Merge branch 'tip/futex/devel' of git://git.kernel.org/pub/scm/linux/kernel/git/roste...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9adef58b 58#include <linux/module.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
4732efbe 63#include <asm/futex.h>
1da177e4 64
c87e2837
IM
65#include "rtmutex_common.h"
66
a0c1e907
TG
67int __read_mostly futex_cmpxchg_enabled;
68
1da177e4
LT
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
b41277dc
DH
71/*
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
74 */
75#define FLAGS_SHARED 0x01
76#define FLAGS_CLOCKRT 0x02
77#define FLAGS_HAS_TIMEOUT 0x04
78
c87e2837
IM
79/*
80 * Priority Inheritance state:
81 */
82struct futex_pi_state {
83 /*
84 * list of 'owned' pi_state instances - these have to be
85 * cleaned up in do_exit() if the task exits prematurely:
86 */
87 struct list_head list;
88
89 /*
90 * The PI object:
91 */
92 struct rt_mutex pi_mutex;
93
94 struct task_struct *owner;
95 atomic_t refcount;
96
97 union futex_key key;
98};
99
d8d88fbb
DH
100/**
101 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 102 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
110 *
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
112 * we can wake only the relevant ones (hashed queues may be shared).
113 *
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 116 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
117 * the second.
118 *
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
121 */
122struct futex_q {
ec92d082 123 struct plist_node list;
1da177e4 124
d8d88fbb 125 struct task_struct *task;
1da177e4 126 spinlock_t *lock_ptr;
1da177e4 127 union futex_key key;
c87e2837 128 struct futex_pi_state *pi_state;
52400ba9 129 struct rt_mutex_waiter *rt_waiter;
84bc4af5 130 union futex_key *requeue_pi_key;
cd689985 131 u32 bitset;
1da177e4
LT
132};
133
5bdb05f9
DH
134static const struct futex_q futex_q_init = {
135 /* list gets initialized in queue_me()*/
136 .key = FUTEX_KEY_INIT,
137 .bitset = FUTEX_BITSET_MATCH_ANY
138};
139
1da177e4 140/*
b2d0994b
DH
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
1da177e4
LT
144 */
145struct futex_hash_bucket {
ec92d082
PP
146 spinlock_t lock;
147 struct plist_head chain;
1da177e4
LT
148};
149
150static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
1da177e4
LT
152/*
153 * We hash on the keys returned from get_futex_key (see below).
154 */
155static struct futex_hash_bucket *hash_futex(union futex_key *key)
156{
157 u32 hash = jhash2((u32*)&key->both.word,
158 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 key->both.offset);
160 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161}
162
163/*
164 * Return 1 if two futex_keys are equal, 0 otherwise.
165 */
166static inline int match_futex(union futex_key *key1, union futex_key *key2)
167{
2bc87203
DH
168 return (key1 && key2
169 && key1->both.word == key2->both.word
1da177e4
LT
170 && key1->both.ptr == key2->both.ptr
171 && key1->both.offset == key2->both.offset);
172}
173
38d47c1b
PZ
174/*
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
177 *
178 */
179static void get_futex_key_refs(union futex_key *key)
180{
181 if (!key->both.ptr)
182 return;
183
184 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 case FUT_OFF_INODE:
7de9c6ee 186 ihold(key->shared.inode);
38d47c1b
PZ
187 break;
188 case FUT_OFF_MMSHARED:
189 atomic_inc(&key->private.mm->mm_count);
190 break;
191 }
192}
193
194/*
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
197 */
198static void drop_futex_key_refs(union futex_key *key)
199{
90621c40
DH
200 if (!key->both.ptr) {
201 /* If we're here then we tried to put a key we failed to get */
202 WARN_ON_ONCE(1);
38d47c1b 203 return;
90621c40 204 }
38d47c1b
PZ
205
206 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 case FUT_OFF_INODE:
208 iput(key->shared.inode);
209 break;
210 case FUT_OFF_MMSHARED:
211 mmdrop(key->private.mm);
212 break;
213 }
214}
215
34f01cc1 216/**
d96ee56c
DH
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
34f01cc1
ED
221 *
222 * Returns a negative error code or 0
223 * The key words are stored in *key on success.
1da177e4 224 *
f3a43f3f 225 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
226 * offset_within_page). For private mappings, it's (uaddr, current->mm).
227 * We can usually work out the index without swapping in the page.
228 *
b2d0994b 229 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 230 */
64d1304a 231static int
7485d0d3 232get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 233{
e2970f2f 234 unsigned long address = (unsigned long)uaddr;
1da177e4 235 struct mm_struct *mm = current->mm;
a5b338f2 236 struct page *page, *page_head;
1da177e4
LT
237 int err;
238
239 /*
240 * The futex address must be "naturally" aligned.
241 */
e2970f2f 242 key->both.offset = address % PAGE_SIZE;
34f01cc1 243 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 244 return -EINVAL;
e2970f2f 245 address -= key->both.offset;
1da177e4 246
34f01cc1
ED
247 /*
248 * PROCESS_PRIVATE futexes are fast.
249 * As the mm cannot disappear under us and the 'key' only needs
250 * virtual address, we dont even have to find the underlying vma.
251 * Note : We do have to check 'uaddr' is a valid user address,
252 * but access_ok() should be faster than find_vma()
253 */
254 if (!fshared) {
7485d0d3 255 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
256 return -EFAULT;
257 key->private.mm = mm;
258 key->private.address = address;
42569c39 259 get_futex_key_refs(key);
34f01cc1
ED
260 return 0;
261 }
1da177e4 262
38d47c1b 263again:
7485d0d3 264 err = get_user_pages_fast(address, 1, 1, &page);
38d47c1b
PZ
265 if (err < 0)
266 return err;
267
a5b338f2
AA
268#ifdef CONFIG_TRANSPARENT_HUGEPAGE
269 page_head = page;
270 if (unlikely(PageTail(page))) {
38d47c1b 271 put_page(page);
a5b338f2
AA
272 /* serialize against __split_huge_page_splitting() */
273 local_irq_disable();
274 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275 page_head = compound_head(page);
276 /*
277 * page_head is valid pointer but we must pin
278 * it before taking the PG_lock and/or
279 * PG_compound_lock. The moment we re-enable
280 * irqs __split_huge_page_splitting() can
281 * return and the head page can be freed from
282 * under us. We can't take the PG_lock and/or
283 * PG_compound_lock on a page that could be
284 * freed from under us.
285 */
286 if (page != page_head) {
287 get_page(page_head);
288 put_page(page);
289 }
290 local_irq_enable();
291 } else {
292 local_irq_enable();
293 goto again;
294 }
295 }
296#else
297 page_head = compound_head(page);
298 if (page != page_head) {
299 get_page(page_head);
300 put_page(page);
301 }
302#endif
303
304 lock_page(page_head);
305 if (!page_head->mapping) {
306 unlock_page(page_head);
307 put_page(page_head);
38d47c1b
PZ
308 goto again;
309 }
1da177e4
LT
310
311 /*
312 * Private mappings are handled in a simple way.
313 *
314 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
315 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 316 * the object not the particular process.
1da177e4 317 */
a5b338f2 318 if (PageAnon(page_head)) {
38d47c1b 319 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 320 key->private.mm = mm;
e2970f2f 321 key->private.address = address;
38d47c1b
PZ
322 } else {
323 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2
AA
324 key->shared.inode = page_head->mapping->host;
325 key->shared.pgoff = page_head->index;
1da177e4
LT
326 }
327
38d47c1b 328 get_futex_key_refs(key);
1da177e4 329
a5b338f2
AA
330 unlock_page(page_head);
331 put_page(page_head);
38d47c1b 332 return 0;
1da177e4
LT
333}
334
ae791a2d 335static inline void put_futex_key(union futex_key *key)
1da177e4 336{
38d47c1b 337 drop_futex_key_refs(key);
1da177e4
LT
338}
339
d96ee56c
DH
340/**
341 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
342 * @uaddr: pointer to faulting user space address
343 *
344 * Slow path to fixup the fault we just took in the atomic write
345 * access to @uaddr.
346 *
fb62db2b 347 * We have no generic implementation of a non-destructive write to the
d0725992
TG
348 * user address. We know that we faulted in the atomic pagefault
349 * disabled section so we can as well avoid the #PF overhead by
350 * calling get_user_pages() right away.
351 */
352static int fault_in_user_writeable(u32 __user *uaddr)
353{
722d0172
AK
354 struct mm_struct *mm = current->mm;
355 int ret;
356
357 down_read(&mm->mmap_sem);
358 ret = get_user_pages(current, mm, (unsigned long)uaddr,
359 1, 1, 0, NULL, NULL);
360 up_read(&mm->mmap_sem);
361
d0725992
TG
362 return ret < 0 ? ret : 0;
363}
364
4b1c486b
DH
365/**
366 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
367 * @hb: the hash bucket the futex_q's reside in
368 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
369 *
370 * Must be called with the hb lock held.
371 */
372static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373 union futex_key *key)
374{
375 struct futex_q *this;
376
377 plist_for_each_entry(this, &hb->chain, list) {
378 if (match_futex(&this->key, key))
379 return this;
380 }
381 return NULL;
382}
383
37a9d912
ML
384static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
385 u32 uval, u32 newval)
36cf3b5c 386{
37a9d912 387 int ret;
36cf3b5c
TG
388
389 pagefault_disable();
37a9d912 390 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
391 pagefault_enable();
392
37a9d912 393 return ret;
36cf3b5c
TG
394}
395
396static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
397{
398 int ret;
399
a866374a 400 pagefault_disable();
e2970f2f 401 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 402 pagefault_enable();
1da177e4
LT
403
404 return ret ? -EFAULT : 0;
405}
406
c87e2837
IM
407
408/*
409 * PI code:
410 */
411static int refill_pi_state_cache(void)
412{
413 struct futex_pi_state *pi_state;
414
415 if (likely(current->pi_state_cache))
416 return 0;
417
4668edc3 418 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
419
420 if (!pi_state)
421 return -ENOMEM;
422
c87e2837
IM
423 INIT_LIST_HEAD(&pi_state->list);
424 /* pi_mutex gets initialized later */
425 pi_state->owner = NULL;
426 atomic_set(&pi_state->refcount, 1);
38d47c1b 427 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
428
429 current->pi_state_cache = pi_state;
430
431 return 0;
432}
433
434static struct futex_pi_state * alloc_pi_state(void)
435{
436 struct futex_pi_state *pi_state = current->pi_state_cache;
437
438 WARN_ON(!pi_state);
439 current->pi_state_cache = NULL;
440
441 return pi_state;
442}
443
444static void free_pi_state(struct futex_pi_state *pi_state)
445{
446 if (!atomic_dec_and_test(&pi_state->refcount))
447 return;
448
449 /*
450 * If pi_state->owner is NULL, the owner is most probably dying
451 * and has cleaned up the pi_state already
452 */
453 if (pi_state->owner) {
1d615482 454 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 455 list_del_init(&pi_state->list);
1d615482 456 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
457
458 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
459 }
460
461 if (current->pi_state_cache)
462 kfree(pi_state);
463 else {
464 /*
465 * pi_state->list is already empty.
466 * clear pi_state->owner.
467 * refcount is at 0 - put it back to 1.
468 */
469 pi_state->owner = NULL;
470 atomic_set(&pi_state->refcount, 1);
471 current->pi_state_cache = pi_state;
472 }
473}
474
475/*
476 * Look up the task based on what TID userspace gave us.
477 * We dont trust it.
478 */
479static struct task_struct * futex_find_get_task(pid_t pid)
480{
481 struct task_struct *p;
482
d359b549 483 rcu_read_lock();
228ebcbe 484 p = find_task_by_vpid(pid);
7a0ea09a
MH
485 if (p)
486 get_task_struct(p);
a06381fe 487
d359b549 488 rcu_read_unlock();
c87e2837
IM
489
490 return p;
491}
492
493/*
494 * This task is holding PI mutexes at exit time => bad.
495 * Kernel cleans up PI-state, but userspace is likely hosed.
496 * (Robust-futex cleanup is separate and might save the day for userspace.)
497 */
498void exit_pi_state_list(struct task_struct *curr)
499{
c87e2837
IM
500 struct list_head *next, *head = &curr->pi_state_list;
501 struct futex_pi_state *pi_state;
627371d7 502 struct futex_hash_bucket *hb;
38d47c1b 503 union futex_key key = FUTEX_KEY_INIT;
c87e2837 504
a0c1e907
TG
505 if (!futex_cmpxchg_enabled)
506 return;
c87e2837
IM
507 /*
508 * We are a ZOMBIE and nobody can enqueue itself on
509 * pi_state_list anymore, but we have to be careful
627371d7 510 * versus waiters unqueueing themselves:
c87e2837 511 */
1d615482 512 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
513 while (!list_empty(head)) {
514
515 next = head->next;
516 pi_state = list_entry(next, struct futex_pi_state, list);
517 key = pi_state->key;
627371d7 518 hb = hash_futex(&key);
1d615482 519 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 520
c87e2837
IM
521 spin_lock(&hb->lock);
522
1d615482 523 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
524 /*
525 * We dropped the pi-lock, so re-check whether this
526 * task still owns the PI-state:
527 */
c87e2837
IM
528 if (head->next != next) {
529 spin_unlock(&hb->lock);
530 continue;
531 }
532
c87e2837 533 WARN_ON(pi_state->owner != curr);
627371d7
IM
534 WARN_ON(list_empty(&pi_state->list));
535 list_del_init(&pi_state->list);
c87e2837 536 pi_state->owner = NULL;
1d615482 537 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
538
539 rt_mutex_unlock(&pi_state->pi_mutex);
540
541 spin_unlock(&hb->lock);
542
1d615482 543 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 544 }
1d615482 545 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
546}
547
548static int
d0aa7a70
PP
549lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
550 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
551{
552 struct futex_pi_state *pi_state = NULL;
553 struct futex_q *this, *next;
ec92d082 554 struct plist_head *head;
c87e2837 555 struct task_struct *p;
778e9a9c 556 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
557
558 head = &hb->chain;
559
ec92d082 560 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 561 if (match_futex(&this->key, key)) {
c87e2837
IM
562 /*
563 * Another waiter already exists - bump up
564 * the refcount and return its pi_state:
565 */
566 pi_state = this->pi_state;
06a9ec29 567 /*
fb62db2b 568 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
569 */
570 if (unlikely(!pi_state))
571 return -EINVAL;
572
627371d7 573 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
574
575 /*
576 * When pi_state->owner is NULL then the owner died
577 * and another waiter is on the fly. pi_state->owner
578 * is fixed up by the task which acquires
579 * pi_state->rt_mutex.
580 *
581 * We do not check for pid == 0 which can happen when
582 * the owner died and robust_list_exit() cleared the
583 * TID.
584 */
585 if (pid && pi_state->owner) {
586 /*
587 * Bail out if user space manipulated the
588 * futex value.
589 */
590 if (pid != task_pid_vnr(pi_state->owner))
591 return -EINVAL;
592 }
627371d7 593
c87e2837 594 atomic_inc(&pi_state->refcount);
d0aa7a70 595 *ps = pi_state;
c87e2837
IM
596
597 return 0;
598 }
599 }
600
601 /*
e3f2ddea 602 * We are the first waiter - try to look up the real owner and attach
778e9a9c 603 * the new pi_state to it, but bail out when TID = 0
c87e2837 604 */
778e9a9c 605 if (!pid)
e3f2ddea 606 return -ESRCH;
c87e2837 607 p = futex_find_get_task(pid);
7a0ea09a
MH
608 if (!p)
609 return -ESRCH;
778e9a9c
AK
610
611 /*
612 * We need to look at the task state flags to figure out,
613 * whether the task is exiting. To protect against the do_exit
614 * change of the task flags, we do this protected by
615 * p->pi_lock:
616 */
1d615482 617 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
618 if (unlikely(p->flags & PF_EXITING)) {
619 /*
620 * The task is on the way out. When PF_EXITPIDONE is
621 * set, we know that the task has finished the
622 * cleanup:
623 */
624 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
625
1d615482 626 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
627 put_task_struct(p);
628 return ret;
629 }
c87e2837
IM
630
631 pi_state = alloc_pi_state();
632
633 /*
634 * Initialize the pi_mutex in locked state and make 'p'
635 * the owner of it:
636 */
637 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
638
639 /* Store the key for possible exit cleanups: */
d0aa7a70 640 pi_state->key = *key;
c87e2837 641
627371d7 642 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
643 list_add(&pi_state->list, &p->pi_state_list);
644 pi_state->owner = p;
1d615482 645 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
646
647 put_task_struct(p);
648
d0aa7a70 649 *ps = pi_state;
c87e2837
IM
650
651 return 0;
652}
653
1a52084d 654/**
d96ee56c 655 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
656 * @uaddr: the pi futex user address
657 * @hb: the pi futex hash bucket
658 * @key: the futex key associated with uaddr and hb
659 * @ps: the pi_state pointer where we store the result of the
660 * lookup
661 * @task: the task to perform the atomic lock work for. This will
662 * be "current" except in the case of requeue pi.
663 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
664 *
665 * Returns:
666 * 0 - ready to wait
667 * 1 - acquired the lock
668 * <0 - error
669 *
670 * The hb->lock and futex_key refs shall be held by the caller.
671 */
672static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
673 union futex_key *key,
674 struct futex_pi_state **ps,
bab5bc9e 675 struct task_struct *task, int set_waiters)
1a52084d
DH
676{
677 int lock_taken, ret, ownerdied = 0;
c0c9ed15 678 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
679
680retry:
681 ret = lock_taken = 0;
682
683 /*
684 * To avoid races, we attempt to take the lock here again
685 * (by doing a 0 -> TID atomic cmpxchg), while holding all
686 * the locks. It will most likely not succeed.
687 */
c0c9ed15 688 newval = vpid;
bab5bc9e
DH
689 if (set_waiters)
690 newval |= FUTEX_WAITERS;
1a52084d 691
37a9d912 692 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
693 return -EFAULT;
694
695 /*
696 * Detect deadlocks.
697 */
c0c9ed15 698 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
699 return -EDEADLK;
700
701 /*
702 * Surprise - we got the lock. Just return to userspace:
703 */
704 if (unlikely(!curval))
705 return 1;
706
707 uval = curval;
708
709 /*
710 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
711 * to wake at the next unlock.
712 */
713 newval = curval | FUTEX_WAITERS;
714
715 /*
716 * There are two cases, where a futex might have no owner (the
717 * owner TID is 0): OWNER_DIED. We take over the futex in this
718 * case. We also do an unconditional take over, when the owner
719 * of the futex died.
720 *
721 * This is safe as we are protected by the hash bucket lock !
722 */
723 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
724 /* Keep the OWNER_DIED bit */
c0c9ed15 725 newval = (curval & ~FUTEX_TID_MASK) | vpid;
1a52084d
DH
726 ownerdied = 0;
727 lock_taken = 1;
728 }
729
37a9d912 730 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
731 return -EFAULT;
732 if (unlikely(curval != uval))
733 goto retry;
734
735 /*
736 * We took the lock due to owner died take over.
737 */
738 if (unlikely(lock_taken))
739 return 1;
740
741 /*
742 * We dont have the lock. Look up the PI state (or create it if
743 * we are the first waiter):
744 */
745 ret = lookup_pi_state(uval, hb, key, ps);
746
747 if (unlikely(ret)) {
748 switch (ret) {
749 case -ESRCH:
750 /*
751 * No owner found for this futex. Check if the
752 * OWNER_DIED bit is set to figure out whether
753 * this is a robust futex or not.
754 */
755 if (get_futex_value_locked(&curval, uaddr))
756 return -EFAULT;
757
758 /*
759 * We simply start over in case of a robust
760 * futex. The code above will take the futex
761 * and return happy.
762 */
763 if (curval & FUTEX_OWNER_DIED) {
764 ownerdied = 1;
765 goto retry;
766 }
767 default:
768 break;
769 }
770 }
771
772 return ret;
773}
774
2e12978a
LJ
775/**
776 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
777 * @q: The futex_q to unqueue
778 *
779 * The q->lock_ptr must not be NULL and must be held by the caller.
780 */
781static void __unqueue_futex(struct futex_q *q)
782{
783 struct futex_hash_bucket *hb;
784
785 if (WARN_ON(!q->lock_ptr || !spin_is_locked(q->lock_ptr)
786 || plist_node_empty(&q->list)))
787 return;
788
789 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
790 plist_del(&q->list, &hb->chain);
791}
792
1da177e4
LT
793/*
794 * The hash bucket lock must be held when this is called.
795 * Afterwards, the futex_q must not be accessed.
796 */
797static void wake_futex(struct futex_q *q)
798{
f1a11e05
TG
799 struct task_struct *p = q->task;
800
1da177e4 801 /*
f1a11e05 802 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
803 * a non-futex wake up happens on another CPU then the task
804 * might exit and p would dereference a non-existing task
f1a11e05
TG
805 * struct. Prevent this by holding a reference on p across the
806 * wake up.
1da177e4 807 */
f1a11e05
TG
808 get_task_struct(p);
809
2e12978a 810 __unqueue_futex(q);
1da177e4 811 /*
f1a11e05
TG
812 * The waiting task can free the futex_q as soon as
813 * q->lock_ptr = NULL is written, without taking any locks. A
814 * memory barrier is required here to prevent the following
815 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 816 */
ccdea2f8 817 smp_wmb();
1da177e4 818 q->lock_ptr = NULL;
f1a11e05
TG
819
820 wake_up_state(p, TASK_NORMAL);
821 put_task_struct(p);
1da177e4
LT
822}
823
c87e2837
IM
824static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
825{
826 struct task_struct *new_owner;
827 struct futex_pi_state *pi_state = this->pi_state;
828 u32 curval, newval;
829
830 if (!pi_state)
831 return -EINVAL;
832
51246bfd
TG
833 /*
834 * If current does not own the pi_state then the futex is
835 * inconsistent and user space fiddled with the futex value.
836 */
837 if (pi_state->owner != current)
838 return -EINVAL;
839
d209d74d 840 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
841 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
842
843 /*
f123c98e
SR
844 * It is possible that the next waiter (the one that brought
845 * this owner to the kernel) timed out and is no longer
846 * waiting on the lock.
c87e2837
IM
847 */
848 if (!new_owner)
849 new_owner = this->task;
850
851 /*
852 * We pass it to the next owner. (The WAITERS bit is always
853 * kept enabled while there is PI state around. We must also
854 * preserve the owner died bit.)
855 */
e3f2ddea 856 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
857 int ret = 0;
858
b488893a 859 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 860
37a9d912 861 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 862 ret = -EFAULT;
cde898fa 863 else if (curval != uval)
778e9a9c
AK
864 ret = -EINVAL;
865 if (ret) {
d209d74d 866 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
867 return ret;
868 }
e3f2ddea 869 }
c87e2837 870
1d615482 871 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
872 WARN_ON(list_empty(&pi_state->list));
873 list_del_init(&pi_state->list);
1d615482 874 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 875
1d615482 876 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 877 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
878 list_add(&pi_state->list, &new_owner->pi_state_list);
879 pi_state->owner = new_owner;
1d615482 880 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 881
d209d74d 882 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
883 rt_mutex_unlock(&pi_state->pi_mutex);
884
885 return 0;
886}
887
888static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
889{
890 u32 oldval;
891
892 /*
893 * There is no waiter, so we unlock the futex. The owner died
894 * bit has not to be preserved here. We are the owner:
895 */
37a9d912
ML
896 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
897 return -EFAULT;
c87e2837
IM
898 if (oldval != uval)
899 return -EAGAIN;
900
901 return 0;
902}
903
8b8f319f
IM
904/*
905 * Express the locking dependencies for lockdep:
906 */
907static inline void
908double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
909{
910 if (hb1 <= hb2) {
911 spin_lock(&hb1->lock);
912 if (hb1 < hb2)
913 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
914 } else { /* hb1 > hb2 */
915 spin_lock(&hb2->lock);
916 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
917 }
918}
919
5eb3dc62
DH
920static inline void
921double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
922{
f061d351 923 spin_unlock(&hb1->lock);
88f502fe
IM
924 if (hb1 != hb2)
925 spin_unlock(&hb2->lock);
5eb3dc62
DH
926}
927
1da177e4 928/*
b2d0994b 929 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 930 */
b41277dc
DH
931static int
932futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 933{
e2970f2f 934 struct futex_hash_bucket *hb;
1da177e4 935 struct futex_q *this, *next;
ec92d082 936 struct plist_head *head;
38d47c1b 937 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
938 int ret;
939
cd689985
TG
940 if (!bitset)
941 return -EINVAL;
942
b41277dc 943 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
1da177e4
LT
944 if (unlikely(ret != 0))
945 goto out;
946
e2970f2f
IM
947 hb = hash_futex(&key);
948 spin_lock(&hb->lock);
949 head = &hb->chain;
1da177e4 950
ec92d082 951 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 952 if (match_futex (&this->key, &key)) {
52400ba9 953 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
954 ret = -EINVAL;
955 break;
956 }
cd689985
TG
957
958 /* Check if one of the bits is set in both bitsets */
959 if (!(this->bitset & bitset))
960 continue;
961
1da177e4
LT
962 wake_futex(this);
963 if (++ret >= nr_wake)
964 break;
965 }
966 }
967
e2970f2f 968 spin_unlock(&hb->lock);
ae791a2d 969 put_futex_key(&key);
42d35d48 970out:
1da177e4
LT
971 return ret;
972}
973
4732efbe
JJ
974/*
975 * Wake up all waiters hashed on the physical page that is mapped
976 * to this virtual address:
977 */
e2970f2f 978static int
b41277dc 979futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 980 int nr_wake, int nr_wake2, int op)
4732efbe 981{
38d47c1b 982 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 983 struct futex_hash_bucket *hb1, *hb2;
ec92d082 984 struct plist_head *head;
4732efbe 985 struct futex_q *this, *next;
e4dc5b7a 986 int ret, op_ret;
4732efbe 987
e4dc5b7a 988retry:
b41277dc 989 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
4732efbe
JJ
990 if (unlikely(ret != 0))
991 goto out;
b41277dc 992 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
4732efbe 993 if (unlikely(ret != 0))
42d35d48 994 goto out_put_key1;
4732efbe 995
e2970f2f
IM
996 hb1 = hash_futex(&key1);
997 hb2 = hash_futex(&key2);
4732efbe 998
e4dc5b7a 999retry_private:
eaaea803 1000 double_lock_hb(hb1, hb2);
e2970f2f 1001 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1002 if (unlikely(op_ret < 0)) {
4732efbe 1003
5eb3dc62 1004 double_unlock_hb(hb1, hb2);
4732efbe 1005
7ee1dd3f 1006#ifndef CONFIG_MMU
e2970f2f
IM
1007 /*
1008 * we don't get EFAULT from MMU faults if we don't have an MMU,
1009 * but we might get them from range checking
1010 */
7ee1dd3f 1011 ret = op_ret;
42d35d48 1012 goto out_put_keys;
7ee1dd3f
DH
1013#endif
1014
796f8d9b
DG
1015 if (unlikely(op_ret != -EFAULT)) {
1016 ret = op_ret;
42d35d48 1017 goto out_put_keys;
796f8d9b
DG
1018 }
1019
d0725992 1020 ret = fault_in_user_writeable(uaddr2);
4732efbe 1021 if (ret)
de87fcc1 1022 goto out_put_keys;
4732efbe 1023
b41277dc 1024 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1025 goto retry_private;
1026
ae791a2d
TG
1027 put_futex_key(&key2);
1028 put_futex_key(&key1);
e4dc5b7a 1029 goto retry;
4732efbe
JJ
1030 }
1031
e2970f2f 1032 head = &hb1->chain;
4732efbe 1033
ec92d082 1034 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
1035 if (match_futex (&this->key, &key1)) {
1036 wake_futex(this);
1037 if (++ret >= nr_wake)
1038 break;
1039 }
1040 }
1041
1042 if (op_ret > 0) {
e2970f2f 1043 head = &hb2->chain;
4732efbe
JJ
1044
1045 op_ret = 0;
ec92d082 1046 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
1047 if (match_futex (&this->key, &key2)) {
1048 wake_futex(this);
1049 if (++op_ret >= nr_wake2)
1050 break;
1051 }
1052 }
1053 ret += op_ret;
1054 }
1055
5eb3dc62 1056 double_unlock_hb(hb1, hb2);
42d35d48 1057out_put_keys:
ae791a2d 1058 put_futex_key(&key2);
42d35d48 1059out_put_key1:
ae791a2d 1060 put_futex_key(&key1);
42d35d48 1061out:
4732efbe
JJ
1062 return ret;
1063}
1064
9121e478
DH
1065/**
1066 * requeue_futex() - Requeue a futex_q from one hb to another
1067 * @q: the futex_q to requeue
1068 * @hb1: the source hash_bucket
1069 * @hb2: the target hash_bucket
1070 * @key2: the new key for the requeued futex_q
1071 */
1072static inline
1073void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1074 struct futex_hash_bucket *hb2, union futex_key *key2)
1075{
1076
1077 /*
1078 * If key1 and key2 hash to the same bucket, no need to
1079 * requeue.
1080 */
1081 if (likely(&hb1->chain != &hb2->chain)) {
1082 plist_del(&q->list, &hb1->chain);
1083 plist_add(&q->list, &hb2->chain);
1084 q->lock_ptr = &hb2->lock;
9121e478
DH
1085 }
1086 get_futex_key_refs(key2);
1087 q->key = *key2;
1088}
1089
52400ba9
DH
1090/**
1091 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1092 * @q: the futex_q
1093 * @key: the key of the requeue target futex
1094 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1095 *
1096 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1097 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1098 * to the requeue target futex so the waiter can detect the wakeup on the right
1099 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1100 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1101 * to protect access to the pi_state to fixup the owner later. Must be called
1102 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1103 */
1104static inline
beda2c7e
DH
1105void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1106 struct futex_hash_bucket *hb)
52400ba9 1107{
52400ba9
DH
1108 get_futex_key_refs(key);
1109 q->key = *key;
1110
2e12978a 1111 __unqueue_futex(q);
52400ba9
DH
1112
1113 WARN_ON(!q->rt_waiter);
1114 q->rt_waiter = NULL;
1115
beda2c7e 1116 q->lock_ptr = &hb->lock;
beda2c7e 1117
f1a11e05 1118 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1119}
1120
1121/**
1122 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1123 * @pifutex: the user address of the to futex
1124 * @hb1: the from futex hash bucket, must be locked by the caller
1125 * @hb2: the to futex hash bucket, must be locked by the caller
1126 * @key1: the from futex key
1127 * @key2: the to futex key
1128 * @ps: address to store the pi_state pointer
1129 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1130 *
1131 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1132 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1133 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1134 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1135 *
1136 * Returns:
1137 * 0 - failed to acquire the lock atomicly
1138 * 1 - acquired the lock
1139 * <0 - error
1140 */
1141static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1142 struct futex_hash_bucket *hb1,
1143 struct futex_hash_bucket *hb2,
1144 union futex_key *key1, union futex_key *key2,
bab5bc9e 1145 struct futex_pi_state **ps, int set_waiters)
52400ba9 1146{
bab5bc9e 1147 struct futex_q *top_waiter = NULL;
52400ba9
DH
1148 u32 curval;
1149 int ret;
1150
1151 if (get_futex_value_locked(&curval, pifutex))
1152 return -EFAULT;
1153
bab5bc9e
DH
1154 /*
1155 * Find the top_waiter and determine if there are additional waiters.
1156 * If the caller intends to requeue more than 1 waiter to pifutex,
1157 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1158 * as we have means to handle the possible fault. If not, don't set
1159 * the bit unecessarily as it will force the subsequent unlock to enter
1160 * the kernel.
1161 */
52400ba9
DH
1162 top_waiter = futex_top_waiter(hb1, key1);
1163
1164 /* There are no waiters, nothing for us to do. */
1165 if (!top_waiter)
1166 return 0;
1167
84bc4af5
DH
1168 /* Ensure we requeue to the expected futex. */
1169 if (!match_futex(top_waiter->requeue_pi_key, key2))
1170 return -EINVAL;
1171
52400ba9 1172 /*
bab5bc9e
DH
1173 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1174 * the contended case or if set_waiters is 1. The pi_state is returned
1175 * in ps in contended cases.
52400ba9 1176 */
bab5bc9e
DH
1177 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1178 set_waiters);
52400ba9 1179 if (ret == 1)
beda2c7e 1180 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1181
1182 return ret;
1183}
1184
1185/**
1186 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1187 * @uaddr1: source futex user address
b41277dc 1188 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1189 * @uaddr2: target futex user address
1190 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1191 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1192 * @cmpval: @uaddr1 expected value (or %NULL)
1193 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1194 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1195 *
1196 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1197 * uaddr2 atomically on behalf of the top waiter.
1198 *
1199 * Returns:
1200 * >=0 - on success, the number of tasks requeued or woken
1201 * <0 - on error
1da177e4 1202 */
b41277dc
DH
1203static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1204 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1205 u32 *cmpval, int requeue_pi)
1da177e4 1206{
38d47c1b 1207 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1208 int drop_count = 0, task_count = 0, ret;
1209 struct futex_pi_state *pi_state = NULL;
e2970f2f 1210 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1211 struct plist_head *head1;
1da177e4 1212 struct futex_q *this, *next;
52400ba9
DH
1213 u32 curval2;
1214
1215 if (requeue_pi) {
1216 /*
1217 * requeue_pi requires a pi_state, try to allocate it now
1218 * without any locks in case it fails.
1219 */
1220 if (refill_pi_state_cache())
1221 return -ENOMEM;
1222 /*
1223 * requeue_pi must wake as many tasks as it can, up to nr_wake
1224 * + nr_requeue, since it acquires the rt_mutex prior to
1225 * returning to userspace, so as to not leave the rt_mutex with
1226 * waiters and no owner. However, second and third wake-ups
1227 * cannot be predicted as they involve race conditions with the
1228 * first wake and a fault while looking up the pi_state. Both
1229 * pthread_cond_signal() and pthread_cond_broadcast() should
1230 * use nr_wake=1.
1231 */
1232 if (nr_wake != 1)
1233 return -EINVAL;
1234 }
1da177e4 1235
42d35d48 1236retry:
52400ba9
DH
1237 if (pi_state != NULL) {
1238 /*
1239 * We will have to lookup the pi_state again, so free this one
1240 * to keep the accounting correct.
1241 */
1242 free_pi_state(pi_state);
1243 pi_state = NULL;
1244 }
1245
b41277dc 1246 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1da177e4
LT
1247 if (unlikely(ret != 0))
1248 goto out;
b41277dc 1249 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1da177e4 1250 if (unlikely(ret != 0))
42d35d48 1251 goto out_put_key1;
1da177e4 1252
e2970f2f
IM
1253 hb1 = hash_futex(&key1);
1254 hb2 = hash_futex(&key2);
1da177e4 1255
e4dc5b7a 1256retry_private:
8b8f319f 1257 double_lock_hb(hb1, hb2);
1da177e4 1258
e2970f2f
IM
1259 if (likely(cmpval != NULL)) {
1260 u32 curval;
1da177e4 1261
e2970f2f 1262 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1263
1264 if (unlikely(ret)) {
5eb3dc62 1265 double_unlock_hb(hb1, hb2);
1da177e4 1266
e2970f2f 1267 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1268 if (ret)
1269 goto out_put_keys;
1da177e4 1270
b41277dc 1271 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1272 goto retry_private;
1da177e4 1273
ae791a2d
TG
1274 put_futex_key(&key2);
1275 put_futex_key(&key1);
e4dc5b7a 1276 goto retry;
1da177e4 1277 }
e2970f2f 1278 if (curval != *cmpval) {
1da177e4
LT
1279 ret = -EAGAIN;
1280 goto out_unlock;
1281 }
1282 }
1283
52400ba9 1284 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1285 /*
1286 * Attempt to acquire uaddr2 and wake the top waiter. If we
1287 * intend to requeue waiters, force setting the FUTEX_WAITERS
1288 * bit. We force this here where we are able to easily handle
1289 * faults rather in the requeue loop below.
1290 */
52400ba9 1291 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1292 &key2, &pi_state, nr_requeue);
52400ba9
DH
1293
1294 /*
1295 * At this point the top_waiter has either taken uaddr2 or is
1296 * waiting on it. If the former, then the pi_state will not
1297 * exist yet, look it up one more time to ensure we have a
1298 * reference to it.
1299 */
1300 if (ret == 1) {
1301 WARN_ON(pi_state);
89061d3d 1302 drop_count++;
52400ba9
DH
1303 task_count++;
1304 ret = get_futex_value_locked(&curval2, uaddr2);
1305 if (!ret)
1306 ret = lookup_pi_state(curval2, hb2, &key2,
1307 &pi_state);
1308 }
1309
1310 switch (ret) {
1311 case 0:
1312 break;
1313 case -EFAULT:
1314 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1315 put_futex_key(&key2);
1316 put_futex_key(&key1);
d0725992 1317 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1318 if (!ret)
1319 goto retry;
1320 goto out;
1321 case -EAGAIN:
1322 /* The owner was exiting, try again. */
1323 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1324 put_futex_key(&key2);
1325 put_futex_key(&key1);
52400ba9
DH
1326 cond_resched();
1327 goto retry;
1328 default:
1329 goto out_unlock;
1330 }
1331 }
1332
e2970f2f 1333 head1 = &hb1->chain;
ec92d082 1334 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1335 if (task_count - nr_wake >= nr_requeue)
1336 break;
1337
1338 if (!match_futex(&this->key, &key1))
1da177e4 1339 continue;
52400ba9 1340
392741e0
DH
1341 /*
1342 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1343 * be paired with each other and no other futex ops.
1344 */
1345 if ((requeue_pi && !this->rt_waiter) ||
1346 (!requeue_pi && this->rt_waiter)) {
1347 ret = -EINVAL;
1348 break;
1349 }
52400ba9
DH
1350
1351 /*
1352 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1353 * lock, we already woke the top_waiter. If not, it will be
1354 * woken by futex_unlock_pi().
1355 */
1356 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1357 wake_futex(this);
52400ba9
DH
1358 continue;
1359 }
1da177e4 1360
84bc4af5
DH
1361 /* Ensure we requeue to the expected futex for requeue_pi. */
1362 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1363 ret = -EINVAL;
1364 break;
1365 }
1366
52400ba9
DH
1367 /*
1368 * Requeue nr_requeue waiters and possibly one more in the case
1369 * of requeue_pi if we couldn't acquire the lock atomically.
1370 */
1371 if (requeue_pi) {
1372 /* Prepare the waiter to take the rt_mutex. */
1373 atomic_inc(&pi_state->refcount);
1374 this->pi_state = pi_state;
1375 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1376 this->rt_waiter,
1377 this->task, 1);
1378 if (ret == 1) {
1379 /* We got the lock. */
beda2c7e 1380 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1381 drop_count++;
52400ba9
DH
1382 continue;
1383 } else if (ret) {
1384 /* -EDEADLK */
1385 this->pi_state = NULL;
1386 free_pi_state(pi_state);
1387 goto out_unlock;
1388 }
1da177e4 1389 }
52400ba9
DH
1390 requeue_futex(this, hb1, hb2, &key2);
1391 drop_count++;
1da177e4
LT
1392 }
1393
1394out_unlock:
5eb3dc62 1395 double_unlock_hb(hb1, hb2);
1da177e4 1396
cd84a42f
DH
1397 /*
1398 * drop_futex_key_refs() must be called outside the spinlocks. During
1399 * the requeue we moved futex_q's from the hash bucket at key1 to the
1400 * one at key2 and updated their key pointer. We no longer need to
1401 * hold the references to key1.
1402 */
1da177e4 1403 while (--drop_count >= 0)
9adef58b 1404 drop_futex_key_refs(&key1);
1da177e4 1405
42d35d48 1406out_put_keys:
ae791a2d 1407 put_futex_key(&key2);
42d35d48 1408out_put_key1:
ae791a2d 1409 put_futex_key(&key1);
42d35d48 1410out:
52400ba9
DH
1411 if (pi_state != NULL)
1412 free_pi_state(pi_state);
1413 return ret ? ret : task_count;
1da177e4
LT
1414}
1415
1416/* The key must be already stored in q->key. */
82af7aca 1417static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1418 __acquires(&hb->lock)
1da177e4 1419{
e2970f2f 1420 struct futex_hash_bucket *hb;
1da177e4 1421
e2970f2f
IM
1422 hb = hash_futex(&q->key);
1423 q->lock_ptr = &hb->lock;
1da177e4 1424
e2970f2f
IM
1425 spin_lock(&hb->lock);
1426 return hb;
1da177e4
LT
1427}
1428
d40d65c8
DH
1429static inline void
1430queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1431 __releases(&hb->lock)
d40d65c8
DH
1432{
1433 spin_unlock(&hb->lock);
d40d65c8
DH
1434}
1435
1436/**
1437 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1438 * @q: The futex_q to enqueue
1439 * @hb: The destination hash bucket
1440 *
1441 * The hb->lock must be held by the caller, and is released here. A call to
1442 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1443 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1444 * or nothing if the unqueue is done as part of the wake process and the unqueue
1445 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1446 * an example).
1447 */
82af7aca 1448static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1449 __releases(&hb->lock)
1da177e4 1450{
ec92d082
PP
1451 int prio;
1452
1453 /*
1454 * The priority used to register this element is
1455 * - either the real thread-priority for the real-time threads
1456 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1457 * - or MAX_RT_PRIO for non-RT threads.
1458 * Thus, all RT-threads are woken first in priority order, and
1459 * the others are woken last, in FIFO order.
1460 */
1461 prio = min(current->normal_prio, MAX_RT_PRIO);
1462
1463 plist_node_init(&q->list, prio);
ec92d082 1464 plist_add(&q->list, &hb->chain);
c87e2837 1465 q->task = current;
e2970f2f 1466 spin_unlock(&hb->lock);
1da177e4
LT
1467}
1468
d40d65c8
DH
1469/**
1470 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1471 * @q: The futex_q to unqueue
1472 *
1473 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1474 * be paired with exactly one earlier call to queue_me().
1475 *
1476 * Returns:
1477 * 1 - if the futex_q was still queued (and we removed unqueued it)
1478 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1479 */
1da177e4
LT
1480static int unqueue_me(struct futex_q *q)
1481{
1da177e4 1482 spinlock_t *lock_ptr;
e2970f2f 1483 int ret = 0;
1da177e4
LT
1484
1485 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1486retry:
1da177e4 1487 lock_ptr = q->lock_ptr;
e91467ec 1488 barrier();
c80544dc 1489 if (lock_ptr != NULL) {
1da177e4
LT
1490 spin_lock(lock_ptr);
1491 /*
1492 * q->lock_ptr can change between reading it and
1493 * spin_lock(), causing us to take the wrong lock. This
1494 * corrects the race condition.
1495 *
1496 * Reasoning goes like this: if we have the wrong lock,
1497 * q->lock_ptr must have changed (maybe several times)
1498 * between reading it and the spin_lock(). It can
1499 * change again after the spin_lock() but only if it was
1500 * already changed before the spin_lock(). It cannot,
1501 * however, change back to the original value. Therefore
1502 * we can detect whether we acquired the correct lock.
1503 */
1504 if (unlikely(lock_ptr != q->lock_ptr)) {
1505 spin_unlock(lock_ptr);
1506 goto retry;
1507 }
2e12978a 1508 __unqueue_futex(q);
c87e2837
IM
1509
1510 BUG_ON(q->pi_state);
1511
1da177e4
LT
1512 spin_unlock(lock_ptr);
1513 ret = 1;
1514 }
1515
9adef58b 1516 drop_futex_key_refs(&q->key);
1da177e4
LT
1517 return ret;
1518}
1519
c87e2837
IM
1520/*
1521 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1522 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1523 * and dropped here.
c87e2837 1524 */
d0aa7a70 1525static void unqueue_me_pi(struct futex_q *q)
15e408cd 1526 __releases(q->lock_ptr)
c87e2837 1527{
2e12978a 1528 __unqueue_futex(q);
c87e2837
IM
1529
1530 BUG_ON(!q->pi_state);
1531 free_pi_state(q->pi_state);
1532 q->pi_state = NULL;
1533
d0aa7a70 1534 spin_unlock(q->lock_ptr);
c87e2837
IM
1535}
1536
d0aa7a70 1537/*
cdf71a10 1538 * Fixup the pi_state owner with the new owner.
d0aa7a70 1539 *
778e9a9c
AK
1540 * Must be called with hash bucket lock held and mm->sem held for non
1541 * private futexes.
d0aa7a70 1542 */
778e9a9c 1543static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1544 struct task_struct *newowner)
d0aa7a70 1545{
cdf71a10 1546 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1547 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1548 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1549 u32 uval, curval, newval;
e4dc5b7a 1550 int ret;
d0aa7a70
PP
1551
1552 /* Owner died? */
1b7558e4
TG
1553 if (!pi_state->owner)
1554 newtid |= FUTEX_OWNER_DIED;
1555
1556 /*
1557 * We are here either because we stole the rtmutex from the
1558 * pending owner or we are the pending owner which failed to
1559 * get the rtmutex. We have to replace the pending owner TID
1560 * in the user space variable. This must be atomic as we have
1561 * to preserve the owner died bit here.
1562 *
b2d0994b
DH
1563 * Note: We write the user space value _before_ changing the pi_state
1564 * because we can fault here. Imagine swapped out pages or a fork
1565 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1566 *
1567 * Modifying pi_state _before_ the user space value would
1568 * leave the pi_state in an inconsistent state when we fault
1569 * here, because we need to drop the hash bucket lock to
1570 * handle the fault. This might be observed in the PID check
1571 * in lookup_pi_state.
1572 */
1573retry:
1574 if (get_futex_value_locked(&uval, uaddr))
1575 goto handle_fault;
1576
1577 while (1) {
1578 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1579
37a9d912 1580 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1581 goto handle_fault;
1582 if (curval == uval)
1583 break;
1584 uval = curval;
1585 }
1586
1587 /*
1588 * We fixed up user space. Now we need to fix the pi_state
1589 * itself.
1590 */
d0aa7a70 1591 if (pi_state->owner != NULL) {
1d615482 1592 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1593 WARN_ON(list_empty(&pi_state->list));
1594 list_del_init(&pi_state->list);
1d615482 1595 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1596 }
d0aa7a70 1597
cdf71a10 1598 pi_state->owner = newowner;
d0aa7a70 1599
1d615482 1600 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1601 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1602 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1603 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1604 return 0;
d0aa7a70 1605
d0aa7a70 1606 /*
1b7558e4
TG
1607 * To handle the page fault we need to drop the hash bucket
1608 * lock here. That gives the other task (either the pending
1609 * owner itself or the task which stole the rtmutex) the
1610 * chance to try the fixup of the pi_state. So once we are
1611 * back from handling the fault we need to check the pi_state
1612 * after reacquiring the hash bucket lock and before trying to
1613 * do another fixup. When the fixup has been done already we
1614 * simply return.
d0aa7a70 1615 */
1b7558e4
TG
1616handle_fault:
1617 spin_unlock(q->lock_ptr);
778e9a9c 1618
d0725992 1619 ret = fault_in_user_writeable(uaddr);
778e9a9c 1620
1b7558e4 1621 spin_lock(q->lock_ptr);
778e9a9c 1622
1b7558e4
TG
1623 /*
1624 * Check if someone else fixed it for us:
1625 */
1626 if (pi_state->owner != oldowner)
1627 return 0;
1628
1629 if (ret)
1630 return ret;
1631
1632 goto retry;
d0aa7a70
PP
1633}
1634
72c1bbf3 1635static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1636
dd973998
DH
1637/**
1638 * fixup_owner() - Post lock pi_state and corner case management
1639 * @uaddr: user address of the futex
dd973998
DH
1640 * @q: futex_q (contains pi_state and access to the rt_mutex)
1641 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1642 *
1643 * After attempting to lock an rt_mutex, this function is called to cleanup
1644 * the pi_state owner as well as handle race conditions that may allow us to
1645 * acquire the lock. Must be called with the hb lock held.
1646 *
1647 * Returns:
1648 * 1 - success, lock taken
1649 * 0 - success, lock not taken
1650 * <0 - on error (-EFAULT)
1651 */
ae791a2d 1652static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1653{
1654 struct task_struct *owner;
1655 int ret = 0;
1656
1657 if (locked) {
1658 /*
1659 * Got the lock. We might not be the anticipated owner if we
1660 * did a lock-steal - fix up the PI-state in that case:
1661 */
1662 if (q->pi_state->owner != current)
ae791a2d 1663 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1664 goto out;
1665 }
1666
1667 /*
1668 * Catch the rare case, where the lock was released when we were on the
1669 * way back before we locked the hash bucket.
1670 */
1671 if (q->pi_state->owner == current) {
1672 /*
1673 * Try to get the rt_mutex now. This might fail as some other
1674 * task acquired the rt_mutex after we removed ourself from the
1675 * rt_mutex waiters list.
1676 */
1677 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1678 locked = 1;
1679 goto out;
1680 }
1681
1682 /*
1683 * pi_state is incorrect, some other task did a lock steal and
1684 * we returned due to timeout or signal without taking the
1685 * rt_mutex. Too late. We can access the rt_mutex_owner without
1686 * locking, as the other task is now blocked on the hash bucket
1687 * lock. Fix the state up.
1688 */
1689 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
ae791a2d 1690 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1691 goto out;
1692 }
1693
1694 /*
1695 * Paranoia check. If we did not take the lock, then we should not be
1696 * the owner, nor the pending owner, of the rt_mutex.
1697 */
1698 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1699 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1700 "pi-state %p\n", ret,
1701 q->pi_state->pi_mutex.owner,
1702 q->pi_state->owner);
1703
1704out:
1705 return ret ? ret : locked;
1706}
1707
ca5f9524
DH
1708/**
1709 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1710 * @hb: the futex hash bucket, must be locked by the caller
1711 * @q: the futex_q to queue up on
1712 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1713 */
1714static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1715 struct hrtimer_sleeper *timeout)
ca5f9524 1716{
9beba3c5
DH
1717 /*
1718 * The task state is guaranteed to be set before another task can
1719 * wake it. set_current_state() is implemented using set_mb() and
1720 * queue_me() calls spin_unlock() upon completion, both serializing
1721 * access to the hash list and forcing another memory barrier.
1722 */
f1a11e05 1723 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1724 queue_me(q, hb);
ca5f9524
DH
1725
1726 /* Arm the timer */
1727 if (timeout) {
1728 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1729 if (!hrtimer_active(&timeout->timer))
1730 timeout->task = NULL;
1731 }
1732
1733 /*
0729e196
DH
1734 * If we have been removed from the hash list, then another task
1735 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1736 */
1737 if (likely(!plist_node_empty(&q->list))) {
1738 /*
1739 * If the timer has already expired, current will already be
1740 * flagged for rescheduling. Only call schedule if there
1741 * is no timeout, or if it has yet to expire.
1742 */
1743 if (!timeout || timeout->task)
1744 schedule();
1745 }
1746 __set_current_state(TASK_RUNNING);
1747}
1748
f801073f
DH
1749/**
1750 * futex_wait_setup() - Prepare to wait on a futex
1751 * @uaddr: the futex userspace address
1752 * @val: the expected value
b41277dc 1753 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1754 * @q: the associated futex_q
1755 * @hb: storage for hash_bucket pointer to be returned to caller
1756 *
1757 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1758 * compare it with the expected value. Handle atomic faults internally.
1759 * Return with the hb lock held and a q.key reference on success, and unlocked
1760 * with no q.key reference on failure.
1761 *
1762 * Returns:
1763 * 0 - uaddr contains val and hb has been locked
1764 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1765 */
b41277dc 1766static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1767 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1768{
e2970f2f
IM
1769 u32 uval;
1770 int ret;
1da177e4 1771
1da177e4 1772 /*
b2d0994b 1773 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1774 * Order is important:
1775 *
1776 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1777 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1778 *
1779 * The basic logical guarantee of a futex is that it blocks ONLY
1780 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1781 * any cond. If we locked the hash-bucket after testing *uaddr, that
1782 * would open a race condition where we could block indefinitely with
1da177e4
LT
1783 * cond(var) false, which would violate the guarantee.
1784 *
8fe8f545
ML
1785 * On the other hand, we insert q and release the hash-bucket only
1786 * after testing *uaddr. This guarantees that futex_wait() will NOT
1787 * absorb a wakeup if *uaddr does not match the desired values
1788 * while the syscall executes.
1da177e4 1789 */
f801073f 1790retry:
b41277dc 1791 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
f801073f 1792 if (unlikely(ret != 0))
a5a2a0c7 1793 return ret;
f801073f
DH
1794
1795retry_private:
1796 *hb = queue_lock(q);
1797
e2970f2f 1798 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1799
f801073f
DH
1800 if (ret) {
1801 queue_unlock(q, *hb);
1da177e4 1802
e2970f2f 1803 ret = get_user(uval, uaddr);
e4dc5b7a 1804 if (ret)
f801073f 1805 goto out;
1da177e4 1806
b41277dc 1807 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1808 goto retry_private;
1809
ae791a2d 1810 put_futex_key(&q->key);
e4dc5b7a 1811 goto retry;
1da177e4 1812 }
ca5f9524 1813
f801073f
DH
1814 if (uval != val) {
1815 queue_unlock(q, *hb);
1816 ret = -EWOULDBLOCK;
2fff78c7 1817 }
1da177e4 1818
f801073f
DH
1819out:
1820 if (ret)
ae791a2d 1821 put_futex_key(&q->key);
f801073f
DH
1822 return ret;
1823}
1824
b41277dc
DH
1825static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1826 ktime_t *abs_time, u32 bitset)
f801073f
DH
1827{
1828 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1829 struct restart_block *restart;
1830 struct futex_hash_bucket *hb;
5bdb05f9 1831 struct futex_q q = futex_q_init;
f801073f
DH
1832 int ret;
1833
1834 if (!bitset)
1835 return -EINVAL;
f801073f
DH
1836 q.bitset = bitset;
1837
1838 if (abs_time) {
1839 to = &timeout;
1840
b41277dc
DH
1841 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1842 CLOCK_REALTIME : CLOCK_MONOTONIC,
1843 HRTIMER_MODE_ABS);
f801073f
DH
1844 hrtimer_init_sleeper(to, current);
1845 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1846 current->timer_slack_ns);
1847 }
1848
d58e6576 1849retry:
7ada876a
DH
1850 /*
1851 * Prepare to wait on uaddr. On success, holds hb lock and increments
1852 * q.key refs.
1853 */
b41277dc 1854 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1855 if (ret)
1856 goto out;
1857
ca5f9524 1858 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1859 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1860
1861 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1862 ret = 0;
7ada876a 1863 /* unqueue_me() drops q.key ref */
1da177e4 1864 if (!unqueue_me(&q))
7ada876a 1865 goto out;
2fff78c7 1866 ret = -ETIMEDOUT;
ca5f9524 1867 if (to && !to->task)
7ada876a 1868 goto out;
72c1bbf3 1869
e2970f2f 1870 /*
d58e6576
TG
1871 * We expect signal_pending(current), but we might be the
1872 * victim of a spurious wakeup as well.
e2970f2f 1873 */
7ada876a 1874 if (!signal_pending(current))
d58e6576 1875 goto retry;
d58e6576 1876
2fff78c7 1877 ret = -ERESTARTSYS;
c19384b5 1878 if (!abs_time)
7ada876a 1879 goto out;
1da177e4 1880
2fff78c7
PZ
1881 restart = &current_thread_info()->restart_block;
1882 restart->fn = futex_wait_restart;
a3c74c52 1883 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1884 restart->futex.val = val;
1885 restart->futex.time = abs_time->tv64;
1886 restart->futex.bitset = bitset;
b41277dc 1887 restart->futex.flags = flags;
42d35d48 1888
2fff78c7
PZ
1889 ret = -ERESTART_RESTARTBLOCK;
1890
42d35d48 1891out:
ca5f9524
DH
1892 if (to) {
1893 hrtimer_cancel(&to->timer);
1894 destroy_hrtimer_on_stack(&to->timer);
1895 }
c87e2837
IM
1896 return ret;
1897}
1898
72c1bbf3
NP
1899
1900static long futex_wait_restart(struct restart_block *restart)
1901{
a3c74c52 1902 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1903 ktime_t t, *tp = NULL;
72c1bbf3 1904
a72188d8
DH
1905 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1906 t.tv64 = restart->futex.time;
1907 tp = &t;
1908 }
72c1bbf3 1909 restart->fn = do_no_restart_syscall;
b41277dc
DH
1910
1911 return (long)futex_wait(uaddr, restart->futex.flags,
1912 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1913}
1914
1915
c87e2837
IM
1916/*
1917 * Userspace tried a 0 -> TID atomic transition of the futex value
1918 * and failed. The kernel side here does the whole locking operation:
1919 * if there are waiters then it will block, it does PI, etc. (Due to
1920 * races the kernel might see a 0 value of the futex too.)
1921 */
b41277dc
DH
1922static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1923 ktime_t *time, int trylock)
c87e2837 1924{
c5780e97 1925 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1926 struct futex_hash_bucket *hb;
5bdb05f9 1927 struct futex_q q = futex_q_init;
dd973998 1928 int res, ret;
c87e2837
IM
1929
1930 if (refill_pi_state_cache())
1931 return -ENOMEM;
1932
c19384b5 1933 if (time) {
c5780e97 1934 to = &timeout;
237fc6e7
TG
1935 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1936 HRTIMER_MODE_ABS);
c5780e97 1937 hrtimer_init_sleeper(to, current);
cc584b21 1938 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1939 }
1940
42d35d48 1941retry:
b41277dc 1942 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
c87e2837 1943 if (unlikely(ret != 0))
42d35d48 1944 goto out;
c87e2837 1945
e4dc5b7a 1946retry_private:
82af7aca 1947 hb = queue_lock(&q);
c87e2837 1948
bab5bc9e 1949 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1950 if (unlikely(ret)) {
778e9a9c 1951 switch (ret) {
1a52084d
DH
1952 case 1:
1953 /* We got the lock. */
1954 ret = 0;
1955 goto out_unlock_put_key;
1956 case -EFAULT:
1957 goto uaddr_faulted;
778e9a9c
AK
1958 case -EAGAIN:
1959 /*
1960 * Task is exiting and we just wait for the
1961 * exit to complete.
1962 */
1963 queue_unlock(&q, hb);
ae791a2d 1964 put_futex_key(&q.key);
778e9a9c
AK
1965 cond_resched();
1966 goto retry;
778e9a9c 1967 default:
42d35d48 1968 goto out_unlock_put_key;
c87e2837 1969 }
c87e2837
IM
1970 }
1971
1972 /*
1973 * Only actually queue now that the atomic ops are done:
1974 */
82af7aca 1975 queue_me(&q, hb);
c87e2837 1976
c87e2837
IM
1977 WARN_ON(!q.pi_state);
1978 /*
1979 * Block on the PI mutex:
1980 */
1981 if (!trylock)
1982 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1983 else {
1984 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1985 /* Fixup the trylock return value: */
1986 ret = ret ? 0 : -EWOULDBLOCK;
1987 }
1988
a99e4e41 1989 spin_lock(q.lock_ptr);
dd973998
DH
1990 /*
1991 * Fixup the pi_state owner and possibly acquire the lock if we
1992 * haven't already.
1993 */
ae791a2d 1994 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
1995 /*
1996 * If fixup_owner() returned an error, proprogate that. If it acquired
1997 * the lock, clear our -ETIMEDOUT or -EINTR.
1998 */
1999 if (res)
2000 ret = (res < 0) ? res : 0;
c87e2837 2001
e8f6386c 2002 /*
dd973998
DH
2003 * If fixup_owner() faulted and was unable to handle the fault, unlock
2004 * it and return the fault to userspace.
e8f6386c
DH
2005 */
2006 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2007 rt_mutex_unlock(&q.pi_state->pi_mutex);
2008
778e9a9c
AK
2009 /* Unqueue and drop the lock */
2010 unqueue_me_pi(&q);
c87e2837 2011
5ecb01cf 2012 goto out_put_key;
c87e2837 2013
42d35d48 2014out_unlock_put_key:
c87e2837
IM
2015 queue_unlock(&q, hb);
2016
42d35d48 2017out_put_key:
ae791a2d 2018 put_futex_key(&q.key);
42d35d48 2019out:
237fc6e7
TG
2020 if (to)
2021 destroy_hrtimer_on_stack(&to->timer);
dd973998 2022 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2023
42d35d48 2024uaddr_faulted:
778e9a9c
AK
2025 queue_unlock(&q, hb);
2026
d0725992 2027 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2028 if (ret)
2029 goto out_put_key;
c87e2837 2030
b41277dc 2031 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2032 goto retry_private;
2033
ae791a2d 2034 put_futex_key(&q.key);
e4dc5b7a 2035 goto retry;
c87e2837
IM
2036}
2037
c87e2837
IM
2038/*
2039 * Userspace attempted a TID -> 0 atomic transition, and failed.
2040 * This is the in-kernel slowpath: we look up the PI state (if any),
2041 * and do the rt-mutex unlock.
2042 */
b41277dc 2043static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2044{
2045 struct futex_hash_bucket *hb;
2046 struct futex_q *this, *next;
ec92d082 2047 struct plist_head *head;
38d47c1b 2048 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2049 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2050 int ret;
c87e2837
IM
2051
2052retry:
2053 if (get_user(uval, uaddr))
2054 return -EFAULT;
2055 /*
2056 * We release only a lock we actually own:
2057 */
c0c9ed15 2058 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2059 return -EPERM;
c87e2837 2060
b41277dc 2061 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
c87e2837
IM
2062 if (unlikely(ret != 0))
2063 goto out;
2064
2065 hb = hash_futex(&key);
2066 spin_lock(&hb->lock);
2067
c87e2837
IM
2068 /*
2069 * To avoid races, try to do the TID -> 0 atomic transition
2070 * again. If it succeeds then we can return without waking
2071 * anyone else up:
2072 */
37a9d912
ML
2073 if (!(uval & FUTEX_OWNER_DIED) &&
2074 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2075 goto pi_faulted;
2076 /*
2077 * Rare case: we managed to release the lock atomically,
2078 * no need to wake anyone else up:
2079 */
c0c9ed15 2080 if (unlikely(uval == vpid))
c87e2837
IM
2081 goto out_unlock;
2082
2083 /*
2084 * Ok, other tasks may need to be woken up - check waiters
2085 * and do the wakeup if necessary:
2086 */
2087 head = &hb->chain;
2088
ec92d082 2089 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2090 if (!match_futex (&this->key, &key))
2091 continue;
2092 ret = wake_futex_pi(uaddr, uval, this);
2093 /*
2094 * The atomic access to the futex value
2095 * generated a pagefault, so retry the
2096 * user-access and the wakeup:
2097 */
2098 if (ret == -EFAULT)
2099 goto pi_faulted;
2100 goto out_unlock;
2101 }
2102 /*
2103 * No waiters - kernel unlocks the futex:
2104 */
e3f2ddea
IM
2105 if (!(uval & FUTEX_OWNER_DIED)) {
2106 ret = unlock_futex_pi(uaddr, uval);
2107 if (ret == -EFAULT)
2108 goto pi_faulted;
2109 }
c87e2837
IM
2110
2111out_unlock:
2112 spin_unlock(&hb->lock);
ae791a2d 2113 put_futex_key(&key);
c87e2837 2114
42d35d48 2115out:
c87e2837
IM
2116 return ret;
2117
2118pi_faulted:
778e9a9c 2119 spin_unlock(&hb->lock);
ae791a2d 2120 put_futex_key(&key);
c87e2837 2121
d0725992 2122 ret = fault_in_user_writeable(uaddr);
b5686363 2123 if (!ret)
c87e2837
IM
2124 goto retry;
2125
1da177e4
LT
2126 return ret;
2127}
2128
52400ba9
DH
2129/**
2130 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2131 * @hb: the hash_bucket futex_q was original enqueued on
2132 * @q: the futex_q woken while waiting to be requeued
2133 * @key2: the futex_key of the requeue target futex
2134 * @timeout: the timeout associated with the wait (NULL if none)
2135 *
2136 * Detect if the task was woken on the initial futex as opposed to the requeue
2137 * target futex. If so, determine if it was a timeout or a signal that caused
2138 * the wakeup and return the appropriate error code to the caller. Must be
2139 * called with the hb lock held.
2140 *
2141 * Returns
2142 * 0 - no early wakeup detected
1c840c14 2143 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2144 */
2145static inline
2146int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2147 struct futex_q *q, union futex_key *key2,
2148 struct hrtimer_sleeper *timeout)
2149{
2150 int ret = 0;
2151
2152 /*
2153 * With the hb lock held, we avoid races while we process the wakeup.
2154 * We only need to hold hb (and not hb2) to ensure atomicity as the
2155 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2156 * It can't be requeued from uaddr2 to something else since we don't
2157 * support a PI aware source futex for requeue.
2158 */
2159 if (!match_futex(&q->key, key2)) {
2160 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2161 /*
2162 * We were woken prior to requeue by a timeout or a signal.
2163 * Unqueue the futex_q and determine which it was.
2164 */
2e12978a 2165 plist_del(&q->list, &hb->chain);
52400ba9 2166
d58e6576 2167 /* Handle spurious wakeups gracefully */
11df6ddd 2168 ret = -EWOULDBLOCK;
52400ba9
DH
2169 if (timeout && !timeout->task)
2170 ret = -ETIMEDOUT;
d58e6576 2171 else if (signal_pending(current))
1c840c14 2172 ret = -ERESTARTNOINTR;
52400ba9
DH
2173 }
2174 return ret;
2175}
2176
2177/**
2178 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2179 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2180 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2181 * the same type, no requeueing from private to shared, etc.
2182 * @val: the expected value of uaddr
2183 * @abs_time: absolute timeout
56ec1607 2184 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2185 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2186 * @uaddr2: the pi futex we will take prior to returning to user-space
2187 *
2188 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2189 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2190 * complete the acquisition of the rt_mutex prior to returning to userspace.
2191 * This ensures the rt_mutex maintains an owner when it has waiters; without
2192 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2193 * need to.
2194 *
2195 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2196 * via the following:
2197 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2198 * 2) wakeup on uaddr2 after a requeue
2199 * 3) signal
2200 * 4) timeout
52400ba9 2201 *
cc6db4e6 2202 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2203 *
2204 * If 2, we may then block on trying to take the rt_mutex and return via:
2205 * 5) successful lock
2206 * 6) signal
2207 * 7) timeout
2208 * 8) other lock acquisition failure
2209 *
cc6db4e6 2210 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2211 *
2212 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2213 *
2214 * Returns:
2215 * 0 - On success
2216 * <0 - On error
2217 */
b41277dc 2218static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2219 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2220 u32 __user *uaddr2)
52400ba9
DH
2221{
2222 struct hrtimer_sleeper timeout, *to = NULL;
2223 struct rt_mutex_waiter rt_waiter;
2224 struct rt_mutex *pi_mutex = NULL;
52400ba9 2225 struct futex_hash_bucket *hb;
5bdb05f9
DH
2226 union futex_key key2 = FUTEX_KEY_INIT;
2227 struct futex_q q = futex_q_init;
52400ba9 2228 int res, ret;
52400ba9
DH
2229
2230 if (!bitset)
2231 return -EINVAL;
2232
2233 if (abs_time) {
2234 to = &timeout;
b41277dc
DH
2235 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2236 CLOCK_REALTIME : CLOCK_MONOTONIC,
2237 HRTIMER_MODE_ABS);
52400ba9
DH
2238 hrtimer_init_sleeper(to, current);
2239 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2240 current->timer_slack_ns);
2241 }
2242
2243 /*
2244 * The waiter is allocated on our stack, manipulated by the requeue
2245 * code while we sleep on uaddr.
2246 */
2247 debug_rt_mutex_init_waiter(&rt_waiter);
2248 rt_waiter.task = NULL;
2249
b41277dc 2250 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
52400ba9
DH
2251 if (unlikely(ret != 0))
2252 goto out;
2253
84bc4af5
DH
2254 q.bitset = bitset;
2255 q.rt_waiter = &rt_waiter;
2256 q.requeue_pi_key = &key2;
2257
7ada876a
DH
2258 /*
2259 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2260 * count.
2261 */
b41277dc 2262 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2263 if (ret)
2264 goto out_key2;
52400ba9
DH
2265
2266 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2267 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2268
2269 spin_lock(&hb->lock);
2270 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2271 spin_unlock(&hb->lock);
2272 if (ret)
2273 goto out_put_keys;
2274
2275 /*
2276 * In order for us to be here, we know our q.key == key2, and since
2277 * we took the hb->lock above, we also know that futex_requeue() has
2278 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2279 * race with the atomic proxy lock acquisition by the requeue code. The
2280 * futex_requeue dropped our key1 reference and incremented our key2
2281 * reference count.
52400ba9
DH
2282 */
2283
2284 /* Check if the requeue code acquired the second futex for us. */
2285 if (!q.rt_waiter) {
2286 /*
2287 * Got the lock. We might not be the anticipated owner if we
2288 * did a lock-steal - fix up the PI-state in that case.
2289 */
2290 if (q.pi_state && (q.pi_state->owner != current)) {
2291 spin_lock(q.lock_ptr);
ae791a2d 2292 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2293 spin_unlock(q.lock_ptr);
2294 }
2295 } else {
2296 /*
2297 * We have been woken up by futex_unlock_pi(), a timeout, or a
2298 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2299 * the pi_state.
2300 */
2301 WARN_ON(!&q.pi_state);
2302 pi_mutex = &q.pi_state->pi_mutex;
2303 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2304 debug_rt_mutex_free_waiter(&rt_waiter);
2305
2306 spin_lock(q.lock_ptr);
2307 /*
2308 * Fixup the pi_state owner and possibly acquire the lock if we
2309 * haven't already.
2310 */
ae791a2d 2311 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2312 /*
2313 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2314 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2315 */
2316 if (res)
2317 ret = (res < 0) ? res : 0;
2318
2319 /* Unqueue and drop the lock. */
2320 unqueue_me_pi(&q);
2321 }
2322
2323 /*
2324 * If fixup_pi_state_owner() faulted and was unable to handle the
2325 * fault, unlock the rt_mutex and return the fault to userspace.
2326 */
2327 if (ret == -EFAULT) {
2328 if (rt_mutex_owner(pi_mutex) == current)
2329 rt_mutex_unlock(pi_mutex);
2330 } else if (ret == -EINTR) {
52400ba9 2331 /*
cc6db4e6
DH
2332 * We've already been requeued, but cannot restart by calling
2333 * futex_lock_pi() directly. We could restart this syscall, but
2334 * it would detect that the user space "val" changed and return
2335 * -EWOULDBLOCK. Save the overhead of the restart and return
2336 * -EWOULDBLOCK directly.
52400ba9 2337 */
2070887f 2338 ret = -EWOULDBLOCK;
52400ba9
DH
2339 }
2340
2341out_put_keys:
ae791a2d 2342 put_futex_key(&q.key);
c8b15a70 2343out_key2:
ae791a2d 2344 put_futex_key(&key2);
52400ba9
DH
2345
2346out:
2347 if (to) {
2348 hrtimer_cancel(&to->timer);
2349 destroy_hrtimer_on_stack(&to->timer);
2350 }
2351 return ret;
2352}
2353
0771dfef
IM
2354/*
2355 * Support for robust futexes: the kernel cleans up held futexes at
2356 * thread exit time.
2357 *
2358 * Implementation: user-space maintains a per-thread list of locks it
2359 * is holding. Upon do_exit(), the kernel carefully walks this list,
2360 * and marks all locks that are owned by this thread with the
c87e2837 2361 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2362 * always manipulated with the lock held, so the list is private and
2363 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2364 * field, to allow the kernel to clean up if the thread dies after
2365 * acquiring the lock, but just before it could have added itself to
2366 * the list. There can only be one such pending lock.
2367 */
2368
2369/**
d96ee56c
DH
2370 * sys_set_robust_list() - Set the robust-futex list head of a task
2371 * @head: pointer to the list-head
2372 * @len: length of the list-head, as userspace expects
0771dfef 2373 */
836f92ad
HC
2374SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2375 size_t, len)
0771dfef 2376{
a0c1e907
TG
2377 if (!futex_cmpxchg_enabled)
2378 return -ENOSYS;
0771dfef
IM
2379 /*
2380 * The kernel knows only one size for now:
2381 */
2382 if (unlikely(len != sizeof(*head)))
2383 return -EINVAL;
2384
2385 current->robust_list = head;
2386
2387 return 0;
2388}
2389
2390/**
d96ee56c
DH
2391 * sys_get_robust_list() - Get the robust-futex list head of a task
2392 * @pid: pid of the process [zero for current task]
2393 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2394 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2395 */
836f92ad
HC
2396SYSCALL_DEFINE3(get_robust_list, int, pid,
2397 struct robust_list_head __user * __user *, head_ptr,
2398 size_t __user *, len_ptr)
0771dfef 2399{
ba46df98 2400 struct robust_list_head __user *head;
0771dfef 2401 unsigned long ret;
c69e8d9c 2402 const struct cred *cred = current_cred(), *pcred;
0771dfef 2403
a0c1e907
TG
2404 if (!futex_cmpxchg_enabled)
2405 return -ENOSYS;
2406
0771dfef
IM
2407 if (!pid)
2408 head = current->robust_list;
2409 else {
2410 struct task_struct *p;
2411
2412 ret = -ESRCH;
aaa2a97e 2413 rcu_read_lock();
228ebcbe 2414 p = find_task_by_vpid(pid);
0771dfef
IM
2415 if (!p)
2416 goto err_unlock;
2417 ret = -EPERM;
c69e8d9c
DH
2418 pcred = __task_cred(p);
2419 if (cred->euid != pcred->euid &&
2420 cred->euid != pcred->uid &&
76aac0e9 2421 !capable(CAP_SYS_PTRACE))
0771dfef
IM
2422 goto err_unlock;
2423 head = p->robust_list;
aaa2a97e 2424 rcu_read_unlock();
0771dfef
IM
2425 }
2426
2427 if (put_user(sizeof(*head), len_ptr))
2428 return -EFAULT;
2429 return put_user(head, head_ptr);
2430
2431err_unlock:
aaa2a97e 2432 rcu_read_unlock();
0771dfef
IM
2433
2434 return ret;
2435}
2436
2437/*
2438 * Process a futex-list entry, check whether it's owned by the
2439 * dying task, and do notification if so:
2440 */
e3f2ddea 2441int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2442{
e3f2ddea 2443 u32 uval, nval, mval;
0771dfef 2444
8f17d3a5
IM
2445retry:
2446 if (get_user(uval, uaddr))
0771dfef
IM
2447 return -1;
2448
b488893a 2449 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2450 /*
2451 * Ok, this dying thread is truly holding a futex
2452 * of interest. Set the OWNER_DIED bit atomically
2453 * via cmpxchg, and if the value had FUTEX_WAITERS
2454 * set, wake up a waiter (if any). (We have to do a
2455 * futex_wake() even if OWNER_DIED is already set -
2456 * to handle the rare but possible case of recursive
2457 * thread-death.) The rest of the cleanup is done in
2458 * userspace.
2459 */
e3f2ddea 2460 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
37a9d912 2461 if (futex_atomic_cmpxchg_inatomic(&nval, uaddr, uval, mval))
c87e2837
IM
2462 return -1;
2463
2464 if (nval != uval)
8f17d3a5 2465 goto retry;
0771dfef 2466
e3f2ddea
IM
2467 /*
2468 * Wake robust non-PI futexes here. The wakeup of
2469 * PI futexes happens in exit_pi_state():
2470 */
36cf3b5c 2471 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2472 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2473 }
2474 return 0;
2475}
2476
e3f2ddea
IM
2477/*
2478 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2479 */
2480static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2481 struct robust_list __user * __user *head,
1dcc41bb 2482 unsigned int *pi)
e3f2ddea
IM
2483{
2484 unsigned long uentry;
2485
ba46df98 2486 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2487 return -EFAULT;
2488
ba46df98 2489 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2490 *pi = uentry & 1;
2491
2492 return 0;
2493}
2494
0771dfef
IM
2495/*
2496 * Walk curr->robust_list (very carefully, it's a userspace list!)
2497 * and mark any locks found there dead, and notify any waiters.
2498 *
2499 * We silently return on any sign of list-walking problem.
2500 */
2501void exit_robust_list(struct task_struct *curr)
2502{
2503 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2504 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2505 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2506 unsigned int uninitialized_var(next_pi);
0771dfef 2507 unsigned long futex_offset;
9f96cb1e 2508 int rc;
0771dfef 2509
a0c1e907
TG
2510 if (!futex_cmpxchg_enabled)
2511 return;
2512
0771dfef
IM
2513 /*
2514 * Fetch the list head (which was registered earlier, via
2515 * sys_set_robust_list()):
2516 */
e3f2ddea 2517 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2518 return;
2519 /*
2520 * Fetch the relative futex offset:
2521 */
2522 if (get_user(futex_offset, &head->futex_offset))
2523 return;
2524 /*
2525 * Fetch any possibly pending lock-add first, and handle it
2526 * if it exists:
2527 */
e3f2ddea 2528 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2529 return;
e3f2ddea 2530
9f96cb1e 2531 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2532 while (entry != &head->list) {
9f96cb1e
MS
2533 /*
2534 * Fetch the next entry in the list before calling
2535 * handle_futex_death:
2536 */
2537 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2538 /*
2539 * A pending lock might already be on the list, so
c87e2837 2540 * don't process it twice:
0771dfef
IM
2541 */
2542 if (entry != pending)
ba46df98 2543 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2544 curr, pi))
0771dfef 2545 return;
9f96cb1e 2546 if (rc)
0771dfef 2547 return;
9f96cb1e
MS
2548 entry = next_entry;
2549 pi = next_pi;
0771dfef
IM
2550 /*
2551 * Avoid excessively long or circular lists:
2552 */
2553 if (!--limit)
2554 break;
2555
2556 cond_resched();
2557 }
9f96cb1e
MS
2558
2559 if (pending)
2560 handle_futex_death((void __user *)pending + futex_offset,
2561 curr, pip);
0771dfef
IM
2562}
2563
c19384b5 2564long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2565 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2566{
b41277dc
DH
2567 int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2568 unsigned int flags = 0;
34f01cc1
ED
2569
2570 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2571 flags |= FLAGS_SHARED;
1da177e4 2572
b41277dc
DH
2573 if (op & FUTEX_CLOCK_REALTIME) {
2574 flags |= FLAGS_CLOCKRT;
2575 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2576 return -ENOSYS;
2577 }
1da177e4 2578
34f01cc1 2579 switch (cmd) {
1da177e4 2580 case FUTEX_WAIT:
cd689985
TG
2581 val3 = FUTEX_BITSET_MATCH_ANY;
2582 case FUTEX_WAIT_BITSET:
b41277dc 2583 ret = futex_wait(uaddr, flags, val, timeout, val3);
1da177e4
LT
2584 break;
2585 case FUTEX_WAKE:
cd689985
TG
2586 val3 = FUTEX_BITSET_MATCH_ANY;
2587 case FUTEX_WAKE_BITSET:
b41277dc 2588 ret = futex_wake(uaddr, flags, val, val3);
1da177e4 2589 break;
1da177e4 2590 case FUTEX_REQUEUE:
b41277dc 2591 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4
LT
2592 break;
2593 case FUTEX_CMP_REQUEUE:
b41277dc 2594 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
1da177e4 2595 break;
4732efbe 2596 case FUTEX_WAKE_OP:
b41277dc 2597 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
4732efbe 2598 break;
c87e2837 2599 case FUTEX_LOCK_PI:
a0c1e907 2600 if (futex_cmpxchg_enabled)
b41277dc 2601 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837
IM
2602 break;
2603 case FUTEX_UNLOCK_PI:
a0c1e907 2604 if (futex_cmpxchg_enabled)
b41277dc 2605 ret = futex_unlock_pi(uaddr, flags);
c87e2837
IM
2606 break;
2607 case FUTEX_TRYLOCK_PI:
a0c1e907 2608 if (futex_cmpxchg_enabled)
b41277dc 2609 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
c87e2837 2610 break;
52400ba9
DH
2611 case FUTEX_WAIT_REQUEUE_PI:
2612 val3 = FUTEX_BITSET_MATCH_ANY;
b41277dc
DH
2613 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2614 uaddr2);
52400ba9 2615 break;
52400ba9 2616 case FUTEX_CMP_REQUEUE_PI:
b41277dc 2617 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
52400ba9 2618 break;
1da177e4
LT
2619 default:
2620 ret = -ENOSYS;
2621 }
2622 return ret;
2623}
2624
2625
17da2bd9
HC
2626SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2627 struct timespec __user *, utime, u32 __user *, uaddr2,
2628 u32, val3)
1da177e4 2629{
c19384b5
PP
2630 struct timespec ts;
2631 ktime_t t, *tp = NULL;
e2970f2f 2632 u32 val2 = 0;
34f01cc1 2633 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2634
cd689985 2635 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2636 cmd == FUTEX_WAIT_BITSET ||
2637 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2638 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2639 return -EFAULT;
c19384b5 2640 if (!timespec_valid(&ts))
9741ef96 2641 return -EINVAL;
c19384b5
PP
2642
2643 t = timespec_to_ktime(ts);
34f01cc1 2644 if (cmd == FUTEX_WAIT)
5a7780e7 2645 t = ktime_add_safe(ktime_get(), t);
c19384b5 2646 tp = &t;
1da177e4
LT
2647 }
2648 /*
52400ba9 2649 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2650 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2651 */
f54f0986 2652 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2653 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2654 val2 = (u32) (unsigned long) utime;
1da177e4 2655
c19384b5 2656 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2657}
2658
f6d107fb 2659static int __init futex_init(void)
1da177e4 2660{
a0c1e907 2661 u32 curval;
3e4ab747 2662 int i;
95362fa9 2663
a0c1e907
TG
2664 /*
2665 * This will fail and we want it. Some arch implementations do
2666 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2667 * functionality. We want to know that before we call in any
2668 * of the complex code paths. Also we want to prevent
2669 * registration of robust lists in that case. NULL is
2670 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2671 * implementation, the non-functional ones will return
a0c1e907
TG
2672 * -ENOSYS.
2673 */
37a9d912 2674 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2675 futex_cmpxchg_enabled = 1;
2676
3e4ab747
TG
2677 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2678 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2679 spin_lock_init(&futex_queues[i].lock);
2680 }
2681
1da177e4
LT
2682 return 0;
2683}
f6d107fb 2684__initcall(futex_init);