Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
343e0d7a 207 struct kmem_cache *cachep;
b28a02de 208 void *addr;
1da177e4
LT
209};
210
5bfe53a7
LJ
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230};
231
1da177e4
LT
232/*
233 * struct array_cache
234 *
1da177e4
LT
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
e498be7d 249 spinlock_t lock;
bda5b655 250 void *entry[]; /*
a737b3e2
AM
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
072bb0aa
MG
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 258 */
1da177e4
LT
259};
260
072bb0aa
MG
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
e498be7d
CL
288/*
289 * Need this for bootstrapping a per node allocator.
290 */
556a169d 291#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 292static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 293#define CACHE_CACHE 0
556a169d 294#define SIZE_AC MAX_NUMNODES
ce8eb6c4 295#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 296
ed11d9eb 297static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 298 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
299static void free_block(struct kmem_cache *cachep, void **objpp, int len,
300 int node);
83b519e8 301static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 302static void cache_reap(struct work_struct *unused);
ed11d9eb 303
e0a42726
IM
304static int slab_early_init = 1;
305
e3366016 306#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 307#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 308
ce8eb6c4 309static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
310{
311 INIT_LIST_HEAD(&parent->slabs_full);
312 INIT_LIST_HEAD(&parent->slabs_partial);
313 INIT_LIST_HEAD(&parent->slabs_free);
314 parent->shared = NULL;
315 parent->alien = NULL;
2e1217cf 316 parent->colour_next = 0;
e498be7d
CL
317 spin_lock_init(&parent->list_lock);
318 parent->free_objects = 0;
319 parent->free_touched = 0;
320}
321
a737b3e2
AM
322#define MAKE_LIST(cachep, listp, slab, nodeid) \
323 do { \
324 INIT_LIST_HEAD(listp); \
6a67368c 325 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
326 } while (0)
327
a737b3e2
AM
328#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
329 do { \
e498be7d
CL
330 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
331 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
332 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
333 } while (0)
1da177e4 334
1da177e4
LT
335#define CFLGS_OFF_SLAB (0x80000000UL)
336#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
337
338#define BATCHREFILL_LIMIT 16
a737b3e2
AM
339/*
340 * Optimization question: fewer reaps means less probability for unnessary
341 * cpucache drain/refill cycles.
1da177e4 342 *
dc6f3f27 343 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
344 * which could lock up otherwise freeable slabs.
345 */
346#define REAPTIMEOUT_CPUC (2*HZ)
347#define REAPTIMEOUT_LIST3 (4*HZ)
348
349#if STATS
350#define STATS_INC_ACTIVE(x) ((x)->num_active++)
351#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
352#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
353#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 354#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
355#define STATS_SET_HIGH(x) \
356 do { \
357 if ((x)->num_active > (x)->high_mark) \
358 (x)->high_mark = (x)->num_active; \
359 } while (0)
1da177e4
LT
360#define STATS_INC_ERR(x) ((x)->errors++)
361#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 362#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 363#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
364#define STATS_SET_FREEABLE(x, i) \
365 do { \
366 if ((x)->max_freeable < i) \
367 (x)->max_freeable = i; \
368 } while (0)
1da177e4
LT
369#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
370#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
371#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
372#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
373#else
374#define STATS_INC_ACTIVE(x) do { } while (0)
375#define STATS_DEC_ACTIVE(x) do { } while (0)
376#define STATS_INC_ALLOCED(x) do { } while (0)
377#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 378#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
379#define STATS_SET_HIGH(x) do { } while (0)
380#define STATS_INC_ERR(x) do { } while (0)
381#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 382#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 383#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 384#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
385#define STATS_INC_ALLOCHIT(x) do { } while (0)
386#define STATS_INC_ALLOCMISS(x) do { } while (0)
387#define STATS_INC_FREEHIT(x) do { } while (0)
388#define STATS_INC_FREEMISS(x) do { } while (0)
389#endif
390
391#if DEBUG
1da177e4 392
a737b3e2
AM
393/*
394 * memory layout of objects:
1da177e4 395 * 0 : objp
3dafccf2 396 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
397 * the end of an object is aligned with the end of the real
398 * allocation. Catches writes behind the end of the allocation.
3dafccf2 399 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 400 * redzone word.
3dafccf2 401 * cachep->obj_offset: The real object.
3b0efdfa
CL
402 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
403 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 404 * [BYTES_PER_WORD long]
1da177e4 405 */
343e0d7a 406static int obj_offset(struct kmem_cache *cachep)
1da177e4 407{
3dafccf2 408 return cachep->obj_offset;
1da177e4
LT
409}
410
b46b8f19 411static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
412{
413 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
414 return (unsigned long long*) (objp + obj_offset(cachep) -
415 sizeof(unsigned long long));
1da177e4
LT
416}
417
b46b8f19 418static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
419{
420 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
421 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 422 return (unsigned long long *)(objp + cachep->size -
b46b8f19 423 sizeof(unsigned long long) -
87a927c7 424 REDZONE_ALIGN);
3b0efdfa 425 return (unsigned long long *) (objp + cachep->size -
b46b8f19 426 sizeof(unsigned long long));
1da177e4
LT
427}
428
343e0d7a 429static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
430{
431 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 432 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
433}
434
435#else
436
3dafccf2 437#define obj_offset(x) 0
b46b8f19
DW
438#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
439#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
440#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
441
442#endif
443
1da177e4 444/*
3df1cccd
DR
445 * Do not go above this order unless 0 objects fit into the slab or
446 * overridden on the command line.
1da177e4 447 */
543585cc
DR
448#define SLAB_MAX_ORDER_HI 1
449#define SLAB_MAX_ORDER_LO 0
450static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 451static bool slab_max_order_set __initdata;
1da177e4 452
6ed5eb22
PE
453static inline struct kmem_cache *virt_to_cache(const void *obj)
454{
b49af68f 455 struct page *page = virt_to_head_page(obj);
35026088 456 return page->slab_cache;
6ed5eb22
PE
457}
458
459static inline struct slab *virt_to_slab(const void *obj)
460{
b49af68f 461 struct page *page = virt_to_head_page(obj);
35026088
CL
462
463 VM_BUG_ON(!PageSlab(page));
464 return page->slab_page;
6ed5eb22
PE
465}
466
8fea4e96
PE
467static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
468 unsigned int idx)
469{
3b0efdfa 470 return slab->s_mem + cache->size * idx;
8fea4e96
PE
471}
472
6a2d7a95 473/*
3b0efdfa
CL
474 * We want to avoid an expensive divide : (offset / cache->size)
475 * Using the fact that size is a constant for a particular cache,
476 * we can replace (offset / cache->size) by
6a2d7a95
ED
477 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
478 */
479static inline unsigned int obj_to_index(const struct kmem_cache *cache,
480 const struct slab *slab, void *obj)
8fea4e96 481{
6a2d7a95
ED
482 u32 offset = (obj - slab->s_mem);
483 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
484}
485
1da177e4 486static struct arraycache_init initarray_generic =
b28a02de 487 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
488
489/* internal cache of cache description objs */
9b030cb8 490static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
491 .batchcount = 1,
492 .limit = BOOT_CPUCACHE_ENTRIES,
493 .shared = 1,
3b0efdfa 494 .size = sizeof(struct kmem_cache),
b28a02de 495 .name = "kmem_cache",
1da177e4
LT
496};
497
056c6241
RT
498#define BAD_ALIEN_MAGIC 0x01020304ul
499
f1aaee53
AV
500#ifdef CONFIG_LOCKDEP
501
502/*
503 * Slab sometimes uses the kmalloc slabs to store the slab headers
504 * for other slabs "off slab".
505 * The locking for this is tricky in that it nests within the locks
506 * of all other slabs in a few places; to deal with this special
507 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
508 *
509 * We set lock class for alien array caches which are up during init.
510 * The lock annotation will be lost if all cpus of a node goes down and
511 * then comes back up during hotplug
f1aaee53 512 */
056c6241
RT
513static struct lock_class_key on_slab_l3_key;
514static struct lock_class_key on_slab_alc_key;
515
83835b3d
PZ
516static struct lock_class_key debugobj_l3_key;
517static struct lock_class_key debugobj_alc_key;
518
519static void slab_set_lock_classes(struct kmem_cache *cachep,
520 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
521 int q)
522{
523 struct array_cache **alc;
ce8eb6c4 524 struct kmem_cache_node *n;
83835b3d
PZ
525 int r;
526
ce8eb6c4
CL
527 n = cachep->node[q];
528 if (!n)
83835b3d
PZ
529 return;
530
ce8eb6c4
CL
531 lockdep_set_class(&n->list_lock, l3_key);
532 alc = n->alien;
83835b3d
PZ
533 /*
534 * FIXME: This check for BAD_ALIEN_MAGIC
535 * should go away when common slab code is taught to
536 * work even without alien caches.
537 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
538 * for alloc_alien_cache,
539 */
540 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
541 return;
542 for_each_node(r) {
543 if (alc[r])
544 lockdep_set_class(&alc[r]->lock, alc_key);
545 }
546}
547
548static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
549{
550 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
551}
552
553static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
554{
555 int node;
556
557 for_each_online_node(node)
558 slab_set_debugobj_lock_classes_node(cachep, node);
559}
560
ce79ddc8 561static void init_node_lock_keys(int q)
f1aaee53 562{
e3366016 563 int i;
056c6241 564
97d06609 565 if (slab_state < UP)
ce79ddc8
PE
566 return;
567
002b98a8 568 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 569 struct kmem_cache_node *n;
e3366016
CL
570 struct kmem_cache *cache = kmalloc_caches[i];
571
572 if (!cache)
573 continue;
ce79ddc8 574
ce8eb6c4
CL
575 n = cache->node[q];
576 if (!n || OFF_SLAB(cache))
00afa758 577 continue;
83835b3d 578
e3366016 579 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 580 &on_slab_alc_key, q);
f1aaee53
AV
581 }
582}
ce79ddc8 583
6ccfb5bc
GC
584static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
585{
6a67368c 586 if (!cachep->node[q])
6ccfb5bc
GC
587 return;
588
589 slab_set_lock_classes(cachep, &on_slab_l3_key,
590 &on_slab_alc_key, q);
591}
592
593static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594{
595 int node;
596
597 VM_BUG_ON(OFF_SLAB(cachep));
598 for_each_node(node)
599 on_slab_lock_classes_node(cachep, node);
600}
601
ce79ddc8
PE
602static inline void init_lock_keys(void)
603{
604 int node;
605
606 for_each_node(node)
607 init_node_lock_keys(node);
608}
f1aaee53 609#else
ce79ddc8
PE
610static void init_node_lock_keys(int q)
611{
612}
613
056c6241 614static inline void init_lock_keys(void)
f1aaee53
AV
615{
616}
83835b3d 617
6ccfb5bc
GC
618static inline void on_slab_lock_classes(struct kmem_cache *cachep)
619{
620}
621
622static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
623{
624}
625
83835b3d
PZ
626static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
627{
628}
629
630static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
631{
632}
f1aaee53
AV
633#endif
634
1871e52c 635static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 636
343e0d7a 637static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
638{
639 return cachep->array[smp_processor_id()];
640}
641
fbaccacf 642static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 643{
fbaccacf
SR
644 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
645}
1da177e4 646
a737b3e2
AM
647/*
648 * Calculate the number of objects and left-over bytes for a given buffer size.
649 */
fbaccacf
SR
650static void cache_estimate(unsigned long gfporder, size_t buffer_size,
651 size_t align, int flags, size_t *left_over,
652 unsigned int *num)
653{
654 int nr_objs;
655 size_t mgmt_size;
656 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 657
fbaccacf
SR
658 /*
659 * The slab management structure can be either off the slab or
660 * on it. For the latter case, the memory allocated for a
661 * slab is used for:
662 *
663 * - The struct slab
664 * - One kmem_bufctl_t for each object
665 * - Padding to respect alignment of @align
666 * - @buffer_size bytes for each object
667 *
668 * If the slab management structure is off the slab, then the
669 * alignment will already be calculated into the size. Because
670 * the slabs are all pages aligned, the objects will be at the
671 * correct alignment when allocated.
672 */
673 if (flags & CFLGS_OFF_SLAB) {
674 mgmt_size = 0;
675 nr_objs = slab_size / buffer_size;
676
677 if (nr_objs > SLAB_LIMIT)
678 nr_objs = SLAB_LIMIT;
679 } else {
680 /*
681 * Ignore padding for the initial guess. The padding
682 * is at most @align-1 bytes, and @buffer_size is at
683 * least @align. In the worst case, this result will
684 * be one greater than the number of objects that fit
685 * into the memory allocation when taking the padding
686 * into account.
687 */
688 nr_objs = (slab_size - sizeof(struct slab)) /
689 (buffer_size + sizeof(kmem_bufctl_t));
690
691 /*
692 * This calculated number will be either the right
693 * amount, or one greater than what we want.
694 */
695 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
696 > slab_size)
697 nr_objs--;
698
699 if (nr_objs > SLAB_LIMIT)
700 nr_objs = SLAB_LIMIT;
701
702 mgmt_size = slab_mgmt_size(nr_objs, align);
703 }
704 *num = nr_objs;
705 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
706}
707
f28510d3 708#if DEBUG
d40cee24 709#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 710
a737b3e2
AM
711static void __slab_error(const char *function, struct kmem_cache *cachep,
712 char *msg)
1da177e4
LT
713{
714 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 715 function, cachep->name, msg);
1da177e4 716 dump_stack();
373d4d09 717 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 718}
f28510d3 719#endif
1da177e4 720
3395ee05
PM
721/*
722 * By default on NUMA we use alien caches to stage the freeing of
723 * objects allocated from other nodes. This causes massive memory
724 * inefficiencies when using fake NUMA setup to split memory into a
725 * large number of small nodes, so it can be disabled on the command
726 * line
727 */
728
729static int use_alien_caches __read_mostly = 1;
730static int __init noaliencache_setup(char *s)
731{
732 use_alien_caches = 0;
733 return 1;
734}
735__setup("noaliencache", noaliencache_setup);
736
3df1cccd
DR
737static int __init slab_max_order_setup(char *str)
738{
739 get_option(&str, &slab_max_order);
740 slab_max_order = slab_max_order < 0 ? 0 :
741 min(slab_max_order, MAX_ORDER - 1);
742 slab_max_order_set = true;
743
744 return 1;
745}
746__setup("slab_max_order=", slab_max_order_setup);
747
8fce4d8e
CL
748#ifdef CONFIG_NUMA
749/*
750 * Special reaping functions for NUMA systems called from cache_reap().
751 * These take care of doing round robin flushing of alien caches (containing
752 * objects freed on different nodes from which they were allocated) and the
753 * flushing of remote pcps by calling drain_node_pages.
754 */
1871e52c 755static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
756
757static void init_reap_node(int cpu)
758{
759 int node;
760
7d6e6d09 761 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 762 if (node == MAX_NUMNODES)
442295c9 763 node = first_node(node_online_map);
8fce4d8e 764
1871e52c 765 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
766}
767
768static void next_reap_node(void)
769{
909ea964 770 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 771
8fce4d8e
CL
772 node = next_node(node, node_online_map);
773 if (unlikely(node >= MAX_NUMNODES))
774 node = first_node(node_online_map);
909ea964 775 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
776}
777
778#else
779#define init_reap_node(cpu) do { } while (0)
780#define next_reap_node(void) do { } while (0)
781#endif
782
1da177e4
LT
783/*
784 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
785 * via the workqueue/eventd.
786 * Add the CPU number into the expiration time to minimize the possibility of
787 * the CPUs getting into lockstep and contending for the global cache chain
788 * lock.
789 */
897e679b 790static void __cpuinit start_cpu_timer(int cpu)
1da177e4 791{
1871e52c 792 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
793
794 /*
795 * When this gets called from do_initcalls via cpucache_init(),
796 * init_workqueues() has already run, so keventd will be setup
797 * at that time.
798 */
52bad64d 799 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 800 init_reap_node(cpu);
203b42f7 801 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
802 schedule_delayed_work_on(cpu, reap_work,
803 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
804 }
805}
806
e498be7d 807static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 808 int batchcount, gfp_t gfp)
1da177e4 809{
b28a02de 810 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
811 struct array_cache *nc = NULL;
812
83b519e8 813 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
814 /*
815 * The array_cache structures contain pointers to free object.
25985edc 816 * However, when such objects are allocated or transferred to another
d5cff635
CM
817 * cache the pointers are not cleared and they could be counted as
818 * valid references during a kmemleak scan. Therefore, kmemleak must
819 * not scan such objects.
820 */
821 kmemleak_no_scan(nc);
1da177e4
LT
822 if (nc) {
823 nc->avail = 0;
824 nc->limit = entries;
825 nc->batchcount = batchcount;
826 nc->touched = 0;
e498be7d 827 spin_lock_init(&nc->lock);
1da177e4
LT
828 }
829 return nc;
830}
831
072bb0aa
MG
832static inline bool is_slab_pfmemalloc(struct slab *slabp)
833{
834 struct page *page = virt_to_page(slabp->s_mem);
835
836 return PageSlabPfmemalloc(page);
837}
838
839/* Clears pfmemalloc_active if no slabs have pfmalloc set */
840static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
841 struct array_cache *ac)
842{
ce8eb6c4 843 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
072bb0aa
MG
844 struct slab *slabp;
845 unsigned long flags;
846
847 if (!pfmemalloc_active)
848 return;
849
ce8eb6c4
CL
850 spin_lock_irqsave(&n->list_lock, flags);
851 list_for_each_entry(slabp, &n->slabs_full, list)
072bb0aa
MG
852 if (is_slab_pfmemalloc(slabp))
853 goto out;
854
ce8eb6c4 855 list_for_each_entry(slabp, &n->slabs_partial, list)
072bb0aa
MG
856 if (is_slab_pfmemalloc(slabp))
857 goto out;
858
ce8eb6c4 859 list_for_each_entry(slabp, &n->slabs_free, list)
072bb0aa
MG
860 if (is_slab_pfmemalloc(slabp))
861 goto out;
862
863 pfmemalloc_active = false;
864out:
ce8eb6c4 865 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
866}
867
381760ea 868static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
869 gfp_t flags, bool force_refill)
870{
871 int i;
872 void *objp = ac->entry[--ac->avail];
873
874 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
875 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 876 struct kmem_cache_node *n;
072bb0aa
MG
877
878 if (gfp_pfmemalloc_allowed(flags)) {
879 clear_obj_pfmemalloc(&objp);
880 return objp;
881 }
882
883 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 884 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
885 /* If a !PFMEMALLOC object is found, swap them */
886 if (!is_obj_pfmemalloc(ac->entry[i])) {
887 objp = ac->entry[i];
888 ac->entry[i] = ac->entry[ac->avail];
889 ac->entry[ac->avail] = objp;
890 return objp;
891 }
892 }
893
894 /*
895 * If there are empty slabs on the slabs_free list and we are
896 * being forced to refill the cache, mark this one !pfmemalloc.
897 */
ce8eb6c4
CL
898 n = cachep->node[numa_mem_id()];
899 if (!list_empty(&n->slabs_free) && force_refill) {
072bb0aa 900 struct slab *slabp = virt_to_slab(objp);
30c29bea 901 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
902 clear_obj_pfmemalloc(&objp);
903 recheck_pfmemalloc_active(cachep, ac);
904 return objp;
905 }
906
907 /* No !PFMEMALLOC objects available */
908 ac->avail++;
909 objp = NULL;
910 }
911
912 return objp;
913}
914
381760ea
MG
915static inline void *ac_get_obj(struct kmem_cache *cachep,
916 struct array_cache *ac, gfp_t flags, bool force_refill)
917{
918 void *objp;
919
920 if (unlikely(sk_memalloc_socks()))
921 objp = __ac_get_obj(cachep, ac, flags, force_refill);
922 else
923 objp = ac->entry[--ac->avail];
924
925 return objp;
926}
927
928static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
929 void *objp)
930{
931 if (unlikely(pfmemalloc_active)) {
932 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 933 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
934 if (PageSlabPfmemalloc(page))
935 set_obj_pfmemalloc(&objp);
936 }
937
381760ea
MG
938 return objp;
939}
940
941static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
942 void *objp)
943{
944 if (unlikely(sk_memalloc_socks()))
945 objp = __ac_put_obj(cachep, ac, objp);
946
072bb0aa
MG
947 ac->entry[ac->avail++] = objp;
948}
949
3ded175a
CL
950/*
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
953 *
954 * Return the number of entries transferred.
955 */
956static int transfer_objects(struct array_cache *to,
957 struct array_cache *from, unsigned int max)
958{
959 /* Figure out how many entries to transfer */
732eacc0 960 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
961
962 if (!nr)
963 return 0;
964
965 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 sizeof(void *) *nr);
967
968 from->avail -= nr;
969 to->avail += nr;
3ded175a
CL
970 return nr;
971}
972
765c4507
CL
973#ifndef CONFIG_NUMA
974
975#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 976#define reap_alien(cachep, n) do { } while (0)
765c4507 977
83b519e8 978static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
979{
980 return (struct array_cache **)BAD_ALIEN_MAGIC;
981}
982
983static inline void free_alien_cache(struct array_cache **ac_ptr)
984{
985}
986
987static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988{
989 return 0;
990}
991
992static inline void *alternate_node_alloc(struct kmem_cache *cachep,
993 gfp_t flags)
994{
995 return NULL;
996}
997
8b98c169 998static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
999 gfp_t flags, int nodeid)
1000{
1001 return NULL;
1002}
1003
1004#else /* CONFIG_NUMA */
1005
8b98c169 1006static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1007static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1008
83b519e8 1009static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1010{
1011 struct array_cache **ac_ptr;
8ef82866 1012 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1013 int i;
1014
1015 if (limit > 1)
1016 limit = 12;
f3186a9c 1017 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1018 if (ac_ptr) {
1019 for_each_node(i) {
f3186a9c 1020 if (i == node || !node_online(i))
e498be7d 1021 continue;
83b519e8 1022 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1023 if (!ac_ptr[i]) {
cc550def 1024 for (i--; i >= 0; i--)
e498be7d
CL
1025 kfree(ac_ptr[i]);
1026 kfree(ac_ptr);
1027 return NULL;
1028 }
1029 }
1030 }
1031 return ac_ptr;
1032}
1033
5295a74c 1034static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1035{
1036 int i;
1037
1038 if (!ac_ptr)
1039 return;
e498be7d 1040 for_each_node(i)
b28a02de 1041 kfree(ac_ptr[i]);
e498be7d
CL
1042 kfree(ac_ptr);
1043}
1044
343e0d7a 1045static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1046 struct array_cache *ac, int node)
e498be7d 1047{
ce8eb6c4 1048 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
1049
1050 if (ac->avail) {
ce8eb6c4 1051 spin_lock(&n->list_lock);
e00946fe
CL
1052 /*
1053 * Stuff objects into the remote nodes shared array first.
1054 * That way we could avoid the overhead of putting the objects
1055 * into the free lists and getting them back later.
1056 */
ce8eb6c4
CL
1057 if (n->shared)
1058 transfer_objects(n->shared, ac, ac->limit);
e00946fe 1059
ff69416e 1060 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 1061 ac->avail = 0;
ce8eb6c4 1062 spin_unlock(&n->list_lock);
e498be7d
CL
1063 }
1064}
1065
8fce4d8e
CL
1066/*
1067 * Called from cache_reap() to regularly drain alien caches round robin.
1068 */
ce8eb6c4 1069static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1070{
909ea964 1071 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1072
ce8eb6c4
CL
1073 if (n->alien) {
1074 struct array_cache *ac = n->alien[node];
e00946fe
CL
1075
1076 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1077 __drain_alien_cache(cachep, ac, node);
1078 spin_unlock_irq(&ac->lock);
1079 }
1080 }
1081}
1082
a737b3e2
AM
1083static void drain_alien_cache(struct kmem_cache *cachep,
1084 struct array_cache **alien)
e498be7d 1085{
b28a02de 1086 int i = 0;
e498be7d
CL
1087 struct array_cache *ac;
1088 unsigned long flags;
1089
1090 for_each_online_node(i) {
4484ebf1 1091 ac = alien[i];
e498be7d
CL
1092 if (ac) {
1093 spin_lock_irqsave(&ac->lock, flags);
1094 __drain_alien_cache(cachep, ac, i);
1095 spin_unlock_irqrestore(&ac->lock, flags);
1096 }
1097 }
1098}
729bd0b7 1099
873623df 1100static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1101{
1102 struct slab *slabp = virt_to_slab(objp);
1103 int nodeid = slabp->nodeid;
ce8eb6c4 1104 struct kmem_cache_node *n;
729bd0b7 1105 struct array_cache *alien = NULL;
1ca4cb24
PE
1106 int node;
1107
7d6e6d09 1108 node = numa_mem_id();
729bd0b7
PE
1109
1110 /*
1111 * Make sure we are not freeing a object from another node to the array
1112 * cache on this cpu.
1113 */
62918a03 1114 if (likely(slabp->nodeid == node))
729bd0b7
PE
1115 return 0;
1116
ce8eb6c4 1117 n = cachep->node[node];
729bd0b7 1118 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1119 if (n->alien && n->alien[nodeid]) {
1120 alien = n->alien[nodeid];
873623df 1121 spin_lock(&alien->lock);
729bd0b7
PE
1122 if (unlikely(alien->avail == alien->limit)) {
1123 STATS_INC_ACOVERFLOW(cachep);
1124 __drain_alien_cache(cachep, alien, nodeid);
1125 }
072bb0aa 1126 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1127 spin_unlock(&alien->lock);
1128 } else {
6a67368c 1129 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1130 free_block(cachep, &objp, 1, nodeid);
6a67368c 1131 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1132 }
1133 return 1;
1134}
e498be7d
CL
1135#endif
1136
8f9f8d9e 1137/*
6a67368c 1138 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1139 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1140 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1141 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1142 * already in use.
1143 *
18004c5d 1144 * Must hold slab_mutex.
8f9f8d9e 1145 */
6a67368c 1146static int init_cache_node_node(int node)
8f9f8d9e
DR
1147{
1148 struct kmem_cache *cachep;
ce8eb6c4 1149 struct kmem_cache_node *n;
6744f087 1150 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1151
18004c5d 1152 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1153 /*
1154 * Set up the size64 kmemlist for cpu before we can
1155 * begin anything. Make sure some other cpu on this
1156 * node has not already allocated this
1157 */
6a67368c 1158 if (!cachep->node[node]) {
ce8eb6c4
CL
1159 n = kmalloc_node(memsize, GFP_KERNEL, node);
1160 if (!n)
8f9f8d9e 1161 return -ENOMEM;
ce8eb6c4
CL
1162 kmem_cache_node_init(n);
1163 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1164 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1165
1166 /*
1167 * The l3s don't come and go as CPUs come and
18004c5d 1168 * go. slab_mutex is sufficient
8f9f8d9e
DR
1169 * protection here.
1170 */
ce8eb6c4 1171 cachep->node[node] = n;
8f9f8d9e
DR
1172 }
1173
6a67368c
CL
1174 spin_lock_irq(&cachep->node[node]->list_lock);
1175 cachep->node[node]->free_limit =
8f9f8d9e
DR
1176 (1 + nr_cpus_node(node)) *
1177 cachep->batchcount + cachep->num;
6a67368c 1178 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1179 }
1180 return 0;
1181}
1182
fbf1e473
AM
1183static void __cpuinit cpuup_canceled(long cpu)
1184{
1185 struct kmem_cache *cachep;
ce8eb6c4 1186 struct kmem_cache_node *n = NULL;
7d6e6d09 1187 int node = cpu_to_mem(cpu);
a70f7302 1188 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1189
18004c5d 1190 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1191 struct array_cache *nc;
1192 struct array_cache *shared;
1193 struct array_cache **alien;
fbf1e473 1194
fbf1e473
AM
1195 /* cpu is dead; no one can alloc from it. */
1196 nc = cachep->array[cpu];
1197 cachep->array[cpu] = NULL;
ce8eb6c4 1198 n = cachep->node[node];
fbf1e473 1199
ce8eb6c4 1200 if (!n)
fbf1e473
AM
1201 goto free_array_cache;
1202
ce8eb6c4 1203 spin_lock_irq(&n->list_lock);
fbf1e473 1204
ce8eb6c4
CL
1205 /* Free limit for this kmem_cache_node */
1206 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1207 if (nc)
1208 free_block(cachep, nc->entry, nc->avail, node);
1209
58463c1f 1210 if (!cpumask_empty(mask)) {
ce8eb6c4 1211 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1212 goto free_array_cache;
1213 }
1214
ce8eb6c4 1215 shared = n->shared;
fbf1e473
AM
1216 if (shared) {
1217 free_block(cachep, shared->entry,
1218 shared->avail, node);
ce8eb6c4 1219 n->shared = NULL;
fbf1e473
AM
1220 }
1221
ce8eb6c4
CL
1222 alien = n->alien;
1223 n->alien = NULL;
fbf1e473 1224
ce8eb6c4 1225 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1226
1227 kfree(shared);
1228 if (alien) {
1229 drain_alien_cache(cachep, alien);
1230 free_alien_cache(alien);
1231 }
1232free_array_cache:
1233 kfree(nc);
1234 }
1235 /*
1236 * In the previous loop, all the objects were freed to
1237 * the respective cache's slabs, now we can go ahead and
1238 * shrink each nodelist to its limit.
1239 */
18004c5d 1240 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1241 n = cachep->node[node];
1242 if (!n)
fbf1e473 1243 continue;
ce8eb6c4 1244 drain_freelist(cachep, n, n->free_objects);
fbf1e473
AM
1245 }
1246}
1247
1248static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1249{
343e0d7a 1250 struct kmem_cache *cachep;
ce8eb6c4 1251 struct kmem_cache_node *n = NULL;
7d6e6d09 1252 int node = cpu_to_mem(cpu);
8f9f8d9e 1253 int err;
1da177e4 1254
fbf1e473
AM
1255 /*
1256 * We need to do this right in the beginning since
1257 * alloc_arraycache's are going to use this list.
1258 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1259 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1260 */
6a67368c 1261 err = init_cache_node_node(node);
8f9f8d9e
DR
1262 if (err < 0)
1263 goto bad;
fbf1e473
AM
1264
1265 /*
1266 * Now we can go ahead with allocating the shared arrays and
1267 * array caches
1268 */
18004c5d 1269 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1270 struct array_cache *nc;
1271 struct array_cache *shared = NULL;
1272 struct array_cache **alien = NULL;
1273
1274 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1275 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1276 if (!nc)
1277 goto bad;
1278 if (cachep->shared) {
1279 shared = alloc_arraycache(node,
1280 cachep->shared * cachep->batchcount,
83b519e8 1281 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1282 if (!shared) {
1283 kfree(nc);
1da177e4 1284 goto bad;
12d00f6a 1285 }
fbf1e473
AM
1286 }
1287 if (use_alien_caches) {
83b519e8 1288 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1289 if (!alien) {
1290 kfree(shared);
1291 kfree(nc);
fbf1e473 1292 goto bad;
12d00f6a 1293 }
fbf1e473
AM
1294 }
1295 cachep->array[cpu] = nc;
ce8eb6c4
CL
1296 n = cachep->node[node];
1297 BUG_ON(!n);
fbf1e473 1298
ce8eb6c4
CL
1299 spin_lock_irq(&n->list_lock);
1300 if (!n->shared) {
fbf1e473
AM
1301 /*
1302 * We are serialised from CPU_DEAD or
1303 * CPU_UP_CANCELLED by the cpucontrol lock
1304 */
ce8eb6c4 1305 n->shared = shared;
fbf1e473
AM
1306 shared = NULL;
1307 }
4484ebf1 1308#ifdef CONFIG_NUMA
ce8eb6c4
CL
1309 if (!n->alien) {
1310 n->alien = alien;
fbf1e473 1311 alien = NULL;
1da177e4 1312 }
fbf1e473 1313#endif
ce8eb6c4 1314 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1315 kfree(shared);
1316 free_alien_cache(alien);
83835b3d
PZ
1317 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1318 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1319 else if (!OFF_SLAB(cachep) &&
1320 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1321 on_slab_lock_classes_node(cachep, node);
fbf1e473 1322 }
ce79ddc8
PE
1323 init_node_lock_keys(node);
1324
fbf1e473
AM
1325 return 0;
1326bad:
12d00f6a 1327 cpuup_canceled(cpu);
fbf1e473
AM
1328 return -ENOMEM;
1329}
1330
1331static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1332 unsigned long action, void *hcpu)
1333{
1334 long cpu = (long)hcpu;
1335 int err = 0;
1336
1337 switch (action) {
fbf1e473
AM
1338 case CPU_UP_PREPARE:
1339 case CPU_UP_PREPARE_FROZEN:
18004c5d 1340 mutex_lock(&slab_mutex);
fbf1e473 1341 err = cpuup_prepare(cpu);
18004c5d 1342 mutex_unlock(&slab_mutex);
1da177e4
LT
1343 break;
1344 case CPU_ONLINE:
8bb78442 1345 case CPU_ONLINE_FROZEN:
1da177e4
LT
1346 start_cpu_timer(cpu);
1347 break;
1348#ifdef CONFIG_HOTPLUG_CPU
5830c590 1349 case CPU_DOWN_PREPARE:
8bb78442 1350 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1351 /*
18004c5d 1352 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1353 * held so that if cache_reap() is invoked it cannot do
1354 * anything expensive but will only modify reap_work
1355 * and reschedule the timer.
1356 */
afe2c511 1357 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1358 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1359 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1360 break;
1361 case CPU_DOWN_FAILED:
8bb78442 1362 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1363 start_cpu_timer(cpu);
1364 break;
1da177e4 1365 case CPU_DEAD:
8bb78442 1366 case CPU_DEAD_FROZEN:
4484ebf1
RT
1367 /*
1368 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1369 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1370 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1371 * memory from the node of the cpu going down. The node
4484ebf1
RT
1372 * structure is usually allocated from kmem_cache_create() and
1373 * gets destroyed at kmem_cache_destroy().
1374 */
183ff22b 1375 /* fall through */
8f5be20b 1376#endif
1da177e4 1377 case CPU_UP_CANCELED:
8bb78442 1378 case CPU_UP_CANCELED_FROZEN:
18004c5d 1379 mutex_lock(&slab_mutex);
fbf1e473 1380 cpuup_canceled(cpu);
18004c5d 1381 mutex_unlock(&slab_mutex);
1da177e4 1382 break;
1da177e4 1383 }
eac40680 1384 return notifier_from_errno(err);
1da177e4
LT
1385}
1386
74b85f37
CS
1387static struct notifier_block __cpuinitdata cpucache_notifier = {
1388 &cpuup_callback, NULL, 0
1389};
1da177e4 1390
8f9f8d9e
DR
1391#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1392/*
1393 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1394 * Returns -EBUSY if all objects cannot be drained so that the node is not
1395 * removed.
1396 *
18004c5d 1397 * Must hold slab_mutex.
8f9f8d9e 1398 */
6a67368c 1399static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1400{
1401 struct kmem_cache *cachep;
1402 int ret = 0;
1403
18004c5d 1404 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1405 struct kmem_cache_node *n;
8f9f8d9e 1406
ce8eb6c4
CL
1407 n = cachep->node[node];
1408 if (!n)
8f9f8d9e
DR
1409 continue;
1410
ce8eb6c4 1411 drain_freelist(cachep, n, n->free_objects);
8f9f8d9e 1412
ce8eb6c4
CL
1413 if (!list_empty(&n->slabs_full) ||
1414 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1415 ret = -EBUSY;
1416 break;
1417 }
1418 }
1419 return ret;
1420}
1421
1422static int __meminit slab_memory_callback(struct notifier_block *self,
1423 unsigned long action, void *arg)
1424{
1425 struct memory_notify *mnb = arg;
1426 int ret = 0;
1427 int nid;
1428
1429 nid = mnb->status_change_nid;
1430 if (nid < 0)
1431 goto out;
1432
1433 switch (action) {
1434 case MEM_GOING_ONLINE:
18004c5d 1435 mutex_lock(&slab_mutex);
6a67368c 1436 ret = init_cache_node_node(nid);
18004c5d 1437 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1438 break;
1439 case MEM_GOING_OFFLINE:
18004c5d 1440 mutex_lock(&slab_mutex);
6a67368c 1441 ret = drain_cache_node_node(nid);
18004c5d 1442 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1443 break;
1444 case MEM_ONLINE:
1445 case MEM_OFFLINE:
1446 case MEM_CANCEL_ONLINE:
1447 case MEM_CANCEL_OFFLINE:
1448 break;
1449 }
1450out:
5fda1bd5 1451 return notifier_from_errno(ret);
8f9f8d9e
DR
1452}
1453#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1454
e498be7d 1455/*
ce8eb6c4 1456 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1457 */
6744f087 1458static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1459 int nodeid)
e498be7d 1460{
6744f087 1461 struct kmem_cache_node *ptr;
e498be7d 1462
6744f087 1463 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1464 BUG_ON(!ptr);
1465
6744f087 1466 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1467 /*
1468 * Do not assume that spinlocks can be initialized via memcpy:
1469 */
1470 spin_lock_init(&ptr->list_lock);
1471
e498be7d 1472 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1473 cachep->node[nodeid] = ptr;
e498be7d
CL
1474}
1475
556a169d 1476/*
ce8eb6c4
CL
1477 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1478 * size of kmem_cache_node.
556a169d 1479 */
ce8eb6c4 1480static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1481{
1482 int node;
1483
1484 for_each_online_node(node) {
ce8eb6c4 1485 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1486 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1487 REAPTIMEOUT_LIST3 +
1488 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1489 }
1490}
1491
3c583465
CL
1492/*
1493 * The memory after the last cpu cache pointer is used for the
6a67368c 1494 * the node pointer.
3c583465 1495 */
6a67368c 1496static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1497{
6a67368c 1498 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1499}
1500
a737b3e2
AM
1501/*
1502 * Initialisation. Called after the page allocator have been initialised and
1503 * before smp_init().
1da177e4
LT
1504 */
1505void __init kmem_cache_init(void)
1506{
e498be7d
CL
1507 int i;
1508
9b030cb8 1509 kmem_cache = &kmem_cache_boot;
6a67368c 1510 setup_node_pointer(kmem_cache);
9b030cb8 1511
b6e68bc1 1512 if (num_possible_nodes() == 1)
62918a03
SS
1513 use_alien_caches = 0;
1514
3c583465 1515 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1516 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1517
ce8eb6c4 1518 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1519
1520 /*
1521 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1522 * page orders on machines with more than 32MB of memory if
1523 * not overridden on the command line.
1da177e4 1524 */
3df1cccd 1525 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1526 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1527
1da177e4
LT
1528 /* Bootstrap is tricky, because several objects are allocated
1529 * from caches that do not exist yet:
9b030cb8
CL
1530 * 1) initialize the kmem_cache cache: it contains the struct
1531 * kmem_cache structures of all caches, except kmem_cache itself:
1532 * kmem_cache is statically allocated.
e498be7d 1533 * Initially an __init data area is used for the head array and the
ce8eb6c4 1534 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1535 * array at the end of the bootstrap.
1da177e4 1536 * 2) Create the first kmalloc cache.
343e0d7a 1537 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1538 * An __init data area is used for the head array.
1539 * 3) Create the remaining kmalloc caches, with minimally sized
1540 * head arrays.
9b030cb8 1541 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1542 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1543 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1544 * the other cache's with kmalloc allocated memory.
1545 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1546 */
1547
9b030cb8 1548 /* 1) create the kmem_cache */
1da177e4 1549
8da3430d 1550 /*
b56efcf0 1551 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1552 */
2f9baa9f
CL
1553 create_boot_cache(kmem_cache, "kmem_cache",
1554 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1555 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1556 SLAB_HWCACHE_ALIGN);
1557 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1558
1559 /* 2+3) create the kmalloc caches */
1da177e4 1560
a737b3e2
AM
1561 /*
1562 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1563 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1564 * bug.
e498be7d
CL
1565 */
1566
e3366016
CL
1567 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1568 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1569
ce8eb6c4
CL
1570 if (INDEX_AC != INDEX_NODE)
1571 kmalloc_caches[INDEX_NODE] =
1572 create_kmalloc_cache("kmalloc-node",
1573 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1574
e0a42726
IM
1575 slab_early_init = 0;
1576
1da177e4
LT
1577 /* 4) Replace the bootstrap head arrays */
1578 {
2b2d5493 1579 struct array_cache *ptr;
e498be7d 1580
83b519e8 1581 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1582
9b030cb8 1583 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1584 sizeof(struct arraycache_init));
2b2d5493
IM
1585 /*
1586 * Do not assume that spinlocks can be initialized via memcpy:
1587 */
1588 spin_lock_init(&ptr->lock);
1589
9b030cb8 1590 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1591
83b519e8 1592 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1593
e3366016 1594 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1595 != &initarray_generic.cache);
e3366016 1596 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1597 sizeof(struct arraycache_init));
2b2d5493
IM
1598 /*
1599 * Do not assume that spinlocks can be initialized via memcpy:
1600 */
1601 spin_lock_init(&ptr->lock);
1602
e3366016 1603 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1604 }
ce8eb6c4 1605 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1606 {
1ca4cb24
PE
1607 int nid;
1608
9c09a95c 1609 for_each_online_node(nid) {
ce8eb6c4 1610 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1611
e3366016 1612 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1613 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1614
ce8eb6c4
CL
1615 if (INDEX_AC != INDEX_NODE) {
1616 init_list(kmalloc_caches[INDEX_NODE],
1617 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1618 }
1619 }
1620 }
1da177e4 1621
f97d5f63 1622 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1623}
1624
1625void __init kmem_cache_init_late(void)
1626{
1627 struct kmem_cache *cachep;
1628
97d06609 1629 slab_state = UP;
52cef189 1630
8429db5c 1631 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1632 mutex_lock(&slab_mutex);
1633 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1634 if (enable_cpucache(cachep, GFP_NOWAIT))
1635 BUG();
18004c5d 1636 mutex_unlock(&slab_mutex);
056c6241 1637
947ca185
MW
1638 /* Annotate slab for lockdep -- annotate the malloc caches */
1639 init_lock_keys();
1640
97d06609
CL
1641 /* Done! */
1642 slab_state = FULL;
1643
a737b3e2
AM
1644 /*
1645 * Register a cpu startup notifier callback that initializes
1646 * cpu_cache_get for all new cpus
1da177e4
LT
1647 */
1648 register_cpu_notifier(&cpucache_notifier);
1da177e4 1649
8f9f8d9e
DR
1650#ifdef CONFIG_NUMA
1651 /*
1652 * Register a memory hotplug callback that initializes and frees
6a67368c 1653 * node.
8f9f8d9e
DR
1654 */
1655 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1656#endif
1657
a737b3e2
AM
1658 /*
1659 * The reap timers are started later, with a module init call: That part
1660 * of the kernel is not yet operational.
1da177e4
LT
1661 */
1662}
1663
1664static int __init cpucache_init(void)
1665{
1666 int cpu;
1667
a737b3e2
AM
1668 /*
1669 * Register the timers that return unneeded pages to the page allocator
1da177e4 1670 */
e498be7d 1671 for_each_online_cpu(cpu)
a737b3e2 1672 start_cpu_timer(cpu);
a164f896
GC
1673
1674 /* Done! */
97d06609 1675 slab_state = FULL;
1da177e4
LT
1676 return 0;
1677}
1da177e4
LT
1678__initcall(cpucache_init);
1679
8bdec192
RA
1680static noinline void
1681slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1682{
ce8eb6c4 1683 struct kmem_cache_node *n;
8bdec192
RA
1684 struct slab *slabp;
1685 unsigned long flags;
1686 int node;
1687
1688 printk(KERN_WARNING
1689 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1690 nodeid, gfpflags);
1691 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1692 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1693
1694 for_each_online_node(node) {
1695 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1696 unsigned long active_slabs = 0, num_slabs = 0;
1697
ce8eb6c4
CL
1698 n = cachep->node[node];
1699 if (!n)
8bdec192
RA
1700 continue;
1701
ce8eb6c4
CL
1702 spin_lock_irqsave(&n->list_lock, flags);
1703 list_for_each_entry(slabp, &n->slabs_full, list) {
8bdec192
RA
1704 active_objs += cachep->num;
1705 active_slabs++;
1706 }
ce8eb6c4 1707 list_for_each_entry(slabp, &n->slabs_partial, list) {
8bdec192
RA
1708 active_objs += slabp->inuse;
1709 active_slabs++;
1710 }
ce8eb6c4 1711 list_for_each_entry(slabp, &n->slabs_free, list)
8bdec192
RA
1712 num_slabs++;
1713
ce8eb6c4
CL
1714 free_objects += n->free_objects;
1715 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1716
1717 num_slabs += active_slabs;
1718 num_objs = num_slabs * cachep->num;
1719 printk(KERN_WARNING
1720 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1721 node, active_slabs, num_slabs, active_objs, num_objs,
1722 free_objects);
1723 }
1724}
1725
1da177e4
LT
1726/*
1727 * Interface to system's page allocator. No need to hold the cache-lock.
1728 *
1729 * If we requested dmaable memory, we will get it. Even if we
1730 * did not request dmaable memory, we might get it, but that
1731 * would be relatively rare and ignorable.
1732 */
343e0d7a 1733static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1734{
1735 struct page *page;
e1b6aa6f 1736 int nr_pages;
1da177e4
LT
1737 int i;
1738
d6fef9da 1739#ifndef CONFIG_MMU
e1b6aa6f
CH
1740 /*
1741 * Nommu uses slab's for process anonymous memory allocations, and thus
1742 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1743 */
e1b6aa6f 1744 flags |= __GFP_COMP;
d6fef9da 1745#endif
765c4507 1746
a618e89f 1747 flags |= cachep->allocflags;
e12ba74d
MG
1748 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1749 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1750
517d0869 1751 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1752 if (!page) {
1753 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1754 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1755 return NULL;
8bdec192 1756 }
1da177e4 1757
b37f1dd0 1758 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1759 if (unlikely(page->pfmemalloc))
1760 pfmemalloc_active = true;
1761
e1b6aa6f 1762 nr_pages = (1 << cachep->gfporder);
1da177e4 1763 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1764 add_zone_page_state(page_zone(page),
1765 NR_SLAB_RECLAIMABLE, nr_pages);
1766 else
1767 add_zone_page_state(page_zone(page),
1768 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1769 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1770 __SetPageSlab(page + i);
c175eea4 1771
072bb0aa
MG
1772 if (page->pfmemalloc)
1773 SetPageSlabPfmemalloc(page + i);
1774 }
1f458cbf 1775 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1776
b1eeab67
VN
1777 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1778 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1779
1780 if (cachep->ctor)
1781 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1782 else
1783 kmemcheck_mark_unallocated_pages(page, nr_pages);
1784 }
c175eea4 1785
e1b6aa6f 1786 return page_address(page);
1da177e4
LT
1787}
1788
1789/*
1790 * Interface to system's page release.
1791 */
343e0d7a 1792static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1793{
b28a02de 1794 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1795 struct page *page = virt_to_page(addr);
1796 const unsigned long nr_freed = i;
1797
b1eeab67 1798 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1799
972d1a7b
CL
1800 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1801 sub_zone_page_state(page_zone(page),
1802 NR_SLAB_RECLAIMABLE, nr_freed);
1803 else
1804 sub_zone_page_state(page_zone(page),
1805 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1806 while (i--) {
f205b2fe 1807 BUG_ON(!PageSlab(page));
072bb0aa 1808 __ClearPageSlabPfmemalloc(page);
f205b2fe 1809 __ClearPageSlab(page);
1da177e4
LT
1810 page++;
1811 }
1f458cbf
GC
1812
1813 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1814 if (current->reclaim_state)
1815 current->reclaim_state->reclaimed_slab += nr_freed;
d79923fa 1816 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1817}
1818
1819static void kmem_rcu_free(struct rcu_head *head)
1820{
b28a02de 1821 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1822 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1823
1824 kmem_freepages(cachep, slab_rcu->addr);
1825 if (OFF_SLAB(cachep))
1826 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1827}
1828
1829#if DEBUG
1830
1831#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1832static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1833 unsigned long caller)
1da177e4 1834{
8c138bc0 1835 int size = cachep->object_size;
1da177e4 1836
3dafccf2 1837 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1838
b28a02de 1839 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1840 return;
1841
b28a02de
PE
1842 *addr++ = 0x12345678;
1843 *addr++ = caller;
1844 *addr++ = smp_processor_id();
1845 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1846 {
1847 unsigned long *sptr = &caller;
1848 unsigned long svalue;
1849
1850 while (!kstack_end(sptr)) {
1851 svalue = *sptr++;
1852 if (kernel_text_address(svalue)) {
b28a02de 1853 *addr++ = svalue;
1da177e4
LT
1854 size -= sizeof(unsigned long);
1855 if (size <= sizeof(unsigned long))
1856 break;
1857 }
1858 }
1859
1860 }
b28a02de 1861 *addr++ = 0x87654321;
1da177e4
LT
1862}
1863#endif
1864
343e0d7a 1865static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1866{
8c138bc0 1867 int size = cachep->object_size;
3dafccf2 1868 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1869
1870 memset(addr, val, size);
b28a02de 1871 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1872}
1873
1874static void dump_line(char *data, int offset, int limit)
1875{
1876 int i;
aa83aa40
DJ
1877 unsigned char error = 0;
1878 int bad_count = 0;
1879
fdde6abb 1880 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1881 for (i = 0; i < limit; i++) {
1882 if (data[offset + i] != POISON_FREE) {
1883 error = data[offset + i];
1884 bad_count++;
1885 }
aa83aa40 1886 }
fdde6abb
SAS
1887 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1888 &data[offset], limit, 1);
aa83aa40
DJ
1889
1890 if (bad_count == 1) {
1891 error ^= POISON_FREE;
1892 if (!(error & (error - 1))) {
1893 printk(KERN_ERR "Single bit error detected. Probably "
1894 "bad RAM.\n");
1895#ifdef CONFIG_X86
1896 printk(KERN_ERR "Run memtest86+ or a similar memory "
1897 "test tool.\n");
1898#else
1899 printk(KERN_ERR "Run a memory test tool.\n");
1900#endif
1901 }
1902 }
1da177e4
LT
1903}
1904#endif
1905
1906#if DEBUG
1907
343e0d7a 1908static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1909{
1910 int i, size;
1911 char *realobj;
1912
1913 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1914 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1915 *dbg_redzone1(cachep, objp),
1916 *dbg_redzone2(cachep, objp));
1da177e4
LT
1917 }
1918
1919 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1920 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1921 *dbg_userword(cachep, objp),
1922 *dbg_userword(cachep, objp));
1da177e4 1923 }
3dafccf2 1924 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1925 size = cachep->object_size;
b28a02de 1926 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1927 int limit;
1928 limit = 16;
b28a02de
PE
1929 if (i + limit > size)
1930 limit = size - i;
1da177e4
LT
1931 dump_line(realobj, i, limit);
1932 }
1933}
1934
343e0d7a 1935static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1936{
1937 char *realobj;
1938 int size, i;
1939 int lines = 0;
1940
3dafccf2 1941 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1942 size = cachep->object_size;
1da177e4 1943
b28a02de 1944 for (i = 0; i < size; i++) {
1da177e4 1945 char exp = POISON_FREE;
b28a02de 1946 if (i == size - 1)
1da177e4
LT
1947 exp = POISON_END;
1948 if (realobj[i] != exp) {
1949 int limit;
1950 /* Mismatch ! */
1951 /* Print header */
1952 if (lines == 0) {
b28a02de 1953 printk(KERN_ERR
face37f5
DJ
1954 "Slab corruption (%s): %s start=%p, len=%d\n",
1955 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1956 print_objinfo(cachep, objp, 0);
1957 }
1958 /* Hexdump the affected line */
b28a02de 1959 i = (i / 16) * 16;
1da177e4 1960 limit = 16;
b28a02de
PE
1961 if (i + limit > size)
1962 limit = size - i;
1da177e4
LT
1963 dump_line(realobj, i, limit);
1964 i += 16;
1965 lines++;
1966 /* Limit to 5 lines */
1967 if (lines > 5)
1968 break;
1969 }
1970 }
1971 if (lines != 0) {
1972 /* Print some data about the neighboring objects, if they
1973 * exist:
1974 */
6ed5eb22 1975 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1976 unsigned int objnr;
1da177e4 1977
8fea4e96 1978 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1979 if (objnr) {
8fea4e96 1980 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1981 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1982 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1983 realobj, size);
1da177e4
LT
1984 print_objinfo(cachep, objp, 2);
1985 }
b28a02de 1986 if (objnr + 1 < cachep->num) {
8fea4e96 1987 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1988 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1989 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1990 realobj, size);
1da177e4
LT
1991 print_objinfo(cachep, objp, 2);
1992 }
1993 }
1994}
1995#endif
1996
12dd36fa 1997#if DEBUG
e79aec29 1998static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1999{
1da177e4
LT
2000 int i;
2001 for (i = 0; i < cachep->num; i++) {
8fea4e96 2002 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2003
2004 if (cachep->flags & SLAB_POISON) {
2005#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2006 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2007 OFF_SLAB(cachep))
b28a02de 2008 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2009 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2010 else
2011 check_poison_obj(cachep, objp);
2012#else
2013 check_poison_obj(cachep, objp);
2014#endif
2015 }
2016 if (cachep->flags & SLAB_RED_ZONE) {
2017 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2018 slab_error(cachep, "start of a freed object "
b28a02de 2019 "was overwritten");
1da177e4
LT
2020 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2021 slab_error(cachep, "end of a freed object "
b28a02de 2022 "was overwritten");
1da177e4 2023 }
1da177e4 2024 }
12dd36fa 2025}
1da177e4 2026#else
e79aec29 2027static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2028{
12dd36fa 2029}
1da177e4
LT
2030#endif
2031
911851e6
RD
2032/**
2033 * slab_destroy - destroy and release all objects in a slab
2034 * @cachep: cache pointer being destroyed
2035 * @slabp: slab pointer being destroyed
2036 *
12dd36fa 2037 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2038 * Before calling the slab must have been unlinked from the cache. The
2039 * cache-lock is not held/needed.
12dd36fa 2040 */
343e0d7a 2041static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2042{
2043 void *addr = slabp->s_mem - slabp->colouroff;
2044
e79aec29 2045 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2046 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2047 struct slab_rcu *slab_rcu;
2048
b28a02de 2049 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2050 slab_rcu->cachep = cachep;
2051 slab_rcu->addr = addr;
2052 call_rcu(&slab_rcu->head, kmem_rcu_free);
2053 } else {
2054 kmem_freepages(cachep, addr);
873623df
IM
2055 if (OFF_SLAB(cachep))
2056 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2057 }
2058}
2059
4d268eba 2060/**
a70773dd
RD
2061 * calculate_slab_order - calculate size (page order) of slabs
2062 * @cachep: pointer to the cache that is being created
2063 * @size: size of objects to be created in this cache.
2064 * @align: required alignment for the objects.
2065 * @flags: slab allocation flags
2066 *
2067 * Also calculates the number of objects per slab.
4d268eba
PE
2068 *
2069 * This could be made much more intelligent. For now, try to avoid using
2070 * high order pages for slabs. When the gfp() functions are more friendly
2071 * towards high-order requests, this should be changed.
2072 */
a737b3e2 2073static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2074 size_t size, size_t align, unsigned long flags)
4d268eba 2075{
b1ab41c4 2076 unsigned long offslab_limit;
4d268eba 2077 size_t left_over = 0;
9888e6fa 2078 int gfporder;
4d268eba 2079
0aa817f0 2080 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2081 unsigned int num;
2082 size_t remainder;
2083
9888e6fa 2084 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2085 if (!num)
2086 continue;
9888e6fa 2087
b1ab41c4
IM
2088 if (flags & CFLGS_OFF_SLAB) {
2089 /*
2090 * Max number of objs-per-slab for caches which
2091 * use off-slab slabs. Needed to avoid a possible
2092 * looping condition in cache_grow().
2093 */
2094 offslab_limit = size - sizeof(struct slab);
2095 offslab_limit /= sizeof(kmem_bufctl_t);
2096
2097 if (num > offslab_limit)
2098 break;
2099 }
4d268eba 2100
9888e6fa 2101 /* Found something acceptable - save it away */
4d268eba 2102 cachep->num = num;
9888e6fa 2103 cachep->gfporder = gfporder;
4d268eba
PE
2104 left_over = remainder;
2105
f78bb8ad
LT
2106 /*
2107 * A VFS-reclaimable slab tends to have most allocations
2108 * as GFP_NOFS and we really don't want to have to be allocating
2109 * higher-order pages when we are unable to shrink dcache.
2110 */
2111 if (flags & SLAB_RECLAIM_ACCOUNT)
2112 break;
2113
4d268eba
PE
2114 /*
2115 * Large number of objects is good, but very large slabs are
2116 * currently bad for the gfp()s.
2117 */
543585cc 2118 if (gfporder >= slab_max_order)
4d268eba
PE
2119 break;
2120
9888e6fa
LT
2121 /*
2122 * Acceptable internal fragmentation?
2123 */
a737b3e2 2124 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2125 break;
2126 }
2127 return left_over;
2128}
2129
83b519e8 2130static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2131{
97d06609 2132 if (slab_state >= FULL)
83b519e8 2133 return enable_cpucache(cachep, gfp);
2ed3a4ef 2134
97d06609 2135 if (slab_state == DOWN) {
f30cf7d1 2136 /*
2f9baa9f 2137 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2138 * The setup_node is taken care
2f9baa9f
CL
2139 * of by the caller of __kmem_cache_create
2140 */
2141 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2142 slab_state = PARTIAL;
2143 } else if (slab_state == PARTIAL) {
2144 /*
2145 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2146 * that's used by kmalloc(24), otherwise the creation of
2147 * further caches will BUG().
2148 */
2149 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2150
2151 /*
ce8eb6c4
CL
2152 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2153 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2154 * otherwise the creation of further caches will BUG().
2155 */
ce8eb6c4
CL
2156 set_up_node(cachep, SIZE_AC);
2157 if (INDEX_AC == INDEX_NODE)
2158 slab_state = PARTIAL_NODE;
f30cf7d1 2159 else
97d06609 2160 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2161 } else {
2f9baa9f 2162 /* Remaining boot caches */
f30cf7d1 2163 cachep->array[smp_processor_id()] =
83b519e8 2164 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2165
97d06609 2166 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2167 set_up_node(cachep, SIZE_NODE);
2168 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2169 } else {
2170 int node;
556a169d 2171 for_each_online_node(node) {
6a67368c 2172 cachep->node[node] =
6744f087 2173 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2174 gfp, node);
6a67368c 2175 BUG_ON(!cachep->node[node]);
ce8eb6c4 2176 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2177 }
2178 }
2179 }
6a67368c 2180 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2181 jiffies + REAPTIMEOUT_LIST3 +
2182 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2183
2184 cpu_cache_get(cachep)->avail = 0;
2185 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2186 cpu_cache_get(cachep)->batchcount = 1;
2187 cpu_cache_get(cachep)->touched = 0;
2188 cachep->batchcount = 1;
2189 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2190 return 0;
f30cf7d1
PE
2191}
2192
1da177e4 2193/**
039363f3 2194 * __kmem_cache_create - Create a cache.
a755b76a 2195 * @cachep: cache management descriptor
1da177e4 2196 * @flags: SLAB flags
1da177e4
LT
2197 *
2198 * Returns a ptr to the cache on success, NULL on failure.
2199 * Cannot be called within a int, but can be interrupted.
20c2df83 2200 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2201 *
1da177e4
LT
2202 * The flags are
2203 *
2204 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2205 * to catch references to uninitialised memory.
2206 *
2207 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2208 * for buffer overruns.
2209 *
1da177e4
LT
2210 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2211 * cacheline. This can be beneficial if you're counting cycles as closely
2212 * as davem.
2213 */
278b1bb1 2214int
8a13a4cc 2215__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2216{
2217 size_t left_over, slab_size, ralign;
83b519e8 2218 gfp_t gfp;
278b1bb1 2219 int err;
8a13a4cc 2220 size_t size = cachep->size;
1da177e4 2221
1da177e4 2222#if DEBUG
1da177e4
LT
2223#if FORCED_DEBUG
2224 /*
2225 * Enable redzoning and last user accounting, except for caches with
2226 * large objects, if the increased size would increase the object size
2227 * above the next power of two: caches with object sizes just above a
2228 * power of two have a significant amount of internal fragmentation.
2229 */
87a927c7
DW
2230 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2231 2 * sizeof(unsigned long long)))
b28a02de 2232 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2233 if (!(flags & SLAB_DESTROY_BY_RCU))
2234 flags |= SLAB_POISON;
2235#endif
2236 if (flags & SLAB_DESTROY_BY_RCU)
2237 BUG_ON(flags & SLAB_POISON);
2238#endif
1da177e4 2239
a737b3e2
AM
2240 /*
2241 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2242 * unaligned accesses for some archs when redzoning is used, and makes
2243 * sure any on-slab bufctl's are also correctly aligned.
2244 */
b28a02de
PE
2245 if (size & (BYTES_PER_WORD - 1)) {
2246 size += (BYTES_PER_WORD - 1);
2247 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2248 }
2249
ca5f9703 2250 /*
87a927c7
DW
2251 * Redzoning and user store require word alignment or possibly larger.
2252 * Note this will be overridden by architecture or caller mandated
2253 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2254 */
87a927c7
DW
2255 if (flags & SLAB_STORE_USER)
2256 ralign = BYTES_PER_WORD;
2257
2258 if (flags & SLAB_RED_ZONE) {
2259 ralign = REDZONE_ALIGN;
2260 /* If redzoning, ensure that the second redzone is suitably
2261 * aligned, by adjusting the object size accordingly. */
2262 size += REDZONE_ALIGN - 1;
2263 size &= ~(REDZONE_ALIGN - 1);
2264 }
ca5f9703 2265
a44b56d3 2266 /* 3) caller mandated alignment */
8a13a4cc
CL
2267 if (ralign < cachep->align) {
2268 ralign = cachep->align;
1da177e4 2269 }
3ff84a7f
PE
2270 /* disable debug if necessary */
2271 if (ralign > __alignof__(unsigned long long))
a44b56d3 2272 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2273 /*
ca5f9703 2274 * 4) Store it.
1da177e4 2275 */
8a13a4cc 2276 cachep->align = ralign;
1da177e4 2277
83b519e8
PE
2278 if (slab_is_available())
2279 gfp = GFP_KERNEL;
2280 else
2281 gfp = GFP_NOWAIT;
2282
6a67368c 2283 setup_node_pointer(cachep);
1da177e4 2284#if DEBUG
1da177e4 2285
ca5f9703
PE
2286 /*
2287 * Both debugging options require word-alignment which is calculated
2288 * into align above.
2289 */
1da177e4 2290 if (flags & SLAB_RED_ZONE) {
1da177e4 2291 /* add space for red zone words */
3ff84a7f
PE
2292 cachep->obj_offset += sizeof(unsigned long long);
2293 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2294 }
2295 if (flags & SLAB_STORE_USER) {
ca5f9703 2296 /* user store requires one word storage behind the end of
87a927c7
DW
2297 * the real object. But if the second red zone needs to be
2298 * aligned to 64 bits, we must allow that much space.
1da177e4 2299 */
87a927c7
DW
2300 if (flags & SLAB_RED_ZONE)
2301 size += REDZONE_ALIGN;
2302 else
2303 size += BYTES_PER_WORD;
1da177e4
LT
2304 }
2305#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2306 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2307 && cachep->object_size > cache_line_size()
2308 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2309 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2310 size = PAGE_SIZE;
2311 }
2312#endif
2313#endif
2314
e0a42726
IM
2315 /*
2316 * Determine if the slab management is 'on' or 'off' slab.
2317 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2318 * it too early on. Always use on-slab management when
2319 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2320 */
e7cb55b9
CM
2321 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2322 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2323 /*
2324 * Size is large, assume best to place the slab management obj
2325 * off-slab (should allow better packing of objs).
2326 */
2327 flags |= CFLGS_OFF_SLAB;
2328
8a13a4cc 2329 size = ALIGN(size, cachep->align);
1da177e4 2330
8a13a4cc 2331 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2332
8a13a4cc 2333 if (!cachep->num)
278b1bb1 2334 return -E2BIG;
1da177e4 2335
b28a02de 2336 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2337 + sizeof(struct slab), cachep->align);
1da177e4
LT
2338
2339 /*
2340 * If the slab has been placed off-slab, and we have enough space then
2341 * move it on-slab. This is at the expense of any extra colouring.
2342 */
2343 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2344 flags &= ~CFLGS_OFF_SLAB;
2345 left_over -= slab_size;
2346 }
2347
2348 if (flags & CFLGS_OFF_SLAB) {
2349 /* really off slab. No need for manual alignment */
b28a02de
PE
2350 slab_size =
2351 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2352
2353#ifdef CONFIG_PAGE_POISONING
2354 /* If we're going to use the generic kernel_map_pages()
2355 * poisoning, then it's going to smash the contents of
2356 * the redzone and userword anyhow, so switch them off.
2357 */
2358 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2359 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2360#endif
1da177e4
LT
2361 }
2362
2363 cachep->colour_off = cache_line_size();
2364 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2365 if (cachep->colour_off < cachep->align)
2366 cachep->colour_off = cachep->align;
b28a02de 2367 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2368 cachep->slab_size = slab_size;
2369 cachep->flags = flags;
a618e89f 2370 cachep->allocflags = 0;
4b51d669 2371 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2372 cachep->allocflags |= GFP_DMA;
3b0efdfa 2373 cachep->size = size;
6a2d7a95 2374 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2375
e5ac9c5a 2376 if (flags & CFLGS_OFF_SLAB) {
2c59dd65 2377 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
e5ac9c5a
RT
2378 /*
2379 * This is a possibility for one of the malloc_sizes caches.
2380 * But since we go off slab only for object size greater than
2381 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2382 * this should not happen at all.
2383 * But leave a BUG_ON for some lucky dude.
2384 */
6cb8f913 2385 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2386 }
1da177e4 2387
278b1bb1
CL
2388 err = setup_cpu_cache(cachep, gfp);
2389 if (err) {
12c3667f 2390 __kmem_cache_shutdown(cachep);
278b1bb1 2391 return err;
2ed3a4ef 2392 }
1da177e4 2393
83835b3d
PZ
2394 if (flags & SLAB_DEBUG_OBJECTS) {
2395 /*
2396 * Would deadlock through slab_destroy()->call_rcu()->
2397 * debug_object_activate()->kmem_cache_alloc().
2398 */
2399 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2400
2401 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2402 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2403 on_slab_lock_classes(cachep);
83835b3d 2404
278b1bb1 2405 return 0;
1da177e4 2406}
1da177e4
LT
2407
2408#if DEBUG
2409static void check_irq_off(void)
2410{
2411 BUG_ON(!irqs_disabled());
2412}
2413
2414static void check_irq_on(void)
2415{
2416 BUG_ON(irqs_disabled());
2417}
2418
343e0d7a 2419static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2420{
2421#ifdef CONFIG_SMP
2422 check_irq_off();
6a67368c 2423 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2424#endif
2425}
e498be7d 2426
343e0d7a 2427static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2428{
2429#ifdef CONFIG_SMP
2430 check_irq_off();
6a67368c 2431 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2432#endif
2433}
2434
1da177e4
LT
2435#else
2436#define check_irq_off() do { } while(0)
2437#define check_irq_on() do { } while(0)
2438#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2439#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2440#endif
2441
ce8eb6c4 2442static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2443 struct array_cache *ac,
2444 int force, int node);
2445
1da177e4
LT
2446static void do_drain(void *arg)
2447{
a737b3e2 2448 struct kmem_cache *cachep = arg;
1da177e4 2449 struct array_cache *ac;
7d6e6d09 2450 int node = numa_mem_id();
1da177e4
LT
2451
2452 check_irq_off();
9a2dba4b 2453 ac = cpu_cache_get(cachep);
6a67368c 2454 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2455 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2456 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2457 ac->avail = 0;
2458}
2459
343e0d7a 2460static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2461{
ce8eb6c4 2462 struct kmem_cache_node *n;
e498be7d
CL
2463 int node;
2464
15c8b6c1 2465 on_each_cpu(do_drain, cachep, 1);
1da177e4 2466 check_irq_on();
b28a02de 2467 for_each_online_node(node) {
ce8eb6c4
CL
2468 n = cachep->node[node];
2469 if (n && n->alien)
2470 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2471 }
2472
2473 for_each_online_node(node) {
ce8eb6c4
CL
2474 n = cachep->node[node];
2475 if (n)
2476 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2477 }
1da177e4
LT
2478}
2479
ed11d9eb
CL
2480/*
2481 * Remove slabs from the list of free slabs.
2482 * Specify the number of slabs to drain in tofree.
2483 *
2484 * Returns the actual number of slabs released.
2485 */
2486static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2487 struct kmem_cache_node *n, int tofree)
1da177e4 2488{
ed11d9eb
CL
2489 struct list_head *p;
2490 int nr_freed;
1da177e4 2491 struct slab *slabp;
1da177e4 2492
ed11d9eb 2493 nr_freed = 0;
ce8eb6c4 2494 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2495
ce8eb6c4
CL
2496 spin_lock_irq(&n->list_lock);
2497 p = n->slabs_free.prev;
2498 if (p == &n->slabs_free) {
2499 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2500 goto out;
2501 }
1da177e4 2502
ed11d9eb 2503 slabp = list_entry(p, struct slab, list);
1da177e4 2504#if DEBUG
40094fa6 2505 BUG_ON(slabp->inuse);
1da177e4
LT
2506#endif
2507 list_del(&slabp->list);
ed11d9eb
CL
2508 /*
2509 * Safe to drop the lock. The slab is no longer linked
2510 * to the cache.
2511 */
ce8eb6c4
CL
2512 n->free_objects -= cache->num;
2513 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2514 slab_destroy(cache, slabp);
2515 nr_freed++;
1da177e4 2516 }
ed11d9eb
CL
2517out:
2518 return nr_freed;
1da177e4
LT
2519}
2520
18004c5d 2521/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2522static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2523{
2524 int ret = 0, i = 0;
ce8eb6c4 2525 struct kmem_cache_node *n;
e498be7d
CL
2526
2527 drain_cpu_caches(cachep);
2528
2529 check_irq_on();
2530 for_each_online_node(i) {
ce8eb6c4
CL
2531 n = cachep->node[i];
2532 if (!n)
ed11d9eb
CL
2533 continue;
2534
ce8eb6c4 2535 drain_freelist(cachep, n, n->free_objects);
ed11d9eb 2536
ce8eb6c4
CL
2537 ret += !list_empty(&n->slabs_full) ||
2538 !list_empty(&n->slabs_partial);
e498be7d
CL
2539 }
2540 return (ret ? 1 : 0);
2541}
2542
1da177e4
LT
2543/**
2544 * kmem_cache_shrink - Shrink a cache.
2545 * @cachep: The cache to shrink.
2546 *
2547 * Releases as many slabs as possible for a cache.
2548 * To help debugging, a zero exit status indicates all slabs were released.
2549 */
343e0d7a 2550int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2551{
8f5be20b 2552 int ret;
40094fa6 2553 BUG_ON(!cachep || in_interrupt());
1da177e4 2554
95402b38 2555 get_online_cpus();
18004c5d 2556 mutex_lock(&slab_mutex);
8f5be20b 2557 ret = __cache_shrink(cachep);
18004c5d 2558 mutex_unlock(&slab_mutex);
95402b38 2559 put_online_cpus();
8f5be20b 2560 return ret;
1da177e4
LT
2561}
2562EXPORT_SYMBOL(kmem_cache_shrink);
2563
945cf2b6 2564int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2565{
12c3667f 2566 int i;
ce8eb6c4 2567 struct kmem_cache_node *n;
12c3667f 2568 int rc = __cache_shrink(cachep);
1da177e4 2569
12c3667f
CL
2570 if (rc)
2571 return rc;
1da177e4 2572
12c3667f
CL
2573 for_each_online_cpu(i)
2574 kfree(cachep->array[i]);
1da177e4 2575
ce8eb6c4 2576 /* NUMA: free the node structures */
12c3667f 2577 for_each_online_node(i) {
ce8eb6c4
CL
2578 n = cachep->node[i];
2579 if (n) {
2580 kfree(n->shared);
2581 free_alien_cache(n->alien);
2582 kfree(n);
12c3667f
CL
2583 }
2584 }
2585 return 0;
1da177e4 2586}
1da177e4 2587
e5ac9c5a
RT
2588/*
2589 * Get the memory for a slab management obj.
2590 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2591 * always come from malloc_sizes caches. The slab descriptor cannot
2592 * come from the same cache which is getting created because,
2593 * when we are searching for an appropriate cache for these
2594 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2595 * If we are creating a malloc_sizes cache here it would not be visible to
2596 * kmem_find_general_cachep till the initialization is complete.
2597 * Hence we cannot have slabp_cache same as the original cache.
2598 */
343e0d7a 2599static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2600 int colour_off, gfp_t local_flags,
2601 int nodeid)
1da177e4
LT
2602{
2603 struct slab *slabp;
b28a02de 2604
1da177e4
LT
2605 if (OFF_SLAB(cachep)) {
2606 /* Slab management obj is off-slab. */
5b74ada7 2607 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2608 local_flags, nodeid);
d5cff635
CM
2609 /*
2610 * If the first object in the slab is leaked (it's allocated
2611 * but no one has a reference to it), we want to make sure
2612 * kmemleak does not treat the ->s_mem pointer as a reference
2613 * to the object. Otherwise we will not report the leak.
2614 */
c017b4be
CM
2615 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2616 local_flags);
1da177e4
LT
2617 if (!slabp)
2618 return NULL;
2619 } else {
b28a02de 2620 slabp = objp + colour_off;
1da177e4
LT
2621 colour_off += cachep->slab_size;
2622 }
2623 slabp->inuse = 0;
2624 slabp->colouroff = colour_off;
b28a02de 2625 slabp->s_mem = objp + colour_off;
5b74ada7 2626 slabp->nodeid = nodeid;
e51bfd0a 2627 slabp->free = 0;
1da177e4
LT
2628 return slabp;
2629}
2630
2631static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2632{
b28a02de 2633 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2634}
2635
343e0d7a 2636static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2637 struct slab *slabp)
1da177e4
LT
2638{
2639 int i;
2640
2641 for (i = 0; i < cachep->num; i++) {
8fea4e96 2642 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2643#if DEBUG
2644 /* need to poison the objs? */
2645 if (cachep->flags & SLAB_POISON)
2646 poison_obj(cachep, objp, POISON_FREE);
2647 if (cachep->flags & SLAB_STORE_USER)
2648 *dbg_userword(cachep, objp) = NULL;
2649
2650 if (cachep->flags & SLAB_RED_ZONE) {
2651 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2652 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2653 }
2654 /*
a737b3e2
AM
2655 * Constructors are not allowed to allocate memory from the same
2656 * cache which they are a constructor for. Otherwise, deadlock.
2657 * They must also be threaded.
1da177e4
LT
2658 */
2659 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2660 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2661
2662 if (cachep->flags & SLAB_RED_ZONE) {
2663 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2664 slab_error(cachep, "constructor overwrote the"
b28a02de 2665 " end of an object");
1da177e4
LT
2666 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2667 slab_error(cachep, "constructor overwrote the"
b28a02de 2668 " start of an object");
1da177e4 2669 }
3b0efdfa 2670 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2671 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2672 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2673 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2674#else
2675 if (cachep->ctor)
51cc5068 2676 cachep->ctor(objp);
1da177e4 2677#endif
b28a02de 2678 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2679 }
b28a02de 2680 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2681}
2682
343e0d7a 2683static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2684{
4b51d669
CL
2685 if (CONFIG_ZONE_DMA_FLAG) {
2686 if (flags & GFP_DMA)
a618e89f 2687 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2688 else
a618e89f 2689 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2690 }
1da177e4
LT
2691}
2692
a737b3e2
AM
2693static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2694 int nodeid)
78d382d7 2695{
8fea4e96 2696 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2697 kmem_bufctl_t next;
2698
2699 slabp->inuse++;
2700 next = slab_bufctl(slabp)[slabp->free];
2701#if DEBUG
2702 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2703 WARN_ON(slabp->nodeid != nodeid);
2704#endif
2705 slabp->free = next;
2706
2707 return objp;
2708}
2709
a737b3e2
AM
2710static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2711 void *objp, int nodeid)
78d382d7 2712{
8fea4e96 2713 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2714
2715#if DEBUG
2716 /* Verify that the slab belongs to the intended node */
2717 WARN_ON(slabp->nodeid != nodeid);
2718
871751e2 2719 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2720 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2721 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2722 BUG();
2723 }
2724#endif
2725 slab_bufctl(slabp)[objnr] = slabp->free;
2726 slabp->free = objnr;
2727 slabp->inuse--;
2728}
2729
4776874f
PE
2730/*
2731 * Map pages beginning at addr to the given cache and slab. This is required
2732 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2733 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2734 */
2735static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2736 void *addr)
1da177e4 2737{
4776874f 2738 int nr_pages;
1da177e4
LT
2739 struct page *page;
2740
4776874f 2741 page = virt_to_page(addr);
84097518 2742
4776874f 2743 nr_pages = 1;
84097518 2744 if (likely(!PageCompound(page)))
4776874f
PE
2745 nr_pages <<= cache->gfporder;
2746
1da177e4 2747 do {
35026088
CL
2748 page->slab_cache = cache;
2749 page->slab_page = slab;
1da177e4 2750 page++;
4776874f 2751 } while (--nr_pages);
1da177e4
LT
2752}
2753
2754/*
2755 * Grow (by 1) the number of slabs within a cache. This is called by
2756 * kmem_cache_alloc() when there are no active objs left in a cache.
2757 */
3c517a61
CL
2758static int cache_grow(struct kmem_cache *cachep,
2759 gfp_t flags, int nodeid, void *objp)
1da177e4 2760{
b28a02de 2761 struct slab *slabp;
b28a02de
PE
2762 size_t offset;
2763 gfp_t local_flags;
ce8eb6c4 2764 struct kmem_cache_node *n;
1da177e4 2765
a737b3e2
AM
2766 /*
2767 * Be lazy and only check for valid flags here, keeping it out of the
2768 * critical path in kmem_cache_alloc().
1da177e4 2769 */
6cb06229
CL
2770 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2771 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2772
ce8eb6c4 2773 /* Take the node list lock to change the colour_next on this node */
1da177e4 2774 check_irq_off();
ce8eb6c4
CL
2775 n = cachep->node[nodeid];
2776 spin_lock(&n->list_lock);
1da177e4
LT
2777
2778 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2779 offset = n->colour_next;
2780 n->colour_next++;
2781 if (n->colour_next >= cachep->colour)
2782 n->colour_next = 0;
2783 spin_unlock(&n->list_lock);
1da177e4 2784
2e1217cf 2785 offset *= cachep->colour_off;
1da177e4
LT
2786
2787 if (local_flags & __GFP_WAIT)
2788 local_irq_enable();
2789
2790 /*
2791 * The test for missing atomic flag is performed here, rather than
2792 * the more obvious place, simply to reduce the critical path length
2793 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2794 * will eventually be caught here (where it matters).
2795 */
2796 kmem_flagcheck(cachep, flags);
2797
a737b3e2
AM
2798 /*
2799 * Get mem for the objs. Attempt to allocate a physical page from
2800 * 'nodeid'.
e498be7d 2801 */
3c517a61 2802 if (!objp)
b8c1c5da 2803 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2804 if (!objp)
1da177e4
LT
2805 goto failed;
2806
2807 /* Get slab management. */
3c517a61 2808 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2809 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2810 if (!slabp)
1da177e4
LT
2811 goto opps1;
2812
4776874f 2813 slab_map_pages(cachep, slabp, objp);
1da177e4 2814
a35afb83 2815 cache_init_objs(cachep, slabp);
1da177e4
LT
2816
2817 if (local_flags & __GFP_WAIT)
2818 local_irq_disable();
2819 check_irq_off();
ce8eb6c4 2820 spin_lock(&n->list_lock);
1da177e4
LT
2821
2822 /* Make slab active. */
ce8eb6c4 2823 list_add_tail(&slabp->list, &(n->slabs_free));
1da177e4 2824 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2825 n->free_objects += cachep->num;
2826 spin_unlock(&n->list_lock);
1da177e4 2827 return 1;
a737b3e2 2828opps1:
1da177e4 2829 kmem_freepages(cachep, objp);
a737b3e2 2830failed:
1da177e4
LT
2831 if (local_flags & __GFP_WAIT)
2832 local_irq_disable();
2833 return 0;
2834}
2835
2836#if DEBUG
2837
2838/*
2839 * Perform extra freeing checks:
2840 * - detect bad pointers.
2841 * - POISON/RED_ZONE checking
1da177e4
LT
2842 */
2843static void kfree_debugcheck(const void *objp)
2844{
1da177e4
LT
2845 if (!virt_addr_valid(objp)) {
2846 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2847 (unsigned long)objp);
2848 BUG();
1da177e4 2849 }
1da177e4
LT
2850}
2851
58ce1fd5
PE
2852static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2853{
b46b8f19 2854 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2855
2856 redzone1 = *dbg_redzone1(cache, obj);
2857 redzone2 = *dbg_redzone2(cache, obj);
2858
2859 /*
2860 * Redzone is ok.
2861 */
2862 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2863 return;
2864
2865 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2866 slab_error(cache, "double free detected");
2867 else
2868 slab_error(cache, "memory outside object was overwritten");
2869
b46b8f19 2870 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2871 obj, redzone1, redzone2);
2872}
2873
343e0d7a 2874static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2875 unsigned long caller)
1da177e4
LT
2876{
2877 struct page *page;
2878 unsigned int objnr;
2879 struct slab *slabp;
2880
80cbd911
MW
2881 BUG_ON(virt_to_cache(objp) != cachep);
2882
3dafccf2 2883 objp -= obj_offset(cachep);
1da177e4 2884 kfree_debugcheck(objp);
b49af68f 2885 page = virt_to_head_page(objp);
1da177e4 2886
35026088 2887 slabp = page->slab_page;
1da177e4
LT
2888
2889 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2890 verify_redzone_free(cachep, objp);
1da177e4
LT
2891 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2892 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2893 }
2894 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2895 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2896
8fea4e96 2897 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2898
2899 BUG_ON(objnr >= cachep->num);
8fea4e96 2900 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2901
871751e2
AV
2902#ifdef CONFIG_DEBUG_SLAB_LEAK
2903 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2904#endif
1da177e4
LT
2905 if (cachep->flags & SLAB_POISON) {
2906#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2907 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2908 store_stackinfo(cachep, objp, caller);
b28a02de 2909 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2910 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2911 } else {
2912 poison_obj(cachep, objp, POISON_FREE);
2913 }
2914#else
2915 poison_obj(cachep, objp, POISON_FREE);
2916#endif
2917 }
2918 return objp;
2919}
2920
343e0d7a 2921static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2922{
2923 kmem_bufctl_t i;
2924 int entries = 0;
b28a02de 2925
1da177e4
LT
2926 /* Check slab's freelist to see if this obj is there. */
2927 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2928 entries++;
2929 if (entries > cachep->num || i >= cachep->num)
2930 goto bad;
2931 }
2932 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2933bad:
2934 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
2935 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2936 cachep->name, cachep->num, slabp, slabp->inuse,
2937 print_tainted());
fdde6abb
SAS
2938 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2939 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2940 1);
1da177e4
LT
2941 BUG();
2942 }
2943}
2944#else
2945#define kfree_debugcheck(x) do { } while(0)
2946#define cache_free_debugcheck(x,objp,z) (objp)
2947#define check_slabp(x,y) do { } while(0)
2948#endif
2949
072bb0aa
MG
2950static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2951 bool force_refill)
1da177e4
LT
2952{
2953 int batchcount;
ce8eb6c4 2954 struct kmem_cache_node *n;
1da177e4 2955 struct array_cache *ac;
1ca4cb24
PE
2956 int node;
2957
1da177e4 2958 check_irq_off();
7d6e6d09 2959 node = numa_mem_id();
072bb0aa
MG
2960 if (unlikely(force_refill))
2961 goto force_grow;
2962retry:
9a2dba4b 2963 ac = cpu_cache_get(cachep);
1da177e4
LT
2964 batchcount = ac->batchcount;
2965 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2966 /*
2967 * If there was little recent activity on this cache, then
2968 * perform only a partial refill. Otherwise we could generate
2969 * refill bouncing.
1da177e4
LT
2970 */
2971 batchcount = BATCHREFILL_LIMIT;
2972 }
ce8eb6c4 2973 n = cachep->node[node];
e498be7d 2974
ce8eb6c4
CL
2975 BUG_ON(ac->avail > 0 || !n);
2976 spin_lock(&n->list_lock);
1da177e4 2977
3ded175a 2978 /* See if we can refill from the shared array */
ce8eb6c4
CL
2979 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2980 n->shared->touched = 1;
3ded175a 2981 goto alloc_done;
44b57f1c 2982 }
3ded175a 2983
1da177e4
LT
2984 while (batchcount > 0) {
2985 struct list_head *entry;
2986 struct slab *slabp;
2987 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2988 entry = n->slabs_partial.next;
2989 if (entry == &n->slabs_partial) {
2990 n->free_touched = 1;
2991 entry = n->slabs_free.next;
2992 if (entry == &n->slabs_free)
1da177e4
LT
2993 goto must_grow;
2994 }
2995
2996 slabp = list_entry(entry, struct slab, list);
2997 check_slabp(cachep, slabp);
2998 check_spinlock_acquired(cachep);
714b8171
PE
2999
3000 /*
3001 * The slab was either on partial or free list so
3002 * there must be at least one object available for
3003 * allocation.
3004 */
249b9f33 3005 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3006
1da177e4 3007 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3008 STATS_INC_ALLOCED(cachep);
3009 STATS_INC_ACTIVE(cachep);
3010 STATS_SET_HIGH(cachep);
3011
072bb0aa
MG
3012 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3013 node));
1da177e4
LT
3014 }
3015 check_slabp(cachep, slabp);
3016
3017 /* move slabp to correct slabp list: */
3018 list_del(&slabp->list);
3019 if (slabp->free == BUFCTL_END)
ce8eb6c4 3020 list_add(&slabp->list, &n->slabs_full);
1da177e4 3021 else
ce8eb6c4 3022 list_add(&slabp->list, &n->slabs_partial);
1da177e4
LT
3023 }
3024
a737b3e2 3025must_grow:
ce8eb6c4 3026 n->free_objects -= ac->avail;
a737b3e2 3027alloc_done:
ce8eb6c4 3028 spin_unlock(&n->list_lock);
1da177e4
LT
3029
3030 if (unlikely(!ac->avail)) {
3031 int x;
072bb0aa 3032force_grow:
3c517a61 3033 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3034
a737b3e2 3035 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3036 ac = cpu_cache_get(cachep);
51cd8e6f 3037 node = numa_mem_id();
072bb0aa
MG
3038
3039 /* no objects in sight? abort */
3040 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3041 return NULL;
3042
a737b3e2 3043 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3044 goto retry;
3045 }
3046 ac->touched = 1;
072bb0aa
MG
3047
3048 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3049}
3050
a737b3e2
AM
3051static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3052 gfp_t flags)
1da177e4
LT
3053{
3054 might_sleep_if(flags & __GFP_WAIT);
3055#if DEBUG
3056 kmem_flagcheck(cachep, flags);
3057#endif
3058}
3059
3060#if DEBUG
a737b3e2 3061static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3062 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3063{
b28a02de 3064 if (!objp)
1da177e4 3065 return objp;
b28a02de 3066 if (cachep->flags & SLAB_POISON) {
1da177e4 3067#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3068 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3069 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3070 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3071 else
3072 check_poison_obj(cachep, objp);
3073#else
3074 check_poison_obj(cachep, objp);
3075#endif
3076 poison_obj(cachep, objp, POISON_INUSE);
3077 }
3078 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3079 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3080
3081 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3082 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3083 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3084 slab_error(cachep, "double free, or memory outside"
3085 " object was overwritten");
b28a02de 3086 printk(KERN_ERR
b46b8f19 3087 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3088 objp, *dbg_redzone1(cachep, objp),
3089 *dbg_redzone2(cachep, objp));
1da177e4
LT
3090 }
3091 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3092 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3093 }
871751e2
AV
3094#ifdef CONFIG_DEBUG_SLAB_LEAK
3095 {
3096 struct slab *slabp;
3097 unsigned objnr;
3098
35026088 3099 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3100 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3101 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3102 }
3103#endif
3dafccf2 3104 objp += obj_offset(cachep);
4f104934 3105 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3106 cachep->ctor(objp);
7ea466f2
TH
3107 if (ARCH_SLAB_MINALIGN &&
3108 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3109 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3110 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3111 }
1da177e4
LT
3112 return objp;
3113}
3114#else
3115#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3116#endif
3117
773ff60e 3118static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3119{
9b030cb8 3120 if (cachep == kmem_cache)
773ff60e 3121 return false;
8a8b6502 3122
8c138bc0 3123 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3124}
3125
343e0d7a 3126static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3127{
b28a02de 3128 void *objp;
1da177e4 3129 struct array_cache *ac;
072bb0aa 3130 bool force_refill = false;
1da177e4 3131
5c382300 3132 check_irq_off();
8a8b6502 3133
9a2dba4b 3134 ac = cpu_cache_get(cachep);
1da177e4 3135 if (likely(ac->avail)) {
1da177e4 3136 ac->touched = 1;
072bb0aa
MG
3137 objp = ac_get_obj(cachep, ac, flags, false);
3138
ddbf2e83 3139 /*
072bb0aa
MG
3140 * Allow for the possibility all avail objects are not allowed
3141 * by the current flags
ddbf2e83 3142 */
072bb0aa
MG
3143 if (objp) {
3144 STATS_INC_ALLOCHIT(cachep);
3145 goto out;
3146 }
3147 force_refill = true;
1da177e4 3148 }
072bb0aa
MG
3149
3150 STATS_INC_ALLOCMISS(cachep);
3151 objp = cache_alloc_refill(cachep, flags, force_refill);
3152 /*
3153 * the 'ac' may be updated by cache_alloc_refill(),
3154 * and kmemleak_erase() requires its correct value.
3155 */
3156 ac = cpu_cache_get(cachep);
3157
3158out:
d5cff635
CM
3159 /*
3160 * To avoid a false negative, if an object that is in one of the
3161 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3162 * treat the array pointers as a reference to the object.
3163 */
f3d8b53a
O
3164 if (objp)
3165 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3166 return objp;
3167}
3168
e498be7d 3169#ifdef CONFIG_NUMA
c61afb18 3170/*
b2455396 3171 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3172 *
3173 * If we are in_interrupt, then process context, including cpusets and
3174 * mempolicy, may not apply and should not be used for allocation policy.
3175 */
3176static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3177{
3178 int nid_alloc, nid_here;
3179
765c4507 3180 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3181 return NULL;
7d6e6d09 3182 nid_alloc = nid_here = numa_mem_id();
c61afb18 3183 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3184 nid_alloc = cpuset_slab_spread_node();
c61afb18 3185 else if (current->mempolicy)
e7b691b0 3186 nid_alloc = slab_node();
c61afb18 3187 if (nid_alloc != nid_here)
8b98c169 3188 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3189 return NULL;
3190}
3191
765c4507
CL
3192/*
3193 * Fallback function if there was no memory available and no objects on a
3c517a61 3194 * certain node and fall back is permitted. First we scan all the
6a67368c 3195 * available node for available objects. If that fails then we
3c517a61
CL
3196 * perform an allocation without specifying a node. This allows the page
3197 * allocator to do its reclaim / fallback magic. We then insert the
3198 * slab into the proper nodelist and then allocate from it.
765c4507 3199 */
8c8cc2c1 3200static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3201{
8c8cc2c1
PE
3202 struct zonelist *zonelist;
3203 gfp_t local_flags;
dd1a239f 3204 struct zoneref *z;
54a6eb5c
MG
3205 struct zone *zone;
3206 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3207 void *obj = NULL;
3c517a61 3208 int nid;
cc9a6c87 3209 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3210
3211 if (flags & __GFP_THISNODE)
3212 return NULL;
3213
6cb06229 3214 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3215
cc9a6c87
MG
3216retry_cpuset:
3217 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3218 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3219
3c517a61
CL
3220retry:
3221 /*
3222 * Look through allowed nodes for objects available
3223 * from existing per node queues.
3224 */
54a6eb5c
MG
3225 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3226 nid = zone_to_nid(zone);
aedb0eb1 3227
54a6eb5c 3228 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3229 cache->node[nid] &&
3230 cache->node[nid]->free_objects) {
3c517a61
CL
3231 obj = ____cache_alloc_node(cache,
3232 flags | GFP_THISNODE, nid);
481c5346
CL
3233 if (obj)
3234 break;
3235 }
3c517a61
CL
3236 }
3237
cfce6604 3238 if (!obj) {
3c517a61
CL
3239 /*
3240 * This allocation will be performed within the constraints
3241 * of the current cpuset / memory policy requirements.
3242 * We may trigger various forms of reclaim on the allowed
3243 * set and go into memory reserves if necessary.
3244 */
dd47ea75
CL
3245 if (local_flags & __GFP_WAIT)
3246 local_irq_enable();
3247 kmem_flagcheck(cache, flags);
7d6e6d09 3248 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3249 if (local_flags & __GFP_WAIT)
3250 local_irq_disable();
3c517a61
CL
3251 if (obj) {
3252 /*
3253 * Insert into the appropriate per node queues
3254 */
3255 nid = page_to_nid(virt_to_page(obj));
3256 if (cache_grow(cache, flags, nid, obj)) {
3257 obj = ____cache_alloc_node(cache,
3258 flags | GFP_THISNODE, nid);
3259 if (!obj)
3260 /*
3261 * Another processor may allocate the
3262 * objects in the slab since we are
3263 * not holding any locks.
3264 */
3265 goto retry;
3266 } else {
b6a60451 3267 /* cache_grow already freed obj */
3c517a61
CL
3268 obj = NULL;
3269 }
3270 }
aedb0eb1 3271 }
cc9a6c87
MG
3272
3273 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3274 goto retry_cpuset;
765c4507
CL
3275 return obj;
3276}
3277
e498be7d
CL
3278/*
3279 * A interface to enable slab creation on nodeid
1da177e4 3280 */
8b98c169 3281static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3282 int nodeid)
e498be7d
CL
3283{
3284 struct list_head *entry;
b28a02de 3285 struct slab *slabp;
ce8eb6c4 3286 struct kmem_cache_node *n;
b28a02de 3287 void *obj;
b28a02de
PE
3288 int x;
3289
14e50c6a 3290 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3291 n = cachep->node[nodeid];
3292 BUG_ON(!n);
b28a02de 3293
a737b3e2 3294retry:
ca3b9b91 3295 check_irq_off();
ce8eb6c4
CL
3296 spin_lock(&n->list_lock);
3297 entry = n->slabs_partial.next;
3298 if (entry == &n->slabs_partial) {
3299 n->free_touched = 1;
3300 entry = n->slabs_free.next;
3301 if (entry == &n->slabs_free)
b28a02de
PE
3302 goto must_grow;
3303 }
3304
3305 slabp = list_entry(entry, struct slab, list);
3306 check_spinlock_acquired_node(cachep, nodeid);
3307 check_slabp(cachep, slabp);
3308
3309 STATS_INC_NODEALLOCS(cachep);
3310 STATS_INC_ACTIVE(cachep);
3311 STATS_SET_HIGH(cachep);
3312
3313 BUG_ON(slabp->inuse == cachep->num);
3314
78d382d7 3315 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de 3316 check_slabp(cachep, slabp);
ce8eb6c4 3317 n->free_objects--;
b28a02de
PE
3318 /* move slabp to correct slabp list: */
3319 list_del(&slabp->list);
3320
a737b3e2 3321 if (slabp->free == BUFCTL_END)
ce8eb6c4 3322 list_add(&slabp->list, &n->slabs_full);
a737b3e2 3323 else
ce8eb6c4 3324 list_add(&slabp->list, &n->slabs_partial);
e498be7d 3325
ce8eb6c4 3326 spin_unlock(&n->list_lock);
b28a02de 3327 goto done;
e498be7d 3328
a737b3e2 3329must_grow:
ce8eb6c4 3330 spin_unlock(&n->list_lock);
3c517a61 3331 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3332 if (x)
3333 goto retry;
1da177e4 3334
8c8cc2c1 3335 return fallback_alloc(cachep, flags);
e498be7d 3336
a737b3e2 3337done:
b28a02de 3338 return obj;
e498be7d 3339}
8c8cc2c1
PE
3340
3341/**
3342 * kmem_cache_alloc_node - Allocate an object on the specified node
3343 * @cachep: The cache to allocate from.
3344 * @flags: See kmalloc().
3345 * @nodeid: node number of the target node.
3346 * @caller: return address of caller, used for debug information
3347 *
3348 * Identical to kmem_cache_alloc but it will allocate memory on the given
3349 * node, which can improve the performance for cpu bound structures.
3350 *
3351 * Fallback to other node is possible if __GFP_THISNODE is not set.
3352 */
3353static __always_inline void *
48356303 3354slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3355 unsigned long caller)
8c8cc2c1
PE
3356{
3357 unsigned long save_flags;
3358 void *ptr;
7d6e6d09 3359 int slab_node = numa_mem_id();
8c8cc2c1 3360
dcce284a 3361 flags &= gfp_allowed_mask;
7e85ee0c 3362
cf40bd16
NP
3363 lockdep_trace_alloc(flags);
3364
773ff60e 3365 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3366 return NULL;
3367
d79923fa
GC
3368 cachep = memcg_kmem_get_cache(cachep, flags);
3369
8c8cc2c1
PE
3370 cache_alloc_debugcheck_before(cachep, flags);
3371 local_irq_save(save_flags);
3372
eacbbae3 3373 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3374 nodeid = slab_node;
8c8cc2c1 3375
6a67368c 3376 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3377 /* Node not bootstrapped yet */
3378 ptr = fallback_alloc(cachep, flags);
3379 goto out;
3380 }
3381
7d6e6d09 3382 if (nodeid == slab_node) {
8c8cc2c1
PE
3383 /*
3384 * Use the locally cached objects if possible.
3385 * However ____cache_alloc does not allow fallback
3386 * to other nodes. It may fail while we still have
3387 * objects on other nodes available.
3388 */
3389 ptr = ____cache_alloc(cachep, flags);
3390 if (ptr)
3391 goto out;
3392 }
3393 /* ___cache_alloc_node can fall back to other nodes */
3394 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3395 out:
3396 local_irq_restore(save_flags);
3397 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3398 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3399 flags);
8c8cc2c1 3400
c175eea4 3401 if (likely(ptr))
8c138bc0 3402 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3403
d07dbea4 3404 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3405 memset(ptr, 0, cachep->object_size);
d07dbea4 3406
8c8cc2c1
PE
3407 return ptr;
3408}
3409
3410static __always_inline void *
3411__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3412{
3413 void *objp;
3414
3415 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3416 objp = alternate_node_alloc(cache, flags);
3417 if (objp)
3418 goto out;
3419 }
3420 objp = ____cache_alloc(cache, flags);
3421
3422 /*
3423 * We may just have run out of memory on the local node.
3424 * ____cache_alloc_node() knows how to locate memory on other nodes
3425 */
7d6e6d09
LS
3426 if (!objp)
3427 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3428
3429 out:
3430 return objp;
3431}
3432#else
3433
3434static __always_inline void *
3435__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3436{
3437 return ____cache_alloc(cachep, flags);
3438}
3439
3440#endif /* CONFIG_NUMA */
3441
3442static __always_inline void *
48356303 3443slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3444{
3445 unsigned long save_flags;
3446 void *objp;
3447
dcce284a 3448 flags &= gfp_allowed_mask;
7e85ee0c 3449
cf40bd16
NP
3450 lockdep_trace_alloc(flags);
3451
773ff60e 3452 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3453 return NULL;
3454
d79923fa
GC
3455 cachep = memcg_kmem_get_cache(cachep, flags);
3456
8c8cc2c1
PE
3457 cache_alloc_debugcheck_before(cachep, flags);
3458 local_irq_save(save_flags);
3459 objp = __do_cache_alloc(cachep, flags);
3460 local_irq_restore(save_flags);
3461 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3462 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3463 flags);
8c8cc2c1
PE
3464 prefetchw(objp);
3465
c175eea4 3466 if (likely(objp))
8c138bc0 3467 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3468
d07dbea4 3469 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3470 memset(objp, 0, cachep->object_size);
d07dbea4 3471
8c8cc2c1
PE
3472 return objp;
3473}
e498be7d
CL
3474
3475/*
3476 * Caller needs to acquire correct kmem_list's list_lock
3477 */
343e0d7a 3478static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3479 int node)
1da177e4
LT
3480{
3481 int i;
ce8eb6c4 3482 struct kmem_cache_node *n;
1da177e4
LT
3483
3484 for (i = 0; i < nr_objects; i++) {
072bb0aa 3485 void *objp;
1da177e4 3486 struct slab *slabp;
1da177e4 3487
072bb0aa
MG
3488 clear_obj_pfmemalloc(&objpp[i]);
3489 objp = objpp[i];
3490
6ed5eb22 3491 slabp = virt_to_slab(objp);
ce8eb6c4 3492 n = cachep->node[node];
1da177e4 3493 list_del(&slabp->list);
ff69416e 3494 check_spinlock_acquired_node(cachep, node);
1da177e4 3495 check_slabp(cachep, slabp);
78d382d7 3496 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3497 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3498 n->free_objects++;
1da177e4
LT
3499 check_slabp(cachep, slabp);
3500
3501 /* fixup slab chains */
3502 if (slabp->inuse == 0) {
ce8eb6c4
CL
3503 if (n->free_objects > n->free_limit) {
3504 n->free_objects -= cachep->num;
e5ac9c5a
RT
3505 /* No need to drop any previously held
3506 * lock here, even if we have a off-slab slab
3507 * descriptor it is guaranteed to come from
3508 * a different cache, refer to comments before
3509 * alloc_slabmgmt.
3510 */
1da177e4
LT
3511 slab_destroy(cachep, slabp);
3512 } else {
ce8eb6c4 3513 list_add(&slabp->list, &n->slabs_free);
1da177e4
LT
3514 }
3515 } else {
3516 /* Unconditionally move a slab to the end of the
3517 * partial list on free - maximum time for the
3518 * other objects to be freed, too.
3519 */
ce8eb6c4 3520 list_add_tail(&slabp->list, &n->slabs_partial);
1da177e4
LT
3521 }
3522 }
3523}
3524
343e0d7a 3525static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3526{
3527 int batchcount;
ce8eb6c4 3528 struct kmem_cache_node *n;
7d6e6d09 3529 int node = numa_mem_id();
1da177e4
LT
3530
3531 batchcount = ac->batchcount;
3532#if DEBUG
3533 BUG_ON(!batchcount || batchcount > ac->avail);
3534#endif
3535 check_irq_off();
ce8eb6c4
CL
3536 n = cachep->node[node];
3537 spin_lock(&n->list_lock);
3538 if (n->shared) {
3539 struct array_cache *shared_array = n->shared;
b28a02de 3540 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3541 if (max) {
3542 if (batchcount > max)
3543 batchcount = max;
e498be7d 3544 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3545 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3546 shared_array->avail += batchcount;
3547 goto free_done;
3548 }
3549 }
3550
ff69416e 3551 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3552free_done:
1da177e4
LT
3553#if STATS
3554 {
3555 int i = 0;
3556 struct list_head *p;
3557
ce8eb6c4
CL
3558 p = n->slabs_free.next;
3559 while (p != &(n->slabs_free)) {
1da177e4
LT
3560 struct slab *slabp;
3561
3562 slabp = list_entry(p, struct slab, list);
3563 BUG_ON(slabp->inuse);
3564
3565 i++;
3566 p = p->next;
3567 }
3568 STATS_SET_FREEABLE(cachep, i);
3569 }
3570#endif
ce8eb6c4 3571 spin_unlock(&n->list_lock);
1da177e4 3572 ac->avail -= batchcount;
a737b3e2 3573 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3574}
3575
3576/*
a737b3e2
AM
3577 * Release an obj back to its cache. If the obj has a constructed state, it must
3578 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3579 */
a947eb95 3580static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3581 unsigned long caller)
1da177e4 3582{
9a2dba4b 3583 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3584
3585 check_irq_off();
d5cff635 3586 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3587 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3588
8c138bc0 3589 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3590
1807a1aa
SS
3591 /*
3592 * Skip calling cache_free_alien() when the platform is not numa.
3593 * This will avoid cache misses that happen while accessing slabp (which
3594 * is per page memory reference) to get nodeid. Instead use a global
3595 * variable to skip the call, which is mostly likely to be present in
3596 * the cache.
3597 */
b6e68bc1 3598 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3599 return;
3600
1da177e4
LT
3601 if (likely(ac->avail < ac->limit)) {
3602 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3603 } else {
3604 STATS_INC_FREEMISS(cachep);
3605 cache_flusharray(cachep, ac);
1da177e4 3606 }
42c8c99c 3607
072bb0aa 3608 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3609}
3610
3611/**
3612 * kmem_cache_alloc - Allocate an object
3613 * @cachep: The cache to allocate from.
3614 * @flags: See kmalloc().
3615 *
3616 * Allocate an object from this cache. The flags are only relevant
3617 * if the cache has no available objects.
3618 */
343e0d7a 3619void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3620{
48356303 3621 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3622
ca2b84cb 3623 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3624 cachep->object_size, cachep->size, flags);
36555751
EGM
3625
3626 return ret;
1da177e4
LT
3627}
3628EXPORT_SYMBOL(kmem_cache_alloc);
3629
0f24f128 3630#ifdef CONFIG_TRACING
85beb586 3631void *
4052147c 3632kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3633{
85beb586
SR
3634 void *ret;
3635
48356303 3636 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3637
3638 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3639 size, cachep->size, flags);
85beb586 3640 return ret;
36555751 3641}
85beb586 3642EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3643#endif
3644
1da177e4 3645#ifdef CONFIG_NUMA
8b98c169
CH
3646void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647{
48356303 3648 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3649
ca2b84cb 3650 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3651 cachep->object_size, cachep->size,
ca2b84cb 3652 flags, nodeid);
36555751
EGM
3653
3654 return ret;
8b98c169 3655}
1da177e4
LT
3656EXPORT_SYMBOL(kmem_cache_alloc_node);
3657
0f24f128 3658#ifdef CONFIG_TRACING
4052147c 3659void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3660 gfp_t flags,
4052147c
EG
3661 int nodeid,
3662 size_t size)
36555751 3663{
85beb586
SR
3664 void *ret;
3665
592f4145 3666 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3667
85beb586 3668 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3669 size, cachep->size,
85beb586
SR
3670 flags, nodeid);
3671 return ret;
36555751 3672}
85beb586 3673EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3674#endif
3675
8b98c169 3676static __always_inline void *
7c0cb9c6 3677__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3678{
343e0d7a 3679 struct kmem_cache *cachep;
97e2bde4 3680
2c59dd65 3681 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3682 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3683 return cachep;
4052147c 3684 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3685}
8b98c169 3686
0bb38a5c 3687#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3688void *__kmalloc_node(size_t size, gfp_t flags, int node)
3689{
7c0cb9c6 3690 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3691}
dbe5e69d 3692EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3693
3694void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3695 int node, unsigned long caller)
8b98c169 3696{
7c0cb9c6 3697 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3698}
3699EXPORT_SYMBOL(__kmalloc_node_track_caller);
3700#else
3701void *__kmalloc_node(size_t size, gfp_t flags, int node)
3702{
7c0cb9c6 3703 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3704}
3705EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3706#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3707#endif /* CONFIG_NUMA */
1da177e4
LT
3708
3709/**
800590f5 3710 * __do_kmalloc - allocate memory
1da177e4 3711 * @size: how many bytes of memory are required.
800590f5 3712 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3713 * @caller: function caller for debug tracking of the caller
1da177e4 3714 */
7fd6b141 3715static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3716 unsigned long caller)
1da177e4 3717{
343e0d7a 3718 struct kmem_cache *cachep;
36555751 3719 void *ret;
1da177e4 3720
97e2bde4
MS
3721 /* If you want to save a few bytes .text space: replace
3722 * __ with kmem_.
3723 * Then kmalloc uses the uninlined functions instead of the inline
3724 * functions.
3725 */
2c59dd65 3726 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3727 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3728 return cachep;
48356303 3729 ret = slab_alloc(cachep, flags, caller);
36555751 3730
7c0cb9c6 3731 trace_kmalloc(caller, ret,
3b0efdfa 3732 size, cachep->size, flags);
36555751
EGM
3733
3734 return ret;
7fd6b141
PE
3735}
3736
7fd6b141 3737
0bb38a5c 3738#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3739void *__kmalloc(size_t size, gfp_t flags)
3740{
7c0cb9c6 3741 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3742}
3743EXPORT_SYMBOL(__kmalloc);
3744
ce71e27c 3745void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3746{
7c0cb9c6 3747 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3748}
3749EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3750
3751#else
3752void *__kmalloc(size_t size, gfp_t flags)
3753{
7c0cb9c6 3754 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3755}
3756EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3757#endif
3758
1da177e4
LT
3759/**
3760 * kmem_cache_free - Deallocate an object
3761 * @cachep: The cache the allocation was from.
3762 * @objp: The previously allocated object.
3763 *
3764 * Free an object which was previously allocated from this
3765 * cache.
3766 */
343e0d7a 3767void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3768{
3769 unsigned long flags;
b9ce5ef4
GC
3770 cachep = cache_from_obj(cachep, objp);
3771 if (!cachep)
3772 return;
1da177e4
LT
3773
3774 local_irq_save(flags);
d97d476b 3775 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3776 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3777 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3778 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3779 local_irq_restore(flags);
36555751 3780
ca2b84cb 3781 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3782}
3783EXPORT_SYMBOL(kmem_cache_free);
3784
1da177e4
LT
3785/**
3786 * kfree - free previously allocated memory
3787 * @objp: pointer returned by kmalloc.
3788 *
80e93eff
PE
3789 * If @objp is NULL, no operation is performed.
3790 *
1da177e4
LT
3791 * Don't free memory not originally allocated by kmalloc()
3792 * or you will run into trouble.
3793 */
3794void kfree(const void *objp)
3795{
343e0d7a 3796 struct kmem_cache *c;
1da177e4
LT
3797 unsigned long flags;
3798
2121db74
PE
3799 trace_kfree(_RET_IP_, objp);
3800
6cb8f913 3801 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3802 return;
3803 local_irq_save(flags);
3804 kfree_debugcheck(objp);
6ed5eb22 3805 c = virt_to_cache(objp);
8c138bc0
CL
3806 debug_check_no_locks_freed(objp, c->object_size);
3807
3808 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3809 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3810 local_irq_restore(flags);
3811}
3812EXPORT_SYMBOL(kfree);
3813
e498be7d 3814/*
ce8eb6c4 3815 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3816 */
83b519e8 3817static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3818{
3819 int node;
ce8eb6c4 3820 struct kmem_cache_node *n;
cafeb02e 3821 struct array_cache *new_shared;
3395ee05 3822 struct array_cache **new_alien = NULL;
e498be7d 3823
9c09a95c 3824 for_each_online_node(node) {
cafeb02e 3825
3395ee05 3826 if (use_alien_caches) {
83b519e8 3827 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3828 if (!new_alien)
3829 goto fail;
3830 }
cafeb02e 3831
63109846
ED
3832 new_shared = NULL;
3833 if (cachep->shared) {
3834 new_shared = alloc_arraycache(node,
0718dc2a 3835 cachep->shared*cachep->batchcount,
83b519e8 3836 0xbaadf00d, gfp);
63109846
ED
3837 if (!new_shared) {
3838 free_alien_cache(new_alien);
3839 goto fail;
3840 }
0718dc2a 3841 }
cafeb02e 3842
ce8eb6c4
CL
3843 n = cachep->node[node];
3844 if (n) {
3845 struct array_cache *shared = n->shared;
cafeb02e 3846
ce8eb6c4 3847 spin_lock_irq(&n->list_lock);
e498be7d 3848
cafeb02e 3849 if (shared)
0718dc2a
CL
3850 free_block(cachep, shared->entry,
3851 shared->avail, node);
e498be7d 3852
ce8eb6c4
CL
3853 n->shared = new_shared;
3854 if (!n->alien) {
3855 n->alien = new_alien;
e498be7d
CL
3856 new_alien = NULL;
3857 }
ce8eb6c4 3858 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3859 cachep->batchcount + cachep->num;
ce8eb6c4 3860 spin_unlock_irq(&n->list_lock);
cafeb02e 3861 kfree(shared);
e498be7d
CL
3862 free_alien_cache(new_alien);
3863 continue;
3864 }
ce8eb6c4
CL
3865 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3866 if (!n) {
0718dc2a
CL
3867 free_alien_cache(new_alien);
3868 kfree(new_shared);
e498be7d 3869 goto fail;
0718dc2a 3870 }
e498be7d 3871
ce8eb6c4
CL
3872 kmem_cache_node_init(n);
3873 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3874 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3875 n->shared = new_shared;
3876 n->alien = new_alien;
3877 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3878 cachep->batchcount + cachep->num;
ce8eb6c4 3879 cachep->node[node] = n;
e498be7d 3880 }
cafeb02e 3881 return 0;
0718dc2a 3882
a737b3e2 3883fail:
3b0efdfa 3884 if (!cachep->list.next) {
0718dc2a
CL
3885 /* Cache is not active yet. Roll back what we did */
3886 node--;
3887 while (node >= 0) {
6a67368c 3888 if (cachep->node[node]) {
ce8eb6c4 3889 n = cachep->node[node];
0718dc2a 3890
ce8eb6c4
CL
3891 kfree(n->shared);
3892 free_alien_cache(n->alien);
3893 kfree(n);
6a67368c 3894 cachep->node[node] = NULL;
0718dc2a
CL
3895 }
3896 node--;
3897 }
3898 }
cafeb02e 3899 return -ENOMEM;
e498be7d
CL
3900}
3901
1da177e4 3902struct ccupdate_struct {
343e0d7a 3903 struct kmem_cache *cachep;
acfe7d74 3904 struct array_cache *new[0];
1da177e4
LT
3905};
3906
3907static void do_ccupdate_local(void *info)
3908{
a737b3e2 3909 struct ccupdate_struct *new = info;
1da177e4
LT
3910 struct array_cache *old;
3911
3912 check_irq_off();
9a2dba4b 3913 old = cpu_cache_get(new->cachep);
e498be7d 3914
1da177e4
LT
3915 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3916 new->new[smp_processor_id()] = old;
3917}
3918
18004c5d 3919/* Always called with the slab_mutex held */
943a451a 3920static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3921 int batchcount, int shared, gfp_t gfp)
1da177e4 3922{
d2e7b7d0 3923 struct ccupdate_struct *new;
2ed3a4ef 3924 int i;
1da177e4 3925
acfe7d74
ED
3926 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3927 gfp);
d2e7b7d0
SS
3928 if (!new)
3929 return -ENOMEM;
3930
e498be7d 3931 for_each_online_cpu(i) {
7d6e6d09 3932 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3933 batchcount, gfp);
d2e7b7d0 3934 if (!new->new[i]) {
b28a02de 3935 for (i--; i >= 0; i--)
d2e7b7d0
SS
3936 kfree(new->new[i]);
3937 kfree(new);
e498be7d 3938 return -ENOMEM;
1da177e4
LT
3939 }
3940 }
d2e7b7d0 3941 new->cachep = cachep;
1da177e4 3942
15c8b6c1 3943 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3944
1da177e4 3945 check_irq_on();
1da177e4
LT
3946 cachep->batchcount = batchcount;
3947 cachep->limit = limit;
e498be7d 3948 cachep->shared = shared;
1da177e4 3949
e498be7d 3950 for_each_online_cpu(i) {
d2e7b7d0 3951 struct array_cache *ccold = new->new[i];
1da177e4
LT
3952 if (!ccold)
3953 continue;
6a67368c 3954 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3955 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3956 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3957 kfree(ccold);
3958 }
d2e7b7d0 3959 kfree(new);
83b519e8 3960 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3961}
3962
943a451a
GC
3963static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3964 int batchcount, int shared, gfp_t gfp)
3965{
3966 int ret;
3967 struct kmem_cache *c = NULL;
3968 int i = 0;
3969
3970 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3971
3972 if (slab_state < FULL)
3973 return ret;
3974
3975 if ((ret < 0) || !is_root_cache(cachep))
3976 return ret;
3977
ebe945c2 3978 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3979 for_each_memcg_cache_index(i) {
3980 c = cache_from_memcg(cachep, i);
3981 if (c)
3982 /* return value determined by the parent cache only */
3983 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3984 }
3985
3986 return ret;
3987}
3988
18004c5d 3989/* Called with slab_mutex held always */
83b519e8 3990static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3991{
3992 int err;
943a451a
GC
3993 int limit = 0;
3994 int shared = 0;
3995 int batchcount = 0;
3996
3997 if (!is_root_cache(cachep)) {
3998 struct kmem_cache *root = memcg_root_cache(cachep);
3999 limit = root->limit;
4000 shared = root->shared;
4001 batchcount = root->batchcount;
4002 }
1da177e4 4003
943a451a
GC
4004 if (limit && shared && batchcount)
4005 goto skip_setup;
a737b3e2
AM
4006 /*
4007 * The head array serves three purposes:
1da177e4
LT
4008 * - create a LIFO ordering, i.e. return objects that are cache-warm
4009 * - reduce the number of spinlock operations.
a737b3e2 4010 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4011 * bufctl chains: array operations are cheaper.
4012 * The numbers are guessed, we should auto-tune as described by
4013 * Bonwick.
4014 */
3b0efdfa 4015 if (cachep->size > 131072)
1da177e4 4016 limit = 1;
3b0efdfa 4017 else if (cachep->size > PAGE_SIZE)
1da177e4 4018 limit = 8;
3b0efdfa 4019 else if (cachep->size > 1024)
1da177e4 4020 limit = 24;
3b0efdfa 4021 else if (cachep->size > 256)
1da177e4
LT
4022 limit = 54;
4023 else
4024 limit = 120;
4025
a737b3e2
AM
4026 /*
4027 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4028 * allocation behaviour: Most allocs on one cpu, most free operations
4029 * on another cpu. For these cases, an efficient object passing between
4030 * cpus is necessary. This is provided by a shared array. The array
4031 * replaces Bonwick's magazine layer.
4032 * On uniprocessor, it's functionally equivalent (but less efficient)
4033 * to a larger limit. Thus disabled by default.
4034 */
4035 shared = 0;
3b0efdfa 4036 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4037 shared = 8;
1da177e4
LT
4038
4039#if DEBUG
a737b3e2
AM
4040 /*
4041 * With debugging enabled, large batchcount lead to excessively long
4042 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4043 */
4044 if (limit > 32)
4045 limit = 32;
4046#endif
943a451a
GC
4047 batchcount = (limit + 1) / 2;
4048skip_setup:
4049 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4050 if (err)
4051 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4052 cachep->name, -err);
2ed3a4ef 4053 return err;
1da177e4
LT
4054}
4055
1b55253a 4056/*
ce8eb6c4
CL
4057 * Drain an array if it contains any elements taking the node lock only if
4058 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4059 * if drain_array() is used on the shared array.
1b55253a 4060 */
ce8eb6c4 4061static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 4062 struct array_cache *ac, int force, int node)
1da177e4
LT
4063{
4064 int tofree;
4065
1b55253a
CL
4066 if (!ac || !ac->avail)
4067 return;
1da177e4
LT
4068 if (ac->touched && !force) {
4069 ac->touched = 0;
b18e7e65 4070 } else {
ce8eb6c4 4071 spin_lock_irq(&n->list_lock);
b18e7e65
CL
4072 if (ac->avail) {
4073 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4074 if (tofree > ac->avail)
4075 tofree = (ac->avail + 1) / 2;
4076 free_block(cachep, ac->entry, tofree, node);
4077 ac->avail -= tofree;
4078 memmove(ac->entry, &(ac->entry[tofree]),
4079 sizeof(void *) * ac->avail);
4080 }
ce8eb6c4 4081 spin_unlock_irq(&n->list_lock);
1da177e4
LT
4082 }
4083}
4084
4085/**
4086 * cache_reap - Reclaim memory from caches.
05fb6bf0 4087 * @w: work descriptor
1da177e4
LT
4088 *
4089 * Called from workqueue/eventd every few seconds.
4090 * Purpose:
4091 * - clear the per-cpu caches for this CPU.
4092 * - return freeable pages to the main free memory pool.
4093 *
a737b3e2
AM
4094 * If we cannot acquire the cache chain mutex then just give up - we'll try
4095 * again on the next iteration.
1da177e4 4096 */
7c5cae36 4097static void cache_reap(struct work_struct *w)
1da177e4 4098{
7a7c381d 4099 struct kmem_cache *searchp;
ce8eb6c4 4100 struct kmem_cache_node *n;
7d6e6d09 4101 int node = numa_mem_id();
bf6aede7 4102 struct delayed_work *work = to_delayed_work(w);
1da177e4 4103
18004c5d 4104 if (!mutex_trylock(&slab_mutex))
1da177e4 4105 /* Give up. Setup the next iteration. */
7c5cae36 4106 goto out;
1da177e4 4107
18004c5d 4108 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4109 check_irq_on();
4110
35386e3b 4111 /*
ce8eb6c4 4112 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4113 * have established with reasonable certainty that
4114 * we can do some work if the lock was obtained.
4115 */
ce8eb6c4 4116 n = searchp->node[node];
35386e3b 4117
ce8eb6c4 4118 reap_alien(searchp, n);
1da177e4 4119
ce8eb6c4 4120 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 4121
35386e3b
CL
4122 /*
4123 * These are racy checks but it does not matter
4124 * if we skip one check or scan twice.
4125 */
ce8eb6c4 4126 if (time_after(n->next_reap, jiffies))
35386e3b 4127 goto next;
1da177e4 4128
ce8eb6c4 4129 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4130
ce8eb6c4 4131 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4132
ce8eb6c4
CL
4133 if (n->free_touched)
4134 n->free_touched = 0;
ed11d9eb
CL
4135 else {
4136 int freed;
1da177e4 4137
ce8eb6c4 4138 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4139 5 * searchp->num - 1) / (5 * searchp->num));
4140 STATS_ADD_REAPED(searchp, freed);
4141 }
35386e3b 4142next:
1da177e4
LT
4143 cond_resched();
4144 }
4145 check_irq_on();
18004c5d 4146 mutex_unlock(&slab_mutex);
8fce4d8e 4147 next_reap_node();
7c5cae36 4148out:
a737b3e2 4149 /* Set up the next iteration */
7c5cae36 4150 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4151}
4152
158a9624 4153#ifdef CONFIG_SLABINFO
0d7561c6 4154void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4155{
b28a02de
PE
4156 struct slab *slabp;
4157 unsigned long active_objs;
4158 unsigned long num_objs;
4159 unsigned long active_slabs = 0;
4160 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4161 const char *name;
1da177e4 4162 char *error = NULL;
e498be7d 4163 int node;
ce8eb6c4 4164 struct kmem_cache_node *n;
1da177e4 4165
1da177e4
LT
4166 active_objs = 0;
4167 num_slabs = 0;
e498be7d 4168 for_each_online_node(node) {
ce8eb6c4
CL
4169 n = cachep->node[node];
4170 if (!n)
e498be7d
CL
4171 continue;
4172
ca3b9b91 4173 check_irq_on();
ce8eb6c4 4174 spin_lock_irq(&n->list_lock);
e498be7d 4175
ce8eb6c4 4176 list_for_each_entry(slabp, &n->slabs_full, list) {
e498be7d
CL
4177 if (slabp->inuse != cachep->num && !error)
4178 error = "slabs_full accounting error";
4179 active_objs += cachep->num;
4180 active_slabs++;
4181 }
ce8eb6c4 4182 list_for_each_entry(slabp, &n->slabs_partial, list) {
e498be7d
CL
4183 if (slabp->inuse == cachep->num && !error)
4184 error = "slabs_partial inuse accounting error";
4185 if (!slabp->inuse && !error)
4186 error = "slabs_partial/inuse accounting error";
4187 active_objs += slabp->inuse;
4188 active_slabs++;
4189 }
ce8eb6c4 4190 list_for_each_entry(slabp, &n->slabs_free, list) {
e498be7d
CL
4191 if (slabp->inuse && !error)
4192 error = "slabs_free/inuse accounting error";
4193 num_slabs++;
4194 }
ce8eb6c4
CL
4195 free_objects += n->free_objects;
4196 if (n->shared)
4197 shared_avail += n->shared->avail;
e498be7d 4198
ce8eb6c4 4199 spin_unlock_irq(&n->list_lock);
1da177e4 4200 }
b28a02de
PE
4201 num_slabs += active_slabs;
4202 num_objs = num_slabs * cachep->num;
e498be7d 4203 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4204 error = "free_objects accounting error";
4205
b28a02de 4206 name = cachep->name;
1da177e4
LT
4207 if (error)
4208 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4209
0d7561c6
GC
4210 sinfo->active_objs = active_objs;
4211 sinfo->num_objs = num_objs;
4212 sinfo->active_slabs = active_slabs;
4213 sinfo->num_slabs = num_slabs;
4214 sinfo->shared_avail = shared_avail;
4215 sinfo->limit = cachep->limit;
4216 sinfo->batchcount = cachep->batchcount;
4217 sinfo->shared = cachep->shared;
4218 sinfo->objects_per_slab = cachep->num;
4219 sinfo->cache_order = cachep->gfporder;
4220}
4221
4222void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4223{
1da177e4 4224#if STATS
ce8eb6c4 4225 { /* node stats */
1da177e4
LT
4226 unsigned long high = cachep->high_mark;
4227 unsigned long allocs = cachep->num_allocations;
4228 unsigned long grown = cachep->grown;
4229 unsigned long reaped = cachep->reaped;
4230 unsigned long errors = cachep->errors;
4231 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4232 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4233 unsigned long node_frees = cachep->node_frees;
fb7faf33 4234 unsigned long overflows = cachep->node_overflow;
1da177e4 4235
e92dd4fd
JP
4236 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4237 "%4lu %4lu %4lu %4lu %4lu",
4238 allocs, high, grown,
4239 reaped, errors, max_freeable, node_allocs,
4240 node_frees, overflows);
1da177e4
LT
4241 }
4242 /* cpu stats */
4243 {
4244 unsigned long allochit = atomic_read(&cachep->allochit);
4245 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4246 unsigned long freehit = atomic_read(&cachep->freehit);
4247 unsigned long freemiss = atomic_read(&cachep->freemiss);
4248
4249 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4250 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4251 }
4252#endif
1da177e4
LT
4253}
4254
1da177e4
LT
4255#define MAX_SLABINFO_WRITE 128
4256/**
4257 * slabinfo_write - Tuning for the slab allocator
4258 * @file: unused
4259 * @buffer: user buffer
4260 * @count: data length
4261 * @ppos: unused
4262 */
b7454ad3 4263ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4264 size_t count, loff_t *ppos)
1da177e4 4265{
b28a02de 4266 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4267 int limit, batchcount, shared, res;
7a7c381d 4268 struct kmem_cache *cachep;
b28a02de 4269
1da177e4
LT
4270 if (count > MAX_SLABINFO_WRITE)
4271 return -EINVAL;
4272 if (copy_from_user(&kbuf, buffer, count))
4273 return -EFAULT;
b28a02de 4274 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4275
4276 tmp = strchr(kbuf, ' ');
4277 if (!tmp)
4278 return -EINVAL;
4279 *tmp = '\0';
4280 tmp++;
4281 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4282 return -EINVAL;
4283
4284 /* Find the cache in the chain of caches. */
18004c5d 4285 mutex_lock(&slab_mutex);
1da177e4 4286 res = -EINVAL;
18004c5d 4287 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4288 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4289 if (limit < 1 || batchcount < 1 ||
4290 batchcount > limit || shared < 0) {
e498be7d 4291 res = 0;
1da177e4 4292 } else {
e498be7d 4293 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4294 batchcount, shared,
4295 GFP_KERNEL);
1da177e4
LT
4296 }
4297 break;
4298 }
4299 }
18004c5d 4300 mutex_unlock(&slab_mutex);
1da177e4
LT
4301 if (res >= 0)
4302 res = count;
4303 return res;
4304}
871751e2
AV
4305
4306#ifdef CONFIG_DEBUG_SLAB_LEAK
4307
4308static void *leaks_start(struct seq_file *m, loff_t *pos)
4309{
18004c5d
CL
4310 mutex_lock(&slab_mutex);
4311 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4312}
4313
4314static inline int add_caller(unsigned long *n, unsigned long v)
4315{
4316 unsigned long *p;
4317 int l;
4318 if (!v)
4319 return 1;
4320 l = n[1];
4321 p = n + 2;
4322 while (l) {
4323 int i = l/2;
4324 unsigned long *q = p + 2 * i;
4325 if (*q == v) {
4326 q[1]++;
4327 return 1;
4328 }
4329 if (*q > v) {
4330 l = i;
4331 } else {
4332 p = q + 2;
4333 l -= i + 1;
4334 }
4335 }
4336 if (++n[1] == n[0])
4337 return 0;
4338 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4339 p[0] = v;
4340 p[1] = 1;
4341 return 1;
4342}
4343
4344static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4345{
4346 void *p;
4347 int i;
4348 if (n[0] == n[1])
4349 return;
3b0efdfa 4350 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4351 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4352 continue;
4353 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4354 return;
4355 }
4356}
4357
4358static void show_symbol(struct seq_file *m, unsigned long address)
4359{
4360#ifdef CONFIG_KALLSYMS
871751e2 4361 unsigned long offset, size;
9281acea 4362 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4363
a5c43dae 4364 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4365 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4366 if (modname[0])
871751e2
AV
4367 seq_printf(m, " [%s]", modname);
4368 return;
4369 }
4370#endif
4371 seq_printf(m, "%p", (void *)address);
4372}
4373
4374static int leaks_show(struct seq_file *m, void *p)
4375{
0672aa7c 4376 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4377 struct slab *slabp;
ce8eb6c4 4378 struct kmem_cache_node *n;
871751e2 4379 const char *name;
db845067 4380 unsigned long *x = m->private;
871751e2
AV
4381 int node;
4382 int i;
4383
4384 if (!(cachep->flags & SLAB_STORE_USER))
4385 return 0;
4386 if (!(cachep->flags & SLAB_RED_ZONE))
4387 return 0;
4388
4389 /* OK, we can do it */
4390
db845067 4391 x[1] = 0;
871751e2
AV
4392
4393 for_each_online_node(node) {
ce8eb6c4
CL
4394 n = cachep->node[node];
4395 if (!n)
871751e2
AV
4396 continue;
4397
4398 check_irq_on();
ce8eb6c4 4399 spin_lock_irq(&n->list_lock);
871751e2 4400
ce8eb6c4 4401 list_for_each_entry(slabp, &n->slabs_full, list)
db845067 4402 handle_slab(x, cachep, slabp);
ce8eb6c4 4403 list_for_each_entry(slabp, &n->slabs_partial, list)
db845067 4404 handle_slab(x, cachep, slabp);
ce8eb6c4 4405 spin_unlock_irq(&n->list_lock);
871751e2
AV
4406 }
4407 name = cachep->name;
db845067 4408 if (x[0] == x[1]) {
871751e2 4409 /* Increase the buffer size */
18004c5d 4410 mutex_unlock(&slab_mutex);
db845067 4411 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4412 if (!m->private) {
4413 /* Too bad, we are really out */
db845067 4414 m->private = x;
18004c5d 4415 mutex_lock(&slab_mutex);
871751e2
AV
4416 return -ENOMEM;
4417 }
db845067
CL
4418 *(unsigned long *)m->private = x[0] * 2;
4419 kfree(x);
18004c5d 4420 mutex_lock(&slab_mutex);
871751e2
AV
4421 /* Now make sure this entry will be retried */
4422 m->count = m->size;
4423 return 0;
4424 }
db845067
CL
4425 for (i = 0; i < x[1]; i++) {
4426 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4427 show_symbol(m, x[2*i+2]);
871751e2
AV
4428 seq_putc(m, '\n');
4429 }
d2e7b7d0 4430
871751e2
AV
4431 return 0;
4432}
4433
b7454ad3
GC
4434static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4435{
4436 return seq_list_next(p, &slab_caches, pos);
4437}
4438
4439static void s_stop(struct seq_file *m, void *p)
4440{
4441 mutex_unlock(&slab_mutex);
4442}
4443
a0ec95a8 4444static const struct seq_operations slabstats_op = {
871751e2
AV
4445 .start = leaks_start,
4446 .next = s_next,
4447 .stop = s_stop,
4448 .show = leaks_show,
4449};
a0ec95a8
AD
4450
4451static int slabstats_open(struct inode *inode, struct file *file)
4452{
4453 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4454 int ret = -ENOMEM;
4455 if (n) {
4456 ret = seq_open(file, &slabstats_op);
4457 if (!ret) {
4458 struct seq_file *m = file->private_data;
4459 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4460 m->private = n;
4461 n = NULL;
4462 }
4463 kfree(n);
4464 }
4465 return ret;
4466}
4467
4468static const struct file_operations proc_slabstats_operations = {
4469 .open = slabstats_open,
4470 .read = seq_read,
4471 .llseek = seq_lseek,
4472 .release = seq_release_private,
4473};
4474#endif
4475
4476static int __init slab_proc_init(void)
4477{
4478#ifdef CONFIG_DEBUG_SLAB_LEAK
4479 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4480#endif
a0ec95a8
AD
4481 return 0;
4482}
4483module_init(slab_proc_init);
1da177e4
LT
4484#endif
4485
00e145b6
MS
4486/**
4487 * ksize - get the actual amount of memory allocated for a given object
4488 * @objp: Pointer to the object
4489 *
4490 * kmalloc may internally round up allocations and return more memory
4491 * than requested. ksize() can be used to determine the actual amount of
4492 * memory allocated. The caller may use this additional memory, even though
4493 * a smaller amount of memory was initially specified with the kmalloc call.
4494 * The caller must guarantee that objp points to a valid object previously
4495 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4496 * must not be freed during the duration of the call.
4497 */
fd76bab2 4498size_t ksize(const void *objp)
1da177e4 4499{
ef8b4520
CL
4500 BUG_ON(!objp);
4501 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4502 return 0;
1da177e4 4503
8c138bc0 4504 return virt_to_cache(objp)->object_size;
1da177e4 4505}
b1aabecd 4506EXPORT_SYMBOL(ksize);