futex: Always cleanup owner tid in unlock_pi
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
ab1842f1 64#include <linux/hugetlb.h>
b488893a 65
4732efbe 66#include <asm/futex.h>
1da177e4 67
c87e2837
IM
68#include "rtmutex_common.h"
69
f26c70a4 70#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 71int __read_mostly futex_cmpxchg_enabled;
f26c70a4 72#endif
a0c1e907 73
1da177e4
LT
74#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
75
b41277dc
DH
76/*
77 * Futex flags used to encode options to functions and preserve them across
78 * restarts.
79 */
80#define FLAGS_SHARED 0x01
81#define FLAGS_CLOCKRT 0x02
82#define FLAGS_HAS_TIMEOUT 0x04
83
c87e2837
IM
84/*
85 * Priority Inheritance state:
86 */
87struct futex_pi_state {
88 /*
89 * list of 'owned' pi_state instances - these have to be
90 * cleaned up in do_exit() if the task exits prematurely:
91 */
92 struct list_head list;
93
94 /*
95 * The PI object:
96 */
97 struct rt_mutex pi_mutex;
98
99 struct task_struct *owner;
100 atomic_t refcount;
101
102 union futex_key key;
103};
104
d8d88fbb
DH
105/**
106 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 107 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
108 * @task: the task waiting on the futex
109 * @lock_ptr: the hash bucket lock
110 * @key: the key the futex is hashed on
111 * @pi_state: optional priority inheritance state
112 * @rt_waiter: rt_waiter storage for use with requeue_pi
113 * @requeue_pi_key: the requeue_pi target futex key
114 * @bitset: bitset for the optional bitmasked wakeup
115 *
116 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
117 * we can wake only the relevant ones (hashed queues may be shared).
118 *
119 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 120 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 121 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
122 * the second.
123 *
124 * PI futexes are typically woken before they are removed from the hash list via
125 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
126 */
127struct futex_q {
ec92d082 128 struct plist_node list;
1da177e4 129
d8d88fbb 130 struct task_struct *task;
1da177e4 131 spinlock_t *lock_ptr;
1da177e4 132 union futex_key key;
c87e2837 133 struct futex_pi_state *pi_state;
52400ba9 134 struct rt_mutex_waiter *rt_waiter;
84bc4af5 135 union futex_key *requeue_pi_key;
cd689985 136 u32 bitset;
1da177e4
LT
137};
138
5bdb05f9
DH
139static const struct futex_q futex_q_init = {
140 /* list gets initialized in queue_me()*/
141 .key = FUTEX_KEY_INIT,
142 .bitset = FUTEX_BITSET_MATCH_ANY
143};
144
1da177e4 145/*
b2d0994b
DH
146 * Hash buckets are shared by all the futex_keys that hash to the same
147 * location. Each key may have multiple futex_q structures, one for each task
148 * waiting on a futex.
1da177e4
LT
149 */
150struct futex_hash_bucket {
ec92d082
PP
151 spinlock_t lock;
152 struct plist_head chain;
1da177e4
LT
153};
154
155static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
156
1da177e4
LT
157/*
158 * We hash on the keys returned from get_futex_key (see below).
159 */
160static struct futex_hash_bucket *hash_futex(union futex_key *key)
161{
162 u32 hash = jhash2((u32*)&key->both.word,
163 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
164 key->both.offset);
165 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
166}
167
168/*
169 * Return 1 if two futex_keys are equal, 0 otherwise.
170 */
171static inline int match_futex(union futex_key *key1, union futex_key *key2)
172{
2bc87203
DH
173 return (key1 && key2
174 && key1->both.word == key2->both.word
1da177e4
LT
175 && key1->both.ptr == key2->both.ptr
176 && key1->both.offset == key2->both.offset);
177}
178
38d47c1b
PZ
179/*
180 * Take a reference to the resource addressed by a key.
181 * Can be called while holding spinlocks.
182 *
183 */
184static void get_futex_key_refs(union futex_key *key)
185{
186 if (!key->both.ptr)
187 return;
188
189 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
190 case FUT_OFF_INODE:
7de9c6ee 191 ihold(key->shared.inode);
38d47c1b
PZ
192 break;
193 case FUT_OFF_MMSHARED:
194 atomic_inc(&key->private.mm->mm_count);
195 break;
196 }
197}
198
199/*
200 * Drop a reference to the resource addressed by a key.
201 * The hash bucket spinlock must not be held.
202 */
203static void drop_futex_key_refs(union futex_key *key)
204{
90621c40
DH
205 if (!key->both.ptr) {
206 /* If we're here then we tried to put a key we failed to get */
207 WARN_ON_ONCE(1);
38d47c1b 208 return;
90621c40 209 }
38d47c1b
PZ
210
211 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
212 case FUT_OFF_INODE:
213 iput(key->shared.inode);
214 break;
215 case FUT_OFF_MMSHARED:
216 mmdrop(key->private.mm);
217 break;
218 }
219}
220
34f01cc1 221/**
d96ee56c
DH
222 * get_futex_key() - Get parameters which are the keys for a futex
223 * @uaddr: virtual address of the futex
224 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
225 * @key: address where result is stored.
9ea71503
SB
226 * @rw: mapping needs to be read/write (values: VERIFY_READ,
227 * VERIFY_WRITE)
34f01cc1 228 *
6c23cbbd
RD
229 * Return: a negative error code or 0
230 *
34f01cc1 231 * The key words are stored in *key on success.
1da177e4 232 *
6131ffaa 233 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
234 * offset_within_page). For private mappings, it's (uaddr, current->mm).
235 * We can usually work out the index without swapping in the page.
236 *
b2d0994b 237 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 238 */
64d1304a 239static int
9ea71503 240get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 241{
e2970f2f 242 unsigned long address = (unsigned long)uaddr;
1da177e4 243 struct mm_struct *mm = current->mm;
a5b338f2 244 struct page *page, *page_head;
9ea71503 245 int err, ro = 0;
1da177e4
LT
246
247 /*
248 * The futex address must be "naturally" aligned.
249 */
e2970f2f 250 key->both.offset = address % PAGE_SIZE;
34f01cc1 251 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 252 return -EINVAL;
e2970f2f 253 address -= key->both.offset;
1da177e4 254
34f01cc1
ED
255 /*
256 * PROCESS_PRIVATE futexes are fast.
257 * As the mm cannot disappear under us and the 'key' only needs
258 * virtual address, we dont even have to find the underlying vma.
259 * Note : We do have to check 'uaddr' is a valid user address,
260 * but access_ok() should be faster than find_vma()
261 */
262 if (!fshared) {
7485d0d3 263 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
264 return -EFAULT;
265 key->private.mm = mm;
266 key->private.address = address;
42569c39 267 get_futex_key_refs(key);
34f01cc1
ED
268 return 0;
269 }
1da177e4 270
38d47c1b 271again:
7485d0d3 272 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
273 /*
274 * If write access is not required (eg. FUTEX_WAIT), try
275 * and get read-only access.
276 */
277 if (err == -EFAULT && rw == VERIFY_READ) {
278 err = get_user_pages_fast(address, 1, 0, &page);
279 ro = 1;
280 }
38d47c1b
PZ
281 if (err < 0)
282 return err;
9ea71503
SB
283 else
284 err = 0;
38d47c1b 285
a5b338f2
AA
286#ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 page_head = page;
288 if (unlikely(PageTail(page))) {
38d47c1b 289 put_page(page);
a5b338f2
AA
290 /* serialize against __split_huge_page_splitting() */
291 local_irq_disable();
13bb709c 292 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
293 page_head = compound_head(page);
294 /*
295 * page_head is valid pointer but we must pin
296 * it before taking the PG_lock and/or
297 * PG_compound_lock. The moment we re-enable
298 * irqs __split_huge_page_splitting() can
299 * return and the head page can be freed from
300 * under us. We can't take the PG_lock and/or
301 * PG_compound_lock on a page that could be
302 * freed from under us.
303 */
304 if (page != page_head) {
305 get_page(page_head);
306 put_page(page);
307 }
308 local_irq_enable();
309 } else {
310 local_irq_enable();
311 goto again;
312 }
313 }
314#else
315 page_head = compound_head(page);
316 if (page != page_head) {
317 get_page(page_head);
318 put_page(page);
319 }
320#endif
321
322 lock_page(page_head);
e6780f72
HD
323
324 /*
325 * If page_head->mapping is NULL, then it cannot be a PageAnon
326 * page; but it might be the ZERO_PAGE or in the gate area or
327 * in a special mapping (all cases which we are happy to fail);
328 * or it may have been a good file page when get_user_pages_fast
329 * found it, but truncated or holepunched or subjected to
330 * invalidate_complete_page2 before we got the page lock (also
331 * cases which we are happy to fail). And we hold a reference,
332 * so refcount care in invalidate_complete_page's remove_mapping
333 * prevents drop_caches from setting mapping to NULL beneath us.
334 *
335 * The case we do have to guard against is when memory pressure made
336 * shmem_writepage move it from filecache to swapcache beneath us:
337 * an unlikely race, but we do need to retry for page_head->mapping.
338 */
a5b338f2 339 if (!page_head->mapping) {
e6780f72 340 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
341 unlock_page(page_head);
342 put_page(page_head);
e6780f72
HD
343 if (shmem_swizzled)
344 goto again;
345 return -EFAULT;
38d47c1b 346 }
1da177e4
LT
347
348 /*
349 * Private mappings are handled in a simple way.
350 *
351 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 353 * the object not the particular process.
1da177e4 354 */
a5b338f2 355 if (PageAnon(page_head)) {
9ea71503
SB
356 /*
357 * A RO anonymous page will never change and thus doesn't make
358 * sense for futex operations.
359 */
360 if (ro) {
361 err = -EFAULT;
362 goto out;
363 }
364
38d47c1b 365 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 366 key->private.mm = mm;
e2970f2f 367 key->private.address = address;
38d47c1b
PZ
368 } else {
369 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 370 key->shared.inode = page_head->mapping->host;
ab1842f1 371 key->shared.pgoff = basepage_index(page);
1da177e4
LT
372 }
373
38d47c1b 374 get_futex_key_refs(key);
1da177e4 375
9ea71503 376out:
a5b338f2
AA
377 unlock_page(page_head);
378 put_page(page_head);
9ea71503 379 return err;
1da177e4
LT
380}
381
ae791a2d 382static inline void put_futex_key(union futex_key *key)
1da177e4 383{
38d47c1b 384 drop_futex_key_refs(key);
1da177e4
LT
385}
386
d96ee56c
DH
387/**
388 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
389 * @uaddr: pointer to faulting user space address
390 *
391 * Slow path to fixup the fault we just took in the atomic write
392 * access to @uaddr.
393 *
fb62db2b 394 * We have no generic implementation of a non-destructive write to the
d0725992
TG
395 * user address. We know that we faulted in the atomic pagefault
396 * disabled section so we can as well avoid the #PF overhead by
397 * calling get_user_pages() right away.
398 */
399static int fault_in_user_writeable(u32 __user *uaddr)
400{
722d0172
AK
401 struct mm_struct *mm = current->mm;
402 int ret;
403
404 down_read(&mm->mmap_sem);
2efaca92
BH
405 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406 FAULT_FLAG_WRITE);
722d0172
AK
407 up_read(&mm->mmap_sem);
408
d0725992
TG
409 return ret < 0 ? ret : 0;
410}
411
4b1c486b
DH
412/**
413 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
414 * @hb: the hash bucket the futex_q's reside in
415 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
416 *
417 * Must be called with the hb lock held.
418 */
419static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420 union futex_key *key)
421{
422 struct futex_q *this;
423
424 plist_for_each_entry(this, &hb->chain, list) {
425 if (match_futex(&this->key, key))
426 return this;
427 }
428 return NULL;
429}
430
37a9d912
ML
431static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432 u32 uval, u32 newval)
36cf3b5c 433{
37a9d912 434 int ret;
36cf3b5c
TG
435
436 pagefault_disable();
37a9d912 437 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
438 pagefault_enable();
439
37a9d912 440 return ret;
36cf3b5c
TG
441}
442
443static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
444{
445 int ret;
446
a866374a 447 pagefault_disable();
e2970f2f 448 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 449 pagefault_enable();
1da177e4
LT
450
451 return ret ? -EFAULT : 0;
452}
453
c87e2837
IM
454
455/*
456 * PI code:
457 */
458static int refill_pi_state_cache(void)
459{
460 struct futex_pi_state *pi_state;
461
462 if (likely(current->pi_state_cache))
463 return 0;
464
4668edc3 465 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
466
467 if (!pi_state)
468 return -ENOMEM;
469
c87e2837
IM
470 INIT_LIST_HEAD(&pi_state->list);
471 /* pi_mutex gets initialized later */
472 pi_state->owner = NULL;
473 atomic_set(&pi_state->refcount, 1);
38d47c1b 474 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
475
476 current->pi_state_cache = pi_state;
477
478 return 0;
479}
480
481static struct futex_pi_state * alloc_pi_state(void)
482{
483 struct futex_pi_state *pi_state = current->pi_state_cache;
484
485 WARN_ON(!pi_state);
486 current->pi_state_cache = NULL;
487
488 return pi_state;
489}
490
491static void free_pi_state(struct futex_pi_state *pi_state)
492{
493 if (!atomic_dec_and_test(&pi_state->refcount))
494 return;
495
496 /*
497 * If pi_state->owner is NULL, the owner is most probably dying
498 * and has cleaned up the pi_state already
499 */
500 if (pi_state->owner) {
1d615482 501 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 502 list_del_init(&pi_state->list);
1d615482 503 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
504
505 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506 }
507
508 if (current->pi_state_cache)
509 kfree(pi_state);
510 else {
511 /*
512 * pi_state->list is already empty.
513 * clear pi_state->owner.
514 * refcount is at 0 - put it back to 1.
515 */
516 pi_state->owner = NULL;
517 atomic_set(&pi_state->refcount, 1);
518 current->pi_state_cache = pi_state;
519 }
520}
521
522/*
523 * Look up the task based on what TID userspace gave us.
524 * We dont trust it.
525 */
526static struct task_struct * futex_find_get_task(pid_t pid)
527{
528 struct task_struct *p;
529
d359b549 530 rcu_read_lock();
228ebcbe 531 p = find_task_by_vpid(pid);
7a0ea09a
MH
532 if (p)
533 get_task_struct(p);
a06381fe 534
d359b549 535 rcu_read_unlock();
c87e2837
IM
536
537 return p;
538}
539
540/*
541 * This task is holding PI mutexes at exit time => bad.
542 * Kernel cleans up PI-state, but userspace is likely hosed.
543 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 */
545void exit_pi_state_list(struct task_struct *curr)
546{
c87e2837
IM
547 struct list_head *next, *head = &curr->pi_state_list;
548 struct futex_pi_state *pi_state;
627371d7 549 struct futex_hash_bucket *hb;
38d47c1b 550 union futex_key key = FUTEX_KEY_INIT;
c87e2837 551
a0c1e907
TG
552 if (!futex_cmpxchg_enabled)
553 return;
c87e2837
IM
554 /*
555 * We are a ZOMBIE and nobody can enqueue itself on
556 * pi_state_list anymore, but we have to be careful
627371d7 557 * versus waiters unqueueing themselves:
c87e2837 558 */
1d615482 559 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
560 while (!list_empty(head)) {
561
562 next = head->next;
563 pi_state = list_entry(next, struct futex_pi_state, list);
564 key = pi_state->key;
627371d7 565 hb = hash_futex(&key);
1d615482 566 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 567
c87e2837
IM
568 spin_lock(&hb->lock);
569
1d615482 570 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
571 /*
572 * We dropped the pi-lock, so re-check whether this
573 * task still owns the PI-state:
574 */
c87e2837
IM
575 if (head->next != next) {
576 spin_unlock(&hb->lock);
577 continue;
578 }
579
c87e2837 580 WARN_ON(pi_state->owner != curr);
627371d7
IM
581 WARN_ON(list_empty(&pi_state->list));
582 list_del_init(&pi_state->list);
c87e2837 583 pi_state->owner = NULL;
1d615482 584 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
585
586 rt_mutex_unlock(&pi_state->pi_mutex);
587
588 spin_unlock(&hb->lock);
589
1d615482 590 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 591 }
1d615482 592 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
593}
594
595static int
d0aa7a70 596lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
cabef9fe
TG
597 union futex_key *key, struct futex_pi_state **ps,
598 struct task_struct *task)
c87e2837
IM
599{
600 struct futex_pi_state *pi_state = NULL;
601 struct futex_q *this, *next;
ec92d082 602 struct plist_head *head;
c87e2837 603 struct task_struct *p;
778e9a9c 604 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
605
606 head = &hb->chain;
607
ec92d082 608 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 609 if (match_futex(&this->key, key)) {
c87e2837
IM
610 /*
611 * Another waiter already exists - bump up
612 * the refcount and return its pi_state:
613 */
614 pi_state = this->pi_state;
06a9ec29 615 /*
fb62db2b 616 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
617 */
618 if (unlikely(!pi_state))
619 return -EINVAL;
620
627371d7 621 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
622
623 /*
624 * When pi_state->owner is NULL then the owner died
625 * and another waiter is on the fly. pi_state->owner
626 * is fixed up by the task which acquires
627 * pi_state->rt_mutex.
628 *
629 * We do not check for pid == 0 which can happen when
630 * the owner died and robust_list_exit() cleared the
631 * TID.
632 */
633 if (pid && pi_state->owner) {
634 /*
635 * Bail out if user space manipulated the
636 * futex value.
637 */
638 if (pid != task_pid_vnr(pi_state->owner))
639 return -EINVAL;
640 }
627371d7 641
cabef9fe
TG
642 /*
643 * Protect against a corrupted uval. If uval
644 * is 0x80000000 then pid is 0 and the waiter
645 * bit is set. So the deadlock check in the
646 * calling code has failed and we did not fall
647 * into the check above due to !pid.
648 */
649 if (task && pi_state->owner == task)
650 return -EDEADLK;
651
c87e2837 652 atomic_inc(&pi_state->refcount);
d0aa7a70 653 *ps = pi_state;
c87e2837
IM
654
655 return 0;
656 }
657 }
658
659 /*
e3f2ddea 660 * We are the first waiter - try to look up the real owner and attach
778e9a9c 661 * the new pi_state to it, but bail out when TID = 0
c87e2837 662 */
778e9a9c 663 if (!pid)
e3f2ddea 664 return -ESRCH;
c87e2837 665 p = futex_find_get_task(pid);
7a0ea09a
MH
666 if (!p)
667 return -ESRCH;
778e9a9c 668
452d7fea
TG
669 if (!p->mm) {
670 put_task_struct(p);
671 return -EPERM;
672 }
673
778e9a9c
AK
674 /*
675 * We need to look at the task state flags to figure out,
676 * whether the task is exiting. To protect against the do_exit
677 * change of the task flags, we do this protected by
678 * p->pi_lock:
679 */
1d615482 680 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
681 if (unlikely(p->flags & PF_EXITING)) {
682 /*
683 * The task is on the way out. When PF_EXITPIDONE is
684 * set, we know that the task has finished the
685 * cleanup:
686 */
687 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
688
1d615482 689 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
690 put_task_struct(p);
691 return ret;
692 }
c87e2837
IM
693
694 pi_state = alloc_pi_state();
695
696 /*
697 * Initialize the pi_mutex in locked state and make 'p'
698 * the owner of it:
699 */
700 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
701
702 /* Store the key for possible exit cleanups: */
d0aa7a70 703 pi_state->key = *key;
c87e2837 704
627371d7 705 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
706 list_add(&pi_state->list, &p->pi_state_list);
707 pi_state->owner = p;
1d615482 708 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
709
710 put_task_struct(p);
711
d0aa7a70 712 *ps = pi_state;
c87e2837
IM
713
714 return 0;
715}
716
1a52084d 717/**
d96ee56c 718 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
719 * @uaddr: the pi futex user address
720 * @hb: the pi futex hash bucket
721 * @key: the futex key associated with uaddr and hb
722 * @ps: the pi_state pointer where we store the result of the
723 * lookup
724 * @task: the task to perform the atomic lock work for. This will
725 * be "current" except in the case of requeue pi.
726 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 727 *
6c23cbbd
RD
728 * Return:
729 * 0 - ready to wait;
730 * 1 - acquired the lock;
1a52084d
DH
731 * <0 - error
732 *
733 * The hb->lock and futex_key refs shall be held by the caller.
734 */
735static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
736 union futex_key *key,
737 struct futex_pi_state **ps,
bab5bc9e 738 struct task_struct *task, int set_waiters)
1a52084d 739{
59fa6245 740 int lock_taken, ret, force_take = 0;
c0c9ed15 741 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
742
743retry:
744 ret = lock_taken = 0;
745
746 /*
747 * To avoid races, we attempt to take the lock here again
748 * (by doing a 0 -> TID atomic cmpxchg), while holding all
749 * the locks. It will most likely not succeed.
750 */
c0c9ed15 751 newval = vpid;
bab5bc9e
DH
752 if (set_waiters)
753 newval |= FUTEX_WAITERS;
1a52084d 754
37a9d912 755 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
756 return -EFAULT;
757
758 /*
759 * Detect deadlocks.
760 */
c0c9ed15 761 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
762 return -EDEADLK;
763
764 /*
63d6ad59 765 * Surprise - we got the lock, but we do not trust user space at all.
1a52084d 766 */
63d6ad59
TG
767 if (unlikely(!curval)) {
768 /*
769 * We verify whether there is kernel state for this
770 * futex. If not, we can safely assume, that the 0 ->
771 * TID transition is correct. If state exists, we do
772 * not bother to fixup the user space state as it was
773 * corrupted already.
774 */
775 return futex_top_waiter(hb, key) ? -EINVAL : 1;
776 }
1a52084d
DH
777
778 uval = curval;
779
780 /*
781 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
782 * to wake at the next unlock.
783 */
784 newval = curval | FUTEX_WAITERS;
785
786 /*
59fa6245 787 * Should we force take the futex? See below.
1a52084d 788 */
59fa6245
TG
789 if (unlikely(force_take)) {
790 /*
791 * Keep the OWNER_DIED and the WAITERS bit and set the
792 * new TID value.
793 */
c0c9ed15 794 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 795 force_take = 0;
1a52084d
DH
796 lock_taken = 1;
797 }
798
37a9d912 799 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
800 return -EFAULT;
801 if (unlikely(curval != uval))
802 goto retry;
803
804 /*
59fa6245 805 * We took the lock due to forced take over.
1a52084d
DH
806 */
807 if (unlikely(lock_taken))
808 return 1;
809
810 /*
811 * We dont have the lock. Look up the PI state (or create it if
812 * we are the first waiter):
813 */
cabef9fe 814 ret = lookup_pi_state(uval, hb, key, ps, task);
1a52084d
DH
815
816 if (unlikely(ret)) {
817 switch (ret) {
818 case -ESRCH:
819 /*
59fa6245
TG
820 * We failed to find an owner for this
821 * futex. So we have no pi_state to block
822 * on. This can happen in two cases:
823 *
824 * 1) The owner died
825 * 2) A stale FUTEX_WAITERS bit
826 *
827 * Re-read the futex value.
1a52084d
DH
828 */
829 if (get_futex_value_locked(&curval, uaddr))
830 return -EFAULT;
831
832 /*
59fa6245
TG
833 * If the owner died or we have a stale
834 * WAITERS bit the owner TID in the user space
835 * futex is 0.
1a52084d 836 */
59fa6245
TG
837 if (!(curval & FUTEX_TID_MASK)) {
838 force_take = 1;
1a52084d
DH
839 goto retry;
840 }
841 default:
842 break;
843 }
844 }
845
846 return ret;
847}
848
2e12978a
LJ
849/**
850 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
851 * @q: The futex_q to unqueue
852 *
853 * The q->lock_ptr must not be NULL and must be held by the caller.
854 */
855static void __unqueue_futex(struct futex_q *q)
856{
857 struct futex_hash_bucket *hb;
858
29096202
SR
859 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
860 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
861 return;
862
863 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
864 plist_del(&q->list, &hb->chain);
865}
866
1da177e4
LT
867/*
868 * The hash bucket lock must be held when this is called.
869 * Afterwards, the futex_q must not be accessed.
870 */
871static void wake_futex(struct futex_q *q)
872{
f1a11e05
TG
873 struct task_struct *p = q->task;
874
aa10990e
DH
875 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
876 return;
877
1da177e4 878 /*
f1a11e05 879 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
880 * a non-futex wake up happens on another CPU then the task
881 * might exit and p would dereference a non-existing task
f1a11e05
TG
882 * struct. Prevent this by holding a reference on p across the
883 * wake up.
1da177e4 884 */
f1a11e05
TG
885 get_task_struct(p);
886
2e12978a 887 __unqueue_futex(q);
1da177e4 888 /*
f1a11e05
TG
889 * The waiting task can free the futex_q as soon as
890 * q->lock_ptr = NULL is written, without taking any locks. A
891 * memory barrier is required here to prevent the following
892 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 893 */
ccdea2f8 894 smp_wmb();
1da177e4 895 q->lock_ptr = NULL;
f1a11e05
TG
896
897 wake_up_state(p, TASK_NORMAL);
898 put_task_struct(p);
1da177e4
LT
899}
900
c87e2837
IM
901static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
902{
903 struct task_struct *new_owner;
904 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 905 u32 uninitialized_var(curval), newval;
9ad5dabd 906 int ret = 0;
c87e2837
IM
907
908 if (!pi_state)
909 return -EINVAL;
910
51246bfd
TG
911 /*
912 * If current does not own the pi_state then the futex is
913 * inconsistent and user space fiddled with the futex value.
914 */
915 if (pi_state->owner != current)
916 return -EINVAL;
917
d209d74d 918 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
919 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
920
921 /*
f123c98e
SR
922 * It is possible that the next waiter (the one that brought
923 * this owner to the kernel) timed out and is no longer
924 * waiting on the lock.
c87e2837
IM
925 */
926 if (!new_owner)
927 new_owner = this->task;
928
929 /*
9ad5dabd
TG
930 * We pass it to the next owner. The WAITERS bit is always
931 * kept enabled while there is PI state around. We cleanup the
932 * owner died bit, because we are the owner.
c87e2837 933 */
9ad5dabd 934 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 935
9ad5dabd
TG
936 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
937 ret = -EFAULT;
938 else if (curval != uval)
939 ret = -EINVAL;
940 if (ret) {
941 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
942 return ret;
e3f2ddea 943 }
c87e2837 944
1d615482 945 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
946 WARN_ON(list_empty(&pi_state->list));
947 list_del_init(&pi_state->list);
1d615482 948 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 949
1d615482 950 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 951 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
952 list_add(&pi_state->list, &new_owner->pi_state_list);
953 pi_state->owner = new_owner;
1d615482 954 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 955
d209d74d 956 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
957 rt_mutex_unlock(&pi_state->pi_mutex);
958
959 return 0;
960}
961
962static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
963{
7cfdaf38 964 u32 uninitialized_var(oldval);
c87e2837
IM
965
966 /*
967 * There is no waiter, so we unlock the futex. The owner died
968 * bit has not to be preserved here. We are the owner:
969 */
37a9d912
ML
970 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
971 return -EFAULT;
c87e2837
IM
972 if (oldval != uval)
973 return -EAGAIN;
974
975 return 0;
976}
977
8b8f319f
IM
978/*
979 * Express the locking dependencies for lockdep:
980 */
981static inline void
982double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
983{
984 if (hb1 <= hb2) {
985 spin_lock(&hb1->lock);
986 if (hb1 < hb2)
987 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
988 } else { /* hb1 > hb2 */
989 spin_lock(&hb2->lock);
990 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
991 }
992}
993
5eb3dc62
DH
994static inline void
995double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
996{
f061d351 997 spin_unlock(&hb1->lock);
88f502fe
IM
998 if (hb1 != hb2)
999 spin_unlock(&hb2->lock);
5eb3dc62
DH
1000}
1001
1da177e4 1002/*
b2d0994b 1003 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1004 */
b41277dc
DH
1005static int
1006futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1007{
e2970f2f 1008 struct futex_hash_bucket *hb;
1da177e4 1009 struct futex_q *this, *next;
ec92d082 1010 struct plist_head *head;
38d47c1b 1011 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1012 int ret;
1013
cd689985
TG
1014 if (!bitset)
1015 return -EINVAL;
1016
9ea71503 1017 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1018 if (unlikely(ret != 0))
1019 goto out;
1020
e2970f2f
IM
1021 hb = hash_futex(&key);
1022 spin_lock(&hb->lock);
1023 head = &hb->chain;
1da177e4 1024
ec92d082 1025 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 1026 if (match_futex (&this->key, &key)) {
52400ba9 1027 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1028 ret = -EINVAL;
1029 break;
1030 }
cd689985
TG
1031
1032 /* Check if one of the bits is set in both bitsets */
1033 if (!(this->bitset & bitset))
1034 continue;
1035
1da177e4
LT
1036 wake_futex(this);
1037 if (++ret >= nr_wake)
1038 break;
1039 }
1040 }
1041
e2970f2f 1042 spin_unlock(&hb->lock);
ae791a2d 1043 put_futex_key(&key);
42d35d48 1044out:
1da177e4
LT
1045 return ret;
1046}
1047
4732efbe
JJ
1048/*
1049 * Wake up all waiters hashed on the physical page that is mapped
1050 * to this virtual address:
1051 */
e2970f2f 1052static int
b41277dc 1053futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1054 int nr_wake, int nr_wake2, int op)
4732efbe 1055{
38d47c1b 1056 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1057 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1058 struct plist_head *head;
4732efbe 1059 struct futex_q *this, *next;
e4dc5b7a 1060 int ret, op_ret;
4732efbe 1061
e4dc5b7a 1062retry:
9ea71503 1063 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1064 if (unlikely(ret != 0))
1065 goto out;
9ea71503 1066 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1067 if (unlikely(ret != 0))
42d35d48 1068 goto out_put_key1;
4732efbe 1069
e2970f2f
IM
1070 hb1 = hash_futex(&key1);
1071 hb2 = hash_futex(&key2);
4732efbe 1072
e4dc5b7a 1073retry_private:
eaaea803 1074 double_lock_hb(hb1, hb2);
e2970f2f 1075 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1076 if (unlikely(op_ret < 0)) {
4732efbe 1077
5eb3dc62 1078 double_unlock_hb(hb1, hb2);
4732efbe 1079
7ee1dd3f 1080#ifndef CONFIG_MMU
e2970f2f
IM
1081 /*
1082 * we don't get EFAULT from MMU faults if we don't have an MMU,
1083 * but we might get them from range checking
1084 */
7ee1dd3f 1085 ret = op_ret;
42d35d48 1086 goto out_put_keys;
7ee1dd3f
DH
1087#endif
1088
796f8d9b
DG
1089 if (unlikely(op_ret != -EFAULT)) {
1090 ret = op_ret;
42d35d48 1091 goto out_put_keys;
796f8d9b
DG
1092 }
1093
d0725992 1094 ret = fault_in_user_writeable(uaddr2);
4732efbe 1095 if (ret)
de87fcc1 1096 goto out_put_keys;
4732efbe 1097
b41277dc 1098 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1099 goto retry_private;
1100
ae791a2d
TG
1101 put_futex_key(&key2);
1102 put_futex_key(&key1);
e4dc5b7a 1103 goto retry;
4732efbe
JJ
1104 }
1105
e2970f2f 1106 head = &hb1->chain;
4732efbe 1107
ec92d082 1108 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1109 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1110 if (this->pi_state || this->rt_waiter) {
1111 ret = -EINVAL;
1112 goto out_unlock;
1113 }
4732efbe
JJ
1114 wake_futex(this);
1115 if (++ret >= nr_wake)
1116 break;
1117 }
1118 }
1119
1120 if (op_ret > 0) {
e2970f2f 1121 head = &hb2->chain;
4732efbe
JJ
1122
1123 op_ret = 0;
ec92d082 1124 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1125 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1126 if (this->pi_state || this->rt_waiter) {
1127 ret = -EINVAL;
1128 goto out_unlock;
1129 }
4732efbe
JJ
1130 wake_futex(this);
1131 if (++op_ret >= nr_wake2)
1132 break;
1133 }
1134 }
1135 ret += op_ret;
1136 }
1137
aa10990e 1138out_unlock:
5eb3dc62 1139 double_unlock_hb(hb1, hb2);
42d35d48 1140out_put_keys:
ae791a2d 1141 put_futex_key(&key2);
42d35d48 1142out_put_key1:
ae791a2d 1143 put_futex_key(&key1);
42d35d48 1144out:
4732efbe
JJ
1145 return ret;
1146}
1147
9121e478
DH
1148/**
1149 * requeue_futex() - Requeue a futex_q from one hb to another
1150 * @q: the futex_q to requeue
1151 * @hb1: the source hash_bucket
1152 * @hb2: the target hash_bucket
1153 * @key2: the new key for the requeued futex_q
1154 */
1155static inline
1156void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1157 struct futex_hash_bucket *hb2, union futex_key *key2)
1158{
1159
1160 /*
1161 * If key1 and key2 hash to the same bucket, no need to
1162 * requeue.
1163 */
1164 if (likely(&hb1->chain != &hb2->chain)) {
1165 plist_del(&q->list, &hb1->chain);
1166 plist_add(&q->list, &hb2->chain);
1167 q->lock_ptr = &hb2->lock;
9121e478
DH
1168 }
1169 get_futex_key_refs(key2);
1170 q->key = *key2;
1171}
1172
52400ba9
DH
1173/**
1174 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1175 * @q: the futex_q
1176 * @key: the key of the requeue target futex
1177 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1178 *
1179 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1180 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1181 * to the requeue target futex so the waiter can detect the wakeup on the right
1182 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1183 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1184 * to protect access to the pi_state to fixup the owner later. Must be called
1185 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1186 */
1187static inline
beda2c7e
DH
1188void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1189 struct futex_hash_bucket *hb)
52400ba9 1190{
52400ba9
DH
1191 get_futex_key_refs(key);
1192 q->key = *key;
1193
2e12978a 1194 __unqueue_futex(q);
52400ba9
DH
1195
1196 WARN_ON(!q->rt_waiter);
1197 q->rt_waiter = NULL;
1198
beda2c7e 1199 q->lock_ptr = &hb->lock;
beda2c7e 1200
f1a11e05 1201 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1202}
1203
1204/**
1205 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1206 * @pifutex: the user address of the to futex
1207 * @hb1: the from futex hash bucket, must be locked by the caller
1208 * @hb2: the to futex hash bucket, must be locked by the caller
1209 * @key1: the from futex key
1210 * @key2: the to futex key
1211 * @ps: address to store the pi_state pointer
1212 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1213 *
1214 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1215 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1216 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1217 * hb1 and hb2 must be held by the caller.
52400ba9 1218 *
6c23cbbd
RD
1219 * Return:
1220 * 0 - failed to acquire the lock atomically;
cabef9fe 1221 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1222 * <0 - error
1223 */
1224static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1225 struct futex_hash_bucket *hb1,
1226 struct futex_hash_bucket *hb2,
1227 union futex_key *key1, union futex_key *key2,
bab5bc9e 1228 struct futex_pi_state **ps, int set_waiters)
52400ba9 1229{
bab5bc9e 1230 struct futex_q *top_waiter = NULL;
52400ba9 1231 u32 curval;
cabef9fe 1232 int ret, vpid;
52400ba9
DH
1233
1234 if (get_futex_value_locked(&curval, pifutex))
1235 return -EFAULT;
1236
bab5bc9e
DH
1237 /*
1238 * Find the top_waiter and determine if there are additional waiters.
1239 * If the caller intends to requeue more than 1 waiter to pifutex,
1240 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1241 * as we have means to handle the possible fault. If not, don't set
1242 * the bit unecessarily as it will force the subsequent unlock to enter
1243 * the kernel.
1244 */
52400ba9
DH
1245 top_waiter = futex_top_waiter(hb1, key1);
1246
1247 /* There are no waiters, nothing for us to do. */
1248 if (!top_waiter)
1249 return 0;
1250
84bc4af5
DH
1251 /* Ensure we requeue to the expected futex. */
1252 if (!match_futex(top_waiter->requeue_pi_key, key2))
1253 return -EINVAL;
1254
52400ba9 1255 /*
bab5bc9e
DH
1256 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1257 * the contended case or if set_waiters is 1. The pi_state is returned
1258 * in ps in contended cases.
52400ba9 1259 */
cabef9fe 1260 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1261 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1262 set_waiters);
cabef9fe 1263 if (ret == 1) {
beda2c7e 1264 requeue_pi_wake_futex(top_waiter, key2, hb2);
cabef9fe
TG
1265 return vpid;
1266 }
52400ba9
DH
1267 return ret;
1268}
1269
1270/**
1271 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1272 * @uaddr1: source futex user address
b41277dc 1273 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1274 * @uaddr2: target futex user address
1275 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1276 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1277 * @cmpval: @uaddr1 expected value (or %NULL)
1278 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1279 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1280 *
1281 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1282 * uaddr2 atomically on behalf of the top waiter.
1283 *
6c23cbbd
RD
1284 * Return:
1285 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1286 * <0 - on error
1da177e4 1287 */
b41277dc
DH
1288static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1289 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1290 u32 *cmpval, int requeue_pi)
1da177e4 1291{
38d47c1b 1292 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1293 int drop_count = 0, task_count = 0, ret;
1294 struct futex_pi_state *pi_state = NULL;
e2970f2f 1295 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1296 struct plist_head *head1;
1da177e4 1297 struct futex_q *this, *next;
52400ba9
DH
1298
1299 if (requeue_pi) {
b58623fb
TG
1300 /*
1301 * Requeue PI only works on two distinct uaddrs. This
1302 * check is only valid for private futexes. See below.
1303 */
1304 if (uaddr1 == uaddr2)
1305 return -EINVAL;
1306
52400ba9
DH
1307 /*
1308 * requeue_pi requires a pi_state, try to allocate it now
1309 * without any locks in case it fails.
1310 */
1311 if (refill_pi_state_cache())
1312 return -ENOMEM;
1313 /*
1314 * requeue_pi must wake as many tasks as it can, up to nr_wake
1315 * + nr_requeue, since it acquires the rt_mutex prior to
1316 * returning to userspace, so as to not leave the rt_mutex with
1317 * waiters and no owner. However, second and third wake-ups
1318 * cannot be predicted as they involve race conditions with the
1319 * first wake and a fault while looking up the pi_state. Both
1320 * pthread_cond_signal() and pthread_cond_broadcast() should
1321 * use nr_wake=1.
1322 */
1323 if (nr_wake != 1)
1324 return -EINVAL;
1325 }
1da177e4 1326
42d35d48 1327retry:
52400ba9
DH
1328 if (pi_state != NULL) {
1329 /*
1330 * We will have to lookup the pi_state again, so free this one
1331 * to keep the accounting correct.
1332 */
1333 free_pi_state(pi_state);
1334 pi_state = NULL;
1335 }
1336
9ea71503 1337 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1338 if (unlikely(ret != 0))
1339 goto out;
9ea71503
SB
1340 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1341 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1342 if (unlikely(ret != 0))
42d35d48 1343 goto out_put_key1;
1da177e4 1344
b58623fb
TG
1345 /*
1346 * The check above which compares uaddrs is not sufficient for
1347 * shared futexes. We need to compare the keys:
1348 */
1349 if (requeue_pi && match_futex(&key1, &key2)) {
1350 ret = -EINVAL;
1351 goto out_put_keys;
1352 }
1353
e2970f2f
IM
1354 hb1 = hash_futex(&key1);
1355 hb2 = hash_futex(&key2);
1da177e4 1356
e4dc5b7a 1357retry_private:
8b8f319f 1358 double_lock_hb(hb1, hb2);
1da177e4 1359
e2970f2f
IM
1360 if (likely(cmpval != NULL)) {
1361 u32 curval;
1da177e4 1362
e2970f2f 1363 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1364
1365 if (unlikely(ret)) {
5eb3dc62 1366 double_unlock_hb(hb1, hb2);
1da177e4 1367
e2970f2f 1368 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1369 if (ret)
1370 goto out_put_keys;
1da177e4 1371
b41277dc 1372 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1373 goto retry_private;
1da177e4 1374
ae791a2d
TG
1375 put_futex_key(&key2);
1376 put_futex_key(&key1);
e4dc5b7a 1377 goto retry;
1da177e4 1378 }
e2970f2f 1379 if (curval != *cmpval) {
1da177e4
LT
1380 ret = -EAGAIN;
1381 goto out_unlock;
1382 }
1383 }
1384
52400ba9 1385 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1386 /*
1387 * Attempt to acquire uaddr2 and wake the top waiter. If we
1388 * intend to requeue waiters, force setting the FUTEX_WAITERS
1389 * bit. We force this here where we are able to easily handle
1390 * faults rather in the requeue loop below.
1391 */
52400ba9 1392 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1393 &key2, &pi_state, nr_requeue);
52400ba9
DH
1394
1395 /*
1396 * At this point the top_waiter has either taken uaddr2 or is
1397 * waiting on it. If the former, then the pi_state will not
1398 * exist yet, look it up one more time to ensure we have a
cabef9fe
TG
1399 * reference to it. If the lock was taken, ret contains the
1400 * vpid of the top waiter task.
52400ba9 1401 */
cabef9fe 1402 if (ret > 0) {
52400ba9 1403 WARN_ON(pi_state);
89061d3d 1404 drop_count++;
52400ba9 1405 task_count++;
cabef9fe
TG
1406 /*
1407 * If we acquired the lock, then the user
1408 * space value of uaddr2 should be vpid. It
1409 * cannot be changed by the top waiter as it
1410 * is blocked on hb2 lock if it tries to do
1411 * so. If something fiddled with it behind our
1412 * back the pi state lookup might unearth
1413 * it. So we rather use the known value than
1414 * rereading and handing potential crap to
1415 * lookup_pi_state.
1416 */
1417 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
52400ba9
DH
1418 }
1419
1420 switch (ret) {
1421 case 0:
1422 break;
1423 case -EFAULT:
1424 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1425 put_futex_key(&key2);
1426 put_futex_key(&key1);
d0725992 1427 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1428 if (!ret)
1429 goto retry;
1430 goto out;
1431 case -EAGAIN:
1432 /* The owner was exiting, try again. */
1433 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1434 put_futex_key(&key2);
1435 put_futex_key(&key1);
52400ba9
DH
1436 cond_resched();
1437 goto retry;
1438 default:
1439 goto out_unlock;
1440 }
1441 }
1442
e2970f2f 1443 head1 = &hb1->chain;
ec92d082 1444 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1445 if (task_count - nr_wake >= nr_requeue)
1446 break;
1447
1448 if (!match_futex(&this->key, &key1))
1da177e4 1449 continue;
52400ba9 1450
392741e0
DH
1451 /*
1452 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1453 * be paired with each other and no other futex ops.
aa10990e
DH
1454 *
1455 * We should never be requeueing a futex_q with a pi_state,
1456 * which is awaiting a futex_unlock_pi().
392741e0
DH
1457 */
1458 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1459 (!requeue_pi && this->rt_waiter) ||
1460 this->pi_state) {
392741e0
DH
1461 ret = -EINVAL;
1462 break;
1463 }
52400ba9
DH
1464
1465 /*
1466 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1467 * lock, we already woke the top_waiter. If not, it will be
1468 * woken by futex_unlock_pi().
1469 */
1470 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1471 wake_futex(this);
52400ba9
DH
1472 continue;
1473 }
1da177e4 1474
84bc4af5
DH
1475 /* Ensure we requeue to the expected futex for requeue_pi. */
1476 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1477 ret = -EINVAL;
1478 break;
1479 }
1480
52400ba9
DH
1481 /*
1482 * Requeue nr_requeue waiters and possibly one more in the case
1483 * of requeue_pi if we couldn't acquire the lock atomically.
1484 */
1485 if (requeue_pi) {
1486 /* Prepare the waiter to take the rt_mutex. */
1487 atomic_inc(&pi_state->refcount);
1488 this->pi_state = pi_state;
1489 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1490 this->rt_waiter,
1491 this->task, 1);
1492 if (ret == 1) {
1493 /* We got the lock. */
beda2c7e 1494 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1495 drop_count++;
52400ba9
DH
1496 continue;
1497 } else if (ret) {
1498 /* -EDEADLK */
1499 this->pi_state = NULL;
1500 free_pi_state(pi_state);
1501 goto out_unlock;
1502 }
1da177e4 1503 }
52400ba9
DH
1504 requeue_futex(this, hb1, hb2, &key2);
1505 drop_count++;
1da177e4
LT
1506 }
1507
1508out_unlock:
5eb3dc62 1509 double_unlock_hb(hb1, hb2);
1da177e4 1510
cd84a42f
DH
1511 /*
1512 * drop_futex_key_refs() must be called outside the spinlocks. During
1513 * the requeue we moved futex_q's from the hash bucket at key1 to the
1514 * one at key2 and updated their key pointer. We no longer need to
1515 * hold the references to key1.
1516 */
1da177e4 1517 while (--drop_count >= 0)
9adef58b 1518 drop_futex_key_refs(&key1);
1da177e4 1519
42d35d48 1520out_put_keys:
ae791a2d 1521 put_futex_key(&key2);
42d35d48 1522out_put_key1:
ae791a2d 1523 put_futex_key(&key1);
42d35d48 1524out:
52400ba9
DH
1525 if (pi_state != NULL)
1526 free_pi_state(pi_state);
1527 return ret ? ret : task_count;
1da177e4
LT
1528}
1529
1530/* The key must be already stored in q->key. */
82af7aca 1531static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1532 __acquires(&hb->lock)
1da177e4 1533{
e2970f2f 1534 struct futex_hash_bucket *hb;
1da177e4 1535
e2970f2f
IM
1536 hb = hash_futex(&q->key);
1537 q->lock_ptr = &hb->lock;
1da177e4 1538
e2970f2f
IM
1539 spin_lock(&hb->lock);
1540 return hb;
1da177e4
LT
1541}
1542
d40d65c8
DH
1543static inline void
1544queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1545 __releases(&hb->lock)
d40d65c8
DH
1546{
1547 spin_unlock(&hb->lock);
d40d65c8
DH
1548}
1549
1550/**
1551 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1552 * @q: The futex_q to enqueue
1553 * @hb: The destination hash bucket
1554 *
1555 * The hb->lock must be held by the caller, and is released here. A call to
1556 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1557 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1558 * or nothing if the unqueue is done as part of the wake process and the unqueue
1559 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1560 * an example).
1561 */
82af7aca 1562static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1563 __releases(&hb->lock)
1da177e4 1564{
ec92d082
PP
1565 int prio;
1566
1567 /*
1568 * The priority used to register this element is
1569 * - either the real thread-priority for the real-time threads
1570 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1571 * - or MAX_RT_PRIO for non-RT threads.
1572 * Thus, all RT-threads are woken first in priority order, and
1573 * the others are woken last, in FIFO order.
1574 */
1575 prio = min(current->normal_prio, MAX_RT_PRIO);
1576
1577 plist_node_init(&q->list, prio);
ec92d082 1578 plist_add(&q->list, &hb->chain);
c87e2837 1579 q->task = current;
e2970f2f 1580 spin_unlock(&hb->lock);
1da177e4
LT
1581}
1582
d40d65c8
DH
1583/**
1584 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1585 * @q: The futex_q to unqueue
1586 *
1587 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1588 * be paired with exactly one earlier call to queue_me().
1589 *
6c23cbbd
RD
1590 * Return:
1591 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1592 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1593 */
1da177e4
LT
1594static int unqueue_me(struct futex_q *q)
1595{
1da177e4 1596 spinlock_t *lock_ptr;
e2970f2f 1597 int ret = 0;
1da177e4
LT
1598
1599 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1600retry:
1da177e4 1601 lock_ptr = q->lock_ptr;
e91467ec 1602 barrier();
c80544dc 1603 if (lock_ptr != NULL) {
1da177e4
LT
1604 spin_lock(lock_ptr);
1605 /*
1606 * q->lock_ptr can change between reading it and
1607 * spin_lock(), causing us to take the wrong lock. This
1608 * corrects the race condition.
1609 *
1610 * Reasoning goes like this: if we have the wrong lock,
1611 * q->lock_ptr must have changed (maybe several times)
1612 * between reading it and the spin_lock(). It can
1613 * change again after the spin_lock() but only if it was
1614 * already changed before the spin_lock(). It cannot,
1615 * however, change back to the original value. Therefore
1616 * we can detect whether we acquired the correct lock.
1617 */
1618 if (unlikely(lock_ptr != q->lock_ptr)) {
1619 spin_unlock(lock_ptr);
1620 goto retry;
1621 }
2e12978a 1622 __unqueue_futex(q);
c87e2837
IM
1623
1624 BUG_ON(q->pi_state);
1625
1da177e4
LT
1626 spin_unlock(lock_ptr);
1627 ret = 1;
1628 }
1629
9adef58b 1630 drop_futex_key_refs(&q->key);
1da177e4
LT
1631 return ret;
1632}
1633
c87e2837
IM
1634/*
1635 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1636 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1637 * and dropped here.
c87e2837 1638 */
d0aa7a70 1639static void unqueue_me_pi(struct futex_q *q)
15e408cd 1640 __releases(q->lock_ptr)
c87e2837 1641{
2e12978a 1642 __unqueue_futex(q);
c87e2837
IM
1643
1644 BUG_ON(!q->pi_state);
1645 free_pi_state(q->pi_state);
1646 q->pi_state = NULL;
1647
d0aa7a70 1648 spin_unlock(q->lock_ptr);
c87e2837
IM
1649}
1650
d0aa7a70 1651/*
cdf71a10 1652 * Fixup the pi_state owner with the new owner.
d0aa7a70 1653 *
778e9a9c
AK
1654 * Must be called with hash bucket lock held and mm->sem held for non
1655 * private futexes.
d0aa7a70 1656 */
778e9a9c 1657static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1658 struct task_struct *newowner)
d0aa7a70 1659{
cdf71a10 1660 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1661 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1662 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1663 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1664 int ret;
d0aa7a70
PP
1665
1666 /* Owner died? */
1b7558e4
TG
1667 if (!pi_state->owner)
1668 newtid |= FUTEX_OWNER_DIED;
1669
1670 /*
1671 * We are here either because we stole the rtmutex from the
8161239a
LJ
1672 * previous highest priority waiter or we are the highest priority
1673 * waiter but failed to get the rtmutex the first time.
1674 * We have to replace the newowner TID in the user space variable.
1675 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1676 *
b2d0994b
DH
1677 * Note: We write the user space value _before_ changing the pi_state
1678 * because we can fault here. Imagine swapped out pages or a fork
1679 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1680 *
1681 * Modifying pi_state _before_ the user space value would
1682 * leave the pi_state in an inconsistent state when we fault
1683 * here, because we need to drop the hash bucket lock to
1684 * handle the fault. This might be observed in the PID check
1685 * in lookup_pi_state.
1686 */
1687retry:
1688 if (get_futex_value_locked(&uval, uaddr))
1689 goto handle_fault;
1690
1691 while (1) {
1692 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1693
37a9d912 1694 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1695 goto handle_fault;
1696 if (curval == uval)
1697 break;
1698 uval = curval;
1699 }
1700
1701 /*
1702 * We fixed up user space. Now we need to fix the pi_state
1703 * itself.
1704 */
d0aa7a70 1705 if (pi_state->owner != NULL) {
1d615482 1706 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1707 WARN_ON(list_empty(&pi_state->list));
1708 list_del_init(&pi_state->list);
1d615482 1709 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1710 }
d0aa7a70 1711
cdf71a10 1712 pi_state->owner = newowner;
d0aa7a70 1713
1d615482 1714 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1715 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1716 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1717 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1718 return 0;
d0aa7a70 1719
d0aa7a70 1720 /*
1b7558e4 1721 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1722 * lock here. That gives the other task (either the highest priority
1723 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1724 * chance to try the fixup of the pi_state. So once we are
1725 * back from handling the fault we need to check the pi_state
1726 * after reacquiring the hash bucket lock and before trying to
1727 * do another fixup. When the fixup has been done already we
1728 * simply return.
d0aa7a70 1729 */
1b7558e4
TG
1730handle_fault:
1731 spin_unlock(q->lock_ptr);
778e9a9c 1732
d0725992 1733 ret = fault_in_user_writeable(uaddr);
778e9a9c 1734
1b7558e4 1735 spin_lock(q->lock_ptr);
778e9a9c 1736
1b7558e4
TG
1737 /*
1738 * Check if someone else fixed it for us:
1739 */
1740 if (pi_state->owner != oldowner)
1741 return 0;
1742
1743 if (ret)
1744 return ret;
1745
1746 goto retry;
d0aa7a70
PP
1747}
1748
72c1bbf3 1749static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1750
dd973998
DH
1751/**
1752 * fixup_owner() - Post lock pi_state and corner case management
1753 * @uaddr: user address of the futex
dd973998
DH
1754 * @q: futex_q (contains pi_state and access to the rt_mutex)
1755 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1756 *
1757 * After attempting to lock an rt_mutex, this function is called to cleanup
1758 * the pi_state owner as well as handle race conditions that may allow us to
1759 * acquire the lock. Must be called with the hb lock held.
1760 *
6c23cbbd
RD
1761 * Return:
1762 * 1 - success, lock taken;
1763 * 0 - success, lock not taken;
dd973998
DH
1764 * <0 - on error (-EFAULT)
1765 */
ae791a2d 1766static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1767{
1768 struct task_struct *owner;
1769 int ret = 0;
1770
1771 if (locked) {
1772 /*
1773 * Got the lock. We might not be the anticipated owner if we
1774 * did a lock-steal - fix up the PI-state in that case:
1775 */
1776 if (q->pi_state->owner != current)
ae791a2d 1777 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1778 goto out;
1779 }
1780
1781 /*
1782 * Catch the rare case, where the lock was released when we were on the
1783 * way back before we locked the hash bucket.
1784 */
1785 if (q->pi_state->owner == current) {
1786 /*
1787 * Try to get the rt_mutex now. This might fail as some other
1788 * task acquired the rt_mutex after we removed ourself from the
1789 * rt_mutex waiters list.
1790 */
1791 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1792 locked = 1;
1793 goto out;
1794 }
1795
1796 /*
1797 * pi_state is incorrect, some other task did a lock steal and
1798 * we returned due to timeout or signal without taking the
8161239a 1799 * rt_mutex. Too late.
dd973998 1800 */
8161239a 1801 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1802 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1803 if (!owner)
1804 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1805 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1806 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1807 goto out;
1808 }
1809
1810 /*
1811 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1812 * the owner of the rt_mutex.
dd973998
DH
1813 */
1814 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1815 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1816 "pi-state %p\n", ret,
1817 q->pi_state->pi_mutex.owner,
1818 q->pi_state->owner);
1819
1820out:
1821 return ret ? ret : locked;
1822}
1823
ca5f9524
DH
1824/**
1825 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1826 * @hb: the futex hash bucket, must be locked by the caller
1827 * @q: the futex_q to queue up on
1828 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1829 */
1830static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1831 struct hrtimer_sleeper *timeout)
ca5f9524 1832{
9beba3c5
DH
1833 /*
1834 * The task state is guaranteed to be set before another task can
1835 * wake it. set_current_state() is implemented using set_mb() and
1836 * queue_me() calls spin_unlock() upon completion, both serializing
1837 * access to the hash list and forcing another memory barrier.
1838 */
f1a11e05 1839 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1840 queue_me(q, hb);
ca5f9524
DH
1841
1842 /* Arm the timer */
1843 if (timeout) {
1844 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1845 if (!hrtimer_active(&timeout->timer))
1846 timeout->task = NULL;
1847 }
1848
1849 /*
0729e196
DH
1850 * If we have been removed from the hash list, then another task
1851 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1852 */
1853 if (likely(!plist_node_empty(&q->list))) {
1854 /*
1855 * If the timer has already expired, current will already be
1856 * flagged for rescheduling. Only call schedule if there
1857 * is no timeout, or if it has yet to expire.
1858 */
1859 if (!timeout || timeout->task)
1860 schedule();
1861 }
1862 __set_current_state(TASK_RUNNING);
1863}
1864
f801073f
DH
1865/**
1866 * futex_wait_setup() - Prepare to wait on a futex
1867 * @uaddr: the futex userspace address
1868 * @val: the expected value
b41277dc 1869 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1870 * @q: the associated futex_q
1871 * @hb: storage for hash_bucket pointer to be returned to caller
1872 *
1873 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1874 * compare it with the expected value. Handle atomic faults internally.
1875 * Return with the hb lock held and a q.key reference on success, and unlocked
1876 * with no q.key reference on failure.
1877 *
6c23cbbd
RD
1878 * Return:
1879 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1880 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1881 */
b41277dc 1882static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1883 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1884{
e2970f2f
IM
1885 u32 uval;
1886 int ret;
1da177e4 1887
1da177e4 1888 /*
b2d0994b 1889 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1890 * Order is important:
1891 *
1892 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1893 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1894 *
1895 * The basic logical guarantee of a futex is that it blocks ONLY
1896 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1897 * any cond. If we locked the hash-bucket after testing *uaddr, that
1898 * would open a race condition where we could block indefinitely with
1da177e4
LT
1899 * cond(var) false, which would violate the guarantee.
1900 *
8fe8f545
ML
1901 * On the other hand, we insert q and release the hash-bucket only
1902 * after testing *uaddr. This guarantees that futex_wait() will NOT
1903 * absorb a wakeup if *uaddr does not match the desired values
1904 * while the syscall executes.
1da177e4 1905 */
f801073f 1906retry:
9ea71503 1907 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1908 if (unlikely(ret != 0))
a5a2a0c7 1909 return ret;
f801073f
DH
1910
1911retry_private:
1912 *hb = queue_lock(q);
1913
e2970f2f 1914 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1915
f801073f
DH
1916 if (ret) {
1917 queue_unlock(q, *hb);
1da177e4 1918
e2970f2f 1919 ret = get_user(uval, uaddr);
e4dc5b7a 1920 if (ret)
f801073f 1921 goto out;
1da177e4 1922
b41277dc 1923 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1924 goto retry_private;
1925
ae791a2d 1926 put_futex_key(&q->key);
e4dc5b7a 1927 goto retry;
1da177e4 1928 }
ca5f9524 1929
f801073f
DH
1930 if (uval != val) {
1931 queue_unlock(q, *hb);
1932 ret = -EWOULDBLOCK;
2fff78c7 1933 }
1da177e4 1934
f801073f
DH
1935out:
1936 if (ret)
ae791a2d 1937 put_futex_key(&q->key);
f801073f
DH
1938 return ret;
1939}
1940
b41277dc
DH
1941static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1942 ktime_t *abs_time, u32 bitset)
f801073f
DH
1943{
1944 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1945 struct restart_block *restart;
1946 struct futex_hash_bucket *hb;
5bdb05f9 1947 struct futex_q q = futex_q_init;
f801073f
DH
1948 int ret;
1949
1950 if (!bitset)
1951 return -EINVAL;
f801073f
DH
1952 q.bitset = bitset;
1953
1954 if (abs_time) {
1955 to = &timeout;
1956
b41277dc
DH
1957 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1958 CLOCK_REALTIME : CLOCK_MONOTONIC,
1959 HRTIMER_MODE_ABS);
f801073f
DH
1960 hrtimer_init_sleeper(to, current);
1961 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1962 current->timer_slack_ns);
1963 }
1964
d58e6576 1965retry:
7ada876a
DH
1966 /*
1967 * Prepare to wait on uaddr. On success, holds hb lock and increments
1968 * q.key refs.
1969 */
b41277dc 1970 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1971 if (ret)
1972 goto out;
1973
ca5f9524 1974 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1975 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1976
1977 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1978 ret = 0;
7ada876a 1979 /* unqueue_me() drops q.key ref */
1da177e4 1980 if (!unqueue_me(&q))
7ada876a 1981 goto out;
2fff78c7 1982 ret = -ETIMEDOUT;
ca5f9524 1983 if (to && !to->task)
7ada876a 1984 goto out;
72c1bbf3 1985
e2970f2f 1986 /*
d58e6576
TG
1987 * We expect signal_pending(current), but we might be the
1988 * victim of a spurious wakeup as well.
e2970f2f 1989 */
7ada876a 1990 if (!signal_pending(current))
d58e6576 1991 goto retry;
d58e6576 1992
2fff78c7 1993 ret = -ERESTARTSYS;
c19384b5 1994 if (!abs_time)
7ada876a 1995 goto out;
1da177e4 1996
2fff78c7
PZ
1997 restart = &current_thread_info()->restart_block;
1998 restart->fn = futex_wait_restart;
a3c74c52 1999 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2000 restart->futex.val = val;
2001 restart->futex.time = abs_time->tv64;
2002 restart->futex.bitset = bitset;
0cd9c649 2003 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2004
2fff78c7
PZ
2005 ret = -ERESTART_RESTARTBLOCK;
2006
42d35d48 2007out:
ca5f9524
DH
2008 if (to) {
2009 hrtimer_cancel(&to->timer);
2010 destroy_hrtimer_on_stack(&to->timer);
2011 }
c87e2837
IM
2012 return ret;
2013}
2014
72c1bbf3
NP
2015
2016static long futex_wait_restart(struct restart_block *restart)
2017{
a3c74c52 2018 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2019 ktime_t t, *tp = NULL;
72c1bbf3 2020
a72188d8
DH
2021 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2022 t.tv64 = restart->futex.time;
2023 tp = &t;
2024 }
72c1bbf3 2025 restart->fn = do_no_restart_syscall;
b41277dc
DH
2026
2027 return (long)futex_wait(uaddr, restart->futex.flags,
2028 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2029}
2030
2031
c87e2837
IM
2032/*
2033 * Userspace tried a 0 -> TID atomic transition of the futex value
2034 * and failed. The kernel side here does the whole locking operation:
2035 * if there are waiters then it will block, it does PI, etc. (Due to
2036 * races the kernel might see a 0 value of the futex too.)
2037 */
b41277dc
DH
2038static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2039 ktime_t *time, int trylock)
c87e2837 2040{
c5780e97 2041 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2042 struct futex_hash_bucket *hb;
5bdb05f9 2043 struct futex_q q = futex_q_init;
dd973998 2044 int res, ret;
c87e2837
IM
2045
2046 if (refill_pi_state_cache())
2047 return -ENOMEM;
2048
c19384b5 2049 if (time) {
c5780e97 2050 to = &timeout;
237fc6e7
TG
2051 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2052 HRTIMER_MODE_ABS);
c5780e97 2053 hrtimer_init_sleeper(to, current);
cc584b21 2054 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2055 }
2056
42d35d48 2057retry:
9ea71503 2058 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2059 if (unlikely(ret != 0))
42d35d48 2060 goto out;
c87e2837 2061
e4dc5b7a 2062retry_private:
82af7aca 2063 hb = queue_lock(&q);
c87e2837 2064
bab5bc9e 2065 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2066 if (unlikely(ret)) {
778e9a9c 2067 switch (ret) {
1a52084d
DH
2068 case 1:
2069 /* We got the lock. */
2070 ret = 0;
2071 goto out_unlock_put_key;
2072 case -EFAULT:
2073 goto uaddr_faulted;
778e9a9c
AK
2074 case -EAGAIN:
2075 /*
2076 * Task is exiting and we just wait for the
2077 * exit to complete.
2078 */
2079 queue_unlock(&q, hb);
ae791a2d 2080 put_futex_key(&q.key);
778e9a9c
AK
2081 cond_resched();
2082 goto retry;
778e9a9c 2083 default:
42d35d48 2084 goto out_unlock_put_key;
c87e2837 2085 }
c87e2837
IM
2086 }
2087
2088 /*
2089 * Only actually queue now that the atomic ops are done:
2090 */
82af7aca 2091 queue_me(&q, hb);
c87e2837 2092
c87e2837
IM
2093 WARN_ON(!q.pi_state);
2094 /*
2095 * Block on the PI mutex:
2096 */
2097 if (!trylock)
2098 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2099 else {
2100 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2101 /* Fixup the trylock return value: */
2102 ret = ret ? 0 : -EWOULDBLOCK;
2103 }
2104
a99e4e41 2105 spin_lock(q.lock_ptr);
dd973998
DH
2106 /*
2107 * Fixup the pi_state owner and possibly acquire the lock if we
2108 * haven't already.
2109 */
ae791a2d 2110 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2111 /*
2112 * If fixup_owner() returned an error, proprogate that. If it acquired
2113 * the lock, clear our -ETIMEDOUT or -EINTR.
2114 */
2115 if (res)
2116 ret = (res < 0) ? res : 0;
c87e2837 2117
e8f6386c 2118 /*
dd973998
DH
2119 * If fixup_owner() faulted and was unable to handle the fault, unlock
2120 * it and return the fault to userspace.
e8f6386c
DH
2121 */
2122 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2123 rt_mutex_unlock(&q.pi_state->pi_mutex);
2124
778e9a9c
AK
2125 /* Unqueue and drop the lock */
2126 unqueue_me_pi(&q);
c87e2837 2127
5ecb01cf 2128 goto out_put_key;
c87e2837 2129
42d35d48 2130out_unlock_put_key:
c87e2837
IM
2131 queue_unlock(&q, hb);
2132
42d35d48 2133out_put_key:
ae791a2d 2134 put_futex_key(&q.key);
42d35d48 2135out:
237fc6e7
TG
2136 if (to)
2137 destroy_hrtimer_on_stack(&to->timer);
dd973998 2138 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2139
42d35d48 2140uaddr_faulted:
778e9a9c
AK
2141 queue_unlock(&q, hb);
2142
d0725992 2143 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2144 if (ret)
2145 goto out_put_key;
c87e2837 2146
b41277dc 2147 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2148 goto retry_private;
2149
ae791a2d 2150 put_futex_key(&q.key);
e4dc5b7a 2151 goto retry;
c87e2837
IM
2152}
2153
c87e2837
IM
2154/*
2155 * Userspace attempted a TID -> 0 atomic transition, and failed.
2156 * This is the in-kernel slowpath: we look up the PI state (if any),
2157 * and do the rt-mutex unlock.
2158 */
b41277dc 2159static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2160{
2161 struct futex_hash_bucket *hb;
2162 struct futex_q *this, *next;
ec92d082 2163 struct plist_head *head;
38d47c1b 2164 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2165 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2166 int ret;
c87e2837
IM
2167
2168retry:
2169 if (get_user(uval, uaddr))
2170 return -EFAULT;
2171 /*
2172 * We release only a lock we actually own:
2173 */
c0c9ed15 2174 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2175 return -EPERM;
c87e2837 2176
9ea71503 2177 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2178 if (unlikely(ret != 0))
2179 goto out;
2180
2181 hb = hash_futex(&key);
2182 spin_lock(&hb->lock);
2183
c87e2837
IM
2184 /*
2185 * To avoid races, try to do the TID -> 0 atomic transition
2186 * again. If it succeeds then we can return without waking
9ad5dabd
TG
2187 * anyone else up. We only try this if neither the waiters nor
2188 * the owner died bit are set.
c87e2837 2189 */
9ad5dabd 2190 if (!(uval & ~FUTEX_TID_MASK) &&
37a9d912 2191 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2192 goto pi_faulted;
2193 /*
2194 * Rare case: we managed to release the lock atomically,
2195 * no need to wake anyone else up:
2196 */
c0c9ed15 2197 if (unlikely(uval == vpid))
c87e2837
IM
2198 goto out_unlock;
2199
2200 /*
2201 * Ok, other tasks may need to be woken up - check waiters
2202 * and do the wakeup if necessary:
2203 */
2204 head = &hb->chain;
2205
ec92d082 2206 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2207 if (!match_futex (&this->key, &key))
2208 continue;
2209 ret = wake_futex_pi(uaddr, uval, this);
2210 /*
2211 * The atomic access to the futex value
2212 * generated a pagefault, so retry the
2213 * user-access and the wakeup:
2214 */
2215 if (ret == -EFAULT)
2216 goto pi_faulted;
2217 goto out_unlock;
2218 }
2219 /*
2220 * No waiters - kernel unlocks the futex:
2221 */
9ad5dabd
TG
2222 ret = unlock_futex_pi(uaddr, uval);
2223 if (ret == -EFAULT)
2224 goto pi_faulted;
c87e2837
IM
2225
2226out_unlock:
2227 spin_unlock(&hb->lock);
ae791a2d 2228 put_futex_key(&key);
c87e2837 2229
42d35d48 2230out:
c87e2837
IM
2231 return ret;
2232
2233pi_faulted:
778e9a9c 2234 spin_unlock(&hb->lock);
ae791a2d 2235 put_futex_key(&key);
c87e2837 2236
d0725992 2237 ret = fault_in_user_writeable(uaddr);
b5686363 2238 if (!ret)
c87e2837
IM
2239 goto retry;
2240
1da177e4
LT
2241 return ret;
2242}
2243
52400ba9
DH
2244/**
2245 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2246 * @hb: the hash_bucket futex_q was original enqueued on
2247 * @q: the futex_q woken while waiting to be requeued
2248 * @key2: the futex_key of the requeue target futex
2249 * @timeout: the timeout associated with the wait (NULL if none)
2250 *
2251 * Detect if the task was woken on the initial futex as opposed to the requeue
2252 * target futex. If so, determine if it was a timeout or a signal that caused
2253 * the wakeup and return the appropriate error code to the caller. Must be
2254 * called with the hb lock held.
2255 *
6c23cbbd
RD
2256 * Return:
2257 * 0 = no early wakeup detected;
2258 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2259 */
2260static inline
2261int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2262 struct futex_q *q, union futex_key *key2,
2263 struct hrtimer_sleeper *timeout)
2264{
2265 int ret = 0;
2266
2267 /*
2268 * With the hb lock held, we avoid races while we process the wakeup.
2269 * We only need to hold hb (and not hb2) to ensure atomicity as the
2270 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2271 * It can't be requeued from uaddr2 to something else since we don't
2272 * support a PI aware source futex for requeue.
2273 */
2274 if (!match_futex(&q->key, key2)) {
2275 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2276 /*
2277 * We were woken prior to requeue by a timeout or a signal.
2278 * Unqueue the futex_q and determine which it was.
2279 */
2e12978a 2280 plist_del(&q->list, &hb->chain);
52400ba9 2281
d58e6576 2282 /* Handle spurious wakeups gracefully */
11df6ddd 2283 ret = -EWOULDBLOCK;
52400ba9
DH
2284 if (timeout && !timeout->task)
2285 ret = -ETIMEDOUT;
d58e6576 2286 else if (signal_pending(current))
1c840c14 2287 ret = -ERESTARTNOINTR;
52400ba9
DH
2288 }
2289 return ret;
2290}
2291
2292/**
2293 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2294 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2295 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2296 * the same type, no requeueing from private to shared, etc.
2297 * @val: the expected value of uaddr
2298 * @abs_time: absolute timeout
56ec1607 2299 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2300 * @uaddr2: the pi futex we will take prior to returning to user-space
2301 *
2302 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2303 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2304 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2305 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2306 * without one, the pi logic would not know which task to boost/deboost, if
2307 * there was a need to.
52400ba9
DH
2308 *
2309 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2310 * via the following--
52400ba9 2311 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2312 * 2) wakeup on uaddr2 after a requeue
2313 * 3) signal
2314 * 4) timeout
52400ba9 2315 *
cc6db4e6 2316 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2317 *
2318 * If 2, we may then block on trying to take the rt_mutex and return via:
2319 * 5) successful lock
2320 * 6) signal
2321 * 7) timeout
2322 * 8) other lock acquisition failure
2323 *
cc6db4e6 2324 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2325 *
2326 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2327 *
6c23cbbd
RD
2328 * Return:
2329 * 0 - On success;
52400ba9
DH
2330 * <0 - On error
2331 */
b41277dc 2332static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2333 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2334 u32 __user *uaddr2)
52400ba9
DH
2335{
2336 struct hrtimer_sleeper timeout, *to = NULL;
2337 struct rt_mutex_waiter rt_waiter;
2338 struct rt_mutex *pi_mutex = NULL;
52400ba9 2339 struct futex_hash_bucket *hb;
5bdb05f9
DH
2340 union futex_key key2 = FUTEX_KEY_INIT;
2341 struct futex_q q = futex_q_init;
52400ba9 2342 int res, ret;
52400ba9 2343
6f7b0a2a
DH
2344 if (uaddr == uaddr2)
2345 return -EINVAL;
2346
52400ba9
DH
2347 if (!bitset)
2348 return -EINVAL;
2349
2350 if (abs_time) {
2351 to = &timeout;
b41277dc
DH
2352 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2353 CLOCK_REALTIME : CLOCK_MONOTONIC,
2354 HRTIMER_MODE_ABS);
52400ba9
DH
2355 hrtimer_init_sleeper(to, current);
2356 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2357 current->timer_slack_ns);
2358 }
2359
2360 /*
2361 * The waiter is allocated on our stack, manipulated by the requeue
2362 * code while we sleep on uaddr.
2363 */
2364 debug_rt_mutex_init_waiter(&rt_waiter);
2365 rt_waiter.task = NULL;
2366
9ea71503 2367 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2368 if (unlikely(ret != 0))
2369 goto out;
2370
84bc4af5
DH
2371 q.bitset = bitset;
2372 q.rt_waiter = &rt_waiter;
2373 q.requeue_pi_key = &key2;
2374
7ada876a
DH
2375 /*
2376 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2377 * count.
2378 */
b41277dc 2379 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2380 if (ret)
2381 goto out_key2;
52400ba9 2382
b58623fb
TG
2383 /*
2384 * The check above which compares uaddrs is not sufficient for
2385 * shared futexes. We need to compare the keys:
2386 */
2387 if (match_futex(&q.key, &key2)) {
2388 ret = -EINVAL;
2389 goto out_put_keys;
2390 }
2391
52400ba9 2392 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2393 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2394
2395 spin_lock(&hb->lock);
2396 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2397 spin_unlock(&hb->lock);
2398 if (ret)
2399 goto out_put_keys;
2400
2401 /*
2402 * In order for us to be here, we know our q.key == key2, and since
2403 * we took the hb->lock above, we also know that futex_requeue() has
2404 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2405 * race with the atomic proxy lock acquisition by the requeue code. The
2406 * futex_requeue dropped our key1 reference and incremented our key2
2407 * reference count.
52400ba9
DH
2408 */
2409
2410 /* Check if the requeue code acquired the second futex for us. */
2411 if (!q.rt_waiter) {
2412 /*
2413 * Got the lock. We might not be the anticipated owner if we
2414 * did a lock-steal - fix up the PI-state in that case.
2415 */
2416 if (q.pi_state && (q.pi_state->owner != current)) {
2417 spin_lock(q.lock_ptr);
ae791a2d 2418 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2419 spin_unlock(q.lock_ptr);
2420 }
2421 } else {
2422 /*
2423 * We have been woken up by futex_unlock_pi(), a timeout, or a
2424 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2425 * the pi_state.
2426 */
f27071cb 2427 WARN_ON(!q.pi_state);
52400ba9
DH
2428 pi_mutex = &q.pi_state->pi_mutex;
2429 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2430 debug_rt_mutex_free_waiter(&rt_waiter);
2431
2432 spin_lock(q.lock_ptr);
2433 /*
2434 * Fixup the pi_state owner and possibly acquire the lock if we
2435 * haven't already.
2436 */
ae791a2d 2437 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2438 /*
2439 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2440 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2441 */
2442 if (res)
2443 ret = (res < 0) ? res : 0;
2444
2445 /* Unqueue and drop the lock. */
2446 unqueue_me_pi(&q);
2447 }
2448
2449 /*
2450 * If fixup_pi_state_owner() faulted and was unable to handle the
2451 * fault, unlock the rt_mutex and return the fault to userspace.
2452 */
2453 if (ret == -EFAULT) {
b6070a8d 2454 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2455 rt_mutex_unlock(pi_mutex);
2456 } else if (ret == -EINTR) {
52400ba9 2457 /*
cc6db4e6
DH
2458 * We've already been requeued, but cannot restart by calling
2459 * futex_lock_pi() directly. We could restart this syscall, but
2460 * it would detect that the user space "val" changed and return
2461 * -EWOULDBLOCK. Save the overhead of the restart and return
2462 * -EWOULDBLOCK directly.
52400ba9 2463 */
2070887f 2464 ret = -EWOULDBLOCK;
52400ba9
DH
2465 }
2466
2467out_put_keys:
ae791a2d 2468 put_futex_key(&q.key);
c8b15a70 2469out_key2:
ae791a2d 2470 put_futex_key(&key2);
52400ba9
DH
2471
2472out:
2473 if (to) {
2474 hrtimer_cancel(&to->timer);
2475 destroy_hrtimer_on_stack(&to->timer);
2476 }
2477 return ret;
2478}
2479
0771dfef
IM
2480/*
2481 * Support for robust futexes: the kernel cleans up held futexes at
2482 * thread exit time.
2483 *
2484 * Implementation: user-space maintains a per-thread list of locks it
2485 * is holding. Upon do_exit(), the kernel carefully walks this list,
2486 * and marks all locks that are owned by this thread with the
c87e2837 2487 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2488 * always manipulated with the lock held, so the list is private and
2489 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2490 * field, to allow the kernel to clean up if the thread dies after
2491 * acquiring the lock, but just before it could have added itself to
2492 * the list. There can only be one such pending lock.
2493 */
2494
2495/**
d96ee56c
DH
2496 * sys_set_robust_list() - Set the robust-futex list head of a task
2497 * @head: pointer to the list-head
2498 * @len: length of the list-head, as userspace expects
0771dfef 2499 */
836f92ad
HC
2500SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2501 size_t, len)
0771dfef 2502{
a0c1e907
TG
2503 if (!futex_cmpxchg_enabled)
2504 return -ENOSYS;
0771dfef
IM
2505 /*
2506 * The kernel knows only one size for now:
2507 */
2508 if (unlikely(len != sizeof(*head)))
2509 return -EINVAL;
2510
2511 current->robust_list = head;
2512
2513 return 0;
2514}
2515
2516/**
d96ee56c
DH
2517 * sys_get_robust_list() - Get the robust-futex list head of a task
2518 * @pid: pid of the process [zero for current task]
2519 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2520 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2521 */
836f92ad
HC
2522SYSCALL_DEFINE3(get_robust_list, int, pid,
2523 struct robust_list_head __user * __user *, head_ptr,
2524 size_t __user *, len_ptr)
0771dfef 2525{
ba46df98 2526 struct robust_list_head __user *head;
0771dfef 2527 unsigned long ret;
bdbb776f 2528 struct task_struct *p;
0771dfef 2529
a0c1e907
TG
2530 if (!futex_cmpxchg_enabled)
2531 return -ENOSYS;
2532
bdbb776f
KC
2533 rcu_read_lock();
2534
2535 ret = -ESRCH;
0771dfef 2536 if (!pid)
bdbb776f 2537 p = current;
0771dfef 2538 else {
228ebcbe 2539 p = find_task_by_vpid(pid);
0771dfef
IM
2540 if (!p)
2541 goto err_unlock;
0771dfef
IM
2542 }
2543
bdbb776f
KC
2544 ret = -EPERM;
2545 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2546 goto err_unlock;
2547
2548 head = p->robust_list;
2549 rcu_read_unlock();
2550
0771dfef
IM
2551 if (put_user(sizeof(*head), len_ptr))
2552 return -EFAULT;
2553 return put_user(head, head_ptr);
2554
2555err_unlock:
aaa2a97e 2556 rcu_read_unlock();
0771dfef
IM
2557
2558 return ret;
2559}
2560
2561/*
2562 * Process a futex-list entry, check whether it's owned by the
2563 * dying task, and do notification if so:
2564 */
e3f2ddea 2565int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2566{
7cfdaf38 2567 u32 uval, uninitialized_var(nval), mval;
0771dfef 2568
8f17d3a5
IM
2569retry:
2570 if (get_user(uval, uaddr))
0771dfef
IM
2571 return -1;
2572
b488893a 2573 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2574 /*
2575 * Ok, this dying thread is truly holding a futex
2576 * of interest. Set the OWNER_DIED bit atomically
2577 * via cmpxchg, and if the value had FUTEX_WAITERS
2578 * set, wake up a waiter (if any). (We have to do a
2579 * futex_wake() even if OWNER_DIED is already set -
2580 * to handle the rare but possible case of recursive
2581 * thread-death.) The rest of the cleanup is done in
2582 * userspace.
2583 */
e3f2ddea 2584 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2585 /*
2586 * We are not holding a lock here, but we want to have
2587 * the pagefault_disable/enable() protection because
2588 * we want to handle the fault gracefully. If the
2589 * access fails we try to fault in the futex with R/W
2590 * verification via get_user_pages. get_user() above
2591 * does not guarantee R/W access. If that fails we
2592 * give up and leave the futex locked.
2593 */
2594 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2595 if (fault_in_user_writeable(uaddr))
2596 return -1;
2597 goto retry;
2598 }
c87e2837 2599 if (nval != uval)
8f17d3a5 2600 goto retry;
0771dfef 2601
e3f2ddea
IM
2602 /*
2603 * Wake robust non-PI futexes here. The wakeup of
2604 * PI futexes happens in exit_pi_state():
2605 */
36cf3b5c 2606 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2607 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2608 }
2609 return 0;
2610}
2611
e3f2ddea
IM
2612/*
2613 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2614 */
2615static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2616 struct robust_list __user * __user *head,
1dcc41bb 2617 unsigned int *pi)
e3f2ddea
IM
2618{
2619 unsigned long uentry;
2620
ba46df98 2621 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2622 return -EFAULT;
2623
ba46df98 2624 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2625 *pi = uentry & 1;
2626
2627 return 0;
2628}
2629
0771dfef
IM
2630/*
2631 * Walk curr->robust_list (very carefully, it's a userspace list!)
2632 * and mark any locks found there dead, and notify any waiters.
2633 *
2634 * We silently return on any sign of list-walking problem.
2635 */
2636void exit_robust_list(struct task_struct *curr)
2637{
2638 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2639 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2640 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2641 unsigned int uninitialized_var(next_pi);
0771dfef 2642 unsigned long futex_offset;
9f96cb1e 2643 int rc;
0771dfef 2644
a0c1e907
TG
2645 if (!futex_cmpxchg_enabled)
2646 return;
2647
0771dfef
IM
2648 /*
2649 * Fetch the list head (which was registered earlier, via
2650 * sys_set_robust_list()):
2651 */
e3f2ddea 2652 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2653 return;
2654 /*
2655 * Fetch the relative futex offset:
2656 */
2657 if (get_user(futex_offset, &head->futex_offset))
2658 return;
2659 /*
2660 * Fetch any possibly pending lock-add first, and handle it
2661 * if it exists:
2662 */
e3f2ddea 2663 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2664 return;
e3f2ddea 2665
9f96cb1e 2666 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2667 while (entry != &head->list) {
9f96cb1e
MS
2668 /*
2669 * Fetch the next entry in the list before calling
2670 * handle_futex_death:
2671 */
2672 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2673 /*
2674 * A pending lock might already be on the list, so
c87e2837 2675 * don't process it twice:
0771dfef
IM
2676 */
2677 if (entry != pending)
ba46df98 2678 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2679 curr, pi))
0771dfef 2680 return;
9f96cb1e 2681 if (rc)
0771dfef 2682 return;
9f96cb1e
MS
2683 entry = next_entry;
2684 pi = next_pi;
0771dfef
IM
2685 /*
2686 * Avoid excessively long or circular lists:
2687 */
2688 if (!--limit)
2689 break;
2690
2691 cond_resched();
2692 }
9f96cb1e
MS
2693
2694 if (pending)
2695 handle_futex_death((void __user *)pending + futex_offset,
2696 curr, pip);
0771dfef
IM
2697}
2698
c19384b5 2699long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2700 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2701{
81b40539 2702 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2703 unsigned int flags = 0;
34f01cc1
ED
2704
2705 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2706 flags |= FLAGS_SHARED;
1da177e4 2707
b41277dc
DH
2708 if (op & FUTEX_CLOCK_REALTIME) {
2709 flags |= FLAGS_CLOCKRT;
2710 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2711 return -ENOSYS;
2712 }
1da177e4 2713
59263b51
TG
2714 switch (cmd) {
2715 case FUTEX_LOCK_PI:
2716 case FUTEX_UNLOCK_PI:
2717 case FUTEX_TRYLOCK_PI:
2718 case FUTEX_WAIT_REQUEUE_PI:
2719 case FUTEX_CMP_REQUEUE_PI:
2720 if (!futex_cmpxchg_enabled)
2721 return -ENOSYS;
2722 }
2723
34f01cc1 2724 switch (cmd) {
1da177e4 2725 case FUTEX_WAIT:
cd689985
TG
2726 val3 = FUTEX_BITSET_MATCH_ANY;
2727 case FUTEX_WAIT_BITSET:
81b40539 2728 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2729 case FUTEX_WAKE:
cd689985
TG
2730 val3 = FUTEX_BITSET_MATCH_ANY;
2731 case FUTEX_WAKE_BITSET:
81b40539 2732 return futex_wake(uaddr, flags, val, val3);
1da177e4 2733 case FUTEX_REQUEUE:
81b40539 2734 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2735 case FUTEX_CMP_REQUEUE:
81b40539 2736 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2737 case FUTEX_WAKE_OP:
81b40539 2738 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2739 case FUTEX_LOCK_PI:
81b40539 2740 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2741 case FUTEX_UNLOCK_PI:
81b40539 2742 return futex_unlock_pi(uaddr, flags);
c87e2837 2743 case FUTEX_TRYLOCK_PI:
81b40539 2744 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2745 case FUTEX_WAIT_REQUEUE_PI:
2746 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2747 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2748 uaddr2);
52400ba9 2749 case FUTEX_CMP_REQUEUE_PI:
81b40539 2750 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2751 }
81b40539 2752 return -ENOSYS;
1da177e4
LT
2753}
2754
2755
17da2bd9
HC
2756SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2757 struct timespec __user *, utime, u32 __user *, uaddr2,
2758 u32, val3)
1da177e4 2759{
c19384b5
PP
2760 struct timespec ts;
2761 ktime_t t, *tp = NULL;
e2970f2f 2762 u32 val2 = 0;
34f01cc1 2763 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2764
cd689985 2765 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2766 cmd == FUTEX_WAIT_BITSET ||
2767 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2768 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2769 return -EFAULT;
c19384b5 2770 if (!timespec_valid(&ts))
9741ef96 2771 return -EINVAL;
c19384b5
PP
2772
2773 t = timespec_to_ktime(ts);
34f01cc1 2774 if (cmd == FUTEX_WAIT)
5a7780e7 2775 t = ktime_add_safe(ktime_get(), t);
c19384b5 2776 tp = &t;
1da177e4
LT
2777 }
2778 /*
52400ba9 2779 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2780 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2781 */
f54f0986 2782 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2783 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2784 val2 = (u32) (unsigned long) utime;
1da177e4 2785
c19384b5 2786 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2787}
2788
f26c70a4 2789static void __init futex_detect_cmpxchg(void)
1da177e4 2790{
f26c70a4 2791#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2792 u32 curval;
95362fa9 2793
a0c1e907
TG
2794 /*
2795 * This will fail and we want it. Some arch implementations do
2796 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2797 * functionality. We want to know that before we call in any
2798 * of the complex code paths. Also we want to prevent
2799 * registration of robust lists in that case. NULL is
2800 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2801 * implementation, the non-functional ones will return
a0c1e907
TG
2802 * -ENOSYS.
2803 */
37a9d912 2804 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907 2805 futex_cmpxchg_enabled = 1;
f26c70a4
HC
2806#endif
2807}
2808
2809static int __init futex_init(void)
2810{
2811 int i;
2812
2813 futex_detect_cmpxchg();
a0c1e907 2814
3e4ab747 2815 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2816 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2817 spin_lock_init(&futex_queues[i].lock);
2818 }
2819
1da177e4
LT
2820 return 0;
2821}
f6d107fb 2822__initcall(futex_init);