CPU hotplug: provide a generic helper to disable/enable CPU hotplug
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
b32dfe37
CG
39#include <linux/file.h>
40#include <linux/mount.h>
5a0e3ad6 41#include <linux/gfp.h>
40dc166c 42#include <linux/syscore_ops.h>
be27425d
AK
43#include <linux/version.h>
44#include <linux/ctype.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
7fe5e042 50#include <linux/binfmts.h>
1da177e4 51
4a22f166
SR
52#include <linux/sched.h>
53#include <linux/rcupdate.h>
54#include <linux/uidgid.h>
55#include <linux/cred.h>
56
04c6862c 57#include <linux/kmsg_dump.h>
be27425d
AK
58/* Move somewhere else to avoid recompiling? */
59#include <generated/utsrelease.h>
04c6862c 60
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/io.h>
63#include <asm/unistd.h>
64
65#ifndef SET_UNALIGN_CTL
66# define SET_UNALIGN_CTL(a,b) (-EINVAL)
67#endif
68#ifndef GET_UNALIGN_CTL
69# define GET_UNALIGN_CTL(a,b) (-EINVAL)
70#endif
71#ifndef SET_FPEMU_CTL
72# define SET_FPEMU_CTL(a,b) (-EINVAL)
73#endif
74#ifndef GET_FPEMU_CTL
75# define GET_FPEMU_CTL(a,b) (-EINVAL)
76#endif
77#ifndef SET_FPEXC_CTL
78# define SET_FPEXC_CTL(a,b) (-EINVAL)
79#endif
80#ifndef GET_FPEXC_CTL
81# define GET_FPEXC_CTL(a,b) (-EINVAL)
82#endif
651d765d
AB
83#ifndef GET_ENDIAN
84# define GET_ENDIAN(a,b) (-EINVAL)
85#endif
86#ifndef SET_ENDIAN
87# define SET_ENDIAN(a,b) (-EINVAL)
88#endif
8fb402bc
EB
89#ifndef GET_TSC_CTL
90# define GET_TSC_CTL(a) (-EINVAL)
91#endif
92#ifndef SET_TSC_CTL
93# define SET_TSC_CTL(a) (-EINVAL)
94#endif
1da177e4
LT
95
96/*
97 * this is where the system-wide overflow UID and GID are defined, for
98 * architectures that now have 32-bit UID/GID but didn't in the past
99 */
100
101int overflowuid = DEFAULT_OVERFLOWUID;
102int overflowgid = DEFAULT_OVERFLOWGID;
103
1da177e4
LT
104EXPORT_SYMBOL(overflowuid);
105EXPORT_SYMBOL(overflowgid);
1da177e4
LT
106
107/*
108 * the same as above, but for filesystems which can only store a 16-bit
109 * UID and GID. as such, this is needed on all architectures
110 */
111
112int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
113int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
114
115EXPORT_SYMBOL(fs_overflowuid);
116EXPORT_SYMBOL(fs_overflowgid);
117
118/*
119 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
120 */
121
122int C_A_D = 1;
9ec52099
CLG
123struct pid *cad_pid;
124EXPORT_SYMBOL(cad_pid);
1da177e4 125
bd804eba
RW
126/*
127 * If set, this is used for preparing the system to power off.
128 */
129
130void (*pm_power_off_prepare)(void);
bd804eba 131
fc832ad3
SH
132/*
133 * Returns true if current's euid is same as p's uid or euid,
134 * or has CAP_SYS_NICE to p's user_ns.
135 *
136 * Called with rcu_read_lock, creds are safe
137 */
138static bool set_one_prio_perm(struct task_struct *p)
139{
140 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
141
5af66203
EB
142 if (uid_eq(pcred->uid, cred->euid) ||
143 uid_eq(pcred->euid, cred->euid))
fc832ad3 144 return true;
c4a4d603 145 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
146 return true;
147 return false;
148}
149
c69e8d9c
DH
150/*
151 * set the priority of a task
152 * - the caller must hold the RCU read lock
153 */
1da177e4
LT
154static int set_one_prio(struct task_struct *p, int niceval, int error)
155{
156 int no_nice;
157
fc832ad3 158 if (!set_one_prio_perm(p)) {
1da177e4
LT
159 error = -EPERM;
160 goto out;
161 }
e43379f1 162 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
163 error = -EACCES;
164 goto out;
165 }
166 no_nice = security_task_setnice(p, niceval);
167 if (no_nice) {
168 error = no_nice;
169 goto out;
170 }
171 if (error == -ESRCH)
172 error = 0;
173 set_user_nice(p, niceval);
174out:
175 return error;
176}
177
754fe8d2 178SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
179{
180 struct task_struct *g, *p;
181 struct user_struct *user;
86a264ab 182 const struct cred *cred = current_cred();
1da177e4 183 int error = -EINVAL;
41487c65 184 struct pid *pgrp;
7b44ab97 185 kuid_t uid;
1da177e4 186
3e88c553 187 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
188 goto out;
189
190 /* normalize: avoid signed division (rounding problems) */
191 error = -ESRCH;
192 if (niceval < -20)
193 niceval = -20;
194 if (niceval > 19)
195 niceval = 19;
196
d4581a23 197 rcu_read_lock();
1da177e4
LT
198 read_lock(&tasklist_lock);
199 switch (which) {
200 case PRIO_PROCESS:
41487c65 201 if (who)
228ebcbe 202 p = find_task_by_vpid(who);
41487c65
EB
203 else
204 p = current;
1da177e4
LT
205 if (p)
206 error = set_one_prio(p, niceval, error);
207 break;
208 case PRIO_PGRP:
41487c65 209 if (who)
b488893a 210 pgrp = find_vpid(who);
41487c65
EB
211 else
212 pgrp = task_pgrp(current);
2d70b68d 213 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 214 error = set_one_prio(p, niceval, error);
2d70b68d 215 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
216 break;
217 case PRIO_USER:
7b44ab97 218 uid = make_kuid(cred->user_ns, who);
74ba508f 219 user = cred->user;
1da177e4 220 if (!who)
078de5f7
EB
221 uid = cred->uid;
222 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 223 !(user = find_user(uid)))
86a264ab 224 goto out_unlock; /* No processes for this user */
1da177e4 225
dfc6a736 226 do_each_thread(g, p) {
078de5f7 227 if (uid_eq(task_uid(p), uid))
1da177e4 228 error = set_one_prio(p, niceval, error);
dfc6a736 229 } while_each_thread(g, p);
078de5f7 230 if (!uid_eq(uid, cred->uid))
1da177e4
LT
231 free_uid(user); /* For find_user() */
232 break;
233 }
234out_unlock:
235 read_unlock(&tasklist_lock);
d4581a23 236 rcu_read_unlock();
1da177e4
LT
237out:
238 return error;
239}
240
241/*
242 * Ugh. To avoid negative return values, "getpriority()" will
243 * not return the normal nice-value, but a negated value that
244 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
245 * to stay compatible.
246 */
754fe8d2 247SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
248{
249 struct task_struct *g, *p;
250 struct user_struct *user;
86a264ab 251 const struct cred *cred = current_cred();
1da177e4 252 long niceval, retval = -ESRCH;
41487c65 253 struct pid *pgrp;
7b44ab97 254 kuid_t uid;
1da177e4 255
3e88c553 256 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
257 return -EINVAL;
258
70118837 259 rcu_read_lock();
1da177e4
LT
260 read_lock(&tasklist_lock);
261 switch (which) {
262 case PRIO_PROCESS:
41487c65 263 if (who)
228ebcbe 264 p = find_task_by_vpid(who);
41487c65
EB
265 else
266 p = current;
1da177e4
LT
267 if (p) {
268 niceval = 20 - task_nice(p);
269 if (niceval > retval)
270 retval = niceval;
271 }
272 break;
273 case PRIO_PGRP:
41487c65 274 if (who)
b488893a 275 pgrp = find_vpid(who);
41487c65
EB
276 else
277 pgrp = task_pgrp(current);
2d70b68d 278 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
279 niceval = 20 - task_nice(p);
280 if (niceval > retval)
281 retval = niceval;
2d70b68d 282 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
283 break;
284 case PRIO_USER:
7b44ab97 285 uid = make_kuid(cred->user_ns, who);
74ba508f 286 user = cred->user;
1da177e4 287 if (!who)
078de5f7
EB
288 uid = cred->uid;
289 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 290 !(user = find_user(uid)))
86a264ab 291 goto out_unlock; /* No processes for this user */
1da177e4 292
dfc6a736 293 do_each_thread(g, p) {
078de5f7 294 if (uid_eq(task_uid(p), uid)) {
1da177e4
LT
295 niceval = 20 - task_nice(p);
296 if (niceval > retval)
297 retval = niceval;
298 }
dfc6a736 299 } while_each_thread(g, p);
078de5f7 300 if (!uid_eq(uid, cred->uid))
1da177e4
LT
301 free_uid(user); /* for find_user() */
302 break;
303 }
304out_unlock:
305 read_unlock(&tasklist_lock);
70118837 306 rcu_read_unlock();
1da177e4
LT
307
308 return retval;
309}
310
e4c94330
EB
311/**
312 * emergency_restart - reboot the system
313 *
314 * Without shutting down any hardware or taking any locks
315 * reboot the system. This is called when we know we are in
316 * trouble so this is our best effort to reboot. This is
317 * safe to call in interrupt context.
318 */
7c903473
EB
319void emergency_restart(void)
320{
04c6862c 321 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
322 machine_emergency_restart();
323}
324EXPORT_SYMBOL_GPL(emergency_restart);
325
ca195b7f 326void kernel_restart_prepare(char *cmd)
4a00ea1e 327{
e041c683 328 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 329 system_state = SYSTEM_RESTART;
b50fa7c8 330 usermodehelper_disable();
4a00ea1e 331 device_shutdown();
e4c94330 332}
1e5d5331 333
c5f41752
AW
334/**
335 * register_reboot_notifier - Register function to be called at reboot time
336 * @nb: Info about notifier function to be called
337 *
338 * Registers a function with the list of functions
339 * to be called at reboot time.
340 *
341 * Currently always returns zero, as blocking_notifier_chain_register()
342 * always returns zero.
343 */
344int register_reboot_notifier(struct notifier_block *nb)
345{
346 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
347}
348EXPORT_SYMBOL(register_reboot_notifier);
349
350/**
351 * unregister_reboot_notifier - Unregister previously registered reboot notifier
352 * @nb: Hook to be unregistered
353 *
354 * Unregisters a previously registered reboot
355 * notifier function.
356 *
357 * Returns zero on success, or %-ENOENT on failure.
358 */
359int unregister_reboot_notifier(struct notifier_block *nb)
360{
361 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
362}
363EXPORT_SYMBOL(unregister_reboot_notifier);
364
1e5d5331
RD
365/**
366 * kernel_restart - reboot the system
367 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 368 * or %NULL
1e5d5331
RD
369 *
370 * Shutdown everything and perform a clean reboot.
371 * This is not safe to call in interrupt context.
372 */
e4c94330
EB
373void kernel_restart(char *cmd)
374{
375 kernel_restart_prepare(cmd);
f96972f2 376 disable_nonboot_cpus();
6f389a8f 377 syscore_shutdown();
756184b7 378 if (!cmd)
4a00ea1e 379 printk(KERN_EMERG "Restarting system.\n");
756184b7 380 else
4a00ea1e 381 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 382 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
383 machine_restart(cmd);
384}
385EXPORT_SYMBOL_GPL(kernel_restart);
386
4ef7229f 387static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 388{
e041c683 389 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
390 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
391 system_state = state;
b50fa7c8 392 usermodehelper_disable();
729b4d4c
AS
393 device_shutdown();
394}
e4c94330
EB
395/**
396 * kernel_halt - halt the system
397 *
398 * Shutdown everything and perform a clean system halt.
399 */
e4c94330
EB
400void kernel_halt(void)
401{
729b4d4c 402 kernel_shutdown_prepare(SYSTEM_HALT);
6f389a8f 403 disable_nonboot_cpus();
40dc166c 404 syscore_shutdown();
4a00ea1e 405 printk(KERN_EMERG "System halted.\n");
04c6862c 406 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
407 machine_halt();
408}
729b4d4c 409
4a00ea1e
EB
410EXPORT_SYMBOL_GPL(kernel_halt);
411
e4c94330
EB
412/**
413 * kernel_power_off - power_off the system
414 *
415 * Shutdown everything and perform a clean system power_off.
416 */
e4c94330
EB
417void kernel_power_off(void)
418{
729b4d4c 419 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
420 if (pm_power_off_prepare)
421 pm_power_off_prepare();
4047727e 422 disable_nonboot_cpus();
40dc166c 423 syscore_shutdown();
4a00ea1e 424 printk(KERN_EMERG "Power down.\n");
04c6862c 425 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
426 machine_power_off();
427}
428EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
429
430static DEFINE_MUTEX(reboot_mutex);
431
1da177e4
LT
432/*
433 * Reboot system call: for obvious reasons only root may call it,
434 * and even root needs to set up some magic numbers in the registers
435 * so that some mistake won't make this reboot the whole machine.
436 * You can also set the meaning of the ctrl-alt-del-key here.
437 *
438 * reboot doesn't sync: do that yourself before calling this.
439 */
754fe8d2
HC
440SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
441 void __user *, arg)
1da177e4 442{
923c7538 443 struct pid_namespace *pid_ns = task_active_pid_ns(current);
1da177e4 444 char buffer[256];
3d26dcf7 445 int ret = 0;
1da177e4
LT
446
447 /* We only trust the superuser with rebooting the system. */
923c7538 448 if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
1da177e4
LT
449 return -EPERM;
450
451 /* For safety, we require "magic" arguments. */
452 if (magic1 != LINUX_REBOOT_MAGIC1 ||
453 (magic2 != LINUX_REBOOT_MAGIC2 &&
454 magic2 != LINUX_REBOOT_MAGIC2A &&
455 magic2 != LINUX_REBOOT_MAGIC2B &&
456 magic2 != LINUX_REBOOT_MAGIC2C))
457 return -EINVAL;
458
cf3f8921
DL
459 /*
460 * If pid namespaces are enabled and the current task is in a child
461 * pid_namespace, the command is handled by reboot_pid_ns() which will
462 * call do_exit().
463 */
923c7538 464 ret = reboot_pid_ns(pid_ns, cmd);
cf3f8921
DL
465 if (ret)
466 return ret;
467
5e38291d
EB
468 /* Instead of trying to make the power_off code look like
469 * halt when pm_power_off is not set do it the easy way.
470 */
471 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
472 cmd = LINUX_REBOOT_CMD_HALT;
473
6f15fa50 474 mutex_lock(&reboot_mutex);
1da177e4
LT
475 switch (cmd) {
476 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 477 kernel_restart(NULL);
1da177e4
LT
478 break;
479
480 case LINUX_REBOOT_CMD_CAD_ON:
481 C_A_D = 1;
482 break;
483
484 case LINUX_REBOOT_CMD_CAD_OFF:
485 C_A_D = 0;
486 break;
487
488 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 489 kernel_halt();
1da177e4 490 do_exit(0);
3d26dcf7 491 panic("cannot halt");
1da177e4
LT
492
493 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 494 kernel_power_off();
1da177e4
LT
495 do_exit(0);
496 break;
497
498 case LINUX_REBOOT_CMD_RESTART2:
499 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
500 ret = -EFAULT;
501 break;
1da177e4
LT
502 }
503 buffer[sizeof(buffer) - 1] = '\0';
504
4a00ea1e 505 kernel_restart(buffer);
1da177e4
LT
506 break;
507
3ab83521 508#ifdef CONFIG_KEXEC
dc009d92 509 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
510 ret = kernel_kexec();
511 break;
3ab83521 512#endif
4a00ea1e 513
b0cb1a19 514#ifdef CONFIG_HIBERNATION
1da177e4 515 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
516 ret = hibernate();
517 break;
1da177e4
LT
518#endif
519
520 default:
3d26dcf7
AK
521 ret = -EINVAL;
522 break;
1da177e4 523 }
6f15fa50 524 mutex_unlock(&reboot_mutex);
3d26dcf7 525 return ret;
1da177e4
LT
526}
527
65f27f38 528static void deferred_cad(struct work_struct *dummy)
1da177e4 529{
abcd9e51 530 kernel_restart(NULL);
1da177e4
LT
531}
532
533/*
534 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
535 * As it's called within an interrupt, it may NOT sync: the only choice
536 * is whether to reboot at once, or just ignore the ctrl-alt-del.
537 */
538void ctrl_alt_del(void)
539{
65f27f38 540 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
541
542 if (C_A_D)
543 schedule_work(&cad_work);
544 else
9ec52099 545 kill_cad_pid(SIGINT, 1);
1da177e4
LT
546}
547
1da177e4
LT
548/*
549 * Unprivileged users may change the real gid to the effective gid
550 * or vice versa. (BSD-style)
551 *
552 * If you set the real gid at all, or set the effective gid to a value not
553 * equal to the real gid, then the saved gid is set to the new effective gid.
554 *
555 * This makes it possible for a setgid program to completely drop its
556 * privileges, which is often a useful assertion to make when you are doing
557 * a security audit over a program.
558 *
559 * The general idea is that a program which uses just setregid() will be
560 * 100% compatible with BSD. A program which uses just setgid() will be
561 * 100% compatible with POSIX with saved IDs.
562 *
563 * SMP: There are not races, the GIDs are checked only by filesystem
564 * operations (as far as semantic preservation is concerned).
565 */
ae1251ab 566SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 567{
a29c33f4 568 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
569 const struct cred *old;
570 struct cred *new;
1da177e4 571 int retval;
a29c33f4
EB
572 kgid_t krgid, kegid;
573
574 krgid = make_kgid(ns, rgid);
575 kegid = make_kgid(ns, egid);
576
577 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
578 return -EINVAL;
579 if ((egid != (gid_t) -1) && !gid_valid(kegid))
580 return -EINVAL;
1da177e4 581
d84f4f99
DH
582 new = prepare_creds();
583 if (!new)
584 return -ENOMEM;
585 old = current_cred();
586
d84f4f99 587 retval = -EPERM;
1da177e4 588 if (rgid != (gid_t) -1) {
a29c33f4
EB
589 if (gid_eq(old->gid, krgid) ||
590 gid_eq(old->egid, krgid) ||
fc832ad3 591 nsown_capable(CAP_SETGID))
a29c33f4 592 new->gid = krgid;
1da177e4 593 else
d84f4f99 594 goto error;
1da177e4
LT
595 }
596 if (egid != (gid_t) -1) {
a29c33f4
EB
597 if (gid_eq(old->gid, kegid) ||
598 gid_eq(old->egid, kegid) ||
599 gid_eq(old->sgid, kegid) ||
fc832ad3 600 nsown_capable(CAP_SETGID))
a29c33f4 601 new->egid = kegid;
756184b7 602 else
d84f4f99 603 goto error;
1da177e4 604 }
d84f4f99 605
1da177e4 606 if (rgid != (gid_t) -1 ||
a29c33f4 607 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
608 new->sgid = new->egid;
609 new->fsgid = new->egid;
610
611 return commit_creds(new);
612
613error:
614 abort_creds(new);
615 return retval;
1da177e4
LT
616}
617
618/*
619 * setgid() is implemented like SysV w/ SAVED_IDS
620 *
621 * SMP: Same implicit races as above.
622 */
ae1251ab 623SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 624{
a29c33f4 625 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
626 const struct cred *old;
627 struct cred *new;
1da177e4 628 int retval;
a29c33f4
EB
629 kgid_t kgid;
630
631 kgid = make_kgid(ns, gid);
632 if (!gid_valid(kgid))
633 return -EINVAL;
1da177e4 634
d84f4f99
DH
635 new = prepare_creds();
636 if (!new)
637 return -ENOMEM;
638 old = current_cred();
639
d84f4f99 640 retval = -EPERM;
fc832ad3 641 if (nsown_capable(CAP_SETGID))
a29c33f4
EB
642 new->gid = new->egid = new->sgid = new->fsgid = kgid;
643 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
644 new->egid = new->fsgid = kgid;
1da177e4 645 else
d84f4f99 646 goto error;
1da177e4 647
d84f4f99
DH
648 return commit_creds(new);
649
650error:
651 abort_creds(new);
652 return retval;
1da177e4 653}
54e99124 654
d84f4f99
DH
655/*
656 * change the user struct in a credentials set to match the new UID
657 */
658static int set_user(struct cred *new)
1da177e4
LT
659{
660 struct user_struct *new_user;
661
078de5f7 662 new_user = alloc_uid(new->uid);
1da177e4
LT
663 if (!new_user)
664 return -EAGAIN;
665
72fa5997
VK
666 /*
667 * We don't fail in case of NPROC limit excess here because too many
668 * poorly written programs don't check set*uid() return code, assuming
669 * it never fails if called by root. We may still enforce NPROC limit
670 * for programs doing set*uid()+execve() by harmlessly deferring the
671 * failure to the execve() stage.
672 */
78d7d407 673 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
674 new_user != INIT_USER)
675 current->flags |= PF_NPROC_EXCEEDED;
676 else
677 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 678
d84f4f99
DH
679 free_uid(new->user);
680 new->user = new_user;
1da177e4
LT
681 return 0;
682}
683
684/*
685 * Unprivileged users may change the real uid to the effective uid
686 * or vice versa. (BSD-style)
687 *
688 * If you set the real uid at all, or set the effective uid to a value not
689 * equal to the real uid, then the saved uid is set to the new effective uid.
690 *
691 * This makes it possible for a setuid program to completely drop its
692 * privileges, which is often a useful assertion to make when you are doing
693 * a security audit over a program.
694 *
695 * The general idea is that a program which uses just setreuid() will be
696 * 100% compatible with BSD. A program which uses just setuid() will be
697 * 100% compatible with POSIX with saved IDs.
698 */
ae1251ab 699SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 700{
a29c33f4 701 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
702 const struct cred *old;
703 struct cred *new;
1da177e4 704 int retval;
a29c33f4
EB
705 kuid_t kruid, keuid;
706
707 kruid = make_kuid(ns, ruid);
708 keuid = make_kuid(ns, euid);
709
710 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
711 return -EINVAL;
712 if ((euid != (uid_t) -1) && !uid_valid(keuid))
713 return -EINVAL;
1da177e4 714
d84f4f99
DH
715 new = prepare_creds();
716 if (!new)
717 return -ENOMEM;
718 old = current_cred();
719
d84f4f99 720 retval = -EPERM;
1da177e4 721 if (ruid != (uid_t) -1) {
a29c33f4
EB
722 new->uid = kruid;
723 if (!uid_eq(old->uid, kruid) &&
724 !uid_eq(old->euid, kruid) &&
fc832ad3 725 !nsown_capable(CAP_SETUID))
d84f4f99 726 goto error;
1da177e4
LT
727 }
728
729 if (euid != (uid_t) -1) {
a29c33f4
EB
730 new->euid = keuid;
731 if (!uid_eq(old->uid, keuid) &&
732 !uid_eq(old->euid, keuid) &&
733 !uid_eq(old->suid, keuid) &&
fc832ad3 734 !nsown_capable(CAP_SETUID))
d84f4f99 735 goto error;
1da177e4
LT
736 }
737
a29c33f4 738 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
739 retval = set_user(new);
740 if (retval < 0)
741 goto error;
742 }
1da177e4 743 if (ruid != (uid_t) -1 ||
a29c33f4 744 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
745 new->suid = new->euid;
746 new->fsuid = new->euid;
1da177e4 747
d84f4f99
DH
748 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
749 if (retval < 0)
750 goto error;
1da177e4 751
d84f4f99 752 return commit_creds(new);
1da177e4 753
d84f4f99
DH
754error:
755 abort_creds(new);
756 return retval;
757}
1da177e4
LT
758
759/*
760 * setuid() is implemented like SysV with SAVED_IDS
761 *
762 * Note that SAVED_ID's is deficient in that a setuid root program
763 * like sendmail, for example, cannot set its uid to be a normal
764 * user and then switch back, because if you're root, setuid() sets
765 * the saved uid too. If you don't like this, blame the bright people
766 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
767 * will allow a root program to temporarily drop privileges and be able to
768 * regain them by swapping the real and effective uid.
769 */
ae1251ab 770SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 771{
a29c33f4 772 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
773 const struct cred *old;
774 struct cred *new;
1da177e4 775 int retval;
a29c33f4
EB
776 kuid_t kuid;
777
778 kuid = make_kuid(ns, uid);
779 if (!uid_valid(kuid))
780 return -EINVAL;
1da177e4 781
d84f4f99
DH
782 new = prepare_creds();
783 if (!new)
784 return -ENOMEM;
785 old = current_cred();
786
d84f4f99 787 retval = -EPERM;
fc832ad3 788 if (nsown_capable(CAP_SETUID)) {
a29c33f4
EB
789 new->suid = new->uid = kuid;
790 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
791 retval = set_user(new);
792 if (retval < 0)
793 goto error;
d84f4f99 794 }
a29c33f4 795 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 796 goto error;
1da177e4 797 }
1da177e4 798
a29c33f4 799 new->fsuid = new->euid = kuid;
d84f4f99
DH
800
801 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
802 if (retval < 0)
803 goto error;
1da177e4 804
d84f4f99 805 return commit_creds(new);
1da177e4 806
d84f4f99
DH
807error:
808 abort_creds(new);
809 return retval;
1da177e4
LT
810}
811
812
813/*
814 * This function implements a generic ability to update ruid, euid,
815 * and suid. This allows you to implement the 4.4 compatible seteuid().
816 */
ae1251ab 817SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 818{
a29c33f4 819 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
820 const struct cred *old;
821 struct cred *new;
1da177e4 822 int retval;
a29c33f4
EB
823 kuid_t kruid, keuid, ksuid;
824
825 kruid = make_kuid(ns, ruid);
826 keuid = make_kuid(ns, euid);
827 ksuid = make_kuid(ns, suid);
828
829 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
830 return -EINVAL;
831
832 if ((euid != (uid_t) -1) && !uid_valid(keuid))
833 return -EINVAL;
834
835 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
836 return -EINVAL;
1da177e4 837
d84f4f99
DH
838 new = prepare_creds();
839 if (!new)
840 return -ENOMEM;
841
d84f4f99 842 old = current_cred();
1da177e4 843
d84f4f99 844 retval = -EPERM;
fc832ad3 845 if (!nsown_capable(CAP_SETUID)) {
a29c33f4
EB
846 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
847 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 848 goto error;
a29c33f4
EB
849 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
850 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 851 goto error;
a29c33f4
EB
852 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
853 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 854 goto error;
1da177e4 855 }
d84f4f99 856
1da177e4 857 if (ruid != (uid_t) -1) {
a29c33f4
EB
858 new->uid = kruid;
859 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
860 retval = set_user(new);
861 if (retval < 0)
862 goto error;
863 }
1da177e4 864 }
d84f4f99 865 if (euid != (uid_t) -1)
a29c33f4 866 new->euid = keuid;
1da177e4 867 if (suid != (uid_t) -1)
a29c33f4 868 new->suid = ksuid;
d84f4f99 869 new->fsuid = new->euid;
1da177e4 870
d84f4f99
DH
871 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
872 if (retval < 0)
873 goto error;
1da177e4 874
d84f4f99 875 return commit_creds(new);
1da177e4 876
d84f4f99
DH
877error:
878 abort_creds(new);
879 return retval;
1da177e4
LT
880}
881
a29c33f4 882SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 883{
86a264ab 884 const struct cred *cred = current_cred();
1da177e4 885 int retval;
a29c33f4
EB
886 uid_t ruid, euid, suid;
887
888 ruid = from_kuid_munged(cred->user_ns, cred->uid);
889 euid = from_kuid_munged(cred->user_ns, cred->euid);
890 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 891
a29c33f4
EB
892 if (!(retval = put_user(ruid, ruidp)) &&
893 !(retval = put_user(euid, euidp)))
894 retval = put_user(suid, suidp);
1da177e4
LT
895
896 return retval;
897}
898
899/*
900 * Same as above, but for rgid, egid, sgid.
901 */
ae1251ab 902SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 903{
a29c33f4 904 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
905 const struct cred *old;
906 struct cred *new;
1da177e4 907 int retval;
a29c33f4
EB
908 kgid_t krgid, kegid, ksgid;
909
910 krgid = make_kgid(ns, rgid);
911 kegid = make_kgid(ns, egid);
912 ksgid = make_kgid(ns, sgid);
913
914 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
915 return -EINVAL;
916 if ((egid != (gid_t) -1) && !gid_valid(kegid))
917 return -EINVAL;
918 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
919 return -EINVAL;
1da177e4 920
d84f4f99
DH
921 new = prepare_creds();
922 if (!new)
923 return -ENOMEM;
924 old = current_cred();
925
d84f4f99 926 retval = -EPERM;
fc832ad3 927 if (!nsown_capable(CAP_SETGID)) {
a29c33f4
EB
928 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
929 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 930 goto error;
a29c33f4
EB
931 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
932 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 933 goto error;
a29c33f4
EB
934 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
935 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 936 goto error;
1da177e4 937 }
d84f4f99 938
1da177e4 939 if (rgid != (gid_t) -1)
a29c33f4 940 new->gid = krgid;
d84f4f99 941 if (egid != (gid_t) -1)
a29c33f4 942 new->egid = kegid;
1da177e4 943 if (sgid != (gid_t) -1)
a29c33f4 944 new->sgid = ksgid;
d84f4f99 945 new->fsgid = new->egid;
1da177e4 946
d84f4f99
DH
947 return commit_creds(new);
948
949error:
950 abort_creds(new);
951 return retval;
1da177e4
LT
952}
953
a29c33f4 954SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 955{
86a264ab 956 const struct cred *cred = current_cred();
1da177e4 957 int retval;
a29c33f4
EB
958 gid_t rgid, egid, sgid;
959
960 rgid = from_kgid_munged(cred->user_ns, cred->gid);
961 egid = from_kgid_munged(cred->user_ns, cred->egid);
962 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 963
a29c33f4
EB
964 if (!(retval = put_user(rgid, rgidp)) &&
965 !(retval = put_user(egid, egidp)))
966 retval = put_user(sgid, sgidp);
1da177e4
LT
967
968 return retval;
969}
970
971
972/*
973 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
974 * is used for "access()" and for the NFS daemon (letting nfsd stay at
975 * whatever uid it wants to). It normally shadows "euid", except when
976 * explicitly set by setfsuid() or for access..
977 */
ae1251ab 978SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 979{
d84f4f99
DH
980 const struct cred *old;
981 struct cred *new;
982 uid_t old_fsuid;
a29c33f4
EB
983 kuid_t kuid;
984
985 old = current_cred();
986 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
987
988 kuid = make_kuid(old->user_ns, uid);
989 if (!uid_valid(kuid))
990 return old_fsuid;
1da177e4 991
d84f4f99
DH
992 new = prepare_creds();
993 if (!new)
a29c33f4 994 return old_fsuid;
1da177e4 995
a29c33f4
EB
996 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
997 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
fc832ad3 998 nsown_capable(CAP_SETUID)) {
a29c33f4
EB
999 if (!uid_eq(kuid, old->fsuid)) {
1000 new->fsuid = kuid;
d84f4f99
DH
1001 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
1002 goto change_okay;
1da177e4 1003 }
1da177e4
LT
1004 }
1005
d84f4f99
DH
1006 abort_creds(new);
1007 return old_fsuid;
1da177e4 1008
d84f4f99
DH
1009change_okay:
1010 commit_creds(new);
1da177e4
LT
1011 return old_fsuid;
1012}
1013
1014/*
f42df9e6 1015 * Samma på svenska..
1da177e4 1016 */
ae1251ab 1017SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 1018{
d84f4f99
DH
1019 const struct cred *old;
1020 struct cred *new;
1021 gid_t old_fsgid;
a29c33f4
EB
1022 kgid_t kgid;
1023
1024 old = current_cred();
1025 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1026
1027 kgid = make_kgid(old->user_ns, gid);
1028 if (!gid_valid(kgid))
1029 return old_fsgid;
d84f4f99
DH
1030
1031 new = prepare_creds();
1032 if (!new)
a29c33f4 1033 return old_fsgid;
1da177e4 1034
a29c33f4
EB
1035 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
1036 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
fc832ad3 1037 nsown_capable(CAP_SETGID)) {
a29c33f4
EB
1038 if (!gid_eq(kgid, old->fsgid)) {
1039 new->fsgid = kgid;
d84f4f99 1040 goto change_okay;
1da177e4 1041 }
1da177e4 1042 }
d84f4f99 1043
d84f4f99
DH
1044 abort_creds(new);
1045 return old_fsgid;
1046
1047change_okay:
1048 commit_creds(new);
1da177e4
LT
1049 return old_fsgid;
1050}
1051
4a22f166
SR
1052/**
1053 * sys_getpid - return the thread group id of the current process
1054 *
1055 * Note, despite the name, this returns the tgid not the pid. The tgid and
1056 * the pid are identical unless CLONE_THREAD was specified on clone() in
1057 * which case the tgid is the same in all threads of the same group.
1058 *
1059 * This is SMP safe as current->tgid does not change.
1060 */
1061SYSCALL_DEFINE0(getpid)
1062{
1063 return task_tgid_vnr(current);
1064}
1065
1066/* Thread ID - the internal kernel "pid" */
1067SYSCALL_DEFINE0(gettid)
1068{
1069 return task_pid_vnr(current);
1070}
1071
1072/*
1073 * Accessing ->real_parent is not SMP-safe, it could
1074 * change from under us. However, we can use a stale
1075 * value of ->real_parent under rcu_read_lock(), see
1076 * release_task()->call_rcu(delayed_put_task_struct).
1077 */
1078SYSCALL_DEFINE0(getppid)
1079{
1080 int pid;
1081
1082 rcu_read_lock();
1083 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1084 rcu_read_unlock();
1085
1086 return pid;
1087}
1088
1089SYSCALL_DEFINE0(getuid)
1090{
1091 /* Only we change this so SMP safe */
1092 return from_kuid_munged(current_user_ns(), current_uid());
1093}
1094
1095SYSCALL_DEFINE0(geteuid)
1096{
1097 /* Only we change this so SMP safe */
1098 return from_kuid_munged(current_user_ns(), current_euid());
1099}
1100
1101SYSCALL_DEFINE0(getgid)
1102{
1103 /* Only we change this so SMP safe */
1104 return from_kgid_munged(current_user_ns(), current_gid());
1105}
1106
1107SYSCALL_DEFINE0(getegid)
1108{
1109 /* Only we change this so SMP safe */
1110 return from_kgid_munged(current_user_ns(), current_egid());
1111}
1112
f06febc9
FM
1113void do_sys_times(struct tms *tms)
1114{
0cf55e1e 1115 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 1116
2b5fe6de 1117 spin_lock_irq(&current->sighand->siglock);
e80d0a1a 1118 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
1119 cutime = current->signal->cutime;
1120 cstime = current->signal->cstime;
1121 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
1122 tms->tms_utime = cputime_to_clock_t(tgutime);
1123 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
1124 tms->tms_cutime = cputime_to_clock_t(cutime);
1125 tms->tms_cstime = cputime_to_clock_t(cstime);
1126}
1127
58fd3aa2 1128SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 1129{
1da177e4
LT
1130 if (tbuf) {
1131 struct tms tmp;
f06febc9
FM
1132
1133 do_sys_times(&tmp);
1da177e4
LT
1134 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1135 return -EFAULT;
1136 }
e3d5a27d 1137 force_successful_syscall_return();
1da177e4
LT
1138 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1139}
1140
1141/*
1142 * This needs some heavy checking ...
1143 * I just haven't the stomach for it. I also don't fully
1144 * understand sessions/pgrp etc. Let somebody who does explain it.
1145 *
1146 * OK, I think I have the protection semantics right.... this is really
1147 * only important on a multi-user system anyway, to make sure one user
1148 * can't send a signal to a process owned by another. -TYT, 12/12/91
1149 *
1150 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1151 * LBT 04.03.94
1152 */
b290ebe2 1153SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1154{
1155 struct task_struct *p;
ee0acf90 1156 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1157 struct pid *pgrp;
1158 int err;
1da177e4
LT
1159
1160 if (!pid)
b488893a 1161 pid = task_pid_vnr(group_leader);
1da177e4
LT
1162 if (!pgid)
1163 pgid = pid;
1164 if (pgid < 0)
1165 return -EINVAL;
950eaaca 1166 rcu_read_lock();
1da177e4
LT
1167
1168 /* From this point forward we keep holding onto the tasklist lock
1169 * so that our parent does not change from under us. -DaveM
1170 */
1171 write_lock_irq(&tasklist_lock);
1172
1173 err = -ESRCH;
4e021306 1174 p = find_task_by_vpid(pid);
1da177e4
LT
1175 if (!p)
1176 goto out;
1177
1178 err = -EINVAL;
1179 if (!thread_group_leader(p))
1180 goto out;
1181
4e021306 1182 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1183 err = -EPERM;
41487c65 1184 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1185 goto out;
1186 err = -EACCES;
1187 if (p->did_exec)
1188 goto out;
1189 } else {
1190 err = -ESRCH;
ee0acf90 1191 if (p != group_leader)
1da177e4
LT
1192 goto out;
1193 }
1194
1195 err = -EPERM;
1196 if (p->signal->leader)
1197 goto out;
1198
4e021306 1199 pgrp = task_pid(p);
1da177e4 1200 if (pgid != pid) {
b488893a 1201 struct task_struct *g;
1da177e4 1202
4e021306
ON
1203 pgrp = find_vpid(pgid);
1204 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1205 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1206 goto out;
1da177e4
LT
1207 }
1208
1da177e4
LT
1209 err = security_task_setpgid(p, pgid);
1210 if (err)
1211 goto out;
1212
1b0f7ffd 1213 if (task_pgrp(p) != pgrp)
83beaf3c 1214 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1215
1216 err = 0;
1217out:
1218 /* All paths lead to here, thus we are safe. -DaveM */
1219 write_unlock_irq(&tasklist_lock);
950eaaca 1220 rcu_read_unlock();
1da177e4
LT
1221 return err;
1222}
1223
dbf040d9 1224SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1225{
12a3de0a
ON
1226 struct task_struct *p;
1227 struct pid *grp;
1228 int retval;
1229
1230 rcu_read_lock();
756184b7 1231 if (!pid)
12a3de0a 1232 grp = task_pgrp(current);
756184b7 1233 else {
1da177e4 1234 retval = -ESRCH;
12a3de0a
ON
1235 p = find_task_by_vpid(pid);
1236 if (!p)
1237 goto out;
1238 grp = task_pgrp(p);
1239 if (!grp)
1240 goto out;
1241
1242 retval = security_task_getpgid(p);
1243 if (retval)
1244 goto out;
1da177e4 1245 }
12a3de0a
ON
1246 retval = pid_vnr(grp);
1247out:
1248 rcu_read_unlock();
1249 return retval;
1da177e4
LT
1250}
1251
1252#ifdef __ARCH_WANT_SYS_GETPGRP
1253
dbf040d9 1254SYSCALL_DEFINE0(getpgrp)
1da177e4 1255{
12a3de0a 1256 return sys_getpgid(0);
1da177e4
LT
1257}
1258
1259#endif
1260
dbf040d9 1261SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1262{
1dd768c0
ON
1263 struct task_struct *p;
1264 struct pid *sid;
1265 int retval;
1266
1267 rcu_read_lock();
756184b7 1268 if (!pid)
1dd768c0 1269 sid = task_session(current);
756184b7 1270 else {
1da177e4 1271 retval = -ESRCH;
1dd768c0
ON
1272 p = find_task_by_vpid(pid);
1273 if (!p)
1274 goto out;
1275 sid = task_session(p);
1276 if (!sid)
1277 goto out;
1278
1279 retval = security_task_getsid(p);
1280 if (retval)
1281 goto out;
1da177e4 1282 }
1dd768c0
ON
1283 retval = pid_vnr(sid);
1284out:
1285 rcu_read_unlock();
1286 return retval;
1da177e4
LT
1287}
1288
b290ebe2 1289SYSCALL_DEFINE0(setsid)
1da177e4 1290{
e19f247a 1291 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1292 struct pid *sid = task_pid(group_leader);
1293 pid_t session = pid_vnr(sid);
1da177e4
LT
1294 int err = -EPERM;
1295
1da177e4 1296 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1297 /* Fail if I am already a session leader */
1298 if (group_leader->signal->leader)
1299 goto out;
1300
430c6231
ON
1301 /* Fail if a process group id already exists that equals the
1302 * proposed session id.
390e2ff0 1303 */
6806aac6 1304 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1305 goto out;
1306
e19f247a 1307 group_leader->signal->leader = 1;
8520d7c7 1308 __set_special_pids(sid);
24ec839c 1309
9c9f4ded 1310 proc_clear_tty(group_leader);
24ec839c 1311
e4cc0a9c 1312 err = session;
1da177e4
LT
1313out:
1314 write_unlock_irq(&tasklist_lock);
5091faa4 1315 if (err > 0) {
0d0df599 1316 proc_sid_connector(group_leader);
5091faa4
MG
1317 sched_autogroup_create_attach(group_leader);
1318 }
1da177e4
LT
1319 return err;
1320}
1321
1da177e4
LT
1322DECLARE_RWSEM(uts_sem);
1323
e28cbf22
CH
1324#ifdef COMPAT_UTS_MACHINE
1325#define override_architecture(name) \
46da2766 1326 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1327 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1328 sizeof(COMPAT_UTS_MACHINE)))
1329#else
1330#define override_architecture(name) 0
1331#endif
1332
be27425d
AK
1333/*
1334 * Work around broken programs that cannot handle "Linux 3.0".
1335 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1336 */
2702b152 1337static int override_release(char __user *release, size_t len)
be27425d
AK
1338{
1339 int ret = 0;
be27425d
AK
1340
1341 if (current->personality & UNAME26) {
2702b152
KC
1342 const char *rest = UTS_RELEASE;
1343 char buf[65] = { 0 };
be27425d
AK
1344 int ndots = 0;
1345 unsigned v;
2702b152 1346 size_t copy;
be27425d
AK
1347
1348 while (*rest) {
1349 if (*rest == '.' && ++ndots >= 3)
1350 break;
1351 if (!isdigit(*rest) && *rest != '.')
1352 break;
1353 rest++;
1354 }
1355 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
31fd84b9 1356 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1357 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1358 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1359 }
1360 return ret;
1361}
1362
e48fbb69 1363SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1364{
1365 int errno = 0;
1366
1367 down_read(&uts_sem);
e9ff3990 1368 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1369 errno = -EFAULT;
1370 up_read(&uts_sem);
e28cbf22 1371
be27425d
AK
1372 if (!errno && override_release(name->release, sizeof(name->release)))
1373 errno = -EFAULT;
e28cbf22
CH
1374 if (!errno && override_architecture(name))
1375 errno = -EFAULT;
1da177e4
LT
1376 return errno;
1377}
1378
5cacdb4a
CH
1379#ifdef __ARCH_WANT_SYS_OLD_UNAME
1380/*
1381 * Old cruft
1382 */
1383SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1384{
1385 int error = 0;
1386
1387 if (!name)
1388 return -EFAULT;
1389
1390 down_read(&uts_sem);
1391 if (copy_to_user(name, utsname(), sizeof(*name)))
1392 error = -EFAULT;
1393 up_read(&uts_sem);
1394
be27425d
AK
1395 if (!error && override_release(name->release, sizeof(name->release)))
1396 error = -EFAULT;
5cacdb4a
CH
1397 if (!error && override_architecture(name))
1398 error = -EFAULT;
1399 return error;
1400}
1401
1402SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1403{
1404 int error;
1405
1406 if (!name)
1407 return -EFAULT;
1408 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1409 return -EFAULT;
1410
1411 down_read(&uts_sem);
1412 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1413 __OLD_UTS_LEN);
1414 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1415 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1416 __OLD_UTS_LEN);
1417 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1418 error |= __copy_to_user(&name->release, &utsname()->release,
1419 __OLD_UTS_LEN);
1420 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1421 error |= __copy_to_user(&name->version, &utsname()->version,
1422 __OLD_UTS_LEN);
1423 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1424 error |= __copy_to_user(&name->machine, &utsname()->machine,
1425 __OLD_UTS_LEN);
1426 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1427 up_read(&uts_sem);
1428
1429 if (!error && override_architecture(name))
1430 error = -EFAULT;
be27425d
AK
1431 if (!error && override_release(name->release, sizeof(name->release)))
1432 error = -EFAULT;
5cacdb4a
CH
1433 return error ? -EFAULT : 0;
1434}
1435#endif
1436
5a8a82b1 1437SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1438{
1439 int errno;
1440 char tmp[__NEW_UTS_LEN];
1441
bb96a6f5 1442 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1443 return -EPERM;
fc832ad3 1444
1da177e4
LT
1445 if (len < 0 || len > __NEW_UTS_LEN)
1446 return -EINVAL;
1447 down_write(&uts_sem);
1448 errno = -EFAULT;
1449 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1450 struct new_utsname *u = utsname();
1451
1452 memcpy(u->nodename, tmp, len);
1453 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1454 errno = 0;
499eea6b 1455 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1456 }
1457 up_write(&uts_sem);
1458 return errno;
1459}
1460
1461#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1462
5a8a82b1 1463SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1464{
1465 int i, errno;
9679e4dd 1466 struct new_utsname *u;
1da177e4
LT
1467
1468 if (len < 0)
1469 return -EINVAL;
1470 down_read(&uts_sem);
9679e4dd
AM
1471 u = utsname();
1472 i = 1 + strlen(u->nodename);
1da177e4
LT
1473 if (i > len)
1474 i = len;
1475 errno = 0;
9679e4dd 1476 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1477 errno = -EFAULT;
1478 up_read(&uts_sem);
1479 return errno;
1480}
1481
1482#endif
1483
1484/*
1485 * Only setdomainname; getdomainname can be implemented by calling
1486 * uname()
1487 */
5a8a82b1 1488SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1489{
1490 int errno;
1491 char tmp[__NEW_UTS_LEN];
1492
fc832ad3 1493 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1494 return -EPERM;
1495 if (len < 0 || len > __NEW_UTS_LEN)
1496 return -EINVAL;
1497
1498 down_write(&uts_sem);
1499 errno = -EFAULT;
1500 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1501 struct new_utsname *u = utsname();
1502
1503 memcpy(u->domainname, tmp, len);
1504 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1505 errno = 0;
499eea6b 1506 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1507 }
1508 up_write(&uts_sem);
1509 return errno;
1510}
1511
e48fbb69 1512SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1513{
b9518345
JS
1514 struct rlimit value;
1515 int ret;
1516
1517 ret = do_prlimit(current, resource, NULL, &value);
1518 if (!ret)
1519 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1520
1521 return ret;
1da177e4
LT
1522}
1523
1524#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1525
1526/*
1527 * Back compatibility for getrlimit. Needed for some apps.
1528 */
1529
e48fbb69
HC
1530SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1531 struct rlimit __user *, rlim)
1da177e4
LT
1532{
1533 struct rlimit x;
1534 if (resource >= RLIM_NLIMITS)
1535 return -EINVAL;
1536
1537 task_lock(current->group_leader);
1538 x = current->signal->rlim[resource];
1539 task_unlock(current->group_leader);
756184b7 1540 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1541 x.rlim_cur = 0x7FFFFFFF;
756184b7 1542 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1543 x.rlim_max = 0x7FFFFFFF;
1544 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1545}
1546
1547#endif
1548
c022a0ac
JS
1549static inline bool rlim64_is_infinity(__u64 rlim64)
1550{
1551#if BITS_PER_LONG < 64
1552 return rlim64 >= ULONG_MAX;
1553#else
1554 return rlim64 == RLIM64_INFINITY;
1555#endif
1556}
1557
1558static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1559{
1560 if (rlim->rlim_cur == RLIM_INFINITY)
1561 rlim64->rlim_cur = RLIM64_INFINITY;
1562 else
1563 rlim64->rlim_cur = rlim->rlim_cur;
1564 if (rlim->rlim_max == RLIM_INFINITY)
1565 rlim64->rlim_max = RLIM64_INFINITY;
1566 else
1567 rlim64->rlim_max = rlim->rlim_max;
1568}
1569
1570static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1571{
1572 if (rlim64_is_infinity(rlim64->rlim_cur))
1573 rlim->rlim_cur = RLIM_INFINITY;
1574 else
1575 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1576 if (rlim64_is_infinity(rlim64->rlim_max))
1577 rlim->rlim_max = RLIM_INFINITY;
1578 else
1579 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1580}
1581
1c1e618d 1582/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1583int do_prlimit(struct task_struct *tsk, unsigned int resource,
1584 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1585{
5b41535a 1586 struct rlimit *rlim;
86f162f4 1587 int retval = 0;
1da177e4
LT
1588
1589 if (resource >= RLIM_NLIMITS)
1590 return -EINVAL;
5b41535a
JS
1591 if (new_rlim) {
1592 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1593 return -EINVAL;
1594 if (resource == RLIMIT_NOFILE &&
1595 new_rlim->rlim_max > sysctl_nr_open)
1596 return -EPERM;
1597 }
1da177e4 1598
1c1e618d
JS
1599 /* protect tsk->signal and tsk->sighand from disappearing */
1600 read_lock(&tasklist_lock);
1601 if (!tsk->sighand) {
1602 retval = -ESRCH;
1603 goto out;
1604 }
1605
5b41535a 1606 rlim = tsk->signal->rlim + resource;
86f162f4 1607 task_lock(tsk->group_leader);
5b41535a 1608 if (new_rlim) {
fc832ad3
SH
1609 /* Keep the capable check against init_user_ns until
1610 cgroups can contain all limits */
5b41535a
JS
1611 if (new_rlim->rlim_max > rlim->rlim_max &&
1612 !capable(CAP_SYS_RESOURCE))
1613 retval = -EPERM;
1614 if (!retval)
1615 retval = security_task_setrlimit(tsk->group_leader,
1616 resource, new_rlim);
1617 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1618 /*
1619 * The caller is asking for an immediate RLIMIT_CPU
1620 * expiry. But we use the zero value to mean "it was
1621 * never set". So let's cheat and make it one second
1622 * instead
1623 */
1624 new_rlim->rlim_cur = 1;
1625 }
1626 }
1627 if (!retval) {
1628 if (old_rlim)
1629 *old_rlim = *rlim;
1630 if (new_rlim)
1631 *rlim = *new_rlim;
9926e4c7 1632 }
7855c35d 1633 task_unlock(tsk->group_leader);
1da177e4 1634
d3561f78
AM
1635 /*
1636 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1637 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1638 * very long-standing error, and fixing it now risks breakage of
1639 * applications, so we live with it
1640 */
5b41535a
JS
1641 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1642 new_rlim->rlim_cur != RLIM_INFINITY)
1643 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1644out:
1c1e618d 1645 read_unlock(&tasklist_lock);
2fb9d268 1646 return retval;
1da177e4
LT
1647}
1648
c022a0ac
JS
1649/* rcu lock must be held */
1650static int check_prlimit_permission(struct task_struct *task)
1651{
1652 const struct cred *cred = current_cred(), *tcred;
1653
fc832ad3
SH
1654 if (current == task)
1655 return 0;
c022a0ac 1656
fc832ad3 1657 tcred = __task_cred(task);
5af66203
EB
1658 if (uid_eq(cred->uid, tcred->euid) &&
1659 uid_eq(cred->uid, tcred->suid) &&
1660 uid_eq(cred->uid, tcred->uid) &&
1661 gid_eq(cred->gid, tcred->egid) &&
1662 gid_eq(cred->gid, tcred->sgid) &&
1663 gid_eq(cred->gid, tcred->gid))
fc832ad3 1664 return 0;
c4a4d603 1665 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1666 return 0;
1667
1668 return -EPERM;
c022a0ac
JS
1669}
1670
1671SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1672 const struct rlimit64 __user *, new_rlim,
1673 struct rlimit64 __user *, old_rlim)
1674{
1675 struct rlimit64 old64, new64;
1676 struct rlimit old, new;
1677 struct task_struct *tsk;
1678 int ret;
1679
1680 if (new_rlim) {
1681 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1682 return -EFAULT;
1683 rlim64_to_rlim(&new64, &new);
1684 }
1685
1686 rcu_read_lock();
1687 tsk = pid ? find_task_by_vpid(pid) : current;
1688 if (!tsk) {
1689 rcu_read_unlock();
1690 return -ESRCH;
1691 }
1692 ret = check_prlimit_permission(tsk);
1693 if (ret) {
1694 rcu_read_unlock();
1695 return ret;
1696 }
1697 get_task_struct(tsk);
1698 rcu_read_unlock();
1699
1700 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1701 old_rlim ? &old : NULL);
1702
1703 if (!ret && old_rlim) {
1704 rlim_to_rlim64(&old, &old64);
1705 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1706 ret = -EFAULT;
1707 }
1708
1709 put_task_struct(tsk);
1710 return ret;
1711}
1712
7855c35d
JS
1713SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1714{
1715 struct rlimit new_rlim;
1716
1717 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1718 return -EFAULT;
5b41535a 1719 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1720}
1721
1da177e4
LT
1722/*
1723 * It would make sense to put struct rusage in the task_struct,
1724 * except that would make the task_struct be *really big*. After
1725 * task_struct gets moved into malloc'ed memory, it would
1726 * make sense to do this. It will make moving the rest of the information
1727 * a lot simpler! (Which we're not doing right now because we're not
1728 * measuring them yet).
1729 *
1da177e4
LT
1730 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1731 * races with threads incrementing their own counters. But since word
1732 * reads are atomic, we either get new values or old values and we don't
1733 * care which for the sums. We always take the siglock to protect reading
1734 * the c* fields from p->signal from races with exit.c updating those
1735 * fields when reaping, so a sample either gets all the additions of a
1736 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1737 *
de047c1b
RT
1738 * Locking:
1739 * We need to take the siglock for CHILDEREN, SELF and BOTH
1740 * for the cases current multithreaded, non-current single threaded
1741 * non-current multithreaded. Thread traversal is now safe with
1742 * the siglock held.
1743 * Strictly speaking, we donot need to take the siglock if we are current and
1744 * single threaded, as no one else can take our signal_struct away, no one
1745 * else can reap the children to update signal->c* counters, and no one else
1746 * can race with the signal-> fields. If we do not take any lock, the
1747 * signal-> fields could be read out of order while another thread was just
1748 * exiting. So we should place a read memory barrier when we avoid the lock.
1749 * On the writer side, write memory barrier is implied in __exit_signal
1750 * as __exit_signal releases the siglock spinlock after updating the signal->
1751 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1752 *
1da177e4
LT
1753 */
1754
f06febc9 1755static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1756{
679c9cd4
SK
1757 r->ru_nvcsw += t->nvcsw;
1758 r->ru_nivcsw += t->nivcsw;
1759 r->ru_minflt += t->min_flt;
1760 r->ru_majflt += t->maj_flt;
1761 r->ru_inblock += task_io_get_inblock(t);
1762 r->ru_oublock += task_io_get_oublock(t);
1763}
1764
1da177e4
LT
1765static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1766{
1767 struct task_struct *t;
1768 unsigned long flags;
0cf55e1e 1769 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1770 unsigned long maxrss = 0;
1da177e4
LT
1771
1772 memset((char *) r, 0, sizeof *r);
64861634 1773 utime = stime = 0;
1da177e4 1774
679c9cd4 1775 if (who == RUSAGE_THREAD) {
e80d0a1a 1776 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1777 accumulate_thread_rusage(p, r);
1f10206c 1778 maxrss = p->signal->maxrss;
679c9cd4
SK
1779 goto out;
1780 }
1781
d6cf723a 1782 if (!lock_task_sighand(p, &flags))
de047c1b 1783 return;
0f59cc4a 1784
1da177e4 1785 switch (who) {
0f59cc4a 1786 case RUSAGE_BOTH:
1da177e4 1787 case RUSAGE_CHILDREN:
1da177e4
LT
1788 utime = p->signal->cutime;
1789 stime = p->signal->cstime;
1790 r->ru_nvcsw = p->signal->cnvcsw;
1791 r->ru_nivcsw = p->signal->cnivcsw;
1792 r->ru_minflt = p->signal->cmin_flt;
1793 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1794 r->ru_inblock = p->signal->cinblock;
1795 r->ru_oublock = p->signal->coublock;
1f10206c 1796 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1797
1798 if (who == RUSAGE_CHILDREN)
1799 break;
1800
1da177e4 1801 case RUSAGE_SELF:
e80d0a1a 1802 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
64861634
MS
1803 utime += tgutime;
1804 stime += tgstime;
1da177e4
LT
1805 r->ru_nvcsw += p->signal->nvcsw;
1806 r->ru_nivcsw += p->signal->nivcsw;
1807 r->ru_minflt += p->signal->min_flt;
1808 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1809 r->ru_inblock += p->signal->inblock;
1810 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1811 if (maxrss < p->signal->maxrss)
1812 maxrss = p->signal->maxrss;
1da177e4
LT
1813 t = p;
1814 do {
f06febc9 1815 accumulate_thread_rusage(t, r);
1da177e4
LT
1816 t = next_thread(t);
1817 } while (t != p);
1da177e4 1818 break;
0f59cc4a 1819
1da177e4
LT
1820 default:
1821 BUG();
1822 }
de047c1b 1823 unlock_task_sighand(p, &flags);
de047c1b 1824
679c9cd4 1825out:
0f59cc4a
ON
1826 cputime_to_timeval(utime, &r->ru_utime);
1827 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1828
1829 if (who != RUSAGE_CHILDREN) {
1830 struct mm_struct *mm = get_task_mm(p);
1831 if (mm) {
1832 setmax_mm_hiwater_rss(&maxrss, mm);
1833 mmput(mm);
1834 }
1835 }
1836 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1837}
1838
1839int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1840{
1841 struct rusage r;
1da177e4 1842 k_getrusage(p, who, &r);
1da177e4
LT
1843 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1844}
1845
e48fbb69 1846SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1847{
679c9cd4
SK
1848 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1849 who != RUSAGE_THREAD)
1da177e4
LT
1850 return -EINVAL;
1851 return getrusage(current, who, ru);
1852}
1853
8d2d5c4a
AV
1854#ifdef CONFIG_COMPAT
1855COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1856{
1857 struct rusage r;
1858
1859 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1860 who != RUSAGE_THREAD)
1861 return -EINVAL;
1862
1863 k_getrusage(current, who, &r);
1864 return put_compat_rusage(&r, ru);
1865}
1866#endif
1867
e48fbb69 1868SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1869{
1870 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1871 return mask;
1872}
3b7391de 1873
b32dfe37
CG
1874static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1875{
2903ff01 1876 struct fd exe;
496ad9aa 1877 struct inode *inode;
2903ff01 1878 int err;
b32dfe37 1879
2903ff01
AV
1880 exe = fdget(fd);
1881 if (!exe.file)
b32dfe37
CG
1882 return -EBADF;
1883
496ad9aa 1884 inode = file_inode(exe.file);
b32dfe37
CG
1885
1886 /*
1887 * Because the original mm->exe_file points to executable file, make
1888 * sure that this one is executable as well, to avoid breaking an
1889 * overall picture.
1890 */
1891 err = -EACCES;
496ad9aa 1892 if (!S_ISREG(inode->i_mode) ||
2903ff01 1893 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
b32dfe37
CG
1894 goto exit;
1895
496ad9aa 1896 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1897 if (err)
1898 goto exit;
1899
bafb282d
KK
1900 down_write(&mm->mmap_sem);
1901
1902 /*
4229fb1d 1903 * Forbid mm->exe_file change if old file still mapped.
bafb282d
KK
1904 */
1905 err = -EBUSY;
4229fb1d
KK
1906 if (mm->exe_file) {
1907 struct vm_area_struct *vma;
1908
1909 for (vma = mm->mmap; vma; vma = vma->vm_next)
1910 if (vma->vm_file &&
1911 path_equal(&vma->vm_file->f_path,
1912 &mm->exe_file->f_path))
1913 goto exit_unlock;
bafb282d
KK
1914 }
1915
b32dfe37
CG
1916 /*
1917 * The symlink can be changed only once, just to disallow arbitrary
1918 * transitions malicious software might bring in. This means one
1919 * could make a snapshot over all processes running and monitor
1920 * /proc/pid/exe changes to notice unusual activity if needed.
1921 */
bafb282d
KK
1922 err = -EPERM;
1923 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1924 goto exit_unlock;
1925
4229fb1d 1926 err = 0;
2903ff01 1927 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
bafb282d 1928exit_unlock:
b32dfe37
CG
1929 up_write(&mm->mmap_sem);
1930
1931exit:
2903ff01 1932 fdput(exe);
b32dfe37
CG
1933 return err;
1934}
1935
028ee4be
CG
1936static int prctl_set_mm(int opt, unsigned long addr,
1937 unsigned long arg4, unsigned long arg5)
1938{
1939 unsigned long rlim = rlimit(RLIMIT_DATA);
028ee4be 1940 struct mm_struct *mm = current->mm;
fe8c7f5c
CG
1941 struct vm_area_struct *vma;
1942 int error;
028ee4be 1943
fe8c7f5c 1944 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
028ee4be
CG
1945 return -EINVAL;
1946
79f0713d 1947 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1948 return -EPERM;
1949
b32dfe37
CG
1950 if (opt == PR_SET_MM_EXE_FILE)
1951 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1952
1ad75b9e 1953 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
1954 return -EINVAL;
1955
fe8c7f5c
CG
1956 error = -EINVAL;
1957
028ee4be
CG
1958 down_read(&mm->mmap_sem);
1959 vma = find_vma(mm, addr);
1960
028ee4be
CG
1961 switch (opt) {
1962 case PR_SET_MM_START_CODE:
fe8c7f5c
CG
1963 mm->start_code = addr;
1964 break;
028ee4be 1965 case PR_SET_MM_END_CODE:
fe8c7f5c 1966 mm->end_code = addr;
028ee4be 1967 break;
028ee4be 1968 case PR_SET_MM_START_DATA:
fe8c7f5c 1969 mm->start_data = addr;
028ee4be 1970 break;
fe8c7f5c
CG
1971 case PR_SET_MM_END_DATA:
1972 mm->end_data = addr;
028ee4be
CG
1973 break;
1974
1975 case PR_SET_MM_START_BRK:
1976 if (addr <= mm->end_data)
1977 goto out;
1978
1979 if (rlim < RLIM_INFINITY &&
1980 (mm->brk - addr) +
1981 (mm->end_data - mm->start_data) > rlim)
1982 goto out;
1983
1984 mm->start_brk = addr;
1985 break;
1986
1987 case PR_SET_MM_BRK:
1988 if (addr <= mm->end_data)
1989 goto out;
1990
1991 if (rlim < RLIM_INFINITY &&
1992 (addr - mm->start_brk) +
1993 (mm->end_data - mm->start_data) > rlim)
1994 goto out;
1995
1996 mm->brk = addr;
1997 break;
1998
fe8c7f5c
CG
1999 /*
2000 * If command line arguments and environment
2001 * are placed somewhere else on stack, we can
2002 * set them up here, ARG_START/END to setup
2003 * command line argumets and ENV_START/END
2004 * for environment.
2005 */
2006 case PR_SET_MM_START_STACK:
2007 case PR_SET_MM_ARG_START:
2008 case PR_SET_MM_ARG_END:
2009 case PR_SET_MM_ENV_START:
2010 case PR_SET_MM_ENV_END:
2011 if (!vma) {
2012 error = -EFAULT;
2013 goto out;
2014 }
fe8c7f5c
CG
2015 if (opt == PR_SET_MM_START_STACK)
2016 mm->start_stack = addr;
2017 else if (opt == PR_SET_MM_ARG_START)
2018 mm->arg_start = addr;
2019 else if (opt == PR_SET_MM_ARG_END)
2020 mm->arg_end = addr;
2021 else if (opt == PR_SET_MM_ENV_START)
2022 mm->env_start = addr;
2023 else if (opt == PR_SET_MM_ENV_END)
2024 mm->env_end = addr;
2025 break;
2026
2027 /*
2028 * This doesn't move auxiliary vector itself
2029 * since it's pinned to mm_struct, but allow
2030 * to fill vector with new values. It's up
2031 * to a caller to provide sane values here
2032 * otherwise user space tools which use this
2033 * vector might be unhappy.
2034 */
2035 case PR_SET_MM_AUXV: {
2036 unsigned long user_auxv[AT_VECTOR_SIZE];
2037
2038 if (arg4 > sizeof(user_auxv))
2039 goto out;
2040 up_read(&mm->mmap_sem);
2041
2042 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
2043 return -EFAULT;
2044
2045 /* Make sure the last entry is always AT_NULL */
2046 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2047 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2048
2049 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2050
2051 task_lock(current);
2052 memcpy(mm->saved_auxv, user_auxv, arg4);
2053 task_unlock(current);
2054
2055 return 0;
2056 }
028ee4be 2057 default:
028ee4be
CG
2058 goto out;
2059 }
2060
2061 error = 0;
028ee4be
CG
2062out:
2063 up_read(&mm->mmap_sem);
028ee4be
CG
2064 return error;
2065}
300f786b 2066
52b36941 2067#ifdef CONFIG_CHECKPOINT_RESTORE
300f786b
CG
2068static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2069{
2070 return put_user(me->clear_child_tid, tid_addr);
2071}
52b36941 2072#else
300f786b
CG
2073static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2074{
2075 return -EINVAL;
2076}
028ee4be
CG
2077#endif
2078
c4ea37c2
HC
2079SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2080 unsigned long, arg4, unsigned long, arg5)
1da177e4 2081{
b6dff3ec
DH
2082 struct task_struct *me = current;
2083 unsigned char comm[sizeof(me->comm)];
2084 long error;
1da177e4 2085
d84f4f99
DH
2086 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2087 if (error != -ENOSYS)
1da177e4
LT
2088 return error;
2089
d84f4f99 2090 error = 0;
1da177e4 2091 switch (option) {
f3cbd435
AM
2092 case PR_SET_PDEATHSIG:
2093 if (!valid_signal(arg2)) {
2094 error = -EINVAL;
1da177e4 2095 break;
f3cbd435
AM
2096 }
2097 me->pdeath_signal = arg2;
2098 break;
2099 case PR_GET_PDEATHSIG:
2100 error = put_user(me->pdeath_signal, (int __user *)arg2);
2101 break;
2102 case PR_GET_DUMPABLE:
2103 error = get_dumpable(me->mm);
2104 break;
2105 case PR_SET_DUMPABLE:
2106 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2107 error = -EINVAL;
1da177e4 2108 break;
f3cbd435
AM
2109 }
2110 set_dumpable(me->mm, arg2);
2111 break;
1da177e4 2112
f3cbd435
AM
2113 case PR_SET_UNALIGN:
2114 error = SET_UNALIGN_CTL(me, arg2);
2115 break;
2116 case PR_GET_UNALIGN:
2117 error = GET_UNALIGN_CTL(me, arg2);
2118 break;
2119 case PR_SET_FPEMU:
2120 error = SET_FPEMU_CTL(me, arg2);
2121 break;
2122 case PR_GET_FPEMU:
2123 error = GET_FPEMU_CTL(me, arg2);
2124 break;
2125 case PR_SET_FPEXC:
2126 error = SET_FPEXC_CTL(me, arg2);
2127 break;
2128 case PR_GET_FPEXC:
2129 error = GET_FPEXC_CTL(me, arg2);
2130 break;
2131 case PR_GET_TIMING:
2132 error = PR_TIMING_STATISTICAL;
2133 break;
2134 case PR_SET_TIMING:
2135 if (arg2 != PR_TIMING_STATISTICAL)
2136 error = -EINVAL;
2137 break;
2138 case PR_SET_NAME:
2139 comm[sizeof(me->comm) - 1] = 0;
2140 if (strncpy_from_user(comm, (char __user *)arg2,
2141 sizeof(me->comm) - 1) < 0)
2142 return -EFAULT;
2143 set_task_comm(me, comm);
2144 proc_comm_connector(me);
2145 break;
2146 case PR_GET_NAME:
2147 get_task_comm(comm, me);
2148 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2149 return -EFAULT;
2150 break;
2151 case PR_GET_ENDIAN:
2152 error = GET_ENDIAN(me, arg2);
2153 break;
2154 case PR_SET_ENDIAN:
2155 error = SET_ENDIAN(me, arg2);
2156 break;
2157 case PR_GET_SECCOMP:
2158 error = prctl_get_seccomp();
2159 break;
2160 case PR_SET_SECCOMP:
2161 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2162 break;
2163 case PR_GET_TSC:
2164 error = GET_TSC_CTL(arg2);
2165 break;
2166 case PR_SET_TSC:
2167 error = SET_TSC_CTL(arg2);
2168 break;
2169 case PR_TASK_PERF_EVENTS_DISABLE:
2170 error = perf_event_task_disable();
2171 break;
2172 case PR_TASK_PERF_EVENTS_ENABLE:
2173 error = perf_event_task_enable();
2174 break;
2175 case PR_GET_TIMERSLACK:
2176 error = current->timer_slack_ns;
2177 break;
2178 case PR_SET_TIMERSLACK:
2179 if (arg2 <= 0)
2180 current->timer_slack_ns =
6976675d 2181 current->default_timer_slack_ns;
f3cbd435
AM
2182 else
2183 current->timer_slack_ns = arg2;
2184 break;
2185 case PR_MCE_KILL:
2186 if (arg4 | arg5)
2187 return -EINVAL;
2188 switch (arg2) {
2189 case PR_MCE_KILL_CLEAR:
2190 if (arg3 != 0)
4db96cf0 2191 return -EINVAL;
f3cbd435 2192 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2193 break;
f3cbd435
AM
2194 case PR_MCE_KILL_SET:
2195 current->flags |= PF_MCE_PROCESS;
2196 if (arg3 == PR_MCE_KILL_EARLY)
2197 current->flags |= PF_MCE_EARLY;
2198 else if (arg3 == PR_MCE_KILL_LATE)
2199 current->flags &= ~PF_MCE_EARLY;
2200 else if (arg3 == PR_MCE_KILL_DEFAULT)
2201 current->flags &=
2202 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2203 else
259e5e6c 2204 return -EINVAL;
259e5e6c 2205 break;
1da177e4 2206 default:
f3cbd435
AM
2207 return -EINVAL;
2208 }
2209 break;
2210 case PR_MCE_KILL_GET:
2211 if (arg2 | arg3 | arg4 | arg5)
2212 return -EINVAL;
2213 if (current->flags & PF_MCE_PROCESS)
2214 error = (current->flags & PF_MCE_EARLY) ?
2215 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2216 else
2217 error = PR_MCE_KILL_DEFAULT;
2218 break;
2219 case PR_SET_MM:
2220 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2221 break;
2222 case PR_GET_TID_ADDRESS:
2223 error = prctl_get_tid_address(me, (int __user **)arg2);
2224 break;
2225 case PR_SET_CHILD_SUBREAPER:
2226 me->signal->is_child_subreaper = !!arg2;
2227 break;
2228 case PR_GET_CHILD_SUBREAPER:
2229 error = put_user(me->signal->is_child_subreaper,
2230 (int __user *)arg2);
2231 break;
2232 case PR_SET_NO_NEW_PRIVS:
2233 if (arg2 != 1 || arg3 || arg4 || arg5)
2234 return -EINVAL;
2235
2236 current->no_new_privs = 1;
2237 break;
2238 case PR_GET_NO_NEW_PRIVS:
2239 if (arg2 || arg3 || arg4 || arg5)
2240 return -EINVAL;
2241 return current->no_new_privs ? 1 : 0;
2242 default:
2243 error = -EINVAL;
2244 break;
1da177e4
LT
2245 }
2246 return error;
2247}
3cfc348b 2248
836f92ad
HC
2249SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2250 struct getcpu_cache __user *, unused)
3cfc348b
AK
2251{
2252 int err = 0;
2253 int cpu = raw_smp_processor_id();
2254 if (cpup)
2255 err |= put_user(cpu, cpup);
2256 if (nodep)
2257 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2258 return err ? -EFAULT : 0;
2259}
10a0a8d4
JF
2260
2261char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2262
2ca067ef 2263static int __orderly_poweroff(bool force)
10a0a8d4 2264{
b57b44ae 2265 char **argv;
10a0a8d4
JF
2266 static char *envp[] = {
2267 "HOME=/",
2268 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2269 NULL
2270 };
b57b44ae 2271 int ret;
10a0a8d4 2272
2ca067ef
ON
2273 argv = argv_split(GFP_KERNEL, poweroff_cmd, NULL);
2274 if (argv) {
2275 ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2276 argv_free(argv);
2277 } else {
10a0a8d4 2278 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2ca067ef
ON
2279 __func__, poweroff_cmd);
2280 ret = -ENOMEM;
10a0a8d4
JF
2281 }
2282
2ca067ef
ON
2283 if (ret && force) {
2284 printk(KERN_WARNING "Failed to start orderly shutdown: "
2285 "forcing the issue\n");
2286 /*
2287 * I guess this should try to kick off some daemon to sync and
2288 * poweroff asap. Or not even bother syncing if we're doing an
2289 * emergency shutdown?
2290 */
2291 emergency_sync();
2292 kernel_power_off();
2293 }
10a0a8d4 2294
b57b44ae
AM
2295 return ret;
2296}
2297
2ca067ef
ON
2298static bool poweroff_force;
2299
2300static void poweroff_work_func(struct work_struct *work)
2301{
2302 __orderly_poweroff(poweroff_force);
2303}
2304
2305static DECLARE_WORK(poweroff_work, poweroff_work_func);
2306
b57b44ae
AM
2307/**
2308 * orderly_poweroff - Trigger an orderly system poweroff
2309 * @force: force poweroff if command execution fails
2310 *
2311 * This may be called from any context to trigger a system shutdown.
2312 * If the orderly shutdown fails, it will force an immediate shutdown.
2313 */
2314int orderly_poweroff(bool force)
2315{
2ca067ef
ON
2316 if (force) /* do not override the pending "true" */
2317 poweroff_force = true;
2318 schedule_work(&poweroff_work);
2319 return 0;
10a0a8d4
JF
2320}
2321EXPORT_SYMBOL_GPL(orderly_poweroff);
4a22f166
SR
2322
2323/**
2324 * do_sysinfo - fill in sysinfo struct
2325 * @info: pointer to buffer to fill
2326 */
2327static int do_sysinfo(struct sysinfo *info)
2328{
2329 unsigned long mem_total, sav_total;
2330 unsigned int mem_unit, bitcount;
2331 struct timespec tp;
2332
2333 memset(info, 0, sizeof(struct sysinfo));
2334
2335 ktime_get_ts(&tp);
2336 monotonic_to_bootbased(&tp);
2337 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2338
2339 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2340
2341 info->procs = nr_threads;
2342
2343 si_meminfo(info);
2344 si_swapinfo(info);
2345
2346 /*
2347 * If the sum of all the available memory (i.e. ram + swap)
2348 * is less than can be stored in a 32 bit unsigned long then
2349 * we can be binary compatible with 2.2.x kernels. If not,
2350 * well, in that case 2.2.x was broken anyways...
2351 *
2352 * -Erik Andersen <andersee@debian.org>
2353 */
2354
2355 mem_total = info->totalram + info->totalswap;
2356 if (mem_total < info->totalram || mem_total < info->totalswap)
2357 goto out;
2358 bitcount = 0;
2359 mem_unit = info->mem_unit;
2360 while (mem_unit > 1) {
2361 bitcount++;
2362 mem_unit >>= 1;
2363 sav_total = mem_total;
2364 mem_total <<= 1;
2365 if (mem_total < sav_total)
2366 goto out;
2367 }
2368
2369 /*
2370 * If mem_total did not overflow, multiply all memory values by
2371 * info->mem_unit and set it to 1. This leaves things compatible
2372 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2373 * kernels...
2374 */
2375
2376 info->mem_unit = 1;
2377 info->totalram <<= bitcount;
2378 info->freeram <<= bitcount;
2379 info->sharedram <<= bitcount;
2380 info->bufferram <<= bitcount;
2381 info->totalswap <<= bitcount;
2382 info->freeswap <<= bitcount;
2383 info->totalhigh <<= bitcount;
2384 info->freehigh <<= bitcount;
2385
2386out:
2387 return 0;
2388}
2389
2390SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2391{
2392 struct sysinfo val;
2393
2394 do_sysinfo(&val);
2395
2396 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2397 return -EFAULT;
2398
2399 return 0;
2400}
2401
2402#ifdef CONFIG_COMPAT
2403struct compat_sysinfo {
2404 s32 uptime;
2405 u32 loads[3];
2406 u32 totalram;
2407 u32 freeram;
2408 u32 sharedram;
2409 u32 bufferram;
2410 u32 totalswap;
2411 u32 freeswap;
2412 u16 procs;
2413 u16 pad;
2414 u32 totalhigh;
2415 u32 freehigh;
2416 u32 mem_unit;
2417 char _f[20-2*sizeof(u32)-sizeof(int)];
2418};
2419
2420COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2421{
2422 struct sysinfo s;
2423
2424 do_sysinfo(&s);
2425
2426 /* Check to see if any memory value is too large for 32-bit and scale
2427 * down if needed
2428 */
2429 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2430 int bitcount = 0;
2431
2432 while (s.mem_unit < PAGE_SIZE) {
2433 s.mem_unit <<= 1;
2434 bitcount++;
2435 }
2436
2437 s.totalram >>= bitcount;
2438 s.freeram >>= bitcount;
2439 s.sharedram >>= bitcount;
2440 s.bufferram >>= bitcount;
2441 s.totalswap >>= bitcount;
2442 s.freeswap >>= bitcount;
2443 s.totalhigh >>= bitcount;
2444 s.freehigh >>= bitcount;
2445 }
2446
2447 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2448 __put_user(s.uptime, &info->uptime) ||
2449 __put_user(s.loads[0], &info->loads[0]) ||
2450 __put_user(s.loads[1], &info->loads[1]) ||
2451 __put_user(s.loads[2], &info->loads[2]) ||
2452 __put_user(s.totalram, &info->totalram) ||
2453 __put_user(s.freeram, &info->freeram) ||
2454 __put_user(s.sharedram, &info->sharedram) ||
2455 __put_user(s.bufferram, &info->bufferram) ||
2456 __put_user(s.totalswap, &info->totalswap) ||
2457 __put_user(s.freeswap, &info->freeswap) ||
2458 __put_user(s.procs, &info->procs) ||
2459 __put_user(s.totalhigh, &info->totalhigh) ||
2460 __put_user(s.freehigh, &info->freehigh) ||
2461 __put_user(s.mem_unit, &info->mem_unit))
2462 return -EFAULT;
2463
2464 return 0;
2465}
2466#endif /* CONFIG_COMPAT */