futex: Fix potential use-after-free in FUTEX_REQUEUE_PI
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
ab1842f1 64#include <linux/hugetlb.h>
b488893a 65
4732efbe 66#include <asm/futex.h>
1da177e4 67
c87e2837
IM
68#include "rtmutex_common.h"
69
f26c70a4 70#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 71int __read_mostly futex_cmpxchg_enabled;
f26c70a4 72#endif
a0c1e907 73
1da177e4
LT
74#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
75
b41277dc
DH
76/*
77 * Futex flags used to encode options to functions and preserve them across
78 * restarts.
79 */
80#define FLAGS_SHARED 0x01
81#define FLAGS_CLOCKRT 0x02
82#define FLAGS_HAS_TIMEOUT 0x04
83
c87e2837
IM
84/*
85 * Priority Inheritance state:
86 */
87struct futex_pi_state {
88 /*
89 * list of 'owned' pi_state instances - these have to be
90 * cleaned up in do_exit() if the task exits prematurely:
91 */
92 struct list_head list;
93
94 /*
95 * The PI object:
96 */
97 struct rt_mutex pi_mutex;
98
99 struct task_struct *owner;
100 atomic_t refcount;
101
102 union futex_key key;
103};
104
d8d88fbb
DH
105/**
106 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 107 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
108 * @task: the task waiting on the futex
109 * @lock_ptr: the hash bucket lock
110 * @key: the key the futex is hashed on
111 * @pi_state: optional priority inheritance state
112 * @rt_waiter: rt_waiter storage for use with requeue_pi
113 * @requeue_pi_key: the requeue_pi target futex key
114 * @bitset: bitset for the optional bitmasked wakeup
115 *
116 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
117 * we can wake only the relevant ones (hashed queues may be shared).
118 *
119 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 120 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 121 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
122 * the second.
123 *
124 * PI futexes are typically woken before they are removed from the hash list via
125 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
126 */
127struct futex_q {
ec92d082 128 struct plist_node list;
1da177e4 129
d8d88fbb 130 struct task_struct *task;
1da177e4 131 spinlock_t *lock_ptr;
1da177e4 132 union futex_key key;
c87e2837 133 struct futex_pi_state *pi_state;
52400ba9 134 struct rt_mutex_waiter *rt_waiter;
84bc4af5 135 union futex_key *requeue_pi_key;
cd689985 136 u32 bitset;
1da177e4
LT
137};
138
5bdb05f9
DH
139static const struct futex_q futex_q_init = {
140 /* list gets initialized in queue_me()*/
141 .key = FUTEX_KEY_INIT,
142 .bitset = FUTEX_BITSET_MATCH_ANY
143};
144
1da177e4 145/*
b2d0994b
DH
146 * Hash buckets are shared by all the futex_keys that hash to the same
147 * location. Each key may have multiple futex_q structures, one for each task
148 * waiting on a futex.
1da177e4
LT
149 */
150struct futex_hash_bucket {
ec92d082
PP
151 spinlock_t lock;
152 struct plist_head chain;
1da177e4
LT
153};
154
155static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
156
1da177e4
LT
157/*
158 * We hash on the keys returned from get_futex_key (see below).
159 */
160static struct futex_hash_bucket *hash_futex(union futex_key *key)
161{
162 u32 hash = jhash2((u32*)&key->both.word,
163 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
164 key->both.offset);
165 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
166}
167
168/*
169 * Return 1 if two futex_keys are equal, 0 otherwise.
170 */
171static inline int match_futex(union futex_key *key1, union futex_key *key2)
172{
2bc87203
DH
173 return (key1 && key2
174 && key1->both.word == key2->both.word
1da177e4
LT
175 && key1->both.ptr == key2->both.ptr
176 && key1->both.offset == key2->both.offset);
177}
178
38d47c1b
PZ
179/*
180 * Take a reference to the resource addressed by a key.
181 * Can be called while holding spinlocks.
182 *
183 */
184static void get_futex_key_refs(union futex_key *key)
185{
186 if (!key->both.ptr)
187 return;
188
189 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
190 case FUT_OFF_INODE:
7de9c6ee 191 ihold(key->shared.inode);
38d47c1b
PZ
192 break;
193 case FUT_OFF_MMSHARED:
194 atomic_inc(&key->private.mm->mm_count);
195 break;
196 }
197}
198
199/*
200 * Drop a reference to the resource addressed by a key.
201 * The hash bucket spinlock must not be held.
202 */
203static void drop_futex_key_refs(union futex_key *key)
204{
90621c40
DH
205 if (!key->both.ptr) {
206 /* If we're here then we tried to put a key we failed to get */
207 WARN_ON_ONCE(1);
38d47c1b 208 return;
90621c40 209 }
38d47c1b
PZ
210
211 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
212 case FUT_OFF_INODE:
213 iput(key->shared.inode);
214 break;
215 case FUT_OFF_MMSHARED:
216 mmdrop(key->private.mm);
217 break;
218 }
219}
220
34f01cc1 221/**
d96ee56c
DH
222 * get_futex_key() - Get parameters which are the keys for a futex
223 * @uaddr: virtual address of the futex
224 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
225 * @key: address where result is stored.
9ea71503
SB
226 * @rw: mapping needs to be read/write (values: VERIFY_READ,
227 * VERIFY_WRITE)
34f01cc1 228 *
6c23cbbd
RD
229 * Return: a negative error code or 0
230 *
34f01cc1 231 * The key words are stored in *key on success.
1da177e4 232 *
6131ffaa 233 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
234 * offset_within_page). For private mappings, it's (uaddr, current->mm).
235 * We can usually work out the index without swapping in the page.
236 *
b2d0994b 237 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 238 */
64d1304a 239static int
9ea71503 240get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 241{
e2970f2f 242 unsigned long address = (unsigned long)uaddr;
1da177e4 243 struct mm_struct *mm = current->mm;
a5b338f2 244 struct page *page, *page_head;
9ea71503 245 int err, ro = 0;
1da177e4
LT
246
247 /*
248 * The futex address must be "naturally" aligned.
249 */
e2970f2f 250 key->both.offset = address % PAGE_SIZE;
34f01cc1 251 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 252 return -EINVAL;
e2970f2f 253 address -= key->both.offset;
1da177e4 254
34f01cc1
ED
255 /*
256 * PROCESS_PRIVATE futexes are fast.
257 * As the mm cannot disappear under us and the 'key' only needs
258 * virtual address, we dont even have to find the underlying vma.
259 * Note : We do have to check 'uaddr' is a valid user address,
260 * but access_ok() should be faster than find_vma()
261 */
262 if (!fshared) {
7485d0d3 263 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
264 return -EFAULT;
265 key->private.mm = mm;
266 key->private.address = address;
42569c39 267 get_futex_key_refs(key);
34f01cc1
ED
268 return 0;
269 }
1da177e4 270
38d47c1b 271again:
7485d0d3 272 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
273 /*
274 * If write access is not required (eg. FUTEX_WAIT), try
275 * and get read-only access.
276 */
277 if (err == -EFAULT && rw == VERIFY_READ) {
278 err = get_user_pages_fast(address, 1, 0, &page);
279 ro = 1;
280 }
38d47c1b
PZ
281 if (err < 0)
282 return err;
9ea71503
SB
283 else
284 err = 0;
38d47c1b 285
a5b338f2
AA
286#ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 page_head = page;
288 if (unlikely(PageTail(page))) {
38d47c1b 289 put_page(page);
a5b338f2
AA
290 /* serialize against __split_huge_page_splitting() */
291 local_irq_disable();
13bb709c 292 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
293 page_head = compound_head(page);
294 /*
295 * page_head is valid pointer but we must pin
296 * it before taking the PG_lock and/or
297 * PG_compound_lock. The moment we re-enable
298 * irqs __split_huge_page_splitting() can
299 * return and the head page can be freed from
300 * under us. We can't take the PG_lock and/or
301 * PG_compound_lock on a page that could be
302 * freed from under us.
303 */
304 if (page != page_head) {
305 get_page(page_head);
306 put_page(page);
307 }
308 local_irq_enable();
309 } else {
310 local_irq_enable();
311 goto again;
312 }
313 }
314#else
315 page_head = compound_head(page);
316 if (page != page_head) {
317 get_page(page_head);
318 put_page(page);
319 }
320#endif
321
322 lock_page(page_head);
e6780f72
HD
323
324 /*
325 * If page_head->mapping is NULL, then it cannot be a PageAnon
326 * page; but it might be the ZERO_PAGE or in the gate area or
327 * in a special mapping (all cases which we are happy to fail);
328 * or it may have been a good file page when get_user_pages_fast
329 * found it, but truncated or holepunched or subjected to
330 * invalidate_complete_page2 before we got the page lock (also
331 * cases which we are happy to fail). And we hold a reference,
332 * so refcount care in invalidate_complete_page's remove_mapping
333 * prevents drop_caches from setting mapping to NULL beneath us.
334 *
335 * The case we do have to guard against is when memory pressure made
336 * shmem_writepage move it from filecache to swapcache beneath us:
337 * an unlikely race, but we do need to retry for page_head->mapping.
338 */
a5b338f2 339 if (!page_head->mapping) {
e6780f72 340 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
341 unlock_page(page_head);
342 put_page(page_head);
e6780f72
HD
343 if (shmem_swizzled)
344 goto again;
345 return -EFAULT;
38d47c1b 346 }
1da177e4
LT
347
348 /*
349 * Private mappings are handled in a simple way.
350 *
351 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 353 * the object not the particular process.
1da177e4 354 */
a5b338f2 355 if (PageAnon(page_head)) {
9ea71503
SB
356 /*
357 * A RO anonymous page will never change and thus doesn't make
358 * sense for futex operations.
359 */
360 if (ro) {
361 err = -EFAULT;
362 goto out;
363 }
364
38d47c1b 365 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 366 key->private.mm = mm;
e2970f2f 367 key->private.address = address;
38d47c1b
PZ
368 } else {
369 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 370 key->shared.inode = page_head->mapping->host;
ab1842f1 371 key->shared.pgoff = basepage_index(page);
1da177e4
LT
372 }
373
38d47c1b 374 get_futex_key_refs(key);
1da177e4 375
9ea71503 376out:
a5b338f2
AA
377 unlock_page(page_head);
378 put_page(page_head);
9ea71503 379 return err;
1da177e4
LT
380}
381
ae791a2d 382static inline void put_futex_key(union futex_key *key)
1da177e4 383{
38d47c1b 384 drop_futex_key_refs(key);
1da177e4
LT
385}
386
d96ee56c
DH
387/**
388 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
389 * @uaddr: pointer to faulting user space address
390 *
391 * Slow path to fixup the fault we just took in the atomic write
392 * access to @uaddr.
393 *
fb62db2b 394 * We have no generic implementation of a non-destructive write to the
d0725992
TG
395 * user address. We know that we faulted in the atomic pagefault
396 * disabled section so we can as well avoid the #PF overhead by
397 * calling get_user_pages() right away.
398 */
399static int fault_in_user_writeable(u32 __user *uaddr)
400{
722d0172
AK
401 struct mm_struct *mm = current->mm;
402 int ret;
403
404 down_read(&mm->mmap_sem);
2efaca92
BH
405 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406 FAULT_FLAG_WRITE);
722d0172
AK
407 up_read(&mm->mmap_sem);
408
d0725992
TG
409 return ret < 0 ? ret : 0;
410}
411
4b1c486b
DH
412/**
413 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
414 * @hb: the hash bucket the futex_q's reside in
415 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
416 *
417 * Must be called with the hb lock held.
418 */
419static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420 union futex_key *key)
421{
422 struct futex_q *this;
423
424 plist_for_each_entry(this, &hb->chain, list) {
425 if (match_futex(&this->key, key))
426 return this;
427 }
428 return NULL;
429}
430
37a9d912
ML
431static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432 u32 uval, u32 newval)
36cf3b5c 433{
37a9d912 434 int ret;
36cf3b5c
TG
435
436 pagefault_disable();
37a9d912 437 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
438 pagefault_enable();
439
37a9d912 440 return ret;
36cf3b5c
TG
441}
442
443static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
444{
445 int ret;
446
a866374a 447 pagefault_disable();
e2970f2f 448 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 449 pagefault_enable();
1da177e4
LT
450
451 return ret ? -EFAULT : 0;
452}
453
c87e2837
IM
454
455/*
456 * PI code:
457 */
458static int refill_pi_state_cache(void)
459{
460 struct futex_pi_state *pi_state;
461
462 if (likely(current->pi_state_cache))
463 return 0;
464
4668edc3 465 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
466
467 if (!pi_state)
468 return -ENOMEM;
469
c87e2837
IM
470 INIT_LIST_HEAD(&pi_state->list);
471 /* pi_mutex gets initialized later */
472 pi_state->owner = NULL;
473 atomic_set(&pi_state->refcount, 1);
38d47c1b 474 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
475
476 current->pi_state_cache = pi_state;
477
478 return 0;
479}
480
481static struct futex_pi_state * alloc_pi_state(void)
482{
483 struct futex_pi_state *pi_state = current->pi_state_cache;
484
485 WARN_ON(!pi_state);
486 current->pi_state_cache = NULL;
487
488 return pi_state;
489}
490
491static void free_pi_state(struct futex_pi_state *pi_state)
492{
493 if (!atomic_dec_and_test(&pi_state->refcount))
494 return;
495
496 /*
497 * If pi_state->owner is NULL, the owner is most probably dying
498 * and has cleaned up the pi_state already
499 */
500 if (pi_state->owner) {
1d615482 501 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 502 list_del_init(&pi_state->list);
1d615482 503 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
504
505 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506 }
507
508 if (current->pi_state_cache)
509 kfree(pi_state);
510 else {
511 /*
512 * pi_state->list is already empty.
513 * clear pi_state->owner.
514 * refcount is at 0 - put it back to 1.
515 */
516 pi_state->owner = NULL;
517 atomic_set(&pi_state->refcount, 1);
518 current->pi_state_cache = pi_state;
519 }
520}
521
522/*
523 * Look up the task based on what TID userspace gave us.
524 * We dont trust it.
525 */
526static struct task_struct * futex_find_get_task(pid_t pid)
527{
528 struct task_struct *p;
529
d359b549 530 rcu_read_lock();
228ebcbe 531 p = find_task_by_vpid(pid);
7a0ea09a
MH
532 if (p)
533 get_task_struct(p);
a06381fe 534
d359b549 535 rcu_read_unlock();
c87e2837
IM
536
537 return p;
538}
539
540/*
541 * This task is holding PI mutexes at exit time => bad.
542 * Kernel cleans up PI-state, but userspace is likely hosed.
543 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 */
545void exit_pi_state_list(struct task_struct *curr)
546{
c87e2837
IM
547 struct list_head *next, *head = &curr->pi_state_list;
548 struct futex_pi_state *pi_state;
627371d7 549 struct futex_hash_bucket *hb;
38d47c1b 550 union futex_key key = FUTEX_KEY_INIT;
c87e2837 551
a0c1e907
TG
552 if (!futex_cmpxchg_enabled)
553 return;
c87e2837
IM
554 /*
555 * We are a ZOMBIE and nobody can enqueue itself on
556 * pi_state_list anymore, but we have to be careful
627371d7 557 * versus waiters unqueueing themselves:
c87e2837 558 */
1d615482 559 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
560 while (!list_empty(head)) {
561
562 next = head->next;
563 pi_state = list_entry(next, struct futex_pi_state, list);
564 key = pi_state->key;
627371d7 565 hb = hash_futex(&key);
1d615482 566 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 567
c87e2837
IM
568 spin_lock(&hb->lock);
569
1d615482 570 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
571 /*
572 * We dropped the pi-lock, so re-check whether this
573 * task still owns the PI-state:
574 */
c87e2837
IM
575 if (head->next != next) {
576 spin_unlock(&hb->lock);
577 continue;
578 }
579
c87e2837 580 WARN_ON(pi_state->owner != curr);
627371d7
IM
581 WARN_ON(list_empty(&pi_state->list));
582 list_del_init(&pi_state->list);
c87e2837 583 pi_state->owner = NULL;
1d615482 584 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
585
586 rt_mutex_unlock(&pi_state->pi_mutex);
587
588 spin_unlock(&hb->lock);
589
1d615482 590 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 591 }
1d615482 592 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
593}
594
efccdcdb
TG
595/*
596 * We need to check the following states:
597 *
598 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
599 *
600 * [1] NULL | --- | --- | 0 | 0/1 | Valid
601 * [2] NULL | --- | --- | >0 | 0/1 | Valid
602 *
603 * [3] Found | NULL | -- | Any | 0/1 | Invalid
604 *
605 * [4] Found | Found | NULL | 0 | 1 | Valid
606 * [5] Found | Found | NULL | >0 | 1 | Invalid
607 *
608 * [6] Found | Found | task | 0 | 1 | Valid
609 *
610 * [7] Found | Found | NULL | Any | 0 | Invalid
611 *
612 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
613 * [9] Found | Found | task | 0 | 0 | Invalid
614 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
615 *
616 * [1] Indicates that the kernel can acquire the futex atomically. We
617 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
618 *
619 * [2] Valid, if TID does not belong to a kernel thread. If no matching
620 * thread is found then it indicates that the owner TID has died.
621 *
622 * [3] Invalid. The waiter is queued on a non PI futex
623 *
624 * [4] Valid state after exit_robust_list(), which sets the user space
625 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
626 *
627 * [5] The user space value got manipulated between exit_robust_list()
628 * and exit_pi_state_list()
629 *
630 * [6] Valid state after exit_pi_state_list() which sets the new owner in
631 * the pi_state but cannot access the user space value.
632 *
633 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
634 *
635 * [8] Owner and user space value match
636 *
637 * [9] There is no transient state which sets the user space TID to 0
638 * except exit_robust_list(), but this is indicated by the
639 * FUTEX_OWNER_DIED bit. See [4]
640 *
641 * [10] There is no transient state which leaves owner and user space
642 * TID out of sync.
643 */
c87e2837 644static int
d0aa7a70 645lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
efccdcdb 646 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
647{
648 struct futex_pi_state *pi_state = NULL;
649 struct futex_q *this, *next;
ec92d082 650 struct plist_head *head;
c87e2837 651 struct task_struct *p;
778e9a9c 652 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
653
654 head = &hb->chain;
655
ec92d082 656 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 657 if (match_futex(&this->key, key)) {
c87e2837 658 /*
efccdcdb
TG
659 * Sanity check the waiter before increasing
660 * the refcount and attaching to it.
c87e2837
IM
661 */
662 pi_state = this->pi_state;
06a9ec29 663 /*
efccdcdb
TG
664 * Userspace might have messed up non-PI and
665 * PI futexes [3]
06a9ec29
TG
666 */
667 if (unlikely(!pi_state))
668 return -EINVAL;
669
627371d7 670 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
671
672 /*
efccdcdb 673 * Handle the owner died case:
59647b6a 674 */
efccdcdb 675 if (uval & FUTEX_OWNER_DIED) {
59647b6a 676 /*
efccdcdb
TG
677 * exit_pi_state_list sets owner to NULL and
678 * wakes the topmost waiter. The task which
679 * acquires the pi_state->rt_mutex will fixup
680 * owner.
59647b6a 681 */
efccdcdb
TG
682 if (!pi_state->owner) {
683 /*
684 * No pi state owner, but the user
685 * space TID is not 0. Inconsistent
686 * state. [5]
687 */
688 if (pid)
689 return -EINVAL;
690 /*
691 * Take a ref on the state and
692 * return. [4]
693 */
694 goto out_state;
695 }
696
697 /*
698 * If TID is 0, then either the dying owner
699 * has not yet executed exit_pi_state_list()
700 * or some waiter acquired the rtmutex in the
701 * pi state, but did not yet fixup the TID in
702 * user space.
703 *
704 * Take a ref on the state and return. [6]
705 */
706 if (!pid)
707 goto out_state;
708 } else {
709 /*
710 * If the owner died bit is not set,
711 * then the pi_state must have an
712 * owner. [7]
713 */
714 if (!pi_state->owner)
59647b6a
TG
715 return -EINVAL;
716 }
627371d7 717
cabef9fe 718 /*
efccdcdb
TG
719 * Bail out if user space manipulated the
720 * futex value. If pi state exists then the
721 * owner TID must be the same as the user
722 * space TID. [9/10]
cabef9fe 723 */
efccdcdb
TG
724 if (pid != task_pid_vnr(pi_state->owner))
725 return -EINVAL;
cabef9fe 726
efccdcdb 727 out_state:
c87e2837 728 atomic_inc(&pi_state->refcount);
d0aa7a70 729 *ps = pi_state;
c87e2837
IM
730 return 0;
731 }
732 }
733
734 /*
e3f2ddea 735 * We are the first waiter - try to look up the real owner and attach
efccdcdb 736 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 737 */
778e9a9c 738 if (!pid)
e3f2ddea 739 return -ESRCH;
c87e2837 740 p = futex_find_get_task(pid);
7a0ea09a
MH
741 if (!p)
742 return -ESRCH;
778e9a9c 743
452d7fea
TG
744 if (!p->mm) {
745 put_task_struct(p);
746 return -EPERM;
747 }
748
778e9a9c
AK
749 /*
750 * We need to look at the task state flags to figure out,
751 * whether the task is exiting. To protect against the do_exit
752 * change of the task flags, we do this protected by
753 * p->pi_lock:
754 */
1d615482 755 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
756 if (unlikely(p->flags & PF_EXITING)) {
757 /*
758 * The task is on the way out. When PF_EXITPIDONE is
759 * set, we know that the task has finished the
760 * cleanup:
761 */
762 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
763
1d615482 764 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
765 put_task_struct(p);
766 return ret;
767 }
c87e2837 768
efccdcdb
TG
769 /*
770 * No existing pi state. First waiter. [2]
771 */
c87e2837
IM
772 pi_state = alloc_pi_state();
773
774 /*
775 * Initialize the pi_mutex in locked state and make 'p'
776 * the owner of it:
777 */
778 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
779
780 /* Store the key for possible exit cleanups: */
d0aa7a70 781 pi_state->key = *key;
c87e2837 782
627371d7 783 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
784 list_add(&pi_state->list, &p->pi_state_list);
785 pi_state->owner = p;
1d615482 786 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
787
788 put_task_struct(p);
789
d0aa7a70 790 *ps = pi_state;
c87e2837
IM
791
792 return 0;
793}
794
1a52084d 795/**
d96ee56c 796 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
797 * @uaddr: the pi futex user address
798 * @hb: the pi futex hash bucket
799 * @key: the futex key associated with uaddr and hb
800 * @ps: the pi_state pointer where we store the result of the
801 * lookup
802 * @task: the task to perform the atomic lock work for. This will
803 * be "current" except in the case of requeue pi.
804 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 805 *
6c23cbbd
RD
806 * Return:
807 * 0 - ready to wait;
808 * 1 - acquired the lock;
1a52084d
DH
809 * <0 - error
810 *
811 * The hb->lock and futex_key refs shall be held by the caller.
812 */
813static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
814 union futex_key *key,
815 struct futex_pi_state **ps,
bab5bc9e 816 struct task_struct *task, int set_waiters)
1a52084d 817{
59fa6245 818 int lock_taken, ret, force_take = 0;
c0c9ed15 819 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
820
821retry:
822 ret = lock_taken = 0;
823
824 /*
825 * To avoid races, we attempt to take the lock here again
826 * (by doing a 0 -> TID atomic cmpxchg), while holding all
827 * the locks. It will most likely not succeed.
828 */
c0c9ed15 829 newval = vpid;
bab5bc9e
DH
830 if (set_waiters)
831 newval |= FUTEX_WAITERS;
1a52084d 832
37a9d912 833 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
834 return -EFAULT;
835
836 /*
837 * Detect deadlocks.
838 */
c0c9ed15 839 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
840 return -EDEADLK;
841
842 /*
63d6ad59 843 * Surprise - we got the lock, but we do not trust user space at all.
1a52084d 844 */
63d6ad59
TG
845 if (unlikely(!curval)) {
846 /*
847 * We verify whether there is kernel state for this
848 * futex. If not, we can safely assume, that the 0 ->
849 * TID transition is correct. If state exists, we do
850 * not bother to fixup the user space state as it was
851 * corrupted already.
852 */
853 return futex_top_waiter(hb, key) ? -EINVAL : 1;
854 }
1a52084d
DH
855
856 uval = curval;
857
858 /*
859 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
860 * to wake at the next unlock.
861 */
862 newval = curval | FUTEX_WAITERS;
863
864 /*
59fa6245 865 * Should we force take the futex? See below.
1a52084d 866 */
59fa6245
TG
867 if (unlikely(force_take)) {
868 /*
869 * Keep the OWNER_DIED and the WAITERS bit and set the
870 * new TID value.
871 */
c0c9ed15 872 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 873 force_take = 0;
1a52084d
DH
874 lock_taken = 1;
875 }
876
37a9d912 877 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
878 return -EFAULT;
879 if (unlikely(curval != uval))
880 goto retry;
881
882 /*
59fa6245 883 * We took the lock due to forced take over.
1a52084d
DH
884 */
885 if (unlikely(lock_taken))
886 return 1;
887
888 /*
889 * We dont have the lock. Look up the PI state (or create it if
890 * we are the first waiter):
891 */
efccdcdb 892 ret = lookup_pi_state(uval, hb, key, ps);
1a52084d
DH
893
894 if (unlikely(ret)) {
895 switch (ret) {
896 case -ESRCH:
897 /*
59fa6245
TG
898 * We failed to find an owner for this
899 * futex. So we have no pi_state to block
900 * on. This can happen in two cases:
901 *
902 * 1) The owner died
903 * 2) A stale FUTEX_WAITERS bit
904 *
905 * Re-read the futex value.
1a52084d
DH
906 */
907 if (get_futex_value_locked(&curval, uaddr))
908 return -EFAULT;
909
910 /*
59fa6245
TG
911 * If the owner died or we have a stale
912 * WAITERS bit the owner TID in the user space
913 * futex is 0.
1a52084d 914 */
59fa6245
TG
915 if (!(curval & FUTEX_TID_MASK)) {
916 force_take = 1;
1a52084d
DH
917 goto retry;
918 }
919 default:
920 break;
921 }
922 }
923
924 return ret;
925}
926
2e12978a
LJ
927/**
928 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
929 * @q: The futex_q to unqueue
930 *
931 * The q->lock_ptr must not be NULL and must be held by the caller.
932 */
933static void __unqueue_futex(struct futex_q *q)
934{
935 struct futex_hash_bucket *hb;
936
29096202
SR
937 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
938 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
939 return;
940
941 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
942 plist_del(&q->list, &hb->chain);
943}
944
1da177e4
LT
945/*
946 * The hash bucket lock must be held when this is called.
947 * Afterwards, the futex_q must not be accessed.
948 */
949static void wake_futex(struct futex_q *q)
950{
f1a11e05
TG
951 struct task_struct *p = q->task;
952
aa10990e
DH
953 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
954 return;
955
1da177e4 956 /*
f1a11e05 957 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
958 * a non-futex wake up happens on another CPU then the task
959 * might exit and p would dereference a non-existing task
f1a11e05
TG
960 * struct. Prevent this by holding a reference on p across the
961 * wake up.
1da177e4 962 */
f1a11e05
TG
963 get_task_struct(p);
964
2e12978a 965 __unqueue_futex(q);
1da177e4 966 /*
f1a11e05
TG
967 * The waiting task can free the futex_q as soon as
968 * q->lock_ptr = NULL is written, without taking any locks. A
969 * memory barrier is required here to prevent the following
970 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 971 */
ccdea2f8 972 smp_wmb();
1da177e4 973 q->lock_ptr = NULL;
f1a11e05
TG
974
975 wake_up_state(p, TASK_NORMAL);
976 put_task_struct(p);
1da177e4
LT
977}
978
c87e2837
IM
979static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
980{
981 struct task_struct *new_owner;
982 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 983 u32 uninitialized_var(curval), newval;
9ad5dabd 984 int ret = 0;
c87e2837
IM
985
986 if (!pi_state)
987 return -EINVAL;
988
51246bfd
TG
989 /*
990 * If current does not own the pi_state then the futex is
991 * inconsistent and user space fiddled with the futex value.
992 */
993 if (pi_state->owner != current)
994 return -EINVAL;
995
d209d74d 996 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
997 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
998
999 /*
f123c98e
SR
1000 * It is possible that the next waiter (the one that brought
1001 * this owner to the kernel) timed out and is no longer
1002 * waiting on the lock.
c87e2837
IM
1003 */
1004 if (!new_owner)
1005 new_owner = this->task;
1006
1007 /*
9ad5dabd
TG
1008 * We pass it to the next owner. The WAITERS bit is always
1009 * kept enabled while there is PI state around. We cleanup the
1010 * owner died bit, because we are the owner.
c87e2837 1011 */
9ad5dabd 1012 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1013
9ad5dabd
TG
1014 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1015 ret = -EFAULT;
1016 else if (curval != uval)
1017 ret = -EINVAL;
1018 if (ret) {
1019 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1020 return ret;
e3f2ddea 1021 }
c87e2837 1022
1d615482 1023 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1024 WARN_ON(list_empty(&pi_state->list));
1025 list_del_init(&pi_state->list);
1d615482 1026 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1027
1d615482 1028 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1029 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1030 list_add(&pi_state->list, &new_owner->pi_state_list);
1031 pi_state->owner = new_owner;
1d615482 1032 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1033
d209d74d 1034 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1035 rt_mutex_unlock(&pi_state->pi_mutex);
1036
1037 return 0;
1038}
1039
1040static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1041{
7cfdaf38 1042 u32 uninitialized_var(oldval);
c87e2837
IM
1043
1044 /*
1045 * There is no waiter, so we unlock the futex. The owner died
1046 * bit has not to be preserved here. We are the owner:
1047 */
37a9d912
ML
1048 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1049 return -EFAULT;
c87e2837
IM
1050 if (oldval != uval)
1051 return -EAGAIN;
1052
1053 return 0;
1054}
1055
8b8f319f
IM
1056/*
1057 * Express the locking dependencies for lockdep:
1058 */
1059static inline void
1060double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1061{
1062 if (hb1 <= hb2) {
1063 spin_lock(&hb1->lock);
1064 if (hb1 < hb2)
1065 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1066 } else { /* hb1 > hb2 */
1067 spin_lock(&hb2->lock);
1068 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1069 }
1070}
1071
5eb3dc62
DH
1072static inline void
1073double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1074{
f061d351 1075 spin_unlock(&hb1->lock);
88f502fe
IM
1076 if (hb1 != hb2)
1077 spin_unlock(&hb2->lock);
5eb3dc62
DH
1078}
1079
1da177e4 1080/*
b2d0994b 1081 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1082 */
b41277dc
DH
1083static int
1084futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1085{
e2970f2f 1086 struct futex_hash_bucket *hb;
1da177e4 1087 struct futex_q *this, *next;
ec92d082 1088 struct plist_head *head;
38d47c1b 1089 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1090 int ret;
1091
cd689985
TG
1092 if (!bitset)
1093 return -EINVAL;
1094
9ea71503 1095 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1096 if (unlikely(ret != 0))
1097 goto out;
1098
e2970f2f
IM
1099 hb = hash_futex(&key);
1100 spin_lock(&hb->lock);
1101 head = &hb->chain;
1da177e4 1102
ec92d082 1103 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 1104 if (match_futex (&this->key, &key)) {
52400ba9 1105 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1106 ret = -EINVAL;
1107 break;
1108 }
cd689985
TG
1109
1110 /* Check if one of the bits is set in both bitsets */
1111 if (!(this->bitset & bitset))
1112 continue;
1113
1da177e4
LT
1114 wake_futex(this);
1115 if (++ret >= nr_wake)
1116 break;
1117 }
1118 }
1119
e2970f2f 1120 spin_unlock(&hb->lock);
ae791a2d 1121 put_futex_key(&key);
42d35d48 1122out:
1da177e4
LT
1123 return ret;
1124}
1125
4732efbe
JJ
1126/*
1127 * Wake up all waiters hashed on the physical page that is mapped
1128 * to this virtual address:
1129 */
e2970f2f 1130static int
b41277dc 1131futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1132 int nr_wake, int nr_wake2, int op)
4732efbe 1133{
38d47c1b 1134 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1135 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1136 struct plist_head *head;
4732efbe 1137 struct futex_q *this, *next;
e4dc5b7a 1138 int ret, op_ret;
4732efbe 1139
e4dc5b7a 1140retry:
9ea71503 1141 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1142 if (unlikely(ret != 0))
1143 goto out;
9ea71503 1144 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1145 if (unlikely(ret != 0))
42d35d48 1146 goto out_put_key1;
4732efbe 1147
e2970f2f
IM
1148 hb1 = hash_futex(&key1);
1149 hb2 = hash_futex(&key2);
4732efbe 1150
e4dc5b7a 1151retry_private:
eaaea803 1152 double_lock_hb(hb1, hb2);
e2970f2f 1153 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1154 if (unlikely(op_ret < 0)) {
4732efbe 1155
5eb3dc62 1156 double_unlock_hb(hb1, hb2);
4732efbe 1157
7ee1dd3f 1158#ifndef CONFIG_MMU
e2970f2f
IM
1159 /*
1160 * we don't get EFAULT from MMU faults if we don't have an MMU,
1161 * but we might get them from range checking
1162 */
7ee1dd3f 1163 ret = op_ret;
42d35d48 1164 goto out_put_keys;
7ee1dd3f
DH
1165#endif
1166
796f8d9b
DG
1167 if (unlikely(op_ret != -EFAULT)) {
1168 ret = op_ret;
42d35d48 1169 goto out_put_keys;
796f8d9b
DG
1170 }
1171
d0725992 1172 ret = fault_in_user_writeable(uaddr2);
4732efbe 1173 if (ret)
de87fcc1 1174 goto out_put_keys;
4732efbe 1175
b41277dc 1176 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1177 goto retry_private;
1178
ae791a2d
TG
1179 put_futex_key(&key2);
1180 put_futex_key(&key1);
e4dc5b7a 1181 goto retry;
4732efbe
JJ
1182 }
1183
e2970f2f 1184 head = &hb1->chain;
4732efbe 1185
ec92d082 1186 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1187 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1188 if (this->pi_state || this->rt_waiter) {
1189 ret = -EINVAL;
1190 goto out_unlock;
1191 }
4732efbe
JJ
1192 wake_futex(this);
1193 if (++ret >= nr_wake)
1194 break;
1195 }
1196 }
1197
1198 if (op_ret > 0) {
e2970f2f 1199 head = &hb2->chain;
4732efbe
JJ
1200
1201 op_ret = 0;
ec92d082 1202 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1203 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1204 if (this->pi_state || this->rt_waiter) {
1205 ret = -EINVAL;
1206 goto out_unlock;
1207 }
4732efbe
JJ
1208 wake_futex(this);
1209 if (++op_ret >= nr_wake2)
1210 break;
1211 }
1212 }
1213 ret += op_ret;
1214 }
1215
aa10990e 1216out_unlock:
5eb3dc62 1217 double_unlock_hb(hb1, hb2);
42d35d48 1218out_put_keys:
ae791a2d 1219 put_futex_key(&key2);
42d35d48 1220out_put_key1:
ae791a2d 1221 put_futex_key(&key1);
42d35d48 1222out:
4732efbe
JJ
1223 return ret;
1224}
1225
9121e478
DH
1226/**
1227 * requeue_futex() - Requeue a futex_q from one hb to another
1228 * @q: the futex_q to requeue
1229 * @hb1: the source hash_bucket
1230 * @hb2: the target hash_bucket
1231 * @key2: the new key for the requeued futex_q
1232 */
1233static inline
1234void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1235 struct futex_hash_bucket *hb2, union futex_key *key2)
1236{
1237
1238 /*
1239 * If key1 and key2 hash to the same bucket, no need to
1240 * requeue.
1241 */
1242 if (likely(&hb1->chain != &hb2->chain)) {
1243 plist_del(&q->list, &hb1->chain);
1244 plist_add(&q->list, &hb2->chain);
1245 q->lock_ptr = &hb2->lock;
9121e478
DH
1246 }
1247 get_futex_key_refs(key2);
1248 q->key = *key2;
1249}
1250
52400ba9
DH
1251/**
1252 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1253 * @q: the futex_q
1254 * @key: the key of the requeue target futex
1255 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1256 *
1257 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1258 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1259 * to the requeue target futex so the waiter can detect the wakeup on the right
1260 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1261 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1262 * to protect access to the pi_state to fixup the owner later. Must be called
1263 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1264 */
1265static inline
beda2c7e
DH
1266void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1267 struct futex_hash_bucket *hb)
52400ba9 1268{
52400ba9
DH
1269 get_futex_key_refs(key);
1270 q->key = *key;
1271
2e12978a 1272 __unqueue_futex(q);
52400ba9
DH
1273
1274 WARN_ON(!q->rt_waiter);
1275 q->rt_waiter = NULL;
1276
beda2c7e 1277 q->lock_ptr = &hb->lock;
beda2c7e 1278
f1a11e05 1279 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1280}
1281
1282/**
1283 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1284 * @pifutex: the user address of the to futex
1285 * @hb1: the from futex hash bucket, must be locked by the caller
1286 * @hb2: the to futex hash bucket, must be locked by the caller
1287 * @key1: the from futex key
1288 * @key2: the to futex key
1289 * @ps: address to store the pi_state pointer
1290 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1291 *
1292 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1293 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1294 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1295 * hb1 and hb2 must be held by the caller.
52400ba9 1296 *
6c23cbbd
RD
1297 * Return:
1298 * 0 - failed to acquire the lock atomically;
cabef9fe 1299 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1300 * <0 - error
1301 */
1302static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1303 struct futex_hash_bucket *hb1,
1304 struct futex_hash_bucket *hb2,
1305 union futex_key *key1, union futex_key *key2,
bab5bc9e 1306 struct futex_pi_state **ps, int set_waiters)
52400ba9 1307{
bab5bc9e 1308 struct futex_q *top_waiter = NULL;
52400ba9 1309 u32 curval;
cabef9fe 1310 int ret, vpid;
52400ba9
DH
1311
1312 if (get_futex_value_locked(&curval, pifutex))
1313 return -EFAULT;
1314
bab5bc9e
DH
1315 /*
1316 * Find the top_waiter and determine if there are additional waiters.
1317 * If the caller intends to requeue more than 1 waiter to pifutex,
1318 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1319 * as we have means to handle the possible fault. If not, don't set
1320 * the bit unecessarily as it will force the subsequent unlock to enter
1321 * the kernel.
1322 */
52400ba9
DH
1323 top_waiter = futex_top_waiter(hb1, key1);
1324
1325 /* There are no waiters, nothing for us to do. */
1326 if (!top_waiter)
1327 return 0;
1328
84bc4af5
DH
1329 /* Ensure we requeue to the expected futex. */
1330 if (!match_futex(top_waiter->requeue_pi_key, key2))
1331 return -EINVAL;
1332
52400ba9 1333 /*
bab5bc9e
DH
1334 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1335 * the contended case or if set_waiters is 1. The pi_state is returned
1336 * in ps in contended cases.
52400ba9 1337 */
cabef9fe 1338 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1339 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1340 set_waiters);
cabef9fe 1341 if (ret == 1) {
beda2c7e 1342 requeue_pi_wake_futex(top_waiter, key2, hb2);
cabef9fe
TG
1343 return vpid;
1344 }
52400ba9
DH
1345 return ret;
1346}
1347
1348/**
1349 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1350 * @uaddr1: source futex user address
b41277dc 1351 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1352 * @uaddr2: target futex user address
1353 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1354 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1355 * @cmpval: @uaddr1 expected value (or %NULL)
1356 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1357 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1358 *
1359 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1360 * uaddr2 atomically on behalf of the top waiter.
1361 *
6c23cbbd
RD
1362 * Return:
1363 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1364 * <0 - on error
1da177e4 1365 */
b41277dc
DH
1366static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1367 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1368 u32 *cmpval, int requeue_pi)
1da177e4 1369{
38d47c1b 1370 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1371 int drop_count = 0, task_count = 0, ret;
1372 struct futex_pi_state *pi_state = NULL;
e2970f2f 1373 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1374 struct plist_head *head1;
1da177e4 1375 struct futex_q *this, *next;
52400ba9
DH
1376
1377 if (requeue_pi) {
b58623fb
TG
1378 /*
1379 * Requeue PI only works on two distinct uaddrs. This
1380 * check is only valid for private futexes. See below.
1381 */
1382 if (uaddr1 == uaddr2)
1383 return -EINVAL;
1384
52400ba9
DH
1385 /*
1386 * requeue_pi requires a pi_state, try to allocate it now
1387 * without any locks in case it fails.
1388 */
1389 if (refill_pi_state_cache())
1390 return -ENOMEM;
1391 /*
1392 * requeue_pi must wake as many tasks as it can, up to nr_wake
1393 * + nr_requeue, since it acquires the rt_mutex prior to
1394 * returning to userspace, so as to not leave the rt_mutex with
1395 * waiters and no owner. However, second and third wake-ups
1396 * cannot be predicted as they involve race conditions with the
1397 * first wake and a fault while looking up the pi_state. Both
1398 * pthread_cond_signal() and pthread_cond_broadcast() should
1399 * use nr_wake=1.
1400 */
1401 if (nr_wake != 1)
1402 return -EINVAL;
1403 }
1da177e4 1404
42d35d48 1405retry:
52400ba9
DH
1406 if (pi_state != NULL) {
1407 /*
1408 * We will have to lookup the pi_state again, so free this one
1409 * to keep the accounting correct.
1410 */
1411 free_pi_state(pi_state);
1412 pi_state = NULL;
1413 }
1414
9ea71503 1415 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1416 if (unlikely(ret != 0))
1417 goto out;
9ea71503
SB
1418 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1419 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1420 if (unlikely(ret != 0))
42d35d48 1421 goto out_put_key1;
1da177e4 1422
b58623fb
TG
1423 /*
1424 * The check above which compares uaddrs is not sufficient for
1425 * shared futexes. We need to compare the keys:
1426 */
1427 if (requeue_pi && match_futex(&key1, &key2)) {
1428 ret = -EINVAL;
1429 goto out_put_keys;
1430 }
1431
e2970f2f
IM
1432 hb1 = hash_futex(&key1);
1433 hb2 = hash_futex(&key2);
1da177e4 1434
e4dc5b7a 1435retry_private:
8b8f319f 1436 double_lock_hb(hb1, hb2);
1da177e4 1437
e2970f2f
IM
1438 if (likely(cmpval != NULL)) {
1439 u32 curval;
1da177e4 1440
e2970f2f 1441 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1442
1443 if (unlikely(ret)) {
5eb3dc62 1444 double_unlock_hb(hb1, hb2);
1da177e4 1445
e2970f2f 1446 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1447 if (ret)
1448 goto out_put_keys;
1da177e4 1449
b41277dc 1450 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1451 goto retry_private;
1da177e4 1452
ae791a2d
TG
1453 put_futex_key(&key2);
1454 put_futex_key(&key1);
e4dc5b7a 1455 goto retry;
1da177e4 1456 }
e2970f2f 1457 if (curval != *cmpval) {
1da177e4
LT
1458 ret = -EAGAIN;
1459 goto out_unlock;
1460 }
1461 }
1462
52400ba9 1463 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1464 /*
1465 * Attempt to acquire uaddr2 and wake the top waiter. If we
1466 * intend to requeue waiters, force setting the FUTEX_WAITERS
1467 * bit. We force this here where we are able to easily handle
1468 * faults rather in the requeue loop below.
1469 */
52400ba9 1470 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1471 &key2, &pi_state, nr_requeue);
52400ba9
DH
1472
1473 /*
1474 * At this point the top_waiter has either taken uaddr2 or is
1475 * waiting on it. If the former, then the pi_state will not
1476 * exist yet, look it up one more time to ensure we have a
cabef9fe
TG
1477 * reference to it. If the lock was taken, ret contains the
1478 * vpid of the top waiter task.
52400ba9 1479 */
cabef9fe 1480 if (ret > 0) {
52400ba9 1481 WARN_ON(pi_state);
89061d3d 1482 drop_count++;
52400ba9 1483 task_count++;
cabef9fe
TG
1484 /*
1485 * If we acquired the lock, then the user
1486 * space value of uaddr2 should be vpid. It
1487 * cannot be changed by the top waiter as it
1488 * is blocked on hb2 lock if it tries to do
1489 * so. If something fiddled with it behind our
1490 * back the pi state lookup might unearth
1491 * it. So we rather use the known value than
1492 * rereading and handing potential crap to
1493 * lookup_pi_state.
1494 */
efccdcdb 1495 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1496 }
1497
1498 switch (ret) {
1499 case 0:
1500 break;
1501 case -EFAULT:
1502 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1503 put_futex_key(&key2);
1504 put_futex_key(&key1);
d0725992 1505 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1506 if (!ret)
1507 goto retry;
1508 goto out;
1509 case -EAGAIN:
1510 /* The owner was exiting, try again. */
1511 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1512 put_futex_key(&key2);
1513 put_futex_key(&key1);
52400ba9
DH
1514 cond_resched();
1515 goto retry;
1516 default:
1517 goto out_unlock;
1518 }
1519 }
1520
e2970f2f 1521 head1 = &hb1->chain;
ec92d082 1522 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1523 if (task_count - nr_wake >= nr_requeue)
1524 break;
1525
1526 if (!match_futex(&this->key, &key1))
1da177e4 1527 continue;
52400ba9 1528
392741e0
DH
1529 /*
1530 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1531 * be paired with each other and no other futex ops.
aa10990e
DH
1532 *
1533 * We should never be requeueing a futex_q with a pi_state,
1534 * which is awaiting a futex_unlock_pi().
392741e0
DH
1535 */
1536 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1537 (!requeue_pi && this->rt_waiter) ||
1538 this->pi_state) {
392741e0
DH
1539 ret = -EINVAL;
1540 break;
1541 }
52400ba9
DH
1542
1543 /*
1544 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1545 * lock, we already woke the top_waiter. If not, it will be
1546 * woken by futex_unlock_pi().
1547 */
1548 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1549 wake_futex(this);
52400ba9
DH
1550 continue;
1551 }
1da177e4 1552
84bc4af5
DH
1553 /* Ensure we requeue to the expected futex for requeue_pi. */
1554 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1555 ret = -EINVAL;
1556 break;
1557 }
1558
52400ba9
DH
1559 /*
1560 * Requeue nr_requeue waiters and possibly one more in the case
1561 * of requeue_pi if we couldn't acquire the lock atomically.
1562 */
1563 if (requeue_pi) {
1564 /* Prepare the waiter to take the rt_mutex. */
1565 atomic_inc(&pi_state->refcount);
1566 this->pi_state = pi_state;
1567 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1568 this->rt_waiter,
1569 this->task, 1);
1570 if (ret == 1) {
1571 /* We got the lock. */
beda2c7e 1572 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1573 drop_count++;
52400ba9
DH
1574 continue;
1575 } else if (ret) {
1576 /* -EDEADLK */
1577 this->pi_state = NULL;
1578 free_pi_state(pi_state);
1579 goto out_unlock;
1580 }
1da177e4 1581 }
52400ba9
DH
1582 requeue_futex(this, hb1, hb2, &key2);
1583 drop_count++;
1da177e4
LT
1584 }
1585
1586out_unlock:
5eb3dc62 1587 double_unlock_hb(hb1, hb2);
1da177e4 1588
cd84a42f
DH
1589 /*
1590 * drop_futex_key_refs() must be called outside the spinlocks. During
1591 * the requeue we moved futex_q's from the hash bucket at key1 to the
1592 * one at key2 and updated their key pointer. We no longer need to
1593 * hold the references to key1.
1594 */
1da177e4 1595 while (--drop_count >= 0)
9adef58b 1596 drop_futex_key_refs(&key1);
1da177e4 1597
42d35d48 1598out_put_keys:
ae791a2d 1599 put_futex_key(&key2);
42d35d48 1600out_put_key1:
ae791a2d 1601 put_futex_key(&key1);
42d35d48 1602out:
52400ba9
DH
1603 if (pi_state != NULL)
1604 free_pi_state(pi_state);
1605 return ret ? ret : task_count;
1da177e4
LT
1606}
1607
1608/* The key must be already stored in q->key. */
82af7aca 1609static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1610 __acquires(&hb->lock)
1da177e4 1611{
e2970f2f 1612 struct futex_hash_bucket *hb;
1da177e4 1613
e2970f2f
IM
1614 hb = hash_futex(&q->key);
1615 q->lock_ptr = &hb->lock;
1da177e4 1616
e2970f2f
IM
1617 spin_lock(&hb->lock);
1618 return hb;
1da177e4
LT
1619}
1620
d40d65c8
DH
1621static inline void
1622queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1623 __releases(&hb->lock)
d40d65c8
DH
1624{
1625 spin_unlock(&hb->lock);
d40d65c8
DH
1626}
1627
1628/**
1629 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1630 * @q: The futex_q to enqueue
1631 * @hb: The destination hash bucket
1632 *
1633 * The hb->lock must be held by the caller, and is released here. A call to
1634 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1635 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1636 * or nothing if the unqueue is done as part of the wake process and the unqueue
1637 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1638 * an example).
1639 */
82af7aca 1640static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1641 __releases(&hb->lock)
1da177e4 1642{
ec92d082
PP
1643 int prio;
1644
1645 /*
1646 * The priority used to register this element is
1647 * - either the real thread-priority for the real-time threads
1648 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1649 * - or MAX_RT_PRIO for non-RT threads.
1650 * Thus, all RT-threads are woken first in priority order, and
1651 * the others are woken last, in FIFO order.
1652 */
1653 prio = min(current->normal_prio, MAX_RT_PRIO);
1654
1655 plist_node_init(&q->list, prio);
ec92d082 1656 plist_add(&q->list, &hb->chain);
c87e2837 1657 q->task = current;
e2970f2f 1658 spin_unlock(&hb->lock);
1da177e4
LT
1659}
1660
d40d65c8
DH
1661/**
1662 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1663 * @q: The futex_q to unqueue
1664 *
1665 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1666 * be paired with exactly one earlier call to queue_me().
1667 *
6c23cbbd
RD
1668 * Return:
1669 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1670 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1671 */
1da177e4
LT
1672static int unqueue_me(struct futex_q *q)
1673{
1da177e4 1674 spinlock_t *lock_ptr;
e2970f2f 1675 int ret = 0;
1da177e4
LT
1676
1677 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1678retry:
1da177e4 1679 lock_ptr = q->lock_ptr;
e91467ec 1680 barrier();
c80544dc 1681 if (lock_ptr != NULL) {
1da177e4
LT
1682 spin_lock(lock_ptr);
1683 /*
1684 * q->lock_ptr can change between reading it and
1685 * spin_lock(), causing us to take the wrong lock. This
1686 * corrects the race condition.
1687 *
1688 * Reasoning goes like this: if we have the wrong lock,
1689 * q->lock_ptr must have changed (maybe several times)
1690 * between reading it and the spin_lock(). It can
1691 * change again after the spin_lock() but only if it was
1692 * already changed before the spin_lock(). It cannot,
1693 * however, change back to the original value. Therefore
1694 * we can detect whether we acquired the correct lock.
1695 */
1696 if (unlikely(lock_ptr != q->lock_ptr)) {
1697 spin_unlock(lock_ptr);
1698 goto retry;
1699 }
2e12978a 1700 __unqueue_futex(q);
c87e2837
IM
1701
1702 BUG_ON(q->pi_state);
1703
1da177e4
LT
1704 spin_unlock(lock_ptr);
1705 ret = 1;
1706 }
1707
9adef58b 1708 drop_futex_key_refs(&q->key);
1da177e4
LT
1709 return ret;
1710}
1711
c87e2837
IM
1712/*
1713 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1714 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1715 * and dropped here.
c87e2837 1716 */
d0aa7a70 1717static void unqueue_me_pi(struct futex_q *q)
15e408cd 1718 __releases(q->lock_ptr)
c87e2837 1719{
2e12978a 1720 __unqueue_futex(q);
c87e2837
IM
1721
1722 BUG_ON(!q->pi_state);
1723 free_pi_state(q->pi_state);
1724 q->pi_state = NULL;
1725
d0aa7a70 1726 spin_unlock(q->lock_ptr);
c87e2837
IM
1727}
1728
d0aa7a70 1729/*
cdf71a10 1730 * Fixup the pi_state owner with the new owner.
d0aa7a70 1731 *
778e9a9c
AK
1732 * Must be called with hash bucket lock held and mm->sem held for non
1733 * private futexes.
d0aa7a70 1734 */
778e9a9c 1735static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1736 struct task_struct *newowner)
d0aa7a70 1737{
cdf71a10 1738 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1739 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1740 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1741 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1742 int ret;
d0aa7a70
PP
1743
1744 /* Owner died? */
1b7558e4
TG
1745 if (!pi_state->owner)
1746 newtid |= FUTEX_OWNER_DIED;
1747
1748 /*
1749 * We are here either because we stole the rtmutex from the
8161239a
LJ
1750 * previous highest priority waiter or we are the highest priority
1751 * waiter but failed to get the rtmutex the first time.
1752 * We have to replace the newowner TID in the user space variable.
1753 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1754 *
b2d0994b
DH
1755 * Note: We write the user space value _before_ changing the pi_state
1756 * because we can fault here. Imagine swapped out pages or a fork
1757 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1758 *
1759 * Modifying pi_state _before_ the user space value would
1760 * leave the pi_state in an inconsistent state when we fault
1761 * here, because we need to drop the hash bucket lock to
1762 * handle the fault. This might be observed in the PID check
1763 * in lookup_pi_state.
1764 */
1765retry:
1766 if (get_futex_value_locked(&uval, uaddr))
1767 goto handle_fault;
1768
1769 while (1) {
1770 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1771
37a9d912 1772 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1773 goto handle_fault;
1774 if (curval == uval)
1775 break;
1776 uval = curval;
1777 }
1778
1779 /*
1780 * We fixed up user space. Now we need to fix the pi_state
1781 * itself.
1782 */
d0aa7a70 1783 if (pi_state->owner != NULL) {
1d615482 1784 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1785 WARN_ON(list_empty(&pi_state->list));
1786 list_del_init(&pi_state->list);
1d615482 1787 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1788 }
d0aa7a70 1789
cdf71a10 1790 pi_state->owner = newowner;
d0aa7a70 1791
1d615482 1792 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1793 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1794 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1795 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1796 return 0;
d0aa7a70 1797
d0aa7a70 1798 /*
1b7558e4 1799 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1800 * lock here. That gives the other task (either the highest priority
1801 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1802 * chance to try the fixup of the pi_state. So once we are
1803 * back from handling the fault we need to check the pi_state
1804 * after reacquiring the hash bucket lock and before trying to
1805 * do another fixup. When the fixup has been done already we
1806 * simply return.
d0aa7a70 1807 */
1b7558e4
TG
1808handle_fault:
1809 spin_unlock(q->lock_ptr);
778e9a9c 1810
d0725992 1811 ret = fault_in_user_writeable(uaddr);
778e9a9c 1812
1b7558e4 1813 spin_lock(q->lock_ptr);
778e9a9c 1814
1b7558e4
TG
1815 /*
1816 * Check if someone else fixed it for us:
1817 */
1818 if (pi_state->owner != oldowner)
1819 return 0;
1820
1821 if (ret)
1822 return ret;
1823
1824 goto retry;
d0aa7a70
PP
1825}
1826
72c1bbf3 1827static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1828
dd973998
DH
1829/**
1830 * fixup_owner() - Post lock pi_state and corner case management
1831 * @uaddr: user address of the futex
dd973998
DH
1832 * @q: futex_q (contains pi_state and access to the rt_mutex)
1833 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1834 *
1835 * After attempting to lock an rt_mutex, this function is called to cleanup
1836 * the pi_state owner as well as handle race conditions that may allow us to
1837 * acquire the lock. Must be called with the hb lock held.
1838 *
6c23cbbd
RD
1839 * Return:
1840 * 1 - success, lock taken;
1841 * 0 - success, lock not taken;
dd973998
DH
1842 * <0 - on error (-EFAULT)
1843 */
ae791a2d 1844static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1845{
1846 struct task_struct *owner;
1847 int ret = 0;
1848
1849 if (locked) {
1850 /*
1851 * Got the lock. We might not be the anticipated owner if we
1852 * did a lock-steal - fix up the PI-state in that case:
1853 */
1854 if (q->pi_state->owner != current)
ae791a2d 1855 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1856 goto out;
1857 }
1858
1859 /*
1860 * Catch the rare case, where the lock was released when we were on the
1861 * way back before we locked the hash bucket.
1862 */
1863 if (q->pi_state->owner == current) {
1864 /*
1865 * Try to get the rt_mutex now. This might fail as some other
1866 * task acquired the rt_mutex after we removed ourself from the
1867 * rt_mutex waiters list.
1868 */
1869 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1870 locked = 1;
1871 goto out;
1872 }
1873
1874 /*
1875 * pi_state is incorrect, some other task did a lock steal and
1876 * we returned due to timeout or signal without taking the
8161239a 1877 * rt_mutex. Too late.
dd973998 1878 */
8161239a 1879 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1880 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1881 if (!owner)
1882 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1883 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1884 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1885 goto out;
1886 }
1887
1888 /*
1889 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1890 * the owner of the rt_mutex.
dd973998
DH
1891 */
1892 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1893 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1894 "pi-state %p\n", ret,
1895 q->pi_state->pi_mutex.owner,
1896 q->pi_state->owner);
1897
1898out:
1899 return ret ? ret : locked;
1900}
1901
ca5f9524
DH
1902/**
1903 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1904 * @hb: the futex hash bucket, must be locked by the caller
1905 * @q: the futex_q to queue up on
1906 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1907 */
1908static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1909 struct hrtimer_sleeper *timeout)
ca5f9524 1910{
9beba3c5
DH
1911 /*
1912 * The task state is guaranteed to be set before another task can
1913 * wake it. set_current_state() is implemented using set_mb() and
1914 * queue_me() calls spin_unlock() upon completion, both serializing
1915 * access to the hash list and forcing another memory barrier.
1916 */
f1a11e05 1917 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1918 queue_me(q, hb);
ca5f9524
DH
1919
1920 /* Arm the timer */
1921 if (timeout) {
1922 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1923 if (!hrtimer_active(&timeout->timer))
1924 timeout->task = NULL;
1925 }
1926
1927 /*
0729e196
DH
1928 * If we have been removed from the hash list, then another task
1929 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1930 */
1931 if (likely(!plist_node_empty(&q->list))) {
1932 /*
1933 * If the timer has already expired, current will already be
1934 * flagged for rescheduling. Only call schedule if there
1935 * is no timeout, or if it has yet to expire.
1936 */
1937 if (!timeout || timeout->task)
1938 schedule();
1939 }
1940 __set_current_state(TASK_RUNNING);
1941}
1942
f801073f
DH
1943/**
1944 * futex_wait_setup() - Prepare to wait on a futex
1945 * @uaddr: the futex userspace address
1946 * @val: the expected value
b41277dc 1947 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1948 * @q: the associated futex_q
1949 * @hb: storage for hash_bucket pointer to be returned to caller
1950 *
1951 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1952 * compare it with the expected value. Handle atomic faults internally.
1953 * Return with the hb lock held and a q.key reference on success, and unlocked
1954 * with no q.key reference on failure.
1955 *
6c23cbbd
RD
1956 * Return:
1957 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1958 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1959 */
b41277dc 1960static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1961 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1962{
e2970f2f
IM
1963 u32 uval;
1964 int ret;
1da177e4 1965
1da177e4 1966 /*
b2d0994b 1967 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1968 * Order is important:
1969 *
1970 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1971 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1972 *
1973 * The basic logical guarantee of a futex is that it blocks ONLY
1974 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1975 * any cond. If we locked the hash-bucket after testing *uaddr, that
1976 * would open a race condition where we could block indefinitely with
1da177e4
LT
1977 * cond(var) false, which would violate the guarantee.
1978 *
8fe8f545
ML
1979 * On the other hand, we insert q and release the hash-bucket only
1980 * after testing *uaddr. This guarantees that futex_wait() will NOT
1981 * absorb a wakeup if *uaddr does not match the desired values
1982 * while the syscall executes.
1da177e4 1983 */
f801073f 1984retry:
9ea71503 1985 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1986 if (unlikely(ret != 0))
a5a2a0c7 1987 return ret;
f801073f
DH
1988
1989retry_private:
1990 *hb = queue_lock(q);
1991
e2970f2f 1992 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1993
f801073f
DH
1994 if (ret) {
1995 queue_unlock(q, *hb);
1da177e4 1996
e2970f2f 1997 ret = get_user(uval, uaddr);
e4dc5b7a 1998 if (ret)
f801073f 1999 goto out;
1da177e4 2000
b41277dc 2001 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2002 goto retry_private;
2003
ae791a2d 2004 put_futex_key(&q->key);
e4dc5b7a 2005 goto retry;
1da177e4 2006 }
ca5f9524 2007
f801073f
DH
2008 if (uval != val) {
2009 queue_unlock(q, *hb);
2010 ret = -EWOULDBLOCK;
2fff78c7 2011 }
1da177e4 2012
f801073f
DH
2013out:
2014 if (ret)
ae791a2d 2015 put_futex_key(&q->key);
f801073f
DH
2016 return ret;
2017}
2018
b41277dc
DH
2019static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2020 ktime_t *abs_time, u32 bitset)
f801073f
DH
2021{
2022 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2023 struct restart_block *restart;
2024 struct futex_hash_bucket *hb;
5bdb05f9 2025 struct futex_q q = futex_q_init;
f801073f
DH
2026 int ret;
2027
2028 if (!bitset)
2029 return -EINVAL;
f801073f
DH
2030 q.bitset = bitset;
2031
2032 if (abs_time) {
2033 to = &timeout;
2034
b41277dc
DH
2035 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2036 CLOCK_REALTIME : CLOCK_MONOTONIC,
2037 HRTIMER_MODE_ABS);
f801073f
DH
2038 hrtimer_init_sleeper(to, current);
2039 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2040 current->timer_slack_ns);
2041 }
2042
d58e6576 2043retry:
7ada876a
DH
2044 /*
2045 * Prepare to wait on uaddr. On success, holds hb lock and increments
2046 * q.key refs.
2047 */
b41277dc 2048 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2049 if (ret)
2050 goto out;
2051
ca5f9524 2052 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2053 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2054
2055 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2056 ret = 0;
7ada876a 2057 /* unqueue_me() drops q.key ref */
1da177e4 2058 if (!unqueue_me(&q))
7ada876a 2059 goto out;
2fff78c7 2060 ret = -ETIMEDOUT;
ca5f9524 2061 if (to && !to->task)
7ada876a 2062 goto out;
72c1bbf3 2063
e2970f2f 2064 /*
d58e6576
TG
2065 * We expect signal_pending(current), but we might be the
2066 * victim of a spurious wakeup as well.
e2970f2f 2067 */
7ada876a 2068 if (!signal_pending(current))
d58e6576 2069 goto retry;
d58e6576 2070
2fff78c7 2071 ret = -ERESTARTSYS;
c19384b5 2072 if (!abs_time)
7ada876a 2073 goto out;
1da177e4 2074
2fff78c7
PZ
2075 restart = &current_thread_info()->restart_block;
2076 restart->fn = futex_wait_restart;
a3c74c52 2077 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2078 restart->futex.val = val;
2079 restart->futex.time = abs_time->tv64;
2080 restart->futex.bitset = bitset;
0cd9c649 2081 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2082
2fff78c7
PZ
2083 ret = -ERESTART_RESTARTBLOCK;
2084
42d35d48 2085out:
ca5f9524
DH
2086 if (to) {
2087 hrtimer_cancel(&to->timer);
2088 destroy_hrtimer_on_stack(&to->timer);
2089 }
c87e2837
IM
2090 return ret;
2091}
2092
72c1bbf3
NP
2093
2094static long futex_wait_restart(struct restart_block *restart)
2095{
a3c74c52 2096 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2097 ktime_t t, *tp = NULL;
72c1bbf3 2098
a72188d8
DH
2099 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2100 t.tv64 = restart->futex.time;
2101 tp = &t;
2102 }
72c1bbf3 2103 restart->fn = do_no_restart_syscall;
b41277dc
DH
2104
2105 return (long)futex_wait(uaddr, restart->futex.flags,
2106 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2107}
2108
2109
c87e2837
IM
2110/*
2111 * Userspace tried a 0 -> TID atomic transition of the futex value
2112 * and failed. The kernel side here does the whole locking operation:
2113 * if there are waiters then it will block, it does PI, etc. (Due to
2114 * races the kernel might see a 0 value of the futex too.)
2115 */
b41277dc
DH
2116static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2117 ktime_t *time, int trylock)
c87e2837 2118{
c5780e97 2119 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2120 struct futex_hash_bucket *hb;
5bdb05f9 2121 struct futex_q q = futex_q_init;
dd973998 2122 int res, ret;
c87e2837
IM
2123
2124 if (refill_pi_state_cache())
2125 return -ENOMEM;
2126
c19384b5 2127 if (time) {
c5780e97 2128 to = &timeout;
237fc6e7
TG
2129 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2130 HRTIMER_MODE_ABS);
c5780e97 2131 hrtimer_init_sleeper(to, current);
cc584b21 2132 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2133 }
2134
42d35d48 2135retry:
9ea71503 2136 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2137 if (unlikely(ret != 0))
42d35d48 2138 goto out;
c87e2837 2139
e4dc5b7a 2140retry_private:
82af7aca 2141 hb = queue_lock(&q);
c87e2837 2142
bab5bc9e 2143 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2144 if (unlikely(ret)) {
778e9a9c 2145 switch (ret) {
1a52084d
DH
2146 case 1:
2147 /* We got the lock. */
2148 ret = 0;
2149 goto out_unlock_put_key;
2150 case -EFAULT:
2151 goto uaddr_faulted;
778e9a9c
AK
2152 case -EAGAIN:
2153 /*
2154 * Task is exiting and we just wait for the
2155 * exit to complete.
2156 */
2157 queue_unlock(&q, hb);
ae791a2d 2158 put_futex_key(&q.key);
778e9a9c
AK
2159 cond_resched();
2160 goto retry;
778e9a9c 2161 default:
42d35d48 2162 goto out_unlock_put_key;
c87e2837 2163 }
c87e2837
IM
2164 }
2165
2166 /*
2167 * Only actually queue now that the atomic ops are done:
2168 */
82af7aca 2169 queue_me(&q, hb);
c87e2837 2170
c87e2837
IM
2171 WARN_ON(!q.pi_state);
2172 /*
2173 * Block on the PI mutex:
2174 */
2175 if (!trylock)
2176 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2177 else {
2178 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2179 /* Fixup the trylock return value: */
2180 ret = ret ? 0 : -EWOULDBLOCK;
2181 }
2182
a99e4e41 2183 spin_lock(q.lock_ptr);
dd973998
DH
2184 /*
2185 * Fixup the pi_state owner and possibly acquire the lock if we
2186 * haven't already.
2187 */
ae791a2d 2188 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2189 /*
2190 * If fixup_owner() returned an error, proprogate that. If it acquired
2191 * the lock, clear our -ETIMEDOUT or -EINTR.
2192 */
2193 if (res)
2194 ret = (res < 0) ? res : 0;
c87e2837 2195
e8f6386c 2196 /*
dd973998
DH
2197 * If fixup_owner() faulted and was unable to handle the fault, unlock
2198 * it and return the fault to userspace.
e8f6386c
DH
2199 */
2200 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2201 rt_mutex_unlock(&q.pi_state->pi_mutex);
2202
778e9a9c
AK
2203 /* Unqueue and drop the lock */
2204 unqueue_me_pi(&q);
c87e2837 2205
5ecb01cf 2206 goto out_put_key;
c87e2837 2207
42d35d48 2208out_unlock_put_key:
c87e2837
IM
2209 queue_unlock(&q, hb);
2210
42d35d48 2211out_put_key:
ae791a2d 2212 put_futex_key(&q.key);
42d35d48 2213out:
237fc6e7
TG
2214 if (to)
2215 destroy_hrtimer_on_stack(&to->timer);
dd973998 2216 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2217
42d35d48 2218uaddr_faulted:
778e9a9c
AK
2219 queue_unlock(&q, hb);
2220
d0725992 2221 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2222 if (ret)
2223 goto out_put_key;
c87e2837 2224
b41277dc 2225 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2226 goto retry_private;
2227
ae791a2d 2228 put_futex_key(&q.key);
e4dc5b7a 2229 goto retry;
c87e2837
IM
2230}
2231
c87e2837
IM
2232/*
2233 * Userspace attempted a TID -> 0 atomic transition, and failed.
2234 * This is the in-kernel slowpath: we look up the PI state (if any),
2235 * and do the rt-mutex unlock.
2236 */
b41277dc 2237static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2238{
2239 struct futex_hash_bucket *hb;
2240 struct futex_q *this, *next;
ec92d082 2241 struct plist_head *head;
38d47c1b 2242 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2243 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2244 int ret;
c87e2837
IM
2245
2246retry:
2247 if (get_user(uval, uaddr))
2248 return -EFAULT;
2249 /*
2250 * We release only a lock we actually own:
2251 */
c0c9ed15 2252 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2253 return -EPERM;
c87e2837 2254
9ea71503 2255 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2256 if (unlikely(ret != 0))
2257 goto out;
2258
2259 hb = hash_futex(&key);
2260 spin_lock(&hb->lock);
2261
c87e2837
IM
2262 /*
2263 * To avoid races, try to do the TID -> 0 atomic transition
2264 * again. If it succeeds then we can return without waking
9ad5dabd
TG
2265 * anyone else up. We only try this if neither the waiters nor
2266 * the owner died bit are set.
c87e2837 2267 */
9ad5dabd 2268 if (!(uval & ~FUTEX_TID_MASK) &&
37a9d912 2269 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2270 goto pi_faulted;
2271 /*
2272 * Rare case: we managed to release the lock atomically,
2273 * no need to wake anyone else up:
2274 */
c0c9ed15 2275 if (unlikely(uval == vpid))
c87e2837
IM
2276 goto out_unlock;
2277
2278 /*
2279 * Ok, other tasks may need to be woken up - check waiters
2280 * and do the wakeup if necessary:
2281 */
2282 head = &hb->chain;
2283
ec92d082 2284 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2285 if (!match_futex (&this->key, &key))
2286 continue;
2287 ret = wake_futex_pi(uaddr, uval, this);
2288 /*
2289 * The atomic access to the futex value
2290 * generated a pagefault, so retry the
2291 * user-access and the wakeup:
2292 */
2293 if (ret == -EFAULT)
2294 goto pi_faulted;
2295 goto out_unlock;
2296 }
2297 /*
2298 * No waiters - kernel unlocks the futex:
2299 */
9ad5dabd
TG
2300 ret = unlock_futex_pi(uaddr, uval);
2301 if (ret == -EFAULT)
2302 goto pi_faulted;
c87e2837
IM
2303
2304out_unlock:
2305 spin_unlock(&hb->lock);
ae791a2d 2306 put_futex_key(&key);
c87e2837 2307
42d35d48 2308out:
c87e2837
IM
2309 return ret;
2310
2311pi_faulted:
778e9a9c 2312 spin_unlock(&hb->lock);
ae791a2d 2313 put_futex_key(&key);
c87e2837 2314
d0725992 2315 ret = fault_in_user_writeable(uaddr);
b5686363 2316 if (!ret)
c87e2837
IM
2317 goto retry;
2318
1da177e4
LT
2319 return ret;
2320}
2321
52400ba9
DH
2322/**
2323 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2324 * @hb: the hash_bucket futex_q was original enqueued on
2325 * @q: the futex_q woken while waiting to be requeued
2326 * @key2: the futex_key of the requeue target futex
2327 * @timeout: the timeout associated with the wait (NULL if none)
2328 *
2329 * Detect if the task was woken on the initial futex as opposed to the requeue
2330 * target futex. If so, determine if it was a timeout or a signal that caused
2331 * the wakeup and return the appropriate error code to the caller. Must be
2332 * called with the hb lock held.
2333 *
6c23cbbd
RD
2334 * Return:
2335 * 0 = no early wakeup detected;
2336 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2337 */
2338static inline
2339int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2340 struct futex_q *q, union futex_key *key2,
2341 struct hrtimer_sleeper *timeout)
2342{
2343 int ret = 0;
2344
2345 /*
2346 * With the hb lock held, we avoid races while we process the wakeup.
2347 * We only need to hold hb (and not hb2) to ensure atomicity as the
2348 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2349 * It can't be requeued from uaddr2 to something else since we don't
2350 * support a PI aware source futex for requeue.
2351 */
2352 if (!match_futex(&q->key, key2)) {
2353 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2354 /*
2355 * We were woken prior to requeue by a timeout or a signal.
2356 * Unqueue the futex_q and determine which it was.
2357 */
2e12978a 2358 plist_del(&q->list, &hb->chain);
52400ba9 2359
d58e6576 2360 /* Handle spurious wakeups gracefully */
11df6ddd 2361 ret = -EWOULDBLOCK;
52400ba9
DH
2362 if (timeout && !timeout->task)
2363 ret = -ETIMEDOUT;
d58e6576 2364 else if (signal_pending(current))
1c840c14 2365 ret = -ERESTARTNOINTR;
52400ba9
DH
2366 }
2367 return ret;
2368}
2369
2370/**
2371 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2372 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2373 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2374 * the same type, no requeueing from private to shared, etc.
2375 * @val: the expected value of uaddr
2376 * @abs_time: absolute timeout
56ec1607 2377 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2378 * @uaddr2: the pi futex we will take prior to returning to user-space
2379 *
2380 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2381 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2382 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2383 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2384 * without one, the pi logic would not know which task to boost/deboost, if
2385 * there was a need to.
52400ba9
DH
2386 *
2387 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2388 * via the following--
52400ba9 2389 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2390 * 2) wakeup on uaddr2 after a requeue
2391 * 3) signal
2392 * 4) timeout
52400ba9 2393 *
cc6db4e6 2394 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2395 *
2396 * If 2, we may then block on trying to take the rt_mutex and return via:
2397 * 5) successful lock
2398 * 6) signal
2399 * 7) timeout
2400 * 8) other lock acquisition failure
2401 *
cc6db4e6 2402 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2403 *
2404 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2405 *
6c23cbbd
RD
2406 * Return:
2407 * 0 - On success;
52400ba9
DH
2408 * <0 - On error
2409 */
b41277dc 2410static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2411 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2412 u32 __user *uaddr2)
52400ba9
DH
2413{
2414 struct hrtimer_sleeper timeout, *to = NULL;
2415 struct rt_mutex_waiter rt_waiter;
52400ba9 2416 struct futex_hash_bucket *hb;
5bdb05f9
DH
2417 union futex_key key2 = FUTEX_KEY_INIT;
2418 struct futex_q q = futex_q_init;
52400ba9 2419 int res, ret;
52400ba9 2420
6f7b0a2a
DH
2421 if (uaddr == uaddr2)
2422 return -EINVAL;
2423
52400ba9
DH
2424 if (!bitset)
2425 return -EINVAL;
2426
2427 if (abs_time) {
2428 to = &timeout;
b41277dc
DH
2429 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2430 CLOCK_REALTIME : CLOCK_MONOTONIC,
2431 HRTIMER_MODE_ABS);
52400ba9
DH
2432 hrtimer_init_sleeper(to, current);
2433 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2434 current->timer_slack_ns);
2435 }
2436
2437 /*
2438 * The waiter is allocated on our stack, manipulated by the requeue
2439 * code while we sleep on uaddr.
2440 */
2441 debug_rt_mutex_init_waiter(&rt_waiter);
2442 rt_waiter.task = NULL;
2443
9ea71503 2444 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2445 if (unlikely(ret != 0))
2446 goto out;
2447
84bc4af5
DH
2448 q.bitset = bitset;
2449 q.rt_waiter = &rt_waiter;
2450 q.requeue_pi_key = &key2;
2451
7ada876a
DH
2452 /*
2453 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2454 * count.
2455 */
b41277dc 2456 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2457 if (ret)
2458 goto out_key2;
52400ba9 2459
b58623fb
TG
2460 /*
2461 * The check above which compares uaddrs is not sufficient for
2462 * shared futexes. We need to compare the keys:
2463 */
2464 if (match_futex(&q.key, &key2)) {
2465 ret = -EINVAL;
2466 goto out_put_keys;
2467 }
2468
52400ba9 2469 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2470 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2471
2472 spin_lock(&hb->lock);
2473 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2474 spin_unlock(&hb->lock);
2475 if (ret)
2476 goto out_put_keys;
2477
2478 /*
2479 * In order for us to be here, we know our q.key == key2, and since
2480 * we took the hb->lock above, we also know that futex_requeue() has
2481 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2482 * race with the atomic proxy lock acquisition by the requeue code. The
2483 * futex_requeue dropped our key1 reference and incremented our key2
2484 * reference count.
52400ba9
DH
2485 */
2486
2487 /* Check if the requeue code acquired the second futex for us. */
2488 if (!q.rt_waiter) {
2489 /*
2490 * Got the lock. We might not be the anticipated owner if we
2491 * did a lock-steal - fix up the PI-state in that case.
2492 */
2493 if (q.pi_state && (q.pi_state->owner != current)) {
2494 spin_lock(q.lock_ptr);
ae791a2d 2495 ret = fixup_pi_state_owner(uaddr2, &q, current);
a8957067
TG
2496 /*
2497 * Drop the reference to the pi state which
2498 * the requeue_pi() code acquired for us.
2499 */
2500 free_pi_state(q.pi_state);
52400ba9
DH
2501 spin_unlock(q.lock_ptr);
2502 }
2503 } else {
8f4a52d2
PZ
2504 struct rt_mutex *pi_mutex;
2505
52400ba9
DH
2506 /*
2507 * We have been woken up by futex_unlock_pi(), a timeout, or a
2508 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2509 * the pi_state.
2510 */
f27071cb 2511 WARN_ON(!q.pi_state);
52400ba9
DH
2512 pi_mutex = &q.pi_state->pi_mutex;
2513 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2514 debug_rt_mutex_free_waiter(&rt_waiter);
2515
2516 spin_lock(q.lock_ptr);
2517 /*
2518 * Fixup the pi_state owner and possibly acquire the lock if we
2519 * haven't already.
2520 */
ae791a2d 2521 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2522 /*
2523 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2524 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2525 */
2526 if (res)
2527 ret = (res < 0) ? res : 0;
2528
8f4a52d2
PZ
2529 /*
2530 * If fixup_pi_state_owner() faulted and was unable to handle
2531 * the fault, unlock the rt_mutex and return the fault to
2532 * userspace.
2533 */
2534 if (ret && rt_mutex_owner(pi_mutex) == current)
2535 rt_mutex_unlock(pi_mutex);
2536
52400ba9
DH
2537 /* Unqueue and drop the lock. */
2538 unqueue_me_pi(&q);
2539 }
2540
8f4a52d2 2541 if (ret == -EINTR) {
52400ba9 2542 /*
cc6db4e6
DH
2543 * We've already been requeued, but cannot restart by calling
2544 * futex_lock_pi() directly. We could restart this syscall, but
2545 * it would detect that the user space "val" changed and return
2546 * -EWOULDBLOCK. Save the overhead of the restart and return
2547 * -EWOULDBLOCK directly.
52400ba9 2548 */
2070887f 2549 ret = -EWOULDBLOCK;
52400ba9
DH
2550 }
2551
2552out_put_keys:
ae791a2d 2553 put_futex_key(&q.key);
c8b15a70 2554out_key2:
ae791a2d 2555 put_futex_key(&key2);
52400ba9
DH
2556
2557out:
2558 if (to) {
2559 hrtimer_cancel(&to->timer);
2560 destroy_hrtimer_on_stack(&to->timer);
2561 }
2562 return ret;
2563}
2564
0771dfef
IM
2565/*
2566 * Support for robust futexes: the kernel cleans up held futexes at
2567 * thread exit time.
2568 *
2569 * Implementation: user-space maintains a per-thread list of locks it
2570 * is holding. Upon do_exit(), the kernel carefully walks this list,
2571 * and marks all locks that are owned by this thread with the
c87e2837 2572 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2573 * always manipulated with the lock held, so the list is private and
2574 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2575 * field, to allow the kernel to clean up if the thread dies after
2576 * acquiring the lock, but just before it could have added itself to
2577 * the list. There can only be one such pending lock.
2578 */
2579
2580/**
d96ee56c
DH
2581 * sys_set_robust_list() - Set the robust-futex list head of a task
2582 * @head: pointer to the list-head
2583 * @len: length of the list-head, as userspace expects
0771dfef 2584 */
836f92ad
HC
2585SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2586 size_t, len)
0771dfef 2587{
a0c1e907
TG
2588 if (!futex_cmpxchg_enabled)
2589 return -ENOSYS;
0771dfef
IM
2590 /*
2591 * The kernel knows only one size for now:
2592 */
2593 if (unlikely(len != sizeof(*head)))
2594 return -EINVAL;
2595
2596 current->robust_list = head;
2597
2598 return 0;
2599}
2600
2601/**
d96ee56c
DH
2602 * sys_get_robust_list() - Get the robust-futex list head of a task
2603 * @pid: pid of the process [zero for current task]
2604 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2605 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2606 */
836f92ad
HC
2607SYSCALL_DEFINE3(get_robust_list, int, pid,
2608 struct robust_list_head __user * __user *, head_ptr,
2609 size_t __user *, len_ptr)
0771dfef 2610{
ba46df98 2611 struct robust_list_head __user *head;
0771dfef 2612 unsigned long ret;
bdbb776f 2613 struct task_struct *p;
0771dfef 2614
a0c1e907
TG
2615 if (!futex_cmpxchg_enabled)
2616 return -ENOSYS;
2617
bdbb776f
KC
2618 rcu_read_lock();
2619
2620 ret = -ESRCH;
0771dfef 2621 if (!pid)
bdbb776f 2622 p = current;
0771dfef 2623 else {
228ebcbe 2624 p = find_task_by_vpid(pid);
0771dfef
IM
2625 if (!p)
2626 goto err_unlock;
0771dfef
IM
2627 }
2628
bdbb776f 2629 ret = -EPERM;
414f6fbc 2630 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
2631 goto err_unlock;
2632
2633 head = p->robust_list;
2634 rcu_read_unlock();
2635
0771dfef
IM
2636 if (put_user(sizeof(*head), len_ptr))
2637 return -EFAULT;
2638 return put_user(head, head_ptr);
2639
2640err_unlock:
aaa2a97e 2641 rcu_read_unlock();
0771dfef
IM
2642
2643 return ret;
2644}
2645
2646/*
2647 * Process a futex-list entry, check whether it's owned by the
2648 * dying task, and do notification if so:
2649 */
e3f2ddea 2650int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2651{
7cfdaf38 2652 u32 uval, uninitialized_var(nval), mval;
0771dfef 2653
8f17d3a5
IM
2654retry:
2655 if (get_user(uval, uaddr))
0771dfef
IM
2656 return -1;
2657
b488893a 2658 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2659 /*
2660 * Ok, this dying thread is truly holding a futex
2661 * of interest. Set the OWNER_DIED bit atomically
2662 * via cmpxchg, and if the value had FUTEX_WAITERS
2663 * set, wake up a waiter (if any). (We have to do a
2664 * futex_wake() even if OWNER_DIED is already set -
2665 * to handle the rare but possible case of recursive
2666 * thread-death.) The rest of the cleanup is done in
2667 * userspace.
2668 */
e3f2ddea 2669 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2670 /*
2671 * We are not holding a lock here, but we want to have
2672 * the pagefault_disable/enable() protection because
2673 * we want to handle the fault gracefully. If the
2674 * access fails we try to fault in the futex with R/W
2675 * verification via get_user_pages. get_user() above
2676 * does not guarantee R/W access. If that fails we
2677 * give up and leave the futex locked.
2678 */
2679 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2680 if (fault_in_user_writeable(uaddr))
2681 return -1;
2682 goto retry;
2683 }
c87e2837 2684 if (nval != uval)
8f17d3a5 2685 goto retry;
0771dfef 2686
e3f2ddea
IM
2687 /*
2688 * Wake robust non-PI futexes here. The wakeup of
2689 * PI futexes happens in exit_pi_state():
2690 */
36cf3b5c 2691 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2692 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2693 }
2694 return 0;
2695}
2696
e3f2ddea
IM
2697/*
2698 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2699 */
2700static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2701 struct robust_list __user * __user *head,
1dcc41bb 2702 unsigned int *pi)
e3f2ddea
IM
2703{
2704 unsigned long uentry;
2705
ba46df98 2706 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2707 return -EFAULT;
2708
ba46df98 2709 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2710 *pi = uentry & 1;
2711
2712 return 0;
2713}
2714
0771dfef
IM
2715/*
2716 * Walk curr->robust_list (very carefully, it's a userspace list!)
2717 * and mark any locks found there dead, and notify any waiters.
2718 *
2719 * We silently return on any sign of list-walking problem.
2720 */
2721void exit_robust_list(struct task_struct *curr)
2722{
2723 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2724 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2725 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2726 unsigned int uninitialized_var(next_pi);
0771dfef 2727 unsigned long futex_offset;
9f96cb1e 2728 int rc;
0771dfef 2729
a0c1e907
TG
2730 if (!futex_cmpxchg_enabled)
2731 return;
2732
0771dfef
IM
2733 /*
2734 * Fetch the list head (which was registered earlier, via
2735 * sys_set_robust_list()):
2736 */
e3f2ddea 2737 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2738 return;
2739 /*
2740 * Fetch the relative futex offset:
2741 */
2742 if (get_user(futex_offset, &head->futex_offset))
2743 return;
2744 /*
2745 * Fetch any possibly pending lock-add first, and handle it
2746 * if it exists:
2747 */
e3f2ddea 2748 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2749 return;
e3f2ddea 2750
9f96cb1e 2751 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2752 while (entry != &head->list) {
9f96cb1e
MS
2753 /*
2754 * Fetch the next entry in the list before calling
2755 * handle_futex_death:
2756 */
2757 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2758 /*
2759 * A pending lock might already be on the list, so
c87e2837 2760 * don't process it twice:
0771dfef
IM
2761 */
2762 if (entry != pending)
ba46df98 2763 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2764 curr, pi))
0771dfef 2765 return;
9f96cb1e 2766 if (rc)
0771dfef 2767 return;
9f96cb1e
MS
2768 entry = next_entry;
2769 pi = next_pi;
0771dfef
IM
2770 /*
2771 * Avoid excessively long or circular lists:
2772 */
2773 if (!--limit)
2774 break;
2775
2776 cond_resched();
2777 }
9f96cb1e
MS
2778
2779 if (pending)
2780 handle_futex_death((void __user *)pending + futex_offset,
2781 curr, pip);
0771dfef
IM
2782}
2783
c19384b5 2784long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2785 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2786{
81b40539 2787 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2788 unsigned int flags = 0;
34f01cc1
ED
2789
2790 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2791 flags |= FLAGS_SHARED;
1da177e4 2792
b41277dc
DH
2793 if (op & FUTEX_CLOCK_REALTIME) {
2794 flags |= FLAGS_CLOCKRT;
2795 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2796 return -ENOSYS;
2797 }
1da177e4 2798
59263b51
TG
2799 switch (cmd) {
2800 case FUTEX_LOCK_PI:
2801 case FUTEX_UNLOCK_PI:
2802 case FUTEX_TRYLOCK_PI:
2803 case FUTEX_WAIT_REQUEUE_PI:
2804 case FUTEX_CMP_REQUEUE_PI:
2805 if (!futex_cmpxchg_enabled)
2806 return -ENOSYS;
2807 }
2808
34f01cc1 2809 switch (cmd) {
1da177e4 2810 case FUTEX_WAIT:
cd689985
TG
2811 val3 = FUTEX_BITSET_MATCH_ANY;
2812 case FUTEX_WAIT_BITSET:
81b40539 2813 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2814 case FUTEX_WAKE:
cd689985
TG
2815 val3 = FUTEX_BITSET_MATCH_ANY;
2816 case FUTEX_WAKE_BITSET:
81b40539 2817 return futex_wake(uaddr, flags, val, val3);
1da177e4 2818 case FUTEX_REQUEUE:
81b40539 2819 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2820 case FUTEX_CMP_REQUEUE:
81b40539 2821 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2822 case FUTEX_WAKE_OP:
81b40539 2823 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2824 case FUTEX_LOCK_PI:
81b40539 2825 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2826 case FUTEX_UNLOCK_PI:
81b40539 2827 return futex_unlock_pi(uaddr, flags);
c87e2837 2828 case FUTEX_TRYLOCK_PI:
81b40539 2829 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2830 case FUTEX_WAIT_REQUEUE_PI:
2831 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2832 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2833 uaddr2);
52400ba9 2834 case FUTEX_CMP_REQUEUE_PI:
81b40539 2835 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2836 }
81b40539 2837 return -ENOSYS;
1da177e4
LT
2838}
2839
2840
17da2bd9
HC
2841SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2842 struct timespec __user *, utime, u32 __user *, uaddr2,
2843 u32, val3)
1da177e4 2844{
c19384b5
PP
2845 struct timespec ts;
2846 ktime_t t, *tp = NULL;
e2970f2f 2847 u32 val2 = 0;
34f01cc1 2848 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2849
cd689985 2850 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2851 cmd == FUTEX_WAIT_BITSET ||
2852 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2853 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2854 return -EFAULT;
c19384b5 2855 if (!timespec_valid(&ts))
9741ef96 2856 return -EINVAL;
c19384b5
PP
2857
2858 t = timespec_to_ktime(ts);
34f01cc1 2859 if (cmd == FUTEX_WAIT)
5a7780e7 2860 t = ktime_add_safe(ktime_get(), t);
c19384b5 2861 tp = &t;
1da177e4
LT
2862 }
2863 /*
52400ba9 2864 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2865 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2866 */
f54f0986 2867 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2868 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2869 val2 = (u32) (unsigned long) utime;
1da177e4 2870
c19384b5 2871 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2872}
2873
f26c70a4 2874static void __init futex_detect_cmpxchg(void)
1da177e4 2875{
f26c70a4 2876#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2877 u32 curval;
95362fa9 2878
a0c1e907
TG
2879 /*
2880 * This will fail and we want it. Some arch implementations do
2881 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2882 * functionality. We want to know that before we call in any
2883 * of the complex code paths. Also we want to prevent
2884 * registration of robust lists in that case. NULL is
2885 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2886 * implementation, the non-functional ones will return
a0c1e907
TG
2887 * -ENOSYS.
2888 */
37a9d912 2889 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907 2890 futex_cmpxchg_enabled = 1;
f26c70a4
HC
2891#endif
2892}
2893
2894static int __init futex_init(void)
2895{
2896 int i;
2897
2898 futex_detect_cmpxchg();
a0c1e907 2899
3e4ab747 2900 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2901 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2902 spin_lock_init(&futex_queues[i].lock);
2903 }
2904
1da177e4
LT
2905 return 0;
2906}
bbd20686 2907core_initcall(futex_init);