workqueue: implicit ordered attribute should be overridable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
e22bee78 50
ea138446 51#include "workqueue_internal.h"
1da177e4 52
c8e55f36 53enum {
24647570
TH
54 /*
55 * worker_pool flags
bc2ae0f5 56 *
24647570 57 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 64 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 65 *
bc3a1afc
TH
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
24647570 68 * create_worker() is in progress.
bc2ae0f5 69 */
11ebea50 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36
TH
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
3270476a 105 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
822d8405
TH
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
3c25a55d
LJ
133 * WQ: wq->mutex protected.
134 *
b5927605 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
136 *
137 * MD: wq_mayday_lock protected.
1da177e4 138 */
1da177e4 139
2eaebdb3 140/* struct worker is defined in workqueue_internal.h */
c34056a3 141
bd7bdd43 142struct worker_pool {
d565ed63 143 spinlock_t lock; /* the pool lock */
d84ff051 144 int cpu; /* I: the associated cpu */
f3f90ad4 145 int node; /* I: the associated node ID */
9daf9e67 146 int id; /* I: pool ID */
11ebea50 147 unsigned int flags; /* X: flags */
bd7bdd43
TH
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
151
152 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
c5aa87bb 159 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
bc3a1afc 163 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 164 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 165 struct mutex manager_mutex; /* manager exclusion */
822d8405 166 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
bce90380
TH
275static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
4c16bd32
TH
277/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
68e13a67 280static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 281static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 282
68e13a67
LJ
283static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
285
286/* the per-cpu worker pools */
287static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
68e13a67 290static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 291
68e13a67 292/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
293static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
c5aa87bb 295/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
296static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
ced4ac92
TH
298/* I: attributes used when instantiating ordered pools on demand */
299static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
d320c038 301struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 302EXPORT_SYMBOL(system_wq);
044c782c 303struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 304EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 305struct workqueue_struct *system_long_wq __read_mostly;
d320c038 306EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 307struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 308EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 309struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 310EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 311
7d19c5ce
TH
312static int worker_thread(void *__worker);
313static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
97bd2347
TH
316#define CREATE_TRACE_POINTS
317#include <trace/events/workqueue.h>
318
68e13a67 319#define assert_rcu_or_pool_mutex() \
5bcab335 320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
5bcab335 323
b09f4fd3 324#define assert_rcu_or_wq_mutex(wq) \
76af4d93 325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 326 lockdep_is_held(&wq->mutex), \
b09f4fd3 327 "sched RCU or wq->mutex should be held")
76af4d93 328
822d8405
TH
329#ifdef CONFIG_LOCKDEP
330#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335#else
336#define assert_manager_or_pool_lock(pool) do { } while (0)
337#endif
338
f02ae73a
TH
339#define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 342 (pool)++)
4ce62e9e 343
17116969
TH
344/**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
611c92a0 347 * @pi: integer used for iteration
fa1b54e6 348 *
68e13a67
LJ
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
17116969 355 */
611c92a0
TH
356#define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 359 else
17116969 360
822d8405
TH
361/**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372#define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
49e3cf44
TH
377/**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
76af4d93 381 *
b09f4fd3 382 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
49e3cf44
TH
388 */
389#define for_each_pwq(pwq, wq) \
76af4d93 390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 392 else
f3421797 393
dc186ad7
TG
394#ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396static struct debug_obj_descr work_debug_descr;
397
99777288
SG
398static void *work_debug_hint(void *addr)
399{
400 return ((struct work_struct *) addr)->func;
401}
402
dc186ad7
TG
403/*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407static int work_fixup_init(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421/*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426static int work_fixup_activate(void *addr, enum debug_obj_state state)
427{
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
22df02bb 438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452}
453
454/*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458static int work_fixup_free(void *addr, enum debug_obj_state state)
459{
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470}
471
472static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
99777288 474 .debug_hint = work_debug_hint,
dc186ad7
TG
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478};
479
480static inline void debug_work_activate(struct work_struct *work)
481{
482 debug_object_activate(work, &work_debug_descr);
483}
484
485static inline void debug_work_deactivate(struct work_struct *work)
486{
487 debug_object_deactivate(work, &work_debug_descr);
488}
489
490void __init_work(struct work_struct *work, int onstack)
491{
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496}
497EXPORT_SYMBOL_GPL(__init_work);
498
499void destroy_work_on_stack(struct work_struct *work)
500{
501 debug_object_free(work, &work_debug_descr);
502}
503EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505#else
506static inline void debug_work_activate(struct work_struct *work) { }
507static inline void debug_work_deactivate(struct work_struct *work) { }
508#endif
509
9daf9e67
TH
510/* allocate ID and assign it to @pool */
511static int worker_pool_assign_id(struct worker_pool *pool)
512{
513 int ret;
514
68e13a67 515 lockdep_assert_held(&wq_pool_mutex);
5bcab335 516
e68035fb 517 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
229641a6 518 if (ret >= 0) {
e68035fb 519 pool->id = ret;
229641a6
TH
520 return 0;
521 }
fa1b54e6 522 return ret;
7c3eed5c
TH
523}
524
df2d5ae4
TH
525/**
526 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
527 * @wq: the target workqueue
528 * @node: the node ID
529 *
530 * This must be called either with pwq_lock held or sched RCU read locked.
531 * If the pwq needs to be used beyond the locking in effect, the caller is
532 * responsible for guaranteeing that the pwq stays online.
533 */
534static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
535 int node)
536{
537 assert_rcu_or_wq_mutex(wq);
538 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
539}
540
73f53c4a
TH
541static unsigned int work_color_to_flags(int color)
542{
543 return color << WORK_STRUCT_COLOR_SHIFT;
544}
545
546static int get_work_color(struct work_struct *work)
547{
548 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
549 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
550}
551
552static int work_next_color(int color)
553{
554 return (color + 1) % WORK_NR_COLORS;
555}
1da177e4 556
14441960 557/*
112202d9
TH
558 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
559 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 560 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 561 *
112202d9
TH
562 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
563 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
564 * work->data. These functions should only be called while the work is
565 * owned - ie. while the PENDING bit is set.
7a22ad75 566 *
112202d9 567 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 568 * corresponding to a work. Pool is available once the work has been
112202d9 569 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 570 * available only while the work item is queued.
7a22ad75 571 *
bbb68dfa
TH
572 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
573 * canceled. While being canceled, a work item may have its PENDING set
574 * but stay off timer and worklist for arbitrarily long and nobody should
575 * try to steal the PENDING bit.
14441960 576 */
7a22ad75
TH
577static inline void set_work_data(struct work_struct *work, unsigned long data,
578 unsigned long flags)
365970a1 579{
6183c009 580 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
581 atomic_long_set(&work->data, data | flags | work_static(work));
582}
365970a1 583
112202d9 584static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
585 unsigned long extra_flags)
586{
112202d9
TH
587 set_work_data(work, (unsigned long)pwq,
588 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
589}
590
4468a00f
LJ
591static void set_work_pool_and_keep_pending(struct work_struct *work,
592 int pool_id)
593{
594 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
595 WORK_STRUCT_PENDING);
596}
597
7c3eed5c
TH
598static void set_work_pool_and_clear_pending(struct work_struct *work,
599 int pool_id)
7a22ad75 600{
23657bb1
TH
601 /*
602 * The following wmb is paired with the implied mb in
603 * test_and_set_bit(PENDING) and ensures all updates to @work made
604 * here are visible to and precede any updates by the next PENDING
605 * owner.
606 */
607 smp_wmb();
7c3eed5c 608 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
8a872b18
RP
609 /*
610 * The following mb guarantees that previous clear of a PENDING bit
611 * will not be reordered with any speculative LOADS or STORES from
612 * work->current_func, which is executed afterwards. This possible
613 * reordering can lead to a missed execution on attempt to qeueue
614 * the same @work. E.g. consider this case:
615 *
616 * CPU#0 CPU#1
617 * ---------------------------- --------------------------------
618 *
619 * 1 STORE event_indicated
620 * 2 queue_work_on() {
621 * 3 test_and_set_bit(PENDING)
622 * 4 } set_..._and_clear_pending() {
623 * 5 set_work_data() # clear bit
624 * 6 smp_mb()
625 * 7 work->current_func() {
626 * 8 LOAD event_indicated
627 * }
628 *
629 * Without an explicit full barrier speculative LOAD on line 8 can
630 * be executed before CPU#0 does STORE on line 1. If that happens,
631 * CPU#0 observes the PENDING bit is still set and new execution of
632 * a @work is not queued in a hope, that CPU#1 will eventually
633 * finish the queued @work. Meanwhile CPU#1 does not see
634 * event_indicated is set, because speculative LOAD was executed
635 * before actual STORE.
636 */
637 smp_mb();
7a22ad75 638}
f756d5e2 639
7a22ad75 640static void clear_work_data(struct work_struct *work)
1da177e4 641{
7c3eed5c
TH
642 smp_wmb(); /* see set_work_pool_and_clear_pending() */
643 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
644}
645
112202d9 646static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 647{
e120153d 648 unsigned long data = atomic_long_read(&work->data);
7a22ad75 649
112202d9 650 if (data & WORK_STRUCT_PWQ)
e120153d
TH
651 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
652 else
653 return NULL;
4d707b9f
ON
654}
655
7c3eed5c
TH
656/**
657 * get_work_pool - return the worker_pool a given work was associated with
658 * @work: the work item of interest
659 *
660 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 661 *
68e13a67
LJ
662 * Pools are created and destroyed under wq_pool_mutex, and allows read
663 * access under sched-RCU read lock. As such, this function should be
664 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
665 *
666 * All fields of the returned pool are accessible as long as the above
667 * mentioned locking is in effect. If the returned pool needs to be used
668 * beyond the critical section, the caller is responsible for ensuring the
669 * returned pool is and stays online.
7c3eed5c
TH
670 */
671static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 672{
e120153d 673 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 674 int pool_id;
7a22ad75 675
68e13a67 676 assert_rcu_or_pool_mutex();
fa1b54e6 677
112202d9
TH
678 if (data & WORK_STRUCT_PWQ)
679 return ((struct pool_workqueue *)
7c3eed5c 680 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 681
7c3eed5c
TH
682 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
683 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
684 return NULL;
685
fa1b54e6 686 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
687}
688
689/**
690 * get_work_pool_id - return the worker pool ID a given work is associated with
691 * @work: the work item of interest
692 *
693 * Return the worker_pool ID @work was last associated with.
694 * %WORK_OFFQ_POOL_NONE if none.
695 */
696static int get_work_pool_id(struct work_struct *work)
697{
54d5b7d0
LJ
698 unsigned long data = atomic_long_read(&work->data);
699
112202d9
TH
700 if (data & WORK_STRUCT_PWQ)
701 return ((struct pool_workqueue *)
54d5b7d0 702 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 703
54d5b7d0 704 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
705}
706
bbb68dfa
TH
707static void mark_work_canceling(struct work_struct *work)
708{
7c3eed5c 709 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 710
7c3eed5c
TH
711 pool_id <<= WORK_OFFQ_POOL_SHIFT;
712 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
713}
714
715static bool work_is_canceling(struct work_struct *work)
716{
717 unsigned long data = atomic_long_read(&work->data);
718
112202d9 719 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
720}
721
e22bee78 722/*
3270476a
TH
723 * Policy functions. These define the policies on how the global worker
724 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 725 * they're being called with pool->lock held.
e22bee78
TH
726 */
727
63d95a91 728static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 729{
e19e397a 730 return !atomic_read(&pool->nr_running);
a848e3b6
ON
731}
732
4594bf15 733/*
e22bee78
TH
734 * Need to wake up a worker? Called from anything but currently
735 * running workers.
974271c4
TH
736 *
737 * Note that, because unbound workers never contribute to nr_running, this
706026c2 738 * function will always return %true for unbound pools as long as the
974271c4 739 * worklist isn't empty.
4594bf15 740 */
63d95a91 741static bool need_more_worker(struct worker_pool *pool)
365970a1 742{
63d95a91 743 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 744}
4594bf15 745
e22bee78 746/* Can I start working? Called from busy but !running workers. */
63d95a91 747static bool may_start_working(struct worker_pool *pool)
e22bee78 748{
63d95a91 749 return pool->nr_idle;
e22bee78
TH
750}
751
752/* Do I need to keep working? Called from currently running workers. */
63d95a91 753static bool keep_working(struct worker_pool *pool)
e22bee78 754{
e19e397a
TH
755 return !list_empty(&pool->worklist) &&
756 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
757}
758
759/* Do we need a new worker? Called from manager. */
63d95a91 760static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 761{
63d95a91 762 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 763}
365970a1 764
e22bee78 765/* Do I need to be the manager? */
63d95a91 766static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 767{
63d95a91 768 return need_to_create_worker(pool) ||
11ebea50 769 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
770}
771
772/* Do we have too many workers and should some go away? */
63d95a91 773static bool too_many_workers(struct worker_pool *pool)
e22bee78 774{
34a06bd6 775 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
776 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
777 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 778
ea1abd61
LJ
779 /*
780 * nr_idle and idle_list may disagree if idle rebinding is in
781 * progress. Never return %true if idle_list is empty.
782 */
783 if (list_empty(&pool->idle_list))
784 return false;
785
e22bee78 786 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
787}
788
4d707b9f 789/*
e22bee78
TH
790 * Wake up functions.
791 */
792
7e11629d 793/* Return the first worker. Safe with preemption disabled */
63d95a91 794static struct worker *first_worker(struct worker_pool *pool)
7e11629d 795{
63d95a91 796 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
797 return NULL;
798
63d95a91 799 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
800}
801
802/**
803 * wake_up_worker - wake up an idle worker
63d95a91 804 * @pool: worker pool to wake worker from
7e11629d 805 *
63d95a91 806 * Wake up the first idle worker of @pool.
7e11629d
TH
807 *
808 * CONTEXT:
d565ed63 809 * spin_lock_irq(pool->lock).
7e11629d 810 */
63d95a91 811static void wake_up_worker(struct worker_pool *pool)
7e11629d 812{
63d95a91 813 struct worker *worker = first_worker(pool);
7e11629d
TH
814
815 if (likely(worker))
816 wake_up_process(worker->task);
817}
818
d302f017 819/**
e22bee78
TH
820 * wq_worker_waking_up - a worker is waking up
821 * @task: task waking up
822 * @cpu: CPU @task is waking up to
823 *
824 * This function is called during try_to_wake_up() when a worker is
825 * being awoken.
826 *
827 * CONTEXT:
828 * spin_lock_irq(rq->lock)
829 */
d84ff051 830void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
831{
832 struct worker *worker = kthread_data(task);
833
36576000 834 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 835 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 836 atomic_inc(&worker->pool->nr_running);
36576000 837 }
e22bee78
TH
838}
839
840/**
841 * wq_worker_sleeping - a worker is going to sleep
842 * @task: task going to sleep
843 * @cpu: CPU in question, must be the current CPU number
844 *
845 * This function is called during schedule() when a busy worker is
846 * going to sleep. Worker on the same cpu can be woken up by
847 * returning pointer to its task.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 *
852 * RETURNS:
853 * Worker task on @cpu to wake up, %NULL if none.
854 */
d84ff051 855struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
856{
857 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 858 struct worker_pool *pool;
e22bee78 859
111c225a
TH
860 /*
861 * Rescuers, which may not have all the fields set up like normal
862 * workers, also reach here, let's not access anything before
863 * checking NOT_RUNNING.
864 */
2d64672e 865 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
866 return NULL;
867
111c225a 868 pool = worker->pool;
111c225a 869
e22bee78 870 /* this can only happen on the local cpu */
6183c009
TH
871 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
872 return NULL;
e22bee78
TH
873
874 /*
875 * The counterpart of the following dec_and_test, implied mb,
876 * worklist not empty test sequence is in insert_work().
877 * Please read comment there.
878 *
628c78e7
TH
879 * NOT_RUNNING is clear. This means that we're bound to and
880 * running on the local cpu w/ rq lock held and preemption
881 * disabled, which in turn means that none else could be
d565ed63 882 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 883 * lock is safe.
e22bee78 884 */
e19e397a
TH
885 if (atomic_dec_and_test(&pool->nr_running) &&
886 !list_empty(&pool->worklist))
63d95a91 887 to_wakeup = first_worker(pool);
e22bee78
TH
888 return to_wakeup ? to_wakeup->task : NULL;
889}
890
891/**
892 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 893 * @worker: self
d302f017
TH
894 * @flags: flags to set
895 * @wakeup: wakeup an idle worker if necessary
896 *
e22bee78
TH
897 * Set @flags in @worker->flags and adjust nr_running accordingly. If
898 * nr_running becomes zero and @wakeup is %true, an idle worker is
899 * woken up.
d302f017 900 *
cb444766 901 * CONTEXT:
d565ed63 902 * spin_lock_irq(pool->lock)
d302f017
TH
903 */
904static inline void worker_set_flags(struct worker *worker, unsigned int flags,
905 bool wakeup)
906{
bd7bdd43 907 struct worker_pool *pool = worker->pool;
e22bee78 908
cb444766
TH
909 WARN_ON_ONCE(worker->task != current);
910
e22bee78
TH
911 /*
912 * If transitioning into NOT_RUNNING, adjust nr_running and
913 * wake up an idle worker as necessary if requested by
914 * @wakeup.
915 */
916 if ((flags & WORKER_NOT_RUNNING) &&
917 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 918 if (wakeup) {
e19e397a 919 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 920 !list_empty(&pool->worklist))
63d95a91 921 wake_up_worker(pool);
e22bee78 922 } else
e19e397a 923 atomic_dec(&pool->nr_running);
e22bee78
TH
924 }
925
d302f017
TH
926 worker->flags |= flags;
927}
928
929/**
e22bee78 930 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 931 * @worker: self
d302f017
TH
932 * @flags: flags to clear
933 *
e22bee78 934 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 935 *
cb444766 936 * CONTEXT:
d565ed63 937 * spin_lock_irq(pool->lock)
d302f017
TH
938 */
939static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
940{
63d95a91 941 struct worker_pool *pool = worker->pool;
e22bee78
TH
942 unsigned int oflags = worker->flags;
943
cb444766
TH
944 WARN_ON_ONCE(worker->task != current);
945
d302f017 946 worker->flags &= ~flags;
e22bee78 947
42c025f3
TH
948 /*
949 * If transitioning out of NOT_RUNNING, increment nr_running. Note
950 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
951 * of multiple flags, not a single flag.
952 */
e22bee78
TH
953 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
954 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 955 atomic_inc(&pool->nr_running);
d302f017
TH
956}
957
8cca0eea
TH
958/**
959 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 960 * @pool: pool of interest
8cca0eea
TH
961 * @work: work to find worker for
962 *
c9e7cf27
TH
963 * Find a worker which is executing @work on @pool by searching
964 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
965 * to match, its current execution should match the address of @work and
966 * its work function. This is to avoid unwanted dependency between
967 * unrelated work executions through a work item being recycled while still
968 * being executed.
969 *
970 * This is a bit tricky. A work item may be freed once its execution
971 * starts and nothing prevents the freed area from being recycled for
972 * another work item. If the same work item address ends up being reused
973 * before the original execution finishes, workqueue will identify the
974 * recycled work item as currently executing and make it wait until the
975 * current execution finishes, introducing an unwanted dependency.
976 *
c5aa87bb
TH
977 * This function checks the work item address and work function to avoid
978 * false positives. Note that this isn't complete as one may construct a
979 * work function which can introduce dependency onto itself through a
980 * recycled work item. Well, if somebody wants to shoot oneself in the
981 * foot that badly, there's only so much we can do, and if such deadlock
982 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
983 *
984 * CONTEXT:
d565ed63 985 * spin_lock_irq(pool->lock).
8cca0eea
TH
986 *
987 * RETURNS:
988 * Pointer to worker which is executing @work if found, NULL
989 * otherwise.
4d707b9f 990 */
c9e7cf27 991static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 992 struct work_struct *work)
4d707b9f 993{
42f8570f 994 struct worker *worker;
42f8570f 995
b67bfe0d 996 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
997 (unsigned long)work)
998 if (worker->current_work == work &&
999 worker->current_func == work->func)
42f8570f
SL
1000 return worker;
1001
1002 return NULL;
4d707b9f
ON
1003}
1004
bf4ede01
TH
1005/**
1006 * move_linked_works - move linked works to a list
1007 * @work: start of series of works to be scheduled
1008 * @head: target list to append @work to
1009 * @nextp: out paramter for nested worklist walking
1010 *
1011 * Schedule linked works starting from @work to @head. Work series to
1012 * be scheduled starts at @work and includes any consecutive work with
1013 * WORK_STRUCT_LINKED set in its predecessor.
1014 *
1015 * If @nextp is not NULL, it's updated to point to the next work of
1016 * the last scheduled work. This allows move_linked_works() to be
1017 * nested inside outer list_for_each_entry_safe().
1018 *
1019 * CONTEXT:
d565ed63 1020 * spin_lock_irq(pool->lock).
bf4ede01
TH
1021 */
1022static void move_linked_works(struct work_struct *work, struct list_head *head,
1023 struct work_struct **nextp)
1024{
1025 struct work_struct *n;
1026
1027 /*
1028 * Linked worklist will always end before the end of the list,
1029 * use NULL for list head.
1030 */
1031 list_for_each_entry_safe_from(work, n, NULL, entry) {
1032 list_move_tail(&work->entry, head);
1033 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1034 break;
1035 }
1036
1037 /*
1038 * If we're already inside safe list traversal and have moved
1039 * multiple works to the scheduled queue, the next position
1040 * needs to be updated.
1041 */
1042 if (nextp)
1043 *nextp = n;
1044}
1045
8864b4e5
TH
1046/**
1047 * get_pwq - get an extra reference on the specified pool_workqueue
1048 * @pwq: pool_workqueue to get
1049 *
1050 * Obtain an extra reference on @pwq. The caller should guarantee that
1051 * @pwq has positive refcnt and be holding the matching pool->lock.
1052 */
1053static void get_pwq(struct pool_workqueue *pwq)
1054{
1055 lockdep_assert_held(&pwq->pool->lock);
1056 WARN_ON_ONCE(pwq->refcnt <= 0);
1057 pwq->refcnt++;
1058}
1059
1060/**
1061 * put_pwq - put a pool_workqueue reference
1062 * @pwq: pool_workqueue to put
1063 *
1064 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1065 * destruction. The caller should be holding the matching pool->lock.
1066 */
1067static void put_pwq(struct pool_workqueue *pwq)
1068{
1069 lockdep_assert_held(&pwq->pool->lock);
1070 if (likely(--pwq->refcnt))
1071 return;
1072 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1073 return;
1074 /*
1075 * @pwq can't be released under pool->lock, bounce to
1076 * pwq_unbound_release_workfn(). This never recurses on the same
1077 * pool->lock as this path is taken only for unbound workqueues and
1078 * the release work item is scheduled on a per-cpu workqueue. To
1079 * avoid lockdep warning, unbound pool->locks are given lockdep
1080 * subclass of 1 in get_unbound_pool().
1081 */
1082 schedule_work(&pwq->unbound_release_work);
1083}
1084
dce90d47
TH
1085/**
1086 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1087 * @pwq: pool_workqueue to put (can be %NULL)
1088 *
1089 * put_pwq() with locking. This function also allows %NULL @pwq.
1090 */
1091static void put_pwq_unlocked(struct pool_workqueue *pwq)
1092{
1093 if (pwq) {
1094 /*
1095 * As both pwqs and pools are sched-RCU protected, the
1096 * following lock operations are safe.
1097 */
1098 spin_lock_irq(&pwq->pool->lock);
1099 put_pwq(pwq);
1100 spin_unlock_irq(&pwq->pool->lock);
1101 }
1102}
1103
112202d9 1104static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1105{
112202d9 1106 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1107
1108 trace_workqueue_activate_work(work);
112202d9 1109 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1110 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1111 pwq->nr_active++;
bf4ede01
TH
1112}
1113
112202d9 1114static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1115{
112202d9 1116 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1117 struct work_struct, entry);
1118
112202d9 1119 pwq_activate_delayed_work(work);
3aa62497
LJ
1120}
1121
bf4ede01 1122/**
112202d9
TH
1123 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1124 * @pwq: pwq of interest
bf4ede01 1125 * @color: color of work which left the queue
bf4ede01
TH
1126 *
1127 * A work either has completed or is removed from pending queue,
112202d9 1128 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1129 *
1130 * CONTEXT:
d565ed63 1131 * spin_lock_irq(pool->lock).
bf4ede01 1132 */
112202d9 1133static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1134{
8864b4e5 1135 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1136 if (color == WORK_NO_COLOR)
8864b4e5 1137 goto out_put;
bf4ede01 1138
112202d9 1139 pwq->nr_in_flight[color]--;
bf4ede01 1140
112202d9
TH
1141 pwq->nr_active--;
1142 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1143 /* one down, submit a delayed one */
112202d9
TH
1144 if (pwq->nr_active < pwq->max_active)
1145 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1146 }
1147
1148 /* is flush in progress and are we at the flushing tip? */
112202d9 1149 if (likely(pwq->flush_color != color))
8864b4e5 1150 goto out_put;
bf4ede01
TH
1151
1152 /* are there still in-flight works? */
112202d9 1153 if (pwq->nr_in_flight[color])
8864b4e5 1154 goto out_put;
bf4ede01 1155
112202d9
TH
1156 /* this pwq is done, clear flush_color */
1157 pwq->flush_color = -1;
bf4ede01
TH
1158
1159 /*
112202d9 1160 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1161 * will handle the rest.
1162 */
112202d9
TH
1163 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1164 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1165out_put:
1166 put_pwq(pwq);
bf4ede01
TH
1167}
1168
36e227d2 1169/**
bbb68dfa 1170 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1171 * @work: work item to steal
1172 * @is_dwork: @work is a delayed_work
bbb68dfa 1173 * @flags: place to store irq state
36e227d2
TH
1174 *
1175 * Try to grab PENDING bit of @work. This function can handle @work in any
1176 * stable state - idle, on timer or on worklist. Return values are
1177 *
1178 * 1 if @work was pending and we successfully stole PENDING
1179 * 0 if @work was idle and we claimed PENDING
1180 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1181 * -ENOENT if someone else is canceling @work, this state may persist
1182 * for arbitrarily long
36e227d2 1183 *
bbb68dfa 1184 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1185 * interrupted while holding PENDING and @work off queue, irq must be
1186 * disabled on entry. This, combined with delayed_work->timer being
1187 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1188 *
1189 * On successful return, >= 0, irq is disabled and the caller is
1190 * responsible for releasing it using local_irq_restore(*@flags).
1191 *
e0aecdd8 1192 * This function is safe to call from any context including IRQ handler.
bf4ede01 1193 */
bbb68dfa
TH
1194static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1195 unsigned long *flags)
bf4ede01 1196{
d565ed63 1197 struct worker_pool *pool;
112202d9 1198 struct pool_workqueue *pwq;
bf4ede01 1199
bbb68dfa
TH
1200 local_irq_save(*flags);
1201
36e227d2
TH
1202 /* try to steal the timer if it exists */
1203 if (is_dwork) {
1204 struct delayed_work *dwork = to_delayed_work(work);
1205
e0aecdd8
TH
1206 /*
1207 * dwork->timer is irqsafe. If del_timer() fails, it's
1208 * guaranteed that the timer is not queued anywhere and not
1209 * running on the local CPU.
1210 */
36e227d2
TH
1211 if (likely(del_timer(&dwork->timer)))
1212 return 1;
1213 }
1214
1215 /* try to claim PENDING the normal way */
bf4ede01
TH
1216 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1217 return 0;
1218
1219 /*
1220 * The queueing is in progress, or it is already queued. Try to
1221 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1222 */
d565ed63
TH
1223 pool = get_work_pool(work);
1224 if (!pool)
bbb68dfa 1225 goto fail;
bf4ede01 1226
d565ed63 1227 spin_lock(&pool->lock);
0b3dae68 1228 /*
112202d9
TH
1229 * work->data is guaranteed to point to pwq only while the work
1230 * item is queued on pwq->wq, and both updating work->data to point
1231 * to pwq on queueing and to pool on dequeueing are done under
1232 * pwq->pool->lock. This in turn guarantees that, if work->data
1233 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1234 * item is currently queued on that pool.
1235 */
112202d9
TH
1236 pwq = get_work_pwq(work);
1237 if (pwq && pwq->pool == pool) {
16062836
TH
1238 debug_work_deactivate(work);
1239
1240 /*
1241 * A delayed work item cannot be grabbed directly because
1242 * it might have linked NO_COLOR work items which, if left
112202d9 1243 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1244 * management later on and cause stall. Make sure the work
1245 * item is activated before grabbing.
1246 */
1247 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1248 pwq_activate_delayed_work(work);
16062836
TH
1249
1250 list_del_init(&work->entry);
112202d9 1251 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1252
112202d9 1253 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1254 set_work_pool_and_keep_pending(work, pool->id);
1255
1256 spin_unlock(&pool->lock);
1257 return 1;
bf4ede01 1258 }
d565ed63 1259 spin_unlock(&pool->lock);
bbb68dfa
TH
1260fail:
1261 local_irq_restore(*flags);
1262 if (work_is_canceling(work))
1263 return -ENOENT;
1264 cpu_relax();
36e227d2 1265 return -EAGAIN;
bf4ede01
TH
1266}
1267
4690c4ab 1268/**
706026c2 1269 * insert_work - insert a work into a pool
112202d9 1270 * @pwq: pwq @work belongs to
4690c4ab
TH
1271 * @work: work to insert
1272 * @head: insertion point
1273 * @extra_flags: extra WORK_STRUCT_* flags to set
1274 *
112202d9 1275 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1276 * work_struct flags.
4690c4ab
TH
1277 *
1278 * CONTEXT:
d565ed63 1279 * spin_lock_irq(pool->lock).
4690c4ab 1280 */
112202d9
TH
1281static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1282 struct list_head *head, unsigned int extra_flags)
b89deed3 1283{
112202d9 1284 struct worker_pool *pool = pwq->pool;
e22bee78 1285
4690c4ab 1286 /* we own @work, set data and link */
112202d9 1287 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1288 list_add_tail(&work->entry, head);
8864b4e5 1289 get_pwq(pwq);
e22bee78
TH
1290
1291 /*
c5aa87bb
TH
1292 * Ensure either wq_worker_sleeping() sees the above
1293 * list_add_tail() or we see zero nr_running to avoid workers lying
1294 * around lazily while there are works to be processed.
e22bee78
TH
1295 */
1296 smp_mb();
1297
63d95a91
TH
1298 if (__need_more_worker(pool))
1299 wake_up_worker(pool);
b89deed3
ON
1300}
1301
c8efcc25
TH
1302/*
1303 * Test whether @work is being queued from another work executing on the
8d03ecfe 1304 * same workqueue.
c8efcc25
TH
1305 */
1306static bool is_chained_work(struct workqueue_struct *wq)
1307{
8d03ecfe
TH
1308 struct worker *worker;
1309
1310 worker = current_wq_worker();
1311 /*
1312 * Return %true iff I'm a worker execuing a work item on @wq. If
1313 * I'm @worker, it's safe to dereference it without locking.
1314 */
112202d9 1315 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1316}
1317
d84ff051 1318static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1319 struct work_struct *work)
1320{
112202d9 1321 struct pool_workqueue *pwq;
c9178087 1322 struct worker_pool *last_pool;
1e19ffc6 1323 struct list_head *worklist;
8a2e8e5d 1324 unsigned int work_flags;
b75cac93 1325 unsigned int req_cpu = cpu;
8930caba
TH
1326
1327 /*
1328 * While a work item is PENDING && off queue, a task trying to
1329 * steal the PENDING will busy-loop waiting for it to either get
1330 * queued or lose PENDING. Grabbing PENDING and queueing should
1331 * happen with IRQ disabled.
1332 */
1333 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1334
dc186ad7 1335 debug_work_activate(work);
1e19ffc6 1336
c8efcc25 1337 /* if dying, only works from the same workqueue are allowed */
618b01eb 1338 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1339 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1340 return;
9e8cd2f5 1341retry:
df2d5ae4
TH
1342 if (req_cpu == WORK_CPU_UNBOUND)
1343 cpu = raw_smp_processor_id();
1344
c9178087 1345 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1346 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1347 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1348 else
1349 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1350
c9178087
TH
1351 /*
1352 * If @work was previously on a different pool, it might still be
1353 * running there, in which case the work needs to be queued on that
1354 * pool to guarantee non-reentrancy.
1355 */
1356 last_pool = get_work_pool(work);
1357 if (last_pool && last_pool != pwq->pool) {
1358 struct worker *worker;
18aa9eff 1359
c9178087 1360 spin_lock(&last_pool->lock);
18aa9eff 1361
c9178087 1362 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1363
c9178087
TH
1364 if (worker && worker->current_pwq->wq == wq) {
1365 pwq = worker->current_pwq;
8930caba 1366 } else {
c9178087
TH
1367 /* meh... not running there, queue here */
1368 spin_unlock(&last_pool->lock);
112202d9 1369 spin_lock(&pwq->pool->lock);
8930caba 1370 }
f3421797 1371 } else {
112202d9 1372 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1373 }
1374
9e8cd2f5
TH
1375 /*
1376 * pwq is determined and locked. For unbound pools, we could have
1377 * raced with pwq release and it could already be dead. If its
1378 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1379 * without another pwq replacing it in the numa_pwq_tbl or while
1380 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1381 * make forward-progress.
1382 */
1383 if (unlikely(!pwq->refcnt)) {
1384 if (wq->flags & WQ_UNBOUND) {
1385 spin_unlock(&pwq->pool->lock);
1386 cpu_relax();
1387 goto retry;
1388 }
1389 /* oops */
1390 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1391 wq->name, cpu);
1392 }
1393
112202d9
TH
1394 /* pwq determined, queue */
1395 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1396
f5b2552b 1397 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1398 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1399 return;
1400 }
1e19ffc6 1401
112202d9
TH
1402 pwq->nr_in_flight[pwq->work_color]++;
1403 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1404
112202d9 1405 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1406 trace_workqueue_activate_work(work);
112202d9
TH
1407 pwq->nr_active++;
1408 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1409 } else {
1410 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1411 worklist = &pwq->delayed_works;
8a2e8e5d 1412 }
1e19ffc6 1413
112202d9 1414 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1415
112202d9 1416 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1417}
1418
0fcb78c2 1419/**
c1a220e7
ZR
1420 * queue_work_on - queue work on specific cpu
1421 * @cpu: CPU number to execute work on
0fcb78c2
REB
1422 * @wq: workqueue to use
1423 * @work: work to queue
1424 *
d4283e93 1425 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1426 *
c1a220e7
ZR
1427 * We queue the work to a specific CPU, the caller must ensure it
1428 * can't go away.
1da177e4 1429 */
d4283e93
TH
1430bool queue_work_on(int cpu, struct workqueue_struct *wq,
1431 struct work_struct *work)
1da177e4 1432{
d4283e93 1433 bool ret = false;
8930caba 1434 unsigned long flags;
ef1ca236 1435
8930caba 1436 local_irq_save(flags);
c1a220e7 1437
22df02bb 1438 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1439 __queue_work(cpu, wq, work);
d4283e93 1440 ret = true;
c1a220e7 1441 }
ef1ca236 1442
8930caba 1443 local_irq_restore(flags);
1da177e4
LT
1444 return ret;
1445}
ad7b1f84 1446EXPORT_SYMBOL(queue_work_on);
1da177e4 1447
d8e794df 1448void delayed_work_timer_fn(unsigned long __data)
1da177e4 1449{
52bad64d 1450 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1451
e0aecdd8 1452 /* should have been called from irqsafe timer with irq already off */
60c057bc 1453 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1454}
1438ade5 1455EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1456
7beb2edf
TH
1457static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1458 struct delayed_work *dwork, unsigned long delay)
1da177e4 1459{
7beb2edf
TH
1460 struct timer_list *timer = &dwork->timer;
1461 struct work_struct *work = &dwork->work;
7beb2edf
TH
1462
1463 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1464 timer->data != (unsigned long)dwork);
fc4b514f
TH
1465 WARN_ON_ONCE(timer_pending(timer));
1466 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1467
8852aac2
TH
1468 /*
1469 * If @delay is 0, queue @dwork->work immediately. This is for
1470 * both optimization and correctness. The earliest @timer can
1471 * expire is on the closest next tick and delayed_work users depend
1472 * on that there's no such delay when @delay is 0.
1473 */
1474 if (!delay) {
1475 __queue_work(cpu, wq, &dwork->work);
1476 return;
1477 }
1478
7beb2edf 1479 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1480
60c057bc 1481 dwork->wq = wq;
1265057f 1482 dwork->cpu = cpu;
7beb2edf
TH
1483 timer->expires = jiffies + delay;
1484
49662cfc
TH
1485 if (unlikely(cpu != WORK_CPU_UNBOUND))
1486 add_timer_on(timer, cpu);
1487 else
1488 add_timer(timer);
1da177e4
LT
1489}
1490
0fcb78c2
REB
1491/**
1492 * queue_delayed_work_on - queue work on specific CPU after delay
1493 * @cpu: CPU number to execute work on
1494 * @wq: workqueue to use
af9997e4 1495 * @dwork: work to queue
0fcb78c2
REB
1496 * @delay: number of jiffies to wait before queueing
1497 *
715f1300
TH
1498 * Returns %false if @work was already on a queue, %true otherwise. If
1499 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1500 * execution.
0fcb78c2 1501 */
d4283e93
TH
1502bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1503 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1504{
52bad64d 1505 struct work_struct *work = &dwork->work;
d4283e93 1506 bool ret = false;
8930caba 1507 unsigned long flags;
7a6bc1cd 1508
8930caba
TH
1509 /* read the comment in __queue_work() */
1510 local_irq_save(flags);
7a6bc1cd 1511
22df02bb 1512 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1513 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1514 ret = true;
7a6bc1cd 1515 }
8a3e77cc 1516
8930caba 1517 local_irq_restore(flags);
7a6bc1cd
VP
1518 return ret;
1519}
ad7b1f84 1520EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1521
8376fe22
TH
1522/**
1523 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1524 * @cpu: CPU number to execute work on
1525 * @wq: workqueue to use
1526 * @dwork: work to queue
1527 * @delay: number of jiffies to wait before queueing
1528 *
1529 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1530 * modify @dwork's timer so that it expires after @delay. If @delay is
1531 * zero, @work is guaranteed to be scheduled immediately regardless of its
1532 * current state.
1533 *
1534 * Returns %false if @dwork was idle and queued, %true if @dwork was
1535 * pending and its timer was modified.
1536 *
e0aecdd8 1537 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1538 * See try_to_grab_pending() for details.
1539 */
1540bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1541 struct delayed_work *dwork, unsigned long delay)
1542{
1543 unsigned long flags;
1544 int ret;
c7fc77f7 1545
8376fe22
TH
1546 do {
1547 ret = try_to_grab_pending(&dwork->work, true, &flags);
1548 } while (unlikely(ret == -EAGAIN));
63bc0362 1549
8376fe22
TH
1550 if (likely(ret >= 0)) {
1551 __queue_delayed_work(cpu, wq, dwork, delay);
1552 local_irq_restore(flags);
7a6bc1cd 1553 }
8376fe22
TH
1554
1555 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1556 return ret;
1557}
8376fe22
TH
1558EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1559
c8e55f36
TH
1560/**
1561 * worker_enter_idle - enter idle state
1562 * @worker: worker which is entering idle state
1563 *
1564 * @worker is entering idle state. Update stats and idle timer if
1565 * necessary.
1566 *
1567 * LOCKING:
d565ed63 1568 * spin_lock_irq(pool->lock).
c8e55f36
TH
1569 */
1570static void worker_enter_idle(struct worker *worker)
1da177e4 1571{
bd7bdd43 1572 struct worker_pool *pool = worker->pool;
c8e55f36 1573
6183c009
TH
1574 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1575 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1576 (worker->hentry.next || worker->hentry.pprev)))
1577 return;
c8e55f36 1578
cb444766
TH
1579 /* can't use worker_set_flags(), also called from start_worker() */
1580 worker->flags |= WORKER_IDLE;
bd7bdd43 1581 pool->nr_idle++;
e22bee78 1582 worker->last_active = jiffies;
c8e55f36
TH
1583
1584 /* idle_list is LIFO */
bd7bdd43 1585 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1586
628c78e7
TH
1587 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1588 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1589
544ecf31 1590 /*
706026c2 1591 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1592 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1593 * nr_running, the warning may trigger spuriously. Check iff
1594 * unbind is not in progress.
544ecf31 1595 */
24647570 1596 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1597 pool->nr_workers == pool->nr_idle &&
e19e397a 1598 atomic_read(&pool->nr_running));
c8e55f36
TH
1599}
1600
1601/**
1602 * worker_leave_idle - leave idle state
1603 * @worker: worker which is leaving idle state
1604 *
1605 * @worker is leaving idle state. Update stats.
1606 *
1607 * LOCKING:
d565ed63 1608 * spin_lock_irq(pool->lock).
c8e55f36
TH
1609 */
1610static void worker_leave_idle(struct worker *worker)
1611{
bd7bdd43 1612 struct worker_pool *pool = worker->pool;
c8e55f36 1613
6183c009
TH
1614 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1615 return;
d302f017 1616 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1617 pool->nr_idle--;
c8e55f36
TH
1618 list_del_init(&worker->entry);
1619}
1620
e22bee78 1621/**
f36dc67b
LJ
1622 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1623 * @pool: target worker_pool
1624 *
1625 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1626 *
1627 * Works which are scheduled while the cpu is online must at least be
1628 * scheduled to a worker which is bound to the cpu so that if they are
1629 * flushed from cpu callbacks while cpu is going down, they are
1630 * guaranteed to execute on the cpu.
1631 *
f5faa077 1632 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1633 * themselves to the target cpu and may race with cpu going down or
1634 * coming online. kthread_bind() can't be used because it may put the
1635 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1636 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1637 * [dis]associated in the meantime.
1638 *
706026c2 1639 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1640 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1641 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1642 * enters idle state or fetches works without dropping lock, it can
1643 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1644 *
1645 * CONTEXT:
d565ed63 1646 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1647 * held.
1648 *
1649 * RETURNS:
706026c2 1650 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1651 * bound), %false if offline.
1652 */
f36dc67b 1653static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1654__acquires(&pool->lock)
e22bee78 1655{
e22bee78 1656 while (true) {
4e6045f1 1657 /*
e22bee78
TH
1658 * The following call may fail, succeed or succeed
1659 * without actually migrating the task to the cpu if
1660 * it races with cpu hotunplug operation. Verify
24647570 1661 * against POOL_DISASSOCIATED.
4e6045f1 1662 */
24647570 1663 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1664 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1665
d565ed63 1666 spin_lock_irq(&pool->lock);
24647570 1667 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1668 return false;
f5faa077 1669 if (task_cpu(current) == pool->cpu &&
7a4e344c 1670 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1671 return true;
d565ed63 1672 spin_unlock_irq(&pool->lock);
e22bee78 1673
5035b20f
TH
1674 /*
1675 * We've raced with CPU hot[un]plug. Give it a breather
1676 * and retry migration. cond_resched() is required here;
1677 * otherwise, we might deadlock against cpu_stop trying to
1678 * bring down the CPU on non-preemptive kernel.
1679 */
e22bee78 1680 cpu_relax();
5035b20f 1681 cond_resched();
e22bee78
TH
1682 }
1683}
1684
c34056a3
TH
1685static struct worker *alloc_worker(void)
1686{
1687 struct worker *worker;
1688
1689 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1690 if (worker) {
1691 INIT_LIST_HEAD(&worker->entry);
affee4b2 1692 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1693 /* on creation a worker is in !idle && prep state */
1694 worker->flags = WORKER_PREP;
c8e55f36 1695 }
c34056a3
TH
1696 return worker;
1697}
1698
1699/**
1700 * create_worker - create a new workqueue worker
63d95a91 1701 * @pool: pool the new worker will belong to
c34056a3 1702 *
63d95a91 1703 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1704 * can be started by calling start_worker() or destroyed using
1705 * destroy_worker().
1706 *
1707 * CONTEXT:
1708 * Might sleep. Does GFP_KERNEL allocations.
1709 *
1710 * RETURNS:
1711 * Pointer to the newly created worker.
1712 */
bc2ae0f5 1713static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1714{
c34056a3 1715 struct worker *worker = NULL;
f3421797 1716 int id = -1;
e3c916a4 1717 char id_buf[16];
c34056a3 1718
cd549687
TH
1719 lockdep_assert_held(&pool->manager_mutex);
1720
822d8405
TH
1721 /*
1722 * ID is needed to determine kthread name. Allocate ID first
1723 * without installing the pointer.
1724 */
1725 idr_preload(GFP_KERNEL);
d565ed63 1726 spin_lock_irq(&pool->lock);
822d8405
TH
1727
1728 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1729
d565ed63 1730 spin_unlock_irq(&pool->lock);
822d8405
TH
1731 idr_preload_end();
1732 if (id < 0)
1733 goto fail;
c34056a3
TH
1734
1735 worker = alloc_worker();
1736 if (!worker)
1737 goto fail;
1738
bd7bdd43 1739 worker->pool = pool;
c34056a3
TH
1740 worker->id = id;
1741
29c91e99 1742 if (pool->cpu >= 0)
e3c916a4
TH
1743 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1744 pool->attrs->nice < 0 ? "H" : "");
f3421797 1745 else
e3c916a4
TH
1746 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1747
f3f90ad4 1748 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1749 "kworker/%s", id_buf);
c34056a3
TH
1750 if (IS_ERR(worker->task))
1751 goto fail;
1752
c5aa87bb
TH
1753 /*
1754 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1755 * online CPUs. It'll be re-applied when any of the CPUs come up.
1756 */
7a4e344c
TH
1757 set_user_nice(worker->task, pool->attrs->nice);
1758 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1759
14a40ffc
TH
1760 /* prevent userland from meddling with cpumask of workqueue workers */
1761 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1762
1763 /*
1764 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1765 * remains stable across this function. See the comments above the
1766 * flag definition for details.
1767 */
1768 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1769 worker->flags |= WORKER_UNBOUND;
c34056a3 1770
822d8405
TH
1771 /* successful, commit the pointer to idr */
1772 spin_lock_irq(&pool->lock);
1773 idr_replace(&pool->worker_idr, worker, worker->id);
1774 spin_unlock_irq(&pool->lock);
1775
c34056a3 1776 return worker;
822d8405 1777
c34056a3
TH
1778fail:
1779 if (id >= 0) {
d565ed63 1780 spin_lock_irq(&pool->lock);
822d8405 1781 idr_remove(&pool->worker_idr, id);
d565ed63 1782 spin_unlock_irq(&pool->lock);
c34056a3
TH
1783 }
1784 kfree(worker);
1785 return NULL;
1786}
1787
1788/**
1789 * start_worker - start a newly created worker
1790 * @worker: worker to start
1791 *
706026c2 1792 * Make the pool aware of @worker and start it.
c34056a3
TH
1793 *
1794 * CONTEXT:
d565ed63 1795 * spin_lock_irq(pool->lock).
c34056a3
TH
1796 */
1797static void start_worker(struct worker *worker)
1798{
cb444766 1799 worker->flags |= WORKER_STARTED;
bd7bdd43 1800 worker->pool->nr_workers++;
c8e55f36 1801 worker_enter_idle(worker);
c34056a3
TH
1802 wake_up_process(worker->task);
1803}
1804
ebf44d16
TH
1805/**
1806 * create_and_start_worker - create and start a worker for a pool
1807 * @pool: the target pool
1808 *
cd549687 1809 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1810 */
1811static int create_and_start_worker(struct worker_pool *pool)
1812{
1813 struct worker *worker;
1814
cd549687
TH
1815 mutex_lock(&pool->manager_mutex);
1816
ebf44d16
TH
1817 worker = create_worker(pool);
1818 if (worker) {
1819 spin_lock_irq(&pool->lock);
1820 start_worker(worker);
1821 spin_unlock_irq(&pool->lock);
1822 }
1823
cd549687
TH
1824 mutex_unlock(&pool->manager_mutex);
1825
ebf44d16
TH
1826 return worker ? 0 : -ENOMEM;
1827}
1828
c34056a3
TH
1829/**
1830 * destroy_worker - destroy a workqueue worker
1831 * @worker: worker to be destroyed
1832 *
706026c2 1833 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1834 *
1835 * CONTEXT:
d565ed63 1836 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1837 */
1838static void destroy_worker(struct worker *worker)
1839{
bd7bdd43 1840 struct worker_pool *pool = worker->pool;
c34056a3 1841
cd549687
TH
1842 lockdep_assert_held(&pool->manager_mutex);
1843 lockdep_assert_held(&pool->lock);
1844
c34056a3 1845 /* sanity check frenzy */
6183c009
TH
1846 if (WARN_ON(worker->current_work) ||
1847 WARN_ON(!list_empty(&worker->scheduled)))
1848 return;
c34056a3 1849
c8e55f36 1850 if (worker->flags & WORKER_STARTED)
bd7bdd43 1851 pool->nr_workers--;
c8e55f36 1852 if (worker->flags & WORKER_IDLE)
bd7bdd43 1853 pool->nr_idle--;
c8e55f36 1854
4403be9e
LJ
1855 /*
1856 * Once WORKER_DIE is set, the kworker may destroy itself at any
1857 * point. Pin to ensure the task stays until we're done with it.
1858 */
1859 get_task_struct(worker->task);
1860
c8e55f36 1861 list_del_init(&worker->entry);
cb444766 1862 worker->flags |= WORKER_DIE;
c8e55f36 1863
822d8405
TH
1864 idr_remove(&pool->worker_idr, worker->id);
1865
d565ed63 1866 spin_unlock_irq(&pool->lock);
c8e55f36 1867
c34056a3 1868 kthread_stop(worker->task);
4403be9e 1869 put_task_struct(worker->task);
c34056a3
TH
1870 kfree(worker);
1871
d565ed63 1872 spin_lock_irq(&pool->lock);
c34056a3
TH
1873}
1874
63d95a91 1875static void idle_worker_timeout(unsigned long __pool)
e22bee78 1876{
63d95a91 1877 struct worker_pool *pool = (void *)__pool;
e22bee78 1878
d565ed63 1879 spin_lock_irq(&pool->lock);
e22bee78 1880
63d95a91 1881 if (too_many_workers(pool)) {
e22bee78
TH
1882 struct worker *worker;
1883 unsigned long expires;
1884
1885 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1886 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1887 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1888
1889 if (time_before(jiffies, expires))
63d95a91 1890 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1891 else {
1892 /* it's been idle for too long, wake up manager */
11ebea50 1893 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1894 wake_up_worker(pool);
d5abe669 1895 }
e22bee78
TH
1896 }
1897
d565ed63 1898 spin_unlock_irq(&pool->lock);
e22bee78 1899}
d5abe669 1900
493a1724 1901static void send_mayday(struct work_struct *work)
e22bee78 1902{
112202d9
TH
1903 struct pool_workqueue *pwq = get_work_pwq(work);
1904 struct workqueue_struct *wq = pwq->wq;
493a1724 1905
2e109a28 1906 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1907
493008a8 1908 if (!wq->rescuer)
493a1724 1909 return;
e22bee78
TH
1910
1911 /* mayday mayday mayday */
493a1724 1912 if (list_empty(&pwq->mayday_node)) {
aac8b37f
LJ
1913 /*
1914 * If @pwq is for an unbound wq, its base ref may be put at
1915 * any time due to an attribute change. Pin @pwq until the
1916 * rescuer is done with it.
1917 */
1918 get_pwq(pwq);
493a1724 1919 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1920 wake_up_process(wq->rescuer->task);
493a1724 1921 }
e22bee78
TH
1922}
1923
706026c2 1924static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1925{
63d95a91 1926 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1927 struct work_struct *work;
1928
2e109a28 1929 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1930 spin_lock(&pool->lock);
e22bee78 1931
63d95a91 1932 if (need_to_create_worker(pool)) {
e22bee78
TH
1933 /*
1934 * We've been trying to create a new worker but
1935 * haven't been successful. We might be hitting an
1936 * allocation deadlock. Send distress signals to
1937 * rescuers.
1938 */
63d95a91 1939 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1940 send_mayday(work);
1da177e4 1941 }
e22bee78 1942
493a1724 1943 spin_unlock(&pool->lock);
2e109a28 1944 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1945
63d95a91 1946 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1947}
1948
e22bee78
TH
1949/**
1950 * maybe_create_worker - create a new worker if necessary
63d95a91 1951 * @pool: pool to create a new worker for
e22bee78 1952 *
63d95a91 1953 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1954 * have at least one idle worker on return from this function. If
1955 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1956 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1957 * possible allocation deadlock.
1958 *
c5aa87bb
TH
1959 * On return, need_to_create_worker() is guaranteed to be %false and
1960 * may_start_working() %true.
e22bee78
TH
1961 *
1962 * LOCKING:
d565ed63 1963 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1964 * multiple times. Does GFP_KERNEL allocations. Called only from
1965 * manager.
e22bee78 1966 */
85be16ba 1967static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1968__releases(&pool->lock)
1969__acquires(&pool->lock)
1da177e4 1970{
63d95a91 1971 if (!need_to_create_worker(pool))
85be16ba 1972 return;
e22bee78 1973restart:
d565ed63 1974 spin_unlock_irq(&pool->lock);
9f9c2364 1975
e22bee78 1976 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1977 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1978
1979 while (true) {
1980 struct worker *worker;
1981
bc2ae0f5 1982 worker = create_worker(pool);
e22bee78 1983 if (worker) {
63d95a91 1984 del_timer_sync(&pool->mayday_timer);
d565ed63 1985 spin_lock_irq(&pool->lock);
e22bee78 1986 start_worker(worker);
6183c009
TH
1987 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1988 goto restart;
85be16ba 1989 return;
e22bee78
TH
1990 }
1991
63d95a91 1992 if (!need_to_create_worker(pool))
e22bee78 1993 break;
1da177e4 1994
e22bee78
TH
1995 __set_current_state(TASK_INTERRUPTIBLE);
1996 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1997
63d95a91 1998 if (!need_to_create_worker(pool))
e22bee78
TH
1999 break;
2000 }
2001
63d95a91 2002 del_timer_sync(&pool->mayday_timer);
d565ed63 2003 spin_lock_irq(&pool->lock);
63d95a91 2004 if (need_to_create_worker(pool))
e22bee78 2005 goto restart;
85be16ba 2006 return;
e22bee78
TH
2007}
2008
2009/**
2010 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2011 * @pool: pool to destroy workers for
e22bee78 2012 *
63d95a91 2013 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2014 * IDLE_WORKER_TIMEOUT.
2015 *
2016 * LOCKING:
d565ed63 2017 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78 2018 * multiple times. Called only from manager.
e22bee78 2019 */
85be16ba 2020static void maybe_destroy_workers(struct worker_pool *pool)
e22bee78 2021{
63d95a91 2022 while (too_many_workers(pool)) {
e22bee78
TH
2023 struct worker *worker;
2024 unsigned long expires;
3af24433 2025
63d95a91 2026 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2027 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2028
e22bee78 2029 if (time_before(jiffies, expires)) {
63d95a91 2030 mod_timer(&pool->idle_timer, expires);
3af24433 2031 break;
e22bee78 2032 }
1da177e4 2033
e22bee78 2034 destroy_worker(worker);
1da177e4 2035 }
1e19ffc6
TH
2036}
2037
73f53c4a 2038/**
e22bee78
TH
2039 * manage_workers - manage worker pool
2040 * @worker: self
73f53c4a 2041 *
706026c2 2042 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2043 * to. At any given time, there can be only zero or one manager per
706026c2 2044 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2045 *
2046 * The caller can safely start processing works on false return. On
2047 * true return, it's guaranteed that need_to_create_worker() is false
2048 * and may_start_working() is true.
73f53c4a
TH
2049 *
2050 * CONTEXT:
d565ed63 2051 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2052 * multiple times. Does GFP_KERNEL allocations.
2053 *
2054 * RETURNS:
85be16ba
TH
2055 * %false if the pool doesn't need management and the caller can safely
2056 * start processing works, %true if management function was performed and
2057 * the conditions that the caller verified before calling the function may
2058 * no longer be true.
73f53c4a 2059 */
e22bee78 2060static bool manage_workers(struct worker *worker)
73f53c4a 2061{
63d95a91 2062 struct worker_pool *pool = worker->pool;
73f53c4a 2063
bc3a1afc
TH
2064 /*
2065 * Managership is governed by two mutexes - manager_arb and
2066 * manager_mutex. manager_arb handles arbitration of manager role.
2067 * Anyone who successfully grabs manager_arb wins the arbitration
2068 * and becomes the manager. mutex_trylock() on pool->manager_arb
2069 * failure while holding pool->lock reliably indicates that someone
2070 * else is managing the pool and the worker which failed trylock
2071 * can proceed to executing work items. This means that anyone
2072 * grabbing manager_arb is responsible for actually performing
2073 * manager duties. If manager_arb is grabbed and released without
2074 * actual management, the pool may stall indefinitely.
2075 *
2076 * manager_mutex is used for exclusion of actual management
2077 * operations. The holder of manager_mutex can be sure that none
2078 * of management operations, including creation and destruction of
2079 * workers, won't take place until the mutex is released. Because
2080 * manager_mutex doesn't interfere with manager role arbitration,
2081 * it is guaranteed that the pool's management, while may be
2082 * delayed, won't be disturbed by someone else grabbing
2083 * manager_mutex.
2084 */
34a06bd6 2085 if (!mutex_trylock(&pool->manager_arb))
85be16ba 2086 return false;
1e19ffc6 2087
ee378aa4 2088 /*
bc3a1afc
TH
2089 * With manager arbitration won, manager_mutex would be free in
2090 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2091 */
bc3a1afc 2092 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2093 spin_unlock_irq(&pool->lock);
bc3a1afc 2094 mutex_lock(&pool->manager_mutex);
8f174b11 2095 spin_lock_irq(&pool->lock);
ee378aa4 2096 }
73f53c4a 2097
11ebea50 2098 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2099
2100 /*
e22bee78
TH
2101 * Destroy and then create so that may_start_working() is true
2102 * on return.
73f53c4a 2103 */
85be16ba
TH
2104 maybe_destroy_workers(pool);
2105 maybe_create_worker(pool);
e22bee78 2106
bc3a1afc 2107 mutex_unlock(&pool->manager_mutex);
34a06bd6 2108 mutex_unlock(&pool->manager_arb);
85be16ba 2109 return true;
73f53c4a
TH
2110}
2111
a62428c0
TH
2112/**
2113 * process_one_work - process single work
c34056a3 2114 * @worker: self
a62428c0
TH
2115 * @work: work to process
2116 *
2117 * Process @work. This function contains all the logics necessary to
2118 * process a single work including synchronization against and
2119 * interaction with other workers on the same cpu, queueing and
2120 * flushing. As long as context requirement is met, any worker can
2121 * call this function to process a work.
2122 *
2123 * CONTEXT:
d565ed63 2124 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2125 */
c34056a3 2126static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2127__releases(&pool->lock)
2128__acquires(&pool->lock)
a62428c0 2129{
112202d9 2130 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2131 struct worker_pool *pool = worker->pool;
112202d9 2132 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2133 int work_color;
7e11629d 2134 struct worker *collision;
a62428c0
TH
2135#ifdef CONFIG_LOCKDEP
2136 /*
2137 * It is permissible to free the struct work_struct from
2138 * inside the function that is called from it, this we need to
2139 * take into account for lockdep too. To avoid bogus "held
2140 * lock freed" warnings as well as problems when looking into
2141 * work->lockdep_map, make a copy and use that here.
2142 */
4d82a1de
PZ
2143 struct lockdep_map lockdep_map;
2144
2145 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2146#endif
6fec10a1
TH
2147 /*
2148 * Ensure we're on the correct CPU. DISASSOCIATED test is
2149 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2150 * unbound or a disassociated pool.
6fec10a1 2151 */
5f7dabfd 2152 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2153 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2154 raw_smp_processor_id() != pool->cpu);
25511a47 2155
7e11629d
TH
2156 /*
2157 * A single work shouldn't be executed concurrently by
2158 * multiple workers on a single cpu. Check whether anyone is
2159 * already processing the work. If so, defer the work to the
2160 * currently executing one.
2161 */
c9e7cf27 2162 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2163 if (unlikely(collision)) {
2164 move_linked_works(work, &collision->scheduled, NULL);
2165 return;
2166 }
2167
8930caba 2168 /* claim and dequeue */
a62428c0 2169 debug_work_deactivate(work);
c9e7cf27 2170 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2171 worker->current_work = work;
a2c1c57b 2172 worker->current_func = work->func;
112202d9 2173 worker->current_pwq = pwq;
73f53c4a 2174 work_color = get_work_color(work);
7a22ad75 2175
a62428c0
TH
2176 list_del_init(&work->entry);
2177
fb0e7beb
TH
2178 /*
2179 * CPU intensive works don't participate in concurrency
2180 * management. They're the scheduler's responsibility.
2181 */
2182 if (unlikely(cpu_intensive))
2183 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2184
974271c4 2185 /*
d565ed63 2186 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2187 * executed ASAP. Wake up another worker if necessary.
2188 */
63d95a91
TH
2189 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2190 wake_up_worker(pool);
974271c4 2191
8930caba 2192 /*
7c3eed5c 2193 * Record the last pool and clear PENDING which should be the last
d565ed63 2194 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2195 * PENDING and queued state changes happen together while IRQ is
2196 * disabled.
8930caba 2197 */
7c3eed5c 2198 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2199
d565ed63 2200 spin_unlock_irq(&pool->lock);
a62428c0 2201
112202d9 2202 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2203 lock_map_acquire(&lockdep_map);
e36c886a 2204 trace_workqueue_execute_start(work);
a2c1c57b 2205 worker->current_func(work);
e36c886a
AV
2206 /*
2207 * While we must be careful to not use "work" after this, the trace
2208 * point will only record its address.
2209 */
2210 trace_workqueue_execute_end(work);
a62428c0 2211 lock_map_release(&lockdep_map);
112202d9 2212 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2213
2214 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2215 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2216 " last function: %pf\n",
a2c1c57b
TH
2217 current->comm, preempt_count(), task_pid_nr(current),
2218 worker->current_func);
a62428c0
TH
2219 debug_show_held_locks(current);
2220 dump_stack();
2221 }
2222
6ff96f73
TH
2223 /*
2224 * The following prevents a kworker from hogging CPU on !PREEMPT
2225 * kernels, where a requeueing work item waiting for something to
2226 * happen could deadlock with stop_machine as such work item could
2227 * indefinitely requeue itself while all other CPUs are trapped in
2228 * stop_machine.
2229 */
2230 cond_resched();
2231
d565ed63 2232 spin_lock_irq(&pool->lock);
a62428c0 2233
fb0e7beb
TH
2234 /* clear cpu intensive status */
2235 if (unlikely(cpu_intensive))
2236 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2237
a62428c0 2238 /* we're done with it, release */
42f8570f 2239 hash_del(&worker->hentry);
c34056a3 2240 worker->current_work = NULL;
a2c1c57b 2241 worker->current_func = NULL;
112202d9 2242 worker->current_pwq = NULL;
3d1cb205 2243 worker->desc_valid = false;
112202d9 2244 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2245}
2246
affee4b2
TH
2247/**
2248 * process_scheduled_works - process scheduled works
2249 * @worker: self
2250 *
2251 * Process all scheduled works. Please note that the scheduled list
2252 * may change while processing a work, so this function repeatedly
2253 * fetches a work from the top and executes it.
2254 *
2255 * CONTEXT:
d565ed63 2256 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2257 * multiple times.
2258 */
2259static void process_scheduled_works(struct worker *worker)
1da177e4 2260{
affee4b2
TH
2261 while (!list_empty(&worker->scheduled)) {
2262 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2263 struct work_struct, entry);
c34056a3 2264 process_one_work(worker, work);
1da177e4 2265 }
1da177e4
LT
2266}
2267
4690c4ab
TH
2268/**
2269 * worker_thread - the worker thread function
c34056a3 2270 * @__worker: self
4690c4ab 2271 *
c5aa87bb
TH
2272 * The worker thread function. All workers belong to a worker_pool -
2273 * either a per-cpu one or dynamic unbound one. These workers process all
2274 * work items regardless of their specific target workqueue. The only
2275 * exception is work items which belong to workqueues with a rescuer which
2276 * will be explained in rescuer_thread().
4690c4ab 2277 */
c34056a3 2278static int worker_thread(void *__worker)
1da177e4 2279{
c34056a3 2280 struct worker *worker = __worker;
bd7bdd43 2281 struct worker_pool *pool = worker->pool;
1da177e4 2282
e22bee78
TH
2283 /* tell the scheduler that this is a workqueue worker */
2284 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2285woke_up:
d565ed63 2286 spin_lock_irq(&pool->lock);
1da177e4 2287
a9ab775b
TH
2288 /* am I supposed to die? */
2289 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2290 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2291 WARN_ON_ONCE(!list_empty(&worker->entry));
2292 worker->task->flags &= ~PF_WQ_WORKER;
2293 return 0;
c8e55f36 2294 }
affee4b2 2295
c8e55f36 2296 worker_leave_idle(worker);
db7bccf4 2297recheck:
e22bee78 2298 /* no more worker necessary? */
63d95a91 2299 if (!need_more_worker(pool))
e22bee78
TH
2300 goto sleep;
2301
2302 /* do we need to manage? */
63d95a91 2303 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2304 goto recheck;
2305
c8e55f36
TH
2306 /*
2307 * ->scheduled list can only be filled while a worker is
2308 * preparing to process a work or actually processing it.
2309 * Make sure nobody diddled with it while I was sleeping.
2310 */
6183c009 2311 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2312
e22bee78 2313 /*
a9ab775b
TH
2314 * Finish PREP stage. We're guaranteed to have at least one idle
2315 * worker or that someone else has already assumed the manager
2316 * role. This is where @worker starts participating in concurrency
2317 * management if applicable and concurrency management is restored
2318 * after being rebound. See rebind_workers() for details.
e22bee78 2319 */
a9ab775b 2320 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2321
2322 do {
c8e55f36 2323 struct work_struct *work =
bd7bdd43 2324 list_first_entry(&pool->worklist,
c8e55f36
TH
2325 struct work_struct, entry);
2326
2327 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2328 /* optimization path, not strictly necessary */
2329 process_one_work(worker, work);
2330 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2331 process_scheduled_works(worker);
c8e55f36
TH
2332 } else {
2333 move_linked_works(work, &worker->scheduled, NULL);
2334 process_scheduled_works(worker);
affee4b2 2335 }
63d95a91 2336 } while (keep_working(pool));
e22bee78
TH
2337
2338 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2339sleep:
63d95a91 2340 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2341 goto recheck;
d313dd85 2342
c8e55f36 2343 /*
d565ed63
TH
2344 * pool->lock is held and there's no work to process and no need to
2345 * manage, sleep. Workers are woken up only while holding
2346 * pool->lock or from local cpu, so setting the current state
2347 * before releasing pool->lock is enough to prevent losing any
2348 * event.
c8e55f36
TH
2349 */
2350 worker_enter_idle(worker);
2351 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2352 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2353 schedule();
2354 goto woke_up;
1da177e4
LT
2355}
2356
e22bee78
TH
2357/**
2358 * rescuer_thread - the rescuer thread function
111c225a 2359 * @__rescuer: self
e22bee78
TH
2360 *
2361 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2362 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2363 *
706026c2 2364 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2365 * worker which uses GFP_KERNEL allocation which has slight chance of
2366 * developing into deadlock if some works currently on the same queue
2367 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2368 * the problem rescuer solves.
2369 *
706026c2
TH
2370 * When such condition is possible, the pool summons rescuers of all
2371 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2372 * those works so that forward progress can be guaranteed.
2373 *
2374 * This should happen rarely.
2375 */
111c225a 2376static int rescuer_thread(void *__rescuer)
e22bee78 2377{
111c225a
TH
2378 struct worker *rescuer = __rescuer;
2379 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2380 struct list_head *scheduled = &rescuer->scheduled;
f56fb0d4 2381 bool should_stop;
e22bee78
TH
2382
2383 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2384
2385 /*
2386 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2387 * doesn't participate in concurrency management.
2388 */
2389 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2390repeat:
2391 set_current_state(TASK_INTERRUPTIBLE);
2392
f56fb0d4
LJ
2393 /*
2394 * By the time the rescuer is requested to stop, the workqueue
2395 * shouldn't have any work pending, but @wq->maydays may still have
2396 * pwq(s) queued. This can happen by non-rescuer workers consuming
2397 * all the work items before the rescuer got to them. Go through
2398 * @wq->maydays processing before acting on should_stop so that the
2399 * list is always empty on exit.
2400 */
2401 should_stop = kthread_should_stop();
e22bee78 2402
493a1724 2403 /* see whether any pwq is asking for help */
2e109a28 2404 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2405
2406 while (!list_empty(&wq->maydays)) {
2407 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2408 struct pool_workqueue, mayday_node);
112202d9 2409 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2410 struct work_struct *work, *n;
2411
2412 __set_current_state(TASK_RUNNING);
493a1724
TH
2413 list_del_init(&pwq->mayday_node);
2414
2e109a28 2415 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2416
2417 /* migrate to the target cpu if possible */
f36dc67b 2418 worker_maybe_bind_and_lock(pool);
b3104104 2419 rescuer->pool = pool;
e22bee78
TH
2420
2421 /*
2422 * Slurp in all works issued via this workqueue and
2423 * process'em.
2424 */
6183c009 2425 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2426 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2427 if (get_work_pwq(work) == pwq)
e22bee78
TH
2428 move_linked_works(work, scheduled, &n);
2429
2430 process_scheduled_works(rescuer);
7576958a 2431
aac8b37f
LJ
2432 /*
2433 * Put the reference grabbed by send_mayday(). @pool won't
2434 * go away while we're holding its lock.
2435 */
2436 put_pwq(pwq);
2437
7576958a 2438 /*
d565ed63 2439 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2440 * regular worker; otherwise, we end up with 0 concurrency
2441 * and stalling the execution.
2442 */
63d95a91
TH
2443 if (keep_working(pool))
2444 wake_up_worker(pool);
7576958a 2445
b3104104 2446 rescuer->pool = NULL;
493a1724 2447 spin_unlock(&pool->lock);
2e109a28 2448 spin_lock(&wq_mayday_lock);
e22bee78
TH
2449 }
2450
2e109a28 2451 spin_unlock_irq(&wq_mayday_lock);
493a1724 2452
f56fb0d4
LJ
2453 if (should_stop) {
2454 __set_current_state(TASK_RUNNING);
2455 rescuer->task->flags &= ~PF_WQ_WORKER;
2456 return 0;
2457 }
2458
111c225a
TH
2459 /* rescuers should never participate in concurrency management */
2460 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2461 schedule();
2462 goto repeat;
1da177e4
LT
2463}
2464
fc2e4d70
ON
2465struct wq_barrier {
2466 struct work_struct work;
2467 struct completion done;
2468};
2469
2470static void wq_barrier_func(struct work_struct *work)
2471{
2472 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2473 complete(&barr->done);
2474}
2475
4690c4ab
TH
2476/**
2477 * insert_wq_barrier - insert a barrier work
112202d9 2478 * @pwq: pwq to insert barrier into
4690c4ab 2479 * @barr: wq_barrier to insert
affee4b2
TH
2480 * @target: target work to attach @barr to
2481 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2482 *
affee4b2
TH
2483 * @barr is linked to @target such that @barr is completed only after
2484 * @target finishes execution. Please note that the ordering
2485 * guarantee is observed only with respect to @target and on the local
2486 * cpu.
2487 *
2488 * Currently, a queued barrier can't be canceled. This is because
2489 * try_to_grab_pending() can't determine whether the work to be
2490 * grabbed is at the head of the queue and thus can't clear LINKED
2491 * flag of the previous work while there must be a valid next work
2492 * after a work with LINKED flag set.
2493 *
2494 * Note that when @worker is non-NULL, @target may be modified
112202d9 2495 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2496 *
2497 * CONTEXT:
d565ed63 2498 * spin_lock_irq(pool->lock).
4690c4ab 2499 */
112202d9 2500static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2501 struct wq_barrier *barr,
2502 struct work_struct *target, struct worker *worker)
fc2e4d70 2503{
affee4b2
TH
2504 struct list_head *head;
2505 unsigned int linked = 0;
2506
dc186ad7 2507 /*
d565ed63 2508 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2509 * as we know for sure that this will not trigger any of the
2510 * checks and call back into the fixup functions where we
2511 * might deadlock.
2512 */
ca1cab37 2513 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2514 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2515 init_completion(&barr->done);
83c22520 2516
affee4b2
TH
2517 /*
2518 * If @target is currently being executed, schedule the
2519 * barrier to the worker; otherwise, put it after @target.
2520 */
2521 if (worker)
2522 head = worker->scheduled.next;
2523 else {
2524 unsigned long *bits = work_data_bits(target);
2525
2526 head = target->entry.next;
2527 /* there can already be other linked works, inherit and set */
2528 linked = *bits & WORK_STRUCT_LINKED;
2529 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2530 }
2531
dc186ad7 2532 debug_work_activate(&barr->work);
112202d9 2533 insert_work(pwq, &barr->work, head,
affee4b2 2534 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2535}
2536
73f53c4a 2537/**
112202d9 2538 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2539 * @wq: workqueue being flushed
2540 * @flush_color: new flush color, < 0 for no-op
2541 * @work_color: new work color, < 0 for no-op
2542 *
112202d9 2543 * Prepare pwqs for workqueue flushing.
73f53c4a 2544 *
112202d9
TH
2545 * If @flush_color is non-negative, flush_color on all pwqs should be
2546 * -1. If no pwq has in-flight commands at the specified color, all
2547 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2548 * has in flight commands, its pwq->flush_color is set to
2549 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2550 * wakeup logic is armed and %true is returned.
2551 *
2552 * The caller should have initialized @wq->first_flusher prior to
2553 * calling this function with non-negative @flush_color. If
2554 * @flush_color is negative, no flush color update is done and %false
2555 * is returned.
2556 *
112202d9 2557 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2558 * work_color which is previous to @work_color and all will be
2559 * advanced to @work_color.
2560 *
2561 * CONTEXT:
3c25a55d 2562 * mutex_lock(wq->mutex).
73f53c4a
TH
2563 *
2564 * RETURNS:
2565 * %true if @flush_color >= 0 and there's something to flush. %false
2566 * otherwise.
2567 */
112202d9 2568static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2569 int flush_color, int work_color)
1da177e4 2570{
73f53c4a 2571 bool wait = false;
49e3cf44 2572 struct pool_workqueue *pwq;
1da177e4 2573
73f53c4a 2574 if (flush_color >= 0) {
6183c009 2575 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2576 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2577 }
2355b70f 2578
49e3cf44 2579 for_each_pwq(pwq, wq) {
112202d9 2580 struct worker_pool *pool = pwq->pool;
fc2e4d70 2581
b09f4fd3 2582 spin_lock_irq(&pool->lock);
83c22520 2583
73f53c4a 2584 if (flush_color >= 0) {
6183c009 2585 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2586
112202d9
TH
2587 if (pwq->nr_in_flight[flush_color]) {
2588 pwq->flush_color = flush_color;
2589 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2590 wait = true;
2591 }
2592 }
1da177e4 2593
73f53c4a 2594 if (work_color >= 0) {
6183c009 2595 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2596 pwq->work_color = work_color;
73f53c4a 2597 }
1da177e4 2598
b09f4fd3 2599 spin_unlock_irq(&pool->lock);
1da177e4 2600 }
2355b70f 2601
112202d9 2602 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2603 complete(&wq->first_flusher->done);
14441960 2604
73f53c4a 2605 return wait;
1da177e4
LT
2606}
2607
0fcb78c2 2608/**
1da177e4 2609 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2610 * @wq: workqueue to flush
1da177e4 2611 *
c5aa87bb
TH
2612 * This function sleeps until all work items which were queued on entry
2613 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2614 */
7ad5b3a5 2615void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2616{
73f53c4a
TH
2617 struct wq_flusher this_flusher = {
2618 .list = LIST_HEAD_INIT(this_flusher.list),
2619 .flush_color = -1,
2620 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2621 };
2622 int next_color;
1da177e4 2623
3295f0ef
IM
2624 lock_map_acquire(&wq->lockdep_map);
2625 lock_map_release(&wq->lockdep_map);
73f53c4a 2626
3c25a55d 2627 mutex_lock(&wq->mutex);
73f53c4a
TH
2628
2629 /*
2630 * Start-to-wait phase
2631 */
2632 next_color = work_next_color(wq->work_color);
2633
2634 if (next_color != wq->flush_color) {
2635 /*
2636 * Color space is not full. The current work_color
2637 * becomes our flush_color and work_color is advanced
2638 * by one.
2639 */
6183c009 2640 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2641 this_flusher.flush_color = wq->work_color;
2642 wq->work_color = next_color;
2643
2644 if (!wq->first_flusher) {
2645 /* no flush in progress, become the first flusher */
6183c009 2646 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2647
2648 wq->first_flusher = &this_flusher;
2649
112202d9 2650 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2651 wq->work_color)) {
2652 /* nothing to flush, done */
2653 wq->flush_color = next_color;
2654 wq->first_flusher = NULL;
2655 goto out_unlock;
2656 }
2657 } else {
2658 /* wait in queue */
6183c009 2659 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2660 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2661 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2662 }
2663 } else {
2664 /*
2665 * Oops, color space is full, wait on overflow queue.
2666 * The next flush completion will assign us
2667 * flush_color and transfer to flusher_queue.
2668 */
2669 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2670 }
2671
3c25a55d 2672 mutex_unlock(&wq->mutex);
73f53c4a
TH
2673
2674 wait_for_completion(&this_flusher.done);
2675
2676 /*
2677 * Wake-up-and-cascade phase
2678 *
2679 * First flushers are responsible for cascading flushes and
2680 * handling overflow. Non-first flushers can simply return.
2681 */
2682 if (wq->first_flusher != &this_flusher)
2683 return;
2684
3c25a55d 2685 mutex_lock(&wq->mutex);
73f53c4a 2686
4ce48b37
TH
2687 /* we might have raced, check again with mutex held */
2688 if (wq->first_flusher != &this_flusher)
2689 goto out_unlock;
2690
73f53c4a
TH
2691 wq->first_flusher = NULL;
2692
6183c009
TH
2693 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2694 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2695
2696 while (true) {
2697 struct wq_flusher *next, *tmp;
2698
2699 /* complete all the flushers sharing the current flush color */
2700 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2701 if (next->flush_color != wq->flush_color)
2702 break;
2703 list_del_init(&next->list);
2704 complete(&next->done);
2705 }
2706
6183c009
TH
2707 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2708 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2709
2710 /* this flush_color is finished, advance by one */
2711 wq->flush_color = work_next_color(wq->flush_color);
2712
2713 /* one color has been freed, handle overflow queue */
2714 if (!list_empty(&wq->flusher_overflow)) {
2715 /*
2716 * Assign the same color to all overflowed
2717 * flushers, advance work_color and append to
2718 * flusher_queue. This is the start-to-wait
2719 * phase for these overflowed flushers.
2720 */
2721 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2722 tmp->flush_color = wq->work_color;
2723
2724 wq->work_color = work_next_color(wq->work_color);
2725
2726 list_splice_tail_init(&wq->flusher_overflow,
2727 &wq->flusher_queue);
112202d9 2728 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2729 }
2730
2731 if (list_empty(&wq->flusher_queue)) {
6183c009 2732 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2733 break;
2734 }
2735
2736 /*
2737 * Need to flush more colors. Make the next flusher
112202d9 2738 * the new first flusher and arm pwqs.
73f53c4a 2739 */
6183c009
TH
2740 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2741 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2742
2743 list_del_init(&next->list);
2744 wq->first_flusher = next;
2745
112202d9 2746 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2747 break;
2748
2749 /*
2750 * Meh... this color is already done, clear first
2751 * flusher and repeat cascading.
2752 */
2753 wq->first_flusher = NULL;
2754 }
2755
2756out_unlock:
3c25a55d 2757 mutex_unlock(&wq->mutex);
1da177e4 2758}
ae90dd5d 2759EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2760
9c5a2ba7
TH
2761/**
2762 * drain_workqueue - drain a workqueue
2763 * @wq: workqueue to drain
2764 *
2765 * Wait until the workqueue becomes empty. While draining is in progress,
2766 * only chain queueing is allowed. IOW, only currently pending or running
2767 * work items on @wq can queue further work items on it. @wq is flushed
2768 * repeatedly until it becomes empty. The number of flushing is detemined
2769 * by the depth of chaining and should be relatively short. Whine if it
2770 * takes too long.
2771 */
2772void drain_workqueue(struct workqueue_struct *wq)
2773{
2774 unsigned int flush_cnt = 0;
49e3cf44 2775 struct pool_workqueue *pwq;
9c5a2ba7
TH
2776
2777 /*
2778 * __queue_work() needs to test whether there are drainers, is much
2779 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2780 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2781 */
87fc741e 2782 mutex_lock(&wq->mutex);
9c5a2ba7 2783 if (!wq->nr_drainers++)
618b01eb 2784 wq->flags |= __WQ_DRAINING;
87fc741e 2785 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2786reflush:
2787 flush_workqueue(wq);
2788
b09f4fd3 2789 mutex_lock(&wq->mutex);
76af4d93 2790
49e3cf44 2791 for_each_pwq(pwq, wq) {
fa2563e4 2792 bool drained;
9c5a2ba7 2793
b09f4fd3 2794 spin_lock_irq(&pwq->pool->lock);
112202d9 2795 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2796 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2797
2798 if (drained)
9c5a2ba7
TH
2799 continue;
2800
2801 if (++flush_cnt == 10 ||
2802 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2803 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2804 wq->name, flush_cnt);
76af4d93 2805
b09f4fd3 2806 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2807 goto reflush;
2808 }
2809
9c5a2ba7 2810 if (!--wq->nr_drainers)
618b01eb 2811 wq->flags &= ~__WQ_DRAINING;
87fc741e 2812 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2813}
2814EXPORT_SYMBOL_GPL(drain_workqueue);
2815
606a5020 2816static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2817{
affee4b2 2818 struct worker *worker = NULL;
c9e7cf27 2819 struct worker_pool *pool;
112202d9 2820 struct pool_workqueue *pwq;
db700897
ON
2821
2822 might_sleep();
fa1b54e6
TH
2823
2824 local_irq_disable();
c9e7cf27 2825 pool = get_work_pool(work);
fa1b54e6
TH
2826 if (!pool) {
2827 local_irq_enable();
baf59022 2828 return false;
fa1b54e6 2829 }
db700897 2830
fa1b54e6 2831 spin_lock(&pool->lock);
0b3dae68 2832 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2833 pwq = get_work_pwq(work);
2834 if (pwq) {
2835 if (unlikely(pwq->pool != pool))
4690c4ab 2836 goto already_gone;
606a5020 2837 } else {
c9e7cf27 2838 worker = find_worker_executing_work(pool, work);
affee4b2 2839 if (!worker)
4690c4ab 2840 goto already_gone;
112202d9 2841 pwq = worker->current_pwq;
606a5020 2842 }
db700897 2843
112202d9 2844 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2845 spin_unlock_irq(&pool->lock);
7a22ad75 2846
e159489b
TH
2847 /*
2848 * If @max_active is 1 or rescuer is in use, flushing another work
2849 * item on the same workqueue may lead to deadlock. Make sure the
2850 * flusher is not running on the same workqueue by verifying write
2851 * access.
2852 */
493008a8 2853 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2854 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2855 else
112202d9
TH
2856 lock_map_acquire_read(&pwq->wq->lockdep_map);
2857 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2858
401a8d04 2859 return true;
4690c4ab 2860already_gone:
d565ed63 2861 spin_unlock_irq(&pool->lock);
401a8d04 2862 return false;
db700897 2863}
baf59022
TH
2864
2865/**
2866 * flush_work - wait for a work to finish executing the last queueing instance
2867 * @work: the work to flush
2868 *
606a5020
TH
2869 * Wait until @work has finished execution. @work is guaranteed to be idle
2870 * on return if it hasn't been requeued since flush started.
baf59022
TH
2871 *
2872 * RETURNS:
2873 * %true if flush_work() waited for the work to finish execution,
2874 * %false if it was already idle.
2875 */
2876bool flush_work(struct work_struct *work)
2877{
2878 struct wq_barrier barr;
2879
0976dfc1
SB
2880 lock_map_acquire(&work->lockdep_map);
2881 lock_map_release(&work->lockdep_map);
2882
606a5020 2883 if (start_flush_work(work, &barr)) {
401a8d04
TH
2884 wait_for_completion(&barr.done);
2885 destroy_work_on_stack(&barr.work);
2886 return true;
606a5020 2887 } else {
401a8d04 2888 return false;
6e84d644 2889 }
6e84d644 2890}
606a5020 2891EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2892
d8bee0e3
TH
2893struct cwt_wait {
2894 wait_queue_t wait;
2895 struct work_struct *work;
2896};
2897
2898static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2899{
2900 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2901
2902 if (cwait->work != key)
2903 return 0;
2904 return autoremove_wake_function(wait, mode, sync, key);
2905}
2906
36e227d2 2907static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2908{
d8bee0e3 2909 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2910 unsigned long flags;
1f1f642e
ON
2911 int ret;
2912
2913 do {
bbb68dfa
TH
2914 ret = try_to_grab_pending(work, is_dwork, &flags);
2915 /*
d8bee0e3
TH
2916 * If someone else is already canceling, wait for it to
2917 * finish. flush_work() doesn't work for PREEMPT_NONE
2918 * because we may get scheduled between @work's completion
2919 * and the other canceling task resuming and clearing
2920 * CANCELING - flush_work() will return false immediately
2921 * as @work is no longer busy, try_to_grab_pending() will
2922 * return -ENOENT as @work is still being canceled and the
2923 * other canceling task won't be able to clear CANCELING as
2924 * we're hogging the CPU.
2925 *
2926 * Let's wait for completion using a waitqueue. As this
2927 * may lead to the thundering herd problem, use a custom
2928 * wake function which matches @work along with exclusive
2929 * wait and wakeup.
bbb68dfa 2930 */
d8bee0e3
TH
2931 if (unlikely(ret == -ENOENT)) {
2932 struct cwt_wait cwait;
2933
2934 init_wait(&cwait.wait);
2935 cwait.wait.func = cwt_wakefn;
2936 cwait.work = work;
2937
2938 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2939 TASK_UNINTERRUPTIBLE);
2940 if (work_is_canceling(work))
2941 schedule();
2942 finish_wait(&cancel_waitq, &cwait.wait);
2943 }
1f1f642e
ON
2944 } while (unlikely(ret < 0));
2945
bbb68dfa
TH
2946 /* tell other tasks trying to grab @work to back off */
2947 mark_work_canceling(work);
2948 local_irq_restore(flags);
2949
606a5020 2950 flush_work(work);
7a22ad75 2951 clear_work_data(work);
d8bee0e3
TH
2952
2953 /*
2954 * Paired with prepare_to_wait() above so that either
2955 * waitqueue_active() is visible here or !work_is_canceling() is
2956 * visible there.
2957 */
2958 smp_mb();
2959 if (waitqueue_active(&cancel_waitq))
2960 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2961
1f1f642e
ON
2962 return ret;
2963}
2964
6e84d644 2965/**
401a8d04
TH
2966 * cancel_work_sync - cancel a work and wait for it to finish
2967 * @work: the work to cancel
6e84d644 2968 *
401a8d04
TH
2969 * Cancel @work and wait for its execution to finish. This function
2970 * can be used even if the work re-queues itself or migrates to
2971 * another workqueue. On return from this function, @work is
2972 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2973 *
401a8d04
TH
2974 * cancel_work_sync(&delayed_work->work) must not be used for
2975 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2976 *
401a8d04 2977 * The caller must ensure that the workqueue on which @work was last
6e84d644 2978 * queued can't be destroyed before this function returns.
401a8d04
TH
2979 *
2980 * RETURNS:
2981 * %true if @work was pending, %false otherwise.
6e84d644 2982 */
401a8d04 2983bool cancel_work_sync(struct work_struct *work)
6e84d644 2984{
36e227d2 2985 return __cancel_work_timer(work, false);
b89deed3 2986}
28e53bdd 2987EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2988
6e84d644 2989/**
401a8d04
TH
2990 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2991 * @dwork: the delayed work to flush
6e84d644 2992 *
401a8d04
TH
2993 * Delayed timer is cancelled and the pending work is queued for
2994 * immediate execution. Like flush_work(), this function only
2995 * considers the last queueing instance of @dwork.
1f1f642e 2996 *
401a8d04
TH
2997 * RETURNS:
2998 * %true if flush_work() waited for the work to finish execution,
2999 * %false if it was already idle.
6e84d644 3000 */
401a8d04
TH
3001bool flush_delayed_work(struct delayed_work *dwork)
3002{
8930caba 3003 local_irq_disable();
401a8d04 3004 if (del_timer_sync(&dwork->timer))
60c057bc 3005 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3006 local_irq_enable();
401a8d04
TH
3007 return flush_work(&dwork->work);
3008}
3009EXPORT_SYMBOL(flush_delayed_work);
3010
09383498 3011/**
57b30ae7
TH
3012 * cancel_delayed_work - cancel a delayed work
3013 * @dwork: delayed_work to cancel
09383498 3014 *
57b30ae7
TH
3015 * Kill off a pending delayed_work. Returns %true if @dwork was pending
3016 * and canceled; %false if wasn't pending. Note that the work callback
3017 * function may still be running on return, unless it returns %true and the
3018 * work doesn't re-arm itself. Explicitly flush or use
3019 * cancel_delayed_work_sync() to wait on it.
09383498 3020 *
57b30ae7 3021 * This function is safe to call from any context including IRQ handler.
09383498 3022 */
57b30ae7 3023bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3024{
57b30ae7
TH
3025 unsigned long flags;
3026 int ret;
3027
3028 do {
3029 ret = try_to_grab_pending(&dwork->work, true, &flags);
3030 } while (unlikely(ret == -EAGAIN));
3031
3032 if (unlikely(ret < 0))
3033 return false;
3034
7c3eed5c
TH
3035 set_work_pool_and_clear_pending(&dwork->work,
3036 get_work_pool_id(&dwork->work));
57b30ae7 3037 local_irq_restore(flags);
c0158ca6 3038 return ret;
09383498 3039}
57b30ae7 3040EXPORT_SYMBOL(cancel_delayed_work);
09383498 3041
401a8d04
TH
3042/**
3043 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3044 * @dwork: the delayed work cancel
3045 *
3046 * This is cancel_work_sync() for delayed works.
3047 *
3048 * RETURNS:
3049 * %true if @dwork was pending, %false otherwise.
3050 */
3051bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3052{
36e227d2 3053 return __cancel_work_timer(&dwork->work, true);
6e84d644 3054}
f5a421a4 3055EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3056
b6136773 3057/**
31ddd871 3058 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3059 * @func: the function to call
b6136773 3060 *
31ddd871
TH
3061 * schedule_on_each_cpu() executes @func on each online CPU using the
3062 * system workqueue and blocks until all CPUs have completed.
b6136773 3063 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3064 *
3065 * RETURNS:
3066 * 0 on success, -errno on failure.
b6136773 3067 */
65f27f38 3068int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3069{
3070 int cpu;
38f51568 3071 struct work_struct __percpu *works;
15316ba8 3072
b6136773
AM
3073 works = alloc_percpu(struct work_struct);
3074 if (!works)
15316ba8 3075 return -ENOMEM;
b6136773 3076
93981800
TH
3077 get_online_cpus();
3078
15316ba8 3079 for_each_online_cpu(cpu) {
9bfb1839
IM
3080 struct work_struct *work = per_cpu_ptr(works, cpu);
3081
3082 INIT_WORK(work, func);
b71ab8c2 3083 schedule_work_on(cpu, work);
65a64464 3084 }
93981800
TH
3085
3086 for_each_online_cpu(cpu)
3087 flush_work(per_cpu_ptr(works, cpu));
3088
95402b38 3089 put_online_cpus();
b6136773 3090 free_percpu(works);
15316ba8
CL
3091 return 0;
3092}
3093
eef6a7d5
AS
3094/**
3095 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3096 *
3097 * Forces execution of the kernel-global workqueue and blocks until its
3098 * completion.
3099 *
3100 * Think twice before calling this function! It's very easy to get into
3101 * trouble if you don't take great care. Either of the following situations
3102 * will lead to deadlock:
3103 *
3104 * One of the work items currently on the workqueue needs to acquire
3105 * a lock held by your code or its caller.
3106 *
3107 * Your code is running in the context of a work routine.
3108 *
3109 * They will be detected by lockdep when they occur, but the first might not
3110 * occur very often. It depends on what work items are on the workqueue and
3111 * what locks they need, which you have no control over.
3112 *
3113 * In most situations flushing the entire workqueue is overkill; you merely
3114 * need to know that a particular work item isn't queued and isn't running.
3115 * In such cases you should use cancel_delayed_work_sync() or
3116 * cancel_work_sync() instead.
3117 */
1da177e4
LT
3118void flush_scheduled_work(void)
3119{
d320c038 3120 flush_workqueue(system_wq);
1da177e4 3121}
ae90dd5d 3122EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3123
1fa44eca
JB
3124/**
3125 * execute_in_process_context - reliably execute the routine with user context
3126 * @fn: the function to execute
1fa44eca
JB
3127 * @ew: guaranteed storage for the execute work structure (must
3128 * be available when the work executes)
3129 *
3130 * Executes the function immediately if process context is available,
3131 * otherwise schedules the function for delayed execution.
3132 *
3133 * Returns: 0 - function was executed
3134 * 1 - function was scheduled for execution
3135 */
65f27f38 3136int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3137{
3138 if (!in_interrupt()) {
65f27f38 3139 fn(&ew->work);
1fa44eca
JB
3140 return 0;
3141 }
3142
65f27f38 3143 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3144 schedule_work(&ew->work);
3145
3146 return 1;
3147}
3148EXPORT_SYMBOL_GPL(execute_in_process_context);
3149
226223ab
TH
3150#ifdef CONFIG_SYSFS
3151/*
3152 * Workqueues with WQ_SYSFS flag set is visible to userland via
3153 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3154 * following attributes.
3155 *
3156 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3157 * max_active RW int : maximum number of in-flight work items
3158 *
3159 * Unbound workqueues have the following extra attributes.
3160 *
3161 * id RO int : the associated pool ID
3162 * nice RW int : nice value of the workers
3163 * cpumask RW mask : bitmask of allowed CPUs for the workers
3164 */
3165struct wq_device {
3166 struct workqueue_struct *wq;
3167 struct device dev;
3168};
3169
3170static struct workqueue_struct *dev_to_wq(struct device *dev)
3171{
3172 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3173
3174 return wq_dev->wq;
3175}
3176
3177static ssize_t wq_per_cpu_show(struct device *dev,
3178 struct device_attribute *attr, char *buf)
3179{
3180 struct workqueue_struct *wq = dev_to_wq(dev);
3181
3182 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3183}
3184
3185static ssize_t wq_max_active_show(struct device *dev,
3186 struct device_attribute *attr, char *buf)
3187{
3188 struct workqueue_struct *wq = dev_to_wq(dev);
3189
3190 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3191}
3192
3193static ssize_t wq_max_active_store(struct device *dev,
3194 struct device_attribute *attr,
3195 const char *buf, size_t count)
3196{
3197 struct workqueue_struct *wq = dev_to_wq(dev);
3198 int val;
3199
3200 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3201 return -EINVAL;
3202
3203 workqueue_set_max_active(wq, val);
3204 return count;
3205}
3206
3207static struct device_attribute wq_sysfs_attrs[] = {
3208 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3209 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3210 __ATTR_NULL,
3211};
3212
d55262c4
TH
3213static ssize_t wq_pool_ids_show(struct device *dev,
3214 struct device_attribute *attr, char *buf)
226223ab
TH
3215{
3216 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3217 const char *delim = "";
3218 int node, written = 0;
226223ab
TH
3219
3220 rcu_read_lock_sched();
d55262c4
TH
3221 for_each_node(node) {
3222 written += scnprintf(buf + written, PAGE_SIZE - written,
3223 "%s%d:%d", delim, node,
3224 unbound_pwq_by_node(wq, node)->pool->id);
3225 delim = " ";
3226 }
3227 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3228 rcu_read_unlock_sched();
3229
3230 return written;
3231}
3232
3233static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3234 char *buf)
3235{
3236 struct workqueue_struct *wq = dev_to_wq(dev);
3237 int written;
3238
6029a918
TH
3239 mutex_lock(&wq->mutex);
3240 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3241 mutex_unlock(&wq->mutex);
226223ab
TH
3242
3243 return written;
3244}
3245
3246/* prepare workqueue_attrs for sysfs store operations */
3247static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3248{
3249 struct workqueue_attrs *attrs;
3250
3251 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3252 if (!attrs)
3253 return NULL;
3254
6029a918
TH
3255 mutex_lock(&wq->mutex);
3256 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3257 mutex_unlock(&wq->mutex);
226223ab
TH
3258 return attrs;
3259}
3260
3261static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3262 const char *buf, size_t count)
3263{
3264 struct workqueue_struct *wq = dev_to_wq(dev);
3265 struct workqueue_attrs *attrs;
3266 int ret;
3267
3268 attrs = wq_sysfs_prep_attrs(wq);
3269 if (!attrs)
3270 return -ENOMEM;
3271
3272 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3273 attrs->nice >= -20 && attrs->nice <= 19)
3274 ret = apply_workqueue_attrs(wq, attrs);
3275 else
3276 ret = -EINVAL;
3277
3278 free_workqueue_attrs(attrs);
3279 return ret ?: count;
3280}
3281
3282static ssize_t wq_cpumask_show(struct device *dev,
3283 struct device_attribute *attr, char *buf)
3284{
3285 struct workqueue_struct *wq = dev_to_wq(dev);
3286 int written;
3287
6029a918
TH
3288 mutex_lock(&wq->mutex);
3289 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3290 mutex_unlock(&wq->mutex);
226223ab
TH
3291
3292 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3293 return written;
3294}
3295
3296static ssize_t wq_cpumask_store(struct device *dev,
3297 struct device_attribute *attr,
3298 const char *buf, size_t count)
3299{
3300 struct workqueue_struct *wq = dev_to_wq(dev);
3301 struct workqueue_attrs *attrs;
3302 int ret;
3303
3304 attrs = wq_sysfs_prep_attrs(wq);
3305 if (!attrs)
3306 return -ENOMEM;
3307
3308 ret = cpumask_parse(buf, attrs->cpumask);
3309 if (!ret)
3310 ret = apply_workqueue_attrs(wq, attrs);
3311
3312 free_workqueue_attrs(attrs);
3313 return ret ?: count;
3314}
3315
d55262c4
TH
3316static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3317 char *buf)
3318{
3319 struct workqueue_struct *wq = dev_to_wq(dev);
3320 int written;
3321
3322 mutex_lock(&wq->mutex);
3323 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3324 !wq->unbound_attrs->no_numa);
3325 mutex_unlock(&wq->mutex);
3326
3327 return written;
3328}
3329
3330static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3331 const char *buf, size_t count)
3332{
3333 struct workqueue_struct *wq = dev_to_wq(dev);
3334 struct workqueue_attrs *attrs;
3335 int v, ret;
3336
3337 attrs = wq_sysfs_prep_attrs(wq);
3338 if (!attrs)
3339 return -ENOMEM;
3340
3341 ret = -EINVAL;
3342 if (sscanf(buf, "%d", &v) == 1) {
3343 attrs->no_numa = !v;
3344 ret = apply_workqueue_attrs(wq, attrs);
3345 }
3346
3347 free_workqueue_attrs(attrs);
3348 return ret ?: count;
3349}
3350
226223ab 3351static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3352 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3353 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3354 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3355 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3356 __ATTR_NULL,
3357};
3358
3359static struct bus_type wq_subsys = {
3360 .name = "workqueue",
3361 .dev_attrs = wq_sysfs_attrs,
3362};
3363
3364static int __init wq_sysfs_init(void)
3365{
3366 return subsys_virtual_register(&wq_subsys, NULL);
3367}
3368core_initcall(wq_sysfs_init);
3369
3370static void wq_device_release(struct device *dev)
3371{
3372 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3373
3374 kfree(wq_dev);
3375}
3376
3377/**
3378 * workqueue_sysfs_register - make a workqueue visible in sysfs
3379 * @wq: the workqueue to register
3380 *
3381 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3382 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3383 * which is the preferred method.
3384 *
3385 * Workqueue user should use this function directly iff it wants to apply
3386 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3387 * apply_workqueue_attrs() may race against userland updating the
3388 * attributes.
3389 *
3390 * Returns 0 on success, -errno on failure.
3391 */
3392int workqueue_sysfs_register(struct workqueue_struct *wq)
3393{
3394 struct wq_device *wq_dev;
3395 int ret;
3396
3397 /*
3398 * Adjusting max_active or creating new pwqs by applyting
3399 * attributes breaks ordering guarantee. Disallow exposing ordered
3400 * workqueues.
3401 */
162f50e6 3402 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
226223ab
TH
3403 return -EINVAL;
3404
3405 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3406 if (!wq_dev)
3407 return -ENOMEM;
3408
3409 wq_dev->wq = wq;
3410 wq_dev->dev.bus = &wq_subsys;
3411 wq_dev->dev.init_name = wq->name;
3412 wq_dev->dev.release = wq_device_release;
3413
3414 /*
3415 * unbound_attrs are created separately. Suppress uevent until
3416 * everything is ready.
3417 */
3418 dev_set_uevent_suppress(&wq_dev->dev, true);
3419
3420 ret = device_register(&wq_dev->dev);
3421 if (ret) {
3422 kfree(wq_dev);
3423 wq->wq_dev = NULL;
3424 return ret;
3425 }
3426
3427 if (wq->flags & WQ_UNBOUND) {
3428 struct device_attribute *attr;
3429
3430 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3431 ret = device_create_file(&wq_dev->dev, attr);
3432 if (ret) {
3433 device_unregister(&wq_dev->dev);
3434 wq->wq_dev = NULL;
3435 return ret;
3436 }
3437 }
3438 }
3439
7c36f88c 3440 dev_set_uevent_suppress(&wq_dev->dev, false);
226223ab
TH
3441 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3442 return 0;
3443}
3444
3445/**
3446 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3447 * @wq: the workqueue to unregister
3448 *
3449 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3450 */
3451static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3452{
3453 struct wq_device *wq_dev = wq->wq_dev;
3454
3455 if (!wq->wq_dev)
3456 return;
3457
3458 wq->wq_dev = NULL;
3459 device_unregister(&wq_dev->dev);
3460}
3461#else /* CONFIG_SYSFS */
3462static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3463#endif /* CONFIG_SYSFS */
3464
7a4e344c
TH
3465/**
3466 * free_workqueue_attrs - free a workqueue_attrs
3467 * @attrs: workqueue_attrs to free
3468 *
3469 * Undo alloc_workqueue_attrs().
3470 */
3471void free_workqueue_attrs(struct workqueue_attrs *attrs)
3472{
3473 if (attrs) {
3474 free_cpumask_var(attrs->cpumask);
3475 kfree(attrs);
3476 }
3477}
3478
3479/**
3480 * alloc_workqueue_attrs - allocate a workqueue_attrs
3481 * @gfp_mask: allocation mask to use
3482 *
3483 * Allocate a new workqueue_attrs, initialize with default settings and
3484 * return it. Returns NULL on failure.
3485 */
3486struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3487{
3488 struct workqueue_attrs *attrs;
3489
3490 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3491 if (!attrs)
3492 goto fail;
3493 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3494 goto fail;
3495
13e2e556 3496 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3497 return attrs;
3498fail:
3499 free_workqueue_attrs(attrs);
3500 return NULL;
3501}
3502
29c91e99
TH
3503static void copy_workqueue_attrs(struct workqueue_attrs *to,
3504 const struct workqueue_attrs *from)
3505{
3506 to->nice = from->nice;
3507 cpumask_copy(to->cpumask, from->cpumask);
73b8bd6d
SL
3508 /*
3509 * Unlike hash and equality test, this function doesn't ignore
3510 * ->no_numa as it is used for both pool and wq attrs. Instead,
3511 * get_unbound_pool() explicitly clears ->no_numa after copying.
3512 */
3513 to->no_numa = from->no_numa;
29c91e99
TH
3514}
3515
29c91e99
TH
3516/* hash value of the content of @attr */
3517static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3518{
3519 u32 hash = 0;
3520
3521 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3522 hash = jhash(cpumask_bits(attrs->cpumask),
3523 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3524 return hash;
3525}
3526
3527/* content equality test */
3528static bool wqattrs_equal(const struct workqueue_attrs *a,
3529 const struct workqueue_attrs *b)
3530{
3531 if (a->nice != b->nice)
3532 return false;
3533 if (!cpumask_equal(a->cpumask, b->cpumask))
3534 return false;
3535 return true;
3536}
3537
7a4e344c
TH
3538/**
3539 * init_worker_pool - initialize a newly zalloc'd worker_pool
3540 * @pool: worker_pool to initialize
3541 *
3542 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3543 * Returns 0 on success, -errno on failure. Even on failure, all fields
3544 * inside @pool proper are initialized and put_unbound_pool() can be called
3545 * on @pool safely to release it.
7a4e344c
TH
3546 */
3547static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3548{
3549 spin_lock_init(&pool->lock);
29c91e99
TH
3550 pool->id = -1;
3551 pool->cpu = -1;
f3f90ad4 3552 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3553 pool->flags |= POOL_DISASSOCIATED;
3554 INIT_LIST_HEAD(&pool->worklist);
3555 INIT_LIST_HEAD(&pool->idle_list);
3556 hash_init(pool->busy_hash);
3557
3558 init_timer_deferrable(&pool->idle_timer);
3559 pool->idle_timer.function = idle_worker_timeout;
3560 pool->idle_timer.data = (unsigned long)pool;
3561
3562 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3563 (unsigned long)pool);
3564
3565 mutex_init(&pool->manager_arb);
bc3a1afc 3566 mutex_init(&pool->manager_mutex);
822d8405 3567 idr_init(&pool->worker_idr);
7a4e344c 3568
29c91e99
TH
3569 INIT_HLIST_NODE(&pool->hash_node);
3570 pool->refcnt = 1;
3571
3572 /* shouldn't fail above this point */
7a4e344c
TH
3573 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3574 if (!pool->attrs)
3575 return -ENOMEM;
3576 return 0;
4e1a1f9a
TH
3577}
3578
29c91e99
TH
3579static void rcu_free_pool(struct rcu_head *rcu)
3580{
3581 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3582
822d8405 3583 idr_destroy(&pool->worker_idr);
29c91e99
TH
3584 free_workqueue_attrs(pool->attrs);
3585 kfree(pool);
3586}
3587
3588/**
3589 * put_unbound_pool - put a worker_pool
3590 * @pool: worker_pool to put
3591 *
3592 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3593 * safe manner. get_unbound_pool() calls this function on its failure path
3594 * and this function should be able to release pools which went through,
3595 * successfully or not, init_worker_pool().
a892cacc
TH
3596 *
3597 * Should be called with wq_pool_mutex held.
29c91e99
TH
3598 */
3599static void put_unbound_pool(struct worker_pool *pool)
3600{
3601 struct worker *worker;
3602
a892cacc
TH
3603 lockdep_assert_held(&wq_pool_mutex);
3604
3605 if (--pool->refcnt)
29c91e99 3606 return;
29c91e99
TH
3607
3608 /* sanity checks */
3609 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3610 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3611 return;
29c91e99
TH
3612
3613 /* release id and unhash */
3614 if (pool->id >= 0)
3615 idr_remove(&worker_pool_idr, pool->id);
3616 hash_del(&pool->hash_node);
3617
c5aa87bb
TH
3618 /*
3619 * Become the manager and destroy all workers. Grabbing
3620 * manager_arb prevents @pool's workers from blocking on
3621 * manager_mutex.
3622 */
29c91e99 3623 mutex_lock(&pool->manager_arb);
cd549687 3624 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3625 spin_lock_irq(&pool->lock);
3626
3627 while ((worker = first_worker(pool)))
3628 destroy_worker(worker);
3629 WARN_ON(pool->nr_workers || pool->nr_idle);
3630
3631 spin_unlock_irq(&pool->lock);
cd549687 3632 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3633 mutex_unlock(&pool->manager_arb);
3634
3635 /* shut down the timers */
3636 del_timer_sync(&pool->idle_timer);
3637 del_timer_sync(&pool->mayday_timer);
3638
3639 /* sched-RCU protected to allow dereferences from get_work_pool() */
3640 call_rcu_sched(&pool->rcu, rcu_free_pool);
3641}
3642
3643/**
3644 * get_unbound_pool - get a worker_pool with the specified attributes
3645 * @attrs: the attributes of the worker_pool to get
3646 *
3647 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3648 * reference count and return it. If there already is a matching
3649 * worker_pool, it will be used; otherwise, this function attempts to
3650 * create a new one. On failure, returns NULL.
a892cacc
TH
3651 *
3652 * Should be called with wq_pool_mutex held.
29c91e99
TH
3653 */
3654static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3655{
29c91e99
TH
3656 u32 hash = wqattrs_hash(attrs);
3657 struct worker_pool *pool;
f3f90ad4 3658 int node;
29c91e99 3659
a892cacc 3660 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3661
3662 /* do we already have a matching pool? */
29c91e99
TH
3663 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3664 if (wqattrs_equal(pool->attrs, attrs)) {
3665 pool->refcnt++;
3666 goto out_unlock;
3667 }
3668 }
29c91e99
TH
3669
3670 /* nope, create a new one */
3671 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3672 if (!pool || init_worker_pool(pool) < 0)
3673 goto fail;
3674
12ee4fc6
LJ
3675 if (workqueue_freezing)
3676 pool->flags |= POOL_FREEZING;
3677
8864b4e5 3678 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3679 copy_workqueue_attrs(pool->attrs, attrs);
3680
73b8bd6d
SL
3681 /*
3682 * no_numa isn't a worker_pool attribute, always clear it. See
3683 * 'struct workqueue_attrs' comments for detail.
3684 */
3685 pool->attrs->no_numa = false;
3686
f3f90ad4
TH
3687 /* if cpumask is contained inside a NUMA node, we belong to that node */
3688 if (wq_numa_enabled) {
3689 for_each_node(node) {
3690 if (cpumask_subset(pool->attrs->cpumask,
3691 wq_numa_possible_cpumask[node])) {
3692 pool->node = node;
3693 break;
3694 }
3695 }
3696 }
3697
29c91e99
TH
3698 if (worker_pool_assign_id(pool) < 0)
3699 goto fail;
3700
3701 /* create and start the initial worker */
ebf44d16 3702 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3703 goto fail;
3704
29c91e99 3705 /* install */
29c91e99
TH
3706 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3707out_unlock:
29c91e99
TH
3708 return pool;
3709fail:
29c91e99
TH
3710 if (pool)
3711 put_unbound_pool(pool);
3712 return NULL;
3713}
3714
8864b4e5
TH
3715static void rcu_free_pwq(struct rcu_head *rcu)
3716{
3717 kmem_cache_free(pwq_cache,
3718 container_of(rcu, struct pool_workqueue, rcu));
3719}
3720
3721/*
3722 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3723 * and needs to be destroyed.
3724 */
3725static void pwq_unbound_release_workfn(struct work_struct *work)
3726{
3727 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3728 unbound_release_work);
3729 struct workqueue_struct *wq = pwq->wq;
3730 struct worker_pool *pool = pwq->pool;
bc0caf09 3731 bool is_last;
8864b4e5
TH
3732
3733 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3734 return;
3735
75ccf595 3736 /*
3c25a55d 3737 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3738 * necessary on release but do it anyway. It's easier to verify
3739 * and consistent with the linking path.
3740 */
3c25a55d 3741 mutex_lock(&wq->mutex);
8864b4e5 3742 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3743 is_last = list_empty(&wq->pwqs);
3c25a55d 3744 mutex_unlock(&wq->mutex);
8864b4e5 3745
a892cacc 3746 mutex_lock(&wq_pool_mutex);
8864b4e5 3747 put_unbound_pool(pool);
a892cacc
TH
3748 mutex_unlock(&wq_pool_mutex);
3749
8864b4e5
TH
3750 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3751
3752 /*
3753 * If we're the last pwq going away, @wq is already dead and no one
3754 * is gonna access it anymore. Free it.
3755 */
6029a918
TH
3756 if (is_last) {
3757 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3758 kfree(wq);
6029a918 3759 }
8864b4e5
TH
3760}
3761
0fbd95aa 3762/**
699ce097 3763 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3764 * @pwq: target pool_workqueue
0fbd95aa 3765 *
699ce097
TH
3766 * If @pwq isn't freezing, set @pwq->max_active to the associated
3767 * workqueue's saved_max_active and activate delayed work items
3768 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3769 */
699ce097 3770static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3771{
699ce097
TH
3772 struct workqueue_struct *wq = pwq->wq;
3773 bool freezable = wq->flags & WQ_FREEZABLE;
3774
3775 /* for @wq->saved_max_active */
a357fc03 3776 lockdep_assert_held(&wq->mutex);
699ce097
TH
3777
3778 /* fast exit for non-freezable wqs */
3779 if (!freezable && pwq->max_active == wq->saved_max_active)
3780 return;
3781
a357fc03 3782 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3783
3784 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3785 pwq->max_active = wq->saved_max_active;
0fbd95aa 3786
699ce097
TH
3787 while (!list_empty(&pwq->delayed_works) &&
3788 pwq->nr_active < pwq->max_active)
3789 pwq_activate_first_delayed(pwq);
951a078a
LJ
3790
3791 /*
3792 * Need to kick a worker after thawed or an unbound wq's
3793 * max_active is bumped. It's a slow path. Do it always.
3794 */
3795 wake_up_worker(pwq->pool);
699ce097
TH
3796 } else {
3797 pwq->max_active = 0;
3798 }
3799
a357fc03 3800 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3801}
3802
e50aba9a 3803/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3804static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3805 struct worker_pool *pool)
d2c1d404
TH
3806{
3807 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3808
e50aba9a
TH
3809 memset(pwq, 0, sizeof(*pwq));
3810
d2c1d404
TH
3811 pwq->pool = pool;
3812 pwq->wq = wq;
3813 pwq->flush_color = -1;
8864b4e5 3814 pwq->refcnt = 1;
d2c1d404 3815 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3816 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3817 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3818 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3819}
d2c1d404 3820
f147f29e 3821/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3822static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3823{
3824 struct workqueue_struct *wq = pwq->wq;
3825
3826 lockdep_assert_held(&wq->mutex);
75ccf595 3827
1befcf30
TH
3828 /* may be called multiple times, ignore if already linked */
3829 if (!list_empty(&pwq->pwqs_node))
3830 return;
3831
983ca25e
TH
3832 /*
3833 * Set the matching work_color. This is synchronized with
3c25a55d 3834 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3835 */
75ccf595 3836 pwq->work_color = wq->work_color;
983ca25e
TH
3837
3838 /* sync max_active to the current setting */
3839 pwq_adjust_max_active(pwq);
3840
3841 /* link in @pwq */
9e8cd2f5 3842 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3843}
a357fc03 3844
f147f29e
TH
3845/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3846static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3847 const struct workqueue_attrs *attrs)
3848{
3849 struct worker_pool *pool;
3850 struct pool_workqueue *pwq;
3851
3852 lockdep_assert_held(&wq_pool_mutex);
3853
3854 pool = get_unbound_pool(attrs);
3855 if (!pool)
3856 return NULL;
3857
e50aba9a 3858 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3859 if (!pwq) {
3860 put_unbound_pool(pool);
3861 return NULL;
df2d5ae4 3862 }
6029a918 3863
f147f29e
TH
3864 init_pwq(pwq, wq, pool);
3865 return pwq;
d2c1d404
TH
3866}
3867
4c16bd32
TH
3868/* undo alloc_unbound_pwq(), used only in the error path */
3869static void free_unbound_pwq(struct pool_workqueue *pwq)
3870{
3871 lockdep_assert_held(&wq_pool_mutex);
3872
3873 if (pwq) {
3874 put_unbound_pool(pwq->pool);
cece95df 3875 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3876 }
3877}
3878
3879/**
3880 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3881 * @attrs: the wq_attrs of interest
3882 * @node: the target NUMA node
3883 * @cpu_going_down: if >= 0, the CPU to consider as offline
3884 * @cpumask: outarg, the resulting cpumask
3885 *
3886 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3887 * @cpu_going_down is >= 0, that cpu is considered offline during
3888 * calculation. The result is stored in @cpumask. This function returns
3889 * %true if the resulting @cpumask is different from @attrs->cpumask,
3890 * %false if equal.
3891 *
3892 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3893 * enabled and @node has online CPUs requested by @attrs, the returned
3894 * cpumask is the intersection of the possible CPUs of @node and
3895 * @attrs->cpumask.
3896 *
3897 * The caller is responsible for ensuring that the cpumask of @node stays
3898 * stable.
3899 */
3900static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3901 int cpu_going_down, cpumask_t *cpumask)
3902{
d55262c4 3903 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3904 goto use_dfl;
3905
3906 /* does @node have any online CPUs @attrs wants? */
3907 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3908 if (cpu_going_down >= 0)
3909 cpumask_clear_cpu(cpu_going_down, cpumask);
3910
3911 if (cpumask_empty(cpumask))
3912 goto use_dfl;
3913
3914 /* yeap, return possible CPUs in @node that @attrs wants */
3915 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3916 return !cpumask_equal(cpumask, attrs->cpumask);
3917
3918use_dfl:
3919 cpumask_copy(cpumask, attrs->cpumask);
3920 return false;
3921}
3922
1befcf30
TH
3923/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3924static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3925 int node,
3926 struct pool_workqueue *pwq)
3927{
3928 struct pool_workqueue *old_pwq;
3929
3930 lockdep_assert_held(&wq->mutex);
3931
3932 /* link_pwq() can handle duplicate calls */
3933 link_pwq(pwq);
3934
3935 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3936 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3937 return old_pwq;
3938}
3939
9e8cd2f5
TH
3940/**
3941 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3942 * @wq: the target workqueue
3943 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3944 *
4c16bd32
TH
3945 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3946 * machines, this function maps a separate pwq to each NUMA node with
3947 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3948 * NUMA node it was issued on. Older pwqs are released as in-flight work
3949 * items finish. Note that a work item which repeatedly requeues itself
3950 * back-to-back will stay on its current pwq.
9e8cd2f5
TH
3951 *
3952 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3953 * failure.
3954 */
3955int apply_workqueue_attrs(struct workqueue_struct *wq,
3956 const struct workqueue_attrs *attrs)
3957{
4c16bd32
TH
3958 struct workqueue_attrs *new_attrs, *tmp_attrs;
3959 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3960 int node, ret;
9e8cd2f5 3961
8719dcea 3962 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3963 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3964 return -EINVAL;
3965
8719dcea 3966 /* creating multiple pwqs breaks ordering guarantee */
162f50e6
TH
3967 if (!list_empty(&wq->pwqs)) {
3968 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3969 return -EINVAL;
3970
3971 wq->flags &= ~__WQ_ORDERED;
3972 }
8719dcea 3973
4c16bd32 3974 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3975 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3976 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3977 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3978 goto enomem;
3979
4c16bd32 3980 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3981 copy_workqueue_attrs(new_attrs, attrs);
3982 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3983
4c16bd32
TH
3984 /*
3985 * We may create multiple pwqs with differing cpumasks. Make a
3986 * copy of @new_attrs which will be modified and used to obtain
3987 * pools.
3988 */
3989 copy_workqueue_attrs(tmp_attrs, new_attrs);
3990
3991 /*
3992 * CPUs should stay stable across pwq creations and installations.
3993 * Pin CPUs, determine the target cpumask for each node and create
3994 * pwqs accordingly.
3995 */
3996 get_online_cpus();
3997
a892cacc 3998 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3999
4000 /*
4001 * If something goes wrong during CPU up/down, we'll fall back to
4002 * the default pwq covering whole @attrs->cpumask. Always create
4003 * it even if we don't use it immediately.
4004 */
4005 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4006 if (!dfl_pwq)
4007 goto enomem_pwq;
4008
4009 for_each_node(node) {
4010 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
4011 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4012 if (!pwq_tbl[node])
4013 goto enomem_pwq;
4014 } else {
4015 dfl_pwq->refcnt++;
4016 pwq_tbl[node] = dfl_pwq;
4017 }
4018 }
4019
f147f29e 4020 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 4021
4c16bd32 4022 /* all pwqs have been created successfully, let's install'em */
f147f29e 4023 mutex_lock(&wq->mutex);
a892cacc 4024
f147f29e 4025 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
4026
4027 /* save the previous pwq and install the new one */
f147f29e 4028 for_each_node(node)
4c16bd32
TH
4029 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
4030
4031 /* @dfl_pwq might not have been used, ensure it's linked */
4032 link_pwq(dfl_pwq);
4033 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
4034
4035 mutex_unlock(&wq->mutex);
9e8cd2f5 4036
4c16bd32
TH
4037 /* put the old pwqs */
4038 for_each_node(node)
4039 put_pwq_unlocked(pwq_tbl[node]);
4040 put_pwq_unlocked(dfl_pwq);
4041
4042 put_online_cpus();
4862125b
TH
4043 ret = 0;
4044 /* fall through */
4045out_free:
4c16bd32 4046 free_workqueue_attrs(tmp_attrs);
4862125b 4047 free_workqueue_attrs(new_attrs);
4c16bd32 4048 kfree(pwq_tbl);
4862125b 4049 return ret;
13e2e556 4050
4c16bd32
TH
4051enomem_pwq:
4052 free_unbound_pwq(dfl_pwq);
4053 for_each_node(node)
4054 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4055 free_unbound_pwq(pwq_tbl[node]);
4056 mutex_unlock(&wq_pool_mutex);
4057 put_online_cpus();
13e2e556 4058enomem:
4862125b
TH
4059 ret = -ENOMEM;
4060 goto out_free;
9e8cd2f5
TH
4061}
4062
4c16bd32
TH
4063/**
4064 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4065 * @wq: the target workqueue
4066 * @cpu: the CPU coming up or going down
4067 * @online: whether @cpu is coming up or going down
4068 *
4069 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4070 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4071 * @wq accordingly.
4072 *
4073 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4074 * falls back to @wq->dfl_pwq which may not be optimal but is always
4075 * correct.
4076 *
4077 * Note that when the last allowed CPU of a NUMA node goes offline for a
4078 * workqueue with a cpumask spanning multiple nodes, the workers which were
4079 * already executing the work items for the workqueue will lose their CPU
4080 * affinity and may execute on any CPU. This is similar to how per-cpu
4081 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4082 * affinity, it's the user's responsibility to flush the work item from
4083 * CPU_DOWN_PREPARE.
4084 */
4085static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4086 bool online)
4087{
4088 int node = cpu_to_node(cpu);
4089 int cpu_off = online ? -1 : cpu;
4090 struct pool_workqueue *old_pwq = NULL, *pwq;
4091 struct workqueue_attrs *target_attrs;
4092 cpumask_t *cpumask;
4093
4094 lockdep_assert_held(&wq_pool_mutex);
4095
4096 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4097 return;
4098
4099 /*
4100 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4101 * Let's use a preallocated one. The following buf is protected by
4102 * CPU hotplug exclusion.
4103 */
4104 target_attrs = wq_update_unbound_numa_attrs_buf;
4105 cpumask = target_attrs->cpumask;
4106
4107 mutex_lock(&wq->mutex);
d55262c4
TH
4108 if (wq->unbound_attrs->no_numa)
4109 goto out_unlock;
4c16bd32
TH
4110
4111 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4112 pwq = unbound_pwq_by_node(wq, node);
4113
4114 /*
4115 * Let's determine what needs to be done. If the target cpumask is
4116 * different from wq's, we need to compare it to @pwq's and create
4117 * a new one if they don't match. If the target cpumask equals
4118 * wq's, the default pwq should be used. If @pwq is already the
4119 * default one, nothing to do; otherwise, install the default one.
4120 */
4121 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4122 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4123 goto out_unlock;
4124 } else {
4125 if (pwq == wq->dfl_pwq)
4126 goto out_unlock;
4127 else
4128 goto use_dfl_pwq;
4129 }
4130
4131 mutex_unlock(&wq->mutex);
4132
4133 /* create a new pwq */
4134 pwq = alloc_unbound_pwq(wq, target_attrs);
4135 if (!pwq) {
4136 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4137 wq->name);
55a3dfcc
DY
4138 mutex_lock(&wq->mutex);
4139 goto use_dfl_pwq;
4c16bd32
TH
4140 }
4141
4142 /*
4143 * Install the new pwq. As this function is called only from CPU
4144 * hotplug callbacks and applying a new attrs is wrapped with
4145 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4146 * inbetween.
4147 */
4148 mutex_lock(&wq->mutex);
4149 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4150 goto out_unlock;
4151
4152use_dfl_pwq:
4153 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4154 get_pwq(wq->dfl_pwq);
4155 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4156 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4157out_unlock:
4158 mutex_unlock(&wq->mutex);
4159 put_pwq_unlocked(old_pwq);
4160}
4161
30cdf249 4162static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4163{
49e3cf44 4164 bool highpri = wq->flags & WQ_HIGHPRI;
ced4ac92 4165 int cpu, ret;
30cdf249
TH
4166
4167 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4168 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4169 if (!wq->cpu_pwqs)
30cdf249
TH
4170 return -ENOMEM;
4171
4172 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4173 struct pool_workqueue *pwq =
4174 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4175 struct worker_pool *cpu_pools =
f02ae73a 4176 per_cpu(cpu_worker_pools, cpu);
f3421797 4177
f147f29e
TH
4178 init_pwq(pwq, wq, &cpu_pools[highpri]);
4179
4180 mutex_lock(&wq->mutex);
1befcf30 4181 link_pwq(pwq);
f147f29e 4182 mutex_unlock(&wq->mutex);
30cdf249 4183 }
9e8cd2f5 4184 return 0;
ced4ac92
TH
4185 } else if (wq->flags & __WQ_ORDERED) {
4186 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4187 /* there should only be single pwq for ordering guarantee */
4188 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4189 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4190 "ordering guarantee broken for workqueue %s\n", wq->name);
4191 return ret;
30cdf249 4192 } else {
9e8cd2f5 4193 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4194 }
0f900049
TH
4195}
4196
f3421797
TH
4197static int wq_clamp_max_active(int max_active, unsigned int flags,
4198 const char *name)
b71ab8c2 4199{
f3421797
TH
4200 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4201
4202 if (max_active < 1 || max_active > lim)
044c782c
VI
4203 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4204 max_active, name, 1, lim);
b71ab8c2 4205
f3421797 4206 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4207}
4208
b196be89 4209struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4210 unsigned int flags,
4211 int max_active,
4212 struct lock_class_key *key,
b196be89 4213 const char *lock_name, ...)
1da177e4 4214{
df2d5ae4 4215 size_t tbl_size = 0;
ecf6881f 4216 va_list args;
1da177e4 4217 struct workqueue_struct *wq;
49e3cf44 4218 struct pool_workqueue *pwq;
b196be89 4219
ae49cb71
TH
4220 /*
4221 * Unbound && max_active == 1 used to imply ordered, which is no
4222 * longer the case on NUMA machines due to per-node pools. While
4223 * alloc_ordered_workqueue() is the right way to create an ordered
4224 * workqueue, keep the previous behavior to avoid subtle breakages
4225 * on NUMA.
4226 */
4227 if ((flags & WQ_UNBOUND) && max_active == 1)
4228 flags |= __WQ_ORDERED;
4229
ecf6881f 4230 /* allocate wq and format name */
df2d5ae4
TH
4231 if (flags & WQ_UNBOUND)
4232 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4233
4234 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4235 if (!wq)
d2c1d404 4236 return NULL;
b196be89 4237
6029a918
TH
4238 if (flags & WQ_UNBOUND) {
4239 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4240 if (!wq->unbound_attrs)
4241 goto err_free_wq;
4242 }
4243
ecf6881f
TH
4244 va_start(args, lock_name);
4245 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4246 va_end(args);
1da177e4 4247
d320c038 4248 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4249 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4250
b196be89 4251 /* init wq */
97e37d7b 4252 wq->flags = flags;
a0a1a5fd 4253 wq->saved_max_active = max_active;
3c25a55d 4254 mutex_init(&wq->mutex);
112202d9 4255 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4256 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4257 INIT_LIST_HEAD(&wq->flusher_queue);
4258 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4259 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4260
eb13ba87 4261 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4262 INIT_LIST_HEAD(&wq->list);
3af24433 4263
30cdf249 4264 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4265 goto err_free_wq;
1537663f 4266
493008a8
TH
4267 /*
4268 * Workqueues which may be used during memory reclaim should
4269 * have a rescuer to guarantee forward progress.
4270 */
4271 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4272 struct worker *rescuer;
4273
d2c1d404 4274 rescuer = alloc_worker();
e22bee78 4275 if (!rescuer)
d2c1d404 4276 goto err_destroy;
e22bee78 4277
111c225a
TH
4278 rescuer->rescue_wq = wq;
4279 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4280 wq->name);
d2c1d404
TH
4281 if (IS_ERR(rescuer->task)) {
4282 kfree(rescuer);
4283 goto err_destroy;
4284 }
e22bee78 4285
d2c1d404 4286 wq->rescuer = rescuer;
14a40ffc 4287 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4288 wake_up_process(rescuer->task);
3af24433
ON
4289 }
4290
226223ab
TH
4291 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4292 goto err_destroy;
4293
a0a1a5fd 4294 /*
68e13a67
LJ
4295 * wq_pool_mutex protects global freeze state and workqueues list.
4296 * Grab it, adjust max_active and add the new @wq to workqueues
4297 * list.
a0a1a5fd 4298 */
68e13a67 4299 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4300
a357fc03 4301 mutex_lock(&wq->mutex);
699ce097
TH
4302 for_each_pwq(pwq, wq)
4303 pwq_adjust_max_active(pwq);
a357fc03 4304 mutex_unlock(&wq->mutex);
a0a1a5fd 4305
1537663f 4306 list_add(&wq->list, &workqueues);
a0a1a5fd 4307
68e13a67 4308 mutex_unlock(&wq_pool_mutex);
1537663f 4309
3af24433 4310 return wq;
d2c1d404
TH
4311
4312err_free_wq:
6029a918 4313 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4314 kfree(wq);
4315 return NULL;
4316err_destroy:
4317 destroy_workqueue(wq);
4690c4ab 4318 return NULL;
3af24433 4319}
d320c038 4320EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4321
3af24433
ON
4322/**
4323 * destroy_workqueue - safely terminate a workqueue
4324 * @wq: target workqueue
4325 *
4326 * Safely destroy a workqueue. All work currently pending will be done first.
4327 */
4328void destroy_workqueue(struct workqueue_struct *wq)
4329{
49e3cf44 4330 struct pool_workqueue *pwq;
4c16bd32 4331 int node;
3af24433 4332
9c5a2ba7
TH
4333 /* drain it before proceeding with destruction */
4334 drain_workqueue(wq);
c8efcc25 4335
6183c009 4336 /* sanity checks */
b09f4fd3 4337 mutex_lock(&wq->mutex);
49e3cf44 4338 for_each_pwq(pwq, wq) {
6183c009
TH
4339 int i;
4340
76af4d93
TH
4341 for (i = 0; i < WORK_NR_COLORS; i++) {
4342 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4343 mutex_unlock(&wq->mutex);
6183c009 4344 return;
76af4d93
TH
4345 }
4346 }
4347
5c529597 4348 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4349 WARN_ON(pwq->nr_active) ||
76af4d93 4350 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4351 mutex_unlock(&wq->mutex);
6183c009 4352 return;
76af4d93 4353 }
6183c009 4354 }
b09f4fd3 4355 mutex_unlock(&wq->mutex);
6183c009 4356
a0a1a5fd
TH
4357 /*
4358 * wq list is used to freeze wq, remove from list after
4359 * flushing is complete in case freeze races us.
4360 */
68e13a67 4361 mutex_lock(&wq_pool_mutex);
d2c1d404 4362 list_del_init(&wq->list);
68e13a67 4363 mutex_unlock(&wq_pool_mutex);
3af24433 4364
226223ab
TH
4365 workqueue_sysfs_unregister(wq);
4366
493008a8 4367 if (wq->rescuer) {
e22bee78 4368 kthread_stop(wq->rescuer->task);
8d9df9f0 4369 kfree(wq->rescuer);
493008a8 4370 wq->rescuer = NULL;
e22bee78
TH
4371 }
4372
8864b4e5
TH
4373 if (!(wq->flags & WQ_UNBOUND)) {
4374 /*
4375 * The base ref is never dropped on per-cpu pwqs. Directly
4376 * free the pwqs and wq.
4377 */
4378 free_percpu(wq->cpu_pwqs);
4379 kfree(wq);
4380 } else {
4381 /*
4382 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4383 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4384 * @wq will be freed when the last pwq is released.
8864b4e5 4385 */
4c16bd32
TH
4386 for_each_node(node) {
4387 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4388 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4389 put_pwq_unlocked(pwq);
4390 }
4391
4392 /*
4393 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4394 * put. Don't access it afterwards.
4395 */
4396 pwq = wq->dfl_pwq;
4397 wq->dfl_pwq = NULL;
dce90d47 4398 put_pwq_unlocked(pwq);
29c91e99 4399 }
3af24433
ON
4400}
4401EXPORT_SYMBOL_GPL(destroy_workqueue);
4402
dcd989cb
TH
4403/**
4404 * workqueue_set_max_active - adjust max_active of a workqueue
4405 * @wq: target workqueue
4406 * @max_active: new max_active value.
4407 *
4408 * Set max_active of @wq to @max_active.
4409 *
4410 * CONTEXT:
4411 * Don't call from IRQ context.
4412 */
4413void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4414{
49e3cf44 4415 struct pool_workqueue *pwq;
dcd989cb 4416
8719dcea 4417 /* disallow meddling with max_active for ordered workqueues */
162f50e6 4418 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4419 return;
4420
f3421797 4421 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4422
a357fc03 4423 mutex_lock(&wq->mutex);
dcd989cb 4424
162f50e6 4425 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4426 wq->saved_max_active = max_active;
4427
699ce097
TH
4428 for_each_pwq(pwq, wq)
4429 pwq_adjust_max_active(pwq);
93981800 4430
a357fc03 4431 mutex_unlock(&wq->mutex);
15316ba8 4432}
dcd989cb 4433EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4434
e6267616
TH
4435/**
4436 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4437 *
4438 * Determine whether %current is a workqueue rescuer. Can be used from
4439 * work functions to determine whether it's being run off the rescuer task.
4440 */
4441bool current_is_workqueue_rescuer(void)
4442{
4443 struct worker *worker = current_wq_worker();
4444
6a092dfd 4445 return worker && worker->rescue_wq;
e6267616
TH
4446}
4447
eef6a7d5 4448/**
dcd989cb
TH
4449 * workqueue_congested - test whether a workqueue is congested
4450 * @cpu: CPU in question
4451 * @wq: target workqueue
eef6a7d5 4452 *
dcd989cb
TH
4453 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4454 * no synchronization around this function and the test result is
4455 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4456 *
d3251859
TH
4457 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4458 * Note that both per-cpu and unbound workqueues may be associated with
4459 * multiple pool_workqueues which have separate congested states. A
4460 * workqueue being congested on one CPU doesn't mean the workqueue is also
4461 * contested on other CPUs / NUMA nodes.
4462 *
dcd989cb
TH
4463 * RETURNS:
4464 * %true if congested, %false otherwise.
eef6a7d5 4465 */
d84ff051 4466bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4467{
7fb98ea7 4468 struct pool_workqueue *pwq;
76af4d93
TH
4469 bool ret;
4470
88109453 4471 rcu_read_lock_sched();
7fb98ea7 4472
d3251859
TH
4473 if (cpu == WORK_CPU_UNBOUND)
4474 cpu = smp_processor_id();
4475
7fb98ea7
TH
4476 if (!(wq->flags & WQ_UNBOUND))
4477 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4478 else
df2d5ae4 4479 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4480
76af4d93 4481 ret = !list_empty(&pwq->delayed_works);
88109453 4482 rcu_read_unlock_sched();
76af4d93
TH
4483
4484 return ret;
1da177e4 4485}
dcd989cb 4486EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4487
dcd989cb
TH
4488/**
4489 * work_busy - test whether a work is currently pending or running
4490 * @work: the work to be tested
4491 *
4492 * Test whether @work is currently pending or running. There is no
4493 * synchronization around this function and the test result is
4494 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4495 *
4496 * RETURNS:
4497 * OR'd bitmask of WORK_BUSY_* bits.
4498 */
4499unsigned int work_busy(struct work_struct *work)
1da177e4 4500{
fa1b54e6 4501 struct worker_pool *pool;
dcd989cb
TH
4502 unsigned long flags;
4503 unsigned int ret = 0;
1da177e4 4504
dcd989cb
TH
4505 if (work_pending(work))
4506 ret |= WORK_BUSY_PENDING;
1da177e4 4507
fa1b54e6
TH
4508 local_irq_save(flags);
4509 pool = get_work_pool(work);
038366c5 4510 if (pool) {
fa1b54e6 4511 spin_lock(&pool->lock);
038366c5
LJ
4512 if (find_worker_executing_work(pool, work))
4513 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4514 spin_unlock(&pool->lock);
038366c5 4515 }
fa1b54e6 4516 local_irq_restore(flags);
1da177e4 4517
dcd989cb 4518 return ret;
1da177e4 4519}
dcd989cb 4520EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4521
3d1cb205
TH
4522/**
4523 * set_worker_desc - set description for the current work item
4524 * @fmt: printf-style format string
4525 * @...: arguments for the format string
4526 *
4527 * This function can be called by a running work function to describe what
4528 * the work item is about. If the worker task gets dumped, this
4529 * information will be printed out together to help debugging. The
4530 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4531 */
4532void set_worker_desc(const char *fmt, ...)
4533{
4534 struct worker *worker = current_wq_worker();
4535 va_list args;
4536
4537 if (worker) {
4538 va_start(args, fmt);
4539 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4540 va_end(args);
4541 worker->desc_valid = true;
4542 }
4543}
4544
4545/**
4546 * print_worker_info - print out worker information and description
4547 * @log_lvl: the log level to use when printing
4548 * @task: target task
4549 *
4550 * If @task is a worker and currently executing a work item, print out the
4551 * name of the workqueue being serviced and worker description set with
4552 * set_worker_desc() by the currently executing work item.
4553 *
4554 * This function can be safely called on any task as long as the
4555 * task_struct itself is accessible. While safe, this function isn't
4556 * synchronized and may print out mixups or garbages of limited length.
4557 */
4558void print_worker_info(const char *log_lvl, struct task_struct *task)
4559{
4560 work_func_t *fn = NULL;
4561 char name[WQ_NAME_LEN] = { };
4562 char desc[WORKER_DESC_LEN] = { };
4563 struct pool_workqueue *pwq = NULL;
4564 struct workqueue_struct *wq = NULL;
4565 bool desc_valid = false;
4566 struct worker *worker;
4567
4568 if (!(task->flags & PF_WQ_WORKER))
4569 return;
4570
4571 /*
4572 * This function is called without any synchronization and @task
4573 * could be in any state. Be careful with dereferences.
4574 */
4575 worker = probe_kthread_data(task);
4576
4577 /*
4578 * Carefully copy the associated workqueue's workfn and name. Keep
4579 * the original last '\0' in case the original contains garbage.
4580 */
4581 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4582 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4583 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4584 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4585
4586 /* copy worker description */
4587 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4588 if (desc_valid)
4589 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4590
4591 if (fn || name[0] || desc[0]) {
4592 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4593 if (desc[0])
4594 pr_cont(" (%s)", desc);
4595 pr_cont("\n");
4596 }
4597}
4598
db7bccf4
TH
4599/*
4600 * CPU hotplug.
4601 *
e22bee78 4602 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4603 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4604 * pool which make migrating pending and scheduled works very
e22bee78 4605 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4606 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4607 * blocked draining impractical.
4608 *
24647570 4609 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4610 * running as an unbound one and allowing it to be reattached later if the
4611 * cpu comes back online.
db7bccf4 4612 */
1da177e4 4613
706026c2 4614static void wq_unbind_fn(struct work_struct *work)
3af24433 4615{
38db41d9 4616 int cpu = smp_processor_id();
4ce62e9e 4617 struct worker_pool *pool;
db7bccf4 4618 struct worker *worker;
a9ab775b 4619 int wi;
3af24433 4620
f02ae73a 4621 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4622 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4623
bc3a1afc 4624 mutex_lock(&pool->manager_mutex);
94cf58bb 4625 spin_lock_irq(&pool->lock);
3af24433 4626
94cf58bb 4627 /*
bc3a1afc 4628 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4629 * unbound and set DISASSOCIATED. Before this, all workers
4630 * except for the ones which are still executing works from
4631 * before the last CPU down must be on the cpu. After
4632 * this, they may become diasporas.
4633 */
a9ab775b 4634 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4635 worker->flags |= WORKER_UNBOUND;
06ba38a9 4636
24647570 4637 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4638
94cf58bb 4639 spin_unlock_irq(&pool->lock);
bc3a1afc 4640 mutex_unlock(&pool->manager_mutex);
628c78e7 4641
eb283428
LJ
4642 /*
4643 * Call schedule() so that we cross rq->lock and thus can
4644 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4645 * This is necessary as scheduler callbacks may be invoked
4646 * from other cpus.
4647 */
4648 schedule();
06ba38a9 4649
eb283428
LJ
4650 /*
4651 * Sched callbacks are disabled now. Zap nr_running.
4652 * After this, nr_running stays zero and need_more_worker()
4653 * and keep_working() are always true as long as the
4654 * worklist is not empty. This pool now behaves as an
4655 * unbound (in terms of concurrency management) pool which
4656 * are served by workers tied to the pool.
4657 */
e19e397a 4658 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4659
4660 /*
4661 * With concurrency management just turned off, a busy
4662 * worker blocking could lead to lengthy stalls. Kick off
4663 * unbound chain execution of currently pending work items.
4664 */
4665 spin_lock_irq(&pool->lock);
4666 wake_up_worker(pool);
4667 spin_unlock_irq(&pool->lock);
4668 }
3af24433 4669}
3af24433 4670
bd7c089e
TH
4671/**
4672 * rebind_workers - rebind all workers of a pool to the associated CPU
4673 * @pool: pool of interest
4674 *
a9ab775b 4675 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4676 */
4677static void rebind_workers(struct worker_pool *pool)
4678{
a9ab775b
TH
4679 struct worker *worker;
4680 int wi;
bd7c089e
TH
4681
4682 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4683
a9ab775b
TH
4684 /*
4685 * Restore CPU affinity of all workers. As all idle workers should
4686 * be on the run-queue of the associated CPU before any local
4687 * wake-ups for concurrency management happen, restore CPU affinty
4688 * of all workers first and then clear UNBOUND. As we're called
4689 * from CPU_ONLINE, the following shouldn't fail.
4690 */
4691 for_each_pool_worker(worker, wi, pool)
4692 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4693 pool->attrs->cpumask) < 0);
bd7c089e 4694
a9ab775b 4695 spin_lock_irq(&pool->lock);
bd7c089e 4696
a9ab775b
TH
4697 for_each_pool_worker(worker, wi, pool) {
4698 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4699
4700 /*
a9ab775b
TH
4701 * A bound idle worker should actually be on the runqueue
4702 * of the associated CPU for local wake-ups targeting it to
4703 * work. Kick all idle workers so that they migrate to the
4704 * associated CPU. Doing this in the same loop as
4705 * replacing UNBOUND with REBOUND is safe as no worker will
4706 * be bound before @pool->lock is released.
bd7c089e 4707 */
a9ab775b
TH
4708 if (worker_flags & WORKER_IDLE)
4709 wake_up_process(worker->task);
bd7c089e 4710
a9ab775b
TH
4711 /*
4712 * We want to clear UNBOUND but can't directly call
4713 * worker_clr_flags() or adjust nr_running. Atomically
4714 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4715 * @worker will clear REBOUND using worker_clr_flags() when
4716 * it initiates the next execution cycle thus restoring
4717 * concurrency management. Note that when or whether
4718 * @worker clears REBOUND doesn't affect correctness.
4719 *
4720 * ACCESS_ONCE() is necessary because @worker->flags may be
4721 * tested without holding any lock in
4722 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4723 * fail incorrectly leading to premature concurrency
4724 * management operations.
4725 */
4726 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4727 worker_flags |= WORKER_REBOUND;
4728 worker_flags &= ~WORKER_UNBOUND;
4729 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4730 }
a9ab775b
TH
4731
4732 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4733}
4734
7dbc725e
TH
4735/**
4736 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4737 * @pool: unbound pool of interest
4738 * @cpu: the CPU which is coming up
4739 *
4740 * An unbound pool may end up with a cpumask which doesn't have any online
4741 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4742 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4743 * online CPU before, cpus_allowed of all its workers should be restored.
4744 */
4745static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4746{
4747 static cpumask_t cpumask;
4748 struct worker *worker;
4749 int wi;
4750
4751 lockdep_assert_held(&pool->manager_mutex);
4752
4753 /* is @cpu allowed for @pool? */
4754 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4755 return;
4756
4757 /* is @cpu the only online CPU? */
4758 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4759 if (cpumask_weight(&cpumask) != 1)
4760 return;
4761
4762 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4763 for_each_pool_worker(worker, wi, pool)
4764 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4765 pool->attrs->cpumask) < 0);
4766}
4767
8db25e78
TH
4768/*
4769 * Workqueues should be brought up before normal priority CPU notifiers.
4770 * This will be registered high priority CPU notifier.
4771 */
9fdf9b73 4772static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4773 unsigned long action,
4774 void *hcpu)
3af24433 4775{
d84ff051 4776 int cpu = (unsigned long)hcpu;
4ce62e9e 4777 struct worker_pool *pool;
4c16bd32 4778 struct workqueue_struct *wq;
7dbc725e 4779 int pi;
3ce63377 4780
8db25e78 4781 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4782 case CPU_UP_PREPARE:
f02ae73a 4783 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4784 if (pool->nr_workers)
4785 continue;
ebf44d16 4786 if (create_and_start_worker(pool) < 0)
3ce63377 4787 return NOTIFY_BAD;
3af24433 4788 }
8db25e78 4789 break;
3af24433 4790
db7bccf4
TH
4791 case CPU_DOWN_FAILED:
4792 case CPU_ONLINE:
68e13a67 4793 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4794
4795 for_each_pool(pool, pi) {
bc3a1afc 4796 mutex_lock(&pool->manager_mutex);
94cf58bb 4797
7dbc725e
TH
4798 if (pool->cpu == cpu) {
4799 spin_lock_irq(&pool->lock);
4800 pool->flags &= ~POOL_DISASSOCIATED;
4801 spin_unlock_irq(&pool->lock);
a9ab775b 4802
7dbc725e
TH
4803 rebind_workers(pool);
4804 } else if (pool->cpu < 0) {
4805 restore_unbound_workers_cpumask(pool, cpu);
4806 }
94cf58bb 4807
bc3a1afc 4808 mutex_unlock(&pool->manager_mutex);
94cf58bb 4809 }
7dbc725e 4810
4c16bd32
TH
4811 /* update NUMA affinity of unbound workqueues */
4812 list_for_each_entry(wq, &workqueues, list)
4813 wq_update_unbound_numa(wq, cpu, true);
4814
68e13a67 4815 mutex_unlock(&wq_pool_mutex);
db7bccf4 4816 break;
00dfcaf7 4817 }
65758202
TH
4818 return NOTIFY_OK;
4819}
4820
4821/*
4822 * Workqueues should be brought down after normal priority CPU notifiers.
4823 * This will be registered as low priority CPU notifier.
4824 */
9fdf9b73 4825static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4826 unsigned long action,
4827 void *hcpu)
4828{
d84ff051 4829 int cpu = (unsigned long)hcpu;
8db25e78 4830 struct work_struct unbind_work;
4c16bd32 4831 struct workqueue_struct *wq;
8db25e78 4832
65758202
TH
4833 switch (action & ~CPU_TASKS_FROZEN) {
4834 case CPU_DOWN_PREPARE:
4c16bd32 4835 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4836 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4837 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4838
4839 /* update NUMA affinity of unbound workqueues */
4840 mutex_lock(&wq_pool_mutex);
4841 list_for_each_entry(wq, &workqueues, list)
4842 wq_update_unbound_numa(wq, cpu, false);
4843 mutex_unlock(&wq_pool_mutex);
4844
4845 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4846 flush_work(&unbind_work);
4847 break;
65758202
TH
4848 }
4849 return NOTIFY_OK;
4850}
4851
2d3854a3 4852#ifdef CONFIG_SMP
8ccad40d 4853
2d3854a3 4854struct work_for_cpu {
ed48ece2 4855 struct work_struct work;
2d3854a3
RR
4856 long (*fn)(void *);
4857 void *arg;
4858 long ret;
4859};
4860
ed48ece2 4861static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4862{
ed48ece2
TH
4863 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4864
2d3854a3
RR
4865 wfc->ret = wfc->fn(wfc->arg);
4866}
4867
4868/**
4869 * work_on_cpu - run a function in user context on a particular cpu
4870 * @cpu: the cpu to run on
4871 * @fn: the function to run
4872 * @arg: the function arg
4873 *
31ad9081
RR
4874 * This will return the value @fn returns.
4875 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4876 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4877 */
d84ff051 4878long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4879{
ed48ece2 4880 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4881
ed48ece2
TH
4882 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4883 schedule_work_on(cpu, &wfc.work);
4884 flush_work(&wfc.work);
2d3854a3
RR
4885 return wfc.ret;
4886}
4887EXPORT_SYMBOL_GPL(work_on_cpu);
4888#endif /* CONFIG_SMP */
4889
a0a1a5fd
TH
4890#ifdef CONFIG_FREEZER
4891
4892/**
4893 * freeze_workqueues_begin - begin freezing workqueues
4894 *
58a69cb4 4895 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4896 * workqueues will queue new works to their delayed_works list instead of
706026c2 4897 * pool->worklist.
a0a1a5fd
TH
4898 *
4899 * CONTEXT:
a357fc03 4900 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4901 */
4902void freeze_workqueues_begin(void)
4903{
17116969 4904 struct worker_pool *pool;
24b8a847
TH
4905 struct workqueue_struct *wq;
4906 struct pool_workqueue *pwq;
611c92a0 4907 int pi;
a0a1a5fd 4908
68e13a67 4909 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4910
6183c009 4911 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4912 workqueue_freezing = true;
4913
24b8a847 4914 /* set FREEZING */
611c92a0 4915 for_each_pool(pool, pi) {
5bcab335 4916 spin_lock_irq(&pool->lock);
17116969
TH
4917 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4918 pool->flags |= POOL_FREEZING;
5bcab335 4919 spin_unlock_irq(&pool->lock);
24b8a847 4920 }
a0a1a5fd 4921
24b8a847 4922 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4923 mutex_lock(&wq->mutex);
699ce097
TH
4924 for_each_pwq(pwq, wq)
4925 pwq_adjust_max_active(pwq);
a357fc03 4926 mutex_unlock(&wq->mutex);
a0a1a5fd 4927 }
5bcab335 4928
68e13a67 4929 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4930}
4931
4932/**
58a69cb4 4933 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4934 *
4935 * Check whether freezing is complete. This function must be called
4936 * between freeze_workqueues_begin() and thaw_workqueues().
4937 *
4938 * CONTEXT:
68e13a67 4939 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4940 *
4941 * RETURNS:
58a69cb4
TH
4942 * %true if some freezable workqueues are still busy. %false if freezing
4943 * is complete.
a0a1a5fd
TH
4944 */
4945bool freeze_workqueues_busy(void)
4946{
a0a1a5fd 4947 bool busy = false;
24b8a847
TH
4948 struct workqueue_struct *wq;
4949 struct pool_workqueue *pwq;
a0a1a5fd 4950
68e13a67 4951 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4952
6183c009 4953 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4954
24b8a847
TH
4955 list_for_each_entry(wq, &workqueues, list) {
4956 if (!(wq->flags & WQ_FREEZABLE))
4957 continue;
a0a1a5fd
TH
4958 /*
4959 * nr_active is monotonically decreasing. It's safe
4960 * to peek without lock.
4961 */
88109453 4962 rcu_read_lock_sched();
24b8a847 4963 for_each_pwq(pwq, wq) {
6183c009 4964 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4965 if (pwq->nr_active) {
a0a1a5fd 4966 busy = true;
88109453 4967 rcu_read_unlock_sched();
a0a1a5fd
TH
4968 goto out_unlock;
4969 }
4970 }
88109453 4971 rcu_read_unlock_sched();
a0a1a5fd
TH
4972 }
4973out_unlock:
68e13a67 4974 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4975 return busy;
4976}
4977
4978/**
4979 * thaw_workqueues - thaw workqueues
4980 *
4981 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4982 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4983 *
4984 * CONTEXT:
a357fc03 4985 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4986 */
4987void thaw_workqueues(void)
4988{
24b8a847
TH
4989 struct workqueue_struct *wq;
4990 struct pool_workqueue *pwq;
4991 struct worker_pool *pool;
611c92a0 4992 int pi;
a0a1a5fd 4993
68e13a67 4994 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4995
4996 if (!workqueue_freezing)
4997 goto out_unlock;
4998
24b8a847 4999 /* clear FREEZING */
611c92a0 5000 for_each_pool(pool, pi) {
5bcab335 5001 spin_lock_irq(&pool->lock);
24b8a847
TH
5002 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
5003 pool->flags &= ~POOL_FREEZING;
5bcab335 5004 spin_unlock_irq(&pool->lock);
24b8a847 5005 }
8b03ae3c 5006
24b8a847
TH
5007 /* restore max_active and repopulate worklist */
5008 list_for_each_entry(wq, &workqueues, list) {
a357fc03 5009 mutex_lock(&wq->mutex);
699ce097
TH
5010 for_each_pwq(pwq, wq)
5011 pwq_adjust_max_active(pwq);
a357fc03 5012 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
5013 }
5014
5015 workqueue_freezing = false;
5016out_unlock:
68e13a67 5017 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
5018}
5019#endif /* CONFIG_FREEZER */
5020
bce90380
TH
5021static void __init wq_numa_init(void)
5022{
5023 cpumask_var_t *tbl;
5024 int node, cpu;
5025
5026 /* determine NUMA pwq table len - highest node id + 1 */
5027 for_each_node(node)
5028 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5029
5030 if (num_possible_nodes() <= 1)
5031 return;
5032
d55262c4
TH
5033 if (wq_disable_numa) {
5034 pr_info("workqueue: NUMA affinity support disabled\n");
5035 return;
5036 }
5037
4c16bd32
TH
5038 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5039 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5040
bce90380
TH
5041 /*
5042 * We want masks of possible CPUs of each node which isn't readily
5043 * available. Build one from cpu_to_node() which should have been
5044 * fully initialized by now.
5045 */
5046 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5047 BUG_ON(!tbl);
5048
5049 for_each_node(node)
3e24998c 5050 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5051 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5052
5053 for_each_possible_cpu(cpu) {
5054 node = cpu_to_node(cpu);
5055 if (WARN_ON(node == NUMA_NO_NODE)) {
5056 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5057 /* happens iff arch is bonkers, let's just proceed */
5058 return;
5059 }
5060 cpumask_set_cpu(cpu, tbl[node]);
5061 }
5062
5063 wq_numa_possible_cpumask = tbl;
5064 wq_numa_enabled = true;
5065}
5066
6ee0578b 5067static int __init init_workqueues(void)
1da177e4 5068{
7a4e344c
TH
5069 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5070 int i, cpu;
c34056a3 5071
7c3eed5c
TH
5072 /* make sure we have enough bits for OFFQ pool ID */
5073 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 5074 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 5075
e904e6c2
TH
5076 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5077
5078 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5079
65758202 5080 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5081 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5082
bce90380
TH
5083 wq_numa_init();
5084
706026c2 5085 /* initialize CPU pools */
29c91e99 5086 for_each_possible_cpu(cpu) {
4ce62e9e 5087 struct worker_pool *pool;
8b03ae3c 5088
7a4e344c 5089 i = 0;
f02ae73a 5090 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5091 BUG_ON(init_worker_pool(pool));
ec22ca5e 5092 pool->cpu = cpu;
29c91e99 5093 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5094 pool->attrs->nice = std_nice[i++];
f3f90ad4 5095 pool->node = cpu_to_node(cpu);
7a4e344c 5096
9daf9e67 5097 /* alloc pool ID */
68e13a67 5098 mutex_lock(&wq_pool_mutex);
9daf9e67 5099 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5100 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5101 }
8b03ae3c
TH
5102 }
5103
e22bee78 5104 /* create the initial worker */
29c91e99 5105 for_each_online_cpu(cpu) {
4ce62e9e 5106 struct worker_pool *pool;
e22bee78 5107
f02ae73a 5108 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5109 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5110 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5111 }
e22bee78
TH
5112 }
5113
ced4ac92 5114 /* create default unbound and ordered wq attrs */
29c91e99
TH
5115 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5116 struct workqueue_attrs *attrs;
5117
5118 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5119 attrs->nice = std_nice[i];
29c91e99 5120 unbound_std_wq_attrs[i] = attrs;
ced4ac92
TH
5121
5122 /*
5123 * An ordered wq should have only one pwq as ordering is
5124 * guaranteed by max_active which is enforced by pwqs.
5125 * Turn off NUMA so that dfl_pwq is used for all nodes.
5126 */
5127 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5128 attrs->nice = std_nice[i];
5129 attrs->no_numa = true;
5130 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5131 }
5132
d320c038 5133 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5134 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5135 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5136 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5137 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5138 system_freezable_wq = alloc_workqueue("events_freezable",
5139 WQ_FREEZABLE, 0);
1aabe902 5140 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 5141 !system_unbound_wq || !system_freezable_wq);
6ee0578b 5142 return 0;
1da177e4 5143}
6ee0578b 5144early_initcall(init_workqueues);