md/bitmap: disable bitmap_resize for file-backed bitmaps.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpio / gpio-msm-v2.c
1 /* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
15 * 02110-1301, USA.
16 *
17 */
18 #define pr_fmt(fmt) "%s: " fmt, __func__
19
20 #include <linux/bitmap.h>
21 #include <linux/bitops.h>
22 #include <linux/gpio.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irqchip/chained_irq.h>
27 #include <linux/irq.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/spinlock.h>
31
32 #include <mach/msm_gpiomux.h>
33 #include <mach/msm_iomap.h>
34
35 /* Bits of interest in the GPIO_IN_OUT register.
36 */
37 enum {
38 GPIO_IN = 0,
39 GPIO_OUT = 1
40 };
41
42 /* Bits of interest in the GPIO_INTR_STATUS register.
43 */
44 enum {
45 INTR_STATUS = 0,
46 };
47
48 /* Bits of interest in the GPIO_CFG register.
49 */
50 enum {
51 GPIO_OE = 9,
52 };
53
54 /* Bits of interest in the GPIO_INTR_CFG register.
55 * When a GPIO triggers, two separate decisions are made, controlled
56 * by two separate flags.
57 *
58 * - First, INTR_RAW_STATUS_EN controls whether or not the GPIO_INTR_STATUS
59 * register for that GPIO will be updated to reflect the triggering of that
60 * gpio. If this bit is 0, this register will not be updated.
61 * - Second, INTR_ENABLE controls whether an interrupt is triggered.
62 *
63 * If INTR_ENABLE is set and INTR_RAW_STATUS_EN is NOT set, an interrupt
64 * can be triggered but the status register will not reflect it.
65 */
66 enum {
67 INTR_ENABLE = 0,
68 INTR_POL_CTL = 1,
69 INTR_DECT_CTL = 2,
70 INTR_RAW_STATUS_EN = 3,
71 };
72
73 /* Codes of interest in GPIO_INTR_CFG_SU.
74 */
75 enum {
76 TARGET_PROC_SCORPION = 4,
77 TARGET_PROC_NONE = 7,
78 };
79
80
81 #define GPIO_INTR_CFG_SU(gpio) (MSM_TLMM_BASE + 0x0400 + (0x04 * (gpio)))
82 #define GPIO_CONFIG(gpio) (MSM_TLMM_BASE + 0x1000 + (0x10 * (gpio)))
83 #define GPIO_IN_OUT(gpio) (MSM_TLMM_BASE + 0x1004 + (0x10 * (gpio)))
84 #define GPIO_INTR_CFG(gpio) (MSM_TLMM_BASE + 0x1008 + (0x10 * (gpio)))
85 #define GPIO_INTR_STATUS(gpio) (MSM_TLMM_BASE + 0x100c + (0x10 * (gpio)))
86
87 /**
88 * struct msm_gpio_dev: the MSM8660 SoC GPIO device structure
89 *
90 * @enabled_irqs: a bitmap used to optimize the summary-irq handler. By
91 * keeping track of which gpios are unmasked as irq sources, we avoid
92 * having to do readl calls on hundreds of iomapped registers each time
93 * the summary interrupt fires in order to locate the active interrupts.
94 *
95 * @wake_irqs: a bitmap for tracking which interrupt lines are enabled
96 * as wakeup sources. When the device is suspended, interrupts which are
97 * not wakeup sources are disabled.
98 *
99 * @dual_edge_irqs: a bitmap used to track which irqs are configured
100 * as dual-edge, as this is not supported by the hardware and requires
101 * some special handling in the driver.
102 */
103 struct msm_gpio_dev {
104 struct gpio_chip gpio_chip;
105 DECLARE_BITMAP(enabled_irqs, NR_GPIO_IRQS);
106 DECLARE_BITMAP(wake_irqs, NR_GPIO_IRQS);
107 DECLARE_BITMAP(dual_edge_irqs, NR_GPIO_IRQS);
108 };
109
110 static DEFINE_SPINLOCK(tlmm_lock);
111
112 static inline struct msm_gpio_dev *to_msm_gpio_dev(struct gpio_chip *chip)
113 {
114 return container_of(chip, struct msm_gpio_dev, gpio_chip);
115 }
116
117 static inline void set_gpio_bits(unsigned n, void __iomem *reg)
118 {
119 writel(readl(reg) | n, reg);
120 }
121
122 static inline void clear_gpio_bits(unsigned n, void __iomem *reg)
123 {
124 writel(readl(reg) & ~n, reg);
125 }
126
127 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
128 {
129 return readl(GPIO_IN_OUT(offset)) & BIT(GPIO_IN);
130 }
131
132 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int val)
133 {
134 writel(val ? BIT(GPIO_OUT) : 0, GPIO_IN_OUT(offset));
135 }
136
137 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
138 {
139 unsigned long irq_flags;
140
141 spin_lock_irqsave(&tlmm_lock, irq_flags);
142 clear_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset));
143 spin_unlock_irqrestore(&tlmm_lock, irq_flags);
144 return 0;
145 }
146
147 static int msm_gpio_direction_output(struct gpio_chip *chip,
148 unsigned offset,
149 int val)
150 {
151 unsigned long irq_flags;
152
153 spin_lock_irqsave(&tlmm_lock, irq_flags);
154 msm_gpio_set(chip, offset, val);
155 set_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset));
156 spin_unlock_irqrestore(&tlmm_lock, irq_flags);
157 return 0;
158 }
159
160 static int msm_gpio_request(struct gpio_chip *chip, unsigned offset)
161 {
162 return msm_gpiomux_get(chip->base + offset);
163 }
164
165 static void msm_gpio_free(struct gpio_chip *chip, unsigned offset)
166 {
167 msm_gpiomux_put(chip->base + offset);
168 }
169
170 static int msm_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
171 {
172 return MSM_GPIO_TO_INT(chip->base + offset);
173 }
174
175 static inline int msm_irq_to_gpio(struct gpio_chip *chip, unsigned irq)
176 {
177 return irq - MSM_GPIO_TO_INT(chip->base);
178 }
179
180 static struct msm_gpio_dev msm_gpio = {
181 .gpio_chip = {
182 .base = 0,
183 .ngpio = NR_GPIO_IRQS,
184 .direction_input = msm_gpio_direction_input,
185 .direction_output = msm_gpio_direction_output,
186 .get = msm_gpio_get,
187 .set = msm_gpio_set,
188 .to_irq = msm_gpio_to_irq,
189 .request = msm_gpio_request,
190 .free = msm_gpio_free,
191 },
192 };
193
194 /* For dual-edge interrupts in software, since the hardware has no
195 * such support:
196 *
197 * At appropriate moments, this function may be called to flip the polarity
198 * settings of both-edge irq lines to try and catch the next edge.
199 *
200 * The attempt is considered successful if:
201 * - the status bit goes high, indicating that an edge was caught, or
202 * - the input value of the gpio doesn't change during the attempt.
203 * If the value changes twice during the process, that would cause the first
204 * test to fail but would force the second, as two opposite
205 * transitions would cause a detection no matter the polarity setting.
206 *
207 * The do-loop tries to sledge-hammer closed the timing hole between
208 * the initial value-read and the polarity-write - if the line value changes
209 * during that window, an interrupt is lost, the new polarity setting is
210 * incorrect, and the first success test will fail, causing a retry.
211 *
212 * Algorithm comes from Google's msmgpio driver, see mach-msm/gpio.c.
213 */
214 static void msm_gpio_update_dual_edge_pos(unsigned gpio)
215 {
216 int loop_limit = 100;
217 unsigned val, val2, intstat;
218
219 do {
220 val = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN);
221 if (val)
222 clear_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio));
223 else
224 set_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio));
225 val2 = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN);
226 intstat = readl(GPIO_INTR_STATUS(gpio)) & BIT(INTR_STATUS);
227 if (intstat || val == val2)
228 return;
229 } while (loop_limit-- > 0);
230 pr_err("dual-edge irq failed to stabilize, "
231 "interrupts dropped. %#08x != %#08x\n",
232 val, val2);
233 }
234
235 static void msm_gpio_irq_ack(struct irq_data *d)
236 {
237 int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
238
239 writel(BIT(INTR_STATUS), GPIO_INTR_STATUS(gpio));
240 if (test_bit(gpio, msm_gpio.dual_edge_irqs))
241 msm_gpio_update_dual_edge_pos(gpio);
242 }
243
244 static void msm_gpio_irq_mask(struct irq_data *d)
245 {
246 int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
247 unsigned long irq_flags;
248
249 spin_lock_irqsave(&tlmm_lock, irq_flags);
250 writel(TARGET_PROC_NONE, GPIO_INTR_CFG_SU(gpio));
251 clear_gpio_bits(BIT(INTR_RAW_STATUS_EN) | BIT(INTR_ENABLE), GPIO_INTR_CFG(gpio));
252 __clear_bit(gpio, msm_gpio.enabled_irqs);
253 spin_unlock_irqrestore(&tlmm_lock, irq_flags);
254 }
255
256 static void msm_gpio_irq_unmask(struct irq_data *d)
257 {
258 int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
259 unsigned long irq_flags;
260
261 spin_lock_irqsave(&tlmm_lock, irq_flags);
262 __set_bit(gpio, msm_gpio.enabled_irqs);
263 set_gpio_bits(BIT(INTR_RAW_STATUS_EN) | BIT(INTR_ENABLE), GPIO_INTR_CFG(gpio));
264 writel(TARGET_PROC_SCORPION, GPIO_INTR_CFG_SU(gpio));
265 spin_unlock_irqrestore(&tlmm_lock, irq_flags);
266 }
267
268 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int flow_type)
269 {
270 int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
271 unsigned long irq_flags;
272 uint32_t bits;
273
274 spin_lock_irqsave(&tlmm_lock, irq_flags);
275
276 bits = readl(GPIO_INTR_CFG(gpio));
277
278 if (flow_type & IRQ_TYPE_EDGE_BOTH) {
279 bits |= BIT(INTR_DECT_CTL);
280 __irq_set_handler_locked(d->irq, handle_edge_irq);
281 if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
282 __set_bit(gpio, msm_gpio.dual_edge_irqs);
283 else
284 __clear_bit(gpio, msm_gpio.dual_edge_irqs);
285 } else {
286 bits &= ~BIT(INTR_DECT_CTL);
287 __irq_set_handler_locked(d->irq, handle_level_irq);
288 __clear_bit(gpio, msm_gpio.dual_edge_irqs);
289 }
290
291 if (flow_type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_LEVEL_HIGH))
292 bits |= BIT(INTR_POL_CTL);
293 else
294 bits &= ~BIT(INTR_POL_CTL);
295
296 writel(bits, GPIO_INTR_CFG(gpio));
297
298 if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
299 msm_gpio_update_dual_edge_pos(gpio);
300
301 spin_unlock_irqrestore(&tlmm_lock, irq_flags);
302
303 return 0;
304 }
305
306 /*
307 * When the summary IRQ is raised, any number of GPIO lines may be high.
308 * It is the job of the summary handler to find all those GPIO lines
309 * which have been set as summary IRQ lines and which are triggered,
310 * and to call their interrupt handlers.
311 */
312 static void msm_summary_irq_handler(unsigned int irq, struct irq_desc *desc)
313 {
314 unsigned long i;
315 struct irq_chip *chip = irq_desc_get_chip(desc);
316
317 chained_irq_enter(chip, desc);
318
319 for_each_set_bit(i, msm_gpio.enabled_irqs, NR_GPIO_IRQS) {
320 if (readl(GPIO_INTR_STATUS(i)) & BIT(INTR_STATUS))
321 generic_handle_irq(msm_gpio_to_irq(&msm_gpio.gpio_chip,
322 i));
323 }
324
325 chained_irq_exit(chip, desc);
326 }
327
328 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
329 {
330 int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
331
332 if (on) {
333 if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
334 irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 1);
335 set_bit(gpio, msm_gpio.wake_irqs);
336 } else {
337 clear_bit(gpio, msm_gpio.wake_irqs);
338 if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
339 irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 0);
340 }
341
342 return 0;
343 }
344
345 static struct irq_chip msm_gpio_irq_chip = {
346 .name = "msmgpio",
347 .irq_mask = msm_gpio_irq_mask,
348 .irq_unmask = msm_gpio_irq_unmask,
349 .irq_ack = msm_gpio_irq_ack,
350 .irq_set_type = msm_gpio_irq_set_type,
351 .irq_set_wake = msm_gpio_irq_set_wake,
352 };
353
354 static int msm_gpio_probe(struct platform_device *dev)
355 {
356 int i, irq, ret;
357
358 bitmap_zero(msm_gpio.enabled_irqs, NR_GPIO_IRQS);
359 bitmap_zero(msm_gpio.wake_irqs, NR_GPIO_IRQS);
360 bitmap_zero(msm_gpio.dual_edge_irqs, NR_GPIO_IRQS);
361 msm_gpio.gpio_chip.label = dev->name;
362 ret = gpiochip_add(&msm_gpio.gpio_chip);
363 if (ret < 0)
364 return ret;
365
366 for (i = 0; i < msm_gpio.gpio_chip.ngpio; ++i) {
367 irq = msm_gpio_to_irq(&msm_gpio.gpio_chip, i);
368 irq_set_chip_and_handler(irq, &msm_gpio_irq_chip,
369 handle_level_irq);
370 set_irq_flags(irq, IRQF_VALID);
371 }
372
373 irq_set_chained_handler(TLMM_SCSS_SUMMARY_IRQ,
374 msm_summary_irq_handler);
375 return 0;
376 }
377
378 static int msm_gpio_remove(struct platform_device *dev)
379 {
380 int ret = gpiochip_remove(&msm_gpio.gpio_chip);
381
382 if (ret < 0)
383 return ret;
384
385 irq_set_handler(TLMM_SCSS_SUMMARY_IRQ, NULL);
386
387 return 0;
388 }
389
390 static struct platform_driver msm_gpio_driver = {
391 .probe = msm_gpio_probe,
392 .remove = msm_gpio_remove,
393 .driver = {
394 .name = "msmgpio",
395 .owner = THIS_MODULE,
396 },
397 };
398
399 static struct platform_device msm_device_gpio = {
400 .name = "msmgpio",
401 .id = -1,
402 };
403
404 static int __init msm_gpio_init(void)
405 {
406 int rc;
407
408 rc = platform_driver_register(&msm_gpio_driver);
409 if (!rc) {
410 rc = platform_device_register(&msm_device_gpio);
411 if (rc)
412 platform_driver_unregister(&msm_gpio_driver);
413 }
414
415 return rc;
416 }
417
418 static void __exit msm_gpio_exit(void)
419 {
420 platform_device_unregister(&msm_device_gpio);
421 platform_driver_unregister(&msm_gpio_driver);
422 }
423
424 postcore_initcall(msm_gpio_init);
425 module_exit(msm_gpio_exit);
426
427 MODULE_AUTHOR("Gregory Bean <gbean@codeaurora.org>");
428 MODULE_DESCRIPTION("Driver for Qualcomm MSM TLMMv2 SoC GPIOs");
429 MODULE_LICENSE("GPL v2");
430 MODULE_ALIAS("platform:msmgpio");