drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / mm / c-r4k.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10 #include <linux/hardirq.h>
11 #include <linux/init.h>
12 #include <linux/highmem.h>
13 #include <linux/kernel.h>
14 #include <linux/linkage.h>
15 #include <linux/preempt.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/bitops.h>
21
22 #include <asm/bcache.h>
23 #include <asm/bootinfo.h>
24 #include <asm/cache.h>
25 #include <asm/cacheops.h>
26 #include <asm/cpu.h>
27 #include <asm/cpu-features.h>
28 #include <asm/io.h>
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/r4kcache.h>
32 #include <asm/sections.h>
33 #include <asm/mmu_context.h>
34 #include <asm/war.h>
35 #include <asm/cacheflush.h> /* for run_uncached() */
36 #include <asm/traps.h>
37 #include <asm/dma-coherence.h>
38
39 /*
40 * Special Variant of smp_call_function for use by cache functions:
41 *
42 * o No return value
43 * o collapses to normal function call on UP kernels
44 * o collapses to normal function call on systems with a single shared
45 * primary cache.
46 * o doesn't disable interrupts on the local CPU
47 */
48 static inline void r4k_on_each_cpu(void (*func) (void *info), void *info)
49 {
50 preempt_disable();
51
52 #if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
53 smp_call_function(func, info, 1);
54 #endif
55 func(info);
56 preempt_enable();
57 }
58
59 #if defined(CONFIG_MIPS_CMP)
60 #define cpu_has_safe_index_cacheops 0
61 #else
62 #define cpu_has_safe_index_cacheops 1
63 #endif
64
65 /*
66 * Must die.
67 */
68 static unsigned long icache_size __read_mostly;
69 static unsigned long dcache_size __read_mostly;
70 static unsigned long scache_size __read_mostly;
71
72 /*
73 * Dummy cache handling routines for machines without boardcaches
74 */
75 static void cache_noop(void) {}
76
77 static struct bcache_ops no_sc_ops = {
78 .bc_enable = (void *)cache_noop,
79 .bc_disable = (void *)cache_noop,
80 .bc_wback_inv = (void *)cache_noop,
81 .bc_inv = (void *)cache_noop
82 };
83
84 struct bcache_ops *bcops = &no_sc_ops;
85
86 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
87 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
88
89 #define R4600_HIT_CACHEOP_WAR_IMPL \
90 do { \
91 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
92 *(volatile unsigned long *)CKSEG1; \
93 if (R4600_V1_HIT_CACHEOP_WAR) \
94 __asm__ __volatile__("nop;nop;nop;nop"); \
95 } while (0)
96
97 static void (*r4k_blast_dcache_page)(unsigned long addr);
98
99 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
100 {
101 R4600_HIT_CACHEOP_WAR_IMPL;
102 blast_dcache32_page(addr);
103 }
104
105 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
106 {
107 R4600_HIT_CACHEOP_WAR_IMPL;
108 blast_dcache64_page(addr);
109 }
110
111 static void __cpuinit r4k_blast_dcache_page_setup(void)
112 {
113 unsigned long dc_lsize = cpu_dcache_line_size();
114
115 if (dc_lsize == 0)
116 r4k_blast_dcache_page = (void *)cache_noop;
117 else if (dc_lsize == 16)
118 r4k_blast_dcache_page = blast_dcache16_page;
119 else if (dc_lsize == 32)
120 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
121 else if (dc_lsize == 64)
122 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
123 }
124
125 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
126
127 static void __cpuinit r4k_blast_dcache_page_indexed_setup(void)
128 {
129 unsigned long dc_lsize = cpu_dcache_line_size();
130
131 if (dc_lsize == 0)
132 r4k_blast_dcache_page_indexed = (void *)cache_noop;
133 else if (dc_lsize == 16)
134 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
135 else if (dc_lsize == 32)
136 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
137 else if (dc_lsize == 64)
138 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
139 }
140
141 void (* r4k_blast_dcache)(void);
142 EXPORT_SYMBOL(r4k_blast_dcache);
143
144 static void __cpuinit r4k_blast_dcache_setup(void)
145 {
146 unsigned long dc_lsize = cpu_dcache_line_size();
147
148 if (dc_lsize == 0)
149 r4k_blast_dcache = (void *)cache_noop;
150 else if (dc_lsize == 16)
151 r4k_blast_dcache = blast_dcache16;
152 else if (dc_lsize == 32)
153 r4k_blast_dcache = blast_dcache32;
154 else if (dc_lsize == 64)
155 r4k_blast_dcache = blast_dcache64;
156 }
157
158 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
159 #define JUMP_TO_ALIGN(order) \
160 __asm__ __volatile__( \
161 "b\t1f\n\t" \
162 ".align\t" #order "\n\t" \
163 "1:\n\t" \
164 )
165 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
166 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
167
168 static inline void blast_r4600_v1_icache32(void)
169 {
170 unsigned long flags;
171
172 local_irq_save(flags);
173 blast_icache32();
174 local_irq_restore(flags);
175 }
176
177 static inline void tx49_blast_icache32(void)
178 {
179 unsigned long start = INDEX_BASE;
180 unsigned long end = start + current_cpu_data.icache.waysize;
181 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
182 unsigned long ws_end = current_cpu_data.icache.ways <<
183 current_cpu_data.icache.waybit;
184 unsigned long ws, addr;
185
186 CACHE32_UNROLL32_ALIGN2;
187 /* I'm in even chunk. blast odd chunks */
188 for (ws = 0; ws < ws_end; ws += ws_inc)
189 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
190 cache32_unroll32(addr|ws, Index_Invalidate_I);
191 CACHE32_UNROLL32_ALIGN;
192 /* I'm in odd chunk. blast even chunks */
193 for (ws = 0; ws < ws_end; ws += ws_inc)
194 for (addr = start; addr < end; addr += 0x400 * 2)
195 cache32_unroll32(addr|ws, Index_Invalidate_I);
196 }
197
198 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
199 {
200 unsigned long flags;
201
202 local_irq_save(flags);
203 blast_icache32_page_indexed(page);
204 local_irq_restore(flags);
205 }
206
207 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
208 {
209 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
210 unsigned long start = INDEX_BASE + (page & indexmask);
211 unsigned long end = start + PAGE_SIZE;
212 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
213 unsigned long ws_end = current_cpu_data.icache.ways <<
214 current_cpu_data.icache.waybit;
215 unsigned long ws, addr;
216
217 CACHE32_UNROLL32_ALIGN2;
218 /* I'm in even chunk. blast odd chunks */
219 for (ws = 0; ws < ws_end; ws += ws_inc)
220 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
221 cache32_unroll32(addr|ws, Index_Invalidate_I);
222 CACHE32_UNROLL32_ALIGN;
223 /* I'm in odd chunk. blast even chunks */
224 for (ws = 0; ws < ws_end; ws += ws_inc)
225 for (addr = start; addr < end; addr += 0x400 * 2)
226 cache32_unroll32(addr|ws, Index_Invalidate_I);
227 }
228
229 static void (* r4k_blast_icache_page)(unsigned long addr);
230
231 static void __cpuinit r4k_blast_icache_page_setup(void)
232 {
233 unsigned long ic_lsize = cpu_icache_line_size();
234
235 if (ic_lsize == 0)
236 r4k_blast_icache_page = (void *)cache_noop;
237 else if (ic_lsize == 16)
238 r4k_blast_icache_page = blast_icache16_page;
239 else if (ic_lsize == 32)
240 r4k_blast_icache_page = blast_icache32_page;
241 else if (ic_lsize == 64)
242 r4k_blast_icache_page = blast_icache64_page;
243 }
244
245
246 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
247
248 static void __cpuinit r4k_blast_icache_page_indexed_setup(void)
249 {
250 unsigned long ic_lsize = cpu_icache_line_size();
251
252 if (ic_lsize == 0)
253 r4k_blast_icache_page_indexed = (void *)cache_noop;
254 else if (ic_lsize == 16)
255 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
256 else if (ic_lsize == 32) {
257 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
258 r4k_blast_icache_page_indexed =
259 blast_icache32_r4600_v1_page_indexed;
260 else if (TX49XX_ICACHE_INDEX_INV_WAR)
261 r4k_blast_icache_page_indexed =
262 tx49_blast_icache32_page_indexed;
263 else
264 r4k_blast_icache_page_indexed =
265 blast_icache32_page_indexed;
266 } else if (ic_lsize == 64)
267 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
268 }
269
270 void (* r4k_blast_icache)(void);
271 EXPORT_SYMBOL(r4k_blast_icache);
272
273 static void __cpuinit r4k_blast_icache_setup(void)
274 {
275 unsigned long ic_lsize = cpu_icache_line_size();
276
277 if (ic_lsize == 0)
278 r4k_blast_icache = (void *)cache_noop;
279 else if (ic_lsize == 16)
280 r4k_blast_icache = blast_icache16;
281 else if (ic_lsize == 32) {
282 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
283 r4k_blast_icache = blast_r4600_v1_icache32;
284 else if (TX49XX_ICACHE_INDEX_INV_WAR)
285 r4k_blast_icache = tx49_blast_icache32;
286 else
287 r4k_blast_icache = blast_icache32;
288 } else if (ic_lsize == 64)
289 r4k_blast_icache = blast_icache64;
290 }
291
292 static void (* r4k_blast_scache_page)(unsigned long addr);
293
294 static void __cpuinit r4k_blast_scache_page_setup(void)
295 {
296 unsigned long sc_lsize = cpu_scache_line_size();
297
298 if (scache_size == 0)
299 r4k_blast_scache_page = (void *)cache_noop;
300 else if (sc_lsize == 16)
301 r4k_blast_scache_page = blast_scache16_page;
302 else if (sc_lsize == 32)
303 r4k_blast_scache_page = blast_scache32_page;
304 else if (sc_lsize == 64)
305 r4k_blast_scache_page = blast_scache64_page;
306 else if (sc_lsize == 128)
307 r4k_blast_scache_page = blast_scache128_page;
308 }
309
310 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
311
312 static void __cpuinit r4k_blast_scache_page_indexed_setup(void)
313 {
314 unsigned long sc_lsize = cpu_scache_line_size();
315
316 if (scache_size == 0)
317 r4k_blast_scache_page_indexed = (void *)cache_noop;
318 else if (sc_lsize == 16)
319 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
320 else if (sc_lsize == 32)
321 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
322 else if (sc_lsize == 64)
323 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
324 else if (sc_lsize == 128)
325 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
326 }
327
328 static void (* r4k_blast_scache)(void);
329
330 static void __cpuinit r4k_blast_scache_setup(void)
331 {
332 unsigned long sc_lsize = cpu_scache_line_size();
333
334 if (scache_size == 0)
335 r4k_blast_scache = (void *)cache_noop;
336 else if (sc_lsize == 16)
337 r4k_blast_scache = blast_scache16;
338 else if (sc_lsize == 32)
339 r4k_blast_scache = blast_scache32;
340 else if (sc_lsize == 64)
341 r4k_blast_scache = blast_scache64;
342 else if (sc_lsize == 128)
343 r4k_blast_scache = blast_scache128;
344 }
345
346 static inline void local_r4k___flush_cache_all(void * args)
347 {
348 #if defined(CONFIG_CPU_LOONGSON2)
349 r4k_blast_scache();
350 return;
351 #endif
352 r4k_blast_dcache();
353 r4k_blast_icache();
354
355 switch (current_cpu_type()) {
356 case CPU_R4000SC:
357 case CPU_R4000MC:
358 case CPU_R4400SC:
359 case CPU_R4400MC:
360 case CPU_R10000:
361 case CPU_R12000:
362 case CPU_R14000:
363 r4k_blast_scache();
364 }
365 }
366
367 static void r4k___flush_cache_all(void)
368 {
369 r4k_on_each_cpu(local_r4k___flush_cache_all, NULL);
370 }
371
372 static inline int has_valid_asid(const struct mm_struct *mm)
373 {
374 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_MIPS_MT_SMTC)
375 int i;
376
377 for_each_online_cpu(i)
378 if (cpu_context(i, mm))
379 return 1;
380
381 return 0;
382 #else
383 return cpu_context(smp_processor_id(), mm);
384 #endif
385 }
386
387 static void r4k__flush_cache_vmap(void)
388 {
389 r4k_blast_dcache();
390 }
391
392 static void r4k__flush_cache_vunmap(void)
393 {
394 r4k_blast_dcache();
395 }
396
397 static inline void local_r4k_flush_cache_range(void * args)
398 {
399 struct vm_area_struct *vma = args;
400 int exec = vma->vm_flags & VM_EXEC;
401
402 if (!(has_valid_asid(vma->vm_mm)))
403 return;
404
405 r4k_blast_dcache();
406 if (exec)
407 r4k_blast_icache();
408 }
409
410 static void r4k_flush_cache_range(struct vm_area_struct *vma,
411 unsigned long start, unsigned long end)
412 {
413 int exec = vma->vm_flags & VM_EXEC;
414
415 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
416 r4k_on_each_cpu(local_r4k_flush_cache_range, vma);
417 }
418
419 static inline void local_r4k_flush_cache_mm(void * args)
420 {
421 struct mm_struct *mm = args;
422
423 if (!has_valid_asid(mm))
424 return;
425
426 /*
427 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
428 * only flush the primary caches but R10000 and R12000 behave sane ...
429 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
430 * caches, so we can bail out early.
431 */
432 if (current_cpu_type() == CPU_R4000SC ||
433 current_cpu_type() == CPU_R4000MC ||
434 current_cpu_type() == CPU_R4400SC ||
435 current_cpu_type() == CPU_R4400MC) {
436 r4k_blast_scache();
437 return;
438 }
439
440 r4k_blast_dcache();
441 }
442
443 static void r4k_flush_cache_mm(struct mm_struct *mm)
444 {
445 if (!cpu_has_dc_aliases)
446 return;
447
448 r4k_on_each_cpu(local_r4k_flush_cache_mm, mm);
449 }
450
451 struct flush_cache_page_args {
452 struct vm_area_struct *vma;
453 unsigned long addr;
454 unsigned long pfn;
455 };
456
457 static inline void local_r4k_flush_cache_page(void *args)
458 {
459 struct flush_cache_page_args *fcp_args = args;
460 struct vm_area_struct *vma = fcp_args->vma;
461 unsigned long addr = fcp_args->addr;
462 struct page *page = pfn_to_page(fcp_args->pfn);
463 int exec = vma->vm_flags & VM_EXEC;
464 struct mm_struct *mm = vma->vm_mm;
465 int map_coherent = 0;
466 pgd_t *pgdp;
467 pud_t *pudp;
468 pmd_t *pmdp;
469 pte_t *ptep;
470 void *vaddr;
471
472 /*
473 * If ownes no valid ASID yet, cannot possibly have gotten
474 * this page into the cache.
475 */
476 if (!has_valid_asid(mm))
477 return;
478
479 addr &= PAGE_MASK;
480 pgdp = pgd_offset(mm, addr);
481 pudp = pud_offset(pgdp, addr);
482 pmdp = pmd_offset(pudp, addr);
483 ptep = pte_offset(pmdp, addr);
484
485 /*
486 * If the page isn't marked valid, the page cannot possibly be
487 * in the cache.
488 */
489 if (!(pte_present(*ptep)))
490 return;
491
492 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
493 vaddr = NULL;
494 else {
495 /*
496 * Use kmap_coherent or kmap_atomic to do flushes for
497 * another ASID than the current one.
498 */
499 map_coherent = (cpu_has_dc_aliases &&
500 page_mapped(page) && !Page_dcache_dirty(page));
501 if (map_coherent)
502 vaddr = kmap_coherent(page, addr);
503 else
504 vaddr = kmap_atomic(page);
505 addr = (unsigned long)vaddr;
506 }
507
508 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
509 r4k_blast_dcache_page(addr);
510 if (exec && !cpu_icache_snoops_remote_store)
511 r4k_blast_scache_page(addr);
512 }
513 if (exec) {
514 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
515 int cpu = smp_processor_id();
516
517 if (cpu_context(cpu, mm) != 0)
518 drop_mmu_context(mm, cpu);
519 } else
520 r4k_blast_icache_page(addr);
521 }
522
523 if (vaddr) {
524 if (map_coherent)
525 kunmap_coherent();
526 else
527 kunmap_atomic(vaddr);
528 }
529 }
530
531 static void r4k_flush_cache_page(struct vm_area_struct *vma,
532 unsigned long addr, unsigned long pfn)
533 {
534 struct flush_cache_page_args args;
535
536 args.vma = vma;
537 args.addr = addr;
538 args.pfn = pfn;
539
540 r4k_on_each_cpu(local_r4k_flush_cache_page, &args);
541 }
542
543 static inline void local_r4k_flush_data_cache_page(void * addr)
544 {
545 r4k_blast_dcache_page((unsigned long) addr);
546 }
547
548 static void r4k_flush_data_cache_page(unsigned long addr)
549 {
550 if (in_atomic())
551 local_r4k_flush_data_cache_page((void *)addr);
552 else
553 r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr);
554 }
555
556 struct flush_icache_range_args {
557 unsigned long start;
558 unsigned long end;
559 };
560
561 static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
562 {
563 if (!cpu_has_ic_fills_f_dc) {
564 if (end - start >= dcache_size) {
565 r4k_blast_dcache();
566 } else {
567 R4600_HIT_CACHEOP_WAR_IMPL;
568 protected_blast_dcache_range(start, end);
569 }
570 }
571
572 if (end - start > icache_size)
573 r4k_blast_icache();
574 else
575 protected_blast_icache_range(start, end);
576 }
577
578 static inline void local_r4k_flush_icache_range_ipi(void *args)
579 {
580 struct flush_icache_range_args *fir_args = args;
581 unsigned long start = fir_args->start;
582 unsigned long end = fir_args->end;
583
584 local_r4k_flush_icache_range(start, end);
585 }
586
587 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
588 {
589 struct flush_icache_range_args args;
590
591 args.start = start;
592 args.end = end;
593
594 r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args);
595 instruction_hazard();
596 }
597
598 #ifdef CONFIG_DMA_NONCOHERENT
599
600 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
601 {
602 /* Catch bad driver code */
603 BUG_ON(size == 0);
604
605 preempt_disable();
606 if (cpu_has_inclusive_pcaches) {
607 if (size >= scache_size)
608 r4k_blast_scache();
609 else
610 blast_scache_range(addr, addr + size);
611 preempt_enable();
612 __sync();
613 return;
614 }
615
616 /*
617 * Either no secondary cache or the available caches don't have the
618 * subset property so we have to flush the primary caches
619 * explicitly
620 */
621 if (cpu_has_safe_index_cacheops && size >= dcache_size) {
622 r4k_blast_dcache();
623 } else {
624 R4600_HIT_CACHEOP_WAR_IMPL;
625 blast_dcache_range(addr, addr + size);
626 }
627 preempt_enable();
628
629 bc_wback_inv(addr, size);
630 __sync();
631 }
632
633 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
634 {
635 /* Catch bad driver code */
636 BUG_ON(size == 0);
637
638 preempt_disable();
639 if (cpu_has_inclusive_pcaches) {
640 if (size >= scache_size)
641 r4k_blast_scache();
642 else {
643 /*
644 * There is no clearly documented alignment requirement
645 * for the cache instruction on MIPS processors and
646 * some processors, among them the RM5200 and RM7000
647 * QED processors will throw an address error for cache
648 * hit ops with insufficient alignment. Solved by
649 * aligning the address to cache line size.
650 */
651 blast_inv_scache_range(addr, addr + size);
652 }
653 preempt_enable();
654 __sync();
655 return;
656 }
657
658 if (cpu_has_safe_index_cacheops && size >= dcache_size) {
659 r4k_blast_dcache();
660 } else {
661 R4600_HIT_CACHEOP_WAR_IMPL;
662 blast_inv_dcache_range(addr, addr + size);
663 }
664 preempt_enable();
665
666 bc_inv(addr, size);
667 __sync();
668 }
669 #endif /* CONFIG_DMA_NONCOHERENT */
670
671 /*
672 * While we're protected against bad userland addresses we don't care
673 * very much about what happens in that case. Usually a segmentation
674 * fault will dump the process later on anyway ...
675 */
676 static void local_r4k_flush_cache_sigtramp(void * arg)
677 {
678 unsigned long ic_lsize = cpu_icache_line_size();
679 unsigned long dc_lsize = cpu_dcache_line_size();
680 unsigned long sc_lsize = cpu_scache_line_size();
681 unsigned long addr = (unsigned long) arg;
682
683 R4600_HIT_CACHEOP_WAR_IMPL;
684 if (dc_lsize)
685 protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
686 if (!cpu_icache_snoops_remote_store && scache_size)
687 protected_writeback_scache_line(addr & ~(sc_lsize - 1));
688 if (ic_lsize)
689 protected_flush_icache_line(addr & ~(ic_lsize - 1));
690 if (MIPS4K_ICACHE_REFILL_WAR) {
691 __asm__ __volatile__ (
692 ".set push\n\t"
693 ".set noat\n\t"
694 ".set mips3\n\t"
695 #ifdef CONFIG_32BIT
696 "la $at,1f\n\t"
697 #endif
698 #ifdef CONFIG_64BIT
699 "dla $at,1f\n\t"
700 #endif
701 "cache %0,($at)\n\t"
702 "nop; nop; nop\n"
703 "1:\n\t"
704 ".set pop"
705 :
706 : "i" (Hit_Invalidate_I));
707 }
708 if (MIPS_CACHE_SYNC_WAR)
709 __asm__ __volatile__ ("sync");
710 }
711
712 static void r4k_flush_cache_sigtramp(unsigned long addr)
713 {
714 r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr);
715 }
716
717 static void r4k_flush_icache_all(void)
718 {
719 if (cpu_has_vtag_icache)
720 r4k_blast_icache();
721 }
722
723 struct flush_kernel_vmap_range_args {
724 unsigned long vaddr;
725 int size;
726 };
727
728 static inline void local_r4k_flush_kernel_vmap_range(void *args)
729 {
730 struct flush_kernel_vmap_range_args *vmra = args;
731 unsigned long vaddr = vmra->vaddr;
732 int size = vmra->size;
733
734 /*
735 * Aliases only affect the primary caches so don't bother with
736 * S-caches or T-caches.
737 */
738 if (cpu_has_safe_index_cacheops && size >= dcache_size)
739 r4k_blast_dcache();
740 else {
741 R4600_HIT_CACHEOP_WAR_IMPL;
742 blast_dcache_range(vaddr, vaddr + size);
743 }
744 }
745
746 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
747 {
748 struct flush_kernel_vmap_range_args args;
749
750 args.vaddr = (unsigned long) vaddr;
751 args.size = size;
752
753 r4k_on_each_cpu(local_r4k_flush_kernel_vmap_range, &args);
754 }
755
756 static inline void rm7k_erratum31(void)
757 {
758 const unsigned long ic_lsize = 32;
759 unsigned long addr;
760
761 /* RM7000 erratum #31. The icache is screwed at startup. */
762 write_c0_taglo(0);
763 write_c0_taghi(0);
764
765 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
766 __asm__ __volatile__ (
767 ".set push\n\t"
768 ".set noreorder\n\t"
769 ".set mips3\n\t"
770 "cache\t%1, 0(%0)\n\t"
771 "cache\t%1, 0x1000(%0)\n\t"
772 "cache\t%1, 0x2000(%0)\n\t"
773 "cache\t%1, 0x3000(%0)\n\t"
774 "cache\t%2, 0(%0)\n\t"
775 "cache\t%2, 0x1000(%0)\n\t"
776 "cache\t%2, 0x2000(%0)\n\t"
777 "cache\t%2, 0x3000(%0)\n\t"
778 "cache\t%1, 0(%0)\n\t"
779 "cache\t%1, 0x1000(%0)\n\t"
780 "cache\t%1, 0x2000(%0)\n\t"
781 "cache\t%1, 0x3000(%0)\n\t"
782 ".set pop\n"
783 :
784 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
785 }
786 }
787
788 static inline void alias_74k_erratum(struct cpuinfo_mips *c)
789 {
790 /*
791 * Early versions of the 74K do not update the cache tags on a
792 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
793 * aliases. In this case it is better to treat the cache as always
794 * having aliases.
795 */
796 if ((c->processor_id & 0xff) <= PRID_REV_ENCODE_332(2, 4, 0))
797 c->dcache.flags |= MIPS_CACHE_VTAG;
798 if ((c->processor_id & 0xff) == PRID_REV_ENCODE_332(2, 4, 0))
799 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
800 if (((c->processor_id & 0xff00) == PRID_IMP_1074K) &&
801 ((c->processor_id & 0xff) <= PRID_REV_ENCODE_332(1, 1, 0))) {
802 c->dcache.flags |= MIPS_CACHE_VTAG;
803 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
804 }
805 }
806
807 static char *way_string[] __cpuinitdata = { NULL, "direct mapped", "2-way",
808 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
809 };
810
811 static void __cpuinit probe_pcache(void)
812 {
813 struct cpuinfo_mips *c = &current_cpu_data;
814 unsigned int config = read_c0_config();
815 unsigned int prid = read_c0_prid();
816 unsigned long config1;
817 unsigned int lsize;
818
819 switch (c->cputype) {
820 case CPU_R4600: /* QED style two way caches? */
821 case CPU_R4700:
822 case CPU_R5000:
823 case CPU_NEVADA:
824 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
825 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
826 c->icache.ways = 2;
827 c->icache.waybit = __ffs(icache_size/2);
828
829 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
830 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
831 c->dcache.ways = 2;
832 c->dcache.waybit= __ffs(dcache_size/2);
833
834 c->options |= MIPS_CPU_CACHE_CDEX_P;
835 break;
836
837 case CPU_R5432:
838 case CPU_R5500:
839 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
840 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
841 c->icache.ways = 2;
842 c->icache.waybit= 0;
843
844 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
845 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
846 c->dcache.ways = 2;
847 c->dcache.waybit = 0;
848
849 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
850 break;
851
852 case CPU_TX49XX:
853 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
854 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
855 c->icache.ways = 4;
856 c->icache.waybit= 0;
857
858 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
859 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
860 c->dcache.ways = 4;
861 c->dcache.waybit = 0;
862
863 c->options |= MIPS_CPU_CACHE_CDEX_P;
864 c->options |= MIPS_CPU_PREFETCH;
865 break;
866
867 case CPU_R4000PC:
868 case CPU_R4000SC:
869 case CPU_R4000MC:
870 case CPU_R4400PC:
871 case CPU_R4400SC:
872 case CPU_R4400MC:
873 case CPU_R4300:
874 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
875 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
876 c->icache.ways = 1;
877 c->icache.waybit = 0; /* doesn't matter */
878
879 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
880 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
881 c->dcache.ways = 1;
882 c->dcache.waybit = 0; /* does not matter */
883
884 c->options |= MIPS_CPU_CACHE_CDEX_P;
885 break;
886
887 case CPU_R10000:
888 case CPU_R12000:
889 case CPU_R14000:
890 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
891 c->icache.linesz = 64;
892 c->icache.ways = 2;
893 c->icache.waybit = 0;
894
895 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
896 c->dcache.linesz = 32;
897 c->dcache.ways = 2;
898 c->dcache.waybit = 0;
899
900 c->options |= MIPS_CPU_PREFETCH;
901 break;
902
903 case CPU_VR4133:
904 write_c0_config(config & ~VR41_CONF_P4K);
905 case CPU_VR4131:
906 /* Workaround for cache instruction bug of VR4131 */
907 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
908 c->processor_id == 0x0c82U) {
909 config |= 0x00400000U;
910 if (c->processor_id == 0x0c80U)
911 config |= VR41_CONF_BP;
912 write_c0_config(config);
913 } else
914 c->options |= MIPS_CPU_CACHE_CDEX_P;
915
916 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
917 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
918 c->icache.ways = 2;
919 c->icache.waybit = __ffs(icache_size/2);
920
921 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
922 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
923 c->dcache.ways = 2;
924 c->dcache.waybit = __ffs(dcache_size/2);
925 break;
926
927 case CPU_VR41XX:
928 case CPU_VR4111:
929 case CPU_VR4121:
930 case CPU_VR4122:
931 case CPU_VR4181:
932 case CPU_VR4181A:
933 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
934 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
935 c->icache.ways = 1;
936 c->icache.waybit = 0; /* doesn't matter */
937
938 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
939 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
940 c->dcache.ways = 1;
941 c->dcache.waybit = 0; /* does not matter */
942
943 c->options |= MIPS_CPU_CACHE_CDEX_P;
944 break;
945
946 case CPU_RM7000:
947 rm7k_erratum31();
948
949 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
950 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
951 c->icache.ways = 4;
952 c->icache.waybit = __ffs(icache_size / c->icache.ways);
953
954 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
955 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
956 c->dcache.ways = 4;
957 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
958
959 c->options |= MIPS_CPU_CACHE_CDEX_P;
960 c->options |= MIPS_CPU_PREFETCH;
961 break;
962
963 case CPU_LOONGSON2:
964 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
965 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
966 if (prid & 0x3)
967 c->icache.ways = 4;
968 else
969 c->icache.ways = 2;
970 c->icache.waybit = 0;
971
972 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
973 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
974 if (prid & 0x3)
975 c->dcache.ways = 4;
976 else
977 c->dcache.ways = 2;
978 c->dcache.waybit = 0;
979 break;
980
981 default:
982 if (!(config & MIPS_CONF_M))
983 panic("Don't know how to probe P-caches on this cpu.");
984
985 /*
986 * So we seem to be a MIPS32 or MIPS64 CPU
987 * So let's probe the I-cache ...
988 */
989 config1 = read_c0_config1();
990
991 if ((lsize = ((config1 >> 19) & 7)))
992 c->icache.linesz = 2 << lsize;
993 else
994 c->icache.linesz = lsize;
995 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
996 c->icache.ways = 1 + ((config1 >> 16) & 7);
997
998 icache_size = c->icache.sets *
999 c->icache.ways *
1000 c->icache.linesz;
1001 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1002
1003 if (config & 0x8) /* VI bit */
1004 c->icache.flags |= MIPS_CACHE_VTAG;
1005
1006 /*
1007 * Now probe the MIPS32 / MIPS64 data cache.
1008 */
1009 c->dcache.flags = 0;
1010
1011 if ((lsize = ((config1 >> 10) & 7)))
1012 c->dcache.linesz = 2 << lsize;
1013 else
1014 c->dcache.linesz= lsize;
1015 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1016 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1017
1018 dcache_size = c->dcache.sets *
1019 c->dcache.ways *
1020 c->dcache.linesz;
1021 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1022
1023 c->options |= MIPS_CPU_PREFETCH;
1024 break;
1025 }
1026
1027 /*
1028 * Processor configuration sanity check for the R4000SC erratum
1029 * #5. With page sizes larger than 32kB there is no possibility
1030 * to get a VCE exception anymore so we don't care about this
1031 * misconfiguration. The case is rather theoretical anyway;
1032 * presumably no vendor is shipping his hardware in the "bad"
1033 * configuration.
1034 */
1035 if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
1036 !(config & CONF_SC) && c->icache.linesz != 16 &&
1037 PAGE_SIZE <= 0x8000)
1038 panic("Improper R4000SC processor configuration detected");
1039
1040 /* compute a couple of other cache variables */
1041 c->icache.waysize = icache_size / c->icache.ways;
1042 c->dcache.waysize = dcache_size / c->dcache.ways;
1043
1044 c->icache.sets = c->icache.linesz ?
1045 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1046 c->dcache.sets = c->dcache.linesz ?
1047 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1048
1049 /*
1050 * R10000 and R12000 P-caches are odd in a positive way. They're 32kB
1051 * 2-way virtually indexed so normally would suffer from aliases. So
1052 * normally they'd suffer from aliases but magic in the hardware deals
1053 * with that for us so we don't need to take care ourselves.
1054 */
1055 switch (c->cputype) {
1056 case CPU_20KC:
1057 case CPU_25KF:
1058 case CPU_SB1:
1059 case CPU_SB1A:
1060 case CPU_XLR:
1061 c->dcache.flags |= MIPS_CACHE_PINDEX;
1062 break;
1063
1064 case CPU_R10000:
1065 case CPU_R12000:
1066 case CPU_R14000:
1067 break;
1068
1069 case CPU_M14KC:
1070 case CPU_M14KEC:
1071 case CPU_24K:
1072 case CPU_34K:
1073 case CPU_74K:
1074 case CPU_1004K:
1075 if (c->cputype == CPU_74K)
1076 alias_74k_erratum(c);
1077 if ((read_c0_config7() & (1 << 16))) {
1078 /* effectively physically indexed dcache,
1079 thus no virtual aliases. */
1080 c->dcache.flags |= MIPS_CACHE_PINDEX;
1081 break;
1082 }
1083 default:
1084 if (c->dcache.waysize > PAGE_SIZE)
1085 c->dcache.flags |= MIPS_CACHE_ALIASES;
1086 }
1087
1088 switch (c->cputype) {
1089 case CPU_20KC:
1090 /*
1091 * Some older 20Kc chips doesn't have the 'VI' bit in
1092 * the config register.
1093 */
1094 c->icache.flags |= MIPS_CACHE_VTAG;
1095 break;
1096
1097 case CPU_ALCHEMY:
1098 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1099 break;
1100 }
1101
1102 #ifdef CONFIG_CPU_LOONGSON2
1103 /*
1104 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1105 * one op will act on all 4 ways
1106 */
1107 c->icache.ways = 1;
1108 #endif
1109
1110 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1111 icache_size >> 10,
1112 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1113 way_string[c->icache.ways], c->icache.linesz);
1114
1115 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1116 dcache_size >> 10, way_string[c->dcache.ways],
1117 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1118 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1119 "cache aliases" : "no aliases",
1120 c->dcache.linesz);
1121 }
1122
1123 /*
1124 * If you even _breathe_ on this function, look at the gcc output and make sure
1125 * it does not pop things on and off the stack for the cache sizing loop that
1126 * executes in KSEG1 space or else you will crash and burn badly. You have
1127 * been warned.
1128 */
1129 static int __cpuinit probe_scache(void)
1130 {
1131 unsigned long flags, addr, begin, end, pow2;
1132 unsigned int config = read_c0_config();
1133 struct cpuinfo_mips *c = &current_cpu_data;
1134
1135 if (config & CONF_SC)
1136 return 0;
1137
1138 begin = (unsigned long) &_stext;
1139 begin &= ~((4 * 1024 * 1024) - 1);
1140 end = begin + (4 * 1024 * 1024);
1141
1142 /*
1143 * This is such a bitch, you'd think they would make it easy to do
1144 * this. Away you daemons of stupidity!
1145 */
1146 local_irq_save(flags);
1147
1148 /* Fill each size-multiple cache line with a valid tag. */
1149 pow2 = (64 * 1024);
1150 for (addr = begin; addr < end; addr = (begin + pow2)) {
1151 unsigned long *p = (unsigned long *) addr;
1152 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1153 pow2 <<= 1;
1154 }
1155
1156 /* Load first line with zero (therefore invalid) tag. */
1157 write_c0_taglo(0);
1158 write_c0_taghi(0);
1159 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1160 cache_op(Index_Store_Tag_I, begin);
1161 cache_op(Index_Store_Tag_D, begin);
1162 cache_op(Index_Store_Tag_SD, begin);
1163
1164 /* Now search for the wrap around point. */
1165 pow2 = (128 * 1024);
1166 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1167 cache_op(Index_Load_Tag_SD, addr);
1168 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1169 if (!read_c0_taglo())
1170 break;
1171 pow2 <<= 1;
1172 }
1173 local_irq_restore(flags);
1174 addr -= begin;
1175
1176 scache_size = addr;
1177 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1178 c->scache.ways = 1;
1179 c->dcache.waybit = 0; /* does not matter */
1180
1181 return 1;
1182 }
1183
1184 #if defined(CONFIG_CPU_LOONGSON2)
1185 static void __init loongson2_sc_init(void)
1186 {
1187 struct cpuinfo_mips *c = &current_cpu_data;
1188
1189 scache_size = 512*1024;
1190 c->scache.linesz = 32;
1191 c->scache.ways = 4;
1192 c->scache.waybit = 0;
1193 c->scache.waysize = scache_size / (c->scache.ways);
1194 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1195 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1196 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1197
1198 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1199 }
1200 #endif
1201
1202 extern int r5k_sc_init(void);
1203 extern int rm7k_sc_init(void);
1204 extern int mips_sc_init(void);
1205
1206 static void __cpuinit setup_scache(void)
1207 {
1208 struct cpuinfo_mips *c = &current_cpu_data;
1209 unsigned int config = read_c0_config();
1210 int sc_present = 0;
1211
1212 /*
1213 * Do the probing thing on R4000SC and R4400SC processors. Other
1214 * processors don't have a S-cache that would be relevant to the
1215 * Linux memory management.
1216 */
1217 switch (c->cputype) {
1218 case CPU_R4000SC:
1219 case CPU_R4000MC:
1220 case CPU_R4400SC:
1221 case CPU_R4400MC:
1222 sc_present = run_uncached(probe_scache);
1223 if (sc_present)
1224 c->options |= MIPS_CPU_CACHE_CDEX_S;
1225 break;
1226
1227 case CPU_R10000:
1228 case CPU_R12000:
1229 case CPU_R14000:
1230 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1231 c->scache.linesz = 64 << ((config >> 13) & 1);
1232 c->scache.ways = 2;
1233 c->scache.waybit= 0;
1234 sc_present = 1;
1235 break;
1236
1237 case CPU_R5000:
1238 case CPU_NEVADA:
1239 #ifdef CONFIG_R5000_CPU_SCACHE
1240 r5k_sc_init();
1241 #endif
1242 return;
1243
1244 case CPU_RM7000:
1245 #ifdef CONFIG_RM7000_CPU_SCACHE
1246 rm7k_sc_init();
1247 #endif
1248 return;
1249
1250 #if defined(CONFIG_CPU_LOONGSON2)
1251 case CPU_LOONGSON2:
1252 loongson2_sc_init();
1253 return;
1254 #endif
1255 case CPU_XLP:
1256 /* don't need to worry about L2, fully coherent */
1257 return;
1258
1259 default:
1260 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1261 MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M64R2)) {
1262 #ifdef CONFIG_MIPS_CPU_SCACHE
1263 if (mips_sc_init ()) {
1264 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1265 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1266 scache_size >> 10,
1267 way_string[c->scache.ways], c->scache.linesz);
1268 }
1269 #else
1270 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1271 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1272 #endif
1273 return;
1274 }
1275 sc_present = 0;
1276 }
1277
1278 if (!sc_present)
1279 return;
1280
1281 /* compute a couple of other cache variables */
1282 c->scache.waysize = scache_size / c->scache.ways;
1283
1284 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1285
1286 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1287 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1288
1289 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1290 }
1291
1292 void au1x00_fixup_config_od(void)
1293 {
1294 /*
1295 * c0_config.od (bit 19) was write only (and read as 0)
1296 * on the early revisions of Alchemy SOCs. It disables the bus
1297 * transaction overlapping and needs to be set to fix various errata.
1298 */
1299 switch (read_c0_prid()) {
1300 case 0x00030100: /* Au1000 DA */
1301 case 0x00030201: /* Au1000 HA */
1302 case 0x00030202: /* Au1000 HB */
1303 case 0x01030200: /* Au1500 AB */
1304 /*
1305 * Au1100 errata actually keeps silence about this bit, so we set it
1306 * just in case for those revisions that require it to be set according
1307 * to the (now gone) cpu table.
1308 */
1309 case 0x02030200: /* Au1100 AB */
1310 case 0x02030201: /* Au1100 BA */
1311 case 0x02030202: /* Au1100 BC */
1312 set_c0_config(1 << 19);
1313 break;
1314 }
1315 }
1316
1317 /* CP0 hazard avoidance. */
1318 #define NXP_BARRIER() \
1319 __asm__ __volatile__( \
1320 ".set noreorder\n\t" \
1321 "nop; nop; nop; nop; nop; nop;\n\t" \
1322 ".set reorder\n\t")
1323
1324 static void nxp_pr4450_fixup_config(void)
1325 {
1326 unsigned long config0;
1327
1328 config0 = read_c0_config();
1329
1330 /* clear all three cache coherency fields */
1331 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1332 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1333 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1334 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1335 write_c0_config(config0);
1336 NXP_BARRIER();
1337 }
1338
1339 static int __cpuinitdata cca = -1;
1340
1341 static int __init cca_setup(char *str)
1342 {
1343 get_option(&str, &cca);
1344
1345 return 0;
1346 }
1347
1348 early_param("cca", cca_setup);
1349
1350 static void __cpuinit coherency_setup(void)
1351 {
1352 if (cca < 0 || cca > 7)
1353 cca = read_c0_config() & CONF_CM_CMASK;
1354 _page_cachable_default = cca << _CACHE_SHIFT;
1355
1356 pr_debug("Using cache attribute %d\n", cca);
1357 change_c0_config(CONF_CM_CMASK, cca);
1358
1359 /*
1360 * c0_status.cu=0 specifies that updates by the sc instruction use
1361 * the coherency mode specified by the TLB; 1 means cachable
1362 * coherent update on write will be used. Not all processors have
1363 * this bit and; some wire it to zero, others like Toshiba had the
1364 * silly idea of putting something else there ...
1365 */
1366 switch (current_cpu_type()) {
1367 case CPU_R4000PC:
1368 case CPU_R4000SC:
1369 case CPU_R4000MC:
1370 case CPU_R4400PC:
1371 case CPU_R4400SC:
1372 case CPU_R4400MC:
1373 clear_c0_config(CONF_CU);
1374 break;
1375 /*
1376 * We need to catch the early Alchemy SOCs with
1377 * the write-only co_config.od bit and set it back to one on:
1378 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1379 */
1380 case CPU_ALCHEMY:
1381 au1x00_fixup_config_od();
1382 break;
1383
1384 case PRID_IMP_PR4450:
1385 nxp_pr4450_fixup_config();
1386 break;
1387 }
1388 }
1389
1390 static void __cpuinit r4k_cache_error_setup(void)
1391 {
1392 extern char __weak except_vec2_generic;
1393 extern char __weak except_vec2_sb1;
1394 struct cpuinfo_mips *c = &current_cpu_data;
1395
1396 switch (c->cputype) {
1397 case CPU_SB1:
1398 case CPU_SB1A:
1399 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1400 break;
1401
1402 default:
1403 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1404 break;
1405 }
1406 }
1407
1408 void __cpuinit r4k_cache_init(void)
1409 {
1410 extern void build_clear_page(void);
1411 extern void build_copy_page(void);
1412 struct cpuinfo_mips *c = &current_cpu_data;
1413
1414 probe_pcache();
1415 setup_scache();
1416
1417 r4k_blast_dcache_page_setup();
1418 r4k_blast_dcache_page_indexed_setup();
1419 r4k_blast_dcache_setup();
1420 r4k_blast_icache_page_setup();
1421 r4k_blast_icache_page_indexed_setup();
1422 r4k_blast_icache_setup();
1423 r4k_blast_scache_page_setup();
1424 r4k_blast_scache_page_indexed_setup();
1425 r4k_blast_scache_setup();
1426
1427 /*
1428 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1429 * This code supports virtually indexed processors and will be
1430 * unnecessarily inefficient on physically indexed processors.
1431 */
1432 if (c->dcache.linesz)
1433 shm_align_mask = max_t( unsigned long,
1434 c->dcache.sets * c->dcache.linesz - 1,
1435 PAGE_SIZE - 1);
1436 else
1437 shm_align_mask = PAGE_SIZE-1;
1438
1439 __flush_cache_vmap = r4k__flush_cache_vmap;
1440 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1441
1442 flush_cache_all = cache_noop;
1443 __flush_cache_all = r4k___flush_cache_all;
1444 flush_cache_mm = r4k_flush_cache_mm;
1445 flush_cache_page = r4k_flush_cache_page;
1446 flush_cache_range = r4k_flush_cache_range;
1447
1448 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1449
1450 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1451 flush_icache_all = r4k_flush_icache_all;
1452 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1453 flush_data_cache_page = r4k_flush_data_cache_page;
1454 flush_icache_range = r4k_flush_icache_range;
1455 local_flush_icache_range = local_r4k_flush_icache_range;
1456
1457 #if defined(CONFIG_DMA_NONCOHERENT)
1458 if (coherentio) {
1459 _dma_cache_wback_inv = (void *)cache_noop;
1460 _dma_cache_wback = (void *)cache_noop;
1461 _dma_cache_inv = (void *)cache_noop;
1462 } else {
1463 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1464 _dma_cache_wback = r4k_dma_cache_wback_inv;
1465 _dma_cache_inv = r4k_dma_cache_inv;
1466 }
1467 #endif
1468
1469 build_clear_page();
1470 build_copy_page();
1471
1472 /*
1473 * We want to run CMP kernels on core with and without coherent
1474 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1475 * or not to flush caches.
1476 */
1477 local_r4k___flush_cache_all(NULL);
1478
1479 coherency_setup();
1480 board_cache_error_setup = r4k_cache_error_setup;
1481 }