);
2393
2394 update_domain(&dom->domain);
2395
2396 return pte;
2397 }
2398
2399 /*
2400 * This is the generic map function. It maps one 4kb page at paddr to
2401 * the given address in the DMA address space for the domain.
2402 */
2403 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2404 unsigned long address,
2405 phys_addr_t paddr,
2406 int direction)
2407 {
2408 u64 *pte, __pte;
2409
2410 WARN_ON(address > dom->aperture_size);
2411
2412 paddr &= PAGE_MASK;
2413
2414 pte = dma_ops_get_pte(dom, address);
2415 if (!pte)
2416 return DMA_ERROR_CODE;
2417
2418 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2419
2420 if (direction == DMA_TO_DEVICE)
2421 __pte |= IOMMU_PTE_IR;
2422 else if (direction == DMA_FROM_DEVICE)
2423 __pte |= IOMMU_PTE_IW;
2424 else if (direction == DMA_BIDIRECTIONAL)
2425 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2426
2427 WARN_ON(*pte);
2428
2429 *pte = __pte;
2430
2431 return (dma_addr_t)address;
2432 }
2433
2434 /*
2435 * The generic unmapping function for on page in the DMA address space.
2436 */
2437 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2438 unsigned long address)
2439 {
2440 struct aperture_range *aperture;
2441 u64 *pte;
2442
2443 if (address >= dom->aperture_size)
2444 return;
2445
2446 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2447 if (!aperture)
2448 return;
2449
2450 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2451 if (!pte)
2452 return;
2453
2454 pte += PM_LEVEL_INDEX(0, address);
2455
2456 WARN_ON(!*pte);
2457
2458 *pte = 0ULL;
2459 }
2460
2461 /*
2462 * This function contains common code for mapping of a physically
2463 * contiguous memory region into DMA address space. It is used by all
2464 * mapping functions provided with this IOMMU driver.
2465 * Must be called with the domain lock held.
2466 */
2467 static dma_addr_t __map_single(struct device *dev,
2468 struct dma_ops_domain *dma_dom,
2469 phys_addr_t paddr,
2470 size_t size,
2471 int dir,
2472 bool align,
2473 u64 dma_mask)
2474 {
2475 dma_addr_t offset = paddr & ~PAGE_MASK;
2476 dma_addr_t address, start, ret;
2477 unsigned int pages;
2478 unsigned long align_mask = 0;
2479 int i;
2480
2481 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2482 paddr &= PAGE_MASK;
2483
2484 INC_STATS_COUNTER(total_map_requests);
2485
2486 if (pages > 1)
2487 INC_STATS_COUNTER(cross_page);
2488
2489 if (align)
2490 align_mask = (1UL << get_order(size)) - 1;
2491
2492 retry:
2493 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2494 dma_mask);
2495 if (unlikely(address == DMA_ERROR_CODE)) {
2496 /*
2497 * setting next_address here will let the address
2498 * allocator only scan the new allocated range in the
2499 * first run. This is a small optimization.
2500 */
2501 dma_dom->next_address = dma_dom->aperture_size;
2502
2503 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2504 goto out;
2505
2506 /*
2507 * aperture was successfully enlarged by 128 MB, try
2508 * allocation again
2509 */
2510 goto retry;
2511 }
2512
2513 start = address;
2514 for (i = 0; i < pages; ++i) {
2515 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2516 if (ret == DMA_ERROR_CODE)
2517 goto out_unmap;
2518
2519 paddr += PAGE_SIZE;
2520 start += PAGE_SIZE;
2521 }
2522 address += offset;
2523
2524 ADD_STATS_COUNTER(alloced_io_mem, size);
2525
2526 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2527 domain_flush_tlb(&dma_dom->domain);
2528 dma_dom->need_flush = false;
2529 } else if (unlikely(amd_iommu_np_cache))
2530 domain_flush_pages(&dma_dom->domain, address, size);
2531
2532 out:
2533 return address;
2534
2535 out_unmap:
2536
2537 for (--i; i >= 0; --i) {
2538 start -= PAGE_SIZE;
2539 dma_ops_domain_unmap(dma_dom, start);
2540 }
2541
2542 dma_ops_free_addresses(dma_dom, address, pages);
2543
2544 return DMA_ERROR_CODE;
2545 }
2546
2547 /*
2548 * Does the reverse of the __map_single function. Must be called with
2549 * the domain lock held too
2550 */
2551 static void __unmap_single(struct dma_ops_domain *dma_dom,
2552 dma_addr_t dma_addr,
2553 size_t size,
2554 int dir)
2555 {
2556 dma_addr_t flush_addr;
2557 dma_addr_t i, start;
2558 unsigned int pages;
2559
2560 if ((dma_addr == DMA_ERROR_CODE) ||
2561 (dma_addr + size > dma_dom->aperture_size))
2562 return;
2563
2564 flush_addr = dma_addr;
2565 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2566 dma_addr &= PAGE_MASK;
2567 start = dma_addr;
2568
2569 for (i = 0; i < pages; ++i) {
2570 dma_ops_domain_unmap(dma_dom, start);
2571 start += PAGE_SIZE;
2572 }
2573
2574 SUB_STATS_COUNTER(alloced_io_mem, size);
2575
2576 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2577
2578 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2579 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2580 dma_dom->need_flush = false;
2581 }
2582 }
2583
2584 /*
2585 * The exported map_single function for dma_ops.
2586 */
2587 static dma_addr_t map_page(struct device *dev, struct page *page,
2588 unsigned long offset, size_t size,
2589 enum dma_data_direction dir,
2590 struct dma_attrs *attrs)
2591 {
2592 unsigned long flags;
2593 struct protection_domain *domain;
2594 dma_addr_t addr;
2595 u64 dma_mask;
2596 phys_addr_t paddr = page_to_phys(page) + offset;
2597
2598 INC_STATS_COUNTER(cnt_map_single);
2599
2600 domain = get_domain(dev);
2601 if (PTR_ERR(domain) == -EINVAL)
2602 return (dma_addr_t)paddr;
2603 else if (IS_ERR(domain))
2604 return DMA_ERROR_CODE;
2605
2606 dma_mask = *dev->dma_mask;
2607
2608 spin_lock_irqsave(&domain->lock, flags);
2609
2610 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2611 dma_mask);
2612 if (addr == DMA_ERROR_CODE)
2613 goto out;
2614
2615 domain_flush_complete(domain);
2616
2617 out:
2618 spin_unlock_irqrestore(&domain->lock, flags);
2619
2620 return addr;
2621 }
2622
2623 /*
2624 * The exported unmap_single function for dma_ops.
2625 */
2626 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2627 enum dma_data_direction dir, struct dma_attrs *attrs)
2628 {
2629 unsigned long flags;
2630 struct protection_domain *domain;
2631
2632 INC_STATS_COUNTER(cnt_unmap_single);
2633
2634 domain = get_domain(dev);
2635 if (IS_ERR(domain))
2636 return;
2637
2638 spin_lock_irqsave(&domain->lock, flags);
2639
2640 __unmap_single(domain->priv, dma_addr, size, dir);
2641
2642 domain_flush_complete(domain);
2643
2644 spin_unlock_irqrestore(&domain->lock, flags);
2645 }
2646
2647 /*
2648 * This is a special map_sg function which is used if we should map a
2649 * device which is not handled by an AMD IOMMU in the system.
2650 */
2651 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2652 int nelems, int dir)
2653 {
2654 struct scatterlist *s;
2655 int i;
2656
2657 for_each_sg(sglist, s, nelems, i) {
2658 s->dma_address = (dma_addr_t)sg_phys(s);
2659 s->dma_length = s->length;
2660 }
2661
2662 return nelems;
2663 }
2664
2665 /*
2666 * The exported map_sg function for dma_ops (handles scatter-gather
2667 * lists).
2668 */
2669 static int map_sg(struct device *dev, struct scatterlist *sglist,
2670 int nelems, enum dma_data_direction dir,
2671 struct dma_attrs *attrs)
2672 {
2673 unsigned long flags;
2674 struct protection_domain *domain;
2675 int i;
2676 struct scatterlist *s;
2677 phys_addr_t paddr;
2678 int mapped_elems = 0;
2679 u64 dma_mask;
2680
2681 INC_STATS_COUNTER(cnt_map_sg);
2682
2683 domain = get_domain(dev);
2684 if (PTR_ERR(domain) == -EINVAL)
2685 return map_sg_no_iommu(dev, sglist, nelems, dir);
2686 else if (IS_ERR(domain))
2687 return 0;
2688
2689 dma_mask = *dev->dma_mask;
2690
2691 spin_lock_irqsave(&domain->lock, flags);
2692
2693 for_each_sg(sglist, s, nelems, i) {
2694 paddr = sg_phys(s);
2695
2696 s->dma_address = __map_single(dev, domain->priv,
2697 paddr, s->length, dir, false,
2698 dma_mask);
2699
2700 if (s->dma_address) {
2701 s->dma_length = s->length;
2702 mapped_elems++;
2703 } else
2704 goto unmap;
2705 }
2706
2707 domain_flush_complete(domain);
2708
2709 out:
2710 spin_unlock_irqrestore(&domain->lock, flags);
2711
2712 return mapped_elems;
2713 unmap:
2714 for_each_sg(sglist, s, mapped_elems, i) {
2715 if (s->dma_address)
2716 __unmap_single(domain->priv, s->dma_address,
2717 s->dma_length, dir);
2718 s->dma_address = s->dma_length = 0;
2719 }
2720
2721 mapped_elems = 0;
2722
2723 goto out;
2724 }
2725
2726 /*
2727 * The exported map_sg function for dma_ops (handles scatter-gather
2728 * lists).
2729 */
2730 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2731 int nelems, enum dma_data_direction dir,
2732 struct dma_attrs *attrs)
2733 {
2734 unsigned long flags;
2735 struct protection_domain *domain;
2736 struct scatterlist *s;
2737 int i;
2738
2739 INC_STATS_COUNTER(cnt_unmap_sg);
2740
2741 domain = get_domain(dev);
2742 if (IS_ERR(domain))
2743 return;
2744
2745 spin_lock_irqsave(&domain->lock, flags);
2746
2747 for_each_sg(sglist, s, nelems, i) {
2748 __unmap_single(domain->priv, s->dma_address,
2749 s->dma_length, dir);
2750 s->dma_address = s->dma_length = 0;
2751 }
2752
2753 domain_flush_complete(domain);
2754
2755 spin_unlock_irqrestore(&domain->lock, flags);
2756 }
2757
2758 /*
2759 * The exported alloc_coherent function for dma_ops.
2760 */
2761 static void *alloc_coherent(struct device *dev, size_t size,
2762 dma_addr_t *dma_addr, gfp_t flag,
2763 struct dma_attrs *attrs)
2764 {
2765 unsigned long flags;
2766 void *virt_addr;
2767 struct protection_domain *domain;
2768 phys_addr_t paddr;
2769 u64 dma_mask = dev->coherent_dma_mask;
2770
2771 INC_STATS_COUNTER(cnt_alloc_coherent);
2772
2773 domain = get_domain(dev);
2774 if (PTR_ERR(domain) == -EINVAL) {
2775 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2776 *dma_addr = __pa(virt_addr);
2777 return virt_addr;
2778 } else if (IS_ERR(domain))
2779 return NULL;
2780
2781 dma_mask = dev->coherent_dma_mask;
2782 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2783 flag |= __GFP_ZERO;
2784
2785 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2786 if (!virt_addr)
2787 return NULL;
2788
2789 paddr = virt_to_phys(virt_addr);
2790
2791 if (!dma_mask)
2792 dma_mask = *dev->dma_mask;
2793
2794 spin_lock_irqsave(&domain->lock, flags);
2795
2796 *dma_addr = __map_single(dev, domain->priv, paddr,
2797 size, DMA_BIDIRECTIONAL, true, dma_mask);
2798
2799 if (*dma_addr == DMA_ERROR_CODE) {
2800 spin_unlock_irqrestore(&domain->lock, flags);
2801 goto out_free;
2802 }
2803
2804 domain_flush_complete(domain);
2805
2806 spin_unlock_irqrestore(&domain->lock, flags);
2807
2808 return virt_addr;
2809
2810 out_free:
2811
2812 free_pages((unsigned long)virt_addr, get_order(size));
2813
2814 return NULL;
2815 }
2816
2817 /*
2818 * The exported free_coherent function for dma_ops.
2819 */
2820 static void free_coherent(struct device *dev, size_t size,
2821 void *virt_addr, dma_addr_t dma_addr,
2822 struct dma_attrs *attrs)
2823 {
2824 unsigned long flags;
2825 struct protection_domain *domain;
2826
2827 INC_STATS_COUNTER(cnt_free_coherent);
2828
2829 domain = get_domain(dev);
2830 if (IS_ERR(domain))
2831 goto free_mem;
2832
2833 spin_lock_irqsave(&domain->lock, flags);
2834
2835 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2836
2837 domain_flush_complete(domain);
2838
2839 spin_unlock_irqrestore(&domain->lock, flags);
2840
2841 free_mem:
2842 free_pages((unsigned long)virt_addr, get_order(size));
2843 }
2844
2845 /*
2846 * This function is called by the DMA layer to find out if we can handle a
2847 * particular device. It is part of the dma_ops.
2848 */
2849 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2850 {
2851 return check_device(dev);
2852 }
2853
2854 /*
2855 * The function for pre-allocating protection domains.
2856 *
2857 * If the driver core informs the DMA layer if a driver grabs a device
2858 * we don't need to preallocate the protection domains anymore.
2859 * For now we have to.
2860 */
2861 static void __init prealloc_protection_domains(void)
2862 {
2863 struct iommu_dev_data *dev_data;
2864 struct dma_ops_domain *dma_dom;
2865 struct pci_dev *dev = NULL;
2866 u16 devid;
2867
2868 for_each_pci_dev(dev) {
2869
2870 /* Do we handle this device? */
2871 if (!check_device(&dev->dev))
2872 continue;
2873
2874 dev_data = get_dev_data(&dev->dev);
2875 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2876 /* Make sure passthrough domain is allocated */
2877 alloc_passthrough_domain();
2878 dev_data->passthrough = true;
2879 attach_device(&dev->dev, pt_domain);
2880 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2881 dev_name(&dev->dev));
2882 }
2883
2884 /* Is there already any domain for it? */
2885 if (domain_for_device(&dev->dev))
2886 continue;
2887
2888 devid = get_device_id(&dev->dev);
2889
2890 dma_dom = dma_ops_domain_alloc();
2891 if (!dma_dom)
2892 continue;
2893 init_unity_mappings_for_device(dma_dom, devid);
2894 dma_dom->target_dev = devid;
2895
2896 attach_device(&dev->dev, &dma_dom->domain);
2897
2898 list_add_tail(&dma_dom->list, &iommu_pd_list);
2899 }
2900 }
2901
2902 static struct dma_map_ops amd_iommu_dma_ops = {
2903 .alloc = alloc_coherent,
2904 .free = free_coherent,
2905 .map_page = map_page,
2906 .unmap_page = unmap_page,
2907 .map_sg = map_sg,
2908 .unmap_sg = unmap_sg,
2909 .dma_supported = amd_iommu_dma_supported,
2910 };
2911
2912 static unsigned device_dma_ops_init(void)
2913 {
2914 struct iommu_dev_data *dev_data;
2915 struct pci_dev *pdev = NULL;
2916 unsigned unhandled = 0;
2917
2918 for_each_pci_dev(pdev) {
2919 if (!check_device(&pdev->dev)) {
2920
2921 iommu_ignore_device(&pdev->dev);
2922
2923 unhandled += 1;
2924 continue;
2925 }
2926
2927 dev_data = get_dev_data(&pdev->dev);
2928
2929 if (!dev_data->passthrough)
2930 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2931 else
2932 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2933 }
2934
2935 return unhandled;
2936 }
2937
2938 /*
2939 * The function which clues the AMD IOMMU driver into dma_ops.
2940 */
2941
2942 void __init amd_iommu_init_api(void)
2943 {
2944 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2945 }
2946
2947 int __init amd_iommu_init_dma_ops(void)
2948 {
2949 struct amd_iommu *iommu;
2950 int ret, unhandled;
2951
2952 /*
2953 * first allocate a default protection domain for every IOMMU we
2954 * found in the system. Devices not assigned to any other
2955 * protection domain will be assigned to the default one.
2956 */
2957 for_each_iommu(iommu) {
2958 iommu->default_dom = dma_ops_domain_alloc();
2959 if (iommu->default_dom == NULL)
2960 return -ENOMEM;
2961 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2962 ret = iommu_init_unity_mappings(iommu);
2963 if (ret)
2964 goto free_domains;
2965 }
2966
2967 /*
2968 * Pre-allocate the protection domains for each device.
2969 */
2970 prealloc_protection_domains();
2971
2972 iommu_detected = 1;
2973 swiotlb = 0;
2974
2975 /* Make the driver finally visible to the drivers */
2976 unhandled = device_dma_ops_init();
2977 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2978 /* There are unhandled devices - initialize swiotlb for them */
2979 swiotlb = 1;
2980 }
2981
2982 amd_iommu_stats_init();
2983
2984 return 0;
2985
2986 free_domains:
2987
2988 for_each_iommu(iommu) {
2989 if (iommu->default_dom)
2990 dma_ops_domain_free(iommu->default_dom);
2991 }
2992
2993 return ret;
2994 }
2995
2996 /*****************************************************************************
2997 *
2998 * The following functions belong to the exported interface of AMD IOMMU
2999 *
3000 * This interface allows access to lower level functions of the IOMMU
3001 * like protection domain handling and assignement of devices to domains
3002 * which is not possible with the dma_ops interface.
3003 *
3004 *****************************************************************************/
3005
3006 static void cleanup_domain(struct protection_domain *domain)
3007 {
3008 struct iommu_dev_data *dev_data, *next;
3009 unsigned long flags;
3010
3011 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3012
3013 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3014 __detach_device(dev_data);
3015 atomic_set(&dev_data->bind, 0);
3016 }
3017
3018 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3019 }
3020
3021 static void protection_domain_free(struct protection_domain *domain)
3022 {
3023 if (!domain)
3024 return;
3025
3026 del_domain_from_list(domain);
3027
3028 if (domain->id)
3029 domain_id_free(domain->id);
3030
3031 kfree(domain);
3032 }
3033
3034 static struct protection_domain *protection_domain_alloc(void)
3035 {
3036 struct protection_domain *domain;
3037
3038 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3039 if (!domain)
3040 return NULL;
3041
3042 spin_lock_init(&domain->lock);
3043 mutex_init(&domain->api_lock);
3044 domain->id = domain_id_alloc();
3045 if (!domain->id)
3046 goto out_err;
3047 INIT_LIST_HEAD(&domain->dev_list);
3048
3049 add_domain_to_list(domain);
3050
3051 return domain;
3052
3053 out_err:
3054 kfree(domain);
3055
3056 return NULL;
3057 }
3058
3059 static int __init alloc_passthrough_domain(void)
3060 {
3061 if (pt_domain != NULL)
3062 return 0;
3063
3064 /* allocate passthrough domain */
3065 pt_domain = protection_domain_alloc();
3066 if (!pt_domain)
3067 return -ENOMEM;
3068
3069 pt_domain->mode = PAGE_MODE_NONE;
3070
3071 return 0;
3072 }
3073 static int amd_iommu_domain_init(struct iommu_domain *dom)
3074 {
3075 struct protection_domain *domain;
3076
3077 domain = protection_domain_alloc();
3078 if (!domain)
3079 goto out_free;
3080
3081 domain->mode = PAGE_MODE_3_LEVEL;
3082 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3083 if (!domain->pt_root)
3084 goto out_free;
3085
3086 domain->iommu_domain = dom;
3087
3088 dom->priv = domain;
3089
3090 return 0;
3091
3092 out_free:
3093 protection_domain_free(domain);
3094
3095 return -ENOMEM;
3096 }
3097
3098 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3099 {
3100 struct protection_domain *domain = dom->priv;
3101
3102 if (!domain)
3103 return;
3104
3105 if (domain->dev_cnt > 0)
3106 cleanup_domain(domain);
3107
3108 BUG_ON(domain->dev_cnt != 0);
3109
3110 if (domain->mode != PAGE_MODE_NONE)
3111 free_pagetable(domain);
3112
3113 if (domain->flags & PD_IOMMUV2_MASK)
3114 free_gcr3_table(domain);
3115
3116 protection_domain_free(domain);
3117
3118 dom->priv = NULL;
3119 }
3120
3121 static void amd_iommu_detach_device(struct iommu_domain *dom,
3122 struct device *dev)
3123 {
3124 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3125 struct amd_iommu *iommu;
3126 u16 devid;
3127
3128 if (!check_device(dev))
3129 return;
3130
3131 devid = get_device_id(dev);
3132
3133 if (dev_data->domain != NULL)
3134 detach_device(dev);
3135
3136 iommu = amd_iommu_rlookup_table[devid];
3137 if (!iommu)
3138 return;
3139
3140 iommu_completion_wait(iommu);
3141 }
3142
3143 static int amd_iommu_attach_device(struct iommu_domain *dom,
3144 struct device *dev)
3145 {
3146 struct protection_domain *domain = dom->priv;
3147 struct iommu_dev_data *dev_data;
3148 struct amd_iommu *iommu;
3149 int ret;
3150
3151 if (!check_device(dev))
3152 return -EINVAL;
3153
3154 dev_data = dev->archdata.iommu;
3155
3156 iommu = amd_iommu_rlookup_table[dev_data->devid];
3157 if (!iommu)
3158 return -EINVAL;
3159
3160 if (dev_data->domain)
3161 detach_device(dev);
3162
3163 ret = attach_device(dev, domain);
3164
3165 iommu_completion_wait(iommu);
3166
3167 return ret;
3168 }
3169
3170 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3171 phys_addr_t paddr, size_t page_size, int iommu_prot)
3172 {
3173 struct protection_domain *domain = dom->priv;
3174 int prot = 0;
3175 int ret;
3176
3177 if (domain->mode == PAGE_MODE_NONE)
3178 return -EINVAL;
3179
3180 if (iommu_prot & IOMMU_READ)
3181 prot |= IOMMU_PROT_IR;
3182 if (iommu_prot & IOMMU_WRITE)
3183 prot |= IOMMU_PROT_IW;
3184
3185 mutex_lock(&domain->api_lock);
3186 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3187 mutex_unlock(&domain->api_lock);
3188
3189 return ret;
3190 }
3191
3192 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3193 size_t page_size)
3194 {
3195 struct protection_domain *domain = dom->priv;
3196 size_t unmap_size;
3197
3198 if (domain->mode == PAGE_MODE_NONE)
3199 return -EINVAL;
3200
3201 mutex_lock(&domain->api_lock);
3202 unmap_size = iommu_unmap_page(domain, iova, page_size);
3203 mutex_unlock(&domain->api_lock);
3204
3205 domain_flush_tlb_pde(domain);
3206
3207 return unmap_size;
3208 }
3209
3210 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3211 unsigned long iova)
3212 {
3213 struct protection_domain *domain = dom->priv;
3214 unsigned long offset_mask;
3215 phys_addr_t paddr;
3216 u64 *pte, __pte;
3217
3218 if (domain->mode == PAGE_MODE_NONE)
3219 return iova;
3220
3221 pte = fetch_pte(domain, iova);
3222
3223 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3224 return 0;
3225
3226 if (PM_PTE_LEVEL(*pte) == 0)
3227 offset_mask = PAGE_SIZE - 1;
3228 else
3229 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3230
3231 __pte = *pte & PM_ADDR_MASK;
3232 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3233
3234 return paddr;
3235 }
3236
3237 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3238 unsigned long cap)
3239 {
3240 switch (cap) {
3241 case IOMMU_CAP_CACHE_COHERENCY:
3242 return 1;
3243 }
3244
3245 return 0;
3246 }
3247
3248 static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
3249 {
3250 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3251 struct pci_dev *pdev = to_pci_dev(dev);
3252 u16 devid;
3253
3254 if (!dev_data)
3255 return -ENODEV;
3256
3257 if (pdev->is_virtfn || !iommu_group_mf)
3258 devid = dev_data->devid;
3259 else
3260 devid = calc_devid(pdev->bus->number,
3261 PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
3262
3263 *groupid = amd_iommu_alias_table[devid];
3264
3265 return 0;
3266 }
3267
3268 static struct iommu_ops amd_iommu_ops = {
3269 .domain_init = amd_iommu_domain_init,
3270 .domain_destroy = amd_iommu_domain_destroy,
3271 .attach_dev = amd_iommu_attach_device,
3272 .detach_dev = amd_iommu_detach_device,
3273 .map = amd_iommu_map,
3274 .unmap = amd_iommu_unmap,
3275 .iova_to_phys = amd_iommu_iova_to_phys,
3276 .domain_has_cap = amd_iommu_domain_has_cap,
3277 .device_group = amd_iommu_device_group,
3278 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3279 };
3280
3281 /*****************************************************************************
3282 *
3283 * The next functions do a basic initialization of IOMMU for pass through
3284 * mode
3285 *
3286 * In passthrough mode the IOMMU is initialized and enabled but not used for
3287 * DMA-API translation.
3288 *
3289 *****************************************************************************/
3290
3291 int __init amd_iommu_init_passthrough(void)
3292 {
3293 struct iommu_dev_data *dev_data;
3294 struct pci_dev *dev = NULL;
3295 struct amd_iommu *iommu;
3296 u16 devid;
3297 int ret;
3298
3299 ret = alloc_passthrough_domain();
3300 if (ret)
3301 return ret;
3302
3303 for_each_pci_dev(dev) {
3304 if (!check_device(&dev->dev))
3305 continue;
3306
3307 dev_data = get_dev_data(&dev->dev);
3308 dev_data->passthrough = true;
3309
3310 devid = get_device_id(&dev->dev);
3311
3312 iommu = amd_iommu_rlookup_table[devid];
3313 if (!iommu)
3314 continue;
3315
3316 attach_device(&dev->dev, pt_domain);
3317 }
3318
3319 amd_iommu_stats_init();
3320
3321 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3322
3323 return 0;
3324 }
3325
3326 /* IOMMUv2 specific functions */
3327 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3328 {
3329 return atomic_notifier_chain_register(&ppr_notifier, nb);
3330 }
3331 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3332
3333 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3334 {
3335 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3336 }
3337 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3338
3339 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3340 {
3341 struct protection_domain *domain = dom->priv;
3342 unsigned long flags;
3343
3344 spin_lock_irqsave(&domain->lock, flags);
3345
3346 /* Update data structure */
3347 domain->mode = PAGE_MODE_NONE;
3348 domain->updated = true;
3349
3350 /* Make changes visible to IOMMUs */
3351 update_domain(domain);
3352
3353 /* Page-table is not visible to IOMMU anymore, so free it */
3354 free_pagetable(domain);
3355
3356 spin_unlock_irqrestore(&domain->lock, flags);
3357 }
3358 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3359
3360 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3361 {
3362 struct protection_domain *domain = dom->priv;
3363 unsigned long flags;
3364 int levels, ret;
3365
3366 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3367 return -EINVAL;
3368
3369 /* Number of GCR3 table levels required */
3370 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3371 levels += 1;
3372
3373 if (levels > amd_iommu_max_glx_val)
3374 return -EINVAL;
3375
3376 spin_lock_irqsave(&domain->lock, flags);
3377
3378 /*
3379 * Save us all sanity checks whether devices already in the
3380 * domain support IOMMUv2. Just force that the domain has no
3381 * devices attached when it is switched into IOMMUv2 mode.
3382 */
3383 ret = -EBUSY;
3384 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3385 goto out;
3386
3387 ret = -ENOMEM;
3388 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3389 if (domain->gcr3_tbl == NULL)
3390 goto out;
3391
3392 domain->glx = levels;
3393 domain->flags |= PD_IOMMUV2_MASK;
3394 domain->updated = true;
3395
3396 update_domain(domain);
3397
3398 ret = 0;
3399
3400 out:
3401 spin_unlock_irqrestore(&domain->lock, flags);
3402
3403 return ret;
3404 }
3405 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3406
3407 static int __flush_pasid(struct protection_domain *domain, int pasid,
3408 u64 address, bool size)
3409 {
3410 struct iommu_dev_data *dev_data;
3411 struct iommu_cmd cmd;
3412 int i, ret;
3413
3414 if (!(domain->flags & PD_IOMMUV2_MASK))
3415 return -EINVAL;
3416
3417 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3418
3419 /*
3420 * IOMMU TLB needs to be flushed before Device TLB to
3421 * prevent device TLB refill from IOMMU TLB
3422 */
3423 for (i = 0; i < amd_iommus_present; ++i) {
3424 if (domain->dev_iommu[i] == 0)
3425 continue;
3426
3427 ret = iommu_queue_command(amd_iommus[i], &cmd);
3428 if (ret != 0)
3429 goto out;
3430 }
3431
3432 /* Wait until IOMMU TLB flushes are complete */
3433 domain_flush_complete(domain);
3434
3435 /* Now flush device TLBs */
3436 list_for_each_entry(dev_data, &domain->dev_list, list) {
3437 struct amd_iommu *iommu;
3438 int qdep;
3439
3440 BUG_ON(!dev_data->ats.enabled);
3441
3442 qdep = dev_data->ats.qdep;
3443 iommu = amd_iommu_rlookup_table[dev_data->devid];
3444
3445 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3446 qdep, address, size);
3447
3448 ret = iommu_queue_command(iommu, &cmd);
3449 if (ret != 0)
3450 goto out;
3451 }
3452
3453 /* Wait until all device TLBs are flushed */
3454 domain_flush_complete(domain);
3455
3456 ret = 0;
3457
3458 out:
3459
3460 return ret;
3461 }
3462
3463 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3464 u64 address)
3465 {
3466 INC_STATS_COUNTER(invalidate_iotlb);
3467
3468 return __flush_pasid(domain, pasid, address, false);
3469 }
3470
3471 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3472 u64 address)
3473 {
3474 struct protection_domain *domain = dom->priv;
3475 unsigned long flags;
3476 int ret;
3477
3478 spin_lock_irqsave(&domain->lock, flags);
3479 ret = __amd_iommu_flush_page(domain, pasid, address);
3480 spin_unlock_irqrestore(&domain->lock, flags);
3481
3482 return ret;
3483 }
3484 EXPORT_SYMBOL(amd_iommu_flush_page);
3485
3486 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3487 {
3488 INC_STATS_COUNTER(invalidate_iotlb_all);
3489
3490 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3491 true);
3492 }
3493
3494 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3495 {
3496 struct protection_domain *domain = dom->priv;
3497 unsigned long flags;
3498 int ret;
3499
3500 spin_lock_irqsave(&domain->lock, flags);
3501 ret = __amd_iommu_flush_tlb(domain, pasid);
3502 spin_unlock_irqrestore(&domain->lock, flags);
3503
3504 return ret;
3505 }
3506 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3507
3508 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3509 {
3510 int index;
3511 u64 *pte;
3512
3513 while (true) {
3514
3515 index = (pasid >> (9 * level)) & 0x1ff;
3516 pte = &root[index];
3517
3518 if (level == 0)
3519 break;
3520
3521 if (!(*pte & GCR3_VALID)) {
3522 if (!alloc)
3523 return NULL;
3524
3525 root = (void *)get_zeroed_page(GFP_ATOMIC);
3526 if (root == NULL)
3527 return NULL;
3528
3529 *pte = __pa(root) | GCR3_VALID;
3530 }
3531
3532 root = __va(*pte & PAGE_MASK);
3533
3534 level -= 1;
3535 }
3536
3537 return pte;
3538 }
3539
3540 static int __set_gcr3(struct protection_domain *domain, int pasid,
3541 unsigned long cr3)
3542 {
3543 u64 *pte;
3544
3545 if (domain->mode != PAGE_MODE_NONE)
3546 return -EINVAL;
3547
3548 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3549 if (pte == NULL)
3550 return -ENOMEM;
3551
3552 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3553
3554 return __amd_iommu_flush_tlb(domain, pasid);
3555 }
3556
3557 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3558 {
3559 u64 *pte;
3560
3561 if (domain->mode != PAGE_MODE_NONE)
3562 return -EINVAL;
3563
3564 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3565 if (pte == NULL)
3566 return 0;
3567
3568 *pte = 0;
3569
3570 return __amd_iommu_flush_tlb(domain, pasid);
3571 }
3572
3573 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3574 unsigned long cr3)
3575 {
3576 struct protection_domain *domain = dom->priv;
3577 unsigned long flags;
3578 int ret;
3579
3580 spin_lock_irqsave(&domain->lock, flags);
3581 ret = __set_gcr3(domain, pasid, cr3);
3582 spin_unlock_irqrestore(&domain->lock, flags);
3583
3584 return ret;
3585 }
3586 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3587
3588 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3589 {
3590 struct protection_domain *domain = dom->priv;
3591 unsigned long flags;
3592 int ret;
3593
3594 spin_lock_irqsave(&domain->lock, flags);
3595 ret = __clear_gcr3(domain, pasid);
3596 spin_unlock_irqrestore(&domain->lock, flags);
3597
3598 return ret;
3599 }
3600 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3601
3602 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3603 int status, int tag)
3604 {
3605 struct iommu_dev_data *dev_data;
3606 struct amd_iommu *iommu;
3607 struct iommu_cmd cmd;
3608
3609 INC_STATS_COUNTER(complete_ppr);
3610
3611 dev_data = get_dev_data(&pdev->dev);
3612 iommu = amd_iommu_rlookup_table[dev_data->devid];
3613
3614 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3615 tag, dev_data->pri_tlp);
3616
3617 return iommu_queue_command(iommu, &cmd);
3618 }
3619 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3620
3621 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3622 {
3623 struct protection_domain *domain;
3624
3625 domain = get_domain(&pdev->dev);
3626 if (IS_ERR(domain))
3627 return NULL;
3628
3629 /* Only return IOMMUv2 domains */
3630 if (!(domain->flags & PD_IOMMUV2_MASK))
3631 return NULL;
3632
3633 return domain->iommu_domain;
3634 }
3635 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3636
3637 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3638 {
3639 struct iommu_dev_data *dev_data;
3640
3641 if (!amd_iommu_v2_supported())
3642 return;
3643
3644 dev_data = get_dev_data(&pdev->dev);
3645 dev_data->errata |= (1 << erratum);
3646 }
3647 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3648
3649 int amd_iommu_device_info(struct pci_dev *pdev,
3650 struct amd_iommu_device_info *info)
3651 {
3652 int max_pasids;
3653 int pos;
3654
3655 if (pdev == NULL || info == NULL)
3656 return -EINVAL;
3657
3658 if (!amd_iommu_v2_supported())
3659 return -EINVAL;
3660
3661 memset(info, 0, sizeof(*info));
3662
3663 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3664 if (pos)
3665 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3666
3667 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3668 if (pos)
3669 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3670
3671 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3672 if (pos) {
3673 int features;
3674
3675 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3676 max_pasids = min(max_pasids, (1 << 20));
3677
3678 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3679 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3680
3681 features = pci_pasid_features(pdev);
3682 if (features & PCI_PASID_CAP_EXEC)
3683 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3684 if (features & PCI_PASID_CAP_PRIV)
3685 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3686 }
3687
3688 return 0;
3689 }
3690 EXPORT_SYMBOL(amd_iommu_device_info);