Merge tag 'renesas-soc-r8a7790-for-v3.10' of git://git.kernel.org/pub/scm/linux/kerne...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
b32dfe37
CG
39#include <linux/file.h>
40#include <linux/mount.h>
5a0e3ad6 41#include <linux/gfp.h>
40dc166c 42#include <linux/syscore_ops.h>
be27425d
AK
43#include <linux/version.h>
44#include <linux/ctype.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
7fe5e042 50#include <linux/binfmts.h>
1da177e4 51
04c6862c 52#include <linux/kmsg_dump.h>
be27425d
AK
53/* Move somewhere else to avoid recompiling? */
54#include <generated/utsrelease.h>
04c6862c 55
1da177e4
LT
56#include <asm/uaccess.h>
57#include <asm/io.h>
58#include <asm/unistd.h>
59
60#ifndef SET_UNALIGN_CTL
61# define SET_UNALIGN_CTL(a,b) (-EINVAL)
62#endif
63#ifndef GET_UNALIGN_CTL
64# define GET_UNALIGN_CTL(a,b) (-EINVAL)
65#endif
66#ifndef SET_FPEMU_CTL
67# define SET_FPEMU_CTL(a,b) (-EINVAL)
68#endif
69#ifndef GET_FPEMU_CTL
70# define GET_FPEMU_CTL(a,b) (-EINVAL)
71#endif
72#ifndef SET_FPEXC_CTL
73# define SET_FPEXC_CTL(a,b) (-EINVAL)
74#endif
75#ifndef GET_FPEXC_CTL
76# define GET_FPEXC_CTL(a,b) (-EINVAL)
77#endif
651d765d
AB
78#ifndef GET_ENDIAN
79# define GET_ENDIAN(a,b) (-EINVAL)
80#endif
81#ifndef SET_ENDIAN
82# define SET_ENDIAN(a,b) (-EINVAL)
83#endif
8fb402bc
EB
84#ifndef GET_TSC_CTL
85# define GET_TSC_CTL(a) (-EINVAL)
86#endif
87#ifndef SET_TSC_CTL
88# define SET_TSC_CTL(a) (-EINVAL)
89#endif
1da177e4
LT
90
91/*
92 * this is where the system-wide overflow UID and GID are defined, for
93 * architectures that now have 32-bit UID/GID but didn't in the past
94 */
95
96int overflowuid = DEFAULT_OVERFLOWUID;
97int overflowgid = DEFAULT_OVERFLOWGID;
98
1da177e4
LT
99EXPORT_SYMBOL(overflowuid);
100EXPORT_SYMBOL(overflowgid);
1da177e4
LT
101
102/*
103 * the same as above, but for filesystems which can only store a 16-bit
104 * UID and GID. as such, this is needed on all architectures
105 */
106
107int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
108int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
109
110EXPORT_SYMBOL(fs_overflowuid);
111EXPORT_SYMBOL(fs_overflowgid);
112
113/*
114 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
115 */
116
117int C_A_D = 1;
9ec52099
CLG
118struct pid *cad_pid;
119EXPORT_SYMBOL(cad_pid);
1da177e4 120
bd804eba
RW
121/*
122 * If set, this is used for preparing the system to power off.
123 */
124
125void (*pm_power_off_prepare)(void);
bd804eba 126
fc832ad3
SH
127/*
128 * Returns true if current's euid is same as p's uid or euid,
129 * or has CAP_SYS_NICE to p's user_ns.
130 *
131 * Called with rcu_read_lock, creds are safe
132 */
133static bool set_one_prio_perm(struct task_struct *p)
134{
135 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
136
5af66203
EB
137 if (uid_eq(pcred->uid, cred->euid) ||
138 uid_eq(pcred->euid, cred->euid))
fc832ad3 139 return true;
c4a4d603 140 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
141 return true;
142 return false;
143}
144
c69e8d9c
DH
145/*
146 * set the priority of a task
147 * - the caller must hold the RCU read lock
148 */
1da177e4
LT
149static int set_one_prio(struct task_struct *p, int niceval, int error)
150{
151 int no_nice;
152
fc832ad3 153 if (!set_one_prio_perm(p)) {
1da177e4
LT
154 error = -EPERM;
155 goto out;
156 }
e43379f1 157 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
158 error = -EACCES;
159 goto out;
160 }
161 no_nice = security_task_setnice(p, niceval);
162 if (no_nice) {
163 error = no_nice;
164 goto out;
165 }
166 if (error == -ESRCH)
167 error = 0;
168 set_user_nice(p, niceval);
169out:
170 return error;
171}
172
754fe8d2 173SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
174{
175 struct task_struct *g, *p;
176 struct user_struct *user;
86a264ab 177 const struct cred *cred = current_cred();
1da177e4 178 int error = -EINVAL;
41487c65 179 struct pid *pgrp;
7b44ab97 180 kuid_t uid;
1da177e4 181
3e88c553 182 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
183 goto out;
184
185 /* normalize: avoid signed division (rounding problems) */
186 error = -ESRCH;
187 if (niceval < -20)
188 niceval = -20;
189 if (niceval > 19)
190 niceval = 19;
191
d4581a23 192 rcu_read_lock();
1da177e4
LT
193 read_lock(&tasklist_lock);
194 switch (which) {
195 case PRIO_PROCESS:
41487c65 196 if (who)
228ebcbe 197 p = find_task_by_vpid(who);
41487c65
EB
198 else
199 p = current;
1da177e4
LT
200 if (p)
201 error = set_one_prio(p, niceval, error);
202 break;
203 case PRIO_PGRP:
41487c65 204 if (who)
b488893a 205 pgrp = find_vpid(who);
41487c65
EB
206 else
207 pgrp = task_pgrp(current);
2d70b68d 208 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 209 error = set_one_prio(p, niceval, error);
2d70b68d 210 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
211 break;
212 case PRIO_USER:
7b44ab97 213 uid = make_kuid(cred->user_ns, who);
74ba508f 214 user = cred->user;
1da177e4 215 if (!who)
078de5f7
EB
216 uid = cred->uid;
217 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 218 !(user = find_user(uid)))
86a264ab 219 goto out_unlock; /* No processes for this user */
1da177e4 220
dfc6a736 221 do_each_thread(g, p) {
078de5f7 222 if (uid_eq(task_uid(p), uid))
1da177e4 223 error = set_one_prio(p, niceval, error);
dfc6a736 224 } while_each_thread(g, p);
078de5f7 225 if (!uid_eq(uid, cred->uid))
1da177e4
LT
226 free_uid(user); /* For find_user() */
227 break;
228 }
229out_unlock:
230 read_unlock(&tasklist_lock);
d4581a23 231 rcu_read_unlock();
1da177e4
LT
232out:
233 return error;
234}
235
236/*
237 * Ugh. To avoid negative return values, "getpriority()" will
238 * not return the normal nice-value, but a negated value that
239 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
240 * to stay compatible.
241 */
754fe8d2 242SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
243{
244 struct task_struct *g, *p;
245 struct user_struct *user;
86a264ab 246 const struct cred *cred = current_cred();
1da177e4 247 long niceval, retval = -ESRCH;
41487c65 248 struct pid *pgrp;
7b44ab97 249 kuid_t uid;
1da177e4 250
3e88c553 251 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
252 return -EINVAL;
253
70118837 254 rcu_read_lock();
1da177e4
LT
255 read_lock(&tasklist_lock);
256 switch (which) {
257 case PRIO_PROCESS:
41487c65 258 if (who)
228ebcbe 259 p = find_task_by_vpid(who);
41487c65
EB
260 else
261 p = current;
1da177e4
LT
262 if (p) {
263 niceval = 20 - task_nice(p);
264 if (niceval > retval)
265 retval = niceval;
266 }
267 break;
268 case PRIO_PGRP:
41487c65 269 if (who)
b488893a 270 pgrp = find_vpid(who);
41487c65
EB
271 else
272 pgrp = task_pgrp(current);
2d70b68d 273 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
274 niceval = 20 - task_nice(p);
275 if (niceval > retval)
276 retval = niceval;
2d70b68d 277 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
278 break;
279 case PRIO_USER:
7b44ab97 280 uid = make_kuid(cred->user_ns, who);
74ba508f 281 user = cred->user;
1da177e4 282 if (!who)
078de5f7
EB
283 uid = cred->uid;
284 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 285 !(user = find_user(uid)))
86a264ab 286 goto out_unlock; /* No processes for this user */
1da177e4 287
dfc6a736 288 do_each_thread(g, p) {
078de5f7 289 if (uid_eq(task_uid(p), uid)) {
1da177e4
LT
290 niceval = 20 - task_nice(p);
291 if (niceval > retval)
292 retval = niceval;
293 }
dfc6a736 294 } while_each_thread(g, p);
078de5f7 295 if (!uid_eq(uid, cred->uid))
1da177e4
LT
296 free_uid(user); /* for find_user() */
297 break;
298 }
299out_unlock:
300 read_unlock(&tasklist_lock);
70118837 301 rcu_read_unlock();
1da177e4
LT
302
303 return retval;
304}
305
e4c94330
EB
306/**
307 * emergency_restart - reboot the system
308 *
309 * Without shutting down any hardware or taking any locks
310 * reboot the system. This is called when we know we are in
311 * trouble so this is our best effort to reboot. This is
312 * safe to call in interrupt context.
313 */
7c903473
EB
314void emergency_restart(void)
315{
04c6862c 316 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
317 machine_emergency_restart();
318}
319EXPORT_SYMBOL_GPL(emergency_restart);
320
ca195b7f 321void kernel_restart_prepare(char *cmd)
4a00ea1e 322{
e041c683 323 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 324 system_state = SYSTEM_RESTART;
b50fa7c8 325 usermodehelper_disable();
4a00ea1e 326 device_shutdown();
40dc166c 327 syscore_shutdown();
e4c94330 328}
1e5d5331 329
c5f41752
AW
330/**
331 * register_reboot_notifier - Register function to be called at reboot time
332 * @nb: Info about notifier function to be called
333 *
334 * Registers a function with the list of functions
335 * to be called at reboot time.
336 *
337 * Currently always returns zero, as blocking_notifier_chain_register()
338 * always returns zero.
339 */
340int register_reboot_notifier(struct notifier_block *nb)
341{
342 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
343}
344EXPORT_SYMBOL(register_reboot_notifier);
345
346/**
347 * unregister_reboot_notifier - Unregister previously registered reboot notifier
348 * @nb: Hook to be unregistered
349 *
350 * Unregisters a previously registered reboot
351 * notifier function.
352 *
353 * Returns zero on success, or %-ENOENT on failure.
354 */
355int unregister_reboot_notifier(struct notifier_block *nb)
356{
357 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
358}
359EXPORT_SYMBOL(unregister_reboot_notifier);
360
1e5d5331
RD
361/**
362 * kernel_restart - reboot the system
363 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 364 * or %NULL
1e5d5331
RD
365 *
366 * Shutdown everything and perform a clean reboot.
367 * This is not safe to call in interrupt context.
368 */
e4c94330
EB
369void kernel_restart(char *cmd)
370{
371 kernel_restart_prepare(cmd);
f96972f2 372 disable_nonboot_cpus();
756184b7 373 if (!cmd)
4a00ea1e 374 printk(KERN_EMERG "Restarting system.\n");
756184b7 375 else
4a00ea1e 376 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 377 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
378 machine_restart(cmd);
379}
380EXPORT_SYMBOL_GPL(kernel_restart);
381
4ef7229f 382static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 383{
e041c683 384 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
385 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
386 system_state = state;
b50fa7c8 387 usermodehelper_disable();
729b4d4c
AS
388 device_shutdown();
389}
e4c94330
EB
390/**
391 * kernel_halt - halt the system
392 *
393 * Shutdown everything and perform a clean system halt.
394 */
e4c94330
EB
395void kernel_halt(void)
396{
729b4d4c 397 kernel_shutdown_prepare(SYSTEM_HALT);
40dc166c 398 syscore_shutdown();
4a00ea1e 399 printk(KERN_EMERG "System halted.\n");
04c6862c 400 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
401 machine_halt();
402}
729b4d4c 403
4a00ea1e
EB
404EXPORT_SYMBOL_GPL(kernel_halt);
405
e4c94330
EB
406/**
407 * kernel_power_off - power_off the system
408 *
409 * Shutdown everything and perform a clean system power_off.
410 */
e4c94330
EB
411void kernel_power_off(void)
412{
729b4d4c 413 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
414 if (pm_power_off_prepare)
415 pm_power_off_prepare();
4047727e 416 disable_nonboot_cpus();
40dc166c 417 syscore_shutdown();
4a00ea1e 418 printk(KERN_EMERG "Power down.\n");
04c6862c 419 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
420 machine_power_off();
421}
422EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
423
424static DEFINE_MUTEX(reboot_mutex);
425
1da177e4
LT
426/*
427 * Reboot system call: for obvious reasons only root may call it,
428 * and even root needs to set up some magic numbers in the registers
429 * so that some mistake won't make this reboot the whole machine.
430 * You can also set the meaning of the ctrl-alt-del-key here.
431 *
432 * reboot doesn't sync: do that yourself before calling this.
433 */
754fe8d2
HC
434SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
435 void __user *, arg)
1da177e4 436{
923c7538 437 struct pid_namespace *pid_ns = task_active_pid_ns(current);
1da177e4 438 char buffer[256];
3d26dcf7 439 int ret = 0;
1da177e4
LT
440
441 /* We only trust the superuser with rebooting the system. */
923c7538 442 if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
1da177e4
LT
443 return -EPERM;
444
445 /* For safety, we require "magic" arguments. */
446 if (magic1 != LINUX_REBOOT_MAGIC1 ||
447 (magic2 != LINUX_REBOOT_MAGIC2 &&
448 magic2 != LINUX_REBOOT_MAGIC2A &&
449 magic2 != LINUX_REBOOT_MAGIC2B &&
450 magic2 != LINUX_REBOOT_MAGIC2C))
451 return -EINVAL;
452
cf3f8921
DL
453 /*
454 * If pid namespaces are enabled and the current task is in a child
455 * pid_namespace, the command is handled by reboot_pid_ns() which will
456 * call do_exit().
457 */
923c7538 458 ret = reboot_pid_ns(pid_ns, cmd);
cf3f8921
DL
459 if (ret)
460 return ret;
461
5e38291d
EB
462 /* Instead of trying to make the power_off code look like
463 * halt when pm_power_off is not set do it the easy way.
464 */
465 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
466 cmd = LINUX_REBOOT_CMD_HALT;
467
6f15fa50 468 mutex_lock(&reboot_mutex);
1da177e4
LT
469 switch (cmd) {
470 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 471 kernel_restart(NULL);
1da177e4
LT
472 break;
473
474 case LINUX_REBOOT_CMD_CAD_ON:
475 C_A_D = 1;
476 break;
477
478 case LINUX_REBOOT_CMD_CAD_OFF:
479 C_A_D = 0;
480 break;
481
482 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 483 kernel_halt();
1da177e4 484 do_exit(0);
3d26dcf7 485 panic("cannot halt");
1da177e4
LT
486
487 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 488 kernel_power_off();
1da177e4
LT
489 do_exit(0);
490 break;
491
492 case LINUX_REBOOT_CMD_RESTART2:
493 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
494 ret = -EFAULT;
495 break;
1da177e4
LT
496 }
497 buffer[sizeof(buffer) - 1] = '\0';
498
4a00ea1e 499 kernel_restart(buffer);
1da177e4
LT
500 break;
501
3ab83521 502#ifdef CONFIG_KEXEC
dc009d92 503 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
504 ret = kernel_kexec();
505 break;
3ab83521 506#endif
4a00ea1e 507
b0cb1a19 508#ifdef CONFIG_HIBERNATION
1da177e4 509 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
510 ret = hibernate();
511 break;
1da177e4
LT
512#endif
513
514 default:
3d26dcf7
AK
515 ret = -EINVAL;
516 break;
1da177e4 517 }
6f15fa50 518 mutex_unlock(&reboot_mutex);
3d26dcf7 519 return ret;
1da177e4
LT
520}
521
65f27f38 522static void deferred_cad(struct work_struct *dummy)
1da177e4 523{
abcd9e51 524 kernel_restart(NULL);
1da177e4
LT
525}
526
527/*
528 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
529 * As it's called within an interrupt, it may NOT sync: the only choice
530 * is whether to reboot at once, or just ignore the ctrl-alt-del.
531 */
532void ctrl_alt_del(void)
533{
65f27f38 534 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
535
536 if (C_A_D)
537 schedule_work(&cad_work);
538 else
9ec52099 539 kill_cad_pid(SIGINT, 1);
1da177e4
LT
540}
541
1da177e4
LT
542/*
543 * Unprivileged users may change the real gid to the effective gid
544 * or vice versa. (BSD-style)
545 *
546 * If you set the real gid at all, or set the effective gid to a value not
547 * equal to the real gid, then the saved gid is set to the new effective gid.
548 *
549 * This makes it possible for a setgid program to completely drop its
550 * privileges, which is often a useful assertion to make when you are doing
551 * a security audit over a program.
552 *
553 * The general idea is that a program which uses just setregid() will be
554 * 100% compatible with BSD. A program which uses just setgid() will be
555 * 100% compatible with POSIX with saved IDs.
556 *
557 * SMP: There are not races, the GIDs are checked only by filesystem
558 * operations (as far as semantic preservation is concerned).
559 */
ae1251ab 560SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 561{
a29c33f4 562 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
563 const struct cred *old;
564 struct cred *new;
1da177e4 565 int retval;
a29c33f4
EB
566 kgid_t krgid, kegid;
567
568 krgid = make_kgid(ns, rgid);
569 kegid = make_kgid(ns, egid);
570
571 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
572 return -EINVAL;
573 if ((egid != (gid_t) -1) && !gid_valid(kegid))
574 return -EINVAL;
1da177e4 575
d84f4f99
DH
576 new = prepare_creds();
577 if (!new)
578 return -ENOMEM;
579 old = current_cred();
580
d84f4f99 581 retval = -EPERM;
1da177e4 582 if (rgid != (gid_t) -1) {
a29c33f4
EB
583 if (gid_eq(old->gid, krgid) ||
584 gid_eq(old->egid, krgid) ||
fc832ad3 585 nsown_capable(CAP_SETGID))
a29c33f4 586 new->gid = krgid;
1da177e4 587 else
d84f4f99 588 goto error;
1da177e4
LT
589 }
590 if (egid != (gid_t) -1) {
a29c33f4
EB
591 if (gid_eq(old->gid, kegid) ||
592 gid_eq(old->egid, kegid) ||
593 gid_eq(old->sgid, kegid) ||
fc832ad3 594 nsown_capable(CAP_SETGID))
a29c33f4 595 new->egid = kegid;
756184b7 596 else
d84f4f99 597 goto error;
1da177e4 598 }
d84f4f99 599
1da177e4 600 if (rgid != (gid_t) -1 ||
a29c33f4 601 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
602 new->sgid = new->egid;
603 new->fsgid = new->egid;
604
605 return commit_creds(new);
606
607error:
608 abort_creds(new);
609 return retval;
1da177e4
LT
610}
611
612/*
613 * setgid() is implemented like SysV w/ SAVED_IDS
614 *
615 * SMP: Same implicit races as above.
616 */
ae1251ab 617SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 618{
a29c33f4 619 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
620 const struct cred *old;
621 struct cred *new;
1da177e4 622 int retval;
a29c33f4
EB
623 kgid_t kgid;
624
625 kgid = make_kgid(ns, gid);
626 if (!gid_valid(kgid))
627 return -EINVAL;
1da177e4 628
d84f4f99
DH
629 new = prepare_creds();
630 if (!new)
631 return -ENOMEM;
632 old = current_cred();
633
d84f4f99 634 retval = -EPERM;
fc832ad3 635 if (nsown_capable(CAP_SETGID))
a29c33f4
EB
636 new->gid = new->egid = new->sgid = new->fsgid = kgid;
637 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
638 new->egid = new->fsgid = kgid;
1da177e4 639 else
d84f4f99 640 goto error;
1da177e4 641
d84f4f99
DH
642 return commit_creds(new);
643
644error:
645 abort_creds(new);
646 return retval;
1da177e4 647}
54e99124 648
d84f4f99
DH
649/*
650 * change the user struct in a credentials set to match the new UID
651 */
652static int set_user(struct cred *new)
1da177e4
LT
653{
654 struct user_struct *new_user;
655
078de5f7 656 new_user = alloc_uid(new->uid);
1da177e4
LT
657 if (!new_user)
658 return -EAGAIN;
659
72fa5997
VK
660 /*
661 * We don't fail in case of NPROC limit excess here because too many
662 * poorly written programs don't check set*uid() return code, assuming
663 * it never fails if called by root. We may still enforce NPROC limit
664 * for programs doing set*uid()+execve() by harmlessly deferring the
665 * failure to the execve() stage.
666 */
78d7d407 667 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
668 new_user != INIT_USER)
669 current->flags |= PF_NPROC_EXCEEDED;
670 else
671 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 672
d84f4f99
DH
673 free_uid(new->user);
674 new->user = new_user;
1da177e4
LT
675 return 0;
676}
677
678/*
679 * Unprivileged users may change the real uid to the effective uid
680 * or vice versa. (BSD-style)
681 *
682 * If you set the real uid at all, or set the effective uid to a value not
683 * equal to the real uid, then the saved uid is set to the new effective uid.
684 *
685 * This makes it possible for a setuid program to completely drop its
686 * privileges, which is often a useful assertion to make when you are doing
687 * a security audit over a program.
688 *
689 * The general idea is that a program which uses just setreuid() will be
690 * 100% compatible with BSD. A program which uses just setuid() will be
691 * 100% compatible with POSIX with saved IDs.
692 */
ae1251ab 693SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 694{
a29c33f4 695 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
696 const struct cred *old;
697 struct cred *new;
1da177e4 698 int retval;
a29c33f4
EB
699 kuid_t kruid, keuid;
700
701 kruid = make_kuid(ns, ruid);
702 keuid = make_kuid(ns, euid);
703
704 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
705 return -EINVAL;
706 if ((euid != (uid_t) -1) && !uid_valid(keuid))
707 return -EINVAL;
1da177e4 708
d84f4f99
DH
709 new = prepare_creds();
710 if (!new)
711 return -ENOMEM;
712 old = current_cred();
713
d84f4f99 714 retval = -EPERM;
1da177e4 715 if (ruid != (uid_t) -1) {
a29c33f4
EB
716 new->uid = kruid;
717 if (!uid_eq(old->uid, kruid) &&
718 !uid_eq(old->euid, kruid) &&
fc832ad3 719 !nsown_capable(CAP_SETUID))
d84f4f99 720 goto error;
1da177e4
LT
721 }
722
723 if (euid != (uid_t) -1) {
a29c33f4
EB
724 new->euid = keuid;
725 if (!uid_eq(old->uid, keuid) &&
726 !uid_eq(old->euid, keuid) &&
727 !uid_eq(old->suid, keuid) &&
fc832ad3 728 !nsown_capable(CAP_SETUID))
d84f4f99 729 goto error;
1da177e4
LT
730 }
731
a29c33f4 732 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
733 retval = set_user(new);
734 if (retval < 0)
735 goto error;
736 }
1da177e4 737 if (ruid != (uid_t) -1 ||
a29c33f4 738 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
739 new->suid = new->euid;
740 new->fsuid = new->euid;
1da177e4 741
d84f4f99
DH
742 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
743 if (retval < 0)
744 goto error;
1da177e4 745
d84f4f99 746 return commit_creds(new);
1da177e4 747
d84f4f99
DH
748error:
749 abort_creds(new);
750 return retval;
751}
1da177e4
LT
752
753/*
754 * setuid() is implemented like SysV with SAVED_IDS
755 *
756 * Note that SAVED_ID's is deficient in that a setuid root program
757 * like sendmail, for example, cannot set its uid to be a normal
758 * user and then switch back, because if you're root, setuid() sets
759 * the saved uid too. If you don't like this, blame the bright people
760 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
761 * will allow a root program to temporarily drop privileges and be able to
762 * regain them by swapping the real and effective uid.
763 */
ae1251ab 764SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 765{
a29c33f4 766 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
767 const struct cred *old;
768 struct cred *new;
1da177e4 769 int retval;
a29c33f4
EB
770 kuid_t kuid;
771
772 kuid = make_kuid(ns, uid);
773 if (!uid_valid(kuid))
774 return -EINVAL;
1da177e4 775
d84f4f99
DH
776 new = prepare_creds();
777 if (!new)
778 return -ENOMEM;
779 old = current_cred();
780
d84f4f99 781 retval = -EPERM;
fc832ad3 782 if (nsown_capable(CAP_SETUID)) {
a29c33f4
EB
783 new->suid = new->uid = kuid;
784 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
785 retval = set_user(new);
786 if (retval < 0)
787 goto error;
d84f4f99 788 }
a29c33f4 789 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 790 goto error;
1da177e4 791 }
1da177e4 792
a29c33f4 793 new->fsuid = new->euid = kuid;
d84f4f99
DH
794
795 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
796 if (retval < 0)
797 goto error;
1da177e4 798
d84f4f99 799 return commit_creds(new);
1da177e4 800
d84f4f99
DH
801error:
802 abort_creds(new);
803 return retval;
1da177e4
LT
804}
805
806
807/*
808 * This function implements a generic ability to update ruid, euid,
809 * and suid. This allows you to implement the 4.4 compatible seteuid().
810 */
ae1251ab 811SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 812{
a29c33f4 813 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
814 const struct cred *old;
815 struct cred *new;
1da177e4 816 int retval;
a29c33f4
EB
817 kuid_t kruid, keuid, ksuid;
818
819 kruid = make_kuid(ns, ruid);
820 keuid = make_kuid(ns, euid);
821 ksuid = make_kuid(ns, suid);
822
823 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
824 return -EINVAL;
825
826 if ((euid != (uid_t) -1) && !uid_valid(keuid))
827 return -EINVAL;
828
829 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
830 return -EINVAL;
1da177e4 831
d84f4f99
DH
832 new = prepare_creds();
833 if (!new)
834 return -ENOMEM;
835
d84f4f99 836 old = current_cred();
1da177e4 837
d84f4f99 838 retval = -EPERM;
fc832ad3 839 if (!nsown_capable(CAP_SETUID)) {
a29c33f4
EB
840 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
841 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 842 goto error;
a29c33f4
EB
843 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
844 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 845 goto error;
a29c33f4
EB
846 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
847 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 848 goto error;
1da177e4 849 }
d84f4f99 850
1da177e4 851 if (ruid != (uid_t) -1) {
a29c33f4
EB
852 new->uid = kruid;
853 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
854 retval = set_user(new);
855 if (retval < 0)
856 goto error;
857 }
1da177e4 858 }
d84f4f99 859 if (euid != (uid_t) -1)
a29c33f4 860 new->euid = keuid;
1da177e4 861 if (suid != (uid_t) -1)
a29c33f4 862 new->suid = ksuid;
d84f4f99 863 new->fsuid = new->euid;
1da177e4 864
d84f4f99
DH
865 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
866 if (retval < 0)
867 goto error;
1da177e4 868
d84f4f99 869 return commit_creds(new);
1da177e4 870
d84f4f99
DH
871error:
872 abort_creds(new);
873 return retval;
1da177e4
LT
874}
875
a29c33f4 876SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 877{
86a264ab 878 const struct cred *cred = current_cred();
1da177e4 879 int retval;
a29c33f4
EB
880 uid_t ruid, euid, suid;
881
882 ruid = from_kuid_munged(cred->user_ns, cred->uid);
883 euid = from_kuid_munged(cred->user_ns, cred->euid);
884 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 885
a29c33f4
EB
886 if (!(retval = put_user(ruid, ruidp)) &&
887 !(retval = put_user(euid, euidp)))
888 retval = put_user(suid, suidp);
1da177e4
LT
889
890 return retval;
891}
892
893/*
894 * Same as above, but for rgid, egid, sgid.
895 */
ae1251ab 896SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 897{
a29c33f4 898 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
899 const struct cred *old;
900 struct cred *new;
1da177e4 901 int retval;
a29c33f4
EB
902 kgid_t krgid, kegid, ksgid;
903
904 krgid = make_kgid(ns, rgid);
905 kegid = make_kgid(ns, egid);
906 ksgid = make_kgid(ns, sgid);
907
908 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
909 return -EINVAL;
910 if ((egid != (gid_t) -1) && !gid_valid(kegid))
911 return -EINVAL;
912 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
913 return -EINVAL;
1da177e4 914
d84f4f99
DH
915 new = prepare_creds();
916 if (!new)
917 return -ENOMEM;
918 old = current_cred();
919
d84f4f99 920 retval = -EPERM;
fc832ad3 921 if (!nsown_capable(CAP_SETGID)) {
a29c33f4
EB
922 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
923 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 924 goto error;
a29c33f4
EB
925 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
926 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 927 goto error;
a29c33f4
EB
928 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
929 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 930 goto error;
1da177e4 931 }
d84f4f99 932
1da177e4 933 if (rgid != (gid_t) -1)
a29c33f4 934 new->gid = krgid;
d84f4f99 935 if (egid != (gid_t) -1)
a29c33f4 936 new->egid = kegid;
1da177e4 937 if (sgid != (gid_t) -1)
a29c33f4 938 new->sgid = ksgid;
d84f4f99 939 new->fsgid = new->egid;
1da177e4 940
d84f4f99
DH
941 return commit_creds(new);
942
943error:
944 abort_creds(new);
945 return retval;
1da177e4
LT
946}
947
a29c33f4 948SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 949{
86a264ab 950 const struct cred *cred = current_cred();
1da177e4 951 int retval;
a29c33f4
EB
952 gid_t rgid, egid, sgid;
953
954 rgid = from_kgid_munged(cred->user_ns, cred->gid);
955 egid = from_kgid_munged(cred->user_ns, cred->egid);
956 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 957
a29c33f4
EB
958 if (!(retval = put_user(rgid, rgidp)) &&
959 !(retval = put_user(egid, egidp)))
960 retval = put_user(sgid, sgidp);
1da177e4
LT
961
962 return retval;
963}
964
965
966/*
967 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
968 * is used for "access()" and for the NFS daemon (letting nfsd stay at
969 * whatever uid it wants to). It normally shadows "euid", except when
970 * explicitly set by setfsuid() or for access..
971 */
ae1251ab 972SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 973{
d84f4f99
DH
974 const struct cred *old;
975 struct cred *new;
976 uid_t old_fsuid;
a29c33f4
EB
977 kuid_t kuid;
978
979 old = current_cred();
980 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
981
982 kuid = make_kuid(old->user_ns, uid);
983 if (!uid_valid(kuid))
984 return old_fsuid;
1da177e4 985
d84f4f99
DH
986 new = prepare_creds();
987 if (!new)
a29c33f4 988 return old_fsuid;
1da177e4 989
a29c33f4
EB
990 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
991 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
fc832ad3 992 nsown_capable(CAP_SETUID)) {
a29c33f4
EB
993 if (!uid_eq(kuid, old->fsuid)) {
994 new->fsuid = kuid;
d84f4f99
DH
995 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
996 goto change_okay;
1da177e4 997 }
1da177e4
LT
998 }
999
d84f4f99
DH
1000 abort_creds(new);
1001 return old_fsuid;
1da177e4 1002
d84f4f99
DH
1003change_okay:
1004 commit_creds(new);
1da177e4
LT
1005 return old_fsuid;
1006}
1007
1008/*
f42df9e6 1009 * Samma på svenska..
1da177e4 1010 */
ae1251ab 1011SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 1012{
d84f4f99
DH
1013 const struct cred *old;
1014 struct cred *new;
1015 gid_t old_fsgid;
a29c33f4
EB
1016 kgid_t kgid;
1017
1018 old = current_cred();
1019 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1020
1021 kgid = make_kgid(old->user_ns, gid);
1022 if (!gid_valid(kgid))
1023 return old_fsgid;
d84f4f99
DH
1024
1025 new = prepare_creds();
1026 if (!new)
a29c33f4 1027 return old_fsgid;
1da177e4 1028
a29c33f4
EB
1029 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
1030 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
fc832ad3 1031 nsown_capable(CAP_SETGID)) {
a29c33f4
EB
1032 if (!gid_eq(kgid, old->fsgid)) {
1033 new->fsgid = kgid;
d84f4f99 1034 goto change_okay;
1da177e4 1035 }
1da177e4 1036 }
d84f4f99 1037
d84f4f99
DH
1038 abort_creds(new);
1039 return old_fsgid;
1040
1041change_okay:
1042 commit_creds(new);
1da177e4
LT
1043 return old_fsgid;
1044}
1045
f06febc9
FM
1046void do_sys_times(struct tms *tms)
1047{
0cf55e1e 1048 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 1049
2b5fe6de 1050 spin_lock_irq(&current->sighand->siglock);
e80d0a1a 1051 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
1052 cutime = current->signal->cutime;
1053 cstime = current->signal->cstime;
1054 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
1055 tms->tms_utime = cputime_to_clock_t(tgutime);
1056 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
1057 tms->tms_cutime = cputime_to_clock_t(cutime);
1058 tms->tms_cstime = cputime_to_clock_t(cstime);
1059}
1060
58fd3aa2 1061SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 1062{
1da177e4
LT
1063 if (tbuf) {
1064 struct tms tmp;
f06febc9
FM
1065
1066 do_sys_times(&tmp);
1da177e4
LT
1067 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1068 return -EFAULT;
1069 }
e3d5a27d 1070 force_successful_syscall_return();
1da177e4
LT
1071 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1072}
1073
1074/*
1075 * This needs some heavy checking ...
1076 * I just haven't the stomach for it. I also don't fully
1077 * understand sessions/pgrp etc. Let somebody who does explain it.
1078 *
1079 * OK, I think I have the protection semantics right.... this is really
1080 * only important on a multi-user system anyway, to make sure one user
1081 * can't send a signal to a process owned by another. -TYT, 12/12/91
1082 *
1083 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1084 * LBT 04.03.94
1085 */
b290ebe2 1086SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1087{
1088 struct task_struct *p;
ee0acf90 1089 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1090 struct pid *pgrp;
1091 int err;
1da177e4
LT
1092
1093 if (!pid)
b488893a 1094 pid = task_pid_vnr(group_leader);
1da177e4
LT
1095 if (!pgid)
1096 pgid = pid;
1097 if (pgid < 0)
1098 return -EINVAL;
950eaaca 1099 rcu_read_lock();
1da177e4
LT
1100
1101 /* From this point forward we keep holding onto the tasklist lock
1102 * so that our parent does not change from under us. -DaveM
1103 */
1104 write_lock_irq(&tasklist_lock);
1105
1106 err = -ESRCH;
4e021306 1107 p = find_task_by_vpid(pid);
1da177e4
LT
1108 if (!p)
1109 goto out;
1110
1111 err = -EINVAL;
1112 if (!thread_group_leader(p))
1113 goto out;
1114
4e021306 1115 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1116 err = -EPERM;
41487c65 1117 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1118 goto out;
1119 err = -EACCES;
1120 if (p->did_exec)
1121 goto out;
1122 } else {
1123 err = -ESRCH;
ee0acf90 1124 if (p != group_leader)
1da177e4
LT
1125 goto out;
1126 }
1127
1128 err = -EPERM;
1129 if (p->signal->leader)
1130 goto out;
1131
4e021306 1132 pgrp = task_pid(p);
1da177e4 1133 if (pgid != pid) {
b488893a 1134 struct task_struct *g;
1da177e4 1135
4e021306
ON
1136 pgrp = find_vpid(pgid);
1137 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1138 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1139 goto out;
1da177e4
LT
1140 }
1141
1da177e4
LT
1142 err = security_task_setpgid(p, pgid);
1143 if (err)
1144 goto out;
1145
1b0f7ffd 1146 if (task_pgrp(p) != pgrp)
83beaf3c 1147 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1148
1149 err = 0;
1150out:
1151 /* All paths lead to here, thus we are safe. -DaveM */
1152 write_unlock_irq(&tasklist_lock);
950eaaca 1153 rcu_read_unlock();
1da177e4
LT
1154 return err;
1155}
1156
dbf040d9 1157SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1158{
12a3de0a
ON
1159 struct task_struct *p;
1160 struct pid *grp;
1161 int retval;
1162
1163 rcu_read_lock();
756184b7 1164 if (!pid)
12a3de0a 1165 grp = task_pgrp(current);
756184b7 1166 else {
1da177e4 1167 retval = -ESRCH;
12a3de0a
ON
1168 p = find_task_by_vpid(pid);
1169 if (!p)
1170 goto out;
1171 grp = task_pgrp(p);
1172 if (!grp)
1173 goto out;
1174
1175 retval = security_task_getpgid(p);
1176 if (retval)
1177 goto out;
1da177e4 1178 }
12a3de0a
ON
1179 retval = pid_vnr(grp);
1180out:
1181 rcu_read_unlock();
1182 return retval;
1da177e4
LT
1183}
1184
1185#ifdef __ARCH_WANT_SYS_GETPGRP
1186
dbf040d9 1187SYSCALL_DEFINE0(getpgrp)
1da177e4 1188{
12a3de0a 1189 return sys_getpgid(0);
1da177e4
LT
1190}
1191
1192#endif
1193
dbf040d9 1194SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1195{
1dd768c0
ON
1196 struct task_struct *p;
1197 struct pid *sid;
1198 int retval;
1199
1200 rcu_read_lock();
756184b7 1201 if (!pid)
1dd768c0 1202 sid = task_session(current);
756184b7 1203 else {
1da177e4 1204 retval = -ESRCH;
1dd768c0
ON
1205 p = find_task_by_vpid(pid);
1206 if (!p)
1207 goto out;
1208 sid = task_session(p);
1209 if (!sid)
1210 goto out;
1211
1212 retval = security_task_getsid(p);
1213 if (retval)
1214 goto out;
1da177e4 1215 }
1dd768c0
ON
1216 retval = pid_vnr(sid);
1217out:
1218 rcu_read_unlock();
1219 return retval;
1da177e4
LT
1220}
1221
b290ebe2 1222SYSCALL_DEFINE0(setsid)
1da177e4 1223{
e19f247a 1224 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1225 struct pid *sid = task_pid(group_leader);
1226 pid_t session = pid_vnr(sid);
1da177e4
LT
1227 int err = -EPERM;
1228
1da177e4 1229 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1230 /* Fail if I am already a session leader */
1231 if (group_leader->signal->leader)
1232 goto out;
1233
430c6231
ON
1234 /* Fail if a process group id already exists that equals the
1235 * proposed session id.
390e2ff0 1236 */
6806aac6 1237 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1238 goto out;
1239
e19f247a 1240 group_leader->signal->leader = 1;
8520d7c7 1241 __set_special_pids(sid);
24ec839c 1242
9c9f4ded 1243 proc_clear_tty(group_leader);
24ec839c 1244
e4cc0a9c 1245 err = session;
1da177e4
LT
1246out:
1247 write_unlock_irq(&tasklist_lock);
5091faa4 1248 if (err > 0) {
0d0df599 1249 proc_sid_connector(group_leader);
5091faa4
MG
1250 sched_autogroup_create_attach(group_leader);
1251 }
1da177e4
LT
1252 return err;
1253}
1254
1da177e4
LT
1255DECLARE_RWSEM(uts_sem);
1256
e28cbf22
CH
1257#ifdef COMPAT_UTS_MACHINE
1258#define override_architecture(name) \
46da2766 1259 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1260 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1261 sizeof(COMPAT_UTS_MACHINE)))
1262#else
1263#define override_architecture(name) 0
1264#endif
1265
be27425d
AK
1266/*
1267 * Work around broken programs that cannot handle "Linux 3.0".
1268 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1269 */
2702b152 1270static int override_release(char __user *release, size_t len)
be27425d
AK
1271{
1272 int ret = 0;
be27425d
AK
1273
1274 if (current->personality & UNAME26) {
2702b152
KC
1275 const char *rest = UTS_RELEASE;
1276 char buf[65] = { 0 };
be27425d
AK
1277 int ndots = 0;
1278 unsigned v;
2702b152 1279 size_t copy;
be27425d
AK
1280
1281 while (*rest) {
1282 if (*rest == '.' && ++ndots >= 3)
1283 break;
1284 if (!isdigit(*rest) && *rest != '.')
1285 break;
1286 rest++;
1287 }
1288 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
31fd84b9 1289 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1290 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1291 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1292 }
1293 return ret;
1294}
1295
e48fbb69 1296SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1297{
1298 int errno = 0;
1299
1300 down_read(&uts_sem);
e9ff3990 1301 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1302 errno = -EFAULT;
1303 up_read(&uts_sem);
e28cbf22 1304
be27425d
AK
1305 if (!errno && override_release(name->release, sizeof(name->release)))
1306 errno = -EFAULT;
e28cbf22
CH
1307 if (!errno && override_architecture(name))
1308 errno = -EFAULT;
1da177e4
LT
1309 return errno;
1310}
1311
5cacdb4a
CH
1312#ifdef __ARCH_WANT_SYS_OLD_UNAME
1313/*
1314 * Old cruft
1315 */
1316SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1317{
1318 int error = 0;
1319
1320 if (!name)
1321 return -EFAULT;
1322
1323 down_read(&uts_sem);
1324 if (copy_to_user(name, utsname(), sizeof(*name)))
1325 error = -EFAULT;
1326 up_read(&uts_sem);
1327
be27425d
AK
1328 if (!error && override_release(name->release, sizeof(name->release)))
1329 error = -EFAULT;
5cacdb4a
CH
1330 if (!error && override_architecture(name))
1331 error = -EFAULT;
1332 return error;
1333}
1334
1335SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1336{
1337 int error;
1338
1339 if (!name)
1340 return -EFAULT;
1341 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1342 return -EFAULT;
1343
1344 down_read(&uts_sem);
1345 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1346 __OLD_UTS_LEN);
1347 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1348 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1349 __OLD_UTS_LEN);
1350 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1351 error |= __copy_to_user(&name->release, &utsname()->release,
1352 __OLD_UTS_LEN);
1353 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1354 error |= __copy_to_user(&name->version, &utsname()->version,
1355 __OLD_UTS_LEN);
1356 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1357 error |= __copy_to_user(&name->machine, &utsname()->machine,
1358 __OLD_UTS_LEN);
1359 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1360 up_read(&uts_sem);
1361
1362 if (!error && override_architecture(name))
1363 error = -EFAULT;
be27425d
AK
1364 if (!error && override_release(name->release, sizeof(name->release)))
1365 error = -EFAULT;
5cacdb4a
CH
1366 return error ? -EFAULT : 0;
1367}
1368#endif
1369
5a8a82b1 1370SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1371{
1372 int errno;
1373 char tmp[__NEW_UTS_LEN];
1374
bb96a6f5 1375 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1376 return -EPERM;
fc832ad3 1377
1da177e4
LT
1378 if (len < 0 || len > __NEW_UTS_LEN)
1379 return -EINVAL;
1380 down_write(&uts_sem);
1381 errno = -EFAULT;
1382 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1383 struct new_utsname *u = utsname();
1384
1385 memcpy(u->nodename, tmp, len);
1386 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1387 errno = 0;
499eea6b 1388 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1389 }
1390 up_write(&uts_sem);
1391 return errno;
1392}
1393
1394#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1395
5a8a82b1 1396SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1397{
1398 int i, errno;
9679e4dd 1399 struct new_utsname *u;
1da177e4
LT
1400
1401 if (len < 0)
1402 return -EINVAL;
1403 down_read(&uts_sem);
9679e4dd
AM
1404 u = utsname();
1405 i = 1 + strlen(u->nodename);
1da177e4
LT
1406 if (i > len)
1407 i = len;
1408 errno = 0;
9679e4dd 1409 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1410 errno = -EFAULT;
1411 up_read(&uts_sem);
1412 return errno;
1413}
1414
1415#endif
1416
1417/*
1418 * Only setdomainname; getdomainname can be implemented by calling
1419 * uname()
1420 */
5a8a82b1 1421SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1422{
1423 int errno;
1424 char tmp[__NEW_UTS_LEN];
1425
fc832ad3 1426 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1427 return -EPERM;
1428 if (len < 0 || len > __NEW_UTS_LEN)
1429 return -EINVAL;
1430
1431 down_write(&uts_sem);
1432 errno = -EFAULT;
1433 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1434 struct new_utsname *u = utsname();
1435
1436 memcpy(u->domainname, tmp, len);
1437 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1438 errno = 0;
499eea6b 1439 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1440 }
1441 up_write(&uts_sem);
1442 return errno;
1443}
1444
e48fbb69 1445SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1446{
b9518345
JS
1447 struct rlimit value;
1448 int ret;
1449
1450 ret = do_prlimit(current, resource, NULL, &value);
1451 if (!ret)
1452 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1453
1454 return ret;
1da177e4
LT
1455}
1456
1457#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1458
1459/*
1460 * Back compatibility for getrlimit. Needed for some apps.
1461 */
1462
e48fbb69
HC
1463SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1464 struct rlimit __user *, rlim)
1da177e4
LT
1465{
1466 struct rlimit x;
1467 if (resource >= RLIM_NLIMITS)
1468 return -EINVAL;
1469
1470 task_lock(current->group_leader);
1471 x = current->signal->rlim[resource];
1472 task_unlock(current->group_leader);
756184b7 1473 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1474 x.rlim_cur = 0x7FFFFFFF;
756184b7 1475 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1476 x.rlim_max = 0x7FFFFFFF;
1477 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1478}
1479
1480#endif
1481
c022a0ac
JS
1482static inline bool rlim64_is_infinity(__u64 rlim64)
1483{
1484#if BITS_PER_LONG < 64
1485 return rlim64 >= ULONG_MAX;
1486#else
1487 return rlim64 == RLIM64_INFINITY;
1488#endif
1489}
1490
1491static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1492{
1493 if (rlim->rlim_cur == RLIM_INFINITY)
1494 rlim64->rlim_cur = RLIM64_INFINITY;
1495 else
1496 rlim64->rlim_cur = rlim->rlim_cur;
1497 if (rlim->rlim_max == RLIM_INFINITY)
1498 rlim64->rlim_max = RLIM64_INFINITY;
1499 else
1500 rlim64->rlim_max = rlim->rlim_max;
1501}
1502
1503static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1504{
1505 if (rlim64_is_infinity(rlim64->rlim_cur))
1506 rlim->rlim_cur = RLIM_INFINITY;
1507 else
1508 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1509 if (rlim64_is_infinity(rlim64->rlim_max))
1510 rlim->rlim_max = RLIM_INFINITY;
1511 else
1512 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1513}
1514
1c1e618d 1515/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1516int do_prlimit(struct task_struct *tsk, unsigned int resource,
1517 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1518{
5b41535a 1519 struct rlimit *rlim;
86f162f4 1520 int retval = 0;
1da177e4
LT
1521
1522 if (resource >= RLIM_NLIMITS)
1523 return -EINVAL;
5b41535a
JS
1524 if (new_rlim) {
1525 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1526 return -EINVAL;
1527 if (resource == RLIMIT_NOFILE &&
1528 new_rlim->rlim_max > sysctl_nr_open)
1529 return -EPERM;
1530 }
1da177e4 1531
1c1e618d
JS
1532 /* protect tsk->signal and tsk->sighand from disappearing */
1533 read_lock(&tasklist_lock);
1534 if (!tsk->sighand) {
1535 retval = -ESRCH;
1536 goto out;
1537 }
1538
5b41535a 1539 rlim = tsk->signal->rlim + resource;
86f162f4 1540 task_lock(tsk->group_leader);
5b41535a 1541 if (new_rlim) {
fc832ad3
SH
1542 /* Keep the capable check against init_user_ns until
1543 cgroups can contain all limits */
5b41535a
JS
1544 if (new_rlim->rlim_max > rlim->rlim_max &&
1545 !capable(CAP_SYS_RESOURCE))
1546 retval = -EPERM;
1547 if (!retval)
1548 retval = security_task_setrlimit(tsk->group_leader,
1549 resource, new_rlim);
1550 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1551 /*
1552 * The caller is asking for an immediate RLIMIT_CPU
1553 * expiry. But we use the zero value to mean "it was
1554 * never set". So let's cheat and make it one second
1555 * instead
1556 */
1557 new_rlim->rlim_cur = 1;
1558 }
1559 }
1560 if (!retval) {
1561 if (old_rlim)
1562 *old_rlim = *rlim;
1563 if (new_rlim)
1564 *rlim = *new_rlim;
9926e4c7 1565 }
7855c35d 1566 task_unlock(tsk->group_leader);
1da177e4 1567
d3561f78
AM
1568 /*
1569 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1570 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1571 * very long-standing error, and fixing it now risks breakage of
1572 * applications, so we live with it
1573 */
5b41535a
JS
1574 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1575 new_rlim->rlim_cur != RLIM_INFINITY)
1576 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1577out:
1c1e618d 1578 read_unlock(&tasklist_lock);
2fb9d268 1579 return retval;
1da177e4
LT
1580}
1581
c022a0ac
JS
1582/* rcu lock must be held */
1583static int check_prlimit_permission(struct task_struct *task)
1584{
1585 const struct cred *cred = current_cred(), *tcred;
1586
fc832ad3
SH
1587 if (current == task)
1588 return 0;
c022a0ac 1589
fc832ad3 1590 tcred = __task_cred(task);
5af66203
EB
1591 if (uid_eq(cred->uid, tcred->euid) &&
1592 uid_eq(cred->uid, tcred->suid) &&
1593 uid_eq(cred->uid, tcred->uid) &&
1594 gid_eq(cred->gid, tcred->egid) &&
1595 gid_eq(cred->gid, tcred->sgid) &&
1596 gid_eq(cred->gid, tcred->gid))
fc832ad3 1597 return 0;
c4a4d603 1598 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1599 return 0;
1600
1601 return -EPERM;
c022a0ac
JS
1602}
1603
1604SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1605 const struct rlimit64 __user *, new_rlim,
1606 struct rlimit64 __user *, old_rlim)
1607{
1608 struct rlimit64 old64, new64;
1609 struct rlimit old, new;
1610 struct task_struct *tsk;
1611 int ret;
1612
1613 if (new_rlim) {
1614 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1615 return -EFAULT;
1616 rlim64_to_rlim(&new64, &new);
1617 }
1618
1619 rcu_read_lock();
1620 tsk = pid ? find_task_by_vpid(pid) : current;
1621 if (!tsk) {
1622 rcu_read_unlock();
1623 return -ESRCH;
1624 }
1625 ret = check_prlimit_permission(tsk);
1626 if (ret) {
1627 rcu_read_unlock();
1628 return ret;
1629 }
1630 get_task_struct(tsk);
1631 rcu_read_unlock();
1632
1633 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1634 old_rlim ? &old : NULL);
1635
1636 if (!ret && old_rlim) {
1637 rlim_to_rlim64(&old, &old64);
1638 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1639 ret = -EFAULT;
1640 }
1641
1642 put_task_struct(tsk);
1643 return ret;
1644}
1645
7855c35d
JS
1646SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1647{
1648 struct rlimit new_rlim;
1649
1650 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1651 return -EFAULT;
5b41535a 1652 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1653}
1654
1da177e4
LT
1655/*
1656 * It would make sense to put struct rusage in the task_struct,
1657 * except that would make the task_struct be *really big*. After
1658 * task_struct gets moved into malloc'ed memory, it would
1659 * make sense to do this. It will make moving the rest of the information
1660 * a lot simpler! (Which we're not doing right now because we're not
1661 * measuring them yet).
1662 *
1da177e4
LT
1663 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1664 * races with threads incrementing their own counters. But since word
1665 * reads are atomic, we either get new values or old values and we don't
1666 * care which for the sums. We always take the siglock to protect reading
1667 * the c* fields from p->signal from races with exit.c updating those
1668 * fields when reaping, so a sample either gets all the additions of a
1669 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1670 *
de047c1b
RT
1671 * Locking:
1672 * We need to take the siglock for CHILDEREN, SELF and BOTH
1673 * for the cases current multithreaded, non-current single threaded
1674 * non-current multithreaded. Thread traversal is now safe with
1675 * the siglock held.
1676 * Strictly speaking, we donot need to take the siglock if we are current and
1677 * single threaded, as no one else can take our signal_struct away, no one
1678 * else can reap the children to update signal->c* counters, and no one else
1679 * can race with the signal-> fields. If we do not take any lock, the
1680 * signal-> fields could be read out of order while another thread was just
1681 * exiting. So we should place a read memory barrier when we avoid the lock.
1682 * On the writer side, write memory barrier is implied in __exit_signal
1683 * as __exit_signal releases the siglock spinlock after updating the signal->
1684 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1685 *
1da177e4
LT
1686 */
1687
f06febc9 1688static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1689{
679c9cd4
SK
1690 r->ru_nvcsw += t->nvcsw;
1691 r->ru_nivcsw += t->nivcsw;
1692 r->ru_minflt += t->min_flt;
1693 r->ru_majflt += t->maj_flt;
1694 r->ru_inblock += task_io_get_inblock(t);
1695 r->ru_oublock += task_io_get_oublock(t);
1696}
1697
1da177e4
LT
1698static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1699{
1700 struct task_struct *t;
1701 unsigned long flags;
0cf55e1e 1702 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1703 unsigned long maxrss = 0;
1da177e4
LT
1704
1705 memset((char *) r, 0, sizeof *r);
64861634 1706 utime = stime = 0;
1da177e4 1707
679c9cd4 1708 if (who == RUSAGE_THREAD) {
e80d0a1a 1709 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1710 accumulate_thread_rusage(p, r);
1f10206c 1711 maxrss = p->signal->maxrss;
679c9cd4
SK
1712 goto out;
1713 }
1714
d6cf723a 1715 if (!lock_task_sighand(p, &flags))
de047c1b 1716 return;
0f59cc4a 1717
1da177e4 1718 switch (who) {
0f59cc4a 1719 case RUSAGE_BOTH:
1da177e4 1720 case RUSAGE_CHILDREN:
1da177e4
LT
1721 utime = p->signal->cutime;
1722 stime = p->signal->cstime;
1723 r->ru_nvcsw = p->signal->cnvcsw;
1724 r->ru_nivcsw = p->signal->cnivcsw;
1725 r->ru_minflt = p->signal->cmin_flt;
1726 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1727 r->ru_inblock = p->signal->cinblock;
1728 r->ru_oublock = p->signal->coublock;
1f10206c 1729 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1730
1731 if (who == RUSAGE_CHILDREN)
1732 break;
1733
1da177e4 1734 case RUSAGE_SELF:
e80d0a1a 1735 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
64861634
MS
1736 utime += tgutime;
1737 stime += tgstime;
1da177e4
LT
1738 r->ru_nvcsw += p->signal->nvcsw;
1739 r->ru_nivcsw += p->signal->nivcsw;
1740 r->ru_minflt += p->signal->min_flt;
1741 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1742 r->ru_inblock += p->signal->inblock;
1743 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1744 if (maxrss < p->signal->maxrss)
1745 maxrss = p->signal->maxrss;
1da177e4
LT
1746 t = p;
1747 do {
f06febc9 1748 accumulate_thread_rusage(t, r);
1da177e4
LT
1749 t = next_thread(t);
1750 } while (t != p);
1da177e4 1751 break;
0f59cc4a 1752
1da177e4
LT
1753 default:
1754 BUG();
1755 }
de047c1b 1756 unlock_task_sighand(p, &flags);
de047c1b 1757
679c9cd4 1758out:
0f59cc4a
ON
1759 cputime_to_timeval(utime, &r->ru_utime);
1760 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1761
1762 if (who != RUSAGE_CHILDREN) {
1763 struct mm_struct *mm = get_task_mm(p);
1764 if (mm) {
1765 setmax_mm_hiwater_rss(&maxrss, mm);
1766 mmput(mm);
1767 }
1768 }
1769 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1770}
1771
1772int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1773{
1774 struct rusage r;
1da177e4 1775 k_getrusage(p, who, &r);
1da177e4
LT
1776 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1777}
1778
e48fbb69 1779SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1780{
679c9cd4
SK
1781 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1782 who != RUSAGE_THREAD)
1da177e4
LT
1783 return -EINVAL;
1784 return getrusage(current, who, ru);
1785}
1786
e48fbb69 1787SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1788{
1789 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1790 return mask;
1791}
3b7391de 1792
028ee4be 1793#ifdef CONFIG_CHECKPOINT_RESTORE
b32dfe37
CG
1794static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1795{
2903ff01 1796 struct fd exe;
496ad9aa 1797 struct inode *inode;
2903ff01 1798 int err;
b32dfe37 1799
2903ff01
AV
1800 exe = fdget(fd);
1801 if (!exe.file)
b32dfe37
CG
1802 return -EBADF;
1803
496ad9aa 1804 inode = file_inode(exe.file);
b32dfe37
CG
1805
1806 /*
1807 * Because the original mm->exe_file points to executable file, make
1808 * sure that this one is executable as well, to avoid breaking an
1809 * overall picture.
1810 */
1811 err = -EACCES;
496ad9aa 1812 if (!S_ISREG(inode->i_mode) ||
2903ff01 1813 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
b32dfe37
CG
1814 goto exit;
1815
496ad9aa 1816 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1817 if (err)
1818 goto exit;
1819
bafb282d
KK
1820 down_write(&mm->mmap_sem);
1821
1822 /*
4229fb1d 1823 * Forbid mm->exe_file change if old file still mapped.
bafb282d
KK
1824 */
1825 err = -EBUSY;
4229fb1d
KK
1826 if (mm->exe_file) {
1827 struct vm_area_struct *vma;
1828
1829 for (vma = mm->mmap; vma; vma = vma->vm_next)
1830 if (vma->vm_file &&
1831 path_equal(&vma->vm_file->f_path,
1832 &mm->exe_file->f_path))
1833 goto exit_unlock;
bafb282d
KK
1834 }
1835
b32dfe37
CG
1836 /*
1837 * The symlink can be changed only once, just to disallow arbitrary
1838 * transitions malicious software might bring in. This means one
1839 * could make a snapshot over all processes running and monitor
1840 * /proc/pid/exe changes to notice unusual activity if needed.
1841 */
bafb282d
KK
1842 err = -EPERM;
1843 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1844 goto exit_unlock;
1845
4229fb1d 1846 err = 0;
2903ff01 1847 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
bafb282d 1848exit_unlock:
b32dfe37
CG
1849 up_write(&mm->mmap_sem);
1850
1851exit:
2903ff01 1852 fdput(exe);
b32dfe37
CG
1853 return err;
1854}
1855
028ee4be
CG
1856static int prctl_set_mm(int opt, unsigned long addr,
1857 unsigned long arg4, unsigned long arg5)
1858{
1859 unsigned long rlim = rlimit(RLIMIT_DATA);
028ee4be 1860 struct mm_struct *mm = current->mm;
fe8c7f5c
CG
1861 struct vm_area_struct *vma;
1862 int error;
028ee4be 1863
fe8c7f5c 1864 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
028ee4be
CG
1865 return -EINVAL;
1866
79f0713d 1867 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1868 return -EPERM;
1869
b32dfe37
CG
1870 if (opt == PR_SET_MM_EXE_FILE)
1871 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1872
1ad75b9e 1873 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
1874 return -EINVAL;
1875
fe8c7f5c
CG
1876 error = -EINVAL;
1877
028ee4be
CG
1878 down_read(&mm->mmap_sem);
1879 vma = find_vma(mm, addr);
1880
028ee4be
CG
1881 switch (opt) {
1882 case PR_SET_MM_START_CODE:
fe8c7f5c
CG
1883 mm->start_code = addr;
1884 break;
028ee4be 1885 case PR_SET_MM_END_CODE:
fe8c7f5c 1886 mm->end_code = addr;
028ee4be 1887 break;
028ee4be 1888 case PR_SET_MM_START_DATA:
fe8c7f5c 1889 mm->start_data = addr;
028ee4be 1890 break;
fe8c7f5c
CG
1891 case PR_SET_MM_END_DATA:
1892 mm->end_data = addr;
028ee4be
CG
1893 break;
1894
1895 case PR_SET_MM_START_BRK:
1896 if (addr <= mm->end_data)
1897 goto out;
1898
1899 if (rlim < RLIM_INFINITY &&
1900 (mm->brk - addr) +
1901 (mm->end_data - mm->start_data) > rlim)
1902 goto out;
1903
1904 mm->start_brk = addr;
1905 break;
1906
1907 case PR_SET_MM_BRK:
1908 if (addr <= mm->end_data)
1909 goto out;
1910
1911 if (rlim < RLIM_INFINITY &&
1912 (addr - mm->start_brk) +
1913 (mm->end_data - mm->start_data) > rlim)
1914 goto out;
1915
1916 mm->brk = addr;
1917 break;
1918
fe8c7f5c
CG
1919 /*
1920 * If command line arguments and environment
1921 * are placed somewhere else on stack, we can
1922 * set them up here, ARG_START/END to setup
1923 * command line argumets and ENV_START/END
1924 * for environment.
1925 */
1926 case PR_SET_MM_START_STACK:
1927 case PR_SET_MM_ARG_START:
1928 case PR_SET_MM_ARG_END:
1929 case PR_SET_MM_ENV_START:
1930 case PR_SET_MM_ENV_END:
1931 if (!vma) {
1932 error = -EFAULT;
1933 goto out;
1934 }
fe8c7f5c
CG
1935 if (opt == PR_SET_MM_START_STACK)
1936 mm->start_stack = addr;
1937 else if (opt == PR_SET_MM_ARG_START)
1938 mm->arg_start = addr;
1939 else if (opt == PR_SET_MM_ARG_END)
1940 mm->arg_end = addr;
1941 else if (opt == PR_SET_MM_ENV_START)
1942 mm->env_start = addr;
1943 else if (opt == PR_SET_MM_ENV_END)
1944 mm->env_end = addr;
1945 break;
1946
1947 /*
1948 * This doesn't move auxiliary vector itself
1949 * since it's pinned to mm_struct, but allow
1950 * to fill vector with new values. It's up
1951 * to a caller to provide sane values here
1952 * otherwise user space tools which use this
1953 * vector might be unhappy.
1954 */
1955 case PR_SET_MM_AUXV: {
1956 unsigned long user_auxv[AT_VECTOR_SIZE];
1957
1958 if (arg4 > sizeof(user_auxv))
1959 goto out;
1960 up_read(&mm->mmap_sem);
1961
1962 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1963 return -EFAULT;
1964
1965 /* Make sure the last entry is always AT_NULL */
1966 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1967 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1968
1969 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1970
1971 task_lock(current);
1972 memcpy(mm->saved_auxv, user_auxv, arg4);
1973 task_unlock(current);
1974
1975 return 0;
1976 }
028ee4be 1977 default:
028ee4be
CG
1978 goto out;
1979 }
1980
1981 error = 0;
028ee4be
CG
1982out:
1983 up_read(&mm->mmap_sem);
028ee4be
CG
1984 return error;
1985}
300f786b
CG
1986
1987static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1988{
1989 return put_user(me->clear_child_tid, tid_addr);
1990}
1991
028ee4be
CG
1992#else /* CONFIG_CHECKPOINT_RESTORE */
1993static int prctl_set_mm(int opt, unsigned long addr,
1994 unsigned long arg4, unsigned long arg5)
1995{
1996 return -EINVAL;
1997}
300f786b
CG
1998static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1999{
2000 return -EINVAL;
2001}
028ee4be
CG
2002#endif
2003
c4ea37c2
HC
2004SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2005 unsigned long, arg4, unsigned long, arg5)
1da177e4 2006{
b6dff3ec
DH
2007 struct task_struct *me = current;
2008 unsigned char comm[sizeof(me->comm)];
2009 long error;
1da177e4 2010
d84f4f99
DH
2011 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2012 if (error != -ENOSYS)
1da177e4
LT
2013 return error;
2014
d84f4f99 2015 error = 0;
1da177e4 2016 switch (option) {
f3cbd435
AM
2017 case PR_SET_PDEATHSIG:
2018 if (!valid_signal(arg2)) {
2019 error = -EINVAL;
1da177e4 2020 break;
f3cbd435
AM
2021 }
2022 me->pdeath_signal = arg2;
2023 break;
2024 case PR_GET_PDEATHSIG:
2025 error = put_user(me->pdeath_signal, (int __user *)arg2);
2026 break;
2027 case PR_GET_DUMPABLE:
2028 error = get_dumpable(me->mm);
2029 break;
2030 case PR_SET_DUMPABLE:
2031 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2032 error = -EINVAL;
1da177e4 2033 break;
f3cbd435
AM
2034 }
2035 set_dumpable(me->mm, arg2);
2036 break;
1da177e4 2037
f3cbd435
AM
2038 case PR_SET_UNALIGN:
2039 error = SET_UNALIGN_CTL(me, arg2);
2040 break;
2041 case PR_GET_UNALIGN:
2042 error = GET_UNALIGN_CTL(me, arg2);
2043 break;
2044 case PR_SET_FPEMU:
2045 error = SET_FPEMU_CTL(me, arg2);
2046 break;
2047 case PR_GET_FPEMU:
2048 error = GET_FPEMU_CTL(me, arg2);
2049 break;
2050 case PR_SET_FPEXC:
2051 error = SET_FPEXC_CTL(me, arg2);
2052 break;
2053 case PR_GET_FPEXC:
2054 error = GET_FPEXC_CTL(me, arg2);
2055 break;
2056 case PR_GET_TIMING:
2057 error = PR_TIMING_STATISTICAL;
2058 break;
2059 case PR_SET_TIMING:
2060 if (arg2 != PR_TIMING_STATISTICAL)
2061 error = -EINVAL;
2062 break;
2063 case PR_SET_NAME:
2064 comm[sizeof(me->comm) - 1] = 0;
2065 if (strncpy_from_user(comm, (char __user *)arg2,
2066 sizeof(me->comm) - 1) < 0)
2067 return -EFAULT;
2068 set_task_comm(me, comm);
2069 proc_comm_connector(me);
2070 break;
2071 case PR_GET_NAME:
2072 get_task_comm(comm, me);
2073 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2074 return -EFAULT;
2075 break;
2076 case PR_GET_ENDIAN:
2077 error = GET_ENDIAN(me, arg2);
2078 break;
2079 case PR_SET_ENDIAN:
2080 error = SET_ENDIAN(me, arg2);
2081 break;
2082 case PR_GET_SECCOMP:
2083 error = prctl_get_seccomp();
2084 break;
2085 case PR_SET_SECCOMP:
2086 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2087 break;
2088 case PR_GET_TSC:
2089 error = GET_TSC_CTL(arg2);
2090 break;
2091 case PR_SET_TSC:
2092 error = SET_TSC_CTL(arg2);
2093 break;
2094 case PR_TASK_PERF_EVENTS_DISABLE:
2095 error = perf_event_task_disable();
2096 break;
2097 case PR_TASK_PERF_EVENTS_ENABLE:
2098 error = perf_event_task_enable();
2099 break;
2100 case PR_GET_TIMERSLACK:
2101 error = current->timer_slack_ns;
2102 break;
2103 case PR_SET_TIMERSLACK:
2104 if (arg2 <= 0)
2105 current->timer_slack_ns =
6976675d 2106 current->default_timer_slack_ns;
f3cbd435
AM
2107 else
2108 current->timer_slack_ns = arg2;
2109 break;
2110 case PR_MCE_KILL:
2111 if (arg4 | arg5)
2112 return -EINVAL;
2113 switch (arg2) {
2114 case PR_MCE_KILL_CLEAR:
2115 if (arg3 != 0)
4db96cf0 2116 return -EINVAL;
f3cbd435 2117 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2118 break;
f3cbd435
AM
2119 case PR_MCE_KILL_SET:
2120 current->flags |= PF_MCE_PROCESS;
2121 if (arg3 == PR_MCE_KILL_EARLY)
2122 current->flags |= PF_MCE_EARLY;
2123 else if (arg3 == PR_MCE_KILL_LATE)
2124 current->flags &= ~PF_MCE_EARLY;
2125 else if (arg3 == PR_MCE_KILL_DEFAULT)
2126 current->flags &=
2127 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2128 else
259e5e6c 2129 return -EINVAL;
259e5e6c 2130 break;
1da177e4 2131 default:
f3cbd435
AM
2132 return -EINVAL;
2133 }
2134 break;
2135 case PR_MCE_KILL_GET:
2136 if (arg2 | arg3 | arg4 | arg5)
2137 return -EINVAL;
2138 if (current->flags & PF_MCE_PROCESS)
2139 error = (current->flags & PF_MCE_EARLY) ?
2140 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2141 else
2142 error = PR_MCE_KILL_DEFAULT;
2143 break;
2144 case PR_SET_MM:
2145 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2146 break;
2147 case PR_GET_TID_ADDRESS:
2148 error = prctl_get_tid_address(me, (int __user **)arg2);
2149 break;
2150 case PR_SET_CHILD_SUBREAPER:
2151 me->signal->is_child_subreaper = !!arg2;
2152 break;
2153 case PR_GET_CHILD_SUBREAPER:
2154 error = put_user(me->signal->is_child_subreaper,
2155 (int __user *)arg2);
2156 break;
2157 case PR_SET_NO_NEW_PRIVS:
2158 if (arg2 != 1 || arg3 || arg4 || arg5)
2159 return -EINVAL;
2160
2161 current->no_new_privs = 1;
2162 break;
2163 case PR_GET_NO_NEW_PRIVS:
2164 if (arg2 || arg3 || arg4 || arg5)
2165 return -EINVAL;
2166 return current->no_new_privs ? 1 : 0;
2167 default:
2168 error = -EINVAL;
2169 break;
1da177e4
LT
2170 }
2171 return error;
2172}
3cfc348b 2173
836f92ad
HC
2174SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2175 struct getcpu_cache __user *, unused)
3cfc348b
AK
2176{
2177 int err = 0;
2178 int cpu = raw_smp_processor_id();
2179 if (cpup)
2180 err |= put_user(cpu, cpup);
2181 if (nodep)
2182 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2183 return err ? -EFAULT : 0;
2184}
10a0a8d4
JF
2185
2186char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2187
2ca067ef 2188static int __orderly_poweroff(bool force)
10a0a8d4 2189{
b57b44ae 2190 char **argv;
10a0a8d4
JF
2191 static char *envp[] = {
2192 "HOME=/",
2193 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2194 NULL
2195 };
b57b44ae 2196 int ret;
10a0a8d4 2197
2ca067ef
ON
2198 argv = argv_split(GFP_KERNEL, poweroff_cmd, NULL);
2199 if (argv) {
2200 ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2201 argv_free(argv);
2202 } else {
10a0a8d4 2203 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2ca067ef
ON
2204 __func__, poweroff_cmd);
2205 ret = -ENOMEM;
10a0a8d4
JF
2206 }
2207
2ca067ef
ON
2208 if (ret && force) {
2209 printk(KERN_WARNING "Failed to start orderly shutdown: "
2210 "forcing the issue\n");
2211 /*
2212 * I guess this should try to kick off some daemon to sync and
2213 * poweroff asap. Or not even bother syncing if we're doing an
2214 * emergency shutdown?
2215 */
2216 emergency_sync();
2217 kernel_power_off();
2218 }
10a0a8d4 2219
b57b44ae
AM
2220 return ret;
2221}
2222
2ca067ef
ON
2223static bool poweroff_force;
2224
2225static void poweroff_work_func(struct work_struct *work)
2226{
2227 __orderly_poweroff(poweroff_force);
2228}
2229
2230static DECLARE_WORK(poweroff_work, poweroff_work_func);
2231
b57b44ae
AM
2232/**
2233 * orderly_poweroff - Trigger an orderly system poweroff
2234 * @force: force poweroff if command execution fails
2235 *
2236 * This may be called from any context to trigger a system shutdown.
2237 * If the orderly shutdown fails, it will force an immediate shutdown.
2238 */
2239int orderly_poweroff(bool force)
2240{
2ca067ef
ON
2241 if (force) /* do not override the pending "true" */
2242 poweroff_force = true;
2243 schedule_work(&poweroff_work);
2244 return 0;
10a0a8d4
JF
2245}
2246EXPORT_SYMBOL_GPL(orderly_poweroff);