Merge tag 'devicetree-for-linus' of git://git.secretlab.ca/git/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / mm / c-r4k.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10 #include <linux/hardirq.h>
11 #include <linux/init.h>
12 #include <linux/highmem.h>
13 #include <linux/kernel.h>
14 #include <linux/linkage.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/bitops.h>
20
21 #include <asm/bcache.h>
22 #include <asm/bootinfo.h>
23 #include <asm/cache.h>
24 #include <asm/cacheops.h>
25 #include <asm/cpu.h>
26 #include <asm/cpu-features.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/r4kcache.h>
31 #include <asm/sections.h>
32 #include <asm/mmu_context.h>
33 #include <asm/war.h>
34 #include <asm/cacheflush.h> /* for run_uncached() */
35 #include <asm/traps.h>
36 #include <asm/dma-coherence.h>
37
38 /*
39 * Special Variant of smp_call_function for use by cache functions:
40 *
41 * o No return value
42 * o collapses to normal function call on UP kernels
43 * o collapses to normal function call on systems with a single shared
44 * primary cache.
45 * o doesn't disable interrupts on the local CPU
46 */
47 static inline void r4k_on_each_cpu(void (*func) (void *info), void *info)
48 {
49 preempt_disable();
50
51 #if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
52 smp_call_function(func, info, 1);
53 #endif
54 func(info);
55 preempt_enable();
56 }
57
58 #if defined(CONFIG_MIPS_CMP)
59 #define cpu_has_safe_index_cacheops 0
60 #else
61 #define cpu_has_safe_index_cacheops 1
62 #endif
63
64 /*
65 * Must die.
66 */
67 static unsigned long icache_size __read_mostly;
68 static unsigned long dcache_size __read_mostly;
69 static unsigned long scache_size __read_mostly;
70
71 /*
72 * Dummy cache handling routines for machines without boardcaches
73 */
74 static void cache_noop(void) {}
75
76 static struct bcache_ops no_sc_ops = {
77 .bc_enable = (void *)cache_noop,
78 .bc_disable = (void *)cache_noop,
79 .bc_wback_inv = (void *)cache_noop,
80 .bc_inv = (void *)cache_noop
81 };
82
83 struct bcache_ops *bcops = &no_sc_ops;
84
85 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
86 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
87
88 #define R4600_HIT_CACHEOP_WAR_IMPL \
89 do { \
90 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
91 *(volatile unsigned long *)CKSEG1; \
92 if (R4600_V1_HIT_CACHEOP_WAR) \
93 __asm__ __volatile__("nop;nop;nop;nop"); \
94 } while (0)
95
96 static void (*r4k_blast_dcache_page)(unsigned long addr);
97
98 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
99 {
100 R4600_HIT_CACHEOP_WAR_IMPL;
101 blast_dcache32_page(addr);
102 }
103
104 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
105 {
106 R4600_HIT_CACHEOP_WAR_IMPL;
107 blast_dcache64_page(addr);
108 }
109
110 static void __cpuinit r4k_blast_dcache_page_setup(void)
111 {
112 unsigned long dc_lsize = cpu_dcache_line_size();
113
114 if (dc_lsize == 0)
115 r4k_blast_dcache_page = (void *)cache_noop;
116 else if (dc_lsize == 16)
117 r4k_blast_dcache_page = blast_dcache16_page;
118 else if (dc_lsize == 32)
119 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
120 else if (dc_lsize == 64)
121 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
122 }
123
124 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
125
126 static void __cpuinit r4k_blast_dcache_page_indexed_setup(void)
127 {
128 unsigned long dc_lsize = cpu_dcache_line_size();
129
130 if (dc_lsize == 0)
131 r4k_blast_dcache_page_indexed = (void *)cache_noop;
132 else if (dc_lsize == 16)
133 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
134 else if (dc_lsize == 32)
135 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
136 else if (dc_lsize == 64)
137 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
138 }
139
140 void (* r4k_blast_dcache)(void);
141 EXPORT_SYMBOL(r4k_blast_dcache);
142
143 static void __cpuinit r4k_blast_dcache_setup(void)
144 {
145 unsigned long dc_lsize = cpu_dcache_line_size();
146
147 if (dc_lsize == 0)
148 r4k_blast_dcache = (void *)cache_noop;
149 else if (dc_lsize == 16)
150 r4k_blast_dcache = blast_dcache16;
151 else if (dc_lsize == 32)
152 r4k_blast_dcache = blast_dcache32;
153 else if (dc_lsize == 64)
154 r4k_blast_dcache = blast_dcache64;
155 }
156
157 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
158 #define JUMP_TO_ALIGN(order) \
159 __asm__ __volatile__( \
160 "b\t1f\n\t" \
161 ".align\t" #order "\n\t" \
162 "1:\n\t" \
163 )
164 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
165 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
166
167 static inline void blast_r4600_v1_icache32(void)
168 {
169 unsigned long flags;
170
171 local_irq_save(flags);
172 blast_icache32();
173 local_irq_restore(flags);
174 }
175
176 static inline void tx49_blast_icache32(void)
177 {
178 unsigned long start = INDEX_BASE;
179 unsigned long end = start + current_cpu_data.icache.waysize;
180 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
181 unsigned long ws_end = current_cpu_data.icache.ways <<
182 current_cpu_data.icache.waybit;
183 unsigned long ws, addr;
184
185 CACHE32_UNROLL32_ALIGN2;
186 /* I'm in even chunk. blast odd chunks */
187 for (ws = 0; ws < ws_end; ws += ws_inc)
188 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
189 cache32_unroll32(addr|ws, Index_Invalidate_I);
190 CACHE32_UNROLL32_ALIGN;
191 /* I'm in odd chunk. blast even chunks */
192 for (ws = 0; ws < ws_end; ws += ws_inc)
193 for (addr = start; addr < end; addr += 0x400 * 2)
194 cache32_unroll32(addr|ws, Index_Invalidate_I);
195 }
196
197 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
198 {
199 unsigned long flags;
200
201 local_irq_save(flags);
202 blast_icache32_page_indexed(page);
203 local_irq_restore(flags);
204 }
205
206 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
207 {
208 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
209 unsigned long start = INDEX_BASE + (page & indexmask);
210 unsigned long end = start + PAGE_SIZE;
211 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
212 unsigned long ws_end = current_cpu_data.icache.ways <<
213 current_cpu_data.icache.waybit;
214 unsigned long ws, addr;
215
216 CACHE32_UNROLL32_ALIGN2;
217 /* I'm in even chunk. blast odd chunks */
218 for (ws = 0; ws < ws_end; ws += ws_inc)
219 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
220 cache32_unroll32(addr|ws, Index_Invalidate_I);
221 CACHE32_UNROLL32_ALIGN;
222 /* I'm in odd chunk. blast even chunks */
223 for (ws = 0; ws < ws_end; ws += ws_inc)
224 for (addr = start; addr < end; addr += 0x400 * 2)
225 cache32_unroll32(addr|ws, Index_Invalidate_I);
226 }
227
228 static void (* r4k_blast_icache_page)(unsigned long addr);
229
230 static void __cpuinit r4k_blast_icache_page_setup(void)
231 {
232 unsigned long ic_lsize = cpu_icache_line_size();
233
234 if (ic_lsize == 0)
235 r4k_blast_icache_page = (void *)cache_noop;
236 else if (ic_lsize == 16)
237 r4k_blast_icache_page = blast_icache16_page;
238 else if (ic_lsize == 32)
239 r4k_blast_icache_page = blast_icache32_page;
240 else if (ic_lsize == 64)
241 r4k_blast_icache_page = blast_icache64_page;
242 }
243
244
245 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
246
247 static void __cpuinit r4k_blast_icache_page_indexed_setup(void)
248 {
249 unsigned long ic_lsize = cpu_icache_line_size();
250
251 if (ic_lsize == 0)
252 r4k_blast_icache_page_indexed = (void *)cache_noop;
253 else if (ic_lsize == 16)
254 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
255 else if (ic_lsize == 32) {
256 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
257 r4k_blast_icache_page_indexed =
258 blast_icache32_r4600_v1_page_indexed;
259 else if (TX49XX_ICACHE_INDEX_INV_WAR)
260 r4k_blast_icache_page_indexed =
261 tx49_blast_icache32_page_indexed;
262 else
263 r4k_blast_icache_page_indexed =
264 blast_icache32_page_indexed;
265 } else if (ic_lsize == 64)
266 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
267 }
268
269 void (* r4k_blast_icache)(void);
270 EXPORT_SYMBOL(r4k_blast_icache);
271
272 static void __cpuinit r4k_blast_icache_setup(void)
273 {
274 unsigned long ic_lsize = cpu_icache_line_size();
275
276 if (ic_lsize == 0)
277 r4k_blast_icache = (void *)cache_noop;
278 else if (ic_lsize == 16)
279 r4k_blast_icache = blast_icache16;
280 else if (ic_lsize == 32) {
281 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
282 r4k_blast_icache = blast_r4600_v1_icache32;
283 else if (TX49XX_ICACHE_INDEX_INV_WAR)
284 r4k_blast_icache = tx49_blast_icache32;
285 else
286 r4k_blast_icache = blast_icache32;
287 } else if (ic_lsize == 64)
288 r4k_blast_icache = blast_icache64;
289 }
290
291 static void (* r4k_blast_scache_page)(unsigned long addr);
292
293 static void __cpuinit r4k_blast_scache_page_setup(void)
294 {
295 unsigned long sc_lsize = cpu_scache_line_size();
296
297 if (scache_size == 0)
298 r4k_blast_scache_page = (void *)cache_noop;
299 else if (sc_lsize == 16)
300 r4k_blast_scache_page = blast_scache16_page;
301 else if (sc_lsize == 32)
302 r4k_blast_scache_page = blast_scache32_page;
303 else if (sc_lsize == 64)
304 r4k_blast_scache_page = blast_scache64_page;
305 else if (sc_lsize == 128)
306 r4k_blast_scache_page = blast_scache128_page;
307 }
308
309 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
310
311 static void __cpuinit r4k_blast_scache_page_indexed_setup(void)
312 {
313 unsigned long sc_lsize = cpu_scache_line_size();
314
315 if (scache_size == 0)
316 r4k_blast_scache_page_indexed = (void *)cache_noop;
317 else if (sc_lsize == 16)
318 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
319 else if (sc_lsize == 32)
320 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
321 else if (sc_lsize == 64)
322 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
323 else if (sc_lsize == 128)
324 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
325 }
326
327 static void (* r4k_blast_scache)(void);
328
329 static void __cpuinit r4k_blast_scache_setup(void)
330 {
331 unsigned long sc_lsize = cpu_scache_line_size();
332
333 if (scache_size == 0)
334 r4k_blast_scache = (void *)cache_noop;
335 else if (sc_lsize == 16)
336 r4k_blast_scache = blast_scache16;
337 else if (sc_lsize == 32)
338 r4k_blast_scache = blast_scache32;
339 else if (sc_lsize == 64)
340 r4k_blast_scache = blast_scache64;
341 else if (sc_lsize == 128)
342 r4k_blast_scache = blast_scache128;
343 }
344
345 static inline void local_r4k___flush_cache_all(void * args)
346 {
347 #if defined(CONFIG_CPU_LOONGSON2)
348 r4k_blast_scache();
349 return;
350 #endif
351 r4k_blast_dcache();
352 r4k_blast_icache();
353
354 switch (current_cpu_type()) {
355 case CPU_R4000SC:
356 case CPU_R4000MC:
357 case CPU_R4400SC:
358 case CPU_R4400MC:
359 case CPU_R10000:
360 case CPU_R12000:
361 case CPU_R14000:
362 r4k_blast_scache();
363 }
364 }
365
366 static void r4k___flush_cache_all(void)
367 {
368 r4k_on_each_cpu(local_r4k___flush_cache_all, NULL);
369 }
370
371 static inline int has_valid_asid(const struct mm_struct *mm)
372 {
373 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_MIPS_MT_SMTC)
374 int i;
375
376 for_each_online_cpu(i)
377 if (cpu_context(i, mm))
378 return 1;
379
380 return 0;
381 #else
382 return cpu_context(smp_processor_id(), mm);
383 #endif
384 }
385
386 static void r4k__flush_cache_vmap(void)
387 {
388 r4k_blast_dcache();
389 }
390
391 static void r4k__flush_cache_vunmap(void)
392 {
393 r4k_blast_dcache();
394 }
395
396 static inline void local_r4k_flush_cache_range(void * args)
397 {
398 struct vm_area_struct *vma = args;
399 int exec = vma->vm_flags & VM_EXEC;
400
401 if (!(has_valid_asid(vma->vm_mm)))
402 return;
403
404 r4k_blast_dcache();
405 if (exec)
406 r4k_blast_icache();
407 }
408
409 static void r4k_flush_cache_range(struct vm_area_struct *vma,
410 unsigned long start, unsigned long end)
411 {
412 int exec = vma->vm_flags & VM_EXEC;
413
414 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
415 r4k_on_each_cpu(local_r4k_flush_cache_range, vma);
416 }
417
418 static inline void local_r4k_flush_cache_mm(void * args)
419 {
420 struct mm_struct *mm = args;
421
422 if (!has_valid_asid(mm))
423 return;
424
425 /*
426 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
427 * only flush the primary caches but R10000 and R12000 behave sane ...
428 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
429 * caches, so we can bail out early.
430 */
431 if (current_cpu_type() == CPU_R4000SC ||
432 current_cpu_type() == CPU_R4000MC ||
433 current_cpu_type() == CPU_R4400SC ||
434 current_cpu_type() == CPU_R4400MC) {
435 r4k_blast_scache();
436 return;
437 }
438
439 r4k_blast_dcache();
440 }
441
442 static void r4k_flush_cache_mm(struct mm_struct *mm)
443 {
444 if (!cpu_has_dc_aliases)
445 return;
446
447 r4k_on_each_cpu(local_r4k_flush_cache_mm, mm);
448 }
449
450 struct flush_cache_page_args {
451 struct vm_area_struct *vma;
452 unsigned long addr;
453 unsigned long pfn;
454 };
455
456 static inline void local_r4k_flush_cache_page(void *args)
457 {
458 struct flush_cache_page_args *fcp_args = args;
459 struct vm_area_struct *vma = fcp_args->vma;
460 unsigned long addr = fcp_args->addr;
461 struct page *page = pfn_to_page(fcp_args->pfn);
462 int exec = vma->vm_flags & VM_EXEC;
463 struct mm_struct *mm = vma->vm_mm;
464 int map_coherent = 0;
465 pgd_t *pgdp;
466 pud_t *pudp;
467 pmd_t *pmdp;
468 pte_t *ptep;
469 void *vaddr;
470
471 /*
472 * If ownes no valid ASID yet, cannot possibly have gotten
473 * this page into the cache.
474 */
475 if (!has_valid_asid(mm))
476 return;
477
478 addr &= PAGE_MASK;
479 pgdp = pgd_offset(mm, addr);
480 pudp = pud_offset(pgdp, addr);
481 pmdp = pmd_offset(pudp, addr);
482 ptep = pte_offset(pmdp, addr);
483
484 /*
485 * If the page isn't marked valid, the page cannot possibly be
486 * in the cache.
487 */
488 if (!(pte_present(*ptep)))
489 return;
490
491 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
492 vaddr = NULL;
493 else {
494 /*
495 * Use kmap_coherent or kmap_atomic to do flushes for
496 * another ASID than the current one.
497 */
498 map_coherent = (cpu_has_dc_aliases &&
499 page_mapped(page) && !Page_dcache_dirty(page));
500 if (map_coherent)
501 vaddr = kmap_coherent(page, addr);
502 else
503 vaddr = kmap_atomic(page);
504 addr = (unsigned long)vaddr;
505 }
506
507 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
508 r4k_blast_dcache_page(addr);
509 if (exec && !cpu_icache_snoops_remote_store)
510 r4k_blast_scache_page(addr);
511 }
512 if (exec) {
513 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
514 int cpu = smp_processor_id();
515
516 if (cpu_context(cpu, mm) != 0)
517 drop_mmu_context(mm, cpu);
518 } else
519 r4k_blast_icache_page(addr);
520 }
521
522 if (vaddr) {
523 if (map_coherent)
524 kunmap_coherent();
525 else
526 kunmap_atomic(vaddr);
527 }
528 }
529
530 static void r4k_flush_cache_page(struct vm_area_struct *vma,
531 unsigned long addr, unsigned long pfn)
532 {
533 struct flush_cache_page_args args;
534
535 args.vma = vma;
536 args.addr = addr;
537 args.pfn = pfn;
538
539 r4k_on_each_cpu(local_r4k_flush_cache_page, &args);
540 }
541
542 static inline void local_r4k_flush_data_cache_page(void * addr)
543 {
544 r4k_blast_dcache_page((unsigned long) addr);
545 }
546
547 static void r4k_flush_data_cache_page(unsigned long addr)
548 {
549 if (in_atomic())
550 local_r4k_flush_data_cache_page((void *)addr);
551 else
552 r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr);
553 }
554
555 struct flush_icache_range_args {
556 unsigned long start;
557 unsigned long end;
558 };
559
560 static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
561 {
562 if (!cpu_has_ic_fills_f_dc) {
563 if (end - start >= dcache_size) {
564 r4k_blast_dcache();
565 } else {
566 R4600_HIT_CACHEOP_WAR_IMPL;
567 protected_blast_dcache_range(start, end);
568 }
569 }
570
571 if (end - start > icache_size)
572 r4k_blast_icache();
573 else
574 protected_blast_icache_range(start, end);
575 }
576
577 static inline void local_r4k_flush_icache_range_ipi(void *args)
578 {
579 struct flush_icache_range_args *fir_args = args;
580 unsigned long start = fir_args->start;
581 unsigned long end = fir_args->end;
582
583 local_r4k_flush_icache_range(start, end);
584 }
585
586 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
587 {
588 struct flush_icache_range_args args;
589
590 args.start = start;
591 args.end = end;
592
593 r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args);
594 instruction_hazard();
595 }
596
597 #ifdef CONFIG_DMA_NONCOHERENT
598
599 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
600 {
601 /* Catch bad driver code */
602 BUG_ON(size == 0);
603
604 if (cpu_has_inclusive_pcaches) {
605 if (size >= scache_size)
606 r4k_blast_scache();
607 else
608 blast_scache_range(addr, addr + size);
609 __sync();
610 return;
611 }
612
613 /*
614 * Either no secondary cache or the available caches don't have the
615 * subset property so we have to flush the primary caches
616 * explicitly
617 */
618 if (cpu_has_safe_index_cacheops && size >= dcache_size) {
619 r4k_blast_dcache();
620 } else {
621 R4600_HIT_CACHEOP_WAR_IMPL;
622 blast_dcache_range(addr, addr + size);
623 }
624
625 bc_wback_inv(addr, size);
626 __sync();
627 }
628
629 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
630 {
631 /* Catch bad driver code */
632 BUG_ON(size == 0);
633
634 if (cpu_has_inclusive_pcaches) {
635 if (size >= scache_size)
636 r4k_blast_scache();
637 else {
638 /*
639 * There is no clearly documented alignment requirement
640 * for the cache instruction on MIPS processors and
641 * some processors, among them the RM5200 and RM7000
642 * QED processors will throw an address error for cache
643 * hit ops with insufficient alignment. Solved by
644 * aligning the address to cache line size.
645 */
646 blast_inv_scache_range(addr, addr + size);
647 }
648 __sync();
649 return;
650 }
651
652 if (cpu_has_safe_index_cacheops && size >= dcache_size) {
653 r4k_blast_dcache();
654 } else {
655 R4600_HIT_CACHEOP_WAR_IMPL;
656 blast_inv_dcache_range(addr, addr + size);
657 }
658
659 bc_inv(addr, size);
660 __sync();
661 }
662 #endif /* CONFIG_DMA_NONCOHERENT */
663
664 /*
665 * While we're protected against bad userland addresses we don't care
666 * very much about what happens in that case. Usually a segmentation
667 * fault will dump the process later on anyway ...
668 */
669 static void local_r4k_flush_cache_sigtramp(void * arg)
670 {
671 unsigned long ic_lsize = cpu_icache_line_size();
672 unsigned long dc_lsize = cpu_dcache_line_size();
673 unsigned long sc_lsize = cpu_scache_line_size();
674 unsigned long addr = (unsigned long) arg;
675
676 R4600_HIT_CACHEOP_WAR_IMPL;
677 if (dc_lsize)
678 protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
679 if (!cpu_icache_snoops_remote_store && scache_size)
680 protected_writeback_scache_line(addr & ~(sc_lsize - 1));
681 if (ic_lsize)
682 protected_flush_icache_line(addr & ~(ic_lsize - 1));
683 if (MIPS4K_ICACHE_REFILL_WAR) {
684 __asm__ __volatile__ (
685 ".set push\n\t"
686 ".set noat\n\t"
687 ".set mips3\n\t"
688 #ifdef CONFIG_32BIT
689 "la $at,1f\n\t"
690 #endif
691 #ifdef CONFIG_64BIT
692 "dla $at,1f\n\t"
693 #endif
694 "cache %0,($at)\n\t"
695 "nop; nop; nop\n"
696 "1:\n\t"
697 ".set pop"
698 :
699 : "i" (Hit_Invalidate_I));
700 }
701 if (MIPS_CACHE_SYNC_WAR)
702 __asm__ __volatile__ ("sync");
703 }
704
705 static void r4k_flush_cache_sigtramp(unsigned long addr)
706 {
707 r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr);
708 }
709
710 static void r4k_flush_icache_all(void)
711 {
712 if (cpu_has_vtag_icache)
713 r4k_blast_icache();
714 }
715
716 struct flush_kernel_vmap_range_args {
717 unsigned long vaddr;
718 int size;
719 };
720
721 static inline void local_r4k_flush_kernel_vmap_range(void *args)
722 {
723 struct flush_kernel_vmap_range_args *vmra = args;
724 unsigned long vaddr = vmra->vaddr;
725 int size = vmra->size;
726
727 /*
728 * Aliases only affect the primary caches so don't bother with
729 * S-caches or T-caches.
730 */
731 if (cpu_has_safe_index_cacheops && size >= dcache_size)
732 r4k_blast_dcache();
733 else {
734 R4600_HIT_CACHEOP_WAR_IMPL;
735 blast_dcache_range(vaddr, vaddr + size);
736 }
737 }
738
739 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
740 {
741 struct flush_kernel_vmap_range_args args;
742
743 args.vaddr = (unsigned long) vaddr;
744 args.size = size;
745
746 r4k_on_each_cpu(local_r4k_flush_kernel_vmap_range, &args);
747 }
748
749 static inline void rm7k_erratum31(void)
750 {
751 const unsigned long ic_lsize = 32;
752 unsigned long addr;
753
754 /* RM7000 erratum #31. The icache is screwed at startup. */
755 write_c0_taglo(0);
756 write_c0_taghi(0);
757
758 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
759 __asm__ __volatile__ (
760 ".set push\n\t"
761 ".set noreorder\n\t"
762 ".set mips3\n\t"
763 "cache\t%1, 0(%0)\n\t"
764 "cache\t%1, 0x1000(%0)\n\t"
765 "cache\t%1, 0x2000(%0)\n\t"
766 "cache\t%1, 0x3000(%0)\n\t"
767 "cache\t%2, 0(%0)\n\t"
768 "cache\t%2, 0x1000(%0)\n\t"
769 "cache\t%2, 0x2000(%0)\n\t"
770 "cache\t%2, 0x3000(%0)\n\t"
771 "cache\t%1, 0(%0)\n\t"
772 "cache\t%1, 0x1000(%0)\n\t"
773 "cache\t%1, 0x2000(%0)\n\t"
774 "cache\t%1, 0x3000(%0)\n\t"
775 ".set pop\n"
776 :
777 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
778 }
779 }
780
781 static inline void alias_74k_erratum(struct cpuinfo_mips *c)
782 {
783 /*
784 * Early versions of the 74K do not update the cache tags on a
785 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
786 * aliases. In this case it is better to treat the cache as always
787 * having aliases.
788 */
789 if ((c->processor_id & 0xff) <= PRID_REV_ENCODE_332(2, 4, 0))
790 c->dcache.flags |= MIPS_CACHE_VTAG;
791 if ((c->processor_id & 0xff) == PRID_REV_ENCODE_332(2, 4, 0))
792 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
793 if (((c->processor_id & 0xff00) == PRID_IMP_1074K) &&
794 ((c->processor_id & 0xff) <= PRID_REV_ENCODE_332(1, 1, 0))) {
795 c->dcache.flags |= MIPS_CACHE_VTAG;
796 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
797 }
798 }
799
800 static char *way_string[] __cpuinitdata = { NULL, "direct mapped", "2-way",
801 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
802 };
803
804 static void __cpuinit probe_pcache(void)
805 {
806 struct cpuinfo_mips *c = &current_cpu_data;
807 unsigned int config = read_c0_config();
808 unsigned int prid = read_c0_prid();
809 unsigned long config1;
810 unsigned int lsize;
811
812 switch (c->cputype) {
813 case CPU_R4600: /* QED style two way caches? */
814 case CPU_R4700:
815 case CPU_R5000:
816 case CPU_NEVADA:
817 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
818 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
819 c->icache.ways = 2;
820 c->icache.waybit = __ffs(icache_size/2);
821
822 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
823 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
824 c->dcache.ways = 2;
825 c->dcache.waybit= __ffs(dcache_size/2);
826
827 c->options |= MIPS_CPU_CACHE_CDEX_P;
828 break;
829
830 case CPU_R5432:
831 case CPU_R5500:
832 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
833 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
834 c->icache.ways = 2;
835 c->icache.waybit= 0;
836
837 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
838 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
839 c->dcache.ways = 2;
840 c->dcache.waybit = 0;
841
842 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
843 break;
844
845 case CPU_TX49XX:
846 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
847 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
848 c->icache.ways = 4;
849 c->icache.waybit= 0;
850
851 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
852 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
853 c->dcache.ways = 4;
854 c->dcache.waybit = 0;
855
856 c->options |= MIPS_CPU_CACHE_CDEX_P;
857 c->options |= MIPS_CPU_PREFETCH;
858 break;
859
860 case CPU_R4000PC:
861 case CPU_R4000SC:
862 case CPU_R4000MC:
863 case CPU_R4400PC:
864 case CPU_R4400SC:
865 case CPU_R4400MC:
866 case CPU_R4300:
867 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
868 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
869 c->icache.ways = 1;
870 c->icache.waybit = 0; /* doesn't matter */
871
872 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
873 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
874 c->dcache.ways = 1;
875 c->dcache.waybit = 0; /* does not matter */
876
877 c->options |= MIPS_CPU_CACHE_CDEX_P;
878 break;
879
880 case CPU_R10000:
881 case CPU_R12000:
882 case CPU_R14000:
883 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
884 c->icache.linesz = 64;
885 c->icache.ways = 2;
886 c->icache.waybit = 0;
887
888 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
889 c->dcache.linesz = 32;
890 c->dcache.ways = 2;
891 c->dcache.waybit = 0;
892
893 c->options |= MIPS_CPU_PREFETCH;
894 break;
895
896 case CPU_VR4133:
897 write_c0_config(config & ~VR41_CONF_P4K);
898 case CPU_VR4131:
899 /* Workaround for cache instruction bug of VR4131 */
900 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
901 c->processor_id == 0x0c82U) {
902 config |= 0x00400000U;
903 if (c->processor_id == 0x0c80U)
904 config |= VR41_CONF_BP;
905 write_c0_config(config);
906 } else
907 c->options |= MIPS_CPU_CACHE_CDEX_P;
908
909 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
910 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
911 c->icache.ways = 2;
912 c->icache.waybit = __ffs(icache_size/2);
913
914 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
915 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
916 c->dcache.ways = 2;
917 c->dcache.waybit = __ffs(dcache_size/2);
918 break;
919
920 case CPU_VR41XX:
921 case CPU_VR4111:
922 case CPU_VR4121:
923 case CPU_VR4122:
924 case CPU_VR4181:
925 case CPU_VR4181A:
926 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
927 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
928 c->icache.ways = 1;
929 c->icache.waybit = 0; /* doesn't matter */
930
931 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
932 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
933 c->dcache.ways = 1;
934 c->dcache.waybit = 0; /* does not matter */
935
936 c->options |= MIPS_CPU_CACHE_CDEX_P;
937 break;
938
939 case CPU_RM7000:
940 rm7k_erratum31();
941
942 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
943 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
944 c->icache.ways = 4;
945 c->icache.waybit = __ffs(icache_size / c->icache.ways);
946
947 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
948 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
949 c->dcache.ways = 4;
950 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
951
952 c->options |= MIPS_CPU_CACHE_CDEX_P;
953 c->options |= MIPS_CPU_PREFETCH;
954 break;
955
956 case CPU_LOONGSON2:
957 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
958 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
959 if (prid & 0x3)
960 c->icache.ways = 4;
961 else
962 c->icache.ways = 2;
963 c->icache.waybit = 0;
964
965 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
966 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
967 if (prid & 0x3)
968 c->dcache.ways = 4;
969 else
970 c->dcache.ways = 2;
971 c->dcache.waybit = 0;
972 break;
973
974 default:
975 if (!(config & MIPS_CONF_M))
976 panic("Don't know how to probe P-caches on this cpu.");
977
978 /*
979 * So we seem to be a MIPS32 or MIPS64 CPU
980 * So let's probe the I-cache ...
981 */
982 config1 = read_c0_config1();
983
984 if ((lsize = ((config1 >> 19) & 7)))
985 c->icache.linesz = 2 << lsize;
986 else
987 c->icache.linesz = lsize;
988 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
989 c->icache.ways = 1 + ((config1 >> 16) & 7);
990
991 icache_size = c->icache.sets *
992 c->icache.ways *
993 c->icache.linesz;
994 c->icache.waybit = __ffs(icache_size/c->icache.ways);
995
996 if (config & 0x8) /* VI bit */
997 c->icache.flags |= MIPS_CACHE_VTAG;
998
999 /*
1000 * Now probe the MIPS32 / MIPS64 data cache.
1001 */
1002 c->dcache.flags = 0;
1003
1004 if ((lsize = ((config1 >> 10) & 7)))
1005 c->dcache.linesz = 2 << lsize;
1006 else
1007 c->dcache.linesz= lsize;
1008 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1009 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1010
1011 dcache_size = c->dcache.sets *
1012 c->dcache.ways *
1013 c->dcache.linesz;
1014 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1015
1016 c->options |= MIPS_CPU_PREFETCH;
1017 break;
1018 }
1019
1020 /*
1021 * Processor configuration sanity check for the R4000SC erratum
1022 * #5. With page sizes larger than 32kB there is no possibility
1023 * to get a VCE exception anymore so we don't care about this
1024 * misconfiguration. The case is rather theoretical anyway;
1025 * presumably no vendor is shipping his hardware in the "bad"
1026 * configuration.
1027 */
1028 if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
1029 !(config & CONF_SC) && c->icache.linesz != 16 &&
1030 PAGE_SIZE <= 0x8000)
1031 panic("Improper R4000SC processor configuration detected");
1032
1033 /* compute a couple of other cache variables */
1034 c->icache.waysize = icache_size / c->icache.ways;
1035 c->dcache.waysize = dcache_size / c->dcache.ways;
1036
1037 c->icache.sets = c->icache.linesz ?
1038 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1039 c->dcache.sets = c->dcache.linesz ?
1040 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1041
1042 /*
1043 * R10000 and R12000 P-caches are odd in a positive way. They're 32kB
1044 * 2-way virtually indexed so normally would suffer from aliases. So
1045 * normally they'd suffer from aliases but magic in the hardware deals
1046 * with that for us so we don't need to take care ourselves.
1047 */
1048 switch (c->cputype) {
1049 case CPU_20KC:
1050 case CPU_25KF:
1051 case CPU_SB1:
1052 case CPU_SB1A:
1053 case CPU_XLR:
1054 c->dcache.flags |= MIPS_CACHE_PINDEX;
1055 break;
1056
1057 case CPU_R10000:
1058 case CPU_R12000:
1059 case CPU_R14000:
1060 break;
1061
1062 case CPU_M14KC:
1063 case CPU_M14KEC:
1064 case CPU_24K:
1065 case CPU_34K:
1066 case CPU_74K:
1067 case CPU_1004K:
1068 if (c->cputype == CPU_74K)
1069 alias_74k_erratum(c);
1070 if ((read_c0_config7() & (1 << 16))) {
1071 /* effectively physically indexed dcache,
1072 thus no virtual aliases. */
1073 c->dcache.flags |= MIPS_CACHE_PINDEX;
1074 break;
1075 }
1076 default:
1077 if (c->dcache.waysize > PAGE_SIZE)
1078 c->dcache.flags |= MIPS_CACHE_ALIASES;
1079 }
1080
1081 switch (c->cputype) {
1082 case CPU_20KC:
1083 /*
1084 * Some older 20Kc chips doesn't have the 'VI' bit in
1085 * the config register.
1086 */
1087 c->icache.flags |= MIPS_CACHE_VTAG;
1088 break;
1089
1090 case CPU_ALCHEMY:
1091 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1092 break;
1093 }
1094
1095 #ifdef CONFIG_CPU_LOONGSON2
1096 /*
1097 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1098 * one op will act on all 4 ways
1099 */
1100 c->icache.ways = 1;
1101 #endif
1102
1103 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1104 icache_size >> 10,
1105 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1106 way_string[c->icache.ways], c->icache.linesz);
1107
1108 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1109 dcache_size >> 10, way_string[c->dcache.ways],
1110 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1111 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1112 "cache aliases" : "no aliases",
1113 c->dcache.linesz);
1114 }
1115
1116 /*
1117 * If you even _breathe_ on this function, look at the gcc output and make sure
1118 * it does not pop things on and off the stack for the cache sizing loop that
1119 * executes in KSEG1 space or else you will crash and burn badly. You have
1120 * been warned.
1121 */
1122 static int __cpuinit probe_scache(void)
1123 {
1124 unsigned long flags, addr, begin, end, pow2;
1125 unsigned int config = read_c0_config();
1126 struct cpuinfo_mips *c = &current_cpu_data;
1127
1128 if (config & CONF_SC)
1129 return 0;
1130
1131 begin = (unsigned long) &_stext;
1132 begin &= ~((4 * 1024 * 1024) - 1);
1133 end = begin + (4 * 1024 * 1024);
1134
1135 /*
1136 * This is such a bitch, you'd think they would make it easy to do
1137 * this. Away you daemons of stupidity!
1138 */
1139 local_irq_save(flags);
1140
1141 /* Fill each size-multiple cache line with a valid tag. */
1142 pow2 = (64 * 1024);
1143 for (addr = begin; addr < end; addr = (begin + pow2)) {
1144 unsigned long *p = (unsigned long *) addr;
1145 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1146 pow2 <<= 1;
1147 }
1148
1149 /* Load first line with zero (therefore invalid) tag. */
1150 write_c0_taglo(0);
1151 write_c0_taghi(0);
1152 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1153 cache_op(Index_Store_Tag_I, begin);
1154 cache_op(Index_Store_Tag_D, begin);
1155 cache_op(Index_Store_Tag_SD, begin);
1156
1157 /* Now search for the wrap around point. */
1158 pow2 = (128 * 1024);
1159 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1160 cache_op(Index_Load_Tag_SD, addr);
1161 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1162 if (!read_c0_taglo())
1163 break;
1164 pow2 <<= 1;
1165 }
1166 local_irq_restore(flags);
1167 addr -= begin;
1168
1169 scache_size = addr;
1170 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1171 c->scache.ways = 1;
1172 c->dcache.waybit = 0; /* does not matter */
1173
1174 return 1;
1175 }
1176
1177 #if defined(CONFIG_CPU_LOONGSON2)
1178 static void __init loongson2_sc_init(void)
1179 {
1180 struct cpuinfo_mips *c = &current_cpu_data;
1181
1182 scache_size = 512*1024;
1183 c->scache.linesz = 32;
1184 c->scache.ways = 4;
1185 c->scache.waybit = 0;
1186 c->scache.waysize = scache_size / (c->scache.ways);
1187 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1188 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1189 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1190
1191 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1192 }
1193 #endif
1194
1195 extern int r5k_sc_init(void);
1196 extern int rm7k_sc_init(void);
1197 extern int mips_sc_init(void);
1198
1199 static void __cpuinit setup_scache(void)
1200 {
1201 struct cpuinfo_mips *c = &current_cpu_data;
1202 unsigned int config = read_c0_config();
1203 int sc_present = 0;
1204
1205 /*
1206 * Do the probing thing on R4000SC and R4400SC processors. Other
1207 * processors don't have a S-cache that would be relevant to the
1208 * Linux memory management.
1209 */
1210 switch (c->cputype) {
1211 case CPU_R4000SC:
1212 case CPU_R4000MC:
1213 case CPU_R4400SC:
1214 case CPU_R4400MC:
1215 sc_present = run_uncached(probe_scache);
1216 if (sc_present)
1217 c->options |= MIPS_CPU_CACHE_CDEX_S;
1218 break;
1219
1220 case CPU_R10000:
1221 case CPU_R12000:
1222 case CPU_R14000:
1223 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1224 c->scache.linesz = 64 << ((config >> 13) & 1);
1225 c->scache.ways = 2;
1226 c->scache.waybit= 0;
1227 sc_present = 1;
1228 break;
1229
1230 case CPU_R5000:
1231 case CPU_NEVADA:
1232 #ifdef CONFIG_R5000_CPU_SCACHE
1233 r5k_sc_init();
1234 #endif
1235 return;
1236
1237 case CPU_RM7000:
1238 #ifdef CONFIG_RM7000_CPU_SCACHE
1239 rm7k_sc_init();
1240 #endif
1241 return;
1242
1243 #if defined(CONFIG_CPU_LOONGSON2)
1244 case CPU_LOONGSON2:
1245 loongson2_sc_init();
1246 return;
1247 #endif
1248 case CPU_XLP:
1249 /* don't need to worry about L2, fully coherent */
1250 return;
1251
1252 default:
1253 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1254 MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M64R2)) {
1255 #ifdef CONFIG_MIPS_CPU_SCACHE
1256 if (mips_sc_init ()) {
1257 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1258 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1259 scache_size >> 10,
1260 way_string[c->scache.ways], c->scache.linesz);
1261 }
1262 #else
1263 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1264 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1265 #endif
1266 return;
1267 }
1268 sc_present = 0;
1269 }
1270
1271 if (!sc_present)
1272 return;
1273
1274 /* compute a couple of other cache variables */
1275 c->scache.waysize = scache_size / c->scache.ways;
1276
1277 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1278
1279 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1280 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1281
1282 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1283 }
1284
1285 void au1x00_fixup_config_od(void)
1286 {
1287 /*
1288 * c0_config.od (bit 19) was write only (and read as 0)
1289 * on the early revisions of Alchemy SOCs. It disables the bus
1290 * transaction overlapping and needs to be set to fix various errata.
1291 */
1292 switch (read_c0_prid()) {
1293 case 0x00030100: /* Au1000 DA */
1294 case 0x00030201: /* Au1000 HA */
1295 case 0x00030202: /* Au1000 HB */
1296 case 0x01030200: /* Au1500 AB */
1297 /*
1298 * Au1100 errata actually keeps silence about this bit, so we set it
1299 * just in case for those revisions that require it to be set according
1300 * to the (now gone) cpu table.
1301 */
1302 case 0x02030200: /* Au1100 AB */
1303 case 0x02030201: /* Au1100 BA */
1304 case 0x02030202: /* Au1100 BC */
1305 set_c0_config(1 << 19);
1306 break;
1307 }
1308 }
1309
1310 /* CP0 hazard avoidance. */
1311 #define NXP_BARRIER() \
1312 __asm__ __volatile__( \
1313 ".set noreorder\n\t" \
1314 "nop; nop; nop; nop; nop; nop;\n\t" \
1315 ".set reorder\n\t")
1316
1317 static void nxp_pr4450_fixup_config(void)
1318 {
1319 unsigned long config0;
1320
1321 config0 = read_c0_config();
1322
1323 /* clear all three cache coherency fields */
1324 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1325 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1326 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1327 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1328 write_c0_config(config0);
1329 NXP_BARRIER();
1330 }
1331
1332 static int __cpuinitdata cca = -1;
1333
1334 static int __init cca_setup(char *str)
1335 {
1336 get_option(&str, &cca);
1337
1338 return 0;
1339 }
1340
1341 early_param("cca", cca_setup);
1342
1343 static void __cpuinit coherency_setup(void)
1344 {
1345 if (cca < 0 || cca > 7)
1346 cca = read_c0_config() & CONF_CM_CMASK;
1347 _page_cachable_default = cca << _CACHE_SHIFT;
1348
1349 pr_debug("Using cache attribute %d\n", cca);
1350 change_c0_config(CONF_CM_CMASK, cca);
1351
1352 /*
1353 * c0_status.cu=0 specifies that updates by the sc instruction use
1354 * the coherency mode specified by the TLB; 1 means cachable
1355 * coherent update on write will be used. Not all processors have
1356 * this bit and; some wire it to zero, others like Toshiba had the
1357 * silly idea of putting something else there ...
1358 */
1359 switch (current_cpu_type()) {
1360 case CPU_R4000PC:
1361 case CPU_R4000SC:
1362 case CPU_R4000MC:
1363 case CPU_R4400PC:
1364 case CPU_R4400SC:
1365 case CPU_R4400MC:
1366 clear_c0_config(CONF_CU);
1367 break;
1368 /*
1369 * We need to catch the early Alchemy SOCs with
1370 * the write-only co_config.od bit and set it back to one on:
1371 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1372 */
1373 case CPU_ALCHEMY:
1374 au1x00_fixup_config_od();
1375 break;
1376
1377 case PRID_IMP_PR4450:
1378 nxp_pr4450_fixup_config();
1379 break;
1380 }
1381 }
1382
1383 static void __cpuinit r4k_cache_error_setup(void)
1384 {
1385 extern char __weak except_vec2_generic;
1386 extern char __weak except_vec2_sb1;
1387 struct cpuinfo_mips *c = &current_cpu_data;
1388
1389 switch (c->cputype) {
1390 case CPU_SB1:
1391 case CPU_SB1A:
1392 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1393 break;
1394
1395 default:
1396 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1397 break;
1398 }
1399 }
1400
1401 void __cpuinit r4k_cache_init(void)
1402 {
1403 extern void build_clear_page(void);
1404 extern void build_copy_page(void);
1405 struct cpuinfo_mips *c = &current_cpu_data;
1406
1407 probe_pcache();
1408 setup_scache();
1409
1410 r4k_blast_dcache_page_setup();
1411 r4k_blast_dcache_page_indexed_setup();
1412 r4k_blast_dcache_setup();
1413 r4k_blast_icache_page_setup();
1414 r4k_blast_icache_page_indexed_setup();
1415 r4k_blast_icache_setup();
1416 r4k_blast_scache_page_setup();
1417 r4k_blast_scache_page_indexed_setup();
1418 r4k_blast_scache_setup();
1419
1420 /*
1421 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1422 * This code supports virtually indexed processors and will be
1423 * unnecessarily inefficient on physically indexed processors.
1424 */
1425 if (c->dcache.linesz)
1426 shm_align_mask = max_t( unsigned long,
1427 c->dcache.sets * c->dcache.linesz - 1,
1428 PAGE_SIZE - 1);
1429 else
1430 shm_align_mask = PAGE_SIZE-1;
1431
1432 __flush_cache_vmap = r4k__flush_cache_vmap;
1433 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1434
1435 flush_cache_all = cache_noop;
1436 __flush_cache_all = r4k___flush_cache_all;
1437 flush_cache_mm = r4k_flush_cache_mm;
1438 flush_cache_page = r4k_flush_cache_page;
1439 flush_cache_range = r4k_flush_cache_range;
1440
1441 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1442
1443 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1444 flush_icache_all = r4k_flush_icache_all;
1445 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1446 flush_data_cache_page = r4k_flush_data_cache_page;
1447 flush_icache_range = r4k_flush_icache_range;
1448 local_flush_icache_range = local_r4k_flush_icache_range;
1449
1450 #if defined(CONFIG_DMA_NONCOHERENT)
1451 if (coherentio) {
1452 _dma_cache_wback_inv = (void *)cache_noop;
1453 _dma_cache_wback = (void *)cache_noop;
1454 _dma_cache_inv = (void *)cache_noop;
1455 } else {
1456 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1457 _dma_cache_wback = r4k_dma_cache_wback_inv;
1458 _dma_cache_inv = r4k_dma_cache_inv;
1459 }
1460 #endif
1461
1462 build_clear_page();
1463 build_copy_page();
1464
1465 /*
1466 * We want to run CMP kernels on core with and without coherent
1467 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1468 * or not to flush caches.
1469 */
1470 local_r4k___flush_cache_all(NULL);
1471
1472 coherency_setup();
1473 board_cache_error_setup = r4k_cache_error_setup;
1474 }