gfs2: Convert print_symbol to %pSR
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
343e0d7a 207 struct kmem_cache *cachep;
b28a02de 208 void *addr;
1da177e4
LT
209};
210
5bfe53a7
LJ
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230};
231
1da177e4
LT
232/*
233 * struct array_cache
234 *
1da177e4
LT
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
e498be7d 249 spinlock_t lock;
bda5b655 250 void *entry[]; /*
a737b3e2
AM
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
072bb0aa
MG
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 258 */
1da177e4
LT
259};
260
072bb0aa
MG
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4
LT
290 */
291struct kmem_list3 {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
556a169d 308#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 309static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 310#define CACHE_CACHE 0
556a169d
PE
311#define SIZE_AC MAX_NUMNODES
312#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 313
ed11d9eb
CL
314static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
83b519e8 318static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 319static void cache_reap(struct work_struct *unused);
ed11d9eb 320
e498be7d 321/*
a737b3e2
AM
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 324 */
7243cc05 325static __always_inline int index_of(const size_t size)
e498be7d 326{
5ec8a847
SR
327 extern void __bad_size(void);
328
e498be7d
CL
329 if (__builtin_constant_p(size)) {
330 int i = 0;
331
332#define CACHE(x) \
333 if (size <=x) \
334 return i; \
335 else \
336 i++;
1c61fc40 337#include <linux/kmalloc_sizes.h>
e498be7d 338#undef CACHE
5ec8a847 339 __bad_size();
7243cc05 340 } else
5ec8a847 341 __bad_size();
e498be7d
CL
342 return 0;
343}
344
e0a42726
IM
345static int slab_early_init = 1;
346
e498be7d
CL
347#define INDEX_AC index_of(sizeof(struct arraycache_init))
348#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 349
5295a74c 350static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
351{
352 INIT_LIST_HEAD(&parent->slabs_full);
353 INIT_LIST_HEAD(&parent->slabs_partial);
354 INIT_LIST_HEAD(&parent->slabs_free);
355 parent->shared = NULL;
356 parent->alien = NULL;
2e1217cf 357 parent->colour_next = 0;
e498be7d
CL
358 spin_lock_init(&parent->list_lock);
359 parent->free_objects = 0;
360 parent->free_touched = 0;
361}
362
a737b3e2
AM
363#define MAKE_LIST(cachep, listp, slab, nodeid) \
364 do { \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
367 } while (0)
368
a737b3e2
AM
369#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 do { \
e498be7d
CL
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 } while (0)
1da177e4 375
1da177e4
LT
376#define CFLGS_OFF_SLAB (0x80000000UL)
377#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
378
379#define BATCHREFILL_LIMIT 16
a737b3e2
AM
380/*
381 * Optimization question: fewer reaps means less probability for unnessary
382 * cpucache drain/refill cycles.
1da177e4 383 *
dc6f3f27 384 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
385 * which could lock up otherwise freeable slabs.
386 */
387#define REAPTIMEOUT_CPUC (2*HZ)
388#define REAPTIMEOUT_LIST3 (4*HZ)
389
390#if STATS
391#define STATS_INC_ACTIVE(x) ((x)->num_active++)
392#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
393#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
394#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 395#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
396#define STATS_SET_HIGH(x) \
397 do { \
398 if ((x)->num_active > (x)->high_mark) \
399 (x)->high_mark = (x)->num_active; \
400 } while (0)
1da177e4
LT
401#define STATS_INC_ERR(x) ((x)->errors++)
402#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 403#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 404#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
405#define STATS_SET_FREEABLE(x, i) \
406 do { \
407 if ((x)->max_freeable < i) \
408 (x)->max_freeable = i; \
409 } while (0)
1da177e4
LT
410#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
411#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
412#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
413#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
414#else
415#define STATS_INC_ACTIVE(x) do { } while (0)
416#define STATS_DEC_ACTIVE(x) do { } while (0)
417#define STATS_INC_ALLOCED(x) do { } while (0)
418#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 419#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
420#define STATS_SET_HIGH(x) do { } while (0)
421#define STATS_INC_ERR(x) do { } while (0)
422#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 423#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 424#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 425#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
426#define STATS_INC_ALLOCHIT(x) do { } while (0)
427#define STATS_INC_ALLOCMISS(x) do { } while (0)
428#define STATS_INC_FREEHIT(x) do { } while (0)
429#define STATS_INC_FREEMISS(x) do { } while (0)
430#endif
431
432#if DEBUG
1da177e4 433
a737b3e2
AM
434/*
435 * memory layout of objects:
1da177e4 436 * 0 : objp
3dafccf2 437 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
438 * the end of an object is aligned with the end of the real
439 * allocation. Catches writes behind the end of the allocation.
3dafccf2 440 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 441 * redzone word.
3dafccf2 442 * cachep->obj_offset: The real object.
3b0efdfa
CL
443 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
444 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 445 * [BYTES_PER_WORD long]
1da177e4 446 */
343e0d7a 447static int obj_offset(struct kmem_cache *cachep)
1da177e4 448{
3dafccf2 449 return cachep->obj_offset;
1da177e4
LT
450}
451
b46b8f19 452static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
453{
454 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
455 return (unsigned long long*) (objp + obj_offset(cachep) -
456 sizeof(unsigned long long));
1da177e4
LT
457}
458
b46b8f19 459static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
460{
461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 463 return (unsigned long long *)(objp + cachep->size -
b46b8f19 464 sizeof(unsigned long long) -
87a927c7 465 REDZONE_ALIGN);
3b0efdfa 466 return (unsigned long long *) (objp + cachep->size -
b46b8f19 467 sizeof(unsigned long long));
1da177e4
LT
468}
469
343e0d7a 470static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
471{
472 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 473 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
474}
475
476#else
477
3dafccf2 478#define obj_offset(x) 0
b46b8f19
DW
479#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
480#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
481#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
482
483#endif
484
1da177e4 485/*
3df1cccd
DR
486 * Do not go above this order unless 0 objects fit into the slab or
487 * overridden on the command line.
1da177e4 488 */
543585cc
DR
489#define SLAB_MAX_ORDER_HI 1
490#define SLAB_MAX_ORDER_LO 0
491static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 492static bool slab_max_order_set __initdata;
1da177e4 493
6ed5eb22
PE
494static inline struct kmem_cache *virt_to_cache(const void *obj)
495{
b49af68f 496 struct page *page = virt_to_head_page(obj);
35026088 497 return page->slab_cache;
6ed5eb22
PE
498}
499
500static inline struct slab *virt_to_slab(const void *obj)
501{
b49af68f 502 struct page *page = virt_to_head_page(obj);
35026088
CL
503
504 VM_BUG_ON(!PageSlab(page));
505 return page->slab_page;
6ed5eb22
PE
506}
507
8fea4e96
PE
508static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
509 unsigned int idx)
510{
3b0efdfa 511 return slab->s_mem + cache->size * idx;
8fea4e96
PE
512}
513
6a2d7a95 514/*
3b0efdfa
CL
515 * We want to avoid an expensive divide : (offset / cache->size)
516 * Using the fact that size is a constant for a particular cache,
517 * we can replace (offset / cache->size) by
6a2d7a95
ED
518 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
519 */
520static inline unsigned int obj_to_index(const struct kmem_cache *cache,
521 const struct slab *slab, void *obj)
8fea4e96 522{
6a2d7a95
ED
523 u32 offset = (obj - slab->s_mem);
524 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
525}
526
a737b3e2
AM
527/*
528 * These are the default caches for kmalloc. Custom caches can have other sizes.
529 */
1da177e4
LT
530struct cache_sizes malloc_sizes[] = {
531#define CACHE(x) { .cs_size = (x) },
532#include <linux/kmalloc_sizes.h>
533 CACHE(ULONG_MAX)
534#undef CACHE
535};
536EXPORT_SYMBOL(malloc_sizes);
537
538/* Must match cache_sizes above. Out of line to keep cache footprint low. */
539struct cache_names {
540 char *name;
541 char *name_dma;
542};
543
544static struct cache_names __initdata cache_names[] = {
545#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
546#include <linux/kmalloc_sizes.h>
b28a02de 547 {NULL,}
1da177e4
LT
548#undef CACHE
549};
550
1da177e4 551static struct arraycache_init initarray_generic =
b28a02de 552 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
553
554/* internal cache of cache description objs */
9b030cb8 555static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
556 .batchcount = 1,
557 .limit = BOOT_CPUCACHE_ENTRIES,
558 .shared = 1,
3b0efdfa 559 .size = sizeof(struct kmem_cache),
b28a02de 560 .name = "kmem_cache",
1da177e4
LT
561};
562
056c6241
RT
563#define BAD_ALIEN_MAGIC 0x01020304ul
564
f1aaee53
AV
565#ifdef CONFIG_LOCKDEP
566
567/*
568 * Slab sometimes uses the kmalloc slabs to store the slab headers
569 * for other slabs "off slab".
570 * The locking for this is tricky in that it nests within the locks
571 * of all other slabs in a few places; to deal with this special
572 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
573 *
574 * We set lock class for alien array caches which are up during init.
575 * The lock annotation will be lost if all cpus of a node goes down and
576 * then comes back up during hotplug
f1aaee53 577 */
056c6241
RT
578static struct lock_class_key on_slab_l3_key;
579static struct lock_class_key on_slab_alc_key;
580
83835b3d
PZ
581static struct lock_class_key debugobj_l3_key;
582static struct lock_class_key debugobj_alc_key;
583
584static void slab_set_lock_classes(struct kmem_cache *cachep,
585 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
586 int q)
587{
588 struct array_cache **alc;
589 struct kmem_list3 *l3;
590 int r;
591
592 l3 = cachep->nodelists[q];
593 if (!l3)
594 return;
595
596 lockdep_set_class(&l3->list_lock, l3_key);
597 alc = l3->alien;
598 /*
599 * FIXME: This check for BAD_ALIEN_MAGIC
600 * should go away when common slab code is taught to
601 * work even without alien caches.
602 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
603 * for alloc_alien_cache,
604 */
605 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
606 return;
607 for_each_node(r) {
608 if (alc[r])
609 lockdep_set_class(&alc[r]->lock, alc_key);
610 }
611}
612
613static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
614{
615 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
616}
617
618static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
619{
620 int node;
621
622 for_each_online_node(node)
623 slab_set_debugobj_lock_classes_node(cachep, node);
624}
625
ce79ddc8 626static void init_node_lock_keys(int q)
f1aaee53 627{
056c6241
RT
628 struct cache_sizes *s = malloc_sizes;
629
97d06609 630 if (slab_state < UP)
ce79ddc8
PE
631 return;
632
633 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 634 struct kmem_list3 *l3;
ce79ddc8
PE
635
636 l3 = s->cs_cachep->nodelists[q];
637 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 638 continue;
83835b3d
PZ
639
640 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
641 &on_slab_alc_key, q);
f1aaee53
AV
642 }
643}
ce79ddc8 644
6ccfb5bc
GC
645static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
646{
647 struct kmem_list3 *l3;
648 l3 = cachep->nodelists[q];
649 if (!l3)
650 return;
651
652 slab_set_lock_classes(cachep, &on_slab_l3_key,
653 &on_slab_alc_key, q);
654}
655
656static inline void on_slab_lock_classes(struct kmem_cache *cachep)
657{
658 int node;
659
660 VM_BUG_ON(OFF_SLAB(cachep));
661 for_each_node(node)
662 on_slab_lock_classes_node(cachep, node);
663}
664
ce79ddc8
PE
665static inline void init_lock_keys(void)
666{
667 int node;
668
669 for_each_node(node)
670 init_node_lock_keys(node);
671}
f1aaee53 672#else
ce79ddc8
PE
673static void init_node_lock_keys(int q)
674{
675}
676
056c6241 677static inline void init_lock_keys(void)
f1aaee53
AV
678{
679}
83835b3d 680
6ccfb5bc
GC
681static inline void on_slab_lock_classes(struct kmem_cache *cachep)
682{
683}
684
685static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
686{
687}
688
83835b3d
PZ
689static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690{
691}
692
693static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694{
695}
f1aaee53
AV
696#endif
697
1871e52c 698static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 699
343e0d7a 700static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
701{
702 return cachep->array[smp_processor_id()];
703}
704
a737b3e2
AM
705static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
1da177e4
LT
707{
708 struct cache_sizes *csizep = malloc_sizes;
709
710#if DEBUG
711 /* This happens if someone tries to call
b28a02de
PE
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
c7e43c78 715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 716#endif
6cb8f913
CL
717 if (!size)
718 return ZERO_SIZE_PTR;
719
1da177e4
LT
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
0abf40c1 724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
4b51d669 728#ifdef CONFIG_ZONE_DMA
1da177e4
LT
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
4b51d669 731#endif
1da177e4
LT
732 return csizep->cs_cachep;
733}
734
b221385b 735static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
736{
737 return __find_general_cachep(size, gfpflags);
738}
97e2bde4 739
fbaccacf 740static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 741{
fbaccacf
SR
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743}
1da177e4 744
a737b3e2
AM
745/*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
fbaccacf
SR
748static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751{
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 755
fbaccacf
SR
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
804}
805
f28510d3 806#if DEBUG
d40cee24 807#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 808
a737b3e2
AM
809static void __slab_error(const char *function, struct kmem_cache *cachep,
810 char *msg)
1da177e4
LT
811{
812 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 813 function, cachep->name, msg);
1da177e4 814 dump_stack();
373d4d09 815 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 816}
f28510d3 817#endif
1da177e4 818
3395ee05
PM
819/*
820 * By default on NUMA we use alien caches to stage the freeing of
821 * objects allocated from other nodes. This causes massive memory
822 * inefficiencies when using fake NUMA setup to split memory into a
823 * large number of small nodes, so it can be disabled on the command
824 * line
825 */
826
827static int use_alien_caches __read_mostly = 1;
828static int __init noaliencache_setup(char *s)
829{
830 use_alien_caches = 0;
831 return 1;
832}
833__setup("noaliencache", noaliencache_setup);
834
3df1cccd
DR
835static int __init slab_max_order_setup(char *str)
836{
837 get_option(&str, &slab_max_order);
838 slab_max_order = slab_max_order < 0 ? 0 :
839 min(slab_max_order, MAX_ORDER - 1);
840 slab_max_order_set = true;
841
842 return 1;
843}
844__setup("slab_max_order=", slab_max_order_setup);
845
8fce4d8e
CL
846#ifdef CONFIG_NUMA
847/*
848 * Special reaping functions for NUMA systems called from cache_reap().
849 * These take care of doing round robin flushing of alien caches (containing
850 * objects freed on different nodes from which they were allocated) and the
851 * flushing of remote pcps by calling drain_node_pages.
852 */
1871e52c 853static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
854
855static void init_reap_node(int cpu)
856{
857 int node;
858
7d6e6d09 859 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 860 if (node == MAX_NUMNODES)
442295c9 861 node = first_node(node_online_map);
8fce4d8e 862
1871e52c 863 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
864}
865
866static void next_reap_node(void)
867{
909ea964 868 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 869
8fce4d8e
CL
870 node = next_node(node, node_online_map);
871 if (unlikely(node >= MAX_NUMNODES))
872 node = first_node(node_online_map);
909ea964 873 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
874}
875
876#else
877#define init_reap_node(cpu) do { } while (0)
878#define next_reap_node(void) do { } while (0)
879#endif
880
1da177e4
LT
881/*
882 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
883 * via the workqueue/eventd.
884 * Add the CPU number into the expiration time to minimize the possibility of
885 * the CPUs getting into lockstep and contending for the global cache chain
886 * lock.
887 */
897e679b 888static void __cpuinit start_cpu_timer(int cpu)
1da177e4 889{
1871e52c 890 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
891
892 /*
893 * When this gets called from do_initcalls via cpucache_init(),
894 * init_workqueues() has already run, so keventd will be setup
895 * at that time.
896 */
52bad64d 897 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 898 init_reap_node(cpu);
203b42f7 899 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
900 schedule_delayed_work_on(cpu, reap_work,
901 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
902 }
903}
904
e498be7d 905static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 906 int batchcount, gfp_t gfp)
1da177e4 907{
b28a02de 908 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
909 struct array_cache *nc = NULL;
910
83b519e8 911 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
912 /*
913 * The array_cache structures contain pointers to free object.
25985edc 914 * However, when such objects are allocated or transferred to another
d5cff635
CM
915 * cache the pointers are not cleared and they could be counted as
916 * valid references during a kmemleak scan. Therefore, kmemleak must
917 * not scan such objects.
918 */
919 kmemleak_no_scan(nc);
1da177e4
LT
920 if (nc) {
921 nc->avail = 0;
922 nc->limit = entries;
923 nc->batchcount = batchcount;
924 nc->touched = 0;
e498be7d 925 spin_lock_init(&nc->lock);
1da177e4
LT
926 }
927 return nc;
928}
929
072bb0aa
MG
930static inline bool is_slab_pfmemalloc(struct slab *slabp)
931{
932 struct page *page = virt_to_page(slabp->s_mem);
933
934 return PageSlabPfmemalloc(page);
935}
936
937/* Clears pfmemalloc_active if no slabs have pfmalloc set */
938static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
939 struct array_cache *ac)
940{
941 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
942 struct slab *slabp;
943 unsigned long flags;
944
945 if (!pfmemalloc_active)
946 return;
947
948 spin_lock_irqsave(&l3->list_lock, flags);
949 list_for_each_entry(slabp, &l3->slabs_full, list)
950 if (is_slab_pfmemalloc(slabp))
951 goto out;
952
953 list_for_each_entry(slabp, &l3->slabs_partial, list)
954 if (is_slab_pfmemalloc(slabp))
955 goto out;
956
957 list_for_each_entry(slabp, &l3->slabs_free, list)
958 if (is_slab_pfmemalloc(slabp))
959 goto out;
960
961 pfmemalloc_active = false;
962out:
963 spin_unlock_irqrestore(&l3->list_lock, flags);
964}
965
381760ea 966static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
967 gfp_t flags, bool force_refill)
968{
969 int i;
970 void *objp = ac->entry[--ac->avail];
971
972 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
973 if (unlikely(is_obj_pfmemalloc(objp))) {
974 struct kmem_list3 *l3;
975
976 if (gfp_pfmemalloc_allowed(flags)) {
977 clear_obj_pfmemalloc(&objp);
978 return objp;
979 }
980
981 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 982 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
983 /* If a !PFMEMALLOC object is found, swap them */
984 if (!is_obj_pfmemalloc(ac->entry[i])) {
985 objp = ac->entry[i];
986 ac->entry[i] = ac->entry[ac->avail];
987 ac->entry[ac->avail] = objp;
988 return objp;
989 }
990 }
991
992 /*
993 * If there are empty slabs on the slabs_free list and we are
994 * being forced to refill the cache, mark this one !pfmemalloc.
995 */
996 l3 = cachep->nodelists[numa_mem_id()];
997 if (!list_empty(&l3->slabs_free) && force_refill) {
998 struct slab *slabp = virt_to_slab(objp);
30c29bea 999 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
1000 clear_obj_pfmemalloc(&objp);
1001 recheck_pfmemalloc_active(cachep, ac);
1002 return objp;
1003 }
1004
1005 /* No !PFMEMALLOC objects available */
1006 ac->avail++;
1007 objp = NULL;
1008 }
1009
1010 return objp;
1011}
1012
381760ea
MG
1013static inline void *ac_get_obj(struct kmem_cache *cachep,
1014 struct array_cache *ac, gfp_t flags, bool force_refill)
1015{
1016 void *objp;
1017
1018 if (unlikely(sk_memalloc_socks()))
1019 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1020 else
1021 objp = ac->entry[--ac->avail];
1022
1023 return objp;
1024}
1025
1026static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1027 void *objp)
1028{
1029 if (unlikely(pfmemalloc_active)) {
1030 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 1031 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
1032 if (PageSlabPfmemalloc(page))
1033 set_obj_pfmemalloc(&objp);
1034 }
1035
381760ea
MG
1036 return objp;
1037}
1038
1039static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1040 void *objp)
1041{
1042 if (unlikely(sk_memalloc_socks()))
1043 objp = __ac_put_obj(cachep, ac, objp);
1044
072bb0aa
MG
1045 ac->entry[ac->avail++] = objp;
1046}
1047
3ded175a
CL
1048/*
1049 * Transfer objects in one arraycache to another.
1050 * Locking must be handled by the caller.
1051 *
1052 * Return the number of entries transferred.
1053 */
1054static int transfer_objects(struct array_cache *to,
1055 struct array_cache *from, unsigned int max)
1056{
1057 /* Figure out how many entries to transfer */
732eacc0 1058 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1059
1060 if (!nr)
1061 return 0;
1062
1063 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1064 sizeof(void *) *nr);
1065
1066 from->avail -= nr;
1067 to->avail += nr;
3ded175a
CL
1068 return nr;
1069}
1070
765c4507
CL
1071#ifndef CONFIG_NUMA
1072
1073#define drain_alien_cache(cachep, alien) do { } while (0)
1074#define reap_alien(cachep, l3) do { } while (0)
1075
83b519e8 1076static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1077{
1078 return (struct array_cache **)BAD_ALIEN_MAGIC;
1079}
1080
1081static inline void free_alien_cache(struct array_cache **ac_ptr)
1082{
1083}
1084
1085static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1086{
1087 return 0;
1088}
1089
1090static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1091 gfp_t flags)
1092{
1093 return NULL;
1094}
1095
8b98c169 1096static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1097 gfp_t flags, int nodeid)
1098{
1099 return NULL;
1100}
1101
1102#else /* CONFIG_NUMA */
1103
8b98c169 1104static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1105static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1106
83b519e8 1107static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1108{
1109 struct array_cache **ac_ptr;
8ef82866 1110 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1111 int i;
1112
1113 if (limit > 1)
1114 limit = 12;
f3186a9c 1115 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1116 if (ac_ptr) {
1117 for_each_node(i) {
f3186a9c 1118 if (i == node || !node_online(i))
e498be7d 1119 continue;
83b519e8 1120 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1121 if (!ac_ptr[i]) {
cc550def 1122 for (i--; i >= 0; i--)
e498be7d
CL
1123 kfree(ac_ptr[i]);
1124 kfree(ac_ptr);
1125 return NULL;
1126 }
1127 }
1128 }
1129 return ac_ptr;
1130}
1131
5295a74c 1132static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1133{
1134 int i;
1135
1136 if (!ac_ptr)
1137 return;
e498be7d 1138 for_each_node(i)
b28a02de 1139 kfree(ac_ptr[i]);
e498be7d
CL
1140 kfree(ac_ptr);
1141}
1142
343e0d7a 1143static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1144 struct array_cache *ac, int node)
e498be7d
CL
1145{
1146 struct kmem_list3 *rl3 = cachep->nodelists[node];
1147
1148 if (ac->avail) {
1149 spin_lock(&rl3->list_lock);
e00946fe
CL
1150 /*
1151 * Stuff objects into the remote nodes shared array first.
1152 * That way we could avoid the overhead of putting the objects
1153 * into the free lists and getting them back later.
1154 */
693f7d36
JS
1155 if (rl3->shared)
1156 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1157
ff69416e 1158 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1159 ac->avail = 0;
1160 spin_unlock(&rl3->list_lock);
1161 }
1162}
1163
8fce4d8e
CL
1164/*
1165 * Called from cache_reap() to regularly drain alien caches round robin.
1166 */
1167static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1168{
909ea964 1169 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1170
1171 if (l3->alien) {
1172 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1173
1174 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1175 __drain_alien_cache(cachep, ac, node);
1176 spin_unlock_irq(&ac->lock);
1177 }
1178 }
1179}
1180
a737b3e2
AM
1181static void drain_alien_cache(struct kmem_cache *cachep,
1182 struct array_cache **alien)
e498be7d 1183{
b28a02de 1184 int i = 0;
e498be7d
CL
1185 struct array_cache *ac;
1186 unsigned long flags;
1187
1188 for_each_online_node(i) {
4484ebf1 1189 ac = alien[i];
e498be7d
CL
1190 if (ac) {
1191 spin_lock_irqsave(&ac->lock, flags);
1192 __drain_alien_cache(cachep, ac, i);
1193 spin_unlock_irqrestore(&ac->lock, flags);
1194 }
1195 }
1196}
729bd0b7 1197
873623df 1198static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1199{
1200 struct slab *slabp = virt_to_slab(objp);
1201 int nodeid = slabp->nodeid;
1202 struct kmem_list3 *l3;
1203 struct array_cache *alien = NULL;
1ca4cb24
PE
1204 int node;
1205
7d6e6d09 1206 node = numa_mem_id();
729bd0b7
PE
1207
1208 /*
1209 * Make sure we are not freeing a object from another node to the array
1210 * cache on this cpu.
1211 */
62918a03 1212 if (likely(slabp->nodeid == node))
729bd0b7
PE
1213 return 0;
1214
1ca4cb24 1215 l3 = cachep->nodelists[node];
729bd0b7
PE
1216 STATS_INC_NODEFREES(cachep);
1217 if (l3->alien && l3->alien[nodeid]) {
1218 alien = l3->alien[nodeid];
873623df 1219 spin_lock(&alien->lock);
729bd0b7
PE
1220 if (unlikely(alien->avail == alien->limit)) {
1221 STATS_INC_ACOVERFLOW(cachep);
1222 __drain_alien_cache(cachep, alien, nodeid);
1223 }
072bb0aa 1224 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1225 spin_unlock(&alien->lock);
1226 } else {
1227 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1228 free_block(cachep, &objp, 1, nodeid);
1229 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1230 }
1231 return 1;
1232}
e498be7d
CL
1233#endif
1234
8f9f8d9e
DR
1235/*
1236 * Allocates and initializes nodelists for a node on each slab cache, used for
1237 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1238 * will be allocated off-node since memory is not yet online for the new node.
1239 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1240 * already in use.
1241 *
18004c5d 1242 * Must hold slab_mutex.
8f9f8d9e
DR
1243 */
1244static int init_cache_nodelists_node(int node)
1245{
1246 struct kmem_cache *cachep;
1247 struct kmem_list3 *l3;
1248 const int memsize = sizeof(struct kmem_list3);
1249
18004c5d 1250 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1251 /*
1252 * Set up the size64 kmemlist for cpu before we can
1253 * begin anything. Make sure some other cpu on this
1254 * node has not already allocated this
1255 */
1256 if (!cachep->nodelists[node]) {
1257 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1258 if (!l3)
1259 return -ENOMEM;
1260 kmem_list3_init(l3);
1261 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1262 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1263
1264 /*
1265 * The l3s don't come and go as CPUs come and
18004c5d 1266 * go. slab_mutex is sufficient
8f9f8d9e
DR
1267 * protection here.
1268 */
1269 cachep->nodelists[node] = l3;
1270 }
1271
1272 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1273 cachep->nodelists[node]->free_limit =
1274 (1 + nr_cpus_node(node)) *
1275 cachep->batchcount + cachep->num;
1276 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1277 }
1278 return 0;
1279}
1280
fbf1e473
AM
1281static void __cpuinit cpuup_canceled(long cpu)
1282{
1283 struct kmem_cache *cachep;
1284 struct kmem_list3 *l3 = NULL;
7d6e6d09 1285 int node = cpu_to_mem(cpu);
a70f7302 1286 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1287
18004c5d 1288 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1289 struct array_cache *nc;
1290 struct array_cache *shared;
1291 struct array_cache **alien;
fbf1e473 1292
fbf1e473
AM
1293 /* cpu is dead; no one can alloc from it. */
1294 nc = cachep->array[cpu];
1295 cachep->array[cpu] = NULL;
1296 l3 = cachep->nodelists[node];
1297
1298 if (!l3)
1299 goto free_array_cache;
1300
1301 spin_lock_irq(&l3->list_lock);
1302
1303 /* Free limit for this kmem_list3 */
1304 l3->free_limit -= cachep->batchcount;
1305 if (nc)
1306 free_block(cachep, nc->entry, nc->avail, node);
1307
58463c1f 1308 if (!cpumask_empty(mask)) {
fbf1e473
AM
1309 spin_unlock_irq(&l3->list_lock);
1310 goto free_array_cache;
1311 }
1312
1313 shared = l3->shared;
1314 if (shared) {
1315 free_block(cachep, shared->entry,
1316 shared->avail, node);
1317 l3->shared = NULL;
1318 }
1319
1320 alien = l3->alien;
1321 l3->alien = NULL;
1322
1323 spin_unlock_irq(&l3->list_lock);
1324
1325 kfree(shared);
1326 if (alien) {
1327 drain_alien_cache(cachep, alien);
1328 free_alien_cache(alien);
1329 }
1330free_array_cache:
1331 kfree(nc);
1332 }
1333 /*
1334 * In the previous loop, all the objects were freed to
1335 * the respective cache's slabs, now we can go ahead and
1336 * shrink each nodelist to its limit.
1337 */
18004c5d 1338 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1339 l3 = cachep->nodelists[node];
1340 if (!l3)
1341 continue;
1342 drain_freelist(cachep, l3, l3->free_objects);
1343 }
1344}
1345
1346static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1347{
343e0d7a 1348 struct kmem_cache *cachep;
e498be7d 1349 struct kmem_list3 *l3 = NULL;
7d6e6d09 1350 int node = cpu_to_mem(cpu);
8f9f8d9e 1351 int err;
1da177e4 1352
fbf1e473
AM
1353 /*
1354 * We need to do this right in the beginning since
1355 * alloc_arraycache's are going to use this list.
1356 * kmalloc_node allows us to add the slab to the right
1357 * kmem_list3 and not this cpu's kmem_list3
1358 */
8f9f8d9e
DR
1359 err = init_cache_nodelists_node(node);
1360 if (err < 0)
1361 goto bad;
fbf1e473
AM
1362
1363 /*
1364 * Now we can go ahead with allocating the shared arrays and
1365 * array caches
1366 */
18004c5d 1367 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1368 struct array_cache *nc;
1369 struct array_cache *shared = NULL;
1370 struct array_cache **alien = NULL;
1371
1372 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1373 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1374 if (!nc)
1375 goto bad;
1376 if (cachep->shared) {
1377 shared = alloc_arraycache(node,
1378 cachep->shared * cachep->batchcount,
83b519e8 1379 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1380 if (!shared) {
1381 kfree(nc);
1da177e4 1382 goto bad;
12d00f6a 1383 }
fbf1e473
AM
1384 }
1385 if (use_alien_caches) {
83b519e8 1386 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1387 if (!alien) {
1388 kfree(shared);
1389 kfree(nc);
fbf1e473 1390 goto bad;
12d00f6a 1391 }
fbf1e473
AM
1392 }
1393 cachep->array[cpu] = nc;
1394 l3 = cachep->nodelists[node];
1395 BUG_ON(!l3);
1396
1397 spin_lock_irq(&l3->list_lock);
1398 if (!l3->shared) {
1399 /*
1400 * We are serialised from CPU_DEAD or
1401 * CPU_UP_CANCELLED by the cpucontrol lock
1402 */
1403 l3->shared = shared;
1404 shared = NULL;
1405 }
4484ebf1 1406#ifdef CONFIG_NUMA
fbf1e473
AM
1407 if (!l3->alien) {
1408 l3->alien = alien;
1409 alien = NULL;
1da177e4 1410 }
fbf1e473
AM
1411#endif
1412 spin_unlock_irq(&l3->list_lock);
1413 kfree(shared);
1414 free_alien_cache(alien);
83835b3d
PZ
1415 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1416 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1417 else if (!OFF_SLAB(cachep) &&
1418 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1419 on_slab_lock_classes_node(cachep, node);
fbf1e473 1420 }
ce79ddc8
PE
1421 init_node_lock_keys(node);
1422
fbf1e473
AM
1423 return 0;
1424bad:
12d00f6a 1425 cpuup_canceled(cpu);
fbf1e473
AM
1426 return -ENOMEM;
1427}
1428
1429static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1430 unsigned long action, void *hcpu)
1431{
1432 long cpu = (long)hcpu;
1433 int err = 0;
1434
1435 switch (action) {
fbf1e473
AM
1436 case CPU_UP_PREPARE:
1437 case CPU_UP_PREPARE_FROZEN:
18004c5d 1438 mutex_lock(&slab_mutex);
fbf1e473 1439 err = cpuup_prepare(cpu);
18004c5d 1440 mutex_unlock(&slab_mutex);
1da177e4
LT
1441 break;
1442 case CPU_ONLINE:
8bb78442 1443 case CPU_ONLINE_FROZEN:
1da177e4
LT
1444 start_cpu_timer(cpu);
1445 break;
1446#ifdef CONFIG_HOTPLUG_CPU
5830c590 1447 case CPU_DOWN_PREPARE:
8bb78442 1448 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1449 /*
18004c5d 1450 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1451 * held so that if cache_reap() is invoked it cannot do
1452 * anything expensive but will only modify reap_work
1453 * and reschedule the timer.
1454 */
afe2c511 1455 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1456 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1457 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1458 break;
1459 case CPU_DOWN_FAILED:
8bb78442 1460 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1461 start_cpu_timer(cpu);
1462 break;
1da177e4 1463 case CPU_DEAD:
8bb78442 1464 case CPU_DEAD_FROZEN:
4484ebf1
RT
1465 /*
1466 * Even if all the cpus of a node are down, we don't free the
1467 * kmem_list3 of any cache. This to avoid a race between
1468 * cpu_down, and a kmalloc allocation from another cpu for
1469 * memory from the node of the cpu going down. The list3
1470 * structure is usually allocated from kmem_cache_create() and
1471 * gets destroyed at kmem_cache_destroy().
1472 */
183ff22b 1473 /* fall through */
8f5be20b 1474#endif
1da177e4 1475 case CPU_UP_CANCELED:
8bb78442 1476 case CPU_UP_CANCELED_FROZEN:
18004c5d 1477 mutex_lock(&slab_mutex);
fbf1e473 1478 cpuup_canceled(cpu);
18004c5d 1479 mutex_unlock(&slab_mutex);
1da177e4 1480 break;
1da177e4 1481 }
eac40680 1482 return notifier_from_errno(err);
1da177e4
LT
1483}
1484
74b85f37
CS
1485static struct notifier_block __cpuinitdata cpucache_notifier = {
1486 &cpuup_callback, NULL, 0
1487};
1da177e4 1488
8f9f8d9e
DR
1489#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1490/*
1491 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1492 * Returns -EBUSY if all objects cannot be drained so that the node is not
1493 * removed.
1494 *
18004c5d 1495 * Must hold slab_mutex.
8f9f8d9e
DR
1496 */
1497static int __meminit drain_cache_nodelists_node(int node)
1498{
1499 struct kmem_cache *cachep;
1500 int ret = 0;
1501
18004c5d 1502 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1503 struct kmem_list3 *l3;
1504
1505 l3 = cachep->nodelists[node];
1506 if (!l3)
1507 continue;
1508
1509 drain_freelist(cachep, l3, l3->free_objects);
1510
1511 if (!list_empty(&l3->slabs_full) ||
1512 !list_empty(&l3->slabs_partial)) {
1513 ret = -EBUSY;
1514 break;
1515 }
1516 }
1517 return ret;
1518}
1519
1520static int __meminit slab_memory_callback(struct notifier_block *self,
1521 unsigned long action, void *arg)
1522{
1523 struct memory_notify *mnb = arg;
1524 int ret = 0;
1525 int nid;
1526
1527 nid = mnb->status_change_nid;
1528 if (nid < 0)
1529 goto out;
1530
1531 switch (action) {
1532 case MEM_GOING_ONLINE:
18004c5d 1533 mutex_lock(&slab_mutex);
8f9f8d9e 1534 ret = init_cache_nodelists_node(nid);
18004c5d 1535 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1536 break;
1537 case MEM_GOING_OFFLINE:
18004c5d 1538 mutex_lock(&slab_mutex);
8f9f8d9e 1539 ret = drain_cache_nodelists_node(nid);
18004c5d 1540 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1541 break;
1542 case MEM_ONLINE:
1543 case MEM_OFFLINE:
1544 case MEM_CANCEL_ONLINE:
1545 case MEM_CANCEL_OFFLINE:
1546 break;
1547 }
1548out:
5fda1bd5 1549 return notifier_from_errno(ret);
8f9f8d9e
DR
1550}
1551#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1552
e498be7d
CL
1553/*
1554 * swap the static kmem_list3 with kmalloced memory
1555 */
8f9f8d9e
DR
1556static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1557 int nodeid)
e498be7d
CL
1558{
1559 struct kmem_list3 *ptr;
1560
83b519e8 1561 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1562 BUG_ON(!ptr);
1563
e498be7d 1564 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1565 /*
1566 * Do not assume that spinlocks can be initialized via memcpy:
1567 */
1568 spin_lock_init(&ptr->list_lock);
1569
e498be7d
CL
1570 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1571 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1572}
1573
556a169d
PE
1574/*
1575 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1576 * size of kmem_list3.
1577 */
1578static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1579{
1580 int node;
1581
1582 for_each_online_node(node) {
1583 cachep->nodelists[node] = &initkmem_list3[index + node];
1584 cachep->nodelists[node]->next_reap = jiffies +
1585 REAPTIMEOUT_LIST3 +
1586 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1587 }
1588}
1589
3c583465
CL
1590/*
1591 * The memory after the last cpu cache pointer is used for the
1592 * the nodelists pointer.
1593 */
1594static void setup_nodelists_pointer(struct kmem_cache *cachep)
1595{
1596 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1597}
1598
a737b3e2
AM
1599/*
1600 * Initialisation. Called after the page allocator have been initialised and
1601 * before smp_init().
1da177e4
LT
1602 */
1603void __init kmem_cache_init(void)
1604{
1da177e4
LT
1605 struct cache_sizes *sizes;
1606 struct cache_names *names;
e498be7d
CL
1607 int i;
1608
9b030cb8 1609 kmem_cache = &kmem_cache_boot;
3c583465 1610 setup_nodelists_pointer(kmem_cache);
9b030cb8 1611
b6e68bc1 1612 if (num_possible_nodes() == 1)
62918a03
SS
1613 use_alien_caches = 0;
1614
3c583465 1615 for (i = 0; i < NUM_INIT_LISTS; i++)
e498be7d 1616 kmem_list3_init(&initkmem_list3[i]);
3c583465 1617
9b030cb8 1618 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1619
1620 /*
1621 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1622 * page orders on machines with more than 32MB of memory if
1623 * not overridden on the command line.
1da177e4 1624 */
3df1cccd 1625 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1626 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1627
1da177e4
LT
1628 /* Bootstrap is tricky, because several objects are allocated
1629 * from caches that do not exist yet:
9b030cb8
CL
1630 * 1) initialize the kmem_cache cache: it contains the struct
1631 * kmem_cache structures of all caches, except kmem_cache itself:
1632 * kmem_cache is statically allocated.
e498be7d
CL
1633 * Initially an __init data area is used for the head array and the
1634 * kmem_list3 structures, it's replaced with a kmalloc allocated
1635 * array at the end of the bootstrap.
1da177e4 1636 * 2) Create the first kmalloc cache.
343e0d7a 1637 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1638 * An __init data area is used for the head array.
1639 * 3) Create the remaining kmalloc caches, with minimally sized
1640 * head arrays.
9b030cb8 1641 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1642 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1643 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1644 * the other cache's with kmalloc allocated memory.
1645 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1646 */
1647
9b030cb8 1648 /* 1) create the kmem_cache */
1da177e4 1649
8da3430d 1650 /*
b56efcf0 1651 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1652 */
2f9baa9f
CL
1653 create_boot_cache(kmem_cache, "kmem_cache",
1654 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1655 nr_node_ids * sizeof(struct kmem_list3 *),
1656 SLAB_HWCACHE_ALIGN);
1657 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1658
1659 /* 2+3) create the kmalloc caches */
1660 sizes = malloc_sizes;
1661 names = cache_names;
1662
a737b3e2
AM
1663 /*
1664 * Initialize the caches that provide memory for the array cache and the
1665 * kmem_list3 structures first. Without this, further allocations will
1666 * bug.
e498be7d
CL
1667 */
1668
45530c44
CL
1669 sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
1670 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);
1671
1672 if (INDEX_AC != INDEX_L3)
1673 sizes[INDEX_L3].cs_cachep =
1674 create_kmalloc_cache(names[INDEX_L3].name,
1675 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
e498be7d 1676
e0a42726
IM
1677 slab_early_init = 0;
1678
1da177e4 1679 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1680 /*
1681 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1682 * This should be particularly beneficial on SMP boxes, as it
1683 * eliminates "false sharing".
1684 * Note for systems short on memory removing the alignment will
e498be7d
CL
1685 * allow tighter packing of the smaller caches.
1686 */
45530c44
CL
1687 if (!sizes->cs_cachep)
1688 sizes->cs_cachep = create_kmalloc_cache(names->name,
1689 sizes->cs_size, ARCH_KMALLOC_FLAGS);
1690
4b51d669 1691#ifdef CONFIG_ZONE_DMA
45530c44
CL
1692 sizes->cs_dmacachep = create_kmalloc_cache(
1693 names->name_dma, sizes->cs_size,
1694 SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
4b51d669 1695#endif
1da177e4
LT
1696 sizes++;
1697 names++;
1698 }
1699 /* 4) Replace the bootstrap head arrays */
1700 {
2b2d5493 1701 struct array_cache *ptr;
e498be7d 1702
83b519e8 1703 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1704
9b030cb8 1705 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1706 sizeof(struct arraycache_init));
2b2d5493
IM
1707 /*
1708 * Do not assume that spinlocks can be initialized via memcpy:
1709 */
1710 spin_lock_init(&ptr->lock);
1711
9b030cb8 1712 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1713
83b519e8 1714 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1715
9a2dba4b 1716 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1717 != &initarray_generic.cache);
9a2dba4b 1718 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1719 sizeof(struct arraycache_init));
2b2d5493
IM
1720 /*
1721 * Do not assume that spinlocks can be initialized via memcpy:
1722 */
1723 spin_lock_init(&ptr->lock);
1724
e498be7d 1725 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1726 ptr;
1da177e4 1727 }
e498be7d
CL
1728 /* 5) Replace the bootstrap kmem_list3's */
1729 {
1ca4cb24
PE
1730 int nid;
1731
9c09a95c 1732 for_each_online_node(nid) {
9b030cb8 1733 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1734
e498be7d 1735 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1736 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1737
1738 if (INDEX_AC != INDEX_L3) {
1739 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1740 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1741 }
1742 }
1743 }
1da177e4 1744
97d06609 1745 slab_state = UP;
8429db5c
PE
1746}
1747
1748void __init kmem_cache_init_late(void)
1749{
1750 struct kmem_cache *cachep;
1751
97d06609 1752 slab_state = UP;
52cef189 1753
8429db5c 1754 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1755 mutex_lock(&slab_mutex);
1756 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1757 if (enable_cpucache(cachep, GFP_NOWAIT))
1758 BUG();
18004c5d 1759 mutex_unlock(&slab_mutex);
056c6241 1760
947ca185
MW
1761 /* Annotate slab for lockdep -- annotate the malloc caches */
1762 init_lock_keys();
1763
97d06609
CL
1764 /* Done! */
1765 slab_state = FULL;
1766
a737b3e2
AM
1767 /*
1768 * Register a cpu startup notifier callback that initializes
1769 * cpu_cache_get for all new cpus
1da177e4
LT
1770 */
1771 register_cpu_notifier(&cpucache_notifier);
1da177e4 1772
8f9f8d9e
DR
1773#ifdef CONFIG_NUMA
1774 /*
1775 * Register a memory hotplug callback that initializes and frees
1776 * nodelists.
1777 */
1778 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1779#endif
1780
a737b3e2
AM
1781 /*
1782 * The reap timers are started later, with a module init call: That part
1783 * of the kernel is not yet operational.
1da177e4
LT
1784 */
1785}
1786
1787static int __init cpucache_init(void)
1788{
1789 int cpu;
1790
a737b3e2
AM
1791 /*
1792 * Register the timers that return unneeded pages to the page allocator
1da177e4 1793 */
e498be7d 1794 for_each_online_cpu(cpu)
a737b3e2 1795 start_cpu_timer(cpu);
a164f896
GC
1796
1797 /* Done! */
97d06609 1798 slab_state = FULL;
1da177e4
LT
1799 return 0;
1800}
1da177e4
LT
1801__initcall(cpucache_init);
1802
8bdec192
RA
1803static noinline void
1804slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1805{
1806 struct kmem_list3 *l3;
1807 struct slab *slabp;
1808 unsigned long flags;
1809 int node;
1810
1811 printk(KERN_WARNING
1812 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1813 nodeid, gfpflags);
1814 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1815 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1816
1817 for_each_online_node(node) {
1818 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1819 unsigned long active_slabs = 0, num_slabs = 0;
1820
1821 l3 = cachep->nodelists[node];
1822 if (!l3)
1823 continue;
1824
1825 spin_lock_irqsave(&l3->list_lock, flags);
1826 list_for_each_entry(slabp, &l3->slabs_full, list) {
1827 active_objs += cachep->num;
1828 active_slabs++;
1829 }
1830 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1831 active_objs += slabp->inuse;
1832 active_slabs++;
1833 }
1834 list_for_each_entry(slabp, &l3->slabs_free, list)
1835 num_slabs++;
1836
1837 free_objects += l3->free_objects;
1838 spin_unlock_irqrestore(&l3->list_lock, flags);
1839
1840 num_slabs += active_slabs;
1841 num_objs = num_slabs * cachep->num;
1842 printk(KERN_WARNING
1843 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1844 node, active_slabs, num_slabs, active_objs, num_objs,
1845 free_objects);
1846 }
1847}
1848
1da177e4
LT
1849/*
1850 * Interface to system's page allocator. No need to hold the cache-lock.
1851 *
1852 * If we requested dmaable memory, we will get it. Even if we
1853 * did not request dmaable memory, we might get it, but that
1854 * would be relatively rare and ignorable.
1855 */
343e0d7a 1856static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1857{
1858 struct page *page;
e1b6aa6f 1859 int nr_pages;
1da177e4
LT
1860 int i;
1861
d6fef9da 1862#ifndef CONFIG_MMU
e1b6aa6f
CH
1863 /*
1864 * Nommu uses slab's for process anonymous memory allocations, and thus
1865 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1866 */
e1b6aa6f 1867 flags |= __GFP_COMP;
d6fef9da 1868#endif
765c4507 1869
a618e89f 1870 flags |= cachep->allocflags;
e12ba74d
MG
1871 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1872 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1873
517d0869 1874 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1875 if (!page) {
1876 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1877 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1878 return NULL;
8bdec192 1879 }
1da177e4 1880
b37f1dd0 1881 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1882 if (unlikely(page->pfmemalloc))
1883 pfmemalloc_active = true;
1884
e1b6aa6f 1885 nr_pages = (1 << cachep->gfporder);
1da177e4 1886 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1887 add_zone_page_state(page_zone(page),
1888 NR_SLAB_RECLAIMABLE, nr_pages);
1889 else
1890 add_zone_page_state(page_zone(page),
1891 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1892 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1893 __SetPageSlab(page + i);
c175eea4 1894
072bb0aa
MG
1895 if (page->pfmemalloc)
1896 SetPageSlabPfmemalloc(page + i);
1897 }
1f458cbf 1898 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1899
b1eeab67
VN
1900 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1901 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1902
1903 if (cachep->ctor)
1904 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1905 else
1906 kmemcheck_mark_unallocated_pages(page, nr_pages);
1907 }
c175eea4 1908
e1b6aa6f 1909 return page_address(page);
1da177e4
LT
1910}
1911
1912/*
1913 * Interface to system's page release.
1914 */
343e0d7a 1915static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1916{
b28a02de 1917 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1918 struct page *page = virt_to_page(addr);
1919 const unsigned long nr_freed = i;
1920
b1eeab67 1921 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1922
972d1a7b
CL
1923 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1924 sub_zone_page_state(page_zone(page),
1925 NR_SLAB_RECLAIMABLE, nr_freed);
1926 else
1927 sub_zone_page_state(page_zone(page),
1928 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1929 while (i--) {
f205b2fe 1930 BUG_ON(!PageSlab(page));
072bb0aa 1931 __ClearPageSlabPfmemalloc(page);
f205b2fe 1932 __ClearPageSlab(page);
1da177e4
LT
1933 page++;
1934 }
1f458cbf
GC
1935
1936 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1937 if (current->reclaim_state)
1938 current->reclaim_state->reclaimed_slab += nr_freed;
d79923fa 1939 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1940}
1941
1942static void kmem_rcu_free(struct rcu_head *head)
1943{
b28a02de 1944 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1945 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1946
1947 kmem_freepages(cachep, slab_rcu->addr);
1948 if (OFF_SLAB(cachep))
1949 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1950}
1951
1952#if DEBUG
1953
1954#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1955static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1956 unsigned long caller)
1da177e4 1957{
8c138bc0 1958 int size = cachep->object_size;
1da177e4 1959
3dafccf2 1960 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1961
b28a02de 1962 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1963 return;
1964
b28a02de
PE
1965 *addr++ = 0x12345678;
1966 *addr++ = caller;
1967 *addr++ = smp_processor_id();
1968 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1969 {
1970 unsigned long *sptr = &caller;
1971 unsigned long svalue;
1972
1973 while (!kstack_end(sptr)) {
1974 svalue = *sptr++;
1975 if (kernel_text_address(svalue)) {
b28a02de 1976 *addr++ = svalue;
1da177e4
LT
1977 size -= sizeof(unsigned long);
1978 if (size <= sizeof(unsigned long))
1979 break;
1980 }
1981 }
1982
1983 }
b28a02de 1984 *addr++ = 0x87654321;
1da177e4
LT
1985}
1986#endif
1987
343e0d7a 1988static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1989{
8c138bc0 1990 int size = cachep->object_size;
3dafccf2 1991 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1992
1993 memset(addr, val, size);
b28a02de 1994 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1995}
1996
1997static void dump_line(char *data, int offset, int limit)
1998{
1999 int i;
aa83aa40
DJ
2000 unsigned char error = 0;
2001 int bad_count = 0;
2002
fdde6abb 2003 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2004 for (i = 0; i < limit; i++) {
2005 if (data[offset + i] != POISON_FREE) {
2006 error = data[offset + i];
2007 bad_count++;
2008 }
aa83aa40 2009 }
fdde6abb
SAS
2010 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2011 &data[offset], limit, 1);
aa83aa40
DJ
2012
2013 if (bad_count == 1) {
2014 error ^= POISON_FREE;
2015 if (!(error & (error - 1))) {
2016 printk(KERN_ERR "Single bit error detected. Probably "
2017 "bad RAM.\n");
2018#ifdef CONFIG_X86
2019 printk(KERN_ERR "Run memtest86+ or a similar memory "
2020 "test tool.\n");
2021#else
2022 printk(KERN_ERR "Run a memory test tool.\n");
2023#endif
2024 }
2025 }
1da177e4
LT
2026}
2027#endif
2028
2029#if DEBUG
2030
343e0d7a 2031static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2032{
2033 int i, size;
2034 char *realobj;
2035
2036 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2037 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2038 *dbg_redzone1(cachep, objp),
2039 *dbg_redzone2(cachep, objp));
1da177e4
LT
2040 }
2041
2042 if (cachep->flags & SLAB_STORE_USER) {
2043 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2044 *dbg_userword(cachep, objp));
1da177e4 2045 print_symbol("(%s)",
a737b3e2 2046 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2047 printk("\n");
2048 }
3dafccf2 2049 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2050 size = cachep->object_size;
b28a02de 2051 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2052 int limit;
2053 limit = 16;
b28a02de
PE
2054 if (i + limit > size)
2055 limit = size - i;
1da177e4
LT
2056 dump_line(realobj, i, limit);
2057 }
2058}
2059
343e0d7a 2060static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2061{
2062 char *realobj;
2063 int size, i;
2064 int lines = 0;
2065
3dafccf2 2066 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2067 size = cachep->object_size;
1da177e4 2068
b28a02de 2069 for (i = 0; i < size; i++) {
1da177e4 2070 char exp = POISON_FREE;
b28a02de 2071 if (i == size - 1)
1da177e4
LT
2072 exp = POISON_END;
2073 if (realobj[i] != exp) {
2074 int limit;
2075 /* Mismatch ! */
2076 /* Print header */
2077 if (lines == 0) {
b28a02de 2078 printk(KERN_ERR
face37f5
DJ
2079 "Slab corruption (%s): %s start=%p, len=%d\n",
2080 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2081 print_objinfo(cachep, objp, 0);
2082 }
2083 /* Hexdump the affected line */
b28a02de 2084 i = (i / 16) * 16;
1da177e4 2085 limit = 16;
b28a02de
PE
2086 if (i + limit > size)
2087 limit = size - i;
1da177e4
LT
2088 dump_line(realobj, i, limit);
2089 i += 16;
2090 lines++;
2091 /* Limit to 5 lines */
2092 if (lines > 5)
2093 break;
2094 }
2095 }
2096 if (lines != 0) {
2097 /* Print some data about the neighboring objects, if they
2098 * exist:
2099 */
6ed5eb22 2100 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2101 unsigned int objnr;
1da177e4 2102
8fea4e96 2103 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2104 if (objnr) {
8fea4e96 2105 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2106 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2107 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2108 realobj, size);
1da177e4
LT
2109 print_objinfo(cachep, objp, 2);
2110 }
b28a02de 2111 if (objnr + 1 < cachep->num) {
8fea4e96 2112 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2113 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2114 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2115 realobj, size);
1da177e4
LT
2116 print_objinfo(cachep, objp, 2);
2117 }
2118 }
2119}
2120#endif
2121
12dd36fa 2122#if DEBUG
e79aec29 2123static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2124{
1da177e4
LT
2125 int i;
2126 for (i = 0; i < cachep->num; i++) {
8fea4e96 2127 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2128
2129 if (cachep->flags & SLAB_POISON) {
2130#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2131 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2132 OFF_SLAB(cachep))
b28a02de 2133 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2134 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2135 else
2136 check_poison_obj(cachep, objp);
2137#else
2138 check_poison_obj(cachep, objp);
2139#endif
2140 }
2141 if (cachep->flags & SLAB_RED_ZONE) {
2142 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2143 slab_error(cachep, "start of a freed object "
b28a02de 2144 "was overwritten");
1da177e4
LT
2145 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2146 slab_error(cachep, "end of a freed object "
b28a02de 2147 "was overwritten");
1da177e4 2148 }
1da177e4 2149 }
12dd36fa 2150}
1da177e4 2151#else
e79aec29 2152static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2153{
12dd36fa 2154}
1da177e4
LT
2155#endif
2156
911851e6
RD
2157/**
2158 * slab_destroy - destroy and release all objects in a slab
2159 * @cachep: cache pointer being destroyed
2160 * @slabp: slab pointer being destroyed
2161 *
12dd36fa 2162 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2163 * Before calling the slab must have been unlinked from the cache. The
2164 * cache-lock is not held/needed.
12dd36fa 2165 */
343e0d7a 2166static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2167{
2168 void *addr = slabp->s_mem - slabp->colouroff;
2169
e79aec29 2170 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2171 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2172 struct slab_rcu *slab_rcu;
2173
b28a02de 2174 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2175 slab_rcu->cachep = cachep;
2176 slab_rcu->addr = addr;
2177 call_rcu(&slab_rcu->head, kmem_rcu_free);
2178 } else {
2179 kmem_freepages(cachep, addr);
873623df
IM
2180 if (OFF_SLAB(cachep))
2181 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2182 }
2183}
2184
4d268eba 2185/**
a70773dd
RD
2186 * calculate_slab_order - calculate size (page order) of slabs
2187 * @cachep: pointer to the cache that is being created
2188 * @size: size of objects to be created in this cache.
2189 * @align: required alignment for the objects.
2190 * @flags: slab allocation flags
2191 *
2192 * Also calculates the number of objects per slab.
4d268eba
PE
2193 *
2194 * This could be made much more intelligent. For now, try to avoid using
2195 * high order pages for slabs. When the gfp() functions are more friendly
2196 * towards high-order requests, this should be changed.
2197 */
a737b3e2 2198static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2199 size_t size, size_t align, unsigned long flags)
4d268eba 2200{
b1ab41c4 2201 unsigned long offslab_limit;
4d268eba 2202 size_t left_over = 0;
9888e6fa 2203 int gfporder;
4d268eba 2204
0aa817f0 2205 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2206 unsigned int num;
2207 size_t remainder;
2208
9888e6fa 2209 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2210 if (!num)
2211 continue;
9888e6fa 2212
b1ab41c4
IM
2213 if (flags & CFLGS_OFF_SLAB) {
2214 /*
2215 * Max number of objs-per-slab for caches which
2216 * use off-slab slabs. Needed to avoid a possible
2217 * looping condition in cache_grow().
2218 */
2219 offslab_limit = size - sizeof(struct slab);
2220 offslab_limit /= sizeof(kmem_bufctl_t);
2221
2222 if (num > offslab_limit)
2223 break;
2224 }
4d268eba 2225
9888e6fa 2226 /* Found something acceptable - save it away */
4d268eba 2227 cachep->num = num;
9888e6fa 2228 cachep->gfporder = gfporder;
4d268eba
PE
2229 left_over = remainder;
2230
f78bb8ad
LT
2231 /*
2232 * A VFS-reclaimable slab tends to have most allocations
2233 * as GFP_NOFS and we really don't want to have to be allocating
2234 * higher-order pages when we are unable to shrink dcache.
2235 */
2236 if (flags & SLAB_RECLAIM_ACCOUNT)
2237 break;
2238
4d268eba
PE
2239 /*
2240 * Large number of objects is good, but very large slabs are
2241 * currently bad for the gfp()s.
2242 */
543585cc 2243 if (gfporder >= slab_max_order)
4d268eba
PE
2244 break;
2245
9888e6fa
LT
2246 /*
2247 * Acceptable internal fragmentation?
2248 */
a737b3e2 2249 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2250 break;
2251 }
2252 return left_over;
2253}
2254
83b519e8 2255static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2256{
97d06609 2257 if (slab_state >= FULL)
83b519e8 2258 return enable_cpucache(cachep, gfp);
2ed3a4ef 2259
97d06609 2260 if (slab_state == DOWN) {
f30cf7d1 2261 /*
2f9baa9f
CL
2262 * Note: Creation of first cache (kmem_cache).
2263 * The setup_list3s is taken care
2264 * of by the caller of __kmem_cache_create
2265 */
2266 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2267 slab_state = PARTIAL;
2268 } else if (slab_state == PARTIAL) {
2269 /*
2270 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2271 * that's used by kmalloc(24), otherwise the creation of
2272 * further caches will BUG().
2273 */
2274 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2275
2276 /*
2277 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2f9baa9f 2278 * the second cache, then we need to set up all its list3s,
f30cf7d1
PE
2279 * otherwise the creation of further caches will BUG().
2280 */
2281 set_up_list3s(cachep, SIZE_AC);
2282 if (INDEX_AC == INDEX_L3)
97d06609 2283 slab_state = PARTIAL_L3;
f30cf7d1 2284 else
97d06609 2285 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2286 } else {
2f9baa9f 2287 /* Remaining boot caches */
f30cf7d1 2288 cachep->array[smp_processor_id()] =
83b519e8 2289 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2290
97d06609 2291 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2292 set_up_list3s(cachep, SIZE_L3);
97d06609 2293 slab_state = PARTIAL_L3;
f30cf7d1
PE
2294 } else {
2295 int node;
556a169d 2296 for_each_online_node(node) {
f30cf7d1
PE
2297 cachep->nodelists[node] =
2298 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2299 gfp, node);
f30cf7d1
PE
2300 BUG_ON(!cachep->nodelists[node]);
2301 kmem_list3_init(cachep->nodelists[node]);
2302 }
2303 }
2304 }
7d6e6d09 2305 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2306 jiffies + REAPTIMEOUT_LIST3 +
2307 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2308
2309 cpu_cache_get(cachep)->avail = 0;
2310 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2311 cpu_cache_get(cachep)->batchcount = 1;
2312 cpu_cache_get(cachep)->touched = 0;
2313 cachep->batchcount = 1;
2314 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2315 return 0;
f30cf7d1
PE
2316}
2317
1da177e4 2318/**
039363f3 2319 * __kmem_cache_create - Create a cache.
a755b76a 2320 * @cachep: cache management descriptor
1da177e4 2321 * @flags: SLAB flags
1da177e4
LT
2322 *
2323 * Returns a ptr to the cache on success, NULL on failure.
2324 * Cannot be called within a int, but can be interrupted.
20c2df83 2325 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2326 *
1da177e4
LT
2327 * The flags are
2328 *
2329 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2330 * to catch references to uninitialised memory.
2331 *
2332 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2333 * for buffer overruns.
2334 *
1da177e4
LT
2335 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2336 * cacheline. This can be beneficial if you're counting cycles as closely
2337 * as davem.
2338 */
278b1bb1 2339int
8a13a4cc 2340__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2341{
2342 size_t left_over, slab_size, ralign;
83b519e8 2343 gfp_t gfp;
278b1bb1 2344 int err;
8a13a4cc 2345 size_t size = cachep->size;
1da177e4 2346
1da177e4 2347#if DEBUG
1da177e4
LT
2348#if FORCED_DEBUG
2349 /*
2350 * Enable redzoning and last user accounting, except for caches with
2351 * large objects, if the increased size would increase the object size
2352 * above the next power of two: caches with object sizes just above a
2353 * power of two have a significant amount of internal fragmentation.
2354 */
87a927c7
DW
2355 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2356 2 * sizeof(unsigned long long)))
b28a02de 2357 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2358 if (!(flags & SLAB_DESTROY_BY_RCU))
2359 flags |= SLAB_POISON;
2360#endif
2361 if (flags & SLAB_DESTROY_BY_RCU)
2362 BUG_ON(flags & SLAB_POISON);
2363#endif
1da177e4 2364
a737b3e2
AM
2365 /*
2366 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2367 * unaligned accesses for some archs when redzoning is used, and makes
2368 * sure any on-slab bufctl's are also correctly aligned.
2369 */
b28a02de
PE
2370 if (size & (BYTES_PER_WORD - 1)) {
2371 size += (BYTES_PER_WORD - 1);
2372 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2373 }
2374
ca5f9703 2375 /*
87a927c7
DW
2376 * Redzoning and user store require word alignment or possibly larger.
2377 * Note this will be overridden by architecture or caller mandated
2378 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2379 */
87a927c7
DW
2380 if (flags & SLAB_STORE_USER)
2381 ralign = BYTES_PER_WORD;
2382
2383 if (flags & SLAB_RED_ZONE) {
2384 ralign = REDZONE_ALIGN;
2385 /* If redzoning, ensure that the second redzone is suitably
2386 * aligned, by adjusting the object size accordingly. */
2387 size += REDZONE_ALIGN - 1;
2388 size &= ~(REDZONE_ALIGN - 1);
2389 }
ca5f9703 2390
a44b56d3 2391 /* 3) caller mandated alignment */
8a13a4cc
CL
2392 if (ralign < cachep->align) {
2393 ralign = cachep->align;
1da177e4 2394 }
3ff84a7f
PE
2395 /* disable debug if necessary */
2396 if (ralign > __alignof__(unsigned long long))
a44b56d3 2397 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2398 /*
ca5f9703 2399 * 4) Store it.
1da177e4 2400 */
8a13a4cc 2401 cachep->align = ralign;
1da177e4 2402
83b519e8
PE
2403 if (slab_is_available())
2404 gfp = GFP_KERNEL;
2405 else
2406 gfp = GFP_NOWAIT;
2407
3c583465 2408 setup_nodelists_pointer(cachep);
1da177e4 2409#if DEBUG
1da177e4 2410
ca5f9703
PE
2411 /*
2412 * Both debugging options require word-alignment which is calculated
2413 * into align above.
2414 */
1da177e4 2415 if (flags & SLAB_RED_ZONE) {
1da177e4 2416 /* add space for red zone words */
3ff84a7f
PE
2417 cachep->obj_offset += sizeof(unsigned long long);
2418 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2419 }
2420 if (flags & SLAB_STORE_USER) {
ca5f9703 2421 /* user store requires one word storage behind the end of
87a927c7
DW
2422 * the real object. But if the second red zone needs to be
2423 * aligned to 64 bits, we must allow that much space.
1da177e4 2424 */
87a927c7
DW
2425 if (flags & SLAB_RED_ZONE)
2426 size += REDZONE_ALIGN;
2427 else
2428 size += BYTES_PER_WORD;
1da177e4
LT
2429 }
2430#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2431 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
608da7e3
TH
2432 && cachep->object_size > cache_line_size()
2433 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2434 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2435 size = PAGE_SIZE;
2436 }
2437#endif
2438#endif
2439
e0a42726
IM
2440 /*
2441 * Determine if the slab management is 'on' or 'off' slab.
2442 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2443 * it too early on. Always use on-slab management when
2444 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2445 */
e7cb55b9
CM
2446 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2447 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2448 /*
2449 * Size is large, assume best to place the slab management obj
2450 * off-slab (should allow better packing of objs).
2451 */
2452 flags |= CFLGS_OFF_SLAB;
2453
8a13a4cc 2454 size = ALIGN(size, cachep->align);
1da177e4 2455
8a13a4cc 2456 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2457
8a13a4cc 2458 if (!cachep->num)
278b1bb1 2459 return -E2BIG;
1da177e4 2460
b28a02de 2461 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2462 + sizeof(struct slab), cachep->align);
1da177e4
LT
2463
2464 /*
2465 * If the slab has been placed off-slab, and we have enough space then
2466 * move it on-slab. This is at the expense of any extra colouring.
2467 */
2468 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2469 flags &= ~CFLGS_OFF_SLAB;
2470 left_over -= slab_size;
2471 }
2472
2473 if (flags & CFLGS_OFF_SLAB) {
2474 /* really off slab. No need for manual alignment */
b28a02de
PE
2475 slab_size =
2476 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2477
2478#ifdef CONFIG_PAGE_POISONING
2479 /* If we're going to use the generic kernel_map_pages()
2480 * poisoning, then it's going to smash the contents of
2481 * the redzone and userword anyhow, so switch them off.
2482 */
2483 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2484 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2485#endif
1da177e4
LT
2486 }
2487
2488 cachep->colour_off = cache_line_size();
2489 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2490 if (cachep->colour_off < cachep->align)
2491 cachep->colour_off = cachep->align;
b28a02de 2492 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2493 cachep->slab_size = slab_size;
2494 cachep->flags = flags;
a618e89f 2495 cachep->allocflags = 0;
4b51d669 2496 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2497 cachep->allocflags |= GFP_DMA;
3b0efdfa 2498 cachep->size = size;
6a2d7a95 2499 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2500
e5ac9c5a 2501 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2502 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2503 /*
2504 * This is a possibility for one of the malloc_sizes caches.
2505 * But since we go off slab only for object size greater than
2506 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2507 * this should not happen at all.
2508 * But leave a BUG_ON for some lucky dude.
2509 */
6cb8f913 2510 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2511 }
1da177e4 2512
278b1bb1
CL
2513 err = setup_cpu_cache(cachep, gfp);
2514 if (err) {
12c3667f 2515 __kmem_cache_shutdown(cachep);
278b1bb1 2516 return err;
2ed3a4ef 2517 }
1da177e4 2518
83835b3d
PZ
2519 if (flags & SLAB_DEBUG_OBJECTS) {
2520 /*
2521 * Would deadlock through slab_destroy()->call_rcu()->
2522 * debug_object_activate()->kmem_cache_alloc().
2523 */
2524 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2525
2526 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2527 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2528 on_slab_lock_classes(cachep);
83835b3d 2529
278b1bb1 2530 return 0;
1da177e4 2531}
1da177e4
LT
2532
2533#if DEBUG
2534static void check_irq_off(void)
2535{
2536 BUG_ON(!irqs_disabled());
2537}
2538
2539static void check_irq_on(void)
2540{
2541 BUG_ON(irqs_disabled());
2542}
2543
343e0d7a 2544static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2545{
2546#ifdef CONFIG_SMP
2547 check_irq_off();
7d6e6d09 2548 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2549#endif
2550}
e498be7d 2551
343e0d7a 2552static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2553{
2554#ifdef CONFIG_SMP
2555 check_irq_off();
2556 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2557#endif
2558}
2559
1da177e4
LT
2560#else
2561#define check_irq_off() do { } while(0)
2562#define check_irq_on() do { } while(0)
2563#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2564#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2565#endif
2566
aab2207c
CL
2567static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2568 struct array_cache *ac,
2569 int force, int node);
2570
1da177e4
LT
2571static void do_drain(void *arg)
2572{
a737b3e2 2573 struct kmem_cache *cachep = arg;
1da177e4 2574 struct array_cache *ac;
7d6e6d09 2575 int node = numa_mem_id();
1da177e4
LT
2576
2577 check_irq_off();
9a2dba4b 2578 ac = cpu_cache_get(cachep);
ff69416e
CL
2579 spin_lock(&cachep->nodelists[node]->list_lock);
2580 free_block(cachep, ac->entry, ac->avail, node);
2581 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2582 ac->avail = 0;
2583}
2584
343e0d7a 2585static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2586{
e498be7d
CL
2587 struct kmem_list3 *l3;
2588 int node;
2589
15c8b6c1 2590 on_each_cpu(do_drain, cachep, 1);
1da177e4 2591 check_irq_on();
b28a02de 2592 for_each_online_node(node) {
e498be7d 2593 l3 = cachep->nodelists[node];
a4523a8b
RD
2594 if (l3 && l3->alien)
2595 drain_alien_cache(cachep, l3->alien);
2596 }
2597
2598 for_each_online_node(node) {
2599 l3 = cachep->nodelists[node];
2600 if (l3)
aab2207c 2601 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2602 }
1da177e4
LT
2603}
2604
ed11d9eb
CL
2605/*
2606 * Remove slabs from the list of free slabs.
2607 * Specify the number of slabs to drain in tofree.
2608 *
2609 * Returns the actual number of slabs released.
2610 */
2611static int drain_freelist(struct kmem_cache *cache,
2612 struct kmem_list3 *l3, int tofree)
1da177e4 2613{
ed11d9eb
CL
2614 struct list_head *p;
2615 int nr_freed;
1da177e4 2616 struct slab *slabp;
1da177e4 2617
ed11d9eb
CL
2618 nr_freed = 0;
2619 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2620
ed11d9eb 2621 spin_lock_irq(&l3->list_lock);
e498be7d 2622 p = l3->slabs_free.prev;
ed11d9eb
CL
2623 if (p == &l3->slabs_free) {
2624 spin_unlock_irq(&l3->list_lock);
2625 goto out;
2626 }
1da177e4 2627
ed11d9eb 2628 slabp = list_entry(p, struct slab, list);
1da177e4 2629#if DEBUG
40094fa6 2630 BUG_ON(slabp->inuse);
1da177e4
LT
2631#endif
2632 list_del(&slabp->list);
ed11d9eb
CL
2633 /*
2634 * Safe to drop the lock. The slab is no longer linked
2635 * to the cache.
2636 */
2637 l3->free_objects -= cache->num;
e498be7d 2638 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2639 slab_destroy(cache, slabp);
2640 nr_freed++;
1da177e4 2641 }
ed11d9eb
CL
2642out:
2643 return nr_freed;
1da177e4
LT
2644}
2645
18004c5d 2646/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2647static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2648{
2649 int ret = 0, i = 0;
2650 struct kmem_list3 *l3;
2651
2652 drain_cpu_caches(cachep);
2653
2654 check_irq_on();
2655 for_each_online_node(i) {
2656 l3 = cachep->nodelists[i];
ed11d9eb
CL
2657 if (!l3)
2658 continue;
2659
2660 drain_freelist(cachep, l3, l3->free_objects);
2661
2662 ret += !list_empty(&l3->slabs_full) ||
2663 !list_empty(&l3->slabs_partial);
e498be7d
CL
2664 }
2665 return (ret ? 1 : 0);
2666}
2667
1da177e4
LT
2668/**
2669 * kmem_cache_shrink - Shrink a cache.
2670 * @cachep: The cache to shrink.
2671 *
2672 * Releases as many slabs as possible for a cache.
2673 * To help debugging, a zero exit status indicates all slabs were released.
2674 */
343e0d7a 2675int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2676{
8f5be20b 2677 int ret;
40094fa6 2678 BUG_ON(!cachep || in_interrupt());
1da177e4 2679
95402b38 2680 get_online_cpus();
18004c5d 2681 mutex_lock(&slab_mutex);
8f5be20b 2682 ret = __cache_shrink(cachep);
18004c5d 2683 mutex_unlock(&slab_mutex);
95402b38 2684 put_online_cpus();
8f5be20b 2685 return ret;
1da177e4
LT
2686}
2687EXPORT_SYMBOL(kmem_cache_shrink);
2688
945cf2b6 2689int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2690{
12c3667f
CL
2691 int i;
2692 struct kmem_list3 *l3;
2693 int rc = __cache_shrink(cachep);
1da177e4 2694
12c3667f
CL
2695 if (rc)
2696 return rc;
1da177e4 2697
12c3667f
CL
2698 for_each_online_cpu(i)
2699 kfree(cachep->array[i]);
1da177e4 2700
12c3667f
CL
2701 /* NUMA: free the list3 structures */
2702 for_each_online_node(i) {
2703 l3 = cachep->nodelists[i];
2704 if (l3) {
2705 kfree(l3->shared);
2706 free_alien_cache(l3->alien);
2707 kfree(l3);
2708 }
2709 }
2710 return 0;
1da177e4 2711}
1da177e4 2712
e5ac9c5a
RT
2713/*
2714 * Get the memory for a slab management obj.
2715 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2716 * always come from malloc_sizes caches. The slab descriptor cannot
2717 * come from the same cache which is getting created because,
2718 * when we are searching for an appropriate cache for these
2719 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2720 * If we are creating a malloc_sizes cache here it would not be visible to
2721 * kmem_find_general_cachep till the initialization is complete.
2722 * Hence we cannot have slabp_cache same as the original cache.
2723 */
343e0d7a 2724static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2725 int colour_off, gfp_t local_flags,
2726 int nodeid)
1da177e4
LT
2727{
2728 struct slab *slabp;
b28a02de 2729
1da177e4
LT
2730 if (OFF_SLAB(cachep)) {
2731 /* Slab management obj is off-slab. */
5b74ada7 2732 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2733 local_flags, nodeid);
d5cff635
CM
2734 /*
2735 * If the first object in the slab is leaked (it's allocated
2736 * but no one has a reference to it), we want to make sure
2737 * kmemleak does not treat the ->s_mem pointer as a reference
2738 * to the object. Otherwise we will not report the leak.
2739 */
c017b4be
CM
2740 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2741 local_flags);
1da177e4
LT
2742 if (!slabp)
2743 return NULL;
2744 } else {
b28a02de 2745 slabp = objp + colour_off;
1da177e4
LT
2746 colour_off += cachep->slab_size;
2747 }
2748 slabp->inuse = 0;
2749 slabp->colouroff = colour_off;
b28a02de 2750 slabp->s_mem = objp + colour_off;
5b74ada7 2751 slabp->nodeid = nodeid;
e51bfd0a 2752 slabp->free = 0;
1da177e4
LT
2753 return slabp;
2754}
2755
2756static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2757{
b28a02de 2758 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2759}
2760
343e0d7a 2761static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2762 struct slab *slabp)
1da177e4
LT
2763{
2764 int i;
2765
2766 for (i = 0; i < cachep->num; i++) {
8fea4e96 2767 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2768#if DEBUG
2769 /* need to poison the objs? */
2770 if (cachep->flags & SLAB_POISON)
2771 poison_obj(cachep, objp, POISON_FREE);
2772 if (cachep->flags & SLAB_STORE_USER)
2773 *dbg_userword(cachep, objp) = NULL;
2774
2775 if (cachep->flags & SLAB_RED_ZONE) {
2776 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2777 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2778 }
2779 /*
a737b3e2
AM
2780 * Constructors are not allowed to allocate memory from the same
2781 * cache which they are a constructor for. Otherwise, deadlock.
2782 * They must also be threaded.
1da177e4
LT
2783 */
2784 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2785 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2786
2787 if (cachep->flags & SLAB_RED_ZONE) {
2788 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2789 slab_error(cachep, "constructor overwrote the"
b28a02de 2790 " end of an object");
1da177e4
LT
2791 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2792 slab_error(cachep, "constructor overwrote the"
b28a02de 2793 " start of an object");
1da177e4 2794 }
3b0efdfa 2795 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2796 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2797 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2798 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2799#else
2800 if (cachep->ctor)
51cc5068 2801 cachep->ctor(objp);
1da177e4 2802#endif
b28a02de 2803 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2804 }
b28a02de 2805 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2806}
2807
343e0d7a 2808static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2809{
4b51d669
CL
2810 if (CONFIG_ZONE_DMA_FLAG) {
2811 if (flags & GFP_DMA)
a618e89f 2812 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2813 else
a618e89f 2814 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2815 }
1da177e4
LT
2816}
2817
a737b3e2
AM
2818static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2819 int nodeid)
78d382d7 2820{
8fea4e96 2821 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2822 kmem_bufctl_t next;
2823
2824 slabp->inuse++;
2825 next = slab_bufctl(slabp)[slabp->free];
2826#if DEBUG
2827 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2828 WARN_ON(slabp->nodeid != nodeid);
2829#endif
2830 slabp->free = next;
2831
2832 return objp;
2833}
2834
a737b3e2
AM
2835static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2836 void *objp, int nodeid)
78d382d7 2837{
8fea4e96 2838 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2839
2840#if DEBUG
2841 /* Verify that the slab belongs to the intended node */
2842 WARN_ON(slabp->nodeid != nodeid);
2843
871751e2 2844 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2845 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2846 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2847 BUG();
2848 }
2849#endif
2850 slab_bufctl(slabp)[objnr] = slabp->free;
2851 slabp->free = objnr;
2852 slabp->inuse--;
2853}
2854
4776874f
PE
2855/*
2856 * Map pages beginning at addr to the given cache and slab. This is required
2857 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2858 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2859 */
2860static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2861 void *addr)
1da177e4 2862{
4776874f 2863 int nr_pages;
1da177e4
LT
2864 struct page *page;
2865
4776874f 2866 page = virt_to_page(addr);
84097518 2867
4776874f 2868 nr_pages = 1;
84097518 2869 if (likely(!PageCompound(page)))
4776874f
PE
2870 nr_pages <<= cache->gfporder;
2871
1da177e4 2872 do {
35026088
CL
2873 page->slab_cache = cache;
2874 page->slab_page = slab;
1da177e4 2875 page++;
4776874f 2876 } while (--nr_pages);
1da177e4
LT
2877}
2878
2879/*
2880 * Grow (by 1) the number of slabs within a cache. This is called by
2881 * kmem_cache_alloc() when there are no active objs left in a cache.
2882 */
3c517a61
CL
2883static int cache_grow(struct kmem_cache *cachep,
2884 gfp_t flags, int nodeid, void *objp)
1da177e4 2885{
b28a02de 2886 struct slab *slabp;
b28a02de
PE
2887 size_t offset;
2888 gfp_t local_flags;
e498be7d 2889 struct kmem_list3 *l3;
1da177e4 2890
a737b3e2
AM
2891 /*
2892 * Be lazy and only check for valid flags here, keeping it out of the
2893 * critical path in kmem_cache_alloc().
1da177e4 2894 */
6cb06229
CL
2895 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2896 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2897
2e1217cf 2898 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2899 check_irq_off();
2e1217cf
RT
2900 l3 = cachep->nodelists[nodeid];
2901 spin_lock(&l3->list_lock);
1da177e4
LT
2902
2903 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2904 offset = l3->colour_next;
2905 l3->colour_next++;
2906 if (l3->colour_next >= cachep->colour)
2907 l3->colour_next = 0;
2908 spin_unlock(&l3->list_lock);
1da177e4 2909
2e1217cf 2910 offset *= cachep->colour_off;
1da177e4
LT
2911
2912 if (local_flags & __GFP_WAIT)
2913 local_irq_enable();
2914
2915 /*
2916 * The test for missing atomic flag is performed here, rather than
2917 * the more obvious place, simply to reduce the critical path length
2918 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2919 * will eventually be caught here (where it matters).
2920 */
2921 kmem_flagcheck(cachep, flags);
2922
a737b3e2
AM
2923 /*
2924 * Get mem for the objs. Attempt to allocate a physical page from
2925 * 'nodeid'.
e498be7d 2926 */
3c517a61 2927 if (!objp)
b8c1c5da 2928 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2929 if (!objp)
1da177e4
LT
2930 goto failed;
2931
2932 /* Get slab management. */
3c517a61 2933 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2934 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2935 if (!slabp)
1da177e4
LT
2936 goto opps1;
2937
4776874f 2938 slab_map_pages(cachep, slabp, objp);
1da177e4 2939
a35afb83 2940 cache_init_objs(cachep, slabp);
1da177e4
LT
2941
2942 if (local_flags & __GFP_WAIT)
2943 local_irq_disable();
2944 check_irq_off();
e498be7d 2945 spin_lock(&l3->list_lock);
1da177e4
LT
2946
2947 /* Make slab active. */
e498be7d 2948 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2949 STATS_INC_GROWN(cachep);
e498be7d
CL
2950 l3->free_objects += cachep->num;
2951 spin_unlock(&l3->list_lock);
1da177e4 2952 return 1;
a737b3e2 2953opps1:
1da177e4 2954 kmem_freepages(cachep, objp);
a737b3e2 2955failed:
1da177e4
LT
2956 if (local_flags & __GFP_WAIT)
2957 local_irq_disable();
2958 return 0;
2959}
2960
2961#if DEBUG
2962
2963/*
2964 * Perform extra freeing checks:
2965 * - detect bad pointers.
2966 * - POISON/RED_ZONE checking
1da177e4
LT
2967 */
2968static void kfree_debugcheck(const void *objp)
2969{
1da177e4
LT
2970 if (!virt_addr_valid(objp)) {
2971 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2972 (unsigned long)objp);
2973 BUG();
1da177e4 2974 }
1da177e4
LT
2975}
2976
58ce1fd5
PE
2977static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2978{
b46b8f19 2979 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2980
2981 redzone1 = *dbg_redzone1(cache, obj);
2982 redzone2 = *dbg_redzone2(cache, obj);
2983
2984 /*
2985 * Redzone is ok.
2986 */
2987 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2988 return;
2989
2990 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2991 slab_error(cache, "double free detected");
2992 else
2993 slab_error(cache, "memory outside object was overwritten");
2994
b46b8f19 2995 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2996 obj, redzone1, redzone2);
2997}
2998
343e0d7a 2999static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3000 unsigned long caller)
1da177e4
LT
3001{
3002 struct page *page;
3003 unsigned int objnr;
3004 struct slab *slabp;
3005
80cbd911
MW
3006 BUG_ON(virt_to_cache(objp) != cachep);
3007
3dafccf2 3008 objp -= obj_offset(cachep);
1da177e4 3009 kfree_debugcheck(objp);
b49af68f 3010 page = virt_to_head_page(objp);
1da177e4 3011
35026088 3012 slabp = page->slab_page;
1da177e4
LT
3013
3014 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3015 verify_redzone_free(cachep, objp);
1da177e4
LT
3016 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3017 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3018 }
3019 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3020 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 3021
8fea4e96 3022 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3023
3024 BUG_ON(objnr >= cachep->num);
8fea4e96 3025 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3026
871751e2
AV
3027#ifdef CONFIG_DEBUG_SLAB_LEAK
3028 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3029#endif
1da177e4
LT
3030 if (cachep->flags & SLAB_POISON) {
3031#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3032 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 3033 store_stackinfo(cachep, objp, caller);
b28a02de 3034 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3035 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3036 } else {
3037 poison_obj(cachep, objp, POISON_FREE);
3038 }
3039#else
3040 poison_obj(cachep, objp, POISON_FREE);
3041#endif
3042 }
3043 return objp;
3044}
3045
343e0d7a 3046static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3047{
3048 kmem_bufctl_t i;
3049 int entries = 0;
b28a02de 3050
1da177e4
LT
3051 /* Check slab's freelist to see if this obj is there. */
3052 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3053 entries++;
3054 if (entries > cachep->num || i >= cachep->num)
3055 goto bad;
3056 }
3057 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3058bad:
3059 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3060 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3061 cachep->name, cachep->num, slabp, slabp->inuse,
3062 print_tainted());
fdde6abb
SAS
3063 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3064 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3065 1);
1da177e4
LT
3066 BUG();
3067 }
3068}
3069#else
3070#define kfree_debugcheck(x) do { } while(0)
3071#define cache_free_debugcheck(x,objp,z) (objp)
3072#define check_slabp(x,y) do { } while(0)
3073#endif
3074
072bb0aa
MG
3075static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3076 bool force_refill)
1da177e4
LT
3077{
3078 int batchcount;
3079 struct kmem_list3 *l3;
3080 struct array_cache *ac;
1ca4cb24
PE
3081 int node;
3082
1da177e4 3083 check_irq_off();
7d6e6d09 3084 node = numa_mem_id();
072bb0aa
MG
3085 if (unlikely(force_refill))
3086 goto force_grow;
3087retry:
9a2dba4b 3088 ac = cpu_cache_get(cachep);
1da177e4
LT
3089 batchcount = ac->batchcount;
3090 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3091 /*
3092 * If there was little recent activity on this cache, then
3093 * perform only a partial refill. Otherwise we could generate
3094 * refill bouncing.
1da177e4
LT
3095 */
3096 batchcount = BATCHREFILL_LIMIT;
3097 }
1ca4cb24 3098 l3 = cachep->nodelists[node];
e498be7d
CL
3099
3100 BUG_ON(ac->avail > 0 || !l3);
3101 spin_lock(&l3->list_lock);
1da177e4 3102
3ded175a 3103 /* See if we can refill from the shared array */
44b57f1c
NP
3104 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3105 l3->shared->touched = 1;
3ded175a 3106 goto alloc_done;
44b57f1c 3107 }
3ded175a 3108
1da177e4
LT
3109 while (batchcount > 0) {
3110 struct list_head *entry;
3111 struct slab *slabp;
3112 /* Get slab alloc is to come from. */
3113 entry = l3->slabs_partial.next;
3114 if (entry == &l3->slabs_partial) {
3115 l3->free_touched = 1;
3116 entry = l3->slabs_free.next;
3117 if (entry == &l3->slabs_free)
3118 goto must_grow;
3119 }
3120
3121 slabp = list_entry(entry, struct slab, list);
3122 check_slabp(cachep, slabp);
3123 check_spinlock_acquired(cachep);
714b8171
PE
3124
3125 /*
3126 * The slab was either on partial or free list so
3127 * there must be at least one object available for
3128 * allocation.
3129 */
249b9f33 3130 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3131
1da177e4 3132 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3133 STATS_INC_ALLOCED(cachep);
3134 STATS_INC_ACTIVE(cachep);
3135 STATS_SET_HIGH(cachep);
3136
072bb0aa
MG
3137 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3138 node));
1da177e4
LT
3139 }
3140 check_slabp(cachep, slabp);
3141
3142 /* move slabp to correct slabp list: */
3143 list_del(&slabp->list);
3144 if (slabp->free == BUFCTL_END)
3145 list_add(&slabp->list, &l3->slabs_full);
3146 else
3147 list_add(&slabp->list, &l3->slabs_partial);
3148 }
3149
a737b3e2 3150must_grow:
1da177e4 3151 l3->free_objects -= ac->avail;
a737b3e2 3152alloc_done:
e498be7d 3153 spin_unlock(&l3->list_lock);
1da177e4
LT
3154
3155 if (unlikely(!ac->avail)) {
3156 int x;
072bb0aa 3157force_grow:
3c517a61 3158 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3159
a737b3e2 3160 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3161 ac = cpu_cache_get(cachep);
51cd8e6f 3162 node = numa_mem_id();
072bb0aa
MG
3163
3164 /* no objects in sight? abort */
3165 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3166 return NULL;
3167
a737b3e2 3168 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3169 goto retry;
3170 }
3171 ac->touched = 1;
072bb0aa
MG
3172
3173 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3174}
3175
a737b3e2
AM
3176static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3177 gfp_t flags)
1da177e4
LT
3178{
3179 might_sleep_if(flags & __GFP_WAIT);
3180#if DEBUG
3181 kmem_flagcheck(cachep, flags);
3182#endif
3183}
3184
3185#if DEBUG
a737b3e2 3186static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3187 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3188{
b28a02de 3189 if (!objp)
1da177e4 3190 return objp;
b28a02de 3191 if (cachep->flags & SLAB_POISON) {
1da177e4 3192#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3193 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3194 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3195 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3196 else
3197 check_poison_obj(cachep, objp);
3198#else
3199 check_poison_obj(cachep, objp);
3200#endif
3201 poison_obj(cachep, objp, POISON_INUSE);
3202 }
3203 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3204 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3205
3206 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3207 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3208 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3209 slab_error(cachep, "double free, or memory outside"
3210 " object was overwritten");
b28a02de 3211 printk(KERN_ERR
b46b8f19 3212 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3213 objp, *dbg_redzone1(cachep, objp),
3214 *dbg_redzone2(cachep, objp));
1da177e4
LT
3215 }
3216 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3217 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3218 }
871751e2
AV
3219#ifdef CONFIG_DEBUG_SLAB_LEAK
3220 {
3221 struct slab *slabp;
3222 unsigned objnr;
3223
35026088 3224 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3225 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3226 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3227 }
3228#endif
3dafccf2 3229 objp += obj_offset(cachep);
4f104934 3230 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3231 cachep->ctor(objp);
7ea466f2
TH
3232 if (ARCH_SLAB_MINALIGN &&
3233 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3234 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3235 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3236 }
1da177e4
LT
3237 return objp;
3238}
3239#else
3240#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3241#endif
3242
773ff60e 3243static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3244{
9b030cb8 3245 if (cachep == kmem_cache)
773ff60e 3246 return false;
8a8b6502 3247
8c138bc0 3248 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3249}
3250
343e0d7a 3251static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3252{
b28a02de 3253 void *objp;
1da177e4 3254 struct array_cache *ac;
072bb0aa 3255 bool force_refill = false;
1da177e4 3256
5c382300 3257 check_irq_off();
8a8b6502 3258
9a2dba4b 3259 ac = cpu_cache_get(cachep);
1da177e4 3260 if (likely(ac->avail)) {
1da177e4 3261 ac->touched = 1;
072bb0aa
MG
3262 objp = ac_get_obj(cachep, ac, flags, false);
3263
ddbf2e83 3264 /*
072bb0aa
MG
3265 * Allow for the possibility all avail objects are not allowed
3266 * by the current flags
ddbf2e83 3267 */
072bb0aa
MG
3268 if (objp) {
3269 STATS_INC_ALLOCHIT(cachep);
3270 goto out;
3271 }
3272 force_refill = true;
1da177e4 3273 }
072bb0aa
MG
3274
3275 STATS_INC_ALLOCMISS(cachep);
3276 objp = cache_alloc_refill(cachep, flags, force_refill);
3277 /*
3278 * the 'ac' may be updated by cache_alloc_refill(),
3279 * and kmemleak_erase() requires its correct value.
3280 */
3281 ac = cpu_cache_get(cachep);
3282
3283out:
d5cff635
CM
3284 /*
3285 * To avoid a false negative, if an object that is in one of the
3286 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3287 * treat the array pointers as a reference to the object.
3288 */
f3d8b53a
O
3289 if (objp)
3290 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3291 return objp;
3292}
3293
e498be7d 3294#ifdef CONFIG_NUMA
c61afb18 3295/*
b2455396 3296 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3297 *
3298 * If we are in_interrupt, then process context, including cpusets and
3299 * mempolicy, may not apply and should not be used for allocation policy.
3300 */
3301static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3302{
3303 int nid_alloc, nid_here;
3304
765c4507 3305 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3306 return NULL;
7d6e6d09 3307 nid_alloc = nid_here = numa_mem_id();
c61afb18 3308 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3309 nid_alloc = cpuset_slab_spread_node();
c61afb18 3310 else if (current->mempolicy)
e7b691b0 3311 nid_alloc = slab_node();
c61afb18 3312 if (nid_alloc != nid_here)
8b98c169 3313 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3314 return NULL;
3315}
3316
765c4507
CL
3317/*
3318 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3319 * certain node and fall back is permitted. First we scan all the
3320 * available nodelists for available objects. If that fails then we
3321 * perform an allocation without specifying a node. This allows the page
3322 * allocator to do its reclaim / fallback magic. We then insert the
3323 * slab into the proper nodelist and then allocate from it.
765c4507 3324 */
8c8cc2c1 3325static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3326{
8c8cc2c1
PE
3327 struct zonelist *zonelist;
3328 gfp_t local_flags;
dd1a239f 3329 struct zoneref *z;
54a6eb5c
MG
3330 struct zone *zone;
3331 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3332 void *obj = NULL;
3c517a61 3333 int nid;
cc9a6c87 3334 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3335
3336 if (flags & __GFP_THISNODE)
3337 return NULL;
3338
6cb06229 3339 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3340
cc9a6c87
MG
3341retry_cpuset:
3342 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3343 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3344
3c517a61
CL
3345retry:
3346 /*
3347 * Look through allowed nodes for objects available
3348 * from existing per node queues.
3349 */
54a6eb5c
MG
3350 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3351 nid = zone_to_nid(zone);
aedb0eb1 3352
54a6eb5c 3353 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3354 cache->nodelists[nid] &&
481c5346 3355 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3356 obj = ____cache_alloc_node(cache,
3357 flags | GFP_THISNODE, nid);
481c5346
CL
3358 if (obj)
3359 break;
3360 }
3c517a61
CL
3361 }
3362
cfce6604 3363 if (!obj) {
3c517a61
CL
3364 /*
3365 * This allocation will be performed within the constraints
3366 * of the current cpuset / memory policy requirements.
3367 * We may trigger various forms of reclaim on the allowed
3368 * set and go into memory reserves if necessary.
3369 */
dd47ea75
CL
3370 if (local_flags & __GFP_WAIT)
3371 local_irq_enable();
3372 kmem_flagcheck(cache, flags);
7d6e6d09 3373 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3374 if (local_flags & __GFP_WAIT)
3375 local_irq_disable();
3c517a61
CL
3376 if (obj) {
3377 /*
3378 * Insert into the appropriate per node queues
3379 */
3380 nid = page_to_nid(virt_to_page(obj));
3381 if (cache_grow(cache, flags, nid, obj)) {
3382 obj = ____cache_alloc_node(cache,
3383 flags | GFP_THISNODE, nid);
3384 if (!obj)
3385 /*
3386 * Another processor may allocate the
3387 * objects in the slab since we are
3388 * not holding any locks.
3389 */
3390 goto retry;
3391 } else {
b6a60451 3392 /* cache_grow already freed obj */
3c517a61
CL
3393 obj = NULL;
3394 }
3395 }
aedb0eb1 3396 }
cc9a6c87
MG
3397
3398 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3399 goto retry_cpuset;
765c4507
CL
3400 return obj;
3401}
3402
e498be7d
CL
3403/*
3404 * A interface to enable slab creation on nodeid
1da177e4 3405 */
8b98c169 3406static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3407 int nodeid)
e498be7d
CL
3408{
3409 struct list_head *entry;
b28a02de
PE
3410 struct slab *slabp;
3411 struct kmem_list3 *l3;
3412 void *obj;
b28a02de
PE
3413 int x;
3414
3415 l3 = cachep->nodelists[nodeid];
3416 BUG_ON(!l3);
3417
a737b3e2 3418retry:
ca3b9b91 3419 check_irq_off();
b28a02de
PE
3420 spin_lock(&l3->list_lock);
3421 entry = l3->slabs_partial.next;
3422 if (entry == &l3->slabs_partial) {
3423 l3->free_touched = 1;
3424 entry = l3->slabs_free.next;
3425 if (entry == &l3->slabs_free)
3426 goto must_grow;
3427 }
3428
3429 slabp = list_entry(entry, struct slab, list);
3430 check_spinlock_acquired_node(cachep, nodeid);
3431 check_slabp(cachep, slabp);
3432
3433 STATS_INC_NODEALLOCS(cachep);
3434 STATS_INC_ACTIVE(cachep);
3435 STATS_SET_HIGH(cachep);
3436
3437 BUG_ON(slabp->inuse == cachep->num);
3438
78d382d7 3439 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3440 check_slabp(cachep, slabp);
3441 l3->free_objects--;
3442 /* move slabp to correct slabp list: */
3443 list_del(&slabp->list);
3444
a737b3e2 3445 if (slabp->free == BUFCTL_END)
b28a02de 3446 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3447 else
b28a02de 3448 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3449
b28a02de
PE
3450 spin_unlock(&l3->list_lock);
3451 goto done;
e498be7d 3452
a737b3e2 3453must_grow:
b28a02de 3454 spin_unlock(&l3->list_lock);
3c517a61 3455 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3456 if (x)
3457 goto retry;
1da177e4 3458
8c8cc2c1 3459 return fallback_alloc(cachep, flags);
e498be7d 3460
a737b3e2 3461done:
b28a02de 3462 return obj;
e498be7d 3463}
8c8cc2c1
PE
3464
3465/**
3466 * kmem_cache_alloc_node - Allocate an object on the specified node
3467 * @cachep: The cache to allocate from.
3468 * @flags: See kmalloc().
3469 * @nodeid: node number of the target node.
3470 * @caller: return address of caller, used for debug information
3471 *
3472 * Identical to kmem_cache_alloc but it will allocate memory on the given
3473 * node, which can improve the performance for cpu bound structures.
3474 *
3475 * Fallback to other node is possible if __GFP_THISNODE is not set.
3476 */
3477static __always_inline void *
48356303 3478slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3479 unsigned long caller)
8c8cc2c1
PE
3480{
3481 unsigned long save_flags;
3482 void *ptr;
7d6e6d09 3483 int slab_node = numa_mem_id();
8c8cc2c1 3484
dcce284a 3485 flags &= gfp_allowed_mask;
7e85ee0c 3486
cf40bd16
NP
3487 lockdep_trace_alloc(flags);
3488
773ff60e 3489 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3490 return NULL;
3491
d79923fa
GC
3492 cachep = memcg_kmem_get_cache(cachep, flags);
3493
8c8cc2c1
PE
3494 cache_alloc_debugcheck_before(cachep, flags);
3495 local_irq_save(save_flags);
3496
eacbbae3 3497 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3498 nodeid = slab_node;
8c8cc2c1
PE
3499
3500 if (unlikely(!cachep->nodelists[nodeid])) {
3501 /* Node not bootstrapped yet */
3502 ptr = fallback_alloc(cachep, flags);
3503 goto out;
3504 }
3505
7d6e6d09 3506 if (nodeid == slab_node) {
8c8cc2c1
PE
3507 /*
3508 * Use the locally cached objects if possible.
3509 * However ____cache_alloc does not allow fallback
3510 * to other nodes. It may fail while we still have
3511 * objects on other nodes available.
3512 */
3513 ptr = ____cache_alloc(cachep, flags);
3514 if (ptr)
3515 goto out;
3516 }
3517 /* ___cache_alloc_node can fall back to other nodes */
3518 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3519 out:
3520 local_irq_restore(save_flags);
3521 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3522 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3523 flags);
8c8cc2c1 3524
c175eea4 3525 if (likely(ptr))
8c138bc0 3526 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3527
d07dbea4 3528 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3529 memset(ptr, 0, cachep->object_size);
d07dbea4 3530
8c8cc2c1
PE
3531 return ptr;
3532}
3533
3534static __always_inline void *
3535__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3536{
3537 void *objp;
3538
3539 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3540 objp = alternate_node_alloc(cache, flags);
3541 if (objp)
3542 goto out;
3543 }
3544 objp = ____cache_alloc(cache, flags);
3545
3546 /*
3547 * We may just have run out of memory on the local node.
3548 * ____cache_alloc_node() knows how to locate memory on other nodes
3549 */
7d6e6d09
LS
3550 if (!objp)
3551 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3552
3553 out:
3554 return objp;
3555}
3556#else
3557
3558static __always_inline void *
3559__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3560{
3561 return ____cache_alloc(cachep, flags);
3562}
3563
3564#endif /* CONFIG_NUMA */
3565
3566static __always_inline void *
48356303 3567slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3568{
3569 unsigned long save_flags;
3570 void *objp;
3571
dcce284a 3572 flags &= gfp_allowed_mask;
7e85ee0c 3573
cf40bd16
NP
3574 lockdep_trace_alloc(flags);
3575
773ff60e 3576 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3577 return NULL;
3578
d79923fa
GC
3579 cachep = memcg_kmem_get_cache(cachep, flags);
3580
8c8cc2c1
PE
3581 cache_alloc_debugcheck_before(cachep, flags);
3582 local_irq_save(save_flags);
3583 objp = __do_cache_alloc(cachep, flags);
3584 local_irq_restore(save_flags);
3585 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3586 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3587 flags);
8c8cc2c1
PE
3588 prefetchw(objp);
3589
c175eea4 3590 if (likely(objp))
8c138bc0 3591 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3592
d07dbea4 3593 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3594 memset(objp, 0, cachep->object_size);
d07dbea4 3595
8c8cc2c1
PE
3596 return objp;
3597}
e498be7d
CL
3598
3599/*
3600 * Caller needs to acquire correct kmem_list's list_lock
3601 */
343e0d7a 3602static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3603 int node)
1da177e4
LT
3604{
3605 int i;
e498be7d 3606 struct kmem_list3 *l3;
1da177e4
LT
3607
3608 for (i = 0; i < nr_objects; i++) {
072bb0aa 3609 void *objp;
1da177e4 3610 struct slab *slabp;
1da177e4 3611
072bb0aa
MG
3612 clear_obj_pfmemalloc(&objpp[i]);
3613 objp = objpp[i];
3614
6ed5eb22 3615 slabp = virt_to_slab(objp);
ff69416e 3616 l3 = cachep->nodelists[node];
1da177e4 3617 list_del(&slabp->list);
ff69416e 3618 check_spinlock_acquired_node(cachep, node);
1da177e4 3619 check_slabp(cachep, slabp);
78d382d7 3620 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3621 STATS_DEC_ACTIVE(cachep);
e498be7d 3622 l3->free_objects++;
1da177e4
LT
3623 check_slabp(cachep, slabp);
3624
3625 /* fixup slab chains */
3626 if (slabp->inuse == 0) {
e498be7d
CL
3627 if (l3->free_objects > l3->free_limit) {
3628 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3629 /* No need to drop any previously held
3630 * lock here, even if we have a off-slab slab
3631 * descriptor it is guaranteed to come from
3632 * a different cache, refer to comments before
3633 * alloc_slabmgmt.
3634 */
1da177e4
LT
3635 slab_destroy(cachep, slabp);
3636 } else {
e498be7d 3637 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3638 }
3639 } else {
3640 /* Unconditionally move a slab to the end of the
3641 * partial list on free - maximum time for the
3642 * other objects to be freed, too.
3643 */
e498be7d 3644 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3645 }
3646 }
3647}
3648
343e0d7a 3649static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3650{
3651 int batchcount;
e498be7d 3652 struct kmem_list3 *l3;
7d6e6d09 3653 int node = numa_mem_id();
1da177e4
LT
3654
3655 batchcount = ac->batchcount;
3656#if DEBUG
3657 BUG_ON(!batchcount || batchcount > ac->avail);
3658#endif
3659 check_irq_off();
ff69416e 3660 l3 = cachep->nodelists[node];
873623df 3661 spin_lock(&l3->list_lock);
e498be7d
CL
3662 if (l3->shared) {
3663 struct array_cache *shared_array = l3->shared;
b28a02de 3664 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3665 if (max) {
3666 if (batchcount > max)
3667 batchcount = max;
e498be7d 3668 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3669 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3670 shared_array->avail += batchcount;
3671 goto free_done;
3672 }
3673 }
3674
ff69416e 3675 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3676free_done:
1da177e4
LT
3677#if STATS
3678 {
3679 int i = 0;
3680 struct list_head *p;
3681
e498be7d
CL
3682 p = l3->slabs_free.next;
3683 while (p != &(l3->slabs_free)) {
1da177e4
LT
3684 struct slab *slabp;
3685
3686 slabp = list_entry(p, struct slab, list);
3687 BUG_ON(slabp->inuse);
3688
3689 i++;
3690 p = p->next;
3691 }
3692 STATS_SET_FREEABLE(cachep, i);
3693 }
3694#endif
e498be7d 3695 spin_unlock(&l3->list_lock);
1da177e4 3696 ac->avail -= batchcount;
a737b3e2 3697 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3698}
3699
3700/*
a737b3e2
AM
3701 * Release an obj back to its cache. If the obj has a constructed state, it must
3702 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3703 */
a947eb95 3704static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3705 unsigned long caller)
1da177e4 3706{
9a2dba4b 3707 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3708
3709 check_irq_off();
d5cff635 3710 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3711 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3712
8c138bc0 3713 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3714
1807a1aa
SS
3715 /*
3716 * Skip calling cache_free_alien() when the platform is not numa.
3717 * This will avoid cache misses that happen while accessing slabp (which
3718 * is per page memory reference) to get nodeid. Instead use a global
3719 * variable to skip the call, which is mostly likely to be present in
3720 * the cache.
3721 */
b6e68bc1 3722 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3723 return;
3724
1da177e4
LT
3725 if (likely(ac->avail < ac->limit)) {
3726 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3727 } else {
3728 STATS_INC_FREEMISS(cachep);
3729 cache_flusharray(cachep, ac);
1da177e4 3730 }
42c8c99c 3731
072bb0aa 3732 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3733}
3734
3735/**
3736 * kmem_cache_alloc - Allocate an object
3737 * @cachep: The cache to allocate from.
3738 * @flags: See kmalloc().
3739 *
3740 * Allocate an object from this cache. The flags are only relevant
3741 * if the cache has no available objects.
3742 */
343e0d7a 3743void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3744{
48356303 3745 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3746
ca2b84cb 3747 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3748 cachep->object_size, cachep->size, flags);
36555751
EGM
3749
3750 return ret;
1da177e4
LT
3751}
3752EXPORT_SYMBOL(kmem_cache_alloc);
3753
0f24f128 3754#ifdef CONFIG_TRACING
85beb586 3755void *
4052147c 3756kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3757{
85beb586
SR
3758 void *ret;
3759
48356303 3760 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3761
3762 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3763 size, cachep->size, flags);
85beb586 3764 return ret;
36555751 3765}
85beb586 3766EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3767#endif
3768
1da177e4 3769#ifdef CONFIG_NUMA
8b98c169
CH
3770void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3771{
48356303 3772 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3773
ca2b84cb 3774 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3775 cachep->object_size, cachep->size,
ca2b84cb 3776 flags, nodeid);
36555751
EGM
3777
3778 return ret;
8b98c169 3779}
1da177e4
LT
3780EXPORT_SYMBOL(kmem_cache_alloc_node);
3781
0f24f128 3782#ifdef CONFIG_TRACING
4052147c 3783void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3784 gfp_t flags,
4052147c
EG
3785 int nodeid,
3786 size_t size)
36555751 3787{
85beb586
SR
3788 void *ret;
3789
592f4145 3790 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3791
85beb586 3792 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3793 size, cachep->size,
85beb586
SR
3794 flags, nodeid);
3795 return ret;
36555751 3796}
85beb586 3797EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3798#endif
3799
8b98c169 3800static __always_inline void *
7c0cb9c6 3801__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3802{
343e0d7a 3803 struct kmem_cache *cachep;
97e2bde4
MS
3804
3805 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3806 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3807 return cachep;
4052147c 3808 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3809}
8b98c169 3810
0bb38a5c 3811#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3812void *__kmalloc_node(size_t size, gfp_t flags, int node)
3813{
7c0cb9c6 3814 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3815}
dbe5e69d 3816EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3817
3818void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3819 int node, unsigned long caller)
8b98c169 3820{
7c0cb9c6 3821 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3822}
3823EXPORT_SYMBOL(__kmalloc_node_track_caller);
3824#else
3825void *__kmalloc_node(size_t size, gfp_t flags, int node)
3826{
7c0cb9c6 3827 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3828}
3829EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3830#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3831#endif /* CONFIG_NUMA */
1da177e4
LT
3832
3833/**
800590f5 3834 * __do_kmalloc - allocate memory
1da177e4 3835 * @size: how many bytes of memory are required.
800590f5 3836 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3837 * @caller: function caller for debug tracking of the caller
1da177e4 3838 */
7fd6b141 3839static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3840 unsigned long caller)
1da177e4 3841{
343e0d7a 3842 struct kmem_cache *cachep;
36555751 3843 void *ret;
1da177e4 3844
97e2bde4
MS
3845 /* If you want to save a few bytes .text space: replace
3846 * __ with kmem_.
3847 * Then kmalloc uses the uninlined functions instead of the inline
3848 * functions.
3849 */
3850 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3851 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3852 return cachep;
48356303 3853 ret = slab_alloc(cachep, flags, caller);
36555751 3854
7c0cb9c6 3855 trace_kmalloc(caller, ret,
3b0efdfa 3856 size, cachep->size, flags);
36555751
EGM
3857
3858 return ret;
7fd6b141
PE
3859}
3860
7fd6b141 3861
0bb38a5c 3862#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3863void *__kmalloc(size_t size, gfp_t flags)
3864{
7c0cb9c6 3865 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3866}
3867EXPORT_SYMBOL(__kmalloc);
3868
ce71e27c 3869void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3870{
7c0cb9c6 3871 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3872}
3873EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3874
3875#else
3876void *__kmalloc(size_t size, gfp_t flags)
3877{
7c0cb9c6 3878 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3879}
3880EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3881#endif
3882
1da177e4
LT
3883/**
3884 * kmem_cache_free - Deallocate an object
3885 * @cachep: The cache the allocation was from.
3886 * @objp: The previously allocated object.
3887 *
3888 * Free an object which was previously allocated from this
3889 * cache.
3890 */
343e0d7a 3891void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3892{
3893 unsigned long flags;
b9ce5ef4
GC
3894 cachep = cache_from_obj(cachep, objp);
3895 if (!cachep)
3896 return;
1da177e4
LT
3897
3898 local_irq_save(flags);
d97d476b 3899 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3900 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3901 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3902 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3903 local_irq_restore(flags);
36555751 3904
ca2b84cb 3905 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3906}
3907EXPORT_SYMBOL(kmem_cache_free);
3908
1da177e4
LT
3909/**
3910 * kfree - free previously allocated memory
3911 * @objp: pointer returned by kmalloc.
3912 *
80e93eff
PE
3913 * If @objp is NULL, no operation is performed.
3914 *
1da177e4
LT
3915 * Don't free memory not originally allocated by kmalloc()
3916 * or you will run into trouble.
3917 */
3918void kfree(const void *objp)
3919{
343e0d7a 3920 struct kmem_cache *c;
1da177e4
LT
3921 unsigned long flags;
3922
2121db74
PE
3923 trace_kfree(_RET_IP_, objp);
3924
6cb8f913 3925 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3926 return;
3927 local_irq_save(flags);
3928 kfree_debugcheck(objp);
6ed5eb22 3929 c = virt_to_cache(objp);
8c138bc0
CL
3930 debug_check_no_locks_freed(objp, c->object_size);
3931
3932 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3933 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3934 local_irq_restore(flags);
3935}
3936EXPORT_SYMBOL(kfree);
3937
e498be7d 3938/*
183ff22b 3939 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3940 */
83b519e8 3941static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3942{
3943 int node;
3944 struct kmem_list3 *l3;
cafeb02e 3945 struct array_cache *new_shared;
3395ee05 3946 struct array_cache **new_alien = NULL;
e498be7d 3947
9c09a95c 3948 for_each_online_node(node) {
cafeb02e 3949
3395ee05 3950 if (use_alien_caches) {
83b519e8 3951 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3952 if (!new_alien)
3953 goto fail;
3954 }
cafeb02e 3955
63109846
ED
3956 new_shared = NULL;
3957 if (cachep->shared) {
3958 new_shared = alloc_arraycache(node,
0718dc2a 3959 cachep->shared*cachep->batchcount,
83b519e8 3960 0xbaadf00d, gfp);
63109846
ED
3961 if (!new_shared) {
3962 free_alien_cache(new_alien);
3963 goto fail;
3964 }
0718dc2a 3965 }
cafeb02e 3966
a737b3e2
AM
3967 l3 = cachep->nodelists[node];
3968 if (l3) {
cafeb02e
CL
3969 struct array_cache *shared = l3->shared;
3970
e498be7d
CL
3971 spin_lock_irq(&l3->list_lock);
3972
cafeb02e 3973 if (shared)
0718dc2a
CL
3974 free_block(cachep, shared->entry,
3975 shared->avail, node);
e498be7d 3976
cafeb02e
CL
3977 l3->shared = new_shared;
3978 if (!l3->alien) {
e498be7d
CL
3979 l3->alien = new_alien;
3980 new_alien = NULL;
3981 }
b28a02de 3982 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3983 cachep->batchcount + cachep->num;
e498be7d 3984 spin_unlock_irq(&l3->list_lock);
cafeb02e 3985 kfree(shared);
e498be7d
CL
3986 free_alien_cache(new_alien);
3987 continue;
3988 }
83b519e8 3989 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3990 if (!l3) {
3991 free_alien_cache(new_alien);
3992 kfree(new_shared);
e498be7d 3993 goto fail;
0718dc2a 3994 }
e498be7d
CL
3995
3996 kmem_list3_init(l3);
3997 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3998 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3999 l3->shared = new_shared;
e498be7d 4000 l3->alien = new_alien;
b28a02de 4001 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4002 cachep->batchcount + cachep->num;
e498be7d
CL
4003 cachep->nodelists[node] = l3;
4004 }
cafeb02e 4005 return 0;
0718dc2a 4006
a737b3e2 4007fail:
3b0efdfa 4008 if (!cachep->list.next) {
0718dc2a
CL
4009 /* Cache is not active yet. Roll back what we did */
4010 node--;
4011 while (node >= 0) {
4012 if (cachep->nodelists[node]) {
4013 l3 = cachep->nodelists[node];
4014
4015 kfree(l3->shared);
4016 free_alien_cache(l3->alien);
4017 kfree(l3);
4018 cachep->nodelists[node] = NULL;
4019 }
4020 node--;
4021 }
4022 }
cafeb02e 4023 return -ENOMEM;
e498be7d
CL
4024}
4025
1da177e4 4026struct ccupdate_struct {
343e0d7a 4027 struct kmem_cache *cachep;
acfe7d74 4028 struct array_cache *new[0];
1da177e4
LT
4029};
4030
4031static void do_ccupdate_local(void *info)
4032{
a737b3e2 4033 struct ccupdate_struct *new = info;
1da177e4
LT
4034 struct array_cache *old;
4035
4036 check_irq_off();
9a2dba4b 4037 old = cpu_cache_get(new->cachep);
e498be7d 4038
1da177e4
LT
4039 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4040 new->new[smp_processor_id()] = old;
4041}
4042
18004c5d 4043/* Always called with the slab_mutex held */
943a451a 4044static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4045 int batchcount, int shared, gfp_t gfp)
1da177e4 4046{
d2e7b7d0 4047 struct ccupdate_struct *new;
2ed3a4ef 4048 int i;
1da177e4 4049
acfe7d74
ED
4050 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4051 gfp);
d2e7b7d0
SS
4052 if (!new)
4053 return -ENOMEM;
4054
e498be7d 4055 for_each_online_cpu(i) {
7d6e6d09 4056 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4057 batchcount, gfp);
d2e7b7d0 4058 if (!new->new[i]) {
b28a02de 4059 for (i--; i >= 0; i--)
d2e7b7d0
SS
4060 kfree(new->new[i]);
4061 kfree(new);
e498be7d 4062 return -ENOMEM;
1da177e4
LT
4063 }
4064 }
d2e7b7d0 4065 new->cachep = cachep;
1da177e4 4066
15c8b6c1 4067 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4068
1da177e4 4069 check_irq_on();
1da177e4
LT
4070 cachep->batchcount = batchcount;
4071 cachep->limit = limit;
e498be7d 4072 cachep->shared = shared;
1da177e4 4073
e498be7d 4074 for_each_online_cpu(i) {
d2e7b7d0 4075 struct array_cache *ccold = new->new[i];
1da177e4
LT
4076 if (!ccold)
4077 continue;
7d6e6d09
LS
4078 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4079 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4080 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4081 kfree(ccold);
4082 }
d2e7b7d0 4083 kfree(new);
83b519e8 4084 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4085}
4086
943a451a
GC
4087static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4088 int batchcount, int shared, gfp_t gfp)
4089{
4090 int ret;
4091 struct kmem_cache *c = NULL;
4092 int i = 0;
4093
4094 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4095
4096 if (slab_state < FULL)
4097 return ret;
4098
4099 if ((ret < 0) || !is_root_cache(cachep))
4100 return ret;
4101
ebe945c2 4102 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
4103 for_each_memcg_cache_index(i) {
4104 c = cache_from_memcg(cachep, i);
4105 if (c)
4106 /* return value determined by the parent cache only */
4107 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
4108 }
4109
4110 return ret;
4111}
4112
18004c5d 4113/* Called with slab_mutex held always */
83b519e8 4114static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4115{
4116 int err;
943a451a
GC
4117 int limit = 0;
4118 int shared = 0;
4119 int batchcount = 0;
4120
4121 if (!is_root_cache(cachep)) {
4122 struct kmem_cache *root = memcg_root_cache(cachep);
4123 limit = root->limit;
4124 shared = root->shared;
4125 batchcount = root->batchcount;
4126 }
1da177e4 4127
943a451a
GC
4128 if (limit && shared && batchcount)
4129 goto skip_setup;
a737b3e2
AM
4130 /*
4131 * The head array serves three purposes:
1da177e4
LT
4132 * - create a LIFO ordering, i.e. return objects that are cache-warm
4133 * - reduce the number of spinlock operations.
a737b3e2 4134 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4135 * bufctl chains: array operations are cheaper.
4136 * The numbers are guessed, we should auto-tune as described by
4137 * Bonwick.
4138 */
3b0efdfa 4139 if (cachep->size > 131072)
1da177e4 4140 limit = 1;
3b0efdfa 4141 else if (cachep->size > PAGE_SIZE)
1da177e4 4142 limit = 8;
3b0efdfa 4143 else if (cachep->size > 1024)
1da177e4 4144 limit = 24;
3b0efdfa 4145 else if (cachep->size > 256)
1da177e4
LT
4146 limit = 54;
4147 else
4148 limit = 120;
4149
a737b3e2
AM
4150 /*
4151 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4152 * allocation behaviour: Most allocs on one cpu, most free operations
4153 * on another cpu. For these cases, an efficient object passing between
4154 * cpus is necessary. This is provided by a shared array. The array
4155 * replaces Bonwick's magazine layer.
4156 * On uniprocessor, it's functionally equivalent (but less efficient)
4157 * to a larger limit. Thus disabled by default.
4158 */
4159 shared = 0;
3b0efdfa 4160 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4161 shared = 8;
1da177e4
LT
4162
4163#if DEBUG
a737b3e2
AM
4164 /*
4165 * With debugging enabled, large batchcount lead to excessively long
4166 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4167 */
4168 if (limit > 32)
4169 limit = 32;
4170#endif
943a451a
GC
4171 batchcount = (limit + 1) / 2;
4172skip_setup:
4173 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4174 if (err)
4175 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4176 cachep->name, -err);
2ed3a4ef 4177 return err;
1da177e4
LT
4178}
4179
1b55253a
CL
4180/*
4181 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4182 * necessary. Note that the l3 listlock also protects the array_cache
4183 * if drain_array() is used on the shared array.
1b55253a 4184 */
68a1b195 4185static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4186 struct array_cache *ac, int force, int node)
1da177e4
LT
4187{
4188 int tofree;
4189
1b55253a
CL
4190 if (!ac || !ac->avail)
4191 return;
1da177e4
LT
4192 if (ac->touched && !force) {
4193 ac->touched = 0;
b18e7e65 4194 } else {
1b55253a 4195 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4196 if (ac->avail) {
4197 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4198 if (tofree > ac->avail)
4199 tofree = (ac->avail + 1) / 2;
4200 free_block(cachep, ac->entry, tofree, node);
4201 ac->avail -= tofree;
4202 memmove(ac->entry, &(ac->entry[tofree]),
4203 sizeof(void *) * ac->avail);
4204 }
1b55253a 4205 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4206 }
4207}
4208
4209/**
4210 * cache_reap - Reclaim memory from caches.
05fb6bf0 4211 * @w: work descriptor
1da177e4
LT
4212 *
4213 * Called from workqueue/eventd every few seconds.
4214 * Purpose:
4215 * - clear the per-cpu caches for this CPU.
4216 * - return freeable pages to the main free memory pool.
4217 *
a737b3e2
AM
4218 * If we cannot acquire the cache chain mutex then just give up - we'll try
4219 * again on the next iteration.
1da177e4 4220 */
7c5cae36 4221static void cache_reap(struct work_struct *w)
1da177e4 4222{
7a7c381d 4223 struct kmem_cache *searchp;
e498be7d 4224 struct kmem_list3 *l3;
7d6e6d09 4225 int node = numa_mem_id();
bf6aede7 4226 struct delayed_work *work = to_delayed_work(w);
1da177e4 4227
18004c5d 4228 if (!mutex_trylock(&slab_mutex))
1da177e4 4229 /* Give up. Setup the next iteration. */
7c5cae36 4230 goto out;
1da177e4 4231
18004c5d 4232 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4233 check_irq_on();
4234
35386e3b
CL
4235 /*
4236 * We only take the l3 lock if absolutely necessary and we
4237 * have established with reasonable certainty that
4238 * we can do some work if the lock was obtained.
4239 */
aab2207c 4240 l3 = searchp->nodelists[node];
35386e3b 4241
8fce4d8e 4242 reap_alien(searchp, l3);
1da177e4 4243
aab2207c 4244 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4245
35386e3b
CL
4246 /*
4247 * These are racy checks but it does not matter
4248 * if we skip one check or scan twice.
4249 */
e498be7d 4250 if (time_after(l3->next_reap, jiffies))
35386e3b 4251 goto next;
1da177e4 4252
e498be7d 4253 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4254
aab2207c 4255 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4256
ed11d9eb 4257 if (l3->free_touched)
e498be7d 4258 l3->free_touched = 0;
ed11d9eb
CL
4259 else {
4260 int freed;
1da177e4 4261
ed11d9eb
CL
4262 freed = drain_freelist(searchp, l3, (l3->free_limit +
4263 5 * searchp->num - 1) / (5 * searchp->num));
4264 STATS_ADD_REAPED(searchp, freed);
4265 }
35386e3b 4266next:
1da177e4
LT
4267 cond_resched();
4268 }
4269 check_irq_on();
18004c5d 4270 mutex_unlock(&slab_mutex);
8fce4d8e 4271 next_reap_node();
7c5cae36 4272out:
a737b3e2 4273 /* Set up the next iteration */
7c5cae36 4274 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4275}
4276
158a9624 4277#ifdef CONFIG_SLABINFO
0d7561c6 4278void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4279{
b28a02de
PE
4280 struct slab *slabp;
4281 unsigned long active_objs;
4282 unsigned long num_objs;
4283 unsigned long active_slabs = 0;
4284 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4285 const char *name;
1da177e4 4286 char *error = NULL;
e498be7d
CL
4287 int node;
4288 struct kmem_list3 *l3;
1da177e4 4289
1da177e4
LT
4290 active_objs = 0;
4291 num_slabs = 0;
e498be7d
CL
4292 for_each_online_node(node) {
4293 l3 = cachep->nodelists[node];
4294 if (!l3)
4295 continue;
4296
ca3b9b91
RT
4297 check_irq_on();
4298 spin_lock_irq(&l3->list_lock);
e498be7d 4299
7a7c381d 4300 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4301 if (slabp->inuse != cachep->num && !error)
4302 error = "slabs_full accounting error";
4303 active_objs += cachep->num;
4304 active_slabs++;
4305 }
7a7c381d 4306 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4307 if (slabp->inuse == cachep->num && !error)
4308 error = "slabs_partial inuse accounting error";
4309 if (!slabp->inuse && !error)
4310 error = "slabs_partial/inuse accounting error";
4311 active_objs += slabp->inuse;
4312 active_slabs++;
4313 }
7a7c381d 4314 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4315 if (slabp->inuse && !error)
4316 error = "slabs_free/inuse accounting error";
4317 num_slabs++;
4318 }
4319 free_objects += l3->free_objects;
4484ebf1
RT
4320 if (l3->shared)
4321 shared_avail += l3->shared->avail;
e498be7d 4322
ca3b9b91 4323 spin_unlock_irq(&l3->list_lock);
1da177e4 4324 }
b28a02de
PE
4325 num_slabs += active_slabs;
4326 num_objs = num_slabs * cachep->num;
e498be7d 4327 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4328 error = "free_objects accounting error";
4329
b28a02de 4330 name = cachep->name;
1da177e4
LT
4331 if (error)
4332 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4333
0d7561c6
GC
4334 sinfo->active_objs = active_objs;
4335 sinfo->num_objs = num_objs;
4336 sinfo->active_slabs = active_slabs;
4337 sinfo->num_slabs = num_slabs;
4338 sinfo->shared_avail = shared_avail;
4339 sinfo->limit = cachep->limit;
4340 sinfo->batchcount = cachep->batchcount;
4341 sinfo->shared = cachep->shared;
4342 sinfo->objects_per_slab = cachep->num;
4343 sinfo->cache_order = cachep->gfporder;
4344}
4345
4346void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4347{
1da177e4 4348#if STATS
b28a02de 4349 { /* list3 stats */
1da177e4
LT
4350 unsigned long high = cachep->high_mark;
4351 unsigned long allocs = cachep->num_allocations;
4352 unsigned long grown = cachep->grown;
4353 unsigned long reaped = cachep->reaped;
4354 unsigned long errors = cachep->errors;
4355 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4356 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4357 unsigned long node_frees = cachep->node_frees;
fb7faf33 4358 unsigned long overflows = cachep->node_overflow;
1da177e4 4359
e92dd4fd
JP
4360 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4361 "%4lu %4lu %4lu %4lu %4lu",
4362 allocs, high, grown,
4363 reaped, errors, max_freeable, node_allocs,
4364 node_frees, overflows);
1da177e4
LT
4365 }
4366 /* cpu stats */
4367 {
4368 unsigned long allochit = atomic_read(&cachep->allochit);
4369 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4370 unsigned long freehit = atomic_read(&cachep->freehit);
4371 unsigned long freemiss = atomic_read(&cachep->freemiss);
4372
4373 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4374 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4375 }
4376#endif
1da177e4
LT
4377}
4378
1da177e4
LT
4379#define MAX_SLABINFO_WRITE 128
4380/**
4381 * slabinfo_write - Tuning for the slab allocator
4382 * @file: unused
4383 * @buffer: user buffer
4384 * @count: data length
4385 * @ppos: unused
4386 */
b7454ad3 4387ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4388 size_t count, loff_t *ppos)
1da177e4 4389{
b28a02de 4390 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4391 int limit, batchcount, shared, res;
7a7c381d 4392 struct kmem_cache *cachep;
b28a02de 4393
1da177e4
LT
4394 if (count > MAX_SLABINFO_WRITE)
4395 return -EINVAL;
4396 if (copy_from_user(&kbuf, buffer, count))
4397 return -EFAULT;
b28a02de 4398 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4399
4400 tmp = strchr(kbuf, ' ');
4401 if (!tmp)
4402 return -EINVAL;
4403 *tmp = '\0';
4404 tmp++;
4405 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4406 return -EINVAL;
4407
4408 /* Find the cache in the chain of caches. */
18004c5d 4409 mutex_lock(&slab_mutex);
1da177e4 4410 res = -EINVAL;
18004c5d 4411 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4412 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4413 if (limit < 1 || batchcount < 1 ||
4414 batchcount > limit || shared < 0) {
e498be7d 4415 res = 0;
1da177e4 4416 } else {
e498be7d 4417 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4418 batchcount, shared,
4419 GFP_KERNEL);
1da177e4
LT
4420 }
4421 break;
4422 }
4423 }
18004c5d 4424 mutex_unlock(&slab_mutex);
1da177e4
LT
4425 if (res >= 0)
4426 res = count;
4427 return res;
4428}
871751e2
AV
4429
4430#ifdef CONFIG_DEBUG_SLAB_LEAK
4431
4432static void *leaks_start(struct seq_file *m, loff_t *pos)
4433{
18004c5d
CL
4434 mutex_lock(&slab_mutex);
4435 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4436}
4437
4438static inline int add_caller(unsigned long *n, unsigned long v)
4439{
4440 unsigned long *p;
4441 int l;
4442 if (!v)
4443 return 1;
4444 l = n[1];
4445 p = n + 2;
4446 while (l) {
4447 int i = l/2;
4448 unsigned long *q = p + 2 * i;
4449 if (*q == v) {
4450 q[1]++;
4451 return 1;
4452 }
4453 if (*q > v) {
4454 l = i;
4455 } else {
4456 p = q + 2;
4457 l -= i + 1;
4458 }
4459 }
4460 if (++n[1] == n[0])
4461 return 0;
4462 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4463 p[0] = v;
4464 p[1] = 1;
4465 return 1;
4466}
4467
4468static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4469{
4470 void *p;
4471 int i;
4472 if (n[0] == n[1])
4473 return;
3b0efdfa 4474 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4475 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4476 continue;
4477 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4478 return;
4479 }
4480}
4481
4482static void show_symbol(struct seq_file *m, unsigned long address)
4483{
4484#ifdef CONFIG_KALLSYMS
871751e2 4485 unsigned long offset, size;
9281acea 4486 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4487
a5c43dae 4488 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4489 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4490 if (modname[0])
871751e2
AV
4491 seq_printf(m, " [%s]", modname);
4492 return;
4493 }
4494#endif
4495 seq_printf(m, "%p", (void *)address);
4496}
4497
4498static int leaks_show(struct seq_file *m, void *p)
4499{
0672aa7c 4500 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4501 struct slab *slabp;
4502 struct kmem_list3 *l3;
4503 const char *name;
4504 unsigned long *n = m->private;
4505 int node;
4506 int i;
4507
4508 if (!(cachep->flags & SLAB_STORE_USER))
4509 return 0;
4510 if (!(cachep->flags & SLAB_RED_ZONE))
4511 return 0;
4512
4513 /* OK, we can do it */
4514
4515 n[1] = 0;
4516
4517 for_each_online_node(node) {
4518 l3 = cachep->nodelists[node];
4519 if (!l3)
4520 continue;
4521
4522 check_irq_on();
4523 spin_lock_irq(&l3->list_lock);
4524
7a7c381d 4525 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4526 handle_slab(n, cachep, slabp);
7a7c381d 4527 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4528 handle_slab(n, cachep, slabp);
871751e2
AV
4529 spin_unlock_irq(&l3->list_lock);
4530 }
4531 name = cachep->name;
4532 if (n[0] == n[1]) {
4533 /* Increase the buffer size */
18004c5d 4534 mutex_unlock(&slab_mutex);
871751e2
AV
4535 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4536 if (!m->private) {
4537 /* Too bad, we are really out */
4538 m->private = n;
18004c5d 4539 mutex_lock(&slab_mutex);
871751e2
AV
4540 return -ENOMEM;
4541 }
4542 *(unsigned long *)m->private = n[0] * 2;
4543 kfree(n);
18004c5d 4544 mutex_lock(&slab_mutex);
871751e2
AV
4545 /* Now make sure this entry will be retried */
4546 m->count = m->size;
4547 return 0;
4548 }
4549 for (i = 0; i < n[1]; i++) {
4550 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4551 show_symbol(m, n[2*i+2]);
4552 seq_putc(m, '\n');
4553 }
d2e7b7d0 4554
871751e2
AV
4555 return 0;
4556}
4557
b7454ad3
GC
4558static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4559{
4560 return seq_list_next(p, &slab_caches, pos);
4561}
4562
4563static void s_stop(struct seq_file *m, void *p)
4564{
4565 mutex_unlock(&slab_mutex);
4566}
4567
a0ec95a8 4568static const struct seq_operations slabstats_op = {
871751e2
AV
4569 .start = leaks_start,
4570 .next = s_next,
4571 .stop = s_stop,
4572 .show = leaks_show,
4573};
a0ec95a8
AD
4574
4575static int slabstats_open(struct inode *inode, struct file *file)
4576{
4577 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4578 int ret = -ENOMEM;
4579 if (n) {
4580 ret = seq_open(file, &slabstats_op);
4581 if (!ret) {
4582 struct seq_file *m = file->private_data;
4583 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4584 m->private = n;
4585 n = NULL;
4586 }
4587 kfree(n);
4588 }
4589 return ret;
4590}
4591
4592static const struct file_operations proc_slabstats_operations = {
4593 .open = slabstats_open,
4594 .read = seq_read,
4595 .llseek = seq_lseek,
4596 .release = seq_release_private,
4597};
4598#endif
4599
4600static int __init slab_proc_init(void)
4601{
4602#ifdef CONFIG_DEBUG_SLAB_LEAK
4603 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4604#endif
a0ec95a8
AD
4605 return 0;
4606}
4607module_init(slab_proc_init);
1da177e4
LT
4608#endif
4609
00e145b6
MS
4610/**
4611 * ksize - get the actual amount of memory allocated for a given object
4612 * @objp: Pointer to the object
4613 *
4614 * kmalloc may internally round up allocations and return more memory
4615 * than requested. ksize() can be used to determine the actual amount of
4616 * memory allocated. The caller may use this additional memory, even though
4617 * a smaller amount of memory was initially specified with the kmalloc call.
4618 * The caller must guarantee that objp points to a valid object previously
4619 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4620 * must not be freed during the duration of the call.
4621 */
fd76bab2 4622size_t ksize(const void *objp)
1da177e4 4623{
ef8b4520
CL
4624 BUG_ON(!objp);
4625 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4626 return 0;
1da177e4 4627
8c138bc0 4628 return virt_to_cache(objp)->object_size;
1da177e4 4629}
b1aabecd 4630EXPORT_SYMBOL(ksize);