[CVE-2009-0029] System call wrappers part 06
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/smp_lock.h>
12#include <linux/notifier.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
1da177e4
LT
15#include <linux/highuid.h>
16#include <linux/fs.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e3d5a27d 36#include <linux/ptrace.h>
1da177e4
LT
37
38#include <linux/compat.h>
39#include <linux/syscalls.h>
00d7c05a 40#include <linux/kprobes.h>
acce292c 41#include <linux/user_namespace.h>
1da177e4
LT
42
43#include <asm/uaccess.h>
44#include <asm/io.h>
45#include <asm/unistd.h>
46
47#ifndef SET_UNALIGN_CTL
48# define SET_UNALIGN_CTL(a,b) (-EINVAL)
49#endif
50#ifndef GET_UNALIGN_CTL
51# define GET_UNALIGN_CTL(a,b) (-EINVAL)
52#endif
53#ifndef SET_FPEMU_CTL
54# define SET_FPEMU_CTL(a,b) (-EINVAL)
55#endif
56#ifndef GET_FPEMU_CTL
57# define GET_FPEMU_CTL(a,b) (-EINVAL)
58#endif
59#ifndef SET_FPEXC_CTL
60# define SET_FPEXC_CTL(a,b) (-EINVAL)
61#endif
62#ifndef GET_FPEXC_CTL
63# define GET_FPEXC_CTL(a,b) (-EINVAL)
64#endif
651d765d
AB
65#ifndef GET_ENDIAN
66# define GET_ENDIAN(a,b) (-EINVAL)
67#endif
68#ifndef SET_ENDIAN
69# define SET_ENDIAN(a,b) (-EINVAL)
70#endif
8fb402bc
EB
71#ifndef GET_TSC_CTL
72# define GET_TSC_CTL(a) (-EINVAL)
73#endif
74#ifndef SET_TSC_CTL
75# define SET_TSC_CTL(a) (-EINVAL)
76#endif
1da177e4
LT
77
78/*
79 * this is where the system-wide overflow UID and GID are defined, for
80 * architectures that now have 32-bit UID/GID but didn't in the past
81 */
82
83int overflowuid = DEFAULT_OVERFLOWUID;
84int overflowgid = DEFAULT_OVERFLOWGID;
85
86#ifdef CONFIG_UID16
87EXPORT_SYMBOL(overflowuid);
88EXPORT_SYMBOL(overflowgid);
89#endif
90
91/*
92 * the same as above, but for filesystems which can only store a 16-bit
93 * UID and GID. as such, this is needed on all architectures
94 */
95
96int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
97int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
98
99EXPORT_SYMBOL(fs_overflowuid);
100EXPORT_SYMBOL(fs_overflowgid);
101
102/*
103 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
104 */
105
106int C_A_D = 1;
9ec52099
CLG
107struct pid *cad_pid;
108EXPORT_SYMBOL(cad_pid);
1da177e4 109
bd804eba
RW
110/*
111 * If set, this is used for preparing the system to power off.
112 */
113
114void (*pm_power_off_prepare)(void);
bd804eba 115
c69e8d9c
DH
116/*
117 * set the priority of a task
118 * - the caller must hold the RCU read lock
119 */
1da177e4
LT
120static int set_one_prio(struct task_struct *p, int niceval, int error)
121{
c69e8d9c 122 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
1da177e4
LT
123 int no_nice;
124
c69e8d9c
DH
125 if (pcred->uid != cred->euid &&
126 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
1da177e4
LT
127 error = -EPERM;
128 goto out;
129 }
e43379f1 130 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
131 error = -EACCES;
132 goto out;
133 }
134 no_nice = security_task_setnice(p, niceval);
135 if (no_nice) {
136 error = no_nice;
137 goto out;
138 }
139 if (error == -ESRCH)
140 error = 0;
141 set_user_nice(p, niceval);
142out:
143 return error;
144}
145
146asmlinkage long sys_setpriority(int which, int who, int niceval)
147{
148 struct task_struct *g, *p;
149 struct user_struct *user;
86a264ab 150 const struct cred *cred = current_cred();
1da177e4 151 int error = -EINVAL;
41487c65 152 struct pid *pgrp;
1da177e4 153
3e88c553 154 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
155 goto out;
156
157 /* normalize: avoid signed division (rounding problems) */
158 error = -ESRCH;
159 if (niceval < -20)
160 niceval = -20;
161 if (niceval > 19)
162 niceval = 19;
163
164 read_lock(&tasklist_lock);
165 switch (which) {
166 case PRIO_PROCESS:
41487c65 167 if (who)
228ebcbe 168 p = find_task_by_vpid(who);
41487c65
EB
169 else
170 p = current;
1da177e4
LT
171 if (p)
172 error = set_one_prio(p, niceval, error);
173 break;
174 case PRIO_PGRP:
41487c65 175 if (who)
b488893a 176 pgrp = find_vpid(who);
41487c65
EB
177 else
178 pgrp = task_pgrp(current);
2d70b68d 179 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 180 error = set_one_prio(p, niceval, error);
2d70b68d 181 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
182 break;
183 case PRIO_USER:
d84f4f99 184 user = (struct user_struct *) cred->user;
1da177e4 185 if (!who)
86a264ab
DH
186 who = cred->uid;
187 else if ((who != cred->uid) &&
188 !(user = find_user(who)))
189 goto out_unlock; /* No processes for this user */
1da177e4
LT
190
191 do_each_thread(g, p)
86a264ab 192 if (__task_cred(p)->uid == who)
1da177e4
LT
193 error = set_one_prio(p, niceval, error);
194 while_each_thread(g, p);
86a264ab 195 if (who != cred->uid)
1da177e4
LT
196 free_uid(user); /* For find_user() */
197 break;
198 }
199out_unlock:
200 read_unlock(&tasklist_lock);
201out:
202 return error;
203}
204
205/*
206 * Ugh. To avoid negative return values, "getpriority()" will
207 * not return the normal nice-value, but a negated value that
208 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209 * to stay compatible.
210 */
211asmlinkage long sys_getpriority(int which, int who)
212{
213 struct task_struct *g, *p;
214 struct user_struct *user;
86a264ab 215 const struct cred *cred = current_cred();
1da177e4 216 long niceval, retval = -ESRCH;
41487c65 217 struct pid *pgrp;
1da177e4 218
3e88c553 219 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
220 return -EINVAL;
221
222 read_lock(&tasklist_lock);
223 switch (which) {
224 case PRIO_PROCESS:
41487c65 225 if (who)
228ebcbe 226 p = find_task_by_vpid(who);
41487c65
EB
227 else
228 p = current;
1da177e4
LT
229 if (p) {
230 niceval = 20 - task_nice(p);
231 if (niceval > retval)
232 retval = niceval;
233 }
234 break;
235 case PRIO_PGRP:
41487c65 236 if (who)
b488893a 237 pgrp = find_vpid(who);
41487c65
EB
238 else
239 pgrp = task_pgrp(current);
2d70b68d 240 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
241 niceval = 20 - task_nice(p);
242 if (niceval > retval)
243 retval = niceval;
2d70b68d 244 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
245 break;
246 case PRIO_USER:
86a264ab 247 user = (struct user_struct *) cred->user;
1da177e4 248 if (!who)
86a264ab
DH
249 who = cred->uid;
250 else if ((who != cred->uid) &&
251 !(user = find_user(who)))
252 goto out_unlock; /* No processes for this user */
1da177e4
LT
253
254 do_each_thread(g, p)
86a264ab 255 if (__task_cred(p)->uid == who) {
1da177e4
LT
256 niceval = 20 - task_nice(p);
257 if (niceval > retval)
258 retval = niceval;
259 }
260 while_each_thread(g, p);
86a264ab 261 if (who != cred->uid)
1da177e4
LT
262 free_uid(user); /* for find_user() */
263 break;
264 }
265out_unlock:
266 read_unlock(&tasklist_lock);
267
268 return retval;
269}
270
e4c94330
EB
271/**
272 * emergency_restart - reboot the system
273 *
274 * Without shutting down any hardware or taking any locks
275 * reboot the system. This is called when we know we are in
276 * trouble so this is our best effort to reboot. This is
277 * safe to call in interrupt context.
278 */
7c903473
EB
279void emergency_restart(void)
280{
281 machine_emergency_restart();
282}
283EXPORT_SYMBOL_GPL(emergency_restart);
284
ca195b7f 285void kernel_restart_prepare(char *cmd)
4a00ea1e 286{
e041c683 287 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 288 system_state = SYSTEM_RESTART;
4a00ea1e 289 device_shutdown();
58b3b71d 290 sysdev_shutdown();
e4c94330 291}
1e5d5331
RD
292
293/**
294 * kernel_restart - reboot the system
295 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 296 * or %NULL
1e5d5331
RD
297 *
298 * Shutdown everything and perform a clean reboot.
299 * This is not safe to call in interrupt context.
300 */
e4c94330
EB
301void kernel_restart(char *cmd)
302{
303 kernel_restart_prepare(cmd);
756184b7 304 if (!cmd)
4a00ea1e 305 printk(KERN_EMERG "Restarting system.\n");
756184b7 306 else
4a00ea1e 307 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
4a00ea1e
EB
308 machine_restart(cmd);
309}
310EXPORT_SYMBOL_GPL(kernel_restart);
311
4ef7229f 312static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 313{
e041c683 314 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
315 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
316 system_state = state;
317 device_shutdown();
318}
e4c94330
EB
319/**
320 * kernel_halt - halt the system
321 *
322 * Shutdown everything and perform a clean system halt.
323 */
e4c94330
EB
324void kernel_halt(void)
325{
729b4d4c 326 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 327 sysdev_shutdown();
4a00ea1e
EB
328 printk(KERN_EMERG "System halted.\n");
329 machine_halt();
330}
729b4d4c 331
4a00ea1e
EB
332EXPORT_SYMBOL_GPL(kernel_halt);
333
e4c94330
EB
334/**
335 * kernel_power_off - power_off the system
336 *
337 * Shutdown everything and perform a clean system power_off.
338 */
e4c94330
EB
339void kernel_power_off(void)
340{
729b4d4c 341 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
342 if (pm_power_off_prepare)
343 pm_power_off_prepare();
4047727e 344 disable_nonboot_cpus();
58b3b71d 345 sysdev_shutdown();
4a00ea1e
EB
346 printk(KERN_EMERG "Power down.\n");
347 machine_power_off();
348}
349EXPORT_SYMBOL_GPL(kernel_power_off);
1da177e4
LT
350/*
351 * Reboot system call: for obvious reasons only root may call it,
352 * and even root needs to set up some magic numbers in the registers
353 * so that some mistake won't make this reboot the whole machine.
354 * You can also set the meaning of the ctrl-alt-del-key here.
355 *
356 * reboot doesn't sync: do that yourself before calling this.
357 */
358asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
359{
360 char buffer[256];
361
362 /* We only trust the superuser with rebooting the system. */
363 if (!capable(CAP_SYS_BOOT))
364 return -EPERM;
365
366 /* For safety, we require "magic" arguments. */
367 if (magic1 != LINUX_REBOOT_MAGIC1 ||
368 (magic2 != LINUX_REBOOT_MAGIC2 &&
369 magic2 != LINUX_REBOOT_MAGIC2A &&
370 magic2 != LINUX_REBOOT_MAGIC2B &&
371 magic2 != LINUX_REBOOT_MAGIC2C))
372 return -EINVAL;
373
5e38291d
EB
374 /* Instead of trying to make the power_off code look like
375 * halt when pm_power_off is not set do it the easy way.
376 */
377 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
378 cmd = LINUX_REBOOT_CMD_HALT;
379
1da177e4
LT
380 lock_kernel();
381 switch (cmd) {
382 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 383 kernel_restart(NULL);
1da177e4
LT
384 break;
385
386 case LINUX_REBOOT_CMD_CAD_ON:
387 C_A_D = 1;
388 break;
389
390 case LINUX_REBOOT_CMD_CAD_OFF:
391 C_A_D = 0;
392 break;
393
394 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 395 kernel_halt();
1da177e4
LT
396 unlock_kernel();
397 do_exit(0);
398 break;
399
400 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 401 kernel_power_off();
1da177e4
LT
402 unlock_kernel();
403 do_exit(0);
404 break;
405
406 case LINUX_REBOOT_CMD_RESTART2:
407 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
408 unlock_kernel();
409 return -EFAULT;
410 }
411 buffer[sizeof(buffer) - 1] = '\0';
412
4a00ea1e 413 kernel_restart(buffer);
1da177e4
LT
414 break;
415
3ab83521 416#ifdef CONFIG_KEXEC
dc009d92 417 case LINUX_REBOOT_CMD_KEXEC:
3ab83521
HY
418 {
419 int ret;
420 ret = kernel_kexec();
421 unlock_kernel();
422 return ret;
423 }
424#endif
4a00ea1e 425
b0cb1a19 426#ifdef CONFIG_HIBERNATION
1da177e4
LT
427 case LINUX_REBOOT_CMD_SW_SUSPEND:
428 {
a3d25c27 429 int ret = hibernate();
1da177e4
LT
430 unlock_kernel();
431 return ret;
432 }
433#endif
434
435 default:
436 unlock_kernel();
437 return -EINVAL;
438 }
439 unlock_kernel();
440 return 0;
441}
442
65f27f38 443static void deferred_cad(struct work_struct *dummy)
1da177e4 444{
abcd9e51 445 kernel_restart(NULL);
1da177e4
LT
446}
447
448/*
449 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
450 * As it's called within an interrupt, it may NOT sync: the only choice
451 * is whether to reboot at once, or just ignore the ctrl-alt-del.
452 */
453void ctrl_alt_del(void)
454{
65f27f38 455 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
456
457 if (C_A_D)
458 schedule_work(&cad_work);
459 else
9ec52099 460 kill_cad_pid(SIGINT, 1);
1da177e4
LT
461}
462
1da177e4
LT
463/*
464 * Unprivileged users may change the real gid to the effective gid
465 * or vice versa. (BSD-style)
466 *
467 * If you set the real gid at all, or set the effective gid to a value not
468 * equal to the real gid, then the saved gid is set to the new effective gid.
469 *
470 * This makes it possible for a setgid program to completely drop its
471 * privileges, which is often a useful assertion to make when you are doing
472 * a security audit over a program.
473 *
474 * The general idea is that a program which uses just setregid() will be
475 * 100% compatible with BSD. A program which uses just setgid() will be
476 * 100% compatible with POSIX with saved IDs.
477 *
478 * SMP: There are not races, the GIDs are checked only by filesystem
479 * operations (as far as semantic preservation is concerned).
480 */
ae1251ab 481SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 482{
d84f4f99
DH
483 const struct cred *old;
484 struct cred *new;
1da177e4
LT
485 int retval;
486
d84f4f99
DH
487 new = prepare_creds();
488 if (!new)
489 return -ENOMEM;
490 old = current_cred();
491
1da177e4
LT
492 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
493 if (retval)
d84f4f99 494 goto error;
1da177e4 495
d84f4f99 496 retval = -EPERM;
1da177e4 497 if (rgid != (gid_t) -1) {
d84f4f99
DH
498 if (old->gid == rgid ||
499 old->egid == rgid ||
1da177e4 500 capable(CAP_SETGID))
d84f4f99 501 new->gid = rgid;
1da177e4 502 else
d84f4f99 503 goto error;
1da177e4
LT
504 }
505 if (egid != (gid_t) -1) {
d84f4f99
DH
506 if (old->gid == egid ||
507 old->egid == egid ||
508 old->sgid == egid ||
1da177e4 509 capable(CAP_SETGID))
d84f4f99 510 new->egid = egid;
756184b7 511 else
d84f4f99 512 goto error;
1da177e4 513 }
d84f4f99 514
1da177e4 515 if (rgid != (gid_t) -1 ||
d84f4f99
DH
516 (egid != (gid_t) -1 && egid != old->gid))
517 new->sgid = new->egid;
518 new->fsgid = new->egid;
519
520 return commit_creds(new);
521
522error:
523 abort_creds(new);
524 return retval;
1da177e4
LT
525}
526
527/*
528 * setgid() is implemented like SysV w/ SAVED_IDS
529 *
530 * SMP: Same implicit races as above.
531 */
ae1251ab 532SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 533{
d84f4f99
DH
534 const struct cred *old;
535 struct cred *new;
1da177e4
LT
536 int retval;
537
d84f4f99
DH
538 new = prepare_creds();
539 if (!new)
540 return -ENOMEM;
541 old = current_cred();
542
1da177e4
LT
543 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
544 if (retval)
d84f4f99 545 goto error;
1da177e4 546
d84f4f99
DH
547 retval = -EPERM;
548 if (capable(CAP_SETGID))
549 new->gid = new->egid = new->sgid = new->fsgid = gid;
550 else if (gid == old->gid || gid == old->sgid)
551 new->egid = new->fsgid = gid;
1da177e4 552 else
d84f4f99 553 goto error;
1da177e4 554
d84f4f99
DH
555 return commit_creds(new);
556
557error:
558 abort_creds(new);
559 return retval;
1da177e4
LT
560}
561
d84f4f99
DH
562/*
563 * change the user struct in a credentials set to match the new UID
564 */
565static int set_user(struct cred *new)
1da177e4
LT
566{
567 struct user_struct *new_user;
568
18b6e041 569 new_user = alloc_uid(current_user_ns(), new->uid);
1da177e4
LT
570 if (!new_user)
571 return -EAGAIN;
572
573 if (atomic_read(&new_user->processes) >=
574 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
18b6e041 575 new_user != INIT_USER) {
1da177e4
LT
576 free_uid(new_user);
577 return -EAGAIN;
578 }
579
d84f4f99
DH
580 free_uid(new->user);
581 new->user = new_user;
1da177e4
LT
582 return 0;
583}
584
585/*
586 * Unprivileged users may change the real uid to the effective uid
587 * or vice versa. (BSD-style)
588 *
589 * If you set the real uid at all, or set the effective uid to a value not
590 * equal to the real uid, then the saved uid is set to the new effective uid.
591 *
592 * This makes it possible for a setuid program to completely drop its
593 * privileges, which is often a useful assertion to make when you are doing
594 * a security audit over a program.
595 *
596 * The general idea is that a program which uses just setreuid() will be
597 * 100% compatible with BSD. A program which uses just setuid() will be
598 * 100% compatible with POSIX with saved IDs.
599 */
ae1251ab 600SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 601{
d84f4f99
DH
602 const struct cred *old;
603 struct cred *new;
1da177e4
LT
604 int retval;
605
d84f4f99
DH
606 new = prepare_creds();
607 if (!new)
608 return -ENOMEM;
609 old = current_cred();
610
1da177e4
LT
611 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
612 if (retval)
d84f4f99 613 goto error;
1da177e4 614
d84f4f99 615 retval = -EPERM;
1da177e4 616 if (ruid != (uid_t) -1) {
d84f4f99
DH
617 new->uid = ruid;
618 if (old->uid != ruid &&
619 old->euid != ruid &&
1da177e4 620 !capable(CAP_SETUID))
d84f4f99 621 goto error;
1da177e4
LT
622 }
623
624 if (euid != (uid_t) -1) {
d84f4f99
DH
625 new->euid = euid;
626 if (old->uid != euid &&
627 old->euid != euid &&
628 old->suid != euid &&
1da177e4 629 !capable(CAP_SETUID))
d84f4f99 630 goto error;
1da177e4
LT
631 }
632
d84f4f99
DH
633 retval = -EAGAIN;
634 if (new->uid != old->uid && set_user(new) < 0)
635 goto error;
1da177e4 636
1da177e4 637 if (ruid != (uid_t) -1 ||
d84f4f99
DH
638 (euid != (uid_t) -1 && euid != old->uid))
639 new->suid = new->euid;
640 new->fsuid = new->euid;
1da177e4 641
d84f4f99
DH
642 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
643 if (retval < 0)
644 goto error;
1da177e4 645
d84f4f99 646 return commit_creds(new);
1da177e4 647
d84f4f99
DH
648error:
649 abort_creds(new);
650 return retval;
651}
1da177e4
LT
652
653/*
654 * setuid() is implemented like SysV with SAVED_IDS
655 *
656 * Note that SAVED_ID's is deficient in that a setuid root program
657 * like sendmail, for example, cannot set its uid to be a normal
658 * user and then switch back, because if you're root, setuid() sets
659 * the saved uid too. If you don't like this, blame the bright people
660 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
661 * will allow a root program to temporarily drop privileges and be able to
662 * regain them by swapping the real and effective uid.
663 */
ae1251ab 664SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 665{
d84f4f99
DH
666 const struct cred *old;
667 struct cred *new;
1da177e4
LT
668 int retval;
669
d84f4f99
DH
670 new = prepare_creds();
671 if (!new)
672 return -ENOMEM;
673 old = current_cred();
674
1da177e4
LT
675 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
676 if (retval)
d84f4f99 677 goto error;
1da177e4 678
d84f4f99 679 retval = -EPERM;
1da177e4 680 if (capable(CAP_SETUID)) {
d84f4f99
DH
681 new->suid = new->uid = uid;
682 if (uid != old->uid && set_user(new) < 0) {
683 retval = -EAGAIN;
684 goto error;
685 }
686 } else if (uid != old->uid && uid != new->suid) {
687 goto error;
1da177e4 688 }
1da177e4 689
d84f4f99
DH
690 new->fsuid = new->euid = uid;
691
692 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
693 if (retval < 0)
694 goto error;
695
696 return commit_creds(new);
1da177e4 697
d84f4f99
DH
698error:
699 abort_creds(new);
700 return retval;
1da177e4
LT
701}
702
703
704/*
705 * This function implements a generic ability to update ruid, euid,
706 * and suid. This allows you to implement the 4.4 compatible seteuid().
707 */
ae1251ab 708SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 709{
d84f4f99
DH
710 const struct cred *old;
711 struct cred *new;
1da177e4
LT
712 int retval;
713
d84f4f99
DH
714 new = prepare_creds();
715 if (!new)
716 return -ENOMEM;
717
1da177e4
LT
718 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
719 if (retval)
d84f4f99
DH
720 goto error;
721 old = current_cred();
1da177e4 722
d84f4f99 723 retval = -EPERM;
1da177e4 724 if (!capable(CAP_SETUID)) {
d84f4f99
DH
725 if (ruid != (uid_t) -1 && ruid != old->uid &&
726 ruid != old->euid && ruid != old->suid)
727 goto error;
728 if (euid != (uid_t) -1 && euid != old->uid &&
729 euid != old->euid && euid != old->suid)
730 goto error;
731 if (suid != (uid_t) -1 && suid != old->uid &&
732 suid != old->euid && suid != old->suid)
733 goto error;
1da177e4 734 }
d84f4f99
DH
735
736 retval = -EAGAIN;
1da177e4 737 if (ruid != (uid_t) -1) {
d84f4f99
DH
738 new->uid = ruid;
739 if (ruid != old->uid && set_user(new) < 0)
740 goto error;
1da177e4 741 }
d84f4f99
DH
742 if (euid != (uid_t) -1)
743 new->euid = euid;
1da177e4 744 if (suid != (uid_t) -1)
d84f4f99
DH
745 new->suid = suid;
746 new->fsuid = new->euid;
1da177e4 747
d84f4f99
DH
748 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
749 if (retval < 0)
750 goto error;
1da177e4 751
d84f4f99
DH
752 return commit_creds(new);
753
754error:
755 abort_creds(new);
756 return retval;
1da177e4
LT
757}
758
dbf040d9 759SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 760{
86a264ab 761 const struct cred *cred = current_cred();
1da177e4
LT
762 int retval;
763
86a264ab
DH
764 if (!(retval = put_user(cred->uid, ruid)) &&
765 !(retval = put_user(cred->euid, euid)))
b6dff3ec 766 retval = put_user(cred->suid, suid);
1da177e4
LT
767
768 return retval;
769}
770
771/*
772 * Same as above, but for rgid, egid, sgid.
773 */
ae1251ab 774SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 775{
d84f4f99
DH
776 const struct cred *old;
777 struct cred *new;
1da177e4
LT
778 int retval;
779
d84f4f99
DH
780 new = prepare_creds();
781 if (!new)
782 return -ENOMEM;
783 old = current_cred();
784
1da177e4
LT
785 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
786 if (retval)
d84f4f99 787 goto error;
1da177e4 788
d84f4f99 789 retval = -EPERM;
1da177e4 790 if (!capable(CAP_SETGID)) {
d84f4f99
DH
791 if (rgid != (gid_t) -1 && rgid != old->gid &&
792 rgid != old->egid && rgid != old->sgid)
793 goto error;
794 if (egid != (gid_t) -1 && egid != old->gid &&
795 egid != old->egid && egid != old->sgid)
796 goto error;
797 if (sgid != (gid_t) -1 && sgid != old->gid &&
798 sgid != old->egid && sgid != old->sgid)
799 goto error;
1da177e4 800 }
d84f4f99 801
1da177e4 802 if (rgid != (gid_t) -1)
d84f4f99
DH
803 new->gid = rgid;
804 if (egid != (gid_t) -1)
805 new->egid = egid;
1da177e4 806 if (sgid != (gid_t) -1)
d84f4f99
DH
807 new->sgid = sgid;
808 new->fsgid = new->egid;
1da177e4 809
d84f4f99
DH
810 return commit_creds(new);
811
812error:
813 abort_creds(new);
814 return retval;
1da177e4
LT
815}
816
dbf040d9 817SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 818{
86a264ab 819 const struct cred *cred = current_cred();
1da177e4
LT
820 int retval;
821
86a264ab
DH
822 if (!(retval = put_user(cred->gid, rgid)) &&
823 !(retval = put_user(cred->egid, egid)))
b6dff3ec 824 retval = put_user(cred->sgid, sgid);
1da177e4
LT
825
826 return retval;
827}
828
829
830/*
831 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
832 * is used for "access()" and for the NFS daemon (letting nfsd stay at
833 * whatever uid it wants to). It normally shadows "euid", except when
834 * explicitly set by setfsuid() or for access..
835 */
ae1251ab 836SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 837{
d84f4f99
DH
838 const struct cred *old;
839 struct cred *new;
840 uid_t old_fsuid;
841
842 new = prepare_creds();
843 if (!new)
844 return current_fsuid();
845 old = current_cred();
846 old_fsuid = old->fsuid;
1da177e4 847
d84f4f99
DH
848 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
849 goto error;
1da177e4 850
d84f4f99
DH
851 if (uid == old->uid || uid == old->euid ||
852 uid == old->suid || uid == old->fsuid ||
756184b7
CP
853 capable(CAP_SETUID)) {
854 if (uid != old_fsuid) {
d84f4f99
DH
855 new->fsuid = uid;
856 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
857 goto change_okay;
1da177e4 858 }
1da177e4
LT
859 }
860
d84f4f99
DH
861error:
862 abort_creds(new);
863 return old_fsuid;
1da177e4 864
d84f4f99
DH
865change_okay:
866 commit_creds(new);
1da177e4
LT
867 return old_fsuid;
868}
869
870/*
f42df9e6 871 * Samma på svenska..
1da177e4 872 */
ae1251ab 873SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 874{
d84f4f99
DH
875 const struct cred *old;
876 struct cred *new;
877 gid_t old_fsgid;
878
879 new = prepare_creds();
880 if (!new)
881 return current_fsgid();
882 old = current_cred();
883 old_fsgid = old->fsgid;
1da177e4 884
1da177e4 885 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
d84f4f99 886 goto error;
1da177e4 887
d84f4f99
DH
888 if (gid == old->gid || gid == old->egid ||
889 gid == old->sgid || gid == old->fsgid ||
756184b7
CP
890 capable(CAP_SETGID)) {
891 if (gid != old_fsgid) {
d84f4f99
DH
892 new->fsgid = gid;
893 goto change_okay;
1da177e4 894 }
1da177e4 895 }
d84f4f99
DH
896
897error:
898 abort_creds(new);
899 return old_fsgid;
900
901change_okay:
902 commit_creds(new);
1da177e4
LT
903 return old_fsgid;
904}
905
f06febc9
FM
906void do_sys_times(struct tms *tms)
907{
908 struct task_cputime cputime;
909 cputime_t cutime, cstime;
910
f06febc9 911 thread_group_cputime(current, &cputime);
2b5fe6de 912 spin_lock_irq(&current->sighand->siglock);
f06febc9
FM
913 cutime = current->signal->cutime;
914 cstime = current->signal->cstime;
915 spin_unlock_irq(&current->sighand->siglock);
916 tms->tms_utime = cputime_to_clock_t(cputime.utime);
917 tms->tms_stime = cputime_to_clock_t(cputime.stime);
918 tms->tms_cutime = cputime_to_clock_t(cutime);
919 tms->tms_cstime = cputime_to_clock_t(cstime);
920}
921
58fd3aa2 922SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 923{
1da177e4
LT
924 if (tbuf) {
925 struct tms tmp;
f06febc9
FM
926
927 do_sys_times(&tmp);
1da177e4
LT
928 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
929 return -EFAULT;
930 }
e3d5a27d 931 force_successful_syscall_return();
1da177e4
LT
932 return (long) jiffies_64_to_clock_t(get_jiffies_64());
933}
934
935/*
936 * This needs some heavy checking ...
937 * I just haven't the stomach for it. I also don't fully
938 * understand sessions/pgrp etc. Let somebody who does explain it.
939 *
940 * OK, I think I have the protection semantics right.... this is really
941 * only important on a multi-user system anyway, to make sure one user
942 * can't send a signal to a process owned by another. -TYT, 12/12/91
943 *
944 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
945 * LBT 04.03.94
946 */
b290ebe2 947SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
948{
949 struct task_struct *p;
ee0acf90 950 struct task_struct *group_leader = current->group_leader;
4e021306
ON
951 struct pid *pgrp;
952 int err;
1da177e4
LT
953
954 if (!pid)
b488893a 955 pid = task_pid_vnr(group_leader);
1da177e4
LT
956 if (!pgid)
957 pgid = pid;
958 if (pgid < 0)
959 return -EINVAL;
960
961 /* From this point forward we keep holding onto the tasklist lock
962 * so that our parent does not change from under us. -DaveM
963 */
964 write_lock_irq(&tasklist_lock);
965
966 err = -ESRCH;
4e021306 967 p = find_task_by_vpid(pid);
1da177e4
LT
968 if (!p)
969 goto out;
970
971 err = -EINVAL;
972 if (!thread_group_leader(p))
973 goto out;
974
4e021306 975 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 976 err = -EPERM;
41487c65 977 if (task_session(p) != task_session(group_leader))
1da177e4
LT
978 goto out;
979 err = -EACCES;
980 if (p->did_exec)
981 goto out;
982 } else {
983 err = -ESRCH;
ee0acf90 984 if (p != group_leader)
1da177e4
LT
985 goto out;
986 }
987
988 err = -EPERM;
989 if (p->signal->leader)
990 goto out;
991
4e021306 992 pgrp = task_pid(p);
1da177e4 993 if (pgid != pid) {
b488893a 994 struct task_struct *g;
1da177e4 995
4e021306
ON
996 pgrp = find_vpid(pgid);
997 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 998 if (!g || task_session(g) != task_session(group_leader))
f020bc46 999 goto out;
1da177e4
LT
1000 }
1001
1da177e4
LT
1002 err = security_task_setpgid(p, pgid);
1003 if (err)
1004 goto out;
1005
4e021306 1006 if (task_pgrp(p) != pgrp) {
83beaf3c 1007 change_pid(p, PIDTYPE_PGID, pgrp);
4e021306 1008 set_task_pgrp(p, pid_nr(pgrp));
1da177e4
LT
1009 }
1010
1011 err = 0;
1012out:
1013 /* All paths lead to here, thus we are safe. -DaveM */
1014 write_unlock_irq(&tasklist_lock);
1015 return err;
1016}
1017
dbf040d9 1018SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1019{
12a3de0a
ON
1020 struct task_struct *p;
1021 struct pid *grp;
1022 int retval;
1023
1024 rcu_read_lock();
756184b7 1025 if (!pid)
12a3de0a 1026 grp = task_pgrp(current);
756184b7 1027 else {
1da177e4 1028 retval = -ESRCH;
12a3de0a
ON
1029 p = find_task_by_vpid(pid);
1030 if (!p)
1031 goto out;
1032 grp = task_pgrp(p);
1033 if (!grp)
1034 goto out;
1035
1036 retval = security_task_getpgid(p);
1037 if (retval)
1038 goto out;
1da177e4 1039 }
12a3de0a
ON
1040 retval = pid_vnr(grp);
1041out:
1042 rcu_read_unlock();
1043 return retval;
1da177e4
LT
1044}
1045
1046#ifdef __ARCH_WANT_SYS_GETPGRP
1047
dbf040d9 1048SYSCALL_DEFINE0(getpgrp)
1da177e4 1049{
12a3de0a 1050 return sys_getpgid(0);
1da177e4
LT
1051}
1052
1053#endif
1054
dbf040d9 1055SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1056{
1dd768c0
ON
1057 struct task_struct *p;
1058 struct pid *sid;
1059 int retval;
1060
1061 rcu_read_lock();
756184b7 1062 if (!pid)
1dd768c0 1063 sid = task_session(current);
756184b7 1064 else {
1da177e4 1065 retval = -ESRCH;
1dd768c0
ON
1066 p = find_task_by_vpid(pid);
1067 if (!p)
1068 goto out;
1069 sid = task_session(p);
1070 if (!sid)
1071 goto out;
1072
1073 retval = security_task_getsid(p);
1074 if (retval)
1075 goto out;
1da177e4 1076 }
1dd768c0
ON
1077 retval = pid_vnr(sid);
1078out:
1079 rcu_read_unlock();
1080 return retval;
1da177e4
LT
1081}
1082
b290ebe2 1083SYSCALL_DEFINE0(setsid)
1da177e4 1084{
e19f247a 1085 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1086 struct pid *sid = task_pid(group_leader);
1087 pid_t session = pid_vnr(sid);
1da177e4
LT
1088 int err = -EPERM;
1089
1da177e4 1090 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1091 /* Fail if I am already a session leader */
1092 if (group_leader->signal->leader)
1093 goto out;
1094
430c6231
ON
1095 /* Fail if a process group id already exists that equals the
1096 * proposed session id.
390e2ff0 1097 */
6806aac6 1098 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1099 goto out;
1100
e19f247a 1101 group_leader->signal->leader = 1;
8520d7c7 1102 __set_special_pids(sid);
24ec839c 1103
9c9f4ded 1104 proc_clear_tty(group_leader);
24ec839c 1105
e4cc0a9c 1106 err = session;
1da177e4
LT
1107out:
1108 write_unlock_irq(&tasklist_lock);
1da177e4
LT
1109 return err;
1110}
1111
1112/*
1113 * Supplementary group IDs
1114 */
1115
1116/* init to 2 - one for init_task, one to ensure it is never freed */
1117struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1118
1119struct group_info *groups_alloc(int gidsetsize)
1120{
1121 struct group_info *group_info;
1122 int nblocks;
1123 int i;
1124
1125 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1126 /* Make sure we always allocate at least one indirect block pointer */
1127 nblocks = nblocks ? : 1;
1128 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1129 if (!group_info)
1130 return NULL;
1131 group_info->ngroups = gidsetsize;
1132 group_info->nblocks = nblocks;
1133 atomic_set(&group_info->usage, 1);
1134
756184b7 1135 if (gidsetsize <= NGROUPS_SMALL)
1da177e4 1136 group_info->blocks[0] = group_info->small_block;
756184b7 1137 else {
1da177e4
LT
1138 for (i = 0; i < nblocks; i++) {
1139 gid_t *b;
1140 b = (void *)__get_free_page(GFP_USER);
1141 if (!b)
1142 goto out_undo_partial_alloc;
1143 group_info->blocks[i] = b;
1144 }
1145 }
1146 return group_info;
1147
1148out_undo_partial_alloc:
1149 while (--i >= 0) {
1150 free_page((unsigned long)group_info->blocks[i]);
1151 }
1152 kfree(group_info);
1153 return NULL;
1154}
1155
1156EXPORT_SYMBOL(groups_alloc);
1157
1158void groups_free(struct group_info *group_info)
1159{
1160 if (group_info->blocks[0] != group_info->small_block) {
1161 int i;
1162 for (i = 0; i < group_info->nblocks; i++)
1163 free_page((unsigned long)group_info->blocks[i]);
1164 }
1165 kfree(group_info);
1166}
1167
1168EXPORT_SYMBOL(groups_free);
1169
1170/* export the group_info to a user-space array */
1171static int groups_to_user(gid_t __user *grouplist,
d84f4f99 1172 const struct group_info *group_info)
1da177e4
LT
1173{
1174 int i;
1bf47346 1175 unsigned int count = group_info->ngroups;
1da177e4
LT
1176
1177 for (i = 0; i < group_info->nblocks; i++) {
1bf47346
ED
1178 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1179 unsigned int len = cp_count * sizeof(*grouplist);
1da177e4 1180
1bf47346 1181 if (copy_to_user(grouplist, group_info->blocks[i], len))
1da177e4
LT
1182 return -EFAULT;
1183
1bf47346 1184 grouplist += NGROUPS_PER_BLOCK;
1da177e4
LT
1185 count -= cp_count;
1186 }
1187 return 0;
1188}
1189
1190/* fill a group_info from a user-space array - it must be allocated already */
1191static int groups_from_user(struct group_info *group_info,
1192 gid_t __user *grouplist)
756184b7 1193{
1da177e4 1194 int i;
1bf47346 1195 unsigned int count = group_info->ngroups;
1da177e4
LT
1196
1197 for (i = 0; i < group_info->nblocks; i++) {
1bf47346
ED
1198 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1199 unsigned int len = cp_count * sizeof(*grouplist);
1da177e4 1200
1bf47346 1201 if (copy_from_user(group_info->blocks[i], grouplist, len))
1da177e4
LT
1202 return -EFAULT;
1203
1bf47346 1204 grouplist += NGROUPS_PER_BLOCK;
1da177e4
LT
1205 count -= cp_count;
1206 }
1207 return 0;
1208}
1209
ebe8b541 1210/* a simple Shell sort */
1da177e4
LT
1211static void groups_sort(struct group_info *group_info)
1212{
1213 int base, max, stride;
1214 int gidsetsize = group_info->ngroups;
1215
1216 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1217 ; /* nothing */
1218 stride /= 3;
1219
1220 while (stride) {
1221 max = gidsetsize - stride;
1222 for (base = 0; base < max; base++) {
1223 int left = base;
1224 int right = left + stride;
1225 gid_t tmp = GROUP_AT(group_info, right);
1226
1227 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1228 GROUP_AT(group_info, right) =
1229 GROUP_AT(group_info, left);
1230 right = left;
1231 left -= stride;
1232 }
1233 GROUP_AT(group_info, right) = tmp;
1234 }
1235 stride /= 3;
1236 }
1237}
1238
1239/* a simple bsearch */
86a264ab 1240int groups_search(const struct group_info *group_info, gid_t grp)
1da177e4 1241{
d74beb9f 1242 unsigned int left, right;
1da177e4
LT
1243
1244 if (!group_info)
1245 return 0;
1246
1247 left = 0;
1248 right = group_info->ngroups;
1249 while (left < right) {
d74beb9f 1250 unsigned int mid = (left+right)/2;
1da177e4
LT
1251 int cmp = grp - GROUP_AT(group_info, mid);
1252 if (cmp > 0)
1253 left = mid + 1;
1254 else if (cmp < 0)
1255 right = mid;
1256 else
1257 return 1;
1258 }
1259 return 0;
1260}
1261
b6dff3ec 1262/**
d84f4f99
DH
1263 * set_groups - Change a group subscription in a set of credentials
1264 * @new: The newly prepared set of credentials to alter
1265 * @group_info: The group list to install
b6dff3ec 1266 *
d84f4f99
DH
1267 * Validate a group subscription and, if valid, insert it into a set
1268 * of credentials.
b6dff3ec 1269 */
d84f4f99 1270int set_groups(struct cred *new, struct group_info *group_info)
1da177e4
LT
1271{
1272 int retval;
1da177e4
LT
1273
1274 retval = security_task_setgroups(group_info);
1275 if (retval)
1276 return retval;
1277
d84f4f99 1278 put_group_info(new->group_info);
1da177e4
LT
1279 groups_sort(group_info);
1280 get_group_info(group_info);
d84f4f99 1281 new->group_info = group_info;
1da177e4
LT
1282 return 0;
1283}
1284
b6dff3ec
DH
1285EXPORT_SYMBOL(set_groups);
1286
1287/**
1288 * set_current_groups - Change current's group subscription
1289 * @group_info: The group list to impose
1290 *
1291 * Validate a group subscription and, if valid, impose it upon current's task
1292 * security record.
1293 */
1294int set_current_groups(struct group_info *group_info)
1295{
d84f4f99
DH
1296 struct cred *new;
1297 int ret;
1298
1299 new = prepare_creds();
1300 if (!new)
1301 return -ENOMEM;
1302
1303 ret = set_groups(new, group_info);
1304 if (ret < 0) {
1305 abort_creds(new);
1306 return ret;
1307 }
1308
1309 return commit_creds(new);
b6dff3ec
DH
1310}
1311
1da177e4
LT
1312EXPORT_SYMBOL(set_current_groups);
1313
ae1251ab 1314SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1da177e4 1315{
86a264ab
DH
1316 const struct cred *cred = current_cred();
1317 int i;
1da177e4
LT
1318
1319 if (gidsetsize < 0)
1320 return -EINVAL;
1321
1322 /* no need to grab task_lock here; it cannot change */
b6dff3ec 1323 i = cred->group_info->ngroups;
1da177e4
LT
1324 if (gidsetsize) {
1325 if (i > gidsetsize) {
1326 i = -EINVAL;
1327 goto out;
1328 }
b6dff3ec 1329 if (groups_to_user(grouplist, cred->group_info)) {
1da177e4
LT
1330 i = -EFAULT;
1331 goto out;
1332 }
1333 }
1334out:
1da177e4
LT
1335 return i;
1336}
1337
1338/*
1339 * SMP: Our groups are copy-on-write. We can set them safely
1340 * without another task interfering.
1341 */
1342
b290ebe2 1343SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1da177e4
LT
1344{
1345 struct group_info *group_info;
1346 int retval;
1347
1348 if (!capable(CAP_SETGID))
1349 return -EPERM;
1350 if ((unsigned)gidsetsize > NGROUPS_MAX)
1351 return -EINVAL;
1352
1353 group_info = groups_alloc(gidsetsize);
1354 if (!group_info)
1355 return -ENOMEM;
1356 retval = groups_from_user(group_info, grouplist);
1357 if (retval) {
1358 put_group_info(group_info);
1359 return retval;
1360 }
1361
1362 retval = set_current_groups(group_info);
1363 put_group_info(group_info);
1364
1365 return retval;
1366}
1367
1368/*
1369 * Check whether we're fsgid/egid or in the supplemental group..
1370 */
1371int in_group_p(gid_t grp)
1372{
86a264ab 1373 const struct cred *cred = current_cred();
1da177e4 1374 int retval = 1;
86a264ab 1375
b6dff3ec
DH
1376 if (grp != cred->fsgid)
1377 retval = groups_search(cred->group_info, grp);
1da177e4
LT
1378 return retval;
1379}
1380
1381EXPORT_SYMBOL(in_group_p);
1382
1383int in_egroup_p(gid_t grp)
1384{
86a264ab 1385 const struct cred *cred = current_cred();
1da177e4 1386 int retval = 1;
86a264ab 1387
b6dff3ec
DH
1388 if (grp != cred->egid)
1389 retval = groups_search(cred->group_info, grp);
1da177e4
LT
1390 return retval;
1391}
1392
1393EXPORT_SYMBOL(in_egroup_p);
1394
1395DECLARE_RWSEM(uts_sem);
1396
1da177e4
LT
1397asmlinkage long sys_newuname(struct new_utsname __user * name)
1398{
1399 int errno = 0;
1400
1401 down_read(&uts_sem);
e9ff3990 1402 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1403 errno = -EFAULT;
1404 up_read(&uts_sem);
1405 return errno;
1406}
1407
1408asmlinkage long sys_sethostname(char __user *name, int len)
1409{
1410 int errno;
1411 char tmp[__NEW_UTS_LEN];
1412
1413 if (!capable(CAP_SYS_ADMIN))
1414 return -EPERM;
1415 if (len < 0 || len > __NEW_UTS_LEN)
1416 return -EINVAL;
1417 down_write(&uts_sem);
1418 errno = -EFAULT;
1419 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1420 struct new_utsname *u = utsname();
1421
1422 memcpy(u->nodename, tmp, len);
1423 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1424 errno = 0;
1425 }
1426 up_write(&uts_sem);
1427 return errno;
1428}
1429
1430#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1431
1432asmlinkage long sys_gethostname(char __user *name, int len)
1433{
1434 int i, errno;
9679e4dd 1435 struct new_utsname *u;
1da177e4
LT
1436
1437 if (len < 0)
1438 return -EINVAL;
1439 down_read(&uts_sem);
9679e4dd
AM
1440 u = utsname();
1441 i = 1 + strlen(u->nodename);
1da177e4
LT
1442 if (i > len)
1443 i = len;
1444 errno = 0;
9679e4dd 1445 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1446 errno = -EFAULT;
1447 up_read(&uts_sem);
1448 return errno;
1449}
1450
1451#endif
1452
1453/*
1454 * Only setdomainname; getdomainname can be implemented by calling
1455 * uname()
1456 */
1457asmlinkage long sys_setdomainname(char __user *name, int len)
1458{
1459 int errno;
1460 char tmp[__NEW_UTS_LEN];
1461
1462 if (!capable(CAP_SYS_ADMIN))
1463 return -EPERM;
1464 if (len < 0 || len > __NEW_UTS_LEN)
1465 return -EINVAL;
1466
1467 down_write(&uts_sem);
1468 errno = -EFAULT;
1469 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1470 struct new_utsname *u = utsname();
1471
1472 memcpy(u->domainname, tmp, len);
1473 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1474 errno = 0;
1475 }
1476 up_write(&uts_sem);
1477 return errno;
1478}
1479
1480asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1481{
1482 if (resource >= RLIM_NLIMITS)
1483 return -EINVAL;
1484 else {
1485 struct rlimit value;
1486 task_lock(current->group_leader);
1487 value = current->signal->rlim[resource];
1488 task_unlock(current->group_leader);
1489 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1490 }
1491}
1492
1493#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1494
1495/*
1496 * Back compatibility for getrlimit. Needed for some apps.
1497 */
1498
1499asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1500{
1501 struct rlimit x;
1502 if (resource >= RLIM_NLIMITS)
1503 return -EINVAL;
1504
1505 task_lock(current->group_leader);
1506 x = current->signal->rlim[resource];
1507 task_unlock(current->group_leader);
756184b7 1508 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1509 x.rlim_cur = 0x7FFFFFFF;
756184b7 1510 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1511 x.rlim_max = 0x7FFFFFFF;
1512 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1513}
1514
1515#endif
1516
1517asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1518{
1519 struct rlimit new_rlim, *old_rlim;
1520 int retval;
1521
1522 if (resource >= RLIM_NLIMITS)
1523 return -EINVAL;
ec9e16ba 1524 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1da177e4 1525 return -EFAULT;
1da177e4
LT
1526 old_rlim = current->signal->rlim + resource;
1527 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1528 !capable(CAP_SYS_RESOURCE))
1529 return -EPERM;
0c2d64fb
AT
1530
1531 if (resource == RLIMIT_NOFILE) {
1532 if (new_rlim.rlim_max == RLIM_INFINITY)
1533 new_rlim.rlim_max = sysctl_nr_open;
1534 if (new_rlim.rlim_cur == RLIM_INFINITY)
1535 new_rlim.rlim_cur = sysctl_nr_open;
1536 if (new_rlim.rlim_max > sysctl_nr_open)
1537 return -EPERM;
1538 }
1539
1540 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1541 return -EINVAL;
1da177e4
LT
1542
1543 retval = security_task_setrlimit(resource, &new_rlim);
1544 if (retval)
1545 return retval;
1546
9926e4c7
TA
1547 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1548 /*
1549 * The caller is asking for an immediate RLIMIT_CPU
1550 * expiry. But we use the zero value to mean "it was
1551 * never set". So let's cheat and make it one second
1552 * instead
1553 */
1554 new_rlim.rlim_cur = 1;
1555 }
1556
1da177e4
LT
1557 task_lock(current->group_leader);
1558 *old_rlim = new_rlim;
1559 task_unlock(current->group_leader);
1560
ec9e16ba
AM
1561 if (resource != RLIMIT_CPU)
1562 goto out;
d3561f78
AM
1563
1564 /*
1565 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1566 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1567 * very long-standing error, and fixing it now risks breakage of
1568 * applications, so we live with it
1569 */
ec9e16ba
AM
1570 if (new_rlim.rlim_cur == RLIM_INFINITY)
1571 goto out;
1572
f06febc9 1573 update_rlimit_cpu(new_rlim.rlim_cur);
ec9e16ba 1574out:
1da177e4
LT
1575 return 0;
1576}
1577
1578/*
1579 * It would make sense to put struct rusage in the task_struct,
1580 * except that would make the task_struct be *really big*. After
1581 * task_struct gets moved into malloc'ed memory, it would
1582 * make sense to do this. It will make moving the rest of the information
1583 * a lot simpler! (Which we're not doing right now because we're not
1584 * measuring them yet).
1585 *
1da177e4
LT
1586 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1587 * races with threads incrementing their own counters. But since word
1588 * reads are atomic, we either get new values or old values and we don't
1589 * care which for the sums. We always take the siglock to protect reading
1590 * the c* fields from p->signal from races with exit.c updating those
1591 * fields when reaping, so a sample either gets all the additions of a
1592 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1593 *
de047c1b
RT
1594 * Locking:
1595 * We need to take the siglock for CHILDEREN, SELF and BOTH
1596 * for the cases current multithreaded, non-current single threaded
1597 * non-current multithreaded. Thread traversal is now safe with
1598 * the siglock held.
1599 * Strictly speaking, we donot need to take the siglock if we are current and
1600 * single threaded, as no one else can take our signal_struct away, no one
1601 * else can reap the children to update signal->c* counters, and no one else
1602 * can race with the signal-> fields. If we do not take any lock, the
1603 * signal-> fields could be read out of order while another thread was just
1604 * exiting. So we should place a read memory barrier when we avoid the lock.
1605 * On the writer side, write memory barrier is implied in __exit_signal
1606 * as __exit_signal releases the siglock spinlock after updating the signal->
1607 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1608 *
1da177e4
LT
1609 */
1610
f06febc9 1611static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1612{
679c9cd4
SK
1613 r->ru_nvcsw += t->nvcsw;
1614 r->ru_nivcsw += t->nivcsw;
1615 r->ru_minflt += t->min_flt;
1616 r->ru_majflt += t->maj_flt;
1617 r->ru_inblock += task_io_get_inblock(t);
1618 r->ru_oublock += task_io_get_oublock(t);
1619}
1620
1da177e4
LT
1621static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1622{
1623 struct task_struct *t;
1624 unsigned long flags;
1625 cputime_t utime, stime;
f06febc9 1626 struct task_cputime cputime;
1da177e4
LT
1627
1628 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1629 utime = stime = cputime_zero;
1da177e4 1630
679c9cd4 1631 if (who == RUSAGE_THREAD) {
8916edef
KM
1632 utime = task_utime(current);
1633 stime = task_stime(current);
f06febc9 1634 accumulate_thread_rusage(p, r);
679c9cd4
SK
1635 goto out;
1636 }
1637
d6cf723a 1638 if (!lock_task_sighand(p, &flags))
de047c1b 1639 return;
0f59cc4a 1640
1da177e4 1641 switch (who) {
0f59cc4a 1642 case RUSAGE_BOTH:
1da177e4 1643 case RUSAGE_CHILDREN:
1da177e4
LT
1644 utime = p->signal->cutime;
1645 stime = p->signal->cstime;
1646 r->ru_nvcsw = p->signal->cnvcsw;
1647 r->ru_nivcsw = p->signal->cnivcsw;
1648 r->ru_minflt = p->signal->cmin_flt;
1649 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1650 r->ru_inblock = p->signal->cinblock;
1651 r->ru_oublock = p->signal->coublock;
0f59cc4a
ON
1652
1653 if (who == RUSAGE_CHILDREN)
1654 break;
1655
1da177e4 1656 case RUSAGE_SELF:
f06febc9
FM
1657 thread_group_cputime(p, &cputime);
1658 utime = cputime_add(utime, cputime.utime);
1659 stime = cputime_add(stime, cputime.stime);
1da177e4
LT
1660 r->ru_nvcsw += p->signal->nvcsw;
1661 r->ru_nivcsw += p->signal->nivcsw;
1662 r->ru_minflt += p->signal->min_flt;
1663 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1664 r->ru_inblock += p->signal->inblock;
1665 r->ru_oublock += p->signal->oublock;
1da177e4
LT
1666 t = p;
1667 do {
f06febc9 1668 accumulate_thread_rusage(t, r);
1da177e4
LT
1669 t = next_thread(t);
1670 } while (t != p);
1da177e4 1671 break;
0f59cc4a 1672
1da177e4
LT
1673 default:
1674 BUG();
1675 }
de047c1b 1676 unlock_task_sighand(p, &flags);
de047c1b 1677
679c9cd4 1678out:
0f59cc4a
ON
1679 cputime_to_timeval(utime, &r->ru_utime);
1680 cputime_to_timeval(stime, &r->ru_stime);
1da177e4
LT
1681}
1682
1683int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1684{
1685 struct rusage r;
1da177e4 1686 k_getrusage(p, who, &r);
1da177e4
LT
1687 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1688}
1689
1690asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1691{
679c9cd4
SK
1692 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1693 who != RUSAGE_THREAD)
1da177e4
LT
1694 return -EINVAL;
1695 return getrusage(current, who, ru);
1696}
1697
1698asmlinkage long sys_umask(int mask)
1699{
1700 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1701 return mask;
1702}
3b7391de 1703
1da177e4
LT
1704asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1705 unsigned long arg4, unsigned long arg5)
1706{
b6dff3ec
DH
1707 struct task_struct *me = current;
1708 unsigned char comm[sizeof(me->comm)];
1709 long error;
1da177e4 1710
d84f4f99
DH
1711 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1712 if (error != -ENOSYS)
1da177e4
LT
1713 return error;
1714
d84f4f99 1715 error = 0;
1da177e4
LT
1716 switch (option) {
1717 case PR_SET_PDEATHSIG:
0730ded5 1718 if (!valid_signal(arg2)) {
1da177e4
LT
1719 error = -EINVAL;
1720 break;
1721 }
b6dff3ec
DH
1722 me->pdeath_signal = arg2;
1723 error = 0;
1da177e4
LT
1724 break;
1725 case PR_GET_PDEATHSIG:
b6dff3ec 1726 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1727 break;
1728 case PR_GET_DUMPABLE:
b6dff3ec 1729 error = get_dumpable(me->mm);
1da177e4
LT
1730 break;
1731 case PR_SET_DUMPABLE:
abf75a50 1732 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1733 error = -EINVAL;
1734 break;
1735 }
b6dff3ec
DH
1736 set_dumpable(me->mm, arg2);
1737 error = 0;
1da177e4
LT
1738 break;
1739
1740 case PR_SET_UNALIGN:
b6dff3ec 1741 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1742 break;
1743 case PR_GET_UNALIGN:
b6dff3ec 1744 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1745 break;
1746 case PR_SET_FPEMU:
b6dff3ec 1747 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1748 break;
1749 case PR_GET_FPEMU:
b6dff3ec 1750 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1751 break;
1752 case PR_SET_FPEXC:
b6dff3ec 1753 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1754 break;
1755 case PR_GET_FPEXC:
b6dff3ec 1756 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1757 break;
1758 case PR_GET_TIMING:
1759 error = PR_TIMING_STATISTICAL;
1760 break;
1761 case PR_SET_TIMING:
7b26655f 1762 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1763 error = -EINVAL;
b6dff3ec
DH
1764 else
1765 error = 0;
1da177e4
LT
1766 break;
1767
b6dff3ec
DH
1768 case PR_SET_NAME:
1769 comm[sizeof(me->comm)-1] = 0;
1770 if (strncpy_from_user(comm, (char __user *)arg2,
1771 sizeof(me->comm) - 1) < 0)
1da177e4 1772 return -EFAULT;
b6dff3ec 1773 set_task_comm(me, comm);
1da177e4 1774 return 0;
b6dff3ec
DH
1775 case PR_GET_NAME:
1776 get_task_comm(comm, me);
1777 if (copy_to_user((char __user *)arg2, comm,
1778 sizeof(comm)))
1da177e4
LT
1779 return -EFAULT;
1780 return 0;
651d765d 1781 case PR_GET_ENDIAN:
b6dff3ec 1782 error = GET_ENDIAN(me, arg2);
651d765d
AB
1783 break;
1784 case PR_SET_ENDIAN:
b6dff3ec 1785 error = SET_ENDIAN(me, arg2);
651d765d
AB
1786 break;
1787
1d9d02fe
AA
1788 case PR_GET_SECCOMP:
1789 error = prctl_get_seccomp();
1790 break;
1791 case PR_SET_SECCOMP:
1792 error = prctl_set_seccomp(arg2);
1793 break;
8fb402bc
EB
1794 case PR_GET_TSC:
1795 error = GET_TSC_CTL(arg2);
1796 break;
1797 case PR_SET_TSC:
1798 error = SET_TSC_CTL(arg2);
1799 break;
6976675d
AV
1800 case PR_GET_TIMERSLACK:
1801 error = current->timer_slack_ns;
1802 break;
1803 case PR_SET_TIMERSLACK:
1804 if (arg2 <= 0)
1805 current->timer_slack_ns =
1806 current->default_timer_slack_ns;
1807 else
1808 current->timer_slack_ns = arg2;
b6dff3ec 1809 error = 0;
6976675d 1810 break;
1da177e4
LT
1811 default:
1812 error = -EINVAL;
1813 break;
1814 }
1815 return error;
1816}
3cfc348b
AK
1817
1818asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
4307d1e5 1819 struct getcpu_cache __user *unused)
3cfc348b
AK
1820{
1821 int err = 0;
1822 int cpu = raw_smp_processor_id();
1823 if (cpup)
1824 err |= put_user(cpu, cpup);
1825 if (nodep)
1826 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1827 return err ? -EFAULT : 0;
1828}
10a0a8d4
JF
1829
1830char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1831
1832static void argv_cleanup(char **argv, char **envp)
1833{
1834 argv_free(argv);
1835}
1836
1837/**
1838 * orderly_poweroff - Trigger an orderly system poweroff
1839 * @force: force poweroff if command execution fails
1840 *
1841 * This may be called from any context to trigger a system shutdown.
1842 * If the orderly shutdown fails, it will force an immediate shutdown.
1843 */
1844int orderly_poweroff(bool force)
1845{
1846 int argc;
1847 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1848 static char *envp[] = {
1849 "HOME=/",
1850 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1851 NULL
1852 };
1853 int ret = -ENOMEM;
1854 struct subprocess_info *info;
1855
1856 if (argv == NULL) {
1857 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1858 __func__, poweroff_cmd);
1859 goto out;
1860 }
1861
ac331d15 1862 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1863 if (info == NULL) {
1864 argv_free(argv);
1865 goto out;
1866 }
1867
1868 call_usermodehelper_setcleanup(info, argv_cleanup);
1869
86313c48 1870 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1871
1872 out:
1873 if (ret && force) {
1874 printk(KERN_WARNING "Failed to start orderly shutdown: "
1875 "forcing the issue\n");
1876
1877 /* I guess this should try to kick off some daemon to
1878 sync and poweroff asap. Or not even bother syncing
1879 if we're doing an emergency shutdown? */
1880 emergency_sync();
1881 kernel_power_off();
1882 }
1883
1884 return ret;
1885}
1886EXPORT_SYMBOL_GPL(orderly_poweroff);