utsname: completely overwrite prior information
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/smp_lock.h>
12#include <linux/notifier.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
1da177e4
LT
15#include <linux/highuid.h>
16#include <linux/fs.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
1da177e4
LT
36
37#include <linux/compat.h>
38#include <linux/syscalls.h>
00d7c05a 39#include <linux/kprobes.h>
acce292c 40#include <linux/user_namespace.h>
1da177e4
LT
41
42#include <asm/uaccess.h>
43#include <asm/io.h>
44#include <asm/unistd.h>
45
46#ifndef SET_UNALIGN_CTL
47# define SET_UNALIGN_CTL(a,b) (-EINVAL)
48#endif
49#ifndef GET_UNALIGN_CTL
50# define GET_UNALIGN_CTL(a,b) (-EINVAL)
51#endif
52#ifndef SET_FPEMU_CTL
53# define SET_FPEMU_CTL(a,b) (-EINVAL)
54#endif
55#ifndef GET_FPEMU_CTL
56# define GET_FPEMU_CTL(a,b) (-EINVAL)
57#endif
58#ifndef SET_FPEXC_CTL
59# define SET_FPEXC_CTL(a,b) (-EINVAL)
60#endif
61#ifndef GET_FPEXC_CTL
62# define GET_FPEXC_CTL(a,b) (-EINVAL)
63#endif
651d765d
AB
64#ifndef GET_ENDIAN
65# define GET_ENDIAN(a,b) (-EINVAL)
66#endif
67#ifndef SET_ENDIAN
68# define SET_ENDIAN(a,b) (-EINVAL)
69#endif
8fb402bc
EB
70#ifndef GET_TSC_CTL
71# define GET_TSC_CTL(a) (-EINVAL)
72#endif
73#ifndef SET_TSC_CTL
74# define SET_TSC_CTL(a) (-EINVAL)
75#endif
1da177e4
LT
76
77/*
78 * this is where the system-wide overflow UID and GID are defined, for
79 * architectures that now have 32-bit UID/GID but didn't in the past
80 */
81
82int overflowuid = DEFAULT_OVERFLOWUID;
83int overflowgid = DEFAULT_OVERFLOWGID;
84
85#ifdef CONFIG_UID16
86EXPORT_SYMBOL(overflowuid);
87EXPORT_SYMBOL(overflowgid);
88#endif
89
90/*
91 * the same as above, but for filesystems which can only store a 16-bit
92 * UID and GID. as such, this is needed on all architectures
93 */
94
95int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
96int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
97
98EXPORT_SYMBOL(fs_overflowuid);
99EXPORT_SYMBOL(fs_overflowgid);
100
101/*
102 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
103 */
104
105int C_A_D = 1;
9ec52099
CLG
106struct pid *cad_pid;
107EXPORT_SYMBOL(cad_pid);
1da177e4 108
bd804eba
RW
109/*
110 * If set, this is used for preparing the system to power off.
111 */
112
113void (*pm_power_off_prepare)(void);
bd804eba 114
1da177e4
LT
115static int set_one_prio(struct task_struct *p, int niceval, int error)
116{
117 int no_nice;
118
119 if (p->uid != current->euid &&
120 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
121 error = -EPERM;
122 goto out;
123 }
e43379f1 124 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
125 error = -EACCES;
126 goto out;
127 }
128 no_nice = security_task_setnice(p, niceval);
129 if (no_nice) {
130 error = no_nice;
131 goto out;
132 }
133 if (error == -ESRCH)
134 error = 0;
135 set_user_nice(p, niceval);
136out:
137 return error;
138}
139
140asmlinkage long sys_setpriority(int which, int who, int niceval)
141{
142 struct task_struct *g, *p;
143 struct user_struct *user;
144 int error = -EINVAL;
41487c65 145 struct pid *pgrp;
1da177e4 146
3e88c553 147 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
148 goto out;
149
150 /* normalize: avoid signed division (rounding problems) */
151 error = -ESRCH;
152 if (niceval < -20)
153 niceval = -20;
154 if (niceval > 19)
155 niceval = 19;
156
157 read_lock(&tasklist_lock);
158 switch (which) {
159 case PRIO_PROCESS:
41487c65 160 if (who)
228ebcbe 161 p = find_task_by_vpid(who);
41487c65
EB
162 else
163 p = current;
1da177e4
LT
164 if (p)
165 error = set_one_prio(p, niceval, error);
166 break;
167 case PRIO_PGRP:
41487c65 168 if (who)
b488893a 169 pgrp = find_vpid(who);
41487c65
EB
170 else
171 pgrp = task_pgrp(current);
2d70b68d 172 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 173 error = set_one_prio(p, niceval, error);
2d70b68d 174 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
175 break;
176 case PRIO_USER:
177 user = current->user;
178 if (!who)
179 who = current->uid;
180 else
181 if ((who != current->uid) && !(user = find_user(who)))
182 goto out_unlock; /* No processes for this user */
183
184 do_each_thread(g, p)
185 if (p->uid == who)
186 error = set_one_prio(p, niceval, error);
187 while_each_thread(g, p);
188 if (who != current->uid)
189 free_uid(user); /* For find_user() */
190 break;
191 }
192out_unlock:
193 read_unlock(&tasklist_lock);
194out:
195 return error;
196}
197
198/*
199 * Ugh. To avoid negative return values, "getpriority()" will
200 * not return the normal nice-value, but a negated value that
201 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
202 * to stay compatible.
203 */
204asmlinkage long sys_getpriority(int which, int who)
205{
206 struct task_struct *g, *p;
207 struct user_struct *user;
208 long niceval, retval = -ESRCH;
41487c65 209 struct pid *pgrp;
1da177e4 210
3e88c553 211 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
212 return -EINVAL;
213
214 read_lock(&tasklist_lock);
215 switch (which) {
216 case PRIO_PROCESS:
41487c65 217 if (who)
228ebcbe 218 p = find_task_by_vpid(who);
41487c65
EB
219 else
220 p = current;
1da177e4
LT
221 if (p) {
222 niceval = 20 - task_nice(p);
223 if (niceval > retval)
224 retval = niceval;
225 }
226 break;
227 case PRIO_PGRP:
41487c65 228 if (who)
b488893a 229 pgrp = find_vpid(who);
41487c65
EB
230 else
231 pgrp = task_pgrp(current);
2d70b68d 232 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
233 niceval = 20 - task_nice(p);
234 if (niceval > retval)
235 retval = niceval;
2d70b68d 236 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
237 break;
238 case PRIO_USER:
239 user = current->user;
240 if (!who)
241 who = current->uid;
242 else
243 if ((who != current->uid) && !(user = find_user(who)))
244 goto out_unlock; /* No processes for this user */
245
246 do_each_thread(g, p)
247 if (p->uid == who) {
248 niceval = 20 - task_nice(p);
249 if (niceval > retval)
250 retval = niceval;
251 }
252 while_each_thread(g, p);
253 if (who != current->uid)
254 free_uid(user); /* for find_user() */
255 break;
256 }
257out_unlock:
258 read_unlock(&tasklist_lock);
259
260 return retval;
261}
262
e4c94330
EB
263/**
264 * emergency_restart - reboot the system
265 *
266 * Without shutting down any hardware or taking any locks
267 * reboot the system. This is called when we know we are in
268 * trouble so this is our best effort to reboot. This is
269 * safe to call in interrupt context.
270 */
7c903473
EB
271void emergency_restart(void)
272{
273 machine_emergency_restart();
274}
275EXPORT_SYMBOL_GPL(emergency_restart);
276
ca195b7f 277void kernel_restart_prepare(char *cmd)
4a00ea1e 278{
e041c683 279 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 280 system_state = SYSTEM_RESTART;
4a00ea1e 281 device_shutdown();
58b3b71d 282 sysdev_shutdown();
e4c94330 283}
1e5d5331
RD
284
285/**
286 * kernel_restart - reboot the system
287 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 288 * or %NULL
1e5d5331
RD
289 *
290 * Shutdown everything and perform a clean reboot.
291 * This is not safe to call in interrupt context.
292 */
e4c94330
EB
293void kernel_restart(char *cmd)
294{
295 kernel_restart_prepare(cmd);
756184b7 296 if (!cmd)
4a00ea1e 297 printk(KERN_EMERG "Restarting system.\n");
756184b7 298 else
4a00ea1e 299 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
4a00ea1e
EB
300 machine_restart(cmd);
301}
302EXPORT_SYMBOL_GPL(kernel_restart);
303
4ef7229f 304static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 305{
e041c683 306 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
307 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
308 system_state = state;
309 device_shutdown();
310}
e4c94330
EB
311/**
312 * kernel_halt - halt the system
313 *
314 * Shutdown everything and perform a clean system halt.
315 */
e4c94330
EB
316void kernel_halt(void)
317{
729b4d4c 318 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 319 sysdev_shutdown();
4a00ea1e
EB
320 printk(KERN_EMERG "System halted.\n");
321 machine_halt();
322}
729b4d4c 323
4a00ea1e
EB
324EXPORT_SYMBOL_GPL(kernel_halt);
325
e4c94330
EB
326/**
327 * kernel_power_off - power_off the system
328 *
329 * Shutdown everything and perform a clean system power_off.
330 */
e4c94330
EB
331void kernel_power_off(void)
332{
729b4d4c 333 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
334 if (pm_power_off_prepare)
335 pm_power_off_prepare();
4047727e 336 disable_nonboot_cpus();
58b3b71d 337 sysdev_shutdown();
4a00ea1e
EB
338 printk(KERN_EMERG "Power down.\n");
339 machine_power_off();
340}
341EXPORT_SYMBOL_GPL(kernel_power_off);
1da177e4
LT
342/*
343 * Reboot system call: for obvious reasons only root may call it,
344 * and even root needs to set up some magic numbers in the registers
345 * so that some mistake won't make this reboot the whole machine.
346 * You can also set the meaning of the ctrl-alt-del-key here.
347 *
348 * reboot doesn't sync: do that yourself before calling this.
349 */
350asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
351{
352 char buffer[256];
353
354 /* We only trust the superuser with rebooting the system. */
355 if (!capable(CAP_SYS_BOOT))
356 return -EPERM;
357
358 /* For safety, we require "magic" arguments. */
359 if (magic1 != LINUX_REBOOT_MAGIC1 ||
360 (magic2 != LINUX_REBOOT_MAGIC2 &&
361 magic2 != LINUX_REBOOT_MAGIC2A &&
362 magic2 != LINUX_REBOOT_MAGIC2B &&
363 magic2 != LINUX_REBOOT_MAGIC2C))
364 return -EINVAL;
365
5e38291d
EB
366 /* Instead of trying to make the power_off code look like
367 * halt when pm_power_off is not set do it the easy way.
368 */
369 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
370 cmd = LINUX_REBOOT_CMD_HALT;
371
1da177e4
LT
372 lock_kernel();
373 switch (cmd) {
374 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 375 kernel_restart(NULL);
1da177e4
LT
376 break;
377
378 case LINUX_REBOOT_CMD_CAD_ON:
379 C_A_D = 1;
380 break;
381
382 case LINUX_REBOOT_CMD_CAD_OFF:
383 C_A_D = 0;
384 break;
385
386 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 387 kernel_halt();
1da177e4
LT
388 unlock_kernel();
389 do_exit(0);
390 break;
391
392 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 393 kernel_power_off();
1da177e4
LT
394 unlock_kernel();
395 do_exit(0);
396 break;
397
398 case LINUX_REBOOT_CMD_RESTART2:
399 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
400 unlock_kernel();
401 return -EFAULT;
402 }
403 buffer[sizeof(buffer) - 1] = '\0';
404
4a00ea1e 405 kernel_restart(buffer);
1da177e4
LT
406 break;
407
3ab83521 408#ifdef CONFIG_KEXEC
dc009d92 409 case LINUX_REBOOT_CMD_KEXEC:
3ab83521
HY
410 {
411 int ret;
412 ret = kernel_kexec();
413 unlock_kernel();
414 return ret;
415 }
416#endif
4a00ea1e 417
b0cb1a19 418#ifdef CONFIG_HIBERNATION
1da177e4
LT
419 case LINUX_REBOOT_CMD_SW_SUSPEND:
420 {
a3d25c27 421 int ret = hibernate();
1da177e4
LT
422 unlock_kernel();
423 return ret;
424 }
425#endif
426
427 default:
428 unlock_kernel();
429 return -EINVAL;
430 }
431 unlock_kernel();
432 return 0;
433}
434
65f27f38 435static void deferred_cad(struct work_struct *dummy)
1da177e4 436{
abcd9e51 437 kernel_restart(NULL);
1da177e4
LT
438}
439
440/*
441 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
442 * As it's called within an interrupt, it may NOT sync: the only choice
443 * is whether to reboot at once, or just ignore the ctrl-alt-del.
444 */
445void ctrl_alt_del(void)
446{
65f27f38 447 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
448
449 if (C_A_D)
450 schedule_work(&cad_work);
451 else
9ec52099 452 kill_cad_pid(SIGINT, 1);
1da177e4
LT
453}
454
1da177e4
LT
455/*
456 * Unprivileged users may change the real gid to the effective gid
457 * or vice versa. (BSD-style)
458 *
459 * If you set the real gid at all, or set the effective gid to a value not
460 * equal to the real gid, then the saved gid is set to the new effective gid.
461 *
462 * This makes it possible for a setgid program to completely drop its
463 * privileges, which is often a useful assertion to make when you are doing
464 * a security audit over a program.
465 *
466 * The general idea is that a program which uses just setregid() will be
467 * 100% compatible with BSD. A program which uses just setgid() will be
468 * 100% compatible with POSIX with saved IDs.
469 *
470 * SMP: There are not races, the GIDs are checked only by filesystem
471 * operations (as far as semantic preservation is concerned).
472 */
473asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
474{
475 int old_rgid = current->gid;
476 int old_egid = current->egid;
477 int new_rgid = old_rgid;
478 int new_egid = old_egid;
479 int retval;
480
481 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
482 if (retval)
483 return retval;
484
485 if (rgid != (gid_t) -1) {
486 if ((old_rgid == rgid) ||
487 (current->egid==rgid) ||
488 capable(CAP_SETGID))
489 new_rgid = rgid;
490 else
491 return -EPERM;
492 }
493 if (egid != (gid_t) -1) {
494 if ((old_rgid == egid) ||
495 (current->egid == egid) ||
496 (current->sgid == egid) ||
497 capable(CAP_SETGID))
498 new_egid = egid;
756184b7 499 else
1da177e4 500 return -EPERM;
1da177e4 501 }
756184b7 502 if (new_egid != old_egid) {
6c5d5238 503 set_dumpable(current->mm, suid_dumpable);
d59dd462 504 smp_wmb();
1da177e4
LT
505 }
506 if (rgid != (gid_t) -1 ||
507 (egid != (gid_t) -1 && egid != old_rgid))
508 current->sgid = new_egid;
509 current->fsgid = new_egid;
510 current->egid = new_egid;
511 current->gid = new_rgid;
512 key_fsgid_changed(current);
9f46080c 513 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
514 return 0;
515}
516
517/*
518 * setgid() is implemented like SysV w/ SAVED_IDS
519 *
520 * SMP: Same implicit races as above.
521 */
522asmlinkage long sys_setgid(gid_t gid)
523{
524 int old_egid = current->egid;
525 int retval;
526
527 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
528 if (retval)
529 return retval;
530
756184b7
CP
531 if (capable(CAP_SETGID)) {
532 if (old_egid != gid) {
6c5d5238 533 set_dumpable(current->mm, suid_dumpable);
d59dd462 534 smp_wmb();
1da177e4
LT
535 }
536 current->gid = current->egid = current->sgid = current->fsgid = gid;
756184b7
CP
537 } else if ((gid == current->gid) || (gid == current->sgid)) {
538 if (old_egid != gid) {
6c5d5238 539 set_dumpable(current->mm, suid_dumpable);
d59dd462 540 smp_wmb();
1da177e4
LT
541 }
542 current->egid = current->fsgid = gid;
543 }
544 else
545 return -EPERM;
546
547 key_fsgid_changed(current);
9f46080c 548 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
549 return 0;
550}
551
552static int set_user(uid_t new_ruid, int dumpclear)
553{
554 struct user_struct *new_user;
555
acce292c 556 new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
1da177e4
LT
557 if (!new_user)
558 return -EAGAIN;
559
560 if (atomic_read(&new_user->processes) >=
561 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
acce292c 562 new_user != current->nsproxy->user_ns->root_user) {
1da177e4
LT
563 free_uid(new_user);
564 return -EAGAIN;
565 }
566
567 switch_uid(new_user);
568
756184b7 569 if (dumpclear) {
6c5d5238 570 set_dumpable(current->mm, suid_dumpable);
d59dd462 571 smp_wmb();
1da177e4
LT
572 }
573 current->uid = new_ruid;
574 return 0;
575}
576
577/*
578 * Unprivileged users may change the real uid to the effective uid
579 * or vice versa. (BSD-style)
580 *
581 * If you set the real uid at all, or set the effective uid to a value not
582 * equal to the real uid, then the saved uid is set to the new effective uid.
583 *
584 * This makes it possible for a setuid program to completely drop its
585 * privileges, which is often a useful assertion to make when you are doing
586 * a security audit over a program.
587 *
588 * The general idea is that a program which uses just setreuid() will be
589 * 100% compatible with BSD. A program which uses just setuid() will be
590 * 100% compatible with POSIX with saved IDs.
591 */
592asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
593{
594 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
595 int retval;
596
597 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
598 if (retval)
599 return retval;
600
601 new_ruid = old_ruid = current->uid;
602 new_euid = old_euid = current->euid;
603 old_suid = current->suid;
604
605 if (ruid != (uid_t) -1) {
606 new_ruid = ruid;
607 if ((old_ruid != ruid) &&
608 (current->euid != ruid) &&
609 !capable(CAP_SETUID))
610 return -EPERM;
611 }
612
613 if (euid != (uid_t) -1) {
614 new_euid = euid;
615 if ((old_ruid != euid) &&
616 (current->euid != euid) &&
617 (current->suid != euid) &&
618 !capable(CAP_SETUID))
619 return -EPERM;
620 }
621
622 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
623 return -EAGAIN;
624
756184b7 625 if (new_euid != old_euid) {
6c5d5238 626 set_dumpable(current->mm, suid_dumpable);
d59dd462 627 smp_wmb();
1da177e4
LT
628 }
629 current->fsuid = current->euid = new_euid;
630 if (ruid != (uid_t) -1 ||
631 (euid != (uid_t) -1 && euid != old_ruid))
632 current->suid = current->euid;
633 current->fsuid = current->euid;
634
635 key_fsuid_changed(current);
9f46080c 636 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
637
638 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
639}
640
641
642
643/*
644 * setuid() is implemented like SysV with SAVED_IDS
645 *
646 * Note that SAVED_ID's is deficient in that a setuid root program
647 * like sendmail, for example, cannot set its uid to be a normal
648 * user and then switch back, because if you're root, setuid() sets
649 * the saved uid too. If you don't like this, blame the bright people
650 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
651 * will allow a root program to temporarily drop privileges and be able to
652 * regain them by swapping the real and effective uid.
653 */
654asmlinkage long sys_setuid(uid_t uid)
655{
656 int old_euid = current->euid;
a09c17a6 657 int old_ruid, old_suid, new_suid;
1da177e4
LT
658 int retval;
659
660 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
661 if (retval)
662 return retval;
663
a09c17a6 664 old_ruid = current->uid;
1da177e4
LT
665 old_suid = current->suid;
666 new_suid = old_suid;
667
668 if (capable(CAP_SETUID)) {
669 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
670 return -EAGAIN;
671 new_suid = uid;
672 } else if ((uid != current->uid) && (uid != new_suid))
673 return -EPERM;
674
756184b7 675 if (old_euid != uid) {
6c5d5238 676 set_dumpable(current->mm, suid_dumpable);
d59dd462 677 smp_wmb();
1da177e4
LT
678 }
679 current->fsuid = current->euid = uid;
680 current->suid = new_suid;
681
682 key_fsuid_changed(current);
9f46080c 683 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
684
685 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
686}
687
688
689/*
690 * This function implements a generic ability to update ruid, euid,
691 * and suid. This allows you to implement the 4.4 compatible seteuid().
692 */
693asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
694{
695 int old_ruid = current->uid;
696 int old_euid = current->euid;
697 int old_suid = current->suid;
698 int retval;
699
700 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
701 if (retval)
702 return retval;
703
704 if (!capable(CAP_SETUID)) {
705 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
706 (ruid != current->euid) && (ruid != current->suid))
707 return -EPERM;
708 if ((euid != (uid_t) -1) && (euid != current->uid) &&
709 (euid != current->euid) && (euid != current->suid))
710 return -EPERM;
711 if ((suid != (uid_t) -1) && (suid != current->uid) &&
712 (suid != current->euid) && (suid != current->suid))
713 return -EPERM;
714 }
715 if (ruid != (uid_t) -1) {
716 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
717 return -EAGAIN;
718 }
719 if (euid != (uid_t) -1) {
756184b7 720 if (euid != current->euid) {
6c5d5238 721 set_dumpable(current->mm, suid_dumpable);
d59dd462 722 smp_wmb();
1da177e4
LT
723 }
724 current->euid = euid;
725 }
726 current->fsuid = current->euid;
727 if (suid != (uid_t) -1)
728 current->suid = suid;
729
730 key_fsuid_changed(current);
9f46080c 731 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
732
733 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
734}
735
736asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
737{
738 int retval;
739
740 if (!(retval = put_user(current->uid, ruid)) &&
741 !(retval = put_user(current->euid, euid)))
742 retval = put_user(current->suid, suid);
743
744 return retval;
745}
746
747/*
748 * Same as above, but for rgid, egid, sgid.
749 */
750asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
751{
752 int retval;
753
754 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
755 if (retval)
756 return retval;
757
758 if (!capable(CAP_SETGID)) {
759 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
760 (rgid != current->egid) && (rgid != current->sgid))
761 return -EPERM;
762 if ((egid != (gid_t) -1) && (egid != current->gid) &&
763 (egid != current->egid) && (egid != current->sgid))
764 return -EPERM;
765 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
766 (sgid != current->egid) && (sgid != current->sgid))
767 return -EPERM;
768 }
769 if (egid != (gid_t) -1) {
756184b7 770 if (egid != current->egid) {
6c5d5238 771 set_dumpable(current->mm, suid_dumpable);
d59dd462 772 smp_wmb();
1da177e4
LT
773 }
774 current->egid = egid;
775 }
776 current->fsgid = current->egid;
777 if (rgid != (gid_t) -1)
778 current->gid = rgid;
779 if (sgid != (gid_t) -1)
780 current->sgid = sgid;
781
782 key_fsgid_changed(current);
9f46080c 783 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
784 return 0;
785}
786
787asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
788{
789 int retval;
790
791 if (!(retval = put_user(current->gid, rgid)) &&
792 !(retval = put_user(current->egid, egid)))
793 retval = put_user(current->sgid, sgid);
794
795 return retval;
796}
797
798
799/*
800 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
801 * is used for "access()" and for the NFS daemon (letting nfsd stay at
802 * whatever uid it wants to). It normally shadows "euid", except when
803 * explicitly set by setfsuid() or for access..
804 */
805asmlinkage long sys_setfsuid(uid_t uid)
806{
807 int old_fsuid;
808
809 old_fsuid = current->fsuid;
810 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
811 return old_fsuid;
812
813 if (uid == current->uid || uid == current->euid ||
814 uid == current->suid || uid == current->fsuid ||
756184b7
CP
815 capable(CAP_SETUID)) {
816 if (uid != old_fsuid) {
6c5d5238 817 set_dumpable(current->mm, suid_dumpable);
d59dd462 818 smp_wmb();
1da177e4
LT
819 }
820 current->fsuid = uid;
821 }
822
823 key_fsuid_changed(current);
9f46080c 824 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
825
826 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
827
828 return old_fsuid;
829}
830
831/*
f42df9e6 832 * Samma på svenska..
1da177e4
LT
833 */
834asmlinkage long sys_setfsgid(gid_t gid)
835{
836 int old_fsgid;
837
838 old_fsgid = current->fsgid;
839 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
840 return old_fsgid;
841
842 if (gid == current->gid || gid == current->egid ||
843 gid == current->sgid || gid == current->fsgid ||
756184b7
CP
844 capable(CAP_SETGID)) {
845 if (gid != old_fsgid) {
6c5d5238 846 set_dumpable(current->mm, suid_dumpable);
d59dd462 847 smp_wmb();
1da177e4
LT
848 }
849 current->fsgid = gid;
850 key_fsgid_changed(current);
9f46080c 851 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
852 }
853 return old_fsgid;
854}
855
856asmlinkage long sys_times(struct tms __user * tbuf)
857{
858 /*
859 * In the SMP world we might just be unlucky and have one of
860 * the times increment as we use it. Since the value is an
861 * atomically safe type this is just fine. Conceptually its
862 * as if the syscall took an instant longer to occur.
863 */
864 if (tbuf) {
865 struct tms tmp;
35f5cad8
ON
866 struct task_struct *tsk = current;
867 struct task_struct *t;
1da177e4
LT
868 cputime_t utime, stime, cutime, cstime;
869
7d7185c8 870 spin_lock_irq(&tsk->sighand->siglock);
35f5cad8
ON
871 utime = tsk->signal->utime;
872 stime = tsk->signal->stime;
873 t = tsk;
874 do {
875 utime = cputime_add(utime, t->utime);
876 stime = cputime_add(stime, t->stime);
877 t = next_thread(t);
878 } while (t != tsk);
879
35f5cad8
ON
880 cutime = tsk->signal->cutime;
881 cstime = tsk->signal->cstime;
882 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
883
884 tmp.tms_utime = cputime_to_clock_t(utime);
885 tmp.tms_stime = cputime_to_clock_t(stime);
886 tmp.tms_cutime = cputime_to_clock_t(cutime);
887 tmp.tms_cstime = cputime_to_clock_t(cstime);
888 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
889 return -EFAULT;
890 }
891 return (long) jiffies_64_to_clock_t(get_jiffies_64());
892}
893
894/*
895 * This needs some heavy checking ...
896 * I just haven't the stomach for it. I also don't fully
897 * understand sessions/pgrp etc. Let somebody who does explain it.
898 *
899 * OK, I think I have the protection semantics right.... this is really
900 * only important on a multi-user system anyway, to make sure one user
901 * can't send a signal to a process owned by another. -TYT, 12/12/91
902 *
903 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
904 * LBT 04.03.94
905 */
1da177e4
LT
906asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
907{
908 struct task_struct *p;
ee0acf90 909 struct task_struct *group_leader = current->group_leader;
4e021306
ON
910 struct pid *pgrp;
911 int err;
1da177e4
LT
912
913 if (!pid)
b488893a 914 pid = task_pid_vnr(group_leader);
1da177e4
LT
915 if (!pgid)
916 pgid = pid;
917 if (pgid < 0)
918 return -EINVAL;
919
920 /* From this point forward we keep holding onto the tasklist lock
921 * so that our parent does not change from under us. -DaveM
922 */
923 write_lock_irq(&tasklist_lock);
924
925 err = -ESRCH;
4e021306 926 p = find_task_by_vpid(pid);
1da177e4
LT
927 if (!p)
928 goto out;
929
930 err = -EINVAL;
931 if (!thread_group_leader(p))
932 goto out;
933
4e021306 934 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 935 err = -EPERM;
41487c65 936 if (task_session(p) != task_session(group_leader))
1da177e4
LT
937 goto out;
938 err = -EACCES;
939 if (p->did_exec)
940 goto out;
941 } else {
942 err = -ESRCH;
ee0acf90 943 if (p != group_leader)
1da177e4
LT
944 goto out;
945 }
946
947 err = -EPERM;
948 if (p->signal->leader)
949 goto out;
950
4e021306 951 pgrp = task_pid(p);
1da177e4 952 if (pgid != pid) {
b488893a 953 struct task_struct *g;
1da177e4 954
4e021306
ON
955 pgrp = find_vpid(pgid);
956 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 957 if (!g || task_session(g) != task_session(group_leader))
f020bc46 958 goto out;
1da177e4
LT
959 }
960
1da177e4
LT
961 err = security_task_setpgid(p, pgid);
962 if (err)
963 goto out;
964
4e021306 965 if (task_pgrp(p) != pgrp) {
83beaf3c 966 change_pid(p, PIDTYPE_PGID, pgrp);
4e021306 967 set_task_pgrp(p, pid_nr(pgrp));
1da177e4
LT
968 }
969
970 err = 0;
971out:
972 /* All paths lead to here, thus we are safe. -DaveM */
973 write_unlock_irq(&tasklist_lock);
974 return err;
975}
976
977asmlinkage long sys_getpgid(pid_t pid)
978{
12a3de0a
ON
979 struct task_struct *p;
980 struct pid *grp;
981 int retval;
982
983 rcu_read_lock();
756184b7 984 if (!pid)
12a3de0a 985 grp = task_pgrp(current);
756184b7 986 else {
1da177e4 987 retval = -ESRCH;
12a3de0a
ON
988 p = find_task_by_vpid(pid);
989 if (!p)
990 goto out;
991 grp = task_pgrp(p);
992 if (!grp)
993 goto out;
994
995 retval = security_task_getpgid(p);
996 if (retval)
997 goto out;
1da177e4 998 }
12a3de0a
ON
999 retval = pid_vnr(grp);
1000out:
1001 rcu_read_unlock();
1002 return retval;
1da177e4
LT
1003}
1004
1005#ifdef __ARCH_WANT_SYS_GETPGRP
1006
1007asmlinkage long sys_getpgrp(void)
1008{
12a3de0a 1009 return sys_getpgid(0);
1da177e4
LT
1010}
1011
1012#endif
1013
1014asmlinkage long sys_getsid(pid_t pid)
1015{
1dd768c0
ON
1016 struct task_struct *p;
1017 struct pid *sid;
1018 int retval;
1019
1020 rcu_read_lock();
756184b7 1021 if (!pid)
1dd768c0 1022 sid = task_session(current);
756184b7 1023 else {
1da177e4 1024 retval = -ESRCH;
1dd768c0
ON
1025 p = find_task_by_vpid(pid);
1026 if (!p)
1027 goto out;
1028 sid = task_session(p);
1029 if (!sid)
1030 goto out;
1031
1032 retval = security_task_getsid(p);
1033 if (retval)
1034 goto out;
1da177e4 1035 }
1dd768c0
ON
1036 retval = pid_vnr(sid);
1037out:
1038 rcu_read_unlock();
1039 return retval;
1da177e4
LT
1040}
1041
1042asmlinkage long sys_setsid(void)
1043{
e19f247a 1044 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1045 struct pid *sid = task_pid(group_leader);
1046 pid_t session = pid_vnr(sid);
1da177e4
LT
1047 int err = -EPERM;
1048
1da177e4 1049 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1050 /* Fail if I am already a session leader */
1051 if (group_leader->signal->leader)
1052 goto out;
1053
430c6231
ON
1054 /* Fail if a process group id already exists that equals the
1055 * proposed session id.
390e2ff0 1056 */
6806aac6 1057 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1058 goto out;
1059
e19f247a 1060 group_leader->signal->leader = 1;
8520d7c7 1061 __set_special_pids(sid);
24ec839c 1062
9c9f4ded 1063 proc_clear_tty(group_leader);
24ec839c 1064
e4cc0a9c 1065 err = session;
1da177e4
LT
1066out:
1067 write_unlock_irq(&tasklist_lock);
1da177e4
LT
1068 return err;
1069}
1070
1071/*
1072 * Supplementary group IDs
1073 */
1074
1075/* init to 2 - one for init_task, one to ensure it is never freed */
1076struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1077
1078struct group_info *groups_alloc(int gidsetsize)
1079{
1080 struct group_info *group_info;
1081 int nblocks;
1082 int i;
1083
1084 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1085 /* Make sure we always allocate at least one indirect block pointer */
1086 nblocks = nblocks ? : 1;
1087 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1088 if (!group_info)
1089 return NULL;
1090 group_info->ngroups = gidsetsize;
1091 group_info->nblocks = nblocks;
1092 atomic_set(&group_info->usage, 1);
1093
756184b7 1094 if (gidsetsize <= NGROUPS_SMALL)
1da177e4 1095 group_info->blocks[0] = group_info->small_block;
756184b7 1096 else {
1da177e4
LT
1097 for (i = 0; i < nblocks; i++) {
1098 gid_t *b;
1099 b = (void *)__get_free_page(GFP_USER);
1100 if (!b)
1101 goto out_undo_partial_alloc;
1102 group_info->blocks[i] = b;
1103 }
1104 }
1105 return group_info;
1106
1107out_undo_partial_alloc:
1108 while (--i >= 0) {
1109 free_page((unsigned long)group_info->blocks[i]);
1110 }
1111 kfree(group_info);
1112 return NULL;
1113}
1114
1115EXPORT_SYMBOL(groups_alloc);
1116
1117void groups_free(struct group_info *group_info)
1118{
1119 if (group_info->blocks[0] != group_info->small_block) {
1120 int i;
1121 for (i = 0; i < group_info->nblocks; i++)
1122 free_page((unsigned long)group_info->blocks[i]);
1123 }
1124 kfree(group_info);
1125}
1126
1127EXPORT_SYMBOL(groups_free);
1128
1129/* export the group_info to a user-space array */
1130static int groups_to_user(gid_t __user *grouplist,
1131 struct group_info *group_info)
1132{
1133 int i;
1bf47346 1134 unsigned int count = group_info->ngroups;
1da177e4
LT
1135
1136 for (i = 0; i < group_info->nblocks; i++) {
1bf47346
ED
1137 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1138 unsigned int len = cp_count * sizeof(*grouplist);
1da177e4 1139
1bf47346 1140 if (copy_to_user(grouplist, group_info->blocks[i], len))
1da177e4
LT
1141 return -EFAULT;
1142
1bf47346 1143 grouplist += NGROUPS_PER_BLOCK;
1da177e4
LT
1144 count -= cp_count;
1145 }
1146 return 0;
1147}
1148
1149/* fill a group_info from a user-space array - it must be allocated already */
1150static int groups_from_user(struct group_info *group_info,
1151 gid_t __user *grouplist)
756184b7 1152{
1da177e4 1153 int i;
1bf47346 1154 unsigned int count = group_info->ngroups;
1da177e4
LT
1155
1156 for (i = 0; i < group_info->nblocks; i++) {
1bf47346
ED
1157 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1158 unsigned int len = cp_count * sizeof(*grouplist);
1da177e4 1159
1bf47346 1160 if (copy_from_user(group_info->blocks[i], grouplist, len))
1da177e4
LT
1161 return -EFAULT;
1162
1bf47346 1163 grouplist += NGROUPS_PER_BLOCK;
1da177e4
LT
1164 count -= cp_count;
1165 }
1166 return 0;
1167}
1168
ebe8b541 1169/* a simple Shell sort */
1da177e4
LT
1170static void groups_sort(struct group_info *group_info)
1171{
1172 int base, max, stride;
1173 int gidsetsize = group_info->ngroups;
1174
1175 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1176 ; /* nothing */
1177 stride /= 3;
1178
1179 while (stride) {
1180 max = gidsetsize - stride;
1181 for (base = 0; base < max; base++) {
1182 int left = base;
1183 int right = left + stride;
1184 gid_t tmp = GROUP_AT(group_info, right);
1185
1186 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1187 GROUP_AT(group_info, right) =
1188 GROUP_AT(group_info, left);
1189 right = left;
1190 left -= stride;
1191 }
1192 GROUP_AT(group_info, right) = tmp;
1193 }
1194 stride /= 3;
1195 }
1196}
1197
1198/* a simple bsearch */
3e30148c 1199int groups_search(struct group_info *group_info, gid_t grp)
1da177e4 1200{
d74beb9f 1201 unsigned int left, right;
1da177e4
LT
1202
1203 if (!group_info)
1204 return 0;
1205
1206 left = 0;
1207 right = group_info->ngroups;
1208 while (left < right) {
d74beb9f 1209 unsigned int mid = (left+right)/2;
1da177e4
LT
1210 int cmp = grp - GROUP_AT(group_info, mid);
1211 if (cmp > 0)
1212 left = mid + 1;
1213 else if (cmp < 0)
1214 right = mid;
1215 else
1216 return 1;
1217 }
1218 return 0;
1219}
1220
1221/* validate and set current->group_info */
1222int set_current_groups(struct group_info *group_info)
1223{
1224 int retval;
1225 struct group_info *old_info;
1226
1227 retval = security_task_setgroups(group_info);
1228 if (retval)
1229 return retval;
1230
1231 groups_sort(group_info);
1232 get_group_info(group_info);
1233
1234 task_lock(current);
1235 old_info = current->group_info;
1236 current->group_info = group_info;
1237 task_unlock(current);
1238
1239 put_group_info(old_info);
1240
1241 return 0;
1242}
1243
1244EXPORT_SYMBOL(set_current_groups);
1245
1246asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1247{
1248 int i = 0;
1249
1250 /*
1251 * SMP: Nobody else can change our grouplist. Thus we are
1252 * safe.
1253 */
1254
1255 if (gidsetsize < 0)
1256 return -EINVAL;
1257
1258 /* no need to grab task_lock here; it cannot change */
1da177e4
LT
1259 i = current->group_info->ngroups;
1260 if (gidsetsize) {
1261 if (i > gidsetsize) {
1262 i = -EINVAL;
1263 goto out;
1264 }
1265 if (groups_to_user(grouplist, current->group_info)) {
1266 i = -EFAULT;
1267 goto out;
1268 }
1269 }
1270out:
1da177e4
LT
1271 return i;
1272}
1273
1274/*
1275 * SMP: Our groups are copy-on-write. We can set them safely
1276 * without another task interfering.
1277 */
1278
1279asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1280{
1281 struct group_info *group_info;
1282 int retval;
1283
1284 if (!capable(CAP_SETGID))
1285 return -EPERM;
1286 if ((unsigned)gidsetsize > NGROUPS_MAX)
1287 return -EINVAL;
1288
1289 group_info = groups_alloc(gidsetsize);
1290 if (!group_info)
1291 return -ENOMEM;
1292 retval = groups_from_user(group_info, grouplist);
1293 if (retval) {
1294 put_group_info(group_info);
1295 return retval;
1296 }
1297
1298 retval = set_current_groups(group_info);
1299 put_group_info(group_info);
1300
1301 return retval;
1302}
1303
1304/*
1305 * Check whether we're fsgid/egid or in the supplemental group..
1306 */
1307int in_group_p(gid_t grp)
1308{
1309 int retval = 1;
756184b7 1310 if (grp != current->fsgid)
1da177e4 1311 retval = groups_search(current->group_info, grp);
1da177e4
LT
1312 return retval;
1313}
1314
1315EXPORT_SYMBOL(in_group_p);
1316
1317int in_egroup_p(gid_t grp)
1318{
1319 int retval = 1;
756184b7 1320 if (grp != current->egid)
1da177e4 1321 retval = groups_search(current->group_info, grp);
1da177e4
LT
1322 return retval;
1323}
1324
1325EXPORT_SYMBOL(in_egroup_p);
1326
1327DECLARE_RWSEM(uts_sem);
1328
1da177e4
LT
1329asmlinkage long sys_newuname(struct new_utsname __user * name)
1330{
1331 int errno = 0;
1332
1333 down_read(&uts_sem);
e9ff3990 1334 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1335 errno = -EFAULT;
1336 up_read(&uts_sem);
1337 return errno;
1338}
1339
1340asmlinkage long sys_sethostname(char __user *name, int len)
1341{
1342 int errno;
1343 char tmp[__NEW_UTS_LEN];
1344
1345 if (!capable(CAP_SYS_ADMIN))
1346 return -EPERM;
1347 if (len < 0 || len > __NEW_UTS_LEN)
1348 return -EINVAL;
1349 down_write(&uts_sem);
1350 errno = -EFAULT;
1351 if (!copy_from_user(tmp, name, len)) {
e9ff3990 1352 memcpy(utsname()->nodename, tmp, len);
87988815
VN
1353 memset(utsname()->nodename + len, 0,
1354 sizeof(utsname()->nodename) - len);
1da177e4
LT
1355 errno = 0;
1356 }
1357 up_write(&uts_sem);
1358 return errno;
1359}
1360
1361#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1362
1363asmlinkage long sys_gethostname(char __user *name, int len)
1364{
1365 int i, errno;
1366
1367 if (len < 0)
1368 return -EINVAL;
1369 down_read(&uts_sem);
e9ff3990 1370 i = 1 + strlen(utsname()->nodename);
1da177e4
LT
1371 if (i > len)
1372 i = len;
1373 errno = 0;
e9ff3990 1374 if (copy_to_user(name, utsname()->nodename, i))
1da177e4
LT
1375 errno = -EFAULT;
1376 up_read(&uts_sem);
1377 return errno;
1378}
1379
1380#endif
1381
1382/*
1383 * Only setdomainname; getdomainname can be implemented by calling
1384 * uname()
1385 */
1386asmlinkage long sys_setdomainname(char __user *name, int len)
1387{
1388 int errno;
1389 char tmp[__NEW_UTS_LEN];
1390
1391 if (!capable(CAP_SYS_ADMIN))
1392 return -EPERM;
1393 if (len < 0 || len > __NEW_UTS_LEN)
1394 return -EINVAL;
1395
1396 down_write(&uts_sem);
1397 errno = -EFAULT;
1398 if (!copy_from_user(tmp, name, len)) {
e9ff3990 1399 memcpy(utsname()->domainname, tmp, len);
87988815
VN
1400 memset(utsname()->domainname + len, 0,
1401 sizeof(utsname()->domainname) - len);
1da177e4
LT
1402 errno = 0;
1403 }
1404 up_write(&uts_sem);
1405 return errno;
1406}
1407
1408asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1409{
1410 if (resource >= RLIM_NLIMITS)
1411 return -EINVAL;
1412 else {
1413 struct rlimit value;
1414 task_lock(current->group_leader);
1415 value = current->signal->rlim[resource];
1416 task_unlock(current->group_leader);
1417 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1418 }
1419}
1420
1421#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1422
1423/*
1424 * Back compatibility for getrlimit. Needed for some apps.
1425 */
1426
1427asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1428{
1429 struct rlimit x;
1430 if (resource >= RLIM_NLIMITS)
1431 return -EINVAL;
1432
1433 task_lock(current->group_leader);
1434 x = current->signal->rlim[resource];
1435 task_unlock(current->group_leader);
756184b7 1436 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1437 x.rlim_cur = 0x7FFFFFFF;
756184b7 1438 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1439 x.rlim_max = 0x7FFFFFFF;
1440 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1441}
1442
1443#endif
1444
1445asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1446{
1447 struct rlimit new_rlim, *old_rlim;
ec9e16ba 1448 unsigned long it_prof_secs;
1da177e4
LT
1449 int retval;
1450
1451 if (resource >= RLIM_NLIMITS)
1452 return -EINVAL;
ec9e16ba 1453 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1da177e4 1454 return -EFAULT;
1da177e4
LT
1455 old_rlim = current->signal->rlim + resource;
1456 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1457 !capable(CAP_SYS_RESOURCE))
1458 return -EPERM;
0c2d64fb
AT
1459
1460 if (resource == RLIMIT_NOFILE) {
1461 if (new_rlim.rlim_max == RLIM_INFINITY)
1462 new_rlim.rlim_max = sysctl_nr_open;
1463 if (new_rlim.rlim_cur == RLIM_INFINITY)
1464 new_rlim.rlim_cur = sysctl_nr_open;
1465 if (new_rlim.rlim_max > sysctl_nr_open)
1466 return -EPERM;
1467 }
1468
1469 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1470 return -EINVAL;
1da177e4
LT
1471
1472 retval = security_task_setrlimit(resource, &new_rlim);
1473 if (retval)
1474 return retval;
1475
9926e4c7
TA
1476 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1477 /*
1478 * The caller is asking for an immediate RLIMIT_CPU
1479 * expiry. But we use the zero value to mean "it was
1480 * never set". So let's cheat and make it one second
1481 * instead
1482 */
1483 new_rlim.rlim_cur = 1;
1484 }
1485
1da177e4
LT
1486 task_lock(current->group_leader);
1487 *old_rlim = new_rlim;
1488 task_unlock(current->group_leader);
1489
ec9e16ba
AM
1490 if (resource != RLIMIT_CPU)
1491 goto out;
d3561f78
AM
1492
1493 /*
1494 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1495 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1496 * very long-standing error, and fixing it now risks breakage of
1497 * applications, so we live with it
1498 */
ec9e16ba
AM
1499 if (new_rlim.rlim_cur == RLIM_INFINITY)
1500 goto out;
1501
1502 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1503 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
e0661111
AM
1504 unsigned long rlim_cur = new_rlim.rlim_cur;
1505 cputime_t cputime;
ec9e16ba 1506
e0661111 1507 cputime = secs_to_cputime(rlim_cur);
1da177e4
LT
1508 read_lock(&tasklist_lock);
1509 spin_lock_irq(&current->sighand->siglock);
ec9e16ba 1510 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1da177e4
LT
1511 spin_unlock_irq(&current->sighand->siglock);
1512 read_unlock(&tasklist_lock);
1513 }
ec9e16ba 1514out:
1da177e4
LT
1515 return 0;
1516}
1517
1518/*
1519 * It would make sense to put struct rusage in the task_struct,
1520 * except that would make the task_struct be *really big*. After
1521 * task_struct gets moved into malloc'ed memory, it would
1522 * make sense to do this. It will make moving the rest of the information
1523 * a lot simpler! (Which we're not doing right now because we're not
1524 * measuring them yet).
1525 *
1da177e4
LT
1526 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1527 * races with threads incrementing their own counters. But since word
1528 * reads are atomic, we either get new values or old values and we don't
1529 * care which for the sums. We always take the siglock to protect reading
1530 * the c* fields from p->signal from races with exit.c updating those
1531 * fields when reaping, so a sample either gets all the additions of a
1532 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1533 *
de047c1b
RT
1534 * Locking:
1535 * We need to take the siglock for CHILDEREN, SELF and BOTH
1536 * for the cases current multithreaded, non-current single threaded
1537 * non-current multithreaded. Thread traversal is now safe with
1538 * the siglock held.
1539 * Strictly speaking, we donot need to take the siglock if we are current and
1540 * single threaded, as no one else can take our signal_struct away, no one
1541 * else can reap the children to update signal->c* counters, and no one else
1542 * can race with the signal-> fields. If we do not take any lock, the
1543 * signal-> fields could be read out of order while another thread was just
1544 * exiting. So we should place a read memory barrier when we avoid the lock.
1545 * On the writer side, write memory barrier is implied in __exit_signal
1546 * as __exit_signal releases the siglock spinlock after updating the signal->
1547 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1548 *
1da177e4
LT
1549 */
1550
679c9cd4
SK
1551static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r,
1552 cputime_t *utimep, cputime_t *stimep)
1553{
1554 *utimep = cputime_add(*utimep, t->utime);
1555 *stimep = cputime_add(*stimep, t->stime);
1556 r->ru_nvcsw += t->nvcsw;
1557 r->ru_nivcsw += t->nivcsw;
1558 r->ru_minflt += t->min_flt;
1559 r->ru_majflt += t->maj_flt;
1560 r->ru_inblock += task_io_get_inblock(t);
1561 r->ru_oublock += task_io_get_oublock(t);
1562}
1563
1da177e4
LT
1564static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1565{
1566 struct task_struct *t;
1567 unsigned long flags;
1568 cputime_t utime, stime;
1569
1570 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1571 utime = stime = cputime_zero;
1da177e4 1572
679c9cd4
SK
1573 if (who == RUSAGE_THREAD) {
1574 accumulate_thread_rusage(p, r, &utime, &stime);
1575 goto out;
1576 }
1577
d6cf723a 1578 if (!lock_task_sighand(p, &flags))
de047c1b 1579 return;
0f59cc4a 1580
1da177e4 1581 switch (who) {
0f59cc4a 1582 case RUSAGE_BOTH:
1da177e4 1583 case RUSAGE_CHILDREN:
1da177e4
LT
1584 utime = p->signal->cutime;
1585 stime = p->signal->cstime;
1586 r->ru_nvcsw = p->signal->cnvcsw;
1587 r->ru_nivcsw = p->signal->cnivcsw;
1588 r->ru_minflt = p->signal->cmin_flt;
1589 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1590 r->ru_inblock = p->signal->cinblock;
1591 r->ru_oublock = p->signal->coublock;
0f59cc4a
ON
1592
1593 if (who == RUSAGE_CHILDREN)
1594 break;
1595
1da177e4 1596 case RUSAGE_SELF:
1da177e4
LT
1597 utime = cputime_add(utime, p->signal->utime);
1598 stime = cputime_add(stime, p->signal->stime);
1599 r->ru_nvcsw += p->signal->nvcsw;
1600 r->ru_nivcsw += p->signal->nivcsw;
1601 r->ru_minflt += p->signal->min_flt;
1602 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1603 r->ru_inblock += p->signal->inblock;
1604 r->ru_oublock += p->signal->oublock;
1da177e4
LT
1605 t = p;
1606 do {
679c9cd4 1607 accumulate_thread_rusage(t, r, &utime, &stime);
1da177e4
LT
1608 t = next_thread(t);
1609 } while (t != p);
1da177e4 1610 break;
0f59cc4a 1611
1da177e4
LT
1612 default:
1613 BUG();
1614 }
de047c1b 1615 unlock_task_sighand(p, &flags);
de047c1b 1616
679c9cd4 1617out:
0f59cc4a
ON
1618 cputime_to_timeval(utime, &r->ru_utime);
1619 cputime_to_timeval(stime, &r->ru_stime);
1da177e4
LT
1620}
1621
1622int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1623{
1624 struct rusage r;
1da177e4 1625 k_getrusage(p, who, &r);
1da177e4
LT
1626 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1627}
1628
1629asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1630{
679c9cd4
SK
1631 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1632 who != RUSAGE_THREAD)
1da177e4
LT
1633 return -EINVAL;
1634 return getrusage(current, who, ru);
1635}
1636
1637asmlinkage long sys_umask(int mask)
1638{
1639 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1640 return mask;
1641}
3b7391de 1642
1da177e4
LT
1643asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1644 unsigned long arg4, unsigned long arg5)
1645{
7b26655f 1646 long error = 0;
1da177e4 1647
3898b1b4 1648 if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error))
1da177e4
LT
1649 return error;
1650
1651 switch (option) {
1652 case PR_SET_PDEATHSIG:
0730ded5 1653 if (!valid_signal(arg2)) {
1da177e4
LT
1654 error = -EINVAL;
1655 break;
1656 }
0730ded5 1657 current->pdeath_signal = arg2;
1da177e4
LT
1658 break;
1659 case PR_GET_PDEATHSIG:
1660 error = put_user(current->pdeath_signal, (int __user *)arg2);
1661 break;
1662 case PR_GET_DUMPABLE:
6c5d5238 1663 error = get_dumpable(current->mm);
1da177e4
LT
1664 break;
1665 case PR_SET_DUMPABLE:
abf75a50 1666 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1667 error = -EINVAL;
1668 break;
1669 }
6c5d5238 1670 set_dumpable(current->mm, arg2);
1da177e4
LT
1671 break;
1672
1673 case PR_SET_UNALIGN:
1674 error = SET_UNALIGN_CTL(current, arg2);
1675 break;
1676 case PR_GET_UNALIGN:
1677 error = GET_UNALIGN_CTL(current, arg2);
1678 break;
1679 case PR_SET_FPEMU:
1680 error = SET_FPEMU_CTL(current, arg2);
1681 break;
1682 case PR_GET_FPEMU:
1683 error = GET_FPEMU_CTL(current, arg2);
1684 break;
1685 case PR_SET_FPEXC:
1686 error = SET_FPEXC_CTL(current, arg2);
1687 break;
1688 case PR_GET_FPEXC:
1689 error = GET_FPEXC_CTL(current, arg2);
1690 break;
1691 case PR_GET_TIMING:
1692 error = PR_TIMING_STATISTICAL;
1693 break;
1694 case PR_SET_TIMING:
7b26655f 1695 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4
LT
1696 error = -EINVAL;
1697 break;
1698
1da177e4
LT
1699 case PR_SET_NAME: {
1700 struct task_struct *me = current;
1701 unsigned char ncomm[sizeof(me->comm)];
1702
1703 ncomm[sizeof(me->comm)-1] = 0;
1704 if (strncpy_from_user(ncomm, (char __user *)arg2,
1705 sizeof(me->comm)-1) < 0)
1706 return -EFAULT;
1707 set_task_comm(me, ncomm);
1708 return 0;
1709 }
1710 case PR_GET_NAME: {
1711 struct task_struct *me = current;
1712 unsigned char tcomm[sizeof(me->comm)];
1713
1714 get_task_comm(tcomm, me);
1715 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1716 return -EFAULT;
1717 return 0;
1718 }
651d765d
AB
1719 case PR_GET_ENDIAN:
1720 error = GET_ENDIAN(current, arg2);
1721 break;
1722 case PR_SET_ENDIAN:
1723 error = SET_ENDIAN(current, arg2);
1724 break;
1725
1d9d02fe
AA
1726 case PR_GET_SECCOMP:
1727 error = prctl_get_seccomp();
1728 break;
1729 case PR_SET_SECCOMP:
1730 error = prctl_set_seccomp(arg2);
1731 break;
8fb402bc
EB
1732 case PR_GET_TSC:
1733 error = GET_TSC_CTL(arg2);
1734 break;
1735 case PR_SET_TSC:
1736 error = SET_TSC_CTL(arg2);
1737 break;
1da177e4
LT
1738 default:
1739 error = -EINVAL;
1740 break;
1741 }
1742 return error;
1743}
3cfc348b
AK
1744
1745asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
4307d1e5 1746 struct getcpu_cache __user *unused)
3cfc348b
AK
1747{
1748 int err = 0;
1749 int cpu = raw_smp_processor_id();
1750 if (cpup)
1751 err |= put_user(cpu, cpup);
1752 if (nodep)
1753 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1754 return err ? -EFAULT : 0;
1755}
10a0a8d4
JF
1756
1757char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1758
1759static void argv_cleanup(char **argv, char **envp)
1760{
1761 argv_free(argv);
1762}
1763
1764/**
1765 * orderly_poweroff - Trigger an orderly system poweroff
1766 * @force: force poweroff if command execution fails
1767 *
1768 * This may be called from any context to trigger a system shutdown.
1769 * If the orderly shutdown fails, it will force an immediate shutdown.
1770 */
1771int orderly_poweroff(bool force)
1772{
1773 int argc;
1774 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1775 static char *envp[] = {
1776 "HOME=/",
1777 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1778 NULL
1779 };
1780 int ret = -ENOMEM;
1781 struct subprocess_info *info;
1782
1783 if (argv == NULL) {
1784 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1785 __func__, poweroff_cmd);
1786 goto out;
1787 }
1788
ac331d15 1789 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1790 if (info == NULL) {
1791 argv_free(argv);
1792 goto out;
1793 }
1794
1795 call_usermodehelper_setcleanup(info, argv_cleanup);
1796
86313c48 1797 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1798
1799 out:
1800 if (ret && force) {
1801 printk(KERN_WARNING "Failed to start orderly shutdown: "
1802 "forcing the issue\n");
1803
1804 /* I guess this should try to kick off some daemon to
1805 sync and poweroff asap. Or not even bother syncing
1806 if we're doing an emergency shutdown? */
1807 emergency_sync();
1808 kernel_power_off();
1809 }
1810
1811 return ret;
1812}
1813EXPORT_SYMBOL_GPL(orderly_poweroff);