slub: add taint flag outputting to debug paths
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
1da177e4
LT
120#include <asm/cacheflush.h>
121#include <asm/tlbflush.h>
122#include <asm/page.h>
123
124/*
50953fe9 125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
126 * 0 for faster, smaller code (especially in the critical paths).
127 *
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
130 *
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 */
133
134#ifdef CONFIG_DEBUG_SLAB
135#define DEBUG 1
136#define STATS 1
137#define FORCED_DEBUG 1
138#else
139#define DEBUG 0
140#define STATS 0
141#define FORCED_DEBUG 0
142#endif
143
1da177e4
LT
144/* Shouldn't this be in a header file somewhere? */
145#define BYTES_PER_WORD sizeof(void *)
87a927c7 146#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 147
1da177e4
LT
148#ifndef ARCH_KMALLOC_FLAGS
149#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
150#endif
151
152/* Legal flag mask for kmem_cache_create(). */
153#if DEBUG
50953fe9 154# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 156 SLAB_CACHE_DMA | \
5af60839 157 SLAB_STORE_USER | \
1da177e4 158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 161#else
ac2b898c 162# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 163 SLAB_CACHE_DMA | \
1da177e4 164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
167#endif
168
169/*
170 * kmem_bufctl_t:
171 *
172 * Bufctl's are used for linking objs within a slab
173 * linked offsets.
174 *
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
186 */
187
fa5b08d5 188typedef unsigned int kmem_bufctl_t;
1da177e4
LT
189#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
191#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 193
1da177e4
LT
194/*
195 * struct slab_rcu
196 *
197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198 * arrange for kmem_freepages to be called via RCU. This is useful if
199 * we need to approach a kernel structure obliquely, from its address
200 * obtained without the usual locking. We can lock the structure to
201 * stabilize it and check it's still at the given address, only if we
202 * can be sure that the memory has not been meanwhile reused for some
203 * other kind of object (which our subsystem's lock might corrupt).
204 *
205 * rcu_read_lock before reading the address, then rcu_read_unlock after
206 * taking the spinlock within the structure expected at that address.
1da177e4
LT
207 */
208struct slab_rcu {
b28a02de 209 struct rcu_head head;
343e0d7a 210 struct kmem_cache *cachep;
b28a02de 211 void *addr;
1da177e4
LT
212};
213
5bfe53a7
LJ
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
222 union {
223 struct {
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
228 kmem_bufctl_t free;
229 unsigned short nodeid;
230 };
231 struct slab_rcu __slab_cover_slab_rcu;
232 };
233};
234
1da177e4
LT
235/*
236 * struct array_cache
237 *
1da177e4
LT
238 * Purpose:
239 * - LIFO ordering, to hand out cache-warm objects from _alloc
240 * - reduce the number of linked list operations
241 * - reduce spinlock operations
242 *
243 * The limit is stored in the per-cpu structure to reduce the data cache
244 * footprint.
245 *
246 */
247struct array_cache {
248 unsigned int avail;
249 unsigned int limit;
250 unsigned int batchcount;
251 unsigned int touched;
e498be7d 252 spinlock_t lock;
bda5b655 253 void *entry[]; /*
a737b3e2
AM
254 * Must have this definition in here for the proper
255 * alignment of array_cache. Also simplifies accessing
256 * the entries.
a737b3e2 257 */
1da177e4
LT
258};
259
a737b3e2
AM
260/*
261 * bootstrap: The caches do not work without cpuarrays anymore, but the
262 * cpuarrays are allocated from the generic caches...
1da177e4
LT
263 */
264#define BOOT_CPUCACHE_ENTRIES 1
265struct arraycache_init {
266 struct array_cache cache;
b28a02de 267 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
268};
269
270/*
e498be7d 271 * The slab lists for all objects.
1da177e4
LT
272 */
273struct kmem_list3 {
b28a02de
PE
274 struct list_head slabs_partial; /* partial list first, better asm code */
275 struct list_head slabs_full;
276 struct list_head slabs_free;
277 unsigned long free_objects;
b28a02de 278 unsigned int free_limit;
2e1217cf 279 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
280 spinlock_t list_lock;
281 struct array_cache *shared; /* shared per node */
282 struct array_cache **alien; /* on other nodes */
35386e3b
CL
283 unsigned long next_reap; /* updated without locking */
284 int free_touched; /* updated without locking */
1da177e4
LT
285};
286
e498be7d
CL
287/*
288 * Need this for bootstrapping a per node allocator.
289 */
556a169d 290#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 291static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 292#define CACHE_CACHE 0
556a169d
PE
293#define SIZE_AC MAX_NUMNODES
294#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 295
ed11d9eb
CL
296static int drain_freelist(struct kmem_cache *cache,
297 struct kmem_list3 *l3, int tofree);
298static void free_block(struct kmem_cache *cachep, void **objpp, int len,
299 int node);
83b519e8 300static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 301static void cache_reap(struct work_struct *unused);
ed11d9eb 302
e498be7d 303/*
a737b3e2
AM
304 * This function must be completely optimized away if a constant is passed to
305 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 306 */
7243cc05 307static __always_inline int index_of(const size_t size)
e498be7d 308{
5ec8a847
SR
309 extern void __bad_size(void);
310
e498be7d
CL
311 if (__builtin_constant_p(size)) {
312 int i = 0;
313
314#define CACHE(x) \
315 if (size <=x) \
316 return i; \
317 else \
318 i++;
1c61fc40 319#include <linux/kmalloc_sizes.h>
e498be7d 320#undef CACHE
5ec8a847 321 __bad_size();
7243cc05 322 } else
5ec8a847 323 __bad_size();
e498be7d
CL
324 return 0;
325}
326
e0a42726
IM
327static int slab_early_init = 1;
328
e498be7d
CL
329#define INDEX_AC index_of(sizeof(struct arraycache_init))
330#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 331
5295a74c 332static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
333{
334 INIT_LIST_HEAD(&parent->slabs_full);
335 INIT_LIST_HEAD(&parent->slabs_partial);
336 INIT_LIST_HEAD(&parent->slabs_free);
337 parent->shared = NULL;
338 parent->alien = NULL;
2e1217cf 339 parent->colour_next = 0;
e498be7d
CL
340 spin_lock_init(&parent->list_lock);
341 parent->free_objects = 0;
342 parent->free_touched = 0;
343}
344
a737b3e2
AM
345#define MAKE_LIST(cachep, listp, slab, nodeid) \
346 do { \
347 INIT_LIST_HEAD(listp); \
348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
349 } while (0)
350
a737b3e2
AM
351#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
352 do { \
e498be7d
CL
353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
356 } while (0)
1da177e4 357
1da177e4
LT
358#define CFLGS_OFF_SLAB (0x80000000UL)
359#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
360
361#define BATCHREFILL_LIMIT 16
a737b3e2
AM
362/*
363 * Optimization question: fewer reaps means less probability for unnessary
364 * cpucache drain/refill cycles.
1da177e4 365 *
dc6f3f27 366 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
367 * which could lock up otherwise freeable slabs.
368 */
369#define REAPTIMEOUT_CPUC (2*HZ)
370#define REAPTIMEOUT_LIST3 (4*HZ)
371
372#if STATS
373#define STATS_INC_ACTIVE(x) ((x)->num_active++)
374#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
375#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
376#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 377#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
378#define STATS_SET_HIGH(x) \
379 do { \
380 if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
382 } while (0)
1da177e4
LT
383#define STATS_INC_ERR(x) ((x)->errors++)
384#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 385#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 386#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
387#define STATS_SET_FREEABLE(x, i) \
388 do { \
389 if ((x)->max_freeable < i) \
390 (x)->max_freeable = i; \
391 } while (0)
1da177e4
LT
392#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
393#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
394#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
395#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
396#else
397#define STATS_INC_ACTIVE(x) do { } while (0)
398#define STATS_DEC_ACTIVE(x) do { } while (0)
399#define STATS_INC_ALLOCED(x) do { } while (0)
400#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 401#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
402#define STATS_SET_HIGH(x) do { } while (0)
403#define STATS_INC_ERR(x) do { } while (0)
404#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 405#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 406#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 407#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
408#define STATS_INC_ALLOCHIT(x) do { } while (0)
409#define STATS_INC_ALLOCMISS(x) do { } while (0)
410#define STATS_INC_FREEHIT(x) do { } while (0)
411#define STATS_INC_FREEMISS(x) do { } while (0)
412#endif
413
414#if DEBUG
1da177e4 415
a737b3e2
AM
416/*
417 * memory layout of objects:
1da177e4 418 * 0 : objp
3dafccf2 419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
420 * the end of an object is aligned with the end of the real
421 * allocation. Catches writes behind the end of the allocation.
3dafccf2 422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 423 * redzone word.
3dafccf2
MS
424 * cachep->obj_offset: The real object.
425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427 * [BYTES_PER_WORD long]
1da177e4 428 */
343e0d7a 429static int obj_offset(struct kmem_cache *cachep)
1da177e4 430{
3dafccf2 431 return cachep->obj_offset;
1da177e4
LT
432}
433
343e0d7a 434static int obj_size(struct kmem_cache *cachep)
1da177e4 435{
3dafccf2 436 return cachep->obj_size;
1da177e4
LT
437}
438
b46b8f19 439static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
440{
441 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
442 return (unsigned long long*) (objp + obj_offset(cachep) -
443 sizeof(unsigned long long));
1da177e4
LT
444}
445
b46b8f19 446static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
447{
448 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
449 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
450 return (unsigned long long *)(objp + cachep->buffer_size -
451 sizeof(unsigned long long) -
87a927c7 452 REDZONE_ALIGN);
b46b8f19
DW
453 return (unsigned long long *) (objp + cachep->buffer_size -
454 sizeof(unsigned long long));
1da177e4
LT
455}
456
343e0d7a 457static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
458{
459 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 460 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
461}
462
463#else
464
3dafccf2
MS
465#define obj_offset(x) 0
466#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
467#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
469#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
470
471#endif
472
0f24f128 473#ifdef CONFIG_TRACING
36555751
EGM
474size_t slab_buffer_size(struct kmem_cache *cachep)
475{
476 return cachep->buffer_size;
477}
478EXPORT_SYMBOL(slab_buffer_size);
479#endif
480
1da177e4 481/*
3df1cccd
DR
482 * Do not go above this order unless 0 objects fit into the slab or
483 * overridden on the command line.
1da177e4 484 */
543585cc
DR
485#define SLAB_MAX_ORDER_HI 1
486#define SLAB_MAX_ORDER_LO 0
487static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 488static bool slab_max_order_set __initdata;
1da177e4 489
a737b3e2
AM
490/*
491 * Functions for storing/retrieving the cachep and or slab from the page
492 * allocator. These are used to find the slab an obj belongs to. With kfree(),
493 * these are used to find the cache which an obj belongs to.
1da177e4 494 */
065d41cb
PE
495static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
496{
497 page->lru.next = (struct list_head *)cache;
498}
499
500static inline struct kmem_cache *page_get_cache(struct page *page)
501{
d85f3385 502 page = compound_head(page);
ddc2e812 503 BUG_ON(!PageSlab(page));
065d41cb
PE
504 return (struct kmem_cache *)page->lru.next;
505}
506
507static inline void page_set_slab(struct page *page, struct slab *slab)
508{
509 page->lru.prev = (struct list_head *)slab;
510}
511
512static inline struct slab *page_get_slab(struct page *page)
513{
ddc2e812 514 BUG_ON(!PageSlab(page));
065d41cb
PE
515 return (struct slab *)page->lru.prev;
516}
1da177e4 517
6ed5eb22
PE
518static inline struct kmem_cache *virt_to_cache(const void *obj)
519{
b49af68f 520 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
521 return page_get_cache(page);
522}
523
524static inline struct slab *virt_to_slab(const void *obj)
525{
b49af68f 526 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
527 return page_get_slab(page);
528}
529
8fea4e96
PE
530static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
531 unsigned int idx)
532{
533 return slab->s_mem + cache->buffer_size * idx;
534}
535
6a2d7a95
ED
536/*
537 * We want to avoid an expensive divide : (offset / cache->buffer_size)
538 * Using the fact that buffer_size is a constant for a particular cache,
539 * we can replace (offset / cache->buffer_size) by
540 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
541 */
542static inline unsigned int obj_to_index(const struct kmem_cache *cache,
543 const struct slab *slab, void *obj)
8fea4e96 544{
6a2d7a95
ED
545 u32 offset = (obj - slab->s_mem);
546 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
547}
548
a737b3e2
AM
549/*
550 * These are the default caches for kmalloc. Custom caches can have other sizes.
551 */
1da177e4
LT
552struct cache_sizes malloc_sizes[] = {
553#define CACHE(x) { .cs_size = (x) },
554#include <linux/kmalloc_sizes.h>
555 CACHE(ULONG_MAX)
556#undef CACHE
557};
558EXPORT_SYMBOL(malloc_sizes);
559
560/* Must match cache_sizes above. Out of line to keep cache footprint low. */
561struct cache_names {
562 char *name;
563 char *name_dma;
564};
565
566static struct cache_names __initdata cache_names[] = {
567#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
568#include <linux/kmalloc_sizes.h>
b28a02de 569 {NULL,}
1da177e4
LT
570#undef CACHE
571};
572
573static struct arraycache_init initarray_cache __initdata =
b28a02de 574 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 575static struct arraycache_init initarray_generic =
b28a02de 576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
577
578/* internal cache of cache description objs */
b56efcf0 579static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 580static struct kmem_cache cache_cache = {
b56efcf0 581 .nodelists = cache_cache_nodelists,
b28a02de
PE
582 .batchcount = 1,
583 .limit = BOOT_CPUCACHE_ENTRIES,
584 .shared = 1,
343e0d7a 585 .buffer_size = sizeof(struct kmem_cache),
b28a02de 586 .name = "kmem_cache",
1da177e4
LT
587};
588
056c6241
RT
589#define BAD_ALIEN_MAGIC 0x01020304ul
590
ce79ddc8
PE
591/*
592 * chicken and egg problem: delay the per-cpu array allocation
593 * until the general caches are up.
594 */
595static enum {
596 NONE,
597 PARTIAL_AC,
598 PARTIAL_L3,
599 EARLY,
600 FULL
601} g_cpucache_up;
602
603/*
604 * used by boot code to determine if it can use slab based allocator
605 */
606int slab_is_available(void)
607{
608 return g_cpucache_up >= EARLY;
609}
610
f1aaee53
AV
611#ifdef CONFIG_LOCKDEP
612
613/*
614 * Slab sometimes uses the kmalloc slabs to store the slab headers
615 * for other slabs "off slab".
616 * The locking for this is tricky in that it nests within the locks
617 * of all other slabs in a few places; to deal with this special
618 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
619 *
620 * We set lock class for alien array caches which are up during init.
621 * The lock annotation will be lost if all cpus of a node goes down and
622 * then comes back up during hotplug
f1aaee53 623 */
056c6241
RT
624static struct lock_class_key on_slab_l3_key;
625static struct lock_class_key on_slab_alc_key;
626
83835b3d
PZ
627static struct lock_class_key debugobj_l3_key;
628static struct lock_class_key debugobj_alc_key;
629
630static void slab_set_lock_classes(struct kmem_cache *cachep,
631 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
632 int q)
633{
634 struct array_cache **alc;
635 struct kmem_list3 *l3;
636 int r;
637
638 l3 = cachep->nodelists[q];
639 if (!l3)
640 return;
641
642 lockdep_set_class(&l3->list_lock, l3_key);
643 alc = l3->alien;
644 /*
645 * FIXME: This check for BAD_ALIEN_MAGIC
646 * should go away when common slab code is taught to
647 * work even without alien caches.
648 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
649 * for alloc_alien_cache,
650 */
651 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
652 return;
653 for_each_node(r) {
654 if (alc[r])
655 lockdep_set_class(&alc[r]->lock, alc_key);
656 }
657}
658
659static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
660{
661 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
662}
663
664static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
665{
666 int node;
667
668 for_each_online_node(node)
669 slab_set_debugobj_lock_classes_node(cachep, node);
670}
671
ce79ddc8 672static void init_node_lock_keys(int q)
f1aaee53 673{
056c6241
RT
674 struct cache_sizes *s = malloc_sizes;
675
ce79ddc8
PE
676 if (g_cpucache_up != FULL)
677 return;
678
679 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 680 struct kmem_list3 *l3;
ce79ddc8
PE
681
682 l3 = s->cs_cachep->nodelists[q];
683 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 684 continue;
83835b3d
PZ
685
686 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
687 &on_slab_alc_key, q);
f1aaee53
AV
688 }
689}
ce79ddc8
PE
690
691static inline void init_lock_keys(void)
692{
693 int node;
694
695 for_each_node(node)
696 init_node_lock_keys(node);
697}
f1aaee53 698#else
ce79ddc8
PE
699static void init_node_lock_keys(int q)
700{
701}
702
056c6241 703static inline void init_lock_keys(void)
f1aaee53
AV
704{
705}
83835b3d
PZ
706
707static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
708{
709}
710
711static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
712{
713}
f1aaee53
AV
714#endif
715
8f5be20b 716/*
95402b38 717 * Guard access to the cache-chain.
8f5be20b 718 */
fc0abb14 719static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
720static struct list_head cache_chain;
721
1871e52c 722static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 723
343e0d7a 724static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
725{
726 return cachep->array[smp_processor_id()];
727}
728
a737b3e2
AM
729static inline struct kmem_cache *__find_general_cachep(size_t size,
730 gfp_t gfpflags)
1da177e4
LT
731{
732 struct cache_sizes *csizep = malloc_sizes;
733
734#if DEBUG
735 /* This happens if someone tries to call
b28a02de
PE
736 * kmem_cache_create(), or __kmalloc(), before
737 * the generic caches are initialized.
738 */
c7e43c78 739 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 740#endif
6cb8f913
CL
741 if (!size)
742 return ZERO_SIZE_PTR;
743
1da177e4
LT
744 while (size > csizep->cs_size)
745 csizep++;
746
747 /*
0abf40c1 748 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
749 * has cs_{dma,}cachep==NULL. Thus no special case
750 * for large kmalloc calls required.
751 */
4b51d669 752#ifdef CONFIG_ZONE_DMA
1da177e4
LT
753 if (unlikely(gfpflags & GFP_DMA))
754 return csizep->cs_dmacachep;
4b51d669 755#endif
1da177e4
LT
756 return csizep->cs_cachep;
757}
758
b221385b 759static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
760{
761 return __find_general_cachep(size, gfpflags);
762}
97e2bde4 763
fbaccacf 764static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 765{
fbaccacf
SR
766 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
767}
1da177e4 768
a737b3e2
AM
769/*
770 * Calculate the number of objects and left-over bytes for a given buffer size.
771 */
fbaccacf
SR
772static void cache_estimate(unsigned long gfporder, size_t buffer_size,
773 size_t align, int flags, size_t *left_over,
774 unsigned int *num)
775{
776 int nr_objs;
777 size_t mgmt_size;
778 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 779
fbaccacf
SR
780 /*
781 * The slab management structure can be either off the slab or
782 * on it. For the latter case, the memory allocated for a
783 * slab is used for:
784 *
785 * - The struct slab
786 * - One kmem_bufctl_t for each object
787 * - Padding to respect alignment of @align
788 * - @buffer_size bytes for each object
789 *
790 * If the slab management structure is off the slab, then the
791 * alignment will already be calculated into the size. Because
792 * the slabs are all pages aligned, the objects will be at the
793 * correct alignment when allocated.
794 */
795 if (flags & CFLGS_OFF_SLAB) {
796 mgmt_size = 0;
797 nr_objs = slab_size / buffer_size;
798
799 if (nr_objs > SLAB_LIMIT)
800 nr_objs = SLAB_LIMIT;
801 } else {
802 /*
803 * Ignore padding for the initial guess. The padding
804 * is at most @align-1 bytes, and @buffer_size is at
805 * least @align. In the worst case, this result will
806 * be one greater than the number of objects that fit
807 * into the memory allocation when taking the padding
808 * into account.
809 */
810 nr_objs = (slab_size - sizeof(struct slab)) /
811 (buffer_size + sizeof(kmem_bufctl_t));
812
813 /*
814 * This calculated number will be either the right
815 * amount, or one greater than what we want.
816 */
817 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
818 > slab_size)
819 nr_objs--;
820
821 if (nr_objs > SLAB_LIMIT)
822 nr_objs = SLAB_LIMIT;
823
824 mgmt_size = slab_mgmt_size(nr_objs, align);
825 }
826 *num = nr_objs;
827 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
828}
829
d40cee24 830#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 831
a737b3e2
AM
832static void __slab_error(const char *function, struct kmem_cache *cachep,
833 char *msg)
1da177e4
LT
834{
835 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 836 function, cachep->name, msg);
1da177e4
LT
837 dump_stack();
838}
839
3395ee05
PM
840/*
841 * By default on NUMA we use alien caches to stage the freeing of
842 * objects allocated from other nodes. This causes massive memory
843 * inefficiencies when using fake NUMA setup to split memory into a
844 * large number of small nodes, so it can be disabled on the command
845 * line
846 */
847
848static int use_alien_caches __read_mostly = 1;
849static int __init noaliencache_setup(char *s)
850{
851 use_alien_caches = 0;
852 return 1;
853}
854__setup("noaliencache", noaliencache_setup);
855
3df1cccd
DR
856static int __init slab_max_order_setup(char *str)
857{
858 get_option(&str, &slab_max_order);
859 slab_max_order = slab_max_order < 0 ? 0 :
860 min(slab_max_order, MAX_ORDER - 1);
861 slab_max_order_set = true;
862
863 return 1;
864}
865__setup("slab_max_order=", slab_max_order_setup);
866
8fce4d8e
CL
867#ifdef CONFIG_NUMA
868/*
869 * Special reaping functions for NUMA systems called from cache_reap().
870 * These take care of doing round robin flushing of alien caches (containing
871 * objects freed on different nodes from which they were allocated) and the
872 * flushing of remote pcps by calling drain_node_pages.
873 */
1871e52c 874static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
875
876static void init_reap_node(int cpu)
877{
878 int node;
879
7d6e6d09 880 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 881 if (node == MAX_NUMNODES)
442295c9 882 node = first_node(node_online_map);
8fce4d8e 883
1871e52c 884 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
885}
886
887static void next_reap_node(void)
888{
909ea964 889 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 890
8fce4d8e
CL
891 node = next_node(node, node_online_map);
892 if (unlikely(node >= MAX_NUMNODES))
893 node = first_node(node_online_map);
909ea964 894 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
895}
896
897#else
898#define init_reap_node(cpu) do { } while (0)
899#define next_reap_node(void) do { } while (0)
900#endif
901
1da177e4
LT
902/*
903 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
904 * via the workqueue/eventd.
905 * Add the CPU number into the expiration time to minimize the possibility of
906 * the CPUs getting into lockstep and contending for the global cache chain
907 * lock.
908 */
897e679b 909static void __cpuinit start_cpu_timer(int cpu)
1da177e4 910{
1871e52c 911 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
912
913 /*
914 * When this gets called from do_initcalls via cpucache_init(),
915 * init_workqueues() has already run, so keventd will be setup
916 * at that time.
917 */
52bad64d 918 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 919 init_reap_node(cpu);
78b43536 920 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
921 schedule_delayed_work_on(cpu, reap_work,
922 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
923 }
924}
925
e498be7d 926static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 927 int batchcount, gfp_t gfp)
1da177e4 928{
b28a02de 929 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
930 struct array_cache *nc = NULL;
931
83b519e8 932 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
933 /*
934 * The array_cache structures contain pointers to free object.
25985edc 935 * However, when such objects are allocated or transferred to another
d5cff635
CM
936 * cache the pointers are not cleared and they could be counted as
937 * valid references during a kmemleak scan. Therefore, kmemleak must
938 * not scan such objects.
939 */
940 kmemleak_no_scan(nc);
1da177e4
LT
941 if (nc) {
942 nc->avail = 0;
943 nc->limit = entries;
944 nc->batchcount = batchcount;
945 nc->touched = 0;
e498be7d 946 spin_lock_init(&nc->lock);
1da177e4
LT
947 }
948 return nc;
949}
950
3ded175a
CL
951/*
952 * Transfer objects in one arraycache to another.
953 * Locking must be handled by the caller.
954 *
955 * Return the number of entries transferred.
956 */
957static int transfer_objects(struct array_cache *to,
958 struct array_cache *from, unsigned int max)
959{
960 /* Figure out how many entries to transfer */
732eacc0 961 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
962
963 if (!nr)
964 return 0;
965
966 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
967 sizeof(void *) *nr);
968
969 from->avail -= nr;
970 to->avail += nr;
3ded175a
CL
971 return nr;
972}
973
765c4507
CL
974#ifndef CONFIG_NUMA
975
976#define drain_alien_cache(cachep, alien) do { } while (0)
977#define reap_alien(cachep, l3) do { } while (0)
978
83b519e8 979static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
980{
981 return (struct array_cache **)BAD_ALIEN_MAGIC;
982}
983
984static inline void free_alien_cache(struct array_cache **ac_ptr)
985{
986}
987
988static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
989{
990 return 0;
991}
992
993static inline void *alternate_node_alloc(struct kmem_cache *cachep,
994 gfp_t flags)
995{
996 return NULL;
997}
998
8b98c169 999static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1000 gfp_t flags, int nodeid)
1001{
1002 return NULL;
1003}
1004
1005#else /* CONFIG_NUMA */
1006
8b98c169 1007static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1008static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1009
83b519e8 1010static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1011{
1012 struct array_cache **ac_ptr;
8ef82866 1013 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1014 int i;
1015
1016 if (limit > 1)
1017 limit = 12;
f3186a9c 1018 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1019 if (ac_ptr) {
1020 for_each_node(i) {
f3186a9c 1021 if (i == node || !node_online(i))
e498be7d 1022 continue;
83b519e8 1023 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1024 if (!ac_ptr[i]) {
cc550def 1025 for (i--; i >= 0; i--)
e498be7d
CL
1026 kfree(ac_ptr[i]);
1027 kfree(ac_ptr);
1028 return NULL;
1029 }
1030 }
1031 }
1032 return ac_ptr;
1033}
1034
5295a74c 1035static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1036{
1037 int i;
1038
1039 if (!ac_ptr)
1040 return;
e498be7d 1041 for_each_node(i)
b28a02de 1042 kfree(ac_ptr[i]);
e498be7d
CL
1043 kfree(ac_ptr);
1044}
1045
343e0d7a 1046static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1047 struct array_cache *ac, int node)
e498be7d
CL
1048{
1049 struct kmem_list3 *rl3 = cachep->nodelists[node];
1050
1051 if (ac->avail) {
1052 spin_lock(&rl3->list_lock);
e00946fe
CL
1053 /*
1054 * Stuff objects into the remote nodes shared array first.
1055 * That way we could avoid the overhead of putting the objects
1056 * into the free lists and getting them back later.
1057 */
693f7d36
JS
1058 if (rl3->shared)
1059 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1060
ff69416e 1061 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1062 ac->avail = 0;
1063 spin_unlock(&rl3->list_lock);
1064 }
1065}
1066
8fce4d8e
CL
1067/*
1068 * Called from cache_reap() to regularly drain alien caches round robin.
1069 */
1070static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1071{
909ea964 1072 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1073
1074 if (l3->alien) {
1075 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1076
1077 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1078 __drain_alien_cache(cachep, ac, node);
1079 spin_unlock_irq(&ac->lock);
1080 }
1081 }
1082}
1083
a737b3e2
AM
1084static void drain_alien_cache(struct kmem_cache *cachep,
1085 struct array_cache **alien)
e498be7d 1086{
b28a02de 1087 int i = 0;
e498be7d
CL
1088 struct array_cache *ac;
1089 unsigned long flags;
1090
1091 for_each_online_node(i) {
4484ebf1 1092 ac = alien[i];
e498be7d
CL
1093 if (ac) {
1094 spin_lock_irqsave(&ac->lock, flags);
1095 __drain_alien_cache(cachep, ac, i);
1096 spin_unlock_irqrestore(&ac->lock, flags);
1097 }
1098 }
1099}
729bd0b7 1100
873623df 1101static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1102{
1103 struct slab *slabp = virt_to_slab(objp);
1104 int nodeid = slabp->nodeid;
1105 struct kmem_list3 *l3;
1106 struct array_cache *alien = NULL;
1ca4cb24
PE
1107 int node;
1108
7d6e6d09 1109 node = numa_mem_id();
729bd0b7
PE
1110
1111 /*
1112 * Make sure we are not freeing a object from another node to the array
1113 * cache on this cpu.
1114 */
62918a03 1115 if (likely(slabp->nodeid == node))
729bd0b7
PE
1116 return 0;
1117
1ca4cb24 1118 l3 = cachep->nodelists[node];
729bd0b7
PE
1119 STATS_INC_NODEFREES(cachep);
1120 if (l3->alien && l3->alien[nodeid]) {
1121 alien = l3->alien[nodeid];
873623df 1122 spin_lock(&alien->lock);
729bd0b7
PE
1123 if (unlikely(alien->avail == alien->limit)) {
1124 STATS_INC_ACOVERFLOW(cachep);
1125 __drain_alien_cache(cachep, alien, nodeid);
1126 }
1127 alien->entry[alien->avail++] = objp;
1128 spin_unlock(&alien->lock);
1129 } else {
1130 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1131 free_block(cachep, &objp, 1, nodeid);
1132 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1133 }
1134 return 1;
1135}
e498be7d
CL
1136#endif
1137
8f9f8d9e
DR
1138/*
1139 * Allocates and initializes nodelists for a node on each slab cache, used for
1140 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1141 * will be allocated off-node since memory is not yet online for the new node.
1142 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1143 * already in use.
1144 *
1145 * Must hold cache_chain_mutex.
1146 */
1147static int init_cache_nodelists_node(int node)
1148{
1149 struct kmem_cache *cachep;
1150 struct kmem_list3 *l3;
1151 const int memsize = sizeof(struct kmem_list3);
1152
1153 list_for_each_entry(cachep, &cache_chain, next) {
1154 /*
1155 * Set up the size64 kmemlist for cpu before we can
1156 * begin anything. Make sure some other cpu on this
1157 * node has not already allocated this
1158 */
1159 if (!cachep->nodelists[node]) {
1160 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1161 if (!l3)
1162 return -ENOMEM;
1163 kmem_list3_init(l3);
1164 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1165 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1166
1167 /*
1168 * The l3s don't come and go as CPUs come and
1169 * go. cache_chain_mutex is sufficient
1170 * protection here.
1171 */
1172 cachep->nodelists[node] = l3;
1173 }
1174
1175 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1176 cachep->nodelists[node]->free_limit =
1177 (1 + nr_cpus_node(node)) *
1178 cachep->batchcount + cachep->num;
1179 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1180 }
1181 return 0;
1182}
1183
fbf1e473
AM
1184static void __cpuinit cpuup_canceled(long cpu)
1185{
1186 struct kmem_cache *cachep;
1187 struct kmem_list3 *l3 = NULL;
7d6e6d09 1188 int node = cpu_to_mem(cpu);
a70f7302 1189 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1190
1191 list_for_each_entry(cachep, &cache_chain, next) {
1192 struct array_cache *nc;
1193 struct array_cache *shared;
1194 struct array_cache **alien;
fbf1e473 1195
fbf1e473
AM
1196 /* cpu is dead; no one can alloc from it. */
1197 nc = cachep->array[cpu];
1198 cachep->array[cpu] = NULL;
1199 l3 = cachep->nodelists[node];
1200
1201 if (!l3)
1202 goto free_array_cache;
1203
1204 spin_lock_irq(&l3->list_lock);
1205
1206 /* Free limit for this kmem_list3 */
1207 l3->free_limit -= cachep->batchcount;
1208 if (nc)
1209 free_block(cachep, nc->entry, nc->avail, node);
1210
58463c1f 1211 if (!cpumask_empty(mask)) {
fbf1e473
AM
1212 spin_unlock_irq(&l3->list_lock);
1213 goto free_array_cache;
1214 }
1215
1216 shared = l3->shared;
1217 if (shared) {
1218 free_block(cachep, shared->entry,
1219 shared->avail, node);
1220 l3->shared = NULL;
1221 }
1222
1223 alien = l3->alien;
1224 l3->alien = NULL;
1225
1226 spin_unlock_irq(&l3->list_lock);
1227
1228 kfree(shared);
1229 if (alien) {
1230 drain_alien_cache(cachep, alien);
1231 free_alien_cache(alien);
1232 }
1233free_array_cache:
1234 kfree(nc);
1235 }
1236 /*
1237 * In the previous loop, all the objects were freed to
1238 * the respective cache's slabs, now we can go ahead and
1239 * shrink each nodelist to its limit.
1240 */
1241 list_for_each_entry(cachep, &cache_chain, next) {
1242 l3 = cachep->nodelists[node];
1243 if (!l3)
1244 continue;
1245 drain_freelist(cachep, l3, l3->free_objects);
1246 }
1247}
1248
1249static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1250{
343e0d7a 1251 struct kmem_cache *cachep;
e498be7d 1252 struct kmem_list3 *l3 = NULL;
7d6e6d09 1253 int node = cpu_to_mem(cpu);
8f9f8d9e 1254 int err;
1da177e4 1255
fbf1e473
AM
1256 /*
1257 * We need to do this right in the beginning since
1258 * alloc_arraycache's are going to use this list.
1259 * kmalloc_node allows us to add the slab to the right
1260 * kmem_list3 and not this cpu's kmem_list3
1261 */
8f9f8d9e
DR
1262 err = init_cache_nodelists_node(node);
1263 if (err < 0)
1264 goto bad;
fbf1e473
AM
1265
1266 /*
1267 * Now we can go ahead with allocating the shared arrays and
1268 * array caches
1269 */
1270 list_for_each_entry(cachep, &cache_chain, next) {
1271 struct array_cache *nc;
1272 struct array_cache *shared = NULL;
1273 struct array_cache **alien = NULL;
1274
1275 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1276 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1277 if (!nc)
1278 goto bad;
1279 if (cachep->shared) {
1280 shared = alloc_arraycache(node,
1281 cachep->shared * cachep->batchcount,
83b519e8 1282 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1283 if (!shared) {
1284 kfree(nc);
1da177e4 1285 goto bad;
12d00f6a 1286 }
fbf1e473
AM
1287 }
1288 if (use_alien_caches) {
83b519e8 1289 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1290 if (!alien) {
1291 kfree(shared);
1292 kfree(nc);
fbf1e473 1293 goto bad;
12d00f6a 1294 }
fbf1e473
AM
1295 }
1296 cachep->array[cpu] = nc;
1297 l3 = cachep->nodelists[node];
1298 BUG_ON(!l3);
1299
1300 spin_lock_irq(&l3->list_lock);
1301 if (!l3->shared) {
1302 /*
1303 * We are serialised from CPU_DEAD or
1304 * CPU_UP_CANCELLED by the cpucontrol lock
1305 */
1306 l3->shared = shared;
1307 shared = NULL;
1308 }
4484ebf1 1309#ifdef CONFIG_NUMA
fbf1e473
AM
1310 if (!l3->alien) {
1311 l3->alien = alien;
1312 alien = NULL;
1da177e4 1313 }
fbf1e473
AM
1314#endif
1315 spin_unlock_irq(&l3->list_lock);
1316 kfree(shared);
1317 free_alien_cache(alien);
83835b3d
PZ
1318 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1319 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1320 }
ce79ddc8
PE
1321 init_node_lock_keys(node);
1322
fbf1e473
AM
1323 return 0;
1324bad:
12d00f6a 1325 cpuup_canceled(cpu);
fbf1e473
AM
1326 return -ENOMEM;
1327}
1328
1329static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1330 unsigned long action, void *hcpu)
1331{
1332 long cpu = (long)hcpu;
1333 int err = 0;
1334
1335 switch (action) {
fbf1e473
AM
1336 case CPU_UP_PREPARE:
1337 case CPU_UP_PREPARE_FROZEN:
95402b38 1338 mutex_lock(&cache_chain_mutex);
fbf1e473 1339 err = cpuup_prepare(cpu);
95402b38 1340 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1341 break;
1342 case CPU_ONLINE:
8bb78442 1343 case CPU_ONLINE_FROZEN:
1da177e4
LT
1344 start_cpu_timer(cpu);
1345 break;
1346#ifdef CONFIG_HOTPLUG_CPU
5830c590 1347 case CPU_DOWN_PREPARE:
8bb78442 1348 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1349 /*
1350 * Shutdown cache reaper. Note that the cache_chain_mutex is
1351 * held so that if cache_reap() is invoked it cannot do
1352 * anything expensive but will only modify reap_work
1353 * and reschedule the timer.
1354 */
afe2c511 1355 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1356 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1357 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1358 break;
1359 case CPU_DOWN_FAILED:
8bb78442 1360 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1361 start_cpu_timer(cpu);
1362 break;
1da177e4 1363 case CPU_DEAD:
8bb78442 1364 case CPU_DEAD_FROZEN:
4484ebf1
RT
1365 /*
1366 * Even if all the cpus of a node are down, we don't free the
1367 * kmem_list3 of any cache. This to avoid a race between
1368 * cpu_down, and a kmalloc allocation from another cpu for
1369 * memory from the node of the cpu going down. The list3
1370 * structure is usually allocated from kmem_cache_create() and
1371 * gets destroyed at kmem_cache_destroy().
1372 */
183ff22b 1373 /* fall through */
8f5be20b 1374#endif
1da177e4 1375 case CPU_UP_CANCELED:
8bb78442 1376 case CPU_UP_CANCELED_FROZEN:
95402b38 1377 mutex_lock(&cache_chain_mutex);
fbf1e473 1378 cpuup_canceled(cpu);
fc0abb14 1379 mutex_unlock(&cache_chain_mutex);
1da177e4 1380 break;
1da177e4 1381 }
eac40680 1382 return notifier_from_errno(err);
1da177e4
LT
1383}
1384
74b85f37
CS
1385static struct notifier_block __cpuinitdata cpucache_notifier = {
1386 &cpuup_callback, NULL, 0
1387};
1da177e4 1388
8f9f8d9e
DR
1389#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1390/*
1391 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1392 * Returns -EBUSY if all objects cannot be drained so that the node is not
1393 * removed.
1394 *
1395 * Must hold cache_chain_mutex.
1396 */
1397static int __meminit drain_cache_nodelists_node(int node)
1398{
1399 struct kmem_cache *cachep;
1400 int ret = 0;
1401
1402 list_for_each_entry(cachep, &cache_chain, next) {
1403 struct kmem_list3 *l3;
1404
1405 l3 = cachep->nodelists[node];
1406 if (!l3)
1407 continue;
1408
1409 drain_freelist(cachep, l3, l3->free_objects);
1410
1411 if (!list_empty(&l3->slabs_full) ||
1412 !list_empty(&l3->slabs_partial)) {
1413 ret = -EBUSY;
1414 break;
1415 }
1416 }
1417 return ret;
1418}
1419
1420static int __meminit slab_memory_callback(struct notifier_block *self,
1421 unsigned long action, void *arg)
1422{
1423 struct memory_notify *mnb = arg;
1424 int ret = 0;
1425 int nid;
1426
1427 nid = mnb->status_change_nid;
1428 if (nid < 0)
1429 goto out;
1430
1431 switch (action) {
1432 case MEM_GOING_ONLINE:
1433 mutex_lock(&cache_chain_mutex);
1434 ret = init_cache_nodelists_node(nid);
1435 mutex_unlock(&cache_chain_mutex);
1436 break;
1437 case MEM_GOING_OFFLINE:
1438 mutex_lock(&cache_chain_mutex);
1439 ret = drain_cache_nodelists_node(nid);
1440 mutex_unlock(&cache_chain_mutex);
1441 break;
1442 case MEM_ONLINE:
1443 case MEM_OFFLINE:
1444 case MEM_CANCEL_ONLINE:
1445 case MEM_CANCEL_OFFLINE:
1446 break;
1447 }
1448out:
5fda1bd5 1449 return notifier_from_errno(ret);
8f9f8d9e
DR
1450}
1451#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1452
e498be7d
CL
1453/*
1454 * swap the static kmem_list3 with kmalloced memory
1455 */
8f9f8d9e
DR
1456static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1457 int nodeid)
e498be7d
CL
1458{
1459 struct kmem_list3 *ptr;
1460
83b519e8 1461 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1462 BUG_ON(!ptr);
1463
e498be7d 1464 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1465 /*
1466 * Do not assume that spinlocks can be initialized via memcpy:
1467 */
1468 spin_lock_init(&ptr->list_lock);
1469
e498be7d
CL
1470 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1471 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1472}
1473
556a169d
PE
1474/*
1475 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1476 * size of kmem_list3.
1477 */
1478static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1479{
1480 int node;
1481
1482 for_each_online_node(node) {
1483 cachep->nodelists[node] = &initkmem_list3[index + node];
1484 cachep->nodelists[node]->next_reap = jiffies +
1485 REAPTIMEOUT_LIST3 +
1486 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1487 }
1488}
1489
a737b3e2
AM
1490/*
1491 * Initialisation. Called after the page allocator have been initialised and
1492 * before smp_init().
1da177e4
LT
1493 */
1494void __init kmem_cache_init(void)
1495{
1496 size_t left_over;
1497 struct cache_sizes *sizes;
1498 struct cache_names *names;
e498be7d 1499 int i;
07ed76b2 1500 int order;
1ca4cb24 1501 int node;
e498be7d 1502
b6e68bc1 1503 if (num_possible_nodes() == 1)
62918a03
SS
1504 use_alien_caches = 0;
1505
e498be7d
CL
1506 for (i = 0; i < NUM_INIT_LISTS; i++) {
1507 kmem_list3_init(&initkmem_list3[i]);
1508 if (i < MAX_NUMNODES)
1509 cache_cache.nodelists[i] = NULL;
1510 }
556a169d 1511 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1512
1513 /*
1514 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1515 * page orders on machines with more than 32MB of memory if
1516 * not overridden on the command line.
1da177e4 1517 */
3df1cccd 1518 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1519 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1520
1da177e4
LT
1521 /* Bootstrap is tricky, because several objects are allocated
1522 * from caches that do not exist yet:
a737b3e2
AM
1523 * 1) initialize the cache_cache cache: it contains the struct
1524 * kmem_cache structures of all caches, except cache_cache itself:
1525 * cache_cache is statically allocated.
e498be7d
CL
1526 * Initially an __init data area is used for the head array and the
1527 * kmem_list3 structures, it's replaced with a kmalloc allocated
1528 * array at the end of the bootstrap.
1da177e4 1529 * 2) Create the first kmalloc cache.
343e0d7a 1530 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1531 * An __init data area is used for the head array.
1532 * 3) Create the remaining kmalloc caches, with minimally sized
1533 * head arrays.
1da177e4
LT
1534 * 4) Replace the __init data head arrays for cache_cache and the first
1535 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1536 * 5) Replace the __init data for kmem_list3 for cache_cache and
1537 * the other cache's with kmalloc allocated memory.
1538 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1539 */
1540
7d6e6d09 1541 node = numa_mem_id();
1ca4cb24 1542
1da177e4 1543 /* 1) create the cache_cache */
1da177e4
LT
1544 INIT_LIST_HEAD(&cache_chain);
1545 list_add(&cache_cache.next, &cache_chain);
1546 cache_cache.colour_off = cache_line_size();
1547 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1548 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1549
8da3430d 1550 /*
b56efcf0 1551 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1552 */
b56efcf0
ED
1553 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1554 nr_node_ids * sizeof(struct kmem_list3 *);
8da3430d
ED
1555#if DEBUG
1556 cache_cache.obj_size = cache_cache.buffer_size;
1557#endif
a737b3e2
AM
1558 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1559 cache_line_size());
6a2d7a95
ED
1560 cache_cache.reciprocal_buffer_size =
1561 reciprocal_value(cache_cache.buffer_size);
1da177e4 1562
07ed76b2
JS
1563 for (order = 0; order < MAX_ORDER; order++) {
1564 cache_estimate(order, cache_cache.buffer_size,
1565 cache_line_size(), 0, &left_over, &cache_cache.num);
1566 if (cache_cache.num)
1567 break;
1568 }
40094fa6 1569 BUG_ON(!cache_cache.num);
07ed76b2 1570 cache_cache.gfporder = order;
b28a02de 1571 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1572 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1573 sizeof(struct slab), cache_line_size());
1da177e4
LT
1574
1575 /* 2+3) create the kmalloc caches */
1576 sizes = malloc_sizes;
1577 names = cache_names;
1578
a737b3e2
AM
1579 /*
1580 * Initialize the caches that provide memory for the array cache and the
1581 * kmem_list3 structures first. Without this, further allocations will
1582 * bug.
e498be7d
CL
1583 */
1584
1585 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1586 sizes[INDEX_AC].cs_size,
1587 ARCH_KMALLOC_MINALIGN,
1588 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1589 NULL);
e498be7d 1590
a737b3e2 1591 if (INDEX_AC != INDEX_L3) {
e498be7d 1592 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1593 kmem_cache_create(names[INDEX_L3].name,
1594 sizes[INDEX_L3].cs_size,
1595 ARCH_KMALLOC_MINALIGN,
1596 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1597 NULL);
a737b3e2 1598 }
e498be7d 1599
e0a42726
IM
1600 slab_early_init = 0;
1601
1da177e4 1602 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1603 /*
1604 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1605 * This should be particularly beneficial on SMP boxes, as it
1606 * eliminates "false sharing".
1607 * Note for systems short on memory removing the alignment will
e498be7d
CL
1608 * allow tighter packing of the smaller caches.
1609 */
a737b3e2 1610 if (!sizes->cs_cachep) {
e498be7d 1611 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1612 sizes->cs_size,
1613 ARCH_KMALLOC_MINALIGN,
1614 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1615 NULL);
a737b3e2 1616 }
4b51d669
CL
1617#ifdef CONFIG_ZONE_DMA
1618 sizes->cs_dmacachep = kmem_cache_create(
1619 names->name_dma,
a737b3e2
AM
1620 sizes->cs_size,
1621 ARCH_KMALLOC_MINALIGN,
1622 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1623 SLAB_PANIC,
20c2df83 1624 NULL);
4b51d669 1625#endif
1da177e4
LT
1626 sizes++;
1627 names++;
1628 }
1629 /* 4) Replace the bootstrap head arrays */
1630 {
2b2d5493 1631 struct array_cache *ptr;
e498be7d 1632
83b519e8 1633 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1634
9a2dba4b
PE
1635 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1636 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1637 sizeof(struct arraycache_init));
2b2d5493
IM
1638 /*
1639 * Do not assume that spinlocks can be initialized via memcpy:
1640 */
1641 spin_lock_init(&ptr->lock);
1642
1da177e4 1643 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1644
83b519e8 1645 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1646
9a2dba4b 1647 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1648 != &initarray_generic.cache);
9a2dba4b 1649 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1650 sizeof(struct arraycache_init));
2b2d5493
IM
1651 /*
1652 * Do not assume that spinlocks can be initialized via memcpy:
1653 */
1654 spin_lock_init(&ptr->lock);
1655
e498be7d 1656 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1657 ptr;
1da177e4 1658 }
e498be7d
CL
1659 /* 5) Replace the bootstrap kmem_list3's */
1660 {
1ca4cb24
PE
1661 int nid;
1662
9c09a95c 1663 for_each_online_node(nid) {
ec1f5eee 1664 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1665
e498be7d 1666 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1667 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1668
1669 if (INDEX_AC != INDEX_L3) {
1670 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1671 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1672 }
1673 }
1674 }
1da177e4 1675
8429db5c 1676 g_cpucache_up = EARLY;
8429db5c
PE
1677}
1678
1679void __init kmem_cache_init_late(void)
1680{
1681 struct kmem_cache *cachep;
1682
30765b92
PZ
1683 /* Annotate slab for lockdep -- annotate the malloc caches */
1684 init_lock_keys();
1685
8429db5c
PE
1686 /* 6) resize the head arrays to their final sizes */
1687 mutex_lock(&cache_chain_mutex);
1688 list_for_each_entry(cachep, &cache_chain, next)
1689 if (enable_cpucache(cachep, GFP_NOWAIT))
1690 BUG();
1691 mutex_unlock(&cache_chain_mutex);
056c6241 1692
1da177e4
LT
1693 /* Done! */
1694 g_cpucache_up = FULL;
1695
a737b3e2
AM
1696 /*
1697 * Register a cpu startup notifier callback that initializes
1698 * cpu_cache_get for all new cpus
1da177e4
LT
1699 */
1700 register_cpu_notifier(&cpucache_notifier);
1da177e4 1701
8f9f8d9e
DR
1702#ifdef CONFIG_NUMA
1703 /*
1704 * Register a memory hotplug callback that initializes and frees
1705 * nodelists.
1706 */
1707 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1708#endif
1709
a737b3e2
AM
1710 /*
1711 * The reap timers are started later, with a module init call: That part
1712 * of the kernel is not yet operational.
1da177e4
LT
1713 */
1714}
1715
1716static int __init cpucache_init(void)
1717{
1718 int cpu;
1719
a737b3e2
AM
1720 /*
1721 * Register the timers that return unneeded pages to the page allocator
1da177e4 1722 */
e498be7d 1723 for_each_online_cpu(cpu)
a737b3e2 1724 start_cpu_timer(cpu);
1da177e4
LT
1725 return 0;
1726}
1da177e4
LT
1727__initcall(cpucache_init);
1728
1729/*
1730 * Interface to system's page allocator. No need to hold the cache-lock.
1731 *
1732 * If we requested dmaable memory, we will get it. Even if we
1733 * did not request dmaable memory, we might get it, but that
1734 * would be relatively rare and ignorable.
1735 */
343e0d7a 1736static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1737{
1738 struct page *page;
e1b6aa6f 1739 int nr_pages;
1da177e4
LT
1740 int i;
1741
d6fef9da 1742#ifndef CONFIG_MMU
e1b6aa6f
CH
1743 /*
1744 * Nommu uses slab's for process anonymous memory allocations, and thus
1745 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1746 */
e1b6aa6f 1747 flags |= __GFP_COMP;
d6fef9da 1748#endif
765c4507 1749
3c517a61 1750 flags |= cachep->gfpflags;
e12ba74d
MG
1751 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1752 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1753
517d0869 1754 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1da177e4
LT
1755 if (!page)
1756 return NULL;
1da177e4 1757
e1b6aa6f 1758 nr_pages = (1 << cachep->gfporder);
1da177e4 1759 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1760 add_zone_page_state(page_zone(page),
1761 NR_SLAB_RECLAIMABLE, nr_pages);
1762 else
1763 add_zone_page_state(page_zone(page),
1764 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1765 for (i = 0; i < nr_pages; i++)
1766 __SetPageSlab(page + i);
c175eea4 1767
b1eeab67
VN
1768 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1769 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1770
1771 if (cachep->ctor)
1772 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1773 else
1774 kmemcheck_mark_unallocated_pages(page, nr_pages);
1775 }
c175eea4 1776
e1b6aa6f 1777 return page_address(page);
1da177e4
LT
1778}
1779
1780/*
1781 * Interface to system's page release.
1782 */
343e0d7a 1783static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1784{
b28a02de 1785 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1786 struct page *page = virt_to_page(addr);
1787 const unsigned long nr_freed = i;
1788
b1eeab67 1789 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1790
972d1a7b
CL
1791 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1792 sub_zone_page_state(page_zone(page),
1793 NR_SLAB_RECLAIMABLE, nr_freed);
1794 else
1795 sub_zone_page_state(page_zone(page),
1796 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1797 while (i--) {
f205b2fe
NP
1798 BUG_ON(!PageSlab(page));
1799 __ClearPageSlab(page);
1da177e4
LT
1800 page++;
1801 }
1da177e4
LT
1802 if (current->reclaim_state)
1803 current->reclaim_state->reclaimed_slab += nr_freed;
1804 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1805}
1806
1807static void kmem_rcu_free(struct rcu_head *head)
1808{
b28a02de 1809 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1810 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1811
1812 kmem_freepages(cachep, slab_rcu->addr);
1813 if (OFF_SLAB(cachep))
1814 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1815}
1816
1817#if DEBUG
1818
1819#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1820static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1821 unsigned long caller)
1da177e4 1822{
3dafccf2 1823 int size = obj_size(cachep);
1da177e4 1824
3dafccf2 1825 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1826
b28a02de 1827 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1828 return;
1829
b28a02de
PE
1830 *addr++ = 0x12345678;
1831 *addr++ = caller;
1832 *addr++ = smp_processor_id();
1833 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1834 {
1835 unsigned long *sptr = &caller;
1836 unsigned long svalue;
1837
1838 while (!kstack_end(sptr)) {
1839 svalue = *sptr++;
1840 if (kernel_text_address(svalue)) {
b28a02de 1841 *addr++ = svalue;
1da177e4
LT
1842 size -= sizeof(unsigned long);
1843 if (size <= sizeof(unsigned long))
1844 break;
1845 }
1846 }
1847
1848 }
b28a02de 1849 *addr++ = 0x87654321;
1da177e4
LT
1850}
1851#endif
1852
343e0d7a 1853static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1854{
3dafccf2
MS
1855 int size = obj_size(cachep);
1856 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1857
1858 memset(addr, val, size);
b28a02de 1859 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1860}
1861
1862static void dump_line(char *data, int offset, int limit)
1863{
1864 int i;
aa83aa40
DJ
1865 unsigned char error = 0;
1866 int bad_count = 0;
1867
fdde6abb 1868 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1869 for (i = 0; i < limit; i++) {
1870 if (data[offset + i] != POISON_FREE) {
1871 error = data[offset + i];
1872 bad_count++;
1873 }
aa83aa40 1874 }
fdde6abb
SAS
1875 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1876 &data[offset], limit, 1);
aa83aa40
DJ
1877
1878 if (bad_count == 1) {
1879 error ^= POISON_FREE;
1880 if (!(error & (error - 1))) {
1881 printk(KERN_ERR "Single bit error detected. Probably "
1882 "bad RAM.\n");
1883#ifdef CONFIG_X86
1884 printk(KERN_ERR "Run memtest86+ or a similar memory "
1885 "test tool.\n");
1886#else
1887 printk(KERN_ERR "Run a memory test tool.\n");
1888#endif
1889 }
1890 }
1da177e4
LT
1891}
1892#endif
1893
1894#if DEBUG
1895
343e0d7a 1896static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1897{
1898 int i, size;
1899 char *realobj;
1900
1901 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1902 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1903 *dbg_redzone1(cachep, objp),
1904 *dbg_redzone2(cachep, objp));
1da177e4
LT
1905 }
1906
1907 if (cachep->flags & SLAB_STORE_USER) {
1908 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1909 *dbg_userword(cachep, objp));
1da177e4 1910 print_symbol("(%s)",
a737b3e2 1911 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1912 printk("\n");
1913 }
3dafccf2
MS
1914 realobj = (char *)objp + obj_offset(cachep);
1915 size = obj_size(cachep);
b28a02de 1916 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1917 int limit;
1918 limit = 16;
b28a02de
PE
1919 if (i + limit > size)
1920 limit = size - i;
1da177e4
LT
1921 dump_line(realobj, i, limit);
1922 }
1923}
1924
343e0d7a 1925static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1926{
1927 char *realobj;
1928 int size, i;
1929 int lines = 0;
1930
3dafccf2
MS
1931 realobj = (char *)objp + obj_offset(cachep);
1932 size = obj_size(cachep);
1da177e4 1933
b28a02de 1934 for (i = 0; i < size; i++) {
1da177e4 1935 char exp = POISON_FREE;
b28a02de 1936 if (i == size - 1)
1da177e4
LT
1937 exp = POISON_END;
1938 if (realobj[i] != exp) {
1939 int limit;
1940 /* Mismatch ! */
1941 /* Print header */
1942 if (lines == 0) {
b28a02de 1943 printk(KERN_ERR
e94a40c5
DH
1944 "Slab corruption: %s start=%p, len=%d\n",
1945 cachep->name, realobj, size);
1da177e4
LT
1946 print_objinfo(cachep, objp, 0);
1947 }
1948 /* Hexdump the affected line */
b28a02de 1949 i = (i / 16) * 16;
1da177e4 1950 limit = 16;
b28a02de
PE
1951 if (i + limit > size)
1952 limit = size - i;
1da177e4
LT
1953 dump_line(realobj, i, limit);
1954 i += 16;
1955 lines++;
1956 /* Limit to 5 lines */
1957 if (lines > 5)
1958 break;
1959 }
1960 }
1961 if (lines != 0) {
1962 /* Print some data about the neighboring objects, if they
1963 * exist:
1964 */
6ed5eb22 1965 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1966 unsigned int objnr;
1da177e4 1967
8fea4e96 1968 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1969 if (objnr) {
8fea4e96 1970 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1971 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1972 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1973 realobj, size);
1da177e4
LT
1974 print_objinfo(cachep, objp, 2);
1975 }
b28a02de 1976 if (objnr + 1 < cachep->num) {
8fea4e96 1977 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1978 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1979 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1980 realobj, size);
1da177e4
LT
1981 print_objinfo(cachep, objp, 2);
1982 }
1983 }
1984}
1985#endif
1986
12dd36fa 1987#if DEBUG
e79aec29 1988static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1989{
1da177e4
LT
1990 int i;
1991 for (i = 0; i < cachep->num; i++) {
8fea4e96 1992 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1993
1994 if (cachep->flags & SLAB_POISON) {
1995#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1996 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1997 OFF_SLAB(cachep))
b28a02de 1998 kernel_map_pages(virt_to_page(objp),
a737b3e2 1999 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2000 else
2001 check_poison_obj(cachep, objp);
2002#else
2003 check_poison_obj(cachep, objp);
2004#endif
2005 }
2006 if (cachep->flags & SLAB_RED_ZONE) {
2007 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2008 slab_error(cachep, "start of a freed object "
b28a02de 2009 "was overwritten");
1da177e4
LT
2010 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2011 slab_error(cachep, "end of a freed object "
b28a02de 2012 "was overwritten");
1da177e4 2013 }
1da177e4 2014 }
12dd36fa 2015}
1da177e4 2016#else
e79aec29 2017static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2018{
12dd36fa 2019}
1da177e4
LT
2020#endif
2021
911851e6
RD
2022/**
2023 * slab_destroy - destroy and release all objects in a slab
2024 * @cachep: cache pointer being destroyed
2025 * @slabp: slab pointer being destroyed
2026 *
12dd36fa 2027 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2028 * Before calling the slab must have been unlinked from the cache. The
2029 * cache-lock is not held/needed.
12dd36fa 2030 */
343e0d7a 2031static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2032{
2033 void *addr = slabp->s_mem - slabp->colouroff;
2034
e79aec29 2035 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2036 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2037 struct slab_rcu *slab_rcu;
2038
b28a02de 2039 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2040 slab_rcu->cachep = cachep;
2041 slab_rcu->addr = addr;
2042 call_rcu(&slab_rcu->head, kmem_rcu_free);
2043 } else {
2044 kmem_freepages(cachep, addr);
873623df
IM
2045 if (OFF_SLAB(cachep))
2046 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2047 }
2048}
2049
117f6eb1
CL
2050static void __kmem_cache_destroy(struct kmem_cache *cachep)
2051{
2052 int i;
2053 struct kmem_list3 *l3;
2054
2055 for_each_online_cpu(i)
2056 kfree(cachep->array[i]);
2057
2058 /* NUMA: free the list3 structures */
2059 for_each_online_node(i) {
2060 l3 = cachep->nodelists[i];
2061 if (l3) {
2062 kfree(l3->shared);
2063 free_alien_cache(l3->alien);
2064 kfree(l3);
2065 }
2066 }
2067 kmem_cache_free(&cache_cache, cachep);
2068}
2069
2070
4d268eba 2071/**
a70773dd
RD
2072 * calculate_slab_order - calculate size (page order) of slabs
2073 * @cachep: pointer to the cache that is being created
2074 * @size: size of objects to be created in this cache.
2075 * @align: required alignment for the objects.
2076 * @flags: slab allocation flags
2077 *
2078 * Also calculates the number of objects per slab.
4d268eba
PE
2079 *
2080 * This could be made much more intelligent. For now, try to avoid using
2081 * high order pages for slabs. When the gfp() functions are more friendly
2082 * towards high-order requests, this should be changed.
2083 */
a737b3e2 2084static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2085 size_t size, size_t align, unsigned long flags)
4d268eba 2086{
b1ab41c4 2087 unsigned long offslab_limit;
4d268eba 2088 size_t left_over = 0;
9888e6fa 2089 int gfporder;
4d268eba 2090
0aa817f0 2091 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2092 unsigned int num;
2093 size_t remainder;
2094
9888e6fa 2095 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2096 if (!num)
2097 continue;
9888e6fa 2098
b1ab41c4
IM
2099 if (flags & CFLGS_OFF_SLAB) {
2100 /*
2101 * Max number of objs-per-slab for caches which
2102 * use off-slab slabs. Needed to avoid a possible
2103 * looping condition in cache_grow().
2104 */
2105 offslab_limit = size - sizeof(struct slab);
2106 offslab_limit /= sizeof(kmem_bufctl_t);
2107
2108 if (num > offslab_limit)
2109 break;
2110 }
4d268eba 2111
9888e6fa 2112 /* Found something acceptable - save it away */
4d268eba 2113 cachep->num = num;
9888e6fa 2114 cachep->gfporder = gfporder;
4d268eba
PE
2115 left_over = remainder;
2116
f78bb8ad
LT
2117 /*
2118 * A VFS-reclaimable slab tends to have most allocations
2119 * as GFP_NOFS and we really don't want to have to be allocating
2120 * higher-order pages when we are unable to shrink dcache.
2121 */
2122 if (flags & SLAB_RECLAIM_ACCOUNT)
2123 break;
2124
4d268eba
PE
2125 /*
2126 * Large number of objects is good, but very large slabs are
2127 * currently bad for the gfp()s.
2128 */
543585cc 2129 if (gfporder >= slab_max_order)
4d268eba
PE
2130 break;
2131
9888e6fa
LT
2132 /*
2133 * Acceptable internal fragmentation?
2134 */
a737b3e2 2135 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2136 break;
2137 }
2138 return left_over;
2139}
2140
83b519e8 2141static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2142{
2ed3a4ef 2143 if (g_cpucache_up == FULL)
83b519e8 2144 return enable_cpucache(cachep, gfp);
2ed3a4ef 2145
f30cf7d1
PE
2146 if (g_cpucache_up == NONE) {
2147 /*
2148 * Note: the first kmem_cache_create must create the cache
2149 * that's used by kmalloc(24), otherwise the creation of
2150 * further caches will BUG().
2151 */
2152 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2153
2154 /*
2155 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2156 * the first cache, then we need to set up all its list3s,
2157 * otherwise the creation of further caches will BUG().
2158 */
2159 set_up_list3s(cachep, SIZE_AC);
2160 if (INDEX_AC == INDEX_L3)
2161 g_cpucache_up = PARTIAL_L3;
2162 else
2163 g_cpucache_up = PARTIAL_AC;
2164 } else {
2165 cachep->array[smp_processor_id()] =
83b519e8 2166 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2167
2168 if (g_cpucache_up == PARTIAL_AC) {
2169 set_up_list3s(cachep, SIZE_L3);
2170 g_cpucache_up = PARTIAL_L3;
2171 } else {
2172 int node;
556a169d 2173 for_each_online_node(node) {
f30cf7d1
PE
2174 cachep->nodelists[node] =
2175 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2176 gfp, node);
f30cf7d1
PE
2177 BUG_ON(!cachep->nodelists[node]);
2178 kmem_list3_init(cachep->nodelists[node]);
2179 }
2180 }
2181 }
7d6e6d09 2182 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2183 jiffies + REAPTIMEOUT_LIST3 +
2184 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2185
2186 cpu_cache_get(cachep)->avail = 0;
2187 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2188 cpu_cache_get(cachep)->batchcount = 1;
2189 cpu_cache_get(cachep)->touched = 0;
2190 cachep->batchcount = 1;
2191 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2192 return 0;
f30cf7d1
PE
2193}
2194
1da177e4
LT
2195/**
2196 * kmem_cache_create - Create a cache.
2197 * @name: A string which is used in /proc/slabinfo to identify this cache.
2198 * @size: The size of objects to be created in this cache.
2199 * @align: The required alignment for the objects.
2200 * @flags: SLAB flags
2201 * @ctor: A constructor for the objects.
1da177e4
LT
2202 *
2203 * Returns a ptr to the cache on success, NULL on failure.
2204 * Cannot be called within a int, but can be interrupted.
20c2df83 2205 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2206 *
2207 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2208 * the module calling this has to destroy the cache before getting unloaded.
2209 *
1da177e4
LT
2210 * The flags are
2211 *
2212 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2213 * to catch references to uninitialised memory.
2214 *
2215 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2216 * for buffer overruns.
2217 *
1da177e4
LT
2218 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2219 * cacheline. This can be beneficial if you're counting cycles as closely
2220 * as davem.
2221 */
343e0d7a 2222struct kmem_cache *
1da177e4 2223kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2224 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2225{
2226 size_t left_over, slab_size, ralign;
7a7c381d 2227 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2228 gfp_t gfp;
1da177e4
LT
2229
2230 /*
2231 * Sanity checks... these are all serious usage bugs.
2232 */
a737b3e2 2233 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2234 size > KMALLOC_MAX_SIZE) {
d40cee24 2235 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2236 name);
b28a02de
PE
2237 BUG();
2238 }
1da177e4 2239
f0188f47 2240 /*
8f5be20b 2241 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2242 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2243 */
83b519e8
PE
2244 if (slab_is_available()) {
2245 get_online_cpus();
2246 mutex_lock(&cache_chain_mutex);
2247 }
4f12bb4f 2248
7a7c381d 2249 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2250 char tmp;
2251 int res;
2252
2253 /*
2254 * This happens when the module gets unloaded and doesn't
2255 * destroy its slab cache and no-one else reuses the vmalloc
2256 * area of the module. Print a warning.
2257 */
138ae663 2258 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2259 if (res) {
b4169525 2260 printk(KERN_ERR
2261 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2262 pc->buffer_size);
4f12bb4f
AM
2263 continue;
2264 }
2265
b28a02de 2266 if (!strcmp(pc->name, name)) {
b4169525 2267 printk(KERN_ERR
2268 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2269 dump_stack();
2270 goto oops;
2271 }
2272 }
2273
1da177e4
LT
2274#if DEBUG
2275 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2276#if FORCED_DEBUG
2277 /*
2278 * Enable redzoning and last user accounting, except for caches with
2279 * large objects, if the increased size would increase the object size
2280 * above the next power of two: caches with object sizes just above a
2281 * power of two have a significant amount of internal fragmentation.
2282 */
87a927c7
DW
2283 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2284 2 * sizeof(unsigned long long)))
b28a02de 2285 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2286 if (!(flags & SLAB_DESTROY_BY_RCU))
2287 flags |= SLAB_POISON;
2288#endif
2289 if (flags & SLAB_DESTROY_BY_RCU)
2290 BUG_ON(flags & SLAB_POISON);
2291#endif
1da177e4 2292 /*
a737b3e2
AM
2293 * Always checks flags, a caller might be expecting debug support which
2294 * isn't available.
1da177e4 2295 */
40094fa6 2296 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2297
a737b3e2
AM
2298 /*
2299 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2300 * unaligned accesses for some archs when redzoning is used, and makes
2301 * sure any on-slab bufctl's are also correctly aligned.
2302 */
b28a02de
PE
2303 if (size & (BYTES_PER_WORD - 1)) {
2304 size += (BYTES_PER_WORD - 1);
2305 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2306 }
2307
a737b3e2
AM
2308 /* calculate the final buffer alignment: */
2309
1da177e4
LT
2310 /* 1) arch recommendation: can be overridden for debug */
2311 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2312 /*
2313 * Default alignment: as specified by the arch code. Except if
2314 * an object is really small, then squeeze multiple objects into
2315 * one cacheline.
1da177e4
LT
2316 */
2317 ralign = cache_line_size();
b28a02de 2318 while (size <= ralign / 2)
1da177e4
LT
2319 ralign /= 2;
2320 } else {
2321 ralign = BYTES_PER_WORD;
2322 }
ca5f9703
PE
2323
2324 /*
87a927c7
DW
2325 * Redzoning and user store require word alignment or possibly larger.
2326 * Note this will be overridden by architecture or caller mandated
2327 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2328 */
87a927c7
DW
2329 if (flags & SLAB_STORE_USER)
2330 ralign = BYTES_PER_WORD;
2331
2332 if (flags & SLAB_RED_ZONE) {
2333 ralign = REDZONE_ALIGN;
2334 /* If redzoning, ensure that the second redzone is suitably
2335 * aligned, by adjusting the object size accordingly. */
2336 size += REDZONE_ALIGN - 1;
2337 size &= ~(REDZONE_ALIGN - 1);
2338 }
ca5f9703 2339
a44b56d3 2340 /* 2) arch mandated alignment */
1da177e4
LT
2341 if (ralign < ARCH_SLAB_MINALIGN) {
2342 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2343 }
a44b56d3 2344 /* 3) caller mandated alignment */
1da177e4
LT
2345 if (ralign < align) {
2346 ralign = align;
1da177e4 2347 }
3ff84a7f
PE
2348 /* disable debug if necessary */
2349 if (ralign > __alignof__(unsigned long long))
a44b56d3 2350 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2351 /*
ca5f9703 2352 * 4) Store it.
1da177e4
LT
2353 */
2354 align = ralign;
2355
83b519e8
PE
2356 if (slab_is_available())
2357 gfp = GFP_KERNEL;
2358 else
2359 gfp = GFP_NOWAIT;
2360
1da177e4 2361 /* Get cache's description obj. */
83b519e8 2362 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2363 if (!cachep)
4f12bb4f 2364 goto oops;
1da177e4 2365
b56efcf0 2366 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1da177e4 2367#if DEBUG
3dafccf2 2368 cachep->obj_size = size;
1da177e4 2369
ca5f9703
PE
2370 /*
2371 * Both debugging options require word-alignment which is calculated
2372 * into align above.
2373 */
1da177e4 2374 if (flags & SLAB_RED_ZONE) {
1da177e4 2375 /* add space for red zone words */
3ff84a7f
PE
2376 cachep->obj_offset += sizeof(unsigned long long);
2377 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2378 }
2379 if (flags & SLAB_STORE_USER) {
ca5f9703 2380 /* user store requires one word storage behind the end of
87a927c7
DW
2381 * the real object. But if the second red zone needs to be
2382 * aligned to 64 bits, we must allow that much space.
1da177e4 2383 */
87a927c7
DW
2384 if (flags & SLAB_RED_ZONE)
2385 size += REDZONE_ALIGN;
2386 else
2387 size += BYTES_PER_WORD;
1da177e4
LT
2388 }
2389#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2390 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1ab335d8
CO
2391 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2392 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2393 size = PAGE_SIZE;
2394 }
2395#endif
2396#endif
2397
e0a42726
IM
2398 /*
2399 * Determine if the slab management is 'on' or 'off' slab.
2400 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2401 * it too early on. Always use on-slab management when
2402 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2403 */
e7cb55b9
CM
2404 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2405 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2406 /*
2407 * Size is large, assume best to place the slab management obj
2408 * off-slab (should allow better packing of objs).
2409 */
2410 flags |= CFLGS_OFF_SLAB;
2411
2412 size = ALIGN(size, align);
2413
f78bb8ad 2414 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2415
2416 if (!cachep->num) {
b4169525 2417 printk(KERN_ERR
2418 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2419 kmem_cache_free(&cache_cache, cachep);
2420 cachep = NULL;
4f12bb4f 2421 goto oops;
1da177e4 2422 }
b28a02de
PE
2423 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2424 + sizeof(struct slab), align);
1da177e4
LT
2425
2426 /*
2427 * If the slab has been placed off-slab, and we have enough space then
2428 * move it on-slab. This is at the expense of any extra colouring.
2429 */
2430 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2431 flags &= ~CFLGS_OFF_SLAB;
2432 left_over -= slab_size;
2433 }
2434
2435 if (flags & CFLGS_OFF_SLAB) {
2436 /* really off slab. No need for manual alignment */
b28a02de
PE
2437 slab_size =
2438 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2439
2440#ifdef CONFIG_PAGE_POISONING
2441 /* If we're going to use the generic kernel_map_pages()
2442 * poisoning, then it's going to smash the contents of
2443 * the redzone and userword anyhow, so switch them off.
2444 */
2445 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2446 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2447#endif
1da177e4
LT
2448 }
2449
2450 cachep->colour_off = cache_line_size();
2451 /* Offset must be a multiple of the alignment. */
2452 if (cachep->colour_off < align)
2453 cachep->colour_off = align;
b28a02de 2454 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2455 cachep->slab_size = slab_size;
2456 cachep->flags = flags;
2457 cachep->gfpflags = 0;
4b51d669 2458 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2459 cachep->gfpflags |= GFP_DMA;
3dafccf2 2460 cachep->buffer_size = size;
6a2d7a95 2461 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2462
e5ac9c5a 2463 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2464 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2465 /*
2466 * This is a possibility for one of the malloc_sizes caches.
2467 * But since we go off slab only for object size greater than
2468 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2469 * this should not happen at all.
2470 * But leave a BUG_ON for some lucky dude.
2471 */
6cb8f913 2472 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2473 }
1da177e4 2474 cachep->ctor = ctor;
1da177e4
LT
2475 cachep->name = name;
2476
83b519e8 2477 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2478 __kmem_cache_destroy(cachep);
2479 cachep = NULL;
2480 goto oops;
2481 }
1da177e4 2482
83835b3d
PZ
2483 if (flags & SLAB_DEBUG_OBJECTS) {
2484 /*
2485 * Would deadlock through slab_destroy()->call_rcu()->
2486 * debug_object_activate()->kmem_cache_alloc().
2487 */
2488 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2489
2490 slab_set_debugobj_lock_classes(cachep);
2491 }
2492
1da177e4
LT
2493 /* cache setup completed, link it into the list */
2494 list_add(&cachep->next, &cache_chain);
a737b3e2 2495oops:
1da177e4
LT
2496 if (!cachep && (flags & SLAB_PANIC))
2497 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2498 name);
83b519e8
PE
2499 if (slab_is_available()) {
2500 mutex_unlock(&cache_chain_mutex);
2501 put_online_cpus();
2502 }
1da177e4
LT
2503 return cachep;
2504}
2505EXPORT_SYMBOL(kmem_cache_create);
2506
2507#if DEBUG
2508static void check_irq_off(void)
2509{
2510 BUG_ON(!irqs_disabled());
2511}
2512
2513static void check_irq_on(void)
2514{
2515 BUG_ON(irqs_disabled());
2516}
2517
343e0d7a 2518static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2519{
2520#ifdef CONFIG_SMP
2521 check_irq_off();
7d6e6d09 2522 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2523#endif
2524}
e498be7d 2525
343e0d7a 2526static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2527{
2528#ifdef CONFIG_SMP
2529 check_irq_off();
2530 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2531#endif
2532}
2533
1da177e4
LT
2534#else
2535#define check_irq_off() do { } while(0)
2536#define check_irq_on() do { } while(0)
2537#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2538#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2539#endif
2540
aab2207c
CL
2541static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2542 struct array_cache *ac,
2543 int force, int node);
2544
1da177e4
LT
2545static void do_drain(void *arg)
2546{
a737b3e2 2547 struct kmem_cache *cachep = arg;
1da177e4 2548 struct array_cache *ac;
7d6e6d09 2549 int node = numa_mem_id();
1da177e4
LT
2550
2551 check_irq_off();
9a2dba4b 2552 ac = cpu_cache_get(cachep);
ff69416e
CL
2553 spin_lock(&cachep->nodelists[node]->list_lock);
2554 free_block(cachep, ac->entry, ac->avail, node);
2555 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2556 ac->avail = 0;
2557}
2558
343e0d7a 2559static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2560{
e498be7d
CL
2561 struct kmem_list3 *l3;
2562 int node;
2563
15c8b6c1 2564 on_each_cpu(do_drain, cachep, 1);
1da177e4 2565 check_irq_on();
b28a02de 2566 for_each_online_node(node) {
e498be7d 2567 l3 = cachep->nodelists[node];
a4523a8b
RD
2568 if (l3 && l3->alien)
2569 drain_alien_cache(cachep, l3->alien);
2570 }
2571
2572 for_each_online_node(node) {
2573 l3 = cachep->nodelists[node];
2574 if (l3)
aab2207c 2575 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2576 }
1da177e4
LT
2577}
2578
ed11d9eb
CL
2579/*
2580 * Remove slabs from the list of free slabs.
2581 * Specify the number of slabs to drain in tofree.
2582 *
2583 * Returns the actual number of slabs released.
2584 */
2585static int drain_freelist(struct kmem_cache *cache,
2586 struct kmem_list3 *l3, int tofree)
1da177e4 2587{
ed11d9eb
CL
2588 struct list_head *p;
2589 int nr_freed;
1da177e4 2590 struct slab *slabp;
1da177e4 2591
ed11d9eb
CL
2592 nr_freed = 0;
2593 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2594
ed11d9eb 2595 spin_lock_irq(&l3->list_lock);
e498be7d 2596 p = l3->slabs_free.prev;
ed11d9eb
CL
2597 if (p == &l3->slabs_free) {
2598 spin_unlock_irq(&l3->list_lock);
2599 goto out;
2600 }
1da177e4 2601
ed11d9eb 2602 slabp = list_entry(p, struct slab, list);
1da177e4 2603#if DEBUG
40094fa6 2604 BUG_ON(slabp->inuse);
1da177e4
LT
2605#endif
2606 list_del(&slabp->list);
ed11d9eb
CL
2607 /*
2608 * Safe to drop the lock. The slab is no longer linked
2609 * to the cache.
2610 */
2611 l3->free_objects -= cache->num;
e498be7d 2612 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2613 slab_destroy(cache, slabp);
2614 nr_freed++;
1da177e4 2615 }
ed11d9eb
CL
2616out:
2617 return nr_freed;
1da177e4
LT
2618}
2619
8f5be20b 2620/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2621static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2622{
2623 int ret = 0, i = 0;
2624 struct kmem_list3 *l3;
2625
2626 drain_cpu_caches(cachep);
2627
2628 check_irq_on();
2629 for_each_online_node(i) {
2630 l3 = cachep->nodelists[i];
ed11d9eb
CL
2631 if (!l3)
2632 continue;
2633
2634 drain_freelist(cachep, l3, l3->free_objects);
2635
2636 ret += !list_empty(&l3->slabs_full) ||
2637 !list_empty(&l3->slabs_partial);
e498be7d
CL
2638 }
2639 return (ret ? 1 : 0);
2640}
2641
1da177e4
LT
2642/**
2643 * kmem_cache_shrink - Shrink a cache.
2644 * @cachep: The cache to shrink.
2645 *
2646 * Releases as many slabs as possible for a cache.
2647 * To help debugging, a zero exit status indicates all slabs were released.
2648 */
343e0d7a 2649int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2650{
8f5be20b 2651 int ret;
40094fa6 2652 BUG_ON(!cachep || in_interrupt());
1da177e4 2653
95402b38 2654 get_online_cpus();
8f5be20b
RT
2655 mutex_lock(&cache_chain_mutex);
2656 ret = __cache_shrink(cachep);
2657 mutex_unlock(&cache_chain_mutex);
95402b38 2658 put_online_cpus();
8f5be20b 2659 return ret;
1da177e4
LT
2660}
2661EXPORT_SYMBOL(kmem_cache_shrink);
2662
2663/**
2664 * kmem_cache_destroy - delete a cache
2665 * @cachep: the cache to destroy
2666 *
72fd4a35 2667 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2668 *
2669 * It is expected this function will be called by a module when it is
2670 * unloaded. This will remove the cache completely, and avoid a duplicate
2671 * cache being allocated each time a module is loaded and unloaded, if the
2672 * module doesn't have persistent in-kernel storage across loads and unloads.
2673 *
2674 * The cache must be empty before calling this function.
2675 *
25985edc 2676 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2677 * during the kmem_cache_destroy().
2678 */
133d205a 2679void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2680{
40094fa6 2681 BUG_ON(!cachep || in_interrupt());
1da177e4 2682
1da177e4 2683 /* Find the cache in the chain of caches. */
95402b38 2684 get_online_cpus();
fc0abb14 2685 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2686 /*
2687 * the chain is never empty, cache_cache is never destroyed
2688 */
2689 list_del(&cachep->next);
1da177e4
LT
2690 if (__cache_shrink(cachep)) {
2691 slab_error(cachep, "Can't free all objects");
b28a02de 2692 list_add(&cachep->next, &cache_chain);
fc0abb14 2693 mutex_unlock(&cache_chain_mutex);
95402b38 2694 put_online_cpus();
133d205a 2695 return;
1da177e4
LT
2696 }
2697
2698 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2699 rcu_barrier();
1da177e4 2700
117f6eb1 2701 __kmem_cache_destroy(cachep);
8f5be20b 2702 mutex_unlock(&cache_chain_mutex);
95402b38 2703 put_online_cpus();
1da177e4
LT
2704}
2705EXPORT_SYMBOL(kmem_cache_destroy);
2706
e5ac9c5a
RT
2707/*
2708 * Get the memory for a slab management obj.
2709 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2710 * always come from malloc_sizes caches. The slab descriptor cannot
2711 * come from the same cache which is getting created because,
2712 * when we are searching for an appropriate cache for these
2713 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2714 * If we are creating a malloc_sizes cache here it would not be visible to
2715 * kmem_find_general_cachep till the initialization is complete.
2716 * Hence we cannot have slabp_cache same as the original cache.
2717 */
343e0d7a 2718static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2719 int colour_off, gfp_t local_flags,
2720 int nodeid)
1da177e4
LT
2721{
2722 struct slab *slabp;
b28a02de 2723
1da177e4
LT
2724 if (OFF_SLAB(cachep)) {
2725 /* Slab management obj is off-slab. */
5b74ada7 2726 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2727 local_flags, nodeid);
d5cff635
CM
2728 /*
2729 * If the first object in the slab is leaked (it's allocated
2730 * but no one has a reference to it), we want to make sure
2731 * kmemleak does not treat the ->s_mem pointer as a reference
2732 * to the object. Otherwise we will not report the leak.
2733 */
c017b4be
CM
2734 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2735 local_flags);
1da177e4
LT
2736 if (!slabp)
2737 return NULL;
2738 } else {
b28a02de 2739 slabp = objp + colour_off;
1da177e4
LT
2740 colour_off += cachep->slab_size;
2741 }
2742 slabp->inuse = 0;
2743 slabp->colouroff = colour_off;
b28a02de 2744 slabp->s_mem = objp + colour_off;
5b74ada7 2745 slabp->nodeid = nodeid;
e51bfd0a 2746 slabp->free = 0;
1da177e4
LT
2747 return slabp;
2748}
2749
2750static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2751{
b28a02de 2752 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2753}
2754
343e0d7a 2755static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2756 struct slab *slabp)
1da177e4
LT
2757{
2758 int i;
2759
2760 for (i = 0; i < cachep->num; i++) {
8fea4e96 2761 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2762#if DEBUG
2763 /* need to poison the objs? */
2764 if (cachep->flags & SLAB_POISON)
2765 poison_obj(cachep, objp, POISON_FREE);
2766 if (cachep->flags & SLAB_STORE_USER)
2767 *dbg_userword(cachep, objp) = NULL;
2768
2769 if (cachep->flags & SLAB_RED_ZONE) {
2770 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2771 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2772 }
2773 /*
a737b3e2
AM
2774 * Constructors are not allowed to allocate memory from the same
2775 * cache which they are a constructor for. Otherwise, deadlock.
2776 * They must also be threaded.
1da177e4
LT
2777 */
2778 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2779 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2780
2781 if (cachep->flags & SLAB_RED_ZONE) {
2782 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2783 slab_error(cachep, "constructor overwrote the"
b28a02de 2784 " end of an object");
1da177e4
LT
2785 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2786 slab_error(cachep, "constructor overwrote the"
b28a02de 2787 " start of an object");
1da177e4 2788 }
a737b3e2
AM
2789 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2790 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2791 kernel_map_pages(virt_to_page(objp),
3dafccf2 2792 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2793#else
2794 if (cachep->ctor)
51cc5068 2795 cachep->ctor(objp);
1da177e4 2796#endif
b28a02de 2797 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2798 }
b28a02de 2799 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2800}
2801
343e0d7a 2802static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2803{
4b51d669
CL
2804 if (CONFIG_ZONE_DMA_FLAG) {
2805 if (flags & GFP_DMA)
2806 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2807 else
2808 BUG_ON(cachep->gfpflags & GFP_DMA);
2809 }
1da177e4
LT
2810}
2811
a737b3e2
AM
2812static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2813 int nodeid)
78d382d7 2814{
8fea4e96 2815 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2816 kmem_bufctl_t next;
2817
2818 slabp->inuse++;
2819 next = slab_bufctl(slabp)[slabp->free];
2820#if DEBUG
2821 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2822 WARN_ON(slabp->nodeid != nodeid);
2823#endif
2824 slabp->free = next;
2825
2826 return objp;
2827}
2828
a737b3e2
AM
2829static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2830 void *objp, int nodeid)
78d382d7 2831{
8fea4e96 2832 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2833
2834#if DEBUG
2835 /* Verify that the slab belongs to the intended node */
2836 WARN_ON(slabp->nodeid != nodeid);
2837
871751e2 2838 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2839 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2840 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2841 BUG();
2842 }
2843#endif
2844 slab_bufctl(slabp)[objnr] = slabp->free;
2845 slabp->free = objnr;
2846 slabp->inuse--;
2847}
2848
4776874f
PE
2849/*
2850 * Map pages beginning at addr to the given cache and slab. This is required
2851 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2852 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2853 */
2854static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2855 void *addr)
1da177e4 2856{
4776874f 2857 int nr_pages;
1da177e4
LT
2858 struct page *page;
2859
4776874f 2860 page = virt_to_page(addr);
84097518 2861
4776874f 2862 nr_pages = 1;
84097518 2863 if (likely(!PageCompound(page)))
4776874f
PE
2864 nr_pages <<= cache->gfporder;
2865
1da177e4 2866 do {
4776874f
PE
2867 page_set_cache(page, cache);
2868 page_set_slab(page, slab);
1da177e4 2869 page++;
4776874f 2870 } while (--nr_pages);
1da177e4
LT
2871}
2872
2873/*
2874 * Grow (by 1) the number of slabs within a cache. This is called by
2875 * kmem_cache_alloc() when there are no active objs left in a cache.
2876 */
3c517a61
CL
2877static int cache_grow(struct kmem_cache *cachep,
2878 gfp_t flags, int nodeid, void *objp)
1da177e4 2879{
b28a02de 2880 struct slab *slabp;
b28a02de
PE
2881 size_t offset;
2882 gfp_t local_flags;
e498be7d 2883 struct kmem_list3 *l3;
1da177e4 2884
a737b3e2
AM
2885 /*
2886 * Be lazy and only check for valid flags here, keeping it out of the
2887 * critical path in kmem_cache_alloc().
1da177e4 2888 */
6cb06229
CL
2889 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2890 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2891
2e1217cf 2892 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2893 check_irq_off();
2e1217cf
RT
2894 l3 = cachep->nodelists[nodeid];
2895 spin_lock(&l3->list_lock);
1da177e4
LT
2896
2897 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2898 offset = l3->colour_next;
2899 l3->colour_next++;
2900 if (l3->colour_next >= cachep->colour)
2901 l3->colour_next = 0;
2902 spin_unlock(&l3->list_lock);
1da177e4 2903
2e1217cf 2904 offset *= cachep->colour_off;
1da177e4
LT
2905
2906 if (local_flags & __GFP_WAIT)
2907 local_irq_enable();
2908
2909 /*
2910 * The test for missing atomic flag is performed here, rather than
2911 * the more obvious place, simply to reduce the critical path length
2912 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2913 * will eventually be caught here (where it matters).
2914 */
2915 kmem_flagcheck(cachep, flags);
2916
a737b3e2
AM
2917 /*
2918 * Get mem for the objs. Attempt to allocate a physical page from
2919 * 'nodeid'.
e498be7d 2920 */
3c517a61 2921 if (!objp)
b8c1c5da 2922 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2923 if (!objp)
1da177e4
LT
2924 goto failed;
2925
2926 /* Get slab management. */
3c517a61 2927 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2928 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2929 if (!slabp)
1da177e4
LT
2930 goto opps1;
2931
4776874f 2932 slab_map_pages(cachep, slabp, objp);
1da177e4 2933
a35afb83 2934 cache_init_objs(cachep, slabp);
1da177e4
LT
2935
2936 if (local_flags & __GFP_WAIT)
2937 local_irq_disable();
2938 check_irq_off();
e498be7d 2939 spin_lock(&l3->list_lock);
1da177e4
LT
2940
2941 /* Make slab active. */
e498be7d 2942 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2943 STATS_INC_GROWN(cachep);
e498be7d
CL
2944 l3->free_objects += cachep->num;
2945 spin_unlock(&l3->list_lock);
1da177e4 2946 return 1;
a737b3e2 2947opps1:
1da177e4 2948 kmem_freepages(cachep, objp);
a737b3e2 2949failed:
1da177e4
LT
2950 if (local_flags & __GFP_WAIT)
2951 local_irq_disable();
2952 return 0;
2953}
2954
2955#if DEBUG
2956
2957/*
2958 * Perform extra freeing checks:
2959 * - detect bad pointers.
2960 * - POISON/RED_ZONE checking
1da177e4
LT
2961 */
2962static void kfree_debugcheck(const void *objp)
2963{
1da177e4
LT
2964 if (!virt_addr_valid(objp)) {
2965 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2966 (unsigned long)objp);
2967 BUG();
1da177e4 2968 }
1da177e4
LT
2969}
2970
58ce1fd5
PE
2971static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2972{
b46b8f19 2973 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2974
2975 redzone1 = *dbg_redzone1(cache, obj);
2976 redzone2 = *dbg_redzone2(cache, obj);
2977
2978 /*
2979 * Redzone is ok.
2980 */
2981 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2982 return;
2983
2984 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2985 slab_error(cache, "double free detected");
2986 else
2987 slab_error(cache, "memory outside object was overwritten");
2988
b46b8f19 2989 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2990 obj, redzone1, redzone2);
2991}
2992
343e0d7a 2993static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2994 void *caller)
1da177e4
LT
2995{
2996 struct page *page;
2997 unsigned int objnr;
2998 struct slab *slabp;
2999
80cbd911
MW
3000 BUG_ON(virt_to_cache(objp) != cachep);
3001
3dafccf2 3002 objp -= obj_offset(cachep);
1da177e4 3003 kfree_debugcheck(objp);
b49af68f 3004 page = virt_to_head_page(objp);
1da177e4 3005
065d41cb 3006 slabp = page_get_slab(page);
1da177e4
LT
3007
3008 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3009 verify_redzone_free(cachep, objp);
1da177e4
LT
3010 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3011 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3012 }
3013 if (cachep->flags & SLAB_STORE_USER)
3014 *dbg_userword(cachep, objp) = caller;
3015
8fea4e96 3016 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3017
3018 BUG_ON(objnr >= cachep->num);
8fea4e96 3019 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3020
871751e2
AV
3021#ifdef CONFIG_DEBUG_SLAB_LEAK
3022 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3023#endif
1da177e4
LT
3024 if (cachep->flags & SLAB_POISON) {
3025#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 3026 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3027 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3028 kernel_map_pages(virt_to_page(objp),
3dafccf2 3029 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
3030 } else {
3031 poison_obj(cachep, objp, POISON_FREE);
3032 }
3033#else
3034 poison_obj(cachep, objp, POISON_FREE);
3035#endif
3036 }
3037 return objp;
3038}
3039
343e0d7a 3040static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3041{
3042 kmem_bufctl_t i;
3043 int entries = 0;
b28a02de 3044
1da177e4
LT
3045 /* Check slab's freelist to see if this obj is there. */
3046 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3047 entries++;
3048 if (entries > cachep->num || i >= cachep->num)
3049 goto bad;
3050 }
3051 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3052bad:
3053 printk(KERN_ERR "slab: Internal list corruption detected in "
3054 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3055 cachep->name, cachep->num, slabp, slabp->inuse);
fdde6abb
SAS
3056 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3057 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3058 1);
1da177e4
LT
3059 BUG();
3060 }
3061}
3062#else
3063#define kfree_debugcheck(x) do { } while(0)
3064#define cache_free_debugcheck(x,objp,z) (objp)
3065#define check_slabp(x,y) do { } while(0)
3066#endif
3067
343e0d7a 3068static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3069{
3070 int batchcount;
3071 struct kmem_list3 *l3;
3072 struct array_cache *ac;
1ca4cb24
PE
3073 int node;
3074
6d2144d3 3075retry:
1da177e4 3076 check_irq_off();
7d6e6d09 3077 node = numa_mem_id();
9a2dba4b 3078 ac = cpu_cache_get(cachep);
1da177e4
LT
3079 batchcount = ac->batchcount;
3080 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3081 /*
3082 * If there was little recent activity on this cache, then
3083 * perform only a partial refill. Otherwise we could generate
3084 * refill bouncing.
1da177e4
LT
3085 */
3086 batchcount = BATCHREFILL_LIMIT;
3087 }
1ca4cb24 3088 l3 = cachep->nodelists[node];
e498be7d
CL
3089
3090 BUG_ON(ac->avail > 0 || !l3);
3091 spin_lock(&l3->list_lock);
1da177e4 3092
3ded175a 3093 /* See if we can refill from the shared array */
44b57f1c
NP
3094 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3095 l3->shared->touched = 1;
3ded175a 3096 goto alloc_done;
44b57f1c 3097 }
3ded175a 3098
1da177e4
LT
3099 while (batchcount > 0) {
3100 struct list_head *entry;
3101 struct slab *slabp;
3102 /* Get slab alloc is to come from. */
3103 entry = l3->slabs_partial.next;
3104 if (entry == &l3->slabs_partial) {
3105 l3->free_touched = 1;
3106 entry = l3->slabs_free.next;
3107 if (entry == &l3->slabs_free)
3108 goto must_grow;
3109 }
3110
3111 slabp = list_entry(entry, struct slab, list);
3112 check_slabp(cachep, slabp);
3113 check_spinlock_acquired(cachep);
714b8171
PE
3114
3115 /*
3116 * The slab was either on partial or free list so
3117 * there must be at least one object available for
3118 * allocation.
3119 */
249b9f33 3120 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3121
1da177e4 3122 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3123 STATS_INC_ALLOCED(cachep);
3124 STATS_INC_ACTIVE(cachep);
3125 STATS_SET_HIGH(cachep);
3126
78d382d7 3127 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3128 node);
1da177e4
LT
3129 }
3130 check_slabp(cachep, slabp);
3131
3132 /* move slabp to correct slabp list: */
3133 list_del(&slabp->list);
3134 if (slabp->free == BUFCTL_END)
3135 list_add(&slabp->list, &l3->slabs_full);
3136 else
3137 list_add(&slabp->list, &l3->slabs_partial);
3138 }
3139
a737b3e2 3140must_grow:
1da177e4 3141 l3->free_objects -= ac->avail;
a737b3e2 3142alloc_done:
e498be7d 3143 spin_unlock(&l3->list_lock);
1da177e4
LT
3144
3145 if (unlikely(!ac->avail)) {
3146 int x;
3c517a61 3147 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3148
a737b3e2 3149 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3150 ac = cpu_cache_get(cachep);
a737b3e2 3151 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3152 return NULL;
3153
a737b3e2 3154 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3155 goto retry;
3156 }
3157 ac->touched = 1;
e498be7d 3158 return ac->entry[--ac->avail];
1da177e4
LT
3159}
3160
a737b3e2
AM
3161static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3162 gfp_t flags)
1da177e4
LT
3163{
3164 might_sleep_if(flags & __GFP_WAIT);
3165#if DEBUG
3166 kmem_flagcheck(cachep, flags);
3167#endif
3168}
3169
3170#if DEBUG
a737b3e2
AM
3171static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3172 gfp_t flags, void *objp, void *caller)
1da177e4 3173{
b28a02de 3174 if (!objp)
1da177e4 3175 return objp;
b28a02de 3176 if (cachep->flags & SLAB_POISON) {
1da177e4 3177#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3178 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3179 kernel_map_pages(virt_to_page(objp),
3dafccf2 3180 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3181 else
3182 check_poison_obj(cachep, objp);
3183#else
3184 check_poison_obj(cachep, objp);
3185#endif
3186 poison_obj(cachep, objp, POISON_INUSE);
3187 }
3188 if (cachep->flags & SLAB_STORE_USER)
3189 *dbg_userword(cachep, objp) = caller;
3190
3191 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3192 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3193 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3194 slab_error(cachep, "double free, or memory outside"
3195 " object was overwritten");
b28a02de 3196 printk(KERN_ERR
b46b8f19 3197 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3198 objp, *dbg_redzone1(cachep, objp),
3199 *dbg_redzone2(cachep, objp));
1da177e4
LT
3200 }
3201 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3202 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3203 }
871751e2
AV
3204#ifdef CONFIG_DEBUG_SLAB_LEAK
3205 {
3206 struct slab *slabp;
3207 unsigned objnr;
3208
b49af68f 3209 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3210 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3211 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3212 }
3213#endif
3dafccf2 3214 objp += obj_offset(cachep);
4f104934 3215 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3216 cachep->ctor(objp);
7ea466f2
TH
3217 if (ARCH_SLAB_MINALIGN &&
3218 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3219 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3220 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3221 }
1da177e4
LT
3222 return objp;
3223}
3224#else
3225#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3226#endif
3227
773ff60e 3228static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3229{
3230 if (cachep == &cache_cache)
773ff60e 3231 return false;
8a8b6502 3232
4c13dd3b 3233 return should_failslab(obj_size(cachep), flags, cachep->flags);
8a8b6502
AM
3234}
3235
343e0d7a 3236static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3237{
b28a02de 3238 void *objp;
1da177e4
LT
3239 struct array_cache *ac;
3240
5c382300 3241 check_irq_off();
8a8b6502 3242
9a2dba4b 3243 ac = cpu_cache_get(cachep);
1da177e4
LT
3244 if (likely(ac->avail)) {
3245 STATS_INC_ALLOCHIT(cachep);
3246 ac->touched = 1;
e498be7d 3247 objp = ac->entry[--ac->avail];
1da177e4
LT
3248 } else {
3249 STATS_INC_ALLOCMISS(cachep);
3250 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3251 /*
3252 * the 'ac' may be updated by cache_alloc_refill(),
3253 * and kmemleak_erase() requires its correct value.
3254 */
3255 ac = cpu_cache_get(cachep);
1da177e4 3256 }
d5cff635
CM
3257 /*
3258 * To avoid a false negative, if an object that is in one of the
3259 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3260 * treat the array pointers as a reference to the object.
3261 */
f3d8b53a
O
3262 if (objp)
3263 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3264 return objp;
3265}
3266
e498be7d 3267#ifdef CONFIG_NUMA
c61afb18 3268/*
b2455396 3269 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3270 *
3271 * If we are in_interrupt, then process context, including cpusets and
3272 * mempolicy, may not apply and should not be used for allocation policy.
3273 */
3274static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3275{
3276 int nid_alloc, nid_here;
3277
765c4507 3278 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3279 return NULL;
7d6e6d09 3280 nid_alloc = nid_here = numa_mem_id();
c0ff7453 3281 get_mems_allowed();
c61afb18 3282 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3283 nid_alloc = cpuset_slab_spread_node();
c61afb18
PJ
3284 else if (current->mempolicy)
3285 nid_alloc = slab_node(current->mempolicy);
c0ff7453 3286 put_mems_allowed();
c61afb18 3287 if (nid_alloc != nid_here)
8b98c169 3288 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3289 return NULL;
3290}
3291
765c4507
CL
3292/*
3293 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3294 * certain node and fall back is permitted. First we scan all the
3295 * available nodelists for available objects. If that fails then we
3296 * perform an allocation without specifying a node. This allows the page
3297 * allocator to do its reclaim / fallback magic. We then insert the
3298 * slab into the proper nodelist and then allocate from it.
765c4507 3299 */
8c8cc2c1 3300static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3301{
8c8cc2c1
PE
3302 struct zonelist *zonelist;
3303 gfp_t local_flags;
dd1a239f 3304 struct zoneref *z;
54a6eb5c
MG
3305 struct zone *zone;
3306 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3307 void *obj = NULL;
3c517a61 3308 int nid;
8c8cc2c1
PE
3309
3310 if (flags & __GFP_THISNODE)
3311 return NULL;
3312
c0ff7453 3313 get_mems_allowed();
0e88460d 3314 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3315 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3316
3c517a61
CL
3317retry:
3318 /*
3319 * Look through allowed nodes for objects available
3320 * from existing per node queues.
3321 */
54a6eb5c
MG
3322 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3323 nid = zone_to_nid(zone);
aedb0eb1 3324
54a6eb5c 3325 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3326 cache->nodelists[nid] &&
481c5346 3327 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3328 obj = ____cache_alloc_node(cache,
3329 flags | GFP_THISNODE, nid);
481c5346
CL
3330 if (obj)
3331 break;
3332 }
3c517a61
CL
3333 }
3334
cfce6604 3335 if (!obj) {
3c517a61
CL
3336 /*
3337 * This allocation will be performed within the constraints
3338 * of the current cpuset / memory policy requirements.
3339 * We may trigger various forms of reclaim on the allowed
3340 * set and go into memory reserves if necessary.
3341 */
dd47ea75
CL
3342 if (local_flags & __GFP_WAIT)
3343 local_irq_enable();
3344 kmem_flagcheck(cache, flags);
7d6e6d09 3345 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3346 if (local_flags & __GFP_WAIT)
3347 local_irq_disable();
3c517a61
CL
3348 if (obj) {
3349 /*
3350 * Insert into the appropriate per node queues
3351 */
3352 nid = page_to_nid(virt_to_page(obj));
3353 if (cache_grow(cache, flags, nid, obj)) {
3354 obj = ____cache_alloc_node(cache,
3355 flags | GFP_THISNODE, nid);
3356 if (!obj)
3357 /*
3358 * Another processor may allocate the
3359 * objects in the slab since we are
3360 * not holding any locks.
3361 */
3362 goto retry;
3363 } else {
b6a60451 3364 /* cache_grow already freed obj */
3c517a61
CL
3365 obj = NULL;
3366 }
3367 }
aedb0eb1 3368 }
c0ff7453 3369 put_mems_allowed();
765c4507
CL
3370 return obj;
3371}
3372
e498be7d
CL
3373/*
3374 * A interface to enable slab creation on nodeid
1da177e4 3375 */
8b98c169 3376static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3377 int nodeid)
e498be7d
CL
3378{
3379 struct list_head *entry;
b28a02de
PE
3380 struct slab *slabp;
3381 struct kmem_list3 *l3;
3382 void *obj;
b28a02de
PE
3383 int x;
3384
3385 l3 = cachep->nodelists[nodeid];
3386 BUG_ON(!l3);
3387
a737b3e2 3388retry:
ca3b9b91 3389 check_irq_off();
b28a02de
PE
3390 spin_lock(&l3->list_lock);
3391 entry = l3->slabs_partial.next;
3392 if (entry == &l3->slabs_partial) {
3393 l3->free_touched = 1;
3394 entry = l3->slabs_free.next;
3395 if (entry == &l3->slabs_free)
3396 goto must_grow;
3397 }
3398
3399 slabp = list_entry(entry, struct slab, list);
3400 check_spinlock_acquired_node(cachep, nodeid);
3401 check_slabp(cachep, slabp);
3402
3403 STATS_INC_NODEALLOCS(cachep);
3404 STATS_INC_ACTIVE(cachep);
3405 STATS_SET_HIGH(cachep);
3406
3407 BUG_ON(slabp->inuse == cachep->num);
3408
78d382d7 3409 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3410 check_slabp(cachep, slabp);
3411 l3->free_objects--;
3412 /* move slabp to correct slabp list: */
3413 list_del(&slabp->list);
3414
a737b3e2 3415 if (slabp->free == BUFCTL_END)
b28a02de 3416 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3417 else
b28a02de 3418 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3419
b28a02de
PE
3420 spin_unlock(&l3->list_lock);
3421 goto done;
e498be7d 3422
a737b3e2 3423must_grow:
b28a02de 3424 spin_unlock(&l3->list_lock);
3c517a61 3425 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3426 if (x)
3427 goto retry;
1da177e4 3428
8c8cc2c1 3429 return fallback_alloc(cachep, flags);
e498be7d 3430
a737b3e2 3431done:
b28a02de 3432 return obj;
e498be7d 3433}
8c8cc2c1
PE
3434
3435/**
3436 * kmem_cache_alloc_node - Allocate an object on the specified node
3437 * @cachep: The cache to allocate from.
3438 * @flags: See kmalloc().
3439 * @nodeid: node number of the target node.
3440 * @caller: return address of caller, used for debug information
3441 *
3442 * Identical to kmem_cache_alloc but it will allocate memory on the given
3443 * node, which can improve the performance for cpu bound structures.
3444 *
3445 * Fallback to other node is possible if __GFP_THISNODE is not set.
3446 */
3447static __always_inline void *
3448__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3449 void *caller)
3450{
3451 unsigned long save_flags;
3452 void *ptr;
7d6e6d09 3453 int slab_node = numa_mem_id();
8c8cc2c1 3454
dcce284a 3455 flags &= gfp_allowed_mask;
7e85ee0c 3456
cf40bd16
NP
3457 lockdep_trace_alloc(flags);
3458
773ff60e 3459 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3460 return NULL;
3461
8c8cc2c1
PE
3462 cache_alloc_debugcheck_before(cachep, flags);
3463 local_irq_save(save_flags);
3464
eacbbae3 3465 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3466 nodeid = slab_node;
8c8cc2c1
PE
3467
3468 if (unlikely(!cachep->nodelists[nodeid])) {
3469 /* Node not bootstrapped yet */
3470 ptr = fallback_alloc(cachep, flags);
3471 goto out;
3472 }
3473
7d6e6d09 3474 if (nodeid == slab_node) {
8c8cc2c1
PE
3475 /*
3476 * Use the locally cached objects if possible.
3477 * However ____cache_alloc does not allow fallback
3478 * to other nodes. It may fail while we still have
3479 * objects on other nodes available.
3480 */
3481 ptr = ____cache_alloc(cachep, flags);
3482 if (ptr)
3483 goto out;
3484 }
3485 /* ___cache_alloc_node can fall back to other nodes */
3486 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3487 out:
3488 local_irq_restore(save_flags);
3489 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3490 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3491 flags);
8c8cc2c1 3492
c175eea4
PE
3493 if (likely(ptr))
3494 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3495
d07dbea4
CL
3496 if (unlikely((flags & __GFP_ZERO) && ptr))
3497 memset(ptr, 0, obj_size(cachep));
3498
8c8cc2c1
PE
3499 return ptr;
3500}
3501
3502static __always_inline void *
3503__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3504{
3505 void *objp;
3506
3507 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3508 objp = alternate_node_alloc(cache, flags);
3509 if (objp)
3510 goto out;
3511 }
3512 objp = ____cache_alloc(cache, flags);
3513
3514 /*
3515 * We may just have run out of memory on the local node.
3516 * ____cache_alloc_node() knows how to locate memory on other nodes
3517 */
7d6e6d09
LS
3518 if (!objp)
3519 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3520
3521 out:
3522 return objp;
3523}
3524#else
3525
3526static __always_inline void *
3527__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3528{
3529 return ____cache_alloc(cachep, flags);
3530}
3531
3532#endif /* CONFIG_NUMA */
3533
3534static __always_inline void *
3535__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3536{
3537 unsigned long save_flags;
3538 void *objp;
3539
dcce284a 3540 flags &= gfp_allowed_mask;
7e85ee0c 3541
cf40bd16
NP
3542 lockdep_trace_alloc(flags);
3543
773ff60e 3544 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3545 return NULL;
3546
8c8cc2c1
PE
3547 cache_alloc_debugcheck_before(cachep, flags);
3548 local_irq_save(save_flags);
3549 objp = __do_cache_alloc(cachep, flags);
3550 local_irq_restore(save_flags);
3551 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3552 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3553 flags);
8c8cc2c1
PE
3554 prefetchw(objp);
3555
c175eea4
PE
3556 if (likely(objp))
3557 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3558
d07dbea4
CL
3559 if (unlikely((flags & __GFP_ZERO) && objp))
3560 memset(objp, 0, obj_size(cachep));
3561
8c8cc2c1
PE
3562 return objp;
3563}
e498be7d
CL
3564
3565/*
3566 * Caller needs to acquire correct kmem_list's list_lock
3567 */
343e0d7a 3568static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3569 int node)
1da177e4
LT
3570{
3571 int i;
e498be7d 3572 struct kmem_list3 *l3;
1da177e4
LT
3573
3574 for (i = 0; i < nr_objects; i++) {
3575 void *objp = objpp[i];
3576 struct slab *slabp;
1da177e4 3577
6ed5eb22 3578 slabp = virt_to_slab(objp);
ff69416e 3579 l3 = cachep->nodelists[node];
1da177e4 3580 list_del(&slabp->list);
ff69416e 3581 check_spinlock_acquired_node(cachep, node);
1da177e4 3582 check_slabp(cachep, slabp);
78d382d7 3583 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3584 STATS_DEC_ACTIVE(cachep);
e498be7d 3585 l3->free_objects++;
1da177e4
LT
3586 check_slabp(cachep, slabp);
3587
3588 /* fixup slab chains */
3589 if (slabp->inuse == 0) {
e498be7d
CL
3590 if (l3->free_objects > l3->free_limit) {
3591 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3592 /* No need to drop any previously held
3593 * lock here, even if we have a off-slab slab
3594 * descriptor it is guaranteed to come from
3595 * a different cache, refer to comments before
3596 * alloc_slabmgmt.
3597 */
1da177e4
LT
3598 slab_destroy(cachep, slabp);
3599 } else {
e498be7d 3600 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3601 }
3602 } else {
3603 /* Unconditionally move a slab to the end of the
3604 * partial list on free - maximum time for the
3605 * other objects to be freed, too.
3606 */
e498be7d 3607 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3608 }
3609 }
3610}
3611
343e0d7a 3612static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3613{
3614 int batchcount;
e498be7d 3615 struct kmem_list3 *l3;
7d6e6d09 3616 int node = numa_mem_id();
1da177e4
LT
3617
3618 batchcount = ac->batchcount;
3619#if DEBUG
3620 BUG_ON(!batchcount || batchcount > ac->avail);
3621#endif
3622 check_irq_off();
ff69416e 3623 l3 = cachep->nodelists[node];
873623df 3624 spin_lock(&l3->list_lock);
e498be7d
CL
3625 if (l3->shared) {
3626 struct array_cache *shared_array = l3->shared;
b28a02de 3627 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3628 if (max) {
3629 if (batchcount > max)
3630 batchcount = max;
e498be7d 3631 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3632 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3633 shared_array->avail += batchcount;
3634 goto free_done;
3635 }
3636 }
3637
ff69416e 3638 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3639free_done:
1da177e4
LT
3640#if STATS
3641 {
3642 int i = 0;
3643 struct list_head *p;
3644
e498be7d
CL
3645 p = l3->slabs_free.next;
3646 while (p != &(l3->slabs_free)) {
1da177e4
LT
3647 struct slab *slabp;
3648
3649 slabp = list_entry(p, struct slab, list);
3650 BUG_ON(slabp->inuse);
3651
3652 i++;
3653 p = p->next;
3654 }
3655 STATS_SET_FREEABLE(cachep, i);
3656 }
3657#endif
e498be7d 3658 spin_unlock(&l3->list_lock);
1da177e4 3659 ac->avail -= batchcount;
a737b3e2 3660 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3661}
3662
3663/*
a737b3e2
AM
3664 * Release an obj back to its cache. If the obj has a constructed state, it must
3665 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3666 */
a947eb95
SS
3667static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3668 void *caller)
1da177e4 3669{
9a2dba4b 3670 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3671
3672 check_irq_off();
d5cff635 3673 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3674 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3675
c175eea4
PE
3676 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3677
1807a1aa
SS
3678 /*
3679 * Skip calling cache_free_alien() when the platform is not numa.
3680 * This will avoid cache misses that happen while accessing slabp (which
3681 * is per page memory reference) to get nodeid. Instead use a global
3682 * variable to skip the call, which is mostly likely to be present in
3683 * the cache.
3684 */
b6e68bc1 3685 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3686 return;
3687
1da177e4
LT
3688 if (likely(ac->avail < ac->limit)) {
3689 STATS_INC_FREEHIT(cachep);
e498be7d 3690 ac->entry[ac->avail++] = objp;
1da177e4
LT
3691 return;
3692 } else {
3693 STATS_INC_FREEMISS(cachep);
3694 cache_flusharray(cachep, ac);
e498be7d 3695 ac->entry[ac->avail++] = objp;
1da177e4
LT
3696 }
3697}
3698
3699/**
3700 * kmem_cache_alloc - Allocate an object
3701 * @cachep: The cache to allocate from.
3702 * @flags: See kmalloc().
3703 *
3704 * Allocate an object from this cache. The flags are only relevant
3705 * if the cache has no available objects.
3706 */
343e0d7a 3707void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3708{
36555751
EGM
3709 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3710
ca2b84cb
EGM
3711 trace_kmem_cache_alloc(_RET_IP_, ret,
3712 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3713
3714 return ret;
1da177e4
LT
3715}
3716EXPORT_SYMBOL(kmem_cache_alloc);
3717
0f24f128 3718#ifdef CONFIG_TRACING
85beb586
SR
3719void *
3720kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3721{
85beb586
SR
3722 void *ret;
3723
3724 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3725
3726 trace_kmalloc(_RET_IP_, ret,
3727 size, slab_buffer_size(cachep), flags);
3728 return ret;
36555751 3729}
85beb586 3730EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3731#endif
3732
1da177e4 3733#ifdef CONFIG_NUMA
8b98c169
CH
3734void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3735{
36555751
EGM
3736 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3737 __builtin_return_address(0));
3738
ca2b84cb
EGM
3739 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3740 obj_size(cachep), cachep->buffer_size,
3741 flags, nodeid);
36555751
EGM
3742
3743 return ret;
8b98c169 3744}
1da177e4
LT
3745EXPORT_SYMBOL(kmem_cache_alloc_node);
3746
0f24f128 3747#ifdef CONFIG_TRACING
85beb586
SR
3748void *kmem_cache_alloc_node_trace(size_t size,
3749 struct kmem_cache *cachep,
3750 gfp_t flags,
3751 int nodeid)
36555751 3752{
85beb586
SR
3753 void *ret;
3754
3755 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3756 __builtin_return_address(0));
85beb586
SR
3757 trace_kmalloc_node(_RET_IP_, ret,
3758 size, slab_buffer_size(cachep),
3759 flags, nodeid);
3760 return ret;
36555751 3761}
85beb586 3762EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3763#endif
3764
8b98c169
CH
3765static __always_inline void *
3766__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3767{
343e0d7a 3768 struct kmem_cache *cachep;
97e2bde4
MS
3769
3770 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3771 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3772 return cachep;
85beb586 3773 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3774}
8b98c169 3775
0bb38a5c 3776#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3777void *__kmalloc_node(size_t size, gfp_t flags, int node)
3778{
3779 return __do_kmalloc_node(size, flags, node,
3780 __builtin_return_address(0));
3781}
dbe5e69d 3782EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3783
3784void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3785 int node, unsigned long caller)
8b98c169 3786{
ce71e27c 3787 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3788}
3789EXPORT_SYMBOL(__kmalloc_node_track_caller);
3790#else
3791void *__kmalloc_node(size_t size, gfp_t flags, int node)
3792{
3793 return __do_kmalloc_node(size, flags, node, NULL);
3794}
3795EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3796#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3797#endif /* CONFIG_NUMA */
1da177e4
LT
3798
3799/**
800590f5 3800 * __do_kmalloc - allocate memory
1da177e4 3801 * @size: how many bytes of memory are required.
800590f5 3802 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3803 * @caller: function caller for debug tracking of the caller
1da177e4 3804 */
7fd6b141
PE
3805static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3806 void *caller)
1da177e4 3807{
343e0d7a 3808 struct kmem_cache *cachep;
36555751 3809 void *ret;
1da177e4 3810
97e2bde4
MS
3811 /* If you want to save a few bytes .text space: replace
3812 * __ with kmem_.
3813 * Then kmalloc uses the uninlined functions instead of the inline
3814 * functions.
3815 */
3816 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3817 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3818 return cachep;
36555751
EGM
3819 ret = __cache_alloc(cachep, flags, caller);
3820
ca2b84cb
EGM
3821 trace_kmalloc((unsigned long) caller, ret,
3822 size, cachep->buffer_size, flags);
36555751
EGM
3823
3824 return ret;
7fd6b141
PE
3825}
3826
7fd6b141 3827
0bb38a5c 3828#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3829void *__kmalloc(size_t size, gfp_t flags)
3830{
871751e2 3831 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3832}
3833EXPORT_SYMBOL(__kmalloc);
3834
ce71e27c 3835void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3836{
ce71e27c 3837 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3838}
3839EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3840
3841#else
3842void *__kmalloc(size_t size, gfp_t flags)
3843{
3844 return __do_kmalloc(size, flags, NULL);
3845}
3846EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3847#endif
3848
1da177e4
LT
3849/**
3850 * kmem_cache_free - Deallocate an object
3851 * @cachep: The cache the allocation was from.
3852 * @objp: The previously allocated object.
3853 *
3854 * Free an object which was previously allocated from this
3855 * cache.
3856 */
343e0d7a 3857void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3858{
3859 unsigned long flags;
3860
3861 local_irq_save(flags);
898552c9 3862 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3863 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3864 debug_check_no_obj_freed(objp, obj_size(cachep));
a947eb95 3865 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3866 local_irq_restore(flags);
36555751 3867
ca2b84cb 3868 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3869}
3870EXPORT_SYMBOL(kmem_cache_free);
3871
1da177e4
LT
3872/**
3873 * kfree - free previously allocated memory
3874 * @objp: pointer returned by kmalloc.
3875 *
80e93eff
PE
3876 * If @objp is NULL, no operation is performed.
3877 *
1da177e4
LT
3878 * Don't free memory not originally allocated by kmalloc()
3879 * or you will run into trouble.
3880 */
3881void kfree(const void *objp)
3882{
343e0d7a 3883 struct kmem_cache *c;
1da177e4
LT
3884 unsigned long flags;
3885
2121db74
PE
3886 trace_kfree(_RET_IP_, objp);
3887
6cb8f913 3888 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3889 return;
3890 local_irq_save(flags);
3891 kfree_debugcheck(objp);
6ed5eb22 3892 c = virt_to_cache(objp);
f9b8404c 3893 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3894 debug_check_no_obj_freed(objp, obj_size(c));
a947eb95 3895 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3896 local_irq_restore(flags);
3897}
3898EXPORT_SYMBOL(kfree);
3899
343e0d7a 3900unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3901{
3dafccf2 3902 return obj_size(cachep);
1da177e4
LT
3903}
3904EXPORT_SYMBOL(kmem_cache_size);
3905
e498be7d 3906/*
183ff22b 3907 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3908 */
83b519e8 3909static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3910{
3911 int node;
3912 struct kmem_list3 *l3;
cafeb02e 3913 struct array_cache *new_shared;
3395ee05 3914 struct array_cache **new_alien = NULL;
e498be7d 3915
9c09a95c 3916 for_each_online_node(node) {
cafeb02e 3917
3395ee05 3918 if (use_alien_caches) {
83b519e8 3919 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3920 if (!new_alien)
3921 goto fail;
3922 }
cafeb02e 3923
63109846
ED
3924 new_shared = NULL;
3925 if (cachep->shared) {
3926 new_shared = alloc_arraycache(node,
0718dc2a 3927 cachep->shared*cachep->batchcount,
83b519e8 3928 0xbaadf00d, gfp);
63109846
ED
3929 if (!new_shared) {
3930 free_alien_cache(new_alien);
3931 goto fail;
3932 }
0718dc2a 3933 }
cafeb02e 3934
a737b3e2
AM
3935 l3 = cachep->nodelists[node];
3936 if (l3) {
cafeb02e
CL
3937 struct array_cache *shared = l3->shared;
3938
e498be7d
CL
3939 spin_lock_irq(&l3->list_lock);
3940
cafeb02e 3941 if (shared)
0718dc2a
CL
3942 free_block(cachep, shared->entry,
3943 shared->avail, node);
e498be7d 3944
cafeb02e
CL
3945 l3->shared = new_shared;
3946 if (!l3->alien) {
e498be7d
CL
3947 l3->alien = new_alien;
3948 new_alien = NULL;
3949 }
b28a02de 3950 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3951 cachep->batchcount + cachep->num;
e498be7d 3952 spin_unlock_irq(&l3->list_lock);
cafeb02e 3953 kfree(shared);
e498be7d
CL
3954 free_alien_cache(new_alien);
3955 continue;
3956 }
83b519e8 3957 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3958 if (!l3) {
3959 free_alien_cache(new_alien);
3960 kfree(new_shared);
e498be7d 3961 goto fail;
0718dc2a 3962 }
e498be7d
CL
3963
3964 kmem_list3_init(l3);
3965 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3966 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3967 l3->shared = new_shared;
e498be7d 3968 l3->alien = new_alien;
b28a02de 3969 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3970 cachep->batchcount + cachep->num;
e498be7d
CL
3971 cachep->nodelists[node] = l3;
3972 }
cafeb02e 3973 return 0;
0718dc2a 3974
a737b3e2 3975fail:
0718dc2a
CL
3976 if (!cachep->next.next) {
3977 /* Cache is not active yet. Roll back what we did */
3978 node--;
3979 while (node >= 0) {
3980 if (cachep->nodelists[node]) {
3981 l3 = cachep->nodelists[node];
3982
3983 kfree(l3->shared);
3984 free_alien_cache(l3->alien);
3985 kfree(l3);
3986 cachep->nodelists[node] = NULL;
3987 }
3988 node--;
3989 }
3990 }
cafeb02e 3991 return -ENOMEM;
e498be7d
CL
3992}
3993
1da177e4 3994struct ccupdate_struct {
343e0d7a 3995 struct kmem_cache *cachep;
acfe7d74 3996 struct array_cache *new[0];
1da177e4
LT
3997};
3998
3999static void do_ccupdate_local(void *info)
4000{
a737b3e2 4001 struct ccupdate_struct *new = info;
1da177e4
LT
4002 struct array_cache *old;
4003
4004 check_irq_off();
9a2dba4b 4005 old = cpu_cache_get(new->cachep);
e498be7d 4006
1da177e4
LT
4007 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4008 new->new[smp_processor_id()] = old;
4009}
4010
b5d8ca7c 4011/* Always called with the cache_chain_mutex held */
a737b3e2 4012static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4013 int batchcount, int shared, gfp_t gfp)
1da177e4 4014{
d2e7b7d0 4015 struct ccupdate_struct *new;
2ed3a4ef 4016 int i;
1da177e4 4017
acfe7d74
ED
4018 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4019 gfp);
d2e7b7d0
SS
4020 if (!new)
4021 return -ENOMEM;
4022
e498be7d 4023 for_each_online_cpu(i) {
7d6e6d09 4024 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4025 batchcount, gfp);
d2e7b7d0 4026 if (!new->new[i]) {
b28a02de 4027 for (i--; i >= 0; i--)
d2e7b7d0
SS
4028 kfree(new->new[i]);
4029 kfree(new);
e498be7d 4030 return -ENOMEM;
1da177e4
LT
4031 }
4032 }
d2e7b7d0 4033 new->cachep = cachep;
1da177e4 4034
15c8b6c1 4035 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4036
1da177e4 4037 check_irq_on();
1da177e4
LT
4038 cachep->batchcount = batchcount;
4039 cachep->limit = limit;
e498be7d 4040 cachep->shared = shared;
1da177e4 4041
e498be7d 4042 for_each_online_cpu(i) {
d2e7b7d0 4043 struct array_cache *ccold = new->new[i];
1da177e4
LT
4044 if (!ccold)
4045 continue;
7d6e6d09
LS
4046 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4047 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4048 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4049 kfree(ccold);
4050 }
d2e7b7d0 4051 kfree(new);
83b519e8 4052 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4053}
4054
b5d8ca7c 4055/* Called with cache_chain_mutex held always */
83b519e8 4056static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4057{
4058 int err;
4059 int limit, shared;
4060
a737b3e2
AM
4061 /*
4062 * The head array serves three purposes:
1da177e4
LT
4063 * - create a LIFO ordering, i.e. return objects that are cache-warm
4064 * - reduce the number of spinlock operations.
a737b3e2 4065 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4066 * bufctl chains: array operations are cheaper.
4067 * The numbers are guessed, we should auto-tune as described by
4068 * Bonwick.
4069 */
3dafccf2 4070 if (cachep->buffer_size > 131072)
1da177e4 4071 limit = 1;
3dafccf2 4072 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4073 limit = 8;
3dafccf2 4074 else if (cachep->buffer_size > 1024)
1da177e4 4075 limit = 24;
3dafccf2 4076 else if (cachep->buffer_size > 256)
1da177e4
LT
4077 limit = 54;
4078 else
4079 limit = 120;
4080
a737b3e2
AM
4081 /*
4082 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4083 * allocation behaviour: Most allocs on one cpu, most free operations
4084 * on another cpu. For these cases, an efficient object passing between
4085 * cpus is necessary. This is provided by a shared array. The array
4086 * replaces Bonwick's magazine layer.
4087 * On uniprocessor, it's functionally equivalent (but less efficient)
4088 * to a larger limit. Thus disabled by default.
4089 */
4090 shared = 0;
364fbb29 4091 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4092 shared = 8;
1da177e4
LT
4093
4094#if DEBUG
a737b3e2
AM
4095 /*
4096 * With debugging enabled, large batchcount lead to excessively long
4097 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4098 */
4099 if (limit > 32)
4100 limit = 32;
4101#endif
83b519e8 4102 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4103 if (err)
4104 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4105 cachep->name, -err);
2ed3a4ef 4106 return err;
1da177e4
LT
4107}
4108
1b55253a
CL
4109/*
4110 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4111 * necessary. Note that the l3 listlock also protects the array_cache
4112 * if drain_array() is used on the shared array.
1b55253a 4113 */
68a1b195 4114static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4115 struct array_cache *ac, int force, int node)
1da177e4
LT
4116{
4117 int tofree;
4118
1b55253a
CL
4119 if (!ac || !ac->avail)
4120 return;
1da177e4
LT
4121 if (ac->touched && !force) {
4122 ac->touched = 0;
b18e7e65 4123 } else {
1b55253a 4124 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4125 if (ac->avail) {
4126 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4127 if (tofree > ac->avail)
4128 tofree = (ac->avail + 1) / 2;
4129 free_block(cachep, ac->entry, tofree, node);
4130 ac->avail -= tofree;
4131 memmove(ac->entry, &(ac->entry[tofree]),
4132 sizeof(void *) * ac->avail);
4133 }
1b55253a 4134 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4135 }
4136}
4137
4138/**
4139 * cache_reap - Reclaim memory from caches.
05fb6bf0 4140 * @w: work descriptor
1da177e4
LT
4141 *
4142 * Called from workqueue/eventd every few seconds.
4143 * Purpose:
4144 * - clear the per-cpu caches for this CPU.
4145 * - return freeable pages to the main free memory pool.
4146 *
a737b3e2
AM
4147 * If we cannot acquire the cache chain mutex then just give up - we'll try
4148 * again on the next iteration.
1da177e4 4149 */
7c5cae36 4150static void cache_reap(struct work_struct *w)
1da177e4 4151{
7a7c381d 4152 struct kmem_cache *searchp;
e498be7d 4153 struct kmem_list3 *l3;
7d6e6d09 4154 int node = numa_mem_id();
bf6aede7 4155 struct delayed_work *work = to_delayed_work(w);
1da177e4 4156
7c5cae36 4157 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4158 /* Give up. Setup the next iteration. */
7c5cae36 4159 goto out;
1da177e4 4160
7a7c381d 4161 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4162 check_irq_on();
4163
35386e3b
CL
4164 /*
4165 * We only take the l3 lock if absolutely necessary and we
4166 * have established with reasonable certainty that
4167 * we can do some work if the lock was obtained.
4168 */
aab2207c 4169 l3 = searchp->nodelists[node];
35386e3b 4170
8fce4d8e 4171 reap_alien(searchp, l3);
1da177e4 4172
aab2207c 4173 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4174
35386e3b
CL
4175 /*
4176 * These are racy checks but it does not matter
4177 * if we skip one check or scan twice.
4178 */
e498be7d 4179 if (time_after(l3->next_reap, jiffies))
35386e3b 4180 goto next;
1da177e4 4181
e498be7d 4182 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4183
aab2207c 4184 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4185
ed11d9eb 4186 if (l3->free_touched)
e498be7d 4187 l3->free_touched = 0;
ed11d9eb
CL
4188 else {
4189 int freed;
1da177e4 4190
ed11d9eb
CL
4191 freed = drain_freelist(searchp, l3, (l3->free_limit +
4192 5 * searchp->num - 1) / (5 * searchp->num));
4193 STATS_ADD_REAPED(searchp, freed);
4194 }
35386e3b 4195next:
1da177e4
LT
4196 cond_resched();
4197 }
4198 check_irq_on();
fc0abb14 4199 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4200 next_reap_node();
7c5cae36 4201out:
a737b3e2 4202 /* Set up the next iteration */
7c5cae36 4203 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4204}
4205
158a9624 4206#ifdef CONFIG_SLABINFO
1da177e4 4207
85289f98 4208static void print_slabinfo_header(struct seq_file *m)
1da177e4 4209{
85289f98
PE
4210 /*
4211 * Output format version, so at least we can change it
4212 * without _too_ many complaints.
4213 */
1da177e4 4214#if STATS
85289f98 4215 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4216#else
85289f98 4217 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4218#endif
85289f98
PE
4219 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4220 "<objperslab> <pagesperslab>");
4221 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4222 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4223#if STATS
85289f98 4224 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4225 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4226 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4227#endif
85289f98
PE
4228 seq_putc(m, '\n');
4229}
4230
4231static void *s_start(struct seq_file *m, loff_t *pos)
4232{
4233 loff_t n = *pos;
85289f98 4234
fc0abb14 4235 mutex_lock(&cache_chain_mutex);
85289f98
PE
4236 if (!n)
4237 print_slabinfo_header(m);
b92151ba
PE
4238
4239 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4240}
4241
4242static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4243{
b92151ba 4244 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4245}
4246
4247static void s_stop(struct seq_file *m, void *p)
4248{
fc0abb14 4249 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4250}
4251
4252static int s_show(struct seq_file *m, void *p)
4253{
b92151ba 4254 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4255 struct slab *slabp;
4256 unsigned long active_objs;
4257 unsigned long num_objs;
4258 unsigned long active_slabs = 0;
4259 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4260 const char *name;
1da177e4 4261 char *error = NULL;
e498be7d
CL
4262 int node;
4263 struct kmem_list3 *l3;
1da177e4 4264
1da177e4
LT
4265 active_objs = 0;
4266 num_slabs = 0;
e498be7d
CL
4267 for_each_online_node(node) {
4268 l3 = cachep->nodelists[node];
4269 if (!l3)
4270 continue;
4271
ca3b9b91
RT
4272 check_irq_on();
4273 spin_lock_irq(&l3->list_lock);
e498be7d 4274
7a7c381d 4275 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4276 if (slabp->inuse != cachep->num && !error)
4277 error = "slabs_full accounting error";
4278 active_objs += cachep->num;
4279 active_slabs++;
4280 }
7a7c381d 4281 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4282 if (slabp->inuse == cachep->num && !error)
4283 error = "slabs_partial inuse accounting error";
4284 if (!slabp->inuse && !error)
4285 error = "slabs_partial/inuse accounting error";
4286 active_objs += slabp->inuse;
4287 active_slabs++;
4288 }
7a7c381d 4289 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4290 if (slabp->inuse && !error)
4291 error = "slabs_free/inuse accounting error";
4292 num_slabs++;
4293 }
4294 free_objects += l3->free_objects;
4484ebf1
RT
4295 if (l3->shared)
4296 shared_avail += l3->shared->avail;
e498be7d 4297
ca3b9b91 4298 spin_unlock_irq(&l3->list_lock);
1da177e4 4299 }
b28a02de
PE
4300 num_slabs += active_slabs;
4301 num_objs = num_slabs * cachep->num;
e498be7d 4302 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4303 error = "free_objects accounting error";
4304
b28a02de 4305 name = cachep->name;
1da177e4
LT
4306 if (error)
4307 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4308
4309 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4310 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4311 cachep->num, (1 << cachep->gfporder));
1da177e4 4312 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4313 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4314 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4315 active_slabs, num_slabs, shared_avail);
1da177e4 4316#if STATS
b28a02de 4317 { /* list3 stats */
1da177e4
LT
4318 unsigned long high = cachep->high_mark;
4319 unsigned long allocs = cachep->num_allocations;
4320 unsigned long grown = cachep->grown;
4321 unsigned long reaped = cachep->reaped;
4322 unsigned long errors = cachep->errors;
4323 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4324 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4325 unsigned long node_frees = cachep->node_frees;
fb7faf33 4326 unsigned long overflows = cachep->node_overflow;
1da177e4 4327
e92dd4fd
JP
4328 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4329 "%4lu %4lu %4lu %4lu %4lu",
4330 allocs, high, grown,
4331 reaped, errors, max_freeable, node_allocs,
4332 node_frees, overflows);
1da177e4
LT
4333 }
4334 /* cpu stats */
4335 {
4336 unsigned long allochit = atomic_read(&cachep->allochit);
4337 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4338 unsigned long freehit = atomic_read(&cachep->freehit);
4339 unsigned long freemiss = atomic_read(&cachep->freemiss);
4340
4341 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4342 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4343 }
4344#endif
4345 seq_putc(m, '\n');
1da177e4
LT
4346 return 0;
4347}
4348
4349/*
4350 * slabinfo_op - iterator that generates /proc/slabinfo
4351 *
4352 * Output layout:
4353 * cache-name
4354 * num-active-objs
4355 * total-objs
4356 * object size
4357 * num-active-slabs
4358 * total-slabs
4359 * num-pages-per-slab
4360 * + further values on SMP and with statistics enabled
4361 */
4362
7b3c3a50 4363static const struct seq_operations slabinfo_op = {
b28a02de
PE
4364 .start = s_start,
4365 .next = s_next,
4366 .stop = s_stop,
4367 .show = s_show,
1da177e4
LT
4368};
4369
4370#define MAX_SLABINFO_WRITE 128
4371/**
4372 * slabinfo_write - Tuning for the slab allocator
4373 * @file: unused
4374 * @buffer: user buffer
4375 * @count: data length
4376 * @ppos: unused
4377 */
68a1b195 4378static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4379 size_t count, loff_t *ppos)
1da177e4 4380{
b28a02de 4381 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4382 int limit, batchcount, shared, res;
7a7c381d 4383 struct kmem_cache *cachep;
b28a02de 4384
1da177e4
LT
4385 if (count > MAX_SLABINFO_WRITE)
4386 return -EINVAL;
4387 if (copy_from_user(&kbuf, buffer, count))
4388 return -EFAULT;
b28a02de 4389 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4390
4391 tmp = strchr(kbuf, ' ');
4392 if (!tmp)
4393 return -EINVAL;
4394 *tmp = '\0';
4395 tmp++;
4396 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4397 return -EINVAL;
4398
4399 /* Find the cache in the chain of caches. */
fc0abb14 4400 mutex_lock(&cache_chain_mutex);
1da177e4 4401 res = -EINVAL;
7a7c381d 4402 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4403 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4404 if (limit < 1 || batchcount < 1 ||
4405 batchcount > limit || shared < 0) {
e498be7d 4406 res = 0;
1da177e4 4407 } else {
e498be7d 4408 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4409 batchcount, shared,
4410 GFP_KERNEL);
1da177e4
LT
4411 }
4412 break;
4413 }
4414 }
fc0abb14 4415 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4416 if (res >= 0)
4417 res = count;
4418 return res;
4419}
871751e2 4420
7b3c3a50
AD
4421static int slabinfo_open(struct inode *inode, struct file *file)
4422{
4423 return seq_open(file, &slabinfo_op);
4424}
4425
4426static const struct file_operations proc_slabinfo_operations = {
4427 .open = slabinfo_open,
4428 .read = seq_read,
4429 .write = slabinfo_write,
4430 .llseek = seq_lseek,
4431 .release = seq_release,
4432};
4433
871751e2
AV
4434#ifdef CONFIG_DEBUG_SLAB_LEAK
4435
4436static void *leaks_start(struct seq_file *m, loff_t *pos)
4437{
871751e2 4438 mutex_lock(&cache_chain_mutex);
b92151ba 4439 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4440}
4441
4442static inline int add_caller(unsigned long *n, unsigned long v)
4443{
4444 unsigned long *p;
4445 int l;
4446 if (!v)
4447 return 1;
4448 l = n[1];
4449 p = n + 2;
4450 while (l) {
4451 int i = l/2;
4452 unsigned long *q = p + 2 * i;
4453 if (*q == v) {
4454 q[1]++;
4455 return 1;
4456 }
4457 if (*q > v) {
4458 l = i;
4459 } else {
4460 p = q + 2;
4461 l -= i + 1;
4462 }
4463 }
4464 if (++n[1] == n[0])
4465 return 0;
4466 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4467 p[0] = v;
4468 p[1] = 1;
4469 return 1;
4470}
4471
4472static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4473{
4474 void *p;
4475 int i;
4476 if (n[0] == n[1])
4477 return;
4478 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4479 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4480 continue;
4481 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4482 return;
4483 }
4484}
4485
4486static void show_symbol(struct seq_file *m, unsigned long address)
4487{
4488#ifdef CONFIG_KALLSYMS
871751e2 4489 unsigned long offset, size;
9281acea 4490 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4491
a5c43dae 4492 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4493 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4494 if (modname[0])
871751e2
AV
4495 seq_printf(m, " [%s]", modname);
4496 return;
4497 }
4498#endif
4499 seq_printf(m, "%p", (void *)address);
4500}
4501
4502static int leaks_show(struct seq_file *m, void *p)
4503{
b92151ba 4504 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4505 struct slab *slabp;
4506 struct kmem_list3 *l3;
4507 const char *name;
4508 unsigned long *n = m->private;
4509 int node;
4510 int i;
4511
4512 if (!(cachep->flags & SLAB_STORE_USER))
4513 return 0;
4514 if (!(cachep->flags & SLAB_RED_ZONE))
4515 return 0;
4516
4517 /* OK, we can do it */
4518
4519 n[1] = 0;
4520
4521 for_each_online_node(node) {
4522 l3 = cachep->nodelists[node];
4523 if (!l3)
4524 continue;
4525
4526 check_irq_on();
4527 spin_lock_irq(&l3->list_lock);
4528
7a7c381d 4529 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4530 handle_slab(n, cachep, slabp);
7a7c381d 4531 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4532 handle_slab(n, cachep, slabp);
871751e2
AV
4533 spin_unlock_irq(&l3->list_lock);
4534 }
4535 name = cachep->name;
4536 if (n[0] == n[1]) {
4537 /* Increase the buffer size */
4538 mutex_unlock(&cache_chain_mutex);
4539 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4540 if (!m->private) {
4541 /* Too bad, we are really out */
4542 m->private = n;
4543 mutex_lock(&cache_chain_mutex);
4544 return -ENOMEM;
4545 }
4546 *(unsigned long *)m->private = n[0] * 2;
4547 kfree(n);
4548 mutex_lock(&cache_chain_mutex);
4549 /* Now make sure this entry will be retried */
4550 m->count = m->size;
4551 return 0;
4552 }
4553 for (i = 0; i < n[1]; i++) {
4554 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4555 show_symbol(m, n[2*i+2]);
4556 seq_putc(m, '\n');
4557 }
d2e7b7d0 4558
871751e2
AV
4559 return 0;
4560}
4561
a0ec95a8 4562static const struct seq_operations slabstats_op = {
871751e2
AV
4563 .start = leaks_start,
4564 .next = s_next,
4565 .stop = s_stop,
4566 .show = leaks_show,
4567};
a0ec95a8
AD
4568
4569static int slabstats_open(struct inode *inode, struct file *file)
4570{
4571 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4572 int ret = -ENOMEM;
4573 if (n) {
4574 ret = seq_open(file, &slabstats_op);
4575 if (!ret) {
4576 struct seq_file *m = file->private_data;
4577 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4578 m->private = n;
4579 n = NULL;
4580 }
4581 kfree(n);
4582 }
4583 return ret;
4584}
4585
4586static const struct file_operations proc_slabstats_operations = {
4587 .open = slabstats_open,
4588 .read = seq_read,
4589 .llseek = seq_lseek,
4590 .release = seq_release_private,
4591};
4592#endif
4593
4594static int __init slab_proc_init(void)
4595{
ab067e99 4596 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4597#ifdef CONFIG_DEBUG_SLAB_LEAK
4598 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4599#endif
a0ec95a8
AD
4600 return 0;
4601}
4602module_init(slab_proc_init);
1da177e4
LT
4603#endif
4604
00e145b6
MS
4605/**
4606 * ksize - get the actual amount of memory allocated for a given object
4607 * @objp: Pointer to the object
4608 *
4609 * kmalloc may internally round up allocations and return more memory
4610 * than requested. ksize() can be used to determine the actual amount of
4611 * memory allocated. The caller may use this additional memory, even though
4612 * a smaller amount of memory was initially specified with the kmalloc call.
4613 * The caller must guarantee that objp points to a valid object previously
4614 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4615 * must not be freed during the duration of the call.
4616 */
fd76bab2 4617size_t ksize(const void *objp)
1da177e4 4618{
ef8b4520
CL
4619 BUG_ON(!objp);
4620 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4621 return 0;
1da177e4 4622
6ed5eb22 4623 return obj_size(virt_to_cache(objp));
1da177e4 4624}
b1aabecd 4625EXPORT_SYMBOL(ksize);