[PATCH] md: make sure the new 'sb_size' is set properly device added without pre...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
CommitLineData
1da177e4
LT
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
32a7627c
N
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
1da177e4
LT
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33*/
34
35#include <linux/module.h>
36#include <linux/config.h>
a6fb0934 37#include <linux/kthread.h>
1da177e4
LT
38#include <linux/linkage.h>
39#include <linux/raid/md.h>
32a7627c 40#include <linux/raid/bitmap.h>
1da177e4
LT
41#include <linux/sysctl.h>
42#include <linux/devfs_fs_kernel.h>
43#include <linux/buffer_head.h> /* for invalidate_bdev */
44#include <linux/suspend.h>
45
46#include <linux/init.h>
47
32a7627c
N
48#include <linux/file.h>
49
1da177e4
LT
50#ifdef CONFIG_KMOD
51#include <linux/kmod.h>
52#endif
53
54#include <asm/unaligned.h>
55
56#define MAJOR_NR MD_MAJOR
57#define MD_DRIVER
58
59/* 63 partitions with the alternate major number (mdp) */
60#define MdpMinorShift 6
61
62#define DEBUG 0
63#define dprintk(x...) ((void)(DEBUG && printk(x)))
64
65
66#ifndef MODULE
67static void autostart_arrays (int part);
68#endif
69
70static mdk_personality_t *pers[MAX_PERSONALITY];
71static DEFINE_SPINLOCK(pers_lock);
72
73/*
74 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75 * is 1000 KB/sec, so the extra system load does not show up that much.
76 * Increase it if you want to have more _guaranteed_ speed. Note that
77 * the RAID driver will use the maximum available bandwith if the IO
78 * subsystem is idle. There is also an 'absolute maximum' reconstruction
79 * speed limit - in case reconstruction slows down your system despite
80 * idle IO detection.
81 *
82 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83 */
84
85static int sysctl_speed_limit_min = 1000;
86static int sysctl_speed_limit_max = 200000;
87
88static struct ctl_table_header *raid_table_header;
89
90static ctl_table raid_table[] = {
91 {
92 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
93 .procname = "speed_limit_min",
94 .data = &sysctl_speed_limit_min,
95 .maxlen = sizeof(int),
96 .mode = 0644,
97 .proc_handler = &proc_dointvec,
98 },
99 {
100 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
101 .procname = "speed_limit_max",
102 .data = &sysctl_speed_limit_max,
103 .maxlen = sizeof(int),
104 .mode = 0644,
105 .proc_handler = &proc_dointvec,
106 },
107 { .ctl_name = 0 }
108};
109
110static ctl_table raid_dir_table[] = {
111 {
112 .ctl_name = DEV_RAID,
113 .procname = "raid",
114 .maxlen = 0,
115 .mode = 0555,
116 .child = raid_table,
117 },
118 { .ctl_name = 0 }
119};
120
121static ctl_table raid_root_table[] = {
122 {
123 .ctl_name = CTL_DEV,
124 .procname = "dev",
125 .maxlen = 0,
126 .mode = 0555,
127 .child = raid_dir_table,
128 },
129 { .ctl_name = 0 }
130};
131
132static struct block_device_operations md_fops;
133
134/*
135 * Enables to iterate over all existing md arrays
136 * all_mddevs_lock protects this list.
137 */
138static LIST_HEAD(all_mddevs);
139static DEFINE_SPINLOCK(all_mddevs_lock);
140
141
142/*
143 * iterates through all used mddevs in the system.
144 * We take care to grab the all_mddevs_lock whenever navigating
145 * the list, and to always hold a refcount when unlocked.
146 * Any code which breaks out of this loop while own
147 * a reference to the current mddev and must mddev_put it.
148 */
149#define ITERATE_MDDEV(mddev,tmp) \
150 \
151 for (({ spin_lock(&all_mddevs_lock); \
152 tmp = all_mddevs.next; \
153 mddev = NULL;}); \
154 ({ if (tmp != &all_mddevs) \
155 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
156 spin_unlock(&all_mddevs_lock); \
157 if (mddev) mddev_put(mddev); \
158 mddev = list_entry(tmp, mddev_t, all_mddevs); \
159 tmp != &all_mddevs;}); \
160 ({ spin_lock(&all_mddevs_lock); \
161 tmp = tmp->next;}) \
162 )
163
164
165static int md_fail_request (request_queue_t *q, struct bio *bio)
166{
167 bio_io_error(bio, bio->bi_size);
168 return 0;
169}
170
171static inline mddev_t *mddev_get(mddev_t *mddev)
172{
173 atomic_inc(&mddev->active);
174 return mddev;
175}
176
177static void mddev_put(mddev_t *mddev)
178{
179 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
180 return;
181 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
182 list_del(&mddev->all_mddevs);
183 blk_put_queue(mddev->queue);
184 kfree(mddev);
185 }
186 spin_unlock(&all_mddevs_lock);
187}
188
189static mddev_t * mddev_find(dev_t unit)
190{
191 mddev_t *mddev, *new = NULL;
192
193 retry:
194 spin_lock(&all_mddevs_lock);
195 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
196 if (mddev->unit == unit) {
197 mddev_get(mddev);
198 spin_unlock(&all_mddevs_lock);
990a8baf 199 kfree(new);
1da177e4
LT
200 return mddev;
201 }
202
203 if (new) {
204 list_add(&new->all_mddevs, &all_mddevs);
205 spin_unlock(&all_mddevs_lock);
206 return new;
207 }
208 spin_unlock(&all_mddevs_lock);
209
210 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 if (!new)
212 return NULL;
213
214 memset(new, 0, sizeof(*new));
215
216 new->unit = unit;
217 if (MAJOR(unit) == MD_MAJOR)
218 new->md_minor = MINOR(unit);
219 else
220 new->md_minor = MINOR(unit) >> MdpMinorShift;
221
222 init_MUTEX(&new->reconfig_sem);
223 INIT_LIST_HEAD(&new->disks);
224 INIT_LIST_HEAD(&new->all_mddevs);
225 init_timer(&new->safemode_timer);
226 atomic_set(&new->active, 1);
06d91a5f 227 spin_lock_init(&new->write_lock);
3d310eb7 228 init_waitqueue_head(&new->sb_wait);
1da177e4
LT
229
230 new->queue = blk_alloc_queue(GFP_KERNEL);
231 if (!new->queue) {
232 kfree(new);
233 return NULL;
234 }
235
236 blk_queue_make_request(new->queue, md_fail_request);
237
238 goto retry;
239}
240
241static inline int mddev_lock(mddev_t * mddev)
242{
243 return down_interruptible(&mddev->reconfig_sem);
244}
245
246static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247{
248 down(&mddev->reconfig_sem);
249}
250
251static inline int mddev_trylock(mddev_t * mddev)
252{
253 return down_trylock(&mddev->reconfig_sem);
254}
255
256static inline void mddev_unlock(mddev_t * mddev)
257{
258 up(&mddev->reconfig_sem);
259
005eca5e 260 md_wakeup_thread(mddev->thread);
1da177e4
LT
261}
262
263mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
264{
265 mdk_rdev_t * rdev;
266 struct list_head *tmp;
267
268 ITERATE_RDEV(mddev,rdev,tmp) {
269 if (rdev->desc_nr == nr)
270 return rdev;
271 }
272 return NULL;
273}
274
275static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
276{
277 struct list_head *tmp;
278 mdk_rdev_t *rdev;
279
280 ITERATE_RDEV(mddev,rdev,tmp) {
281 if (rdev->bdev->bd_dev == dev)
282 return rdev;
283 }
284 return NULL;
285}
286
77933d72 287static inline sector_t calc_dev_sboffset(struct block_device *bdev)
1da177e4
LT
288{
289 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 return MD_NEW_SIZE_BLOCKS(size);
291}
292
293static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
294{
295 sector_t size;
296
297 size = rdev->sb_offset;
298
299 if (chunk_size)
300 size &= ~((sector_t)chunk_size/1024 - 1);
301 return size;
302}
303
304static int alloc_disk_sb(mdk_rdev_t * rdev)
305{
306 if (rdev->sb_page)
307 MD_BUG();
308
309 rdev->sb_page = alloc_page(GFP_KERNEL);
310 if (!rdev->sb_page) {
311 printk(KERN_ALERT "md: out of memory.\n");
312 return -EINVAL;
313 }
314
315 return 0;
316}
317
318static void free_disk_sb(mdk_rdev_t * rdev)
319{
320 if (rdev->sb_page) {
321 page_cache_release(rdev->sb_page);
322 rdev->sb_loaded = 0;
323 rdev->sb_page = NULL;
324 rdev->sb_offset = 0;
325 rdev->size = 0;
326 }
327}
328
329
7bfa19f2
N
330static int super_written(struct bio *bio, unsigned int bytes_done, int error)
331{
332 mdk_rdev_t *rdev = bio->bi_private;
333 if (bio->bi_size)
334 return 1;
335
336 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 md_error(rdev->mddev, rdev);
338
339 if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 wake_up(&rdev->mddev->sb_wait);
f8b58edf 341 bio_put(bio);
7bfa19f2
N
342 return 0;
343}
344
345void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
346 sector_t sector, int size, struct page *page)
347{
348 /* write first size bytes of page to sector of rdev
349 * Increment mddev->pending_writes before returning
350 * and decrement it on completion, waking up sb_wait
351 * if zero is reached.
352 * If an error occurred, call md_error
353 */
354 struct bio *bio = bio_alloc(GFP_NOIO, 1);
355
356 bio->bi_bdev = rdev->bdev;
357 bio->bi_sector = sector;
358 bio_add_page(bio, page, size, 0);
359 bio->bi_private = rdev;
360 bio->bi_end_io = super_written;
361 atomic_inc(&mddev->pending_writes);
362 submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
363}
364
1da177e4
LT
365static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
366{
367 if (bio->bi_size)
368 return 1;
369
370 complete((struct completion*)bio->bi_private);
371 return 0;
372}
373
a654b9d8 374int sync_page_io(struct block_device *bdev, sector_t sector, int size,
1da177e4
LT
375 struct page *page, int rw)
376{
baaa2c51 377 struct bio *bio = bio_alloc(GFP_NOIO, 1);
1da177e4
LT
378 struct completion event;
379 int ret;
380
381 rw |= (1 << BIO_RW_SYNC);
382
383 bio->bi_bdev = bdev;
384 bio->bi_sector = sector;
385 bio_add_page(bio, page, size, 0);
386 init_completion(&event);
387 bio->bi_private = &event;
388 bio->bi_end_io = bi_complete;
389 submit_bio(rw, bio);
390 wait_for_completion(&event);
391
392 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
393 bio_put(bio);
394 return ret;
395}
396
0002b271 397static int read_disk_sb(mdk_rdev_t * rdev, int size)
1da177e4
LT
398{
399 char b[BDEVNAME_SIZE];
400 if (!rdev->sb_page) {
401 MD_BUG();
402 return -EINVAL;
403 }
404 if (rdev->sb_loaded)
405 return 0;
406
407
0002b271 408 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
1da177e4
LT
409 goto fail;
410 rdev->sb_loaded = 1;
411 return 0;
412
413fail:
414 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
415 bdevname(rdev->bdev,b));
416 return -EINVAL;
417}
418
419static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
420{
421 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
422 (sb1->set_uuid1 == sb2->set_uuid1) &&
423 (sb1->set_uuid2 == sb2->set_uuid2) &&
424 (sb1->set_uuid3 == sb2->set_uuid3))
425
426 return 1;
427
428 return 0;
429}
430
431
432static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
433{
434 int ret;
435 mdp_super_t *tmp1, *tmp2;
436
437 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
438 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
439
440 if (!tmp1 || !tmp2) {
441 ret = 0;
442 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
443 goto abort;
444 }
445
446 *tmp1 = *sb1;
447 *tmp2 = *sb2;
448
449 /*
450 * nr_disks is not constant
451 */
452 tmp1->nr_disks = 0;
453 tmp2->nr_disks = 0;
454
455 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
456 ret = 0;
457 else
458 ret = 1;
459
460abort:
990a8baf
JJ
461 kfree(tmp1);
462 kfree(tmp2);
1da177e4
LT
463 return ret;
464}
465
466static unsigned int calc_sb_csum(mdp_super_t * sb)
467{
468 unsigned int disk_csum, csum;
469
470 disk_csum = sb->sb_csum;
471 sb->sb_csum = 0;
472 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
473 sb->sb_csum = disk_csum;
474 return csum;
475}
476
477
478/*
479 * Handle superblock details.
480 * We want to be able to handle multiple superblock formats
481 * so we have a common interface to them all, and an array of
482 * different handlers.
483 * We rely on user-space to write the initial superblock, and support
484 * reading and updating of superblocks.
485 * Interface methods are:
486 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
487 * loads and validates a superblock on dev.
488 * if refdev != NULL, compare superblocks on both devices
489 * Return:
490 * 0 - dev has a superblock that is compatible with refdev
491 * 1 - dev has a superblock that is compatible and newer than refdev
492 * so dev should be used as the refdev in future
493 * -EINVAL superblock incompatible or invalid
494 * -othererror e.g. -EIO
495 *
496 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
497 * Verify that dev is acceptable into mddev.
498 * The first time, mddev->raid_disks will be 0, and data from
499 * dev should be merged in. Subsequent calls check that dev
500 * is new enough. Return 0 or -EINVAL
501 *
502 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
503 * Update the superblock for rdev with data in mddev
504 * This does not write to disc.
505 *
506 */
507
508struct super_type {
509 char *name;
510 struct module *owner;
511 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
512 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
514};
515
516/*
517 * load_super for 0.90.0
518 */
519static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
520{
521 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
522 mdp_super_t *sb;
523 int ret;
524 sector_t sb_offset;
525
526 /*
527 * Calculate the position of the superblock,
528 * it's at the end of the disk.
529 *
530 * It also happens to be a multiple of 4Kb.
531 */
532 sb_offset = calc_dev_sboffset(rdev->bdev);
533 rdev->sb_offset = sb_offset;
534
0002b271 535 ret = read_disk_sb(rdev, MD_SB_BYTES);
1da177e4
LT
536 if (ret) return ret;
537
538 ret = -EINVAL;
539
540 bdevname(rdev->bdev, b);
541 sb = (mdp_super_t*)page_address(rdev->sb_page);
542
543 if (sb->md_magic != MD_SB_MAGIC) {
544 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
545 b);
546 goto abort;
547 }
548
549 if (sb->major_version != 0 ||
550 sb->minor_version != 90) {
551 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
552 sb->major_version, sb->minor_version,
553 b);
554 goto abort;
555 }
556
557 if (sb->raid_disks <= 0)
558 goto abort;
559
560 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
561 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
562 b);
563 goto abort;
564 }
565
566 rdev->preferred_minor = sb->md_minor;
567 rdev->data_offset = 0;
0002b271 568 rdev->sb_size = MD_SB_BYTES;
1da177e4
LT
569
570 if (sb->level == LEVEL_MULTIPATH)
571 rdev->desc_nr = -1;
572 else
573 rdev->desc_nr = sb->this_disk.number;
574
575 if (refdev == 0)
576 ret = 1;
577 else {
578 __u64 ev1, ev2;
579 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
580 if (!uuid_equal(refsb, sb)) {
581 printk(KERN_WARNING "md: %s has different UUID to %s\n",
582 b, bdevname(refdev->bdev,b2));
583 goto abort;
584 }
585 if (!sb_equal(refsb, sb)) {
586 printk(KERN_WARNING "md: %s has same UUID"
587 " but different superblock to %s\n",
588 b, bdevname(refdev->bdev, b2));
589 goto abort;
590 }
591 ev1 = md_event(sb);
592 ev2 = md_event(refsb);
593 if (ev1 > ev2)
594 ret = 1;
595 else
596 ret = 0;
597 }
598 rdev->size = calc_dev_size(rdev, sb->chunk_size);
599
600 abort:
601 return ret;
602}
603
604/*
605 * validate_super for 0.90.0
606 */
607static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
608{
609 mdp_disk_t *desc;
610 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
611
41158c7e
N
612 rdev->raid_disk = -1;
613 rdev->in_sync = 0;
1da177e4
LT
614 if (mddev->raid_disks == 0) {
615 mddev->major_version = 0;
616 mddev->minor_version = sb->minor_version;
617 mddev->patch_version = sb->patch_version;
618 mddev->persistent = ! sb->not_persistent;
619 mddev->chunk_size = sb->chunk_size;
620 mddev->ctime = sb->ctime;
621 mddev->utime = sb->utime;
622 mddev->level = sb->level;
623 mddev->layout = sb->layout;
624 mddev->raid_disks = sb->raid_disks;
625 mddev->size = sb->size;
626 mddev->events = md_event(sb);
9223214e 627 mddev->bitmap_offset = 0;
36fa3063 628 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
1da177e4
LT
629
630 if (sb->state & (1<<MD_SB_CLEAN))
631 mddev->recovery_cp = MaxSector;
632 else {
633 if (sb->events_hi == sb->cp_events_hi &&
634 sb->events_lo == sb->cp_events_lo) {
635 mddev->recovery_cp = sb->recovery_cp;
636 } else
637 mddev->recovery_cp = 0;
638 }
639
640 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
641 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
642 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
643 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
644
645 mddev->max_disks = MD_SB_DISKS;
a654b9d8
N
646
647 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
648 mddev->bitmap_file == NULL) {
934ce7c8 649 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
a654b9d8
N
650 /* FIXME use a better test */
651 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
652 return -EINVAL;
653 }
36fa3063 654 mddev->bitmap_offset = mddev->default_bitmap_offset;
a654b9d8
N
655 }
656
41158c7e
N
657 } else if (mddev->pers == NULL) {
658 /* Insist on good event counter while assembling */
659 __u64 ev1 = md_event(sb);
1da177e4
LT
660 ++ev1;
661 if (ev1 < mddev->events)
662 return -EINVAL;
41158c7e
N
663 } else if (mddev->bitmap) {
664 /* if adding to array with a bitmap, then we can accept an
665 * older device ... but not too old.
666 */
667 __u64 ev1 = md_event(sb);
668 if (ev1 < mddev->bitmap->events_cleared)
669 return 0;
670 } else /* just a hot-add of a new device, leave raid_disk at -1 */
671 return 0;
672
1da177e4 673 if (mddev->level != LEVEL_MULTIPATH) {
41158c7e 674 rdev->faulty = 0;
8ddf9efe 675 rdev->flags = 0;
1da177e4
LT
676 desc = sb->disks + rdev->desc_nr;
677
678 if (desc->state & (1<<MD_DISK_FAULTY))
679 rdev->faulty = 1;
680 else if (desc->state & (1<<MD_DISK_SYNC) &&
681 desc->raid_disk < mddev->raid_disks) {
682 rdev->in_sync = 1;
683 rdev->raid_disk = desc->raid_disk;
684 }
8ddf9efe
N
685 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
686 set_bit(WriteMostly, &rdev->flags);
41158c7e
N
687 } else /* MULTIPATH are always insync */
688 rdev->in_sync = 1;
1da177e4
LT
689 return 0;
690}
691
692/*
693 * sync_super for 0.90.0
694 */
695static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
696{
697 mdp_super_t *sb;
698 struct list_head *tmp;
699 mdk_rdev_t *rdev2;
700 int next_spare = mddev->raid_disks;
701
702 /* make rdev->sb match mddev data..
703 *
704 * 1/ zero out disks
705 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
706 * 3/ any empty disks < next_spare become removed
707 *
708 * disks[0] gets initialised to REMOVED because
709 * we cannot be sure from other fields if it has
710 * been initialised or not.
711 */
712 int i;
713 int active=0, working=0,failed=0,spare=0,nr_disks=0;
714
715 sb = (mdp_super_t*)page_address(rdev->sb_page);
716
717 memset(sb, 0, sizeof(*sb));
718
719 sb->md_magic = MD_SB_MAGIC;
720 sb->major_version = mddev->major_version;
721 sb->minor_version = mddev->minor_version;
722 sb->patch_version = mddev->patch_version;
723 sb->gvalid_words = 0; /* ignored */
724 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
725 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
726 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
727 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
728
729 sb->ctime = mddev->ctime;
730 sb->level = mddev->level;
731 sb->size = mddev->size;
732 sb->raid_disks = mddev->raid_disks;
733 sb->md_minor = mddev->md_minor;
734 sb->not_persistent = !mddev->persistent;
735 sb->utime = mddev->utime;
736 sb->state = 0;
737 sb->events_hi = (mddev->events>>32);
738 sb->events_lo = (u32)mddev->events;
739
740 if (mddev->in_sync)
741 {
742 sb->recovery_cp = mddev->recovery_cp;
743 sb->cp_events_hi = (mddev->events>>32);
744 sb->cp_events_lo = (u32)mddev->events;
745 if (mddev->recovery_cp == MaxSector)
746 sb->state = (1<< MD_SB_CLEAN);
747 } else
748 sb->recovery_cp = 0;
749
750 sb->layout = mddev->layout;
751 sb->chunk_size = mddev->chunk_size;
752
a654b9d8
N
753 if (mddev->bitmap && mddev->bitmap_file == NULL)
754 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
755
1da177e4
LT
756 sb->disks[0].state = (1<<MD_DISK_REMOVED);
757 ITERATE_RDEV(mddev,rdev2,tmp) {
758 mdp_disk_t *d;
759 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
760 rdev2->desc_nr = rdev2->raid_disk;
761 else
762 rdev2->desc_nr = next_spare++;
763 d = &sb->disks[rdev2->desc_nr];
764 nr_disks++;
765 d->number = rdev2->desc_nr;
766 d->major = MAJOR(rdev2->bdev->bd_dev);
767 d->minor = MINOR(rdev2->bdev->bd_dev);
768 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
769 d->raid_disk = rdev2->raid_disk;
770 else
771 d->raid_disk = rdev2->desc_nr; /* compatibility */
772 if (rdev2->faulty) {
773 d->state = (1<<MD_DISK_FAULTY);
774 failed++;
775 } else if (rdev2->in_sync) {
776 d->state = (1<<MD_DISK_ACTIVE);
777 d->state |= (1<<MD_DISK_SYNC);
778 active++;
779 working++;
780 } else {
781 d->state = 0;
782 spare++;
783 working++;
784 }
8ddf9efe
N
785 if (test_bit(WriteMostly, &rdev2->flags))
786 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1da177e4
LT
787 }
788
789 /* now set the "removed" and "faulty" bits on any missing devices */
790 for (i=0 ; i < mddev->raid_disks ; i++) {
791 mdp_disk_t *d = &sb->disks[i];
792 if (d->state == 0 && d->number == 0) {
793 d->number = i;
794 d->raid_disk = i;
795 d->state = (1<<MD_DISK_REMOVED);
796 d->state |= (1<<MD_DISK_FAULTY);
797 failed++;
798 }
799 }
800 sb->nr_disks = nr_disks;
801 sb->active_disks = active;
802 sb->working_disks = working;
803 sb->failed_disks = failed;
804 sb->spare_disks = spare;
805
806 sb->this_disk = sb->disks[rdev->desc_nr];
807 sb->sb_csum = calc_sb_csum(sb);
808}
809
810/*
811 * version 1 superblock
812 */
813
814static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
815{
816 unsigned int disk_csum, csum;
817 unsigned long long newcsum;
818 int size = 256 + le32_to_cpu(sb->max_dev)*2;
819 unsigned int *isuper = (unsigned int*)sb;
820 int i;
821
822 disk_csum = sb->sb_csum;
823 sb->sb_csum = 0;
824 newcsum = 0;
825 for (i=0; size>=4; size -= 4 )
826 newcsum += le32_to_cpu(*isuper++);
827
828 if (size == 2)
829 newcsum += le16_to_cpu(*(unsigned short*) isuper);
830
831 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
832 sb->sb_csum = disk_csum;
833 return cpu_to_le32(csum);
834}
835
836static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
837{
838 struct mdp_superblock_1 *sb;
839 int ret;
840 sector_t sb_offset;
841 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
0002b271 842 int bmask;
1da177e4
LT
843
844 /*
845 * Calculate the position of the superblock.
846 * It is always aligned to a 4K boundary and
847 * depeding on minor_version, it can be:
848 * 0: At least 8K, but less than 12K, from end of device
849 * 1: At start of device
850 * 2: 4K from start of device.
851 */
852 switch(minor_version) {
853 case 0:
854 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
855 sb_offset -= 8*2;
39730960 856 sb_offset &= ~(sector_t)(4*2-1);
1da177e4
LT
857 /* convert from sectors to K */
858 sb_offset /= 2;
859 break;
860 case 1:
861 sb_offset = 0;
862 break;
863 case 2:
864 sb_offset = 4;
865 break;
866 default:
867 return -EINVAL;
868 }
869 rdev->sb_offset = sb_offset;
870
0002b271
N
871 /* superblock is rarely larger than 1K, but it can be larger,
872 * and it is safe to read 4k, so we do that
873 */
874 ret = read_disk_sb(rdev, 4096);
1da177e4
LT
875 if (ret) return ret;
876
877
878 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
879
880 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
881 sb->major_version != cpu_to_le32(1) ||
882 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
883 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
71c0805c 884 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1da177e4
LT
885 return -EINVAL;
886
887 if (calc_sb_1_csum(sb) != sb->sb_csum) {
888 printk("md: invalid superblock checksum on %s\n",
889 bdevname(rdev->bdev,b));
890 return -EINVAL;
891 }
892 if (le64_to_cpu(sb->data_size) < 10) {
893 printk("md: data_size too small on %s\n",
894 bdevname(rdev->bdev,b));
895 return -EINVAL;
896 }
897 rdev->preferred_minor = 0xffff;
898 rdev->data_offset = le64_to_cpu(sb->data_offset);
899
0002b271 900 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
720a3dc3 901 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
0002b271
N
902 if (rdev->sb_size & bmask)
903 rdev-> sb_size = (rdev->sb_size | bmask)+1;
904
1da177e4
LT
905 if (refdev == 0)
906 return 1;
907 else {
908 __u64 ev1, ev2;
909 struct mdp_superblock_1 *refsb =
910 (struct mdp_superblock_1*)page_address(refdev->sb_page);
911
912 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
913 sb->level != refsb->level ||
914 sb->layout != refsb->layout ||
915 sb->chunksize != refsb->chunksize) {
916 printk(KERN_WARNING "md: %s has strangely different"
917 " superblock to %s\n",
918 bdevname(rdev->bdev,b),
919 bdevname(refdev->bdev,b2));
920 return -EINVAL;
921 }
922 ev1 = le64_to_cpu(sb->events);
923 ev2 = le64_to_cpu(refsb->events);
924
925 if (ev1 > ev2)
926 return 1;
927 }
928 if (minor_version)
929 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
930 else
931 rdev->size = rdev->sb_offset;
932 if (rdev->size < le64_to_cpu(sb->data_size)/2)
933 return -EINVAL;
934 rdev->size = le64_to_cpu(sb->data_size)/2;
935 if (le32_to_cpu(sb->chunksize))
936 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
937 return 0;
938}
939
940static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
941{
942 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
943
41158c7e
N
944 rdev->raid_disk = -1;
945 rdev->in_sync = 0;
1da177e4
LT
946 if (mddev->raid_disks == 0) {
947 mddev->major_version = 1;
948 mddev->patch_version = 0;
949 mddev->persistent = 1;
950 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
951 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
952 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
953 mddev->level = le32_to_cpu(sb->level);
954 mddev->layout = le32_to_cpu(sb->layout);
955 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
956 mddev->size = le64_to_cpu(sb->size)/2;
957 mddev->events = le64_to_cpu(sb->events);
9223214e 958 mddev->bitmap_offset = 0;
36fa3063 959 mddev->default_bitmap_offset = 0;
53e87fbb 960 mddev->default_bitmap_offset = 1024;
1da177e4
LT
961
962 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
963 memcpy(mddev->uuid, sb->set_uuid, 16);
964
965 mddev->max_disks = (4096-256)/2;
a654b9d8 966
71c0805c 967 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
a654b9d8
N
968 mddev->bitmap_file == NULL ) {
969 if (mddev->level != 1) {
970 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
971 return -EINVAL;
972 }
973 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
974 }
41158c7e
N
975 } else if (mddev->pers == NULL) {
976 /* Insist of good event counter while assembling */
977 __u64 ev1 = le64_to_cpu(sb->events);
1da177e4
LT
978 ++ev1;
979 if (ev1 < mddev->events)
980 return -EINVAL;
41158c7e
N
981 } else if (mddev->bitmap) {
982 /* If adding to array with a bitmap, then we can accept an
983 * older device, but not too old.
984 */
985 __u64 ev1 = le64_to_cpu(sb->events);
986 if (ev1 < mddev->bitmap->events_cleared)
987 return 0;
988 } else /* just a hot-add of a new device, leave raid_disk at -1 */
989 return 0;
1da177e4
LT
990
991 if (mddev->level != LEVEL_MULTIPATH) {
992 int role;
993 rdev->desc_nr = le32_to_cpu(sb->dev_number);
994 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
995 switch(role) {
996 case 0xffff: /* spare */
1da177e4 997 rdev->faulty = 0;
1da177e4
LT
998 break;
999 case 0xfffe: /* faulty */
1da177e4 1000 rdev->faulty = 1;
1da177e4
LT
1001 break;
1002 default:
1003 rdev->in_sync = 1;
1004 rdev->faulty = 0;
1005 rdev->raid_disk = role;
1006 break;
1007 }
8ddf9efe
N
1008 rdev->flags = 0;
1009 if (sb->devflags & WriteMostly1)
1010 set_bit(WriteMostly, &rdev->flags);
41158c7e
N
1011 } else /* MULTIPATH are always insync */
1012 rdev->in_sync = 1;
1013
1da177e4
LT
1014 return 0;
1015}
1016
1017static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1018{
1019 struct mdp_superblock_1 *sb;
1020 struct list_head *tmp;
1021 mdk_rdev_t *rdev2;
1022 int max_dev, i;
1023 /* make rdev->sb match mddev and rdev data. */
1024
1025 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1026
1027 sb->feature_map = 0;
1028 sb->pad0 = 0;
1029 memset(sb->pad1, 0, sizeof(sb->pad1));
1030 memset(sb->pad2, 0, sizeof(sb->pad2));
1031 memset(sb->pad3, 0, sizeof(sb->pad3));
1032
1033 sb->utime = cpu_to_le64((__u64)mddev->utime);
1034 sb->events = cpu_to_le64(mddev->events);
1035 if (mddev->in_sync)
1036 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1037 else
1038 sb->resync_offset = cpu_to_le64(0);
1039
a654b9d8
N
1040 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1041 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
71c0805c 1042 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
a654b9d8
N
1043 }
1044
1da177e4
LT
1045 max_dev = 0;
1046 ITERATE_RDEV(mddev,rdev2,tmp)
1047 if (rdev2->desc_nr+1 > max_dev)
1048 max_dev = rdev2->desc_nr+1;
1049
1050 sb->max_dev = cpu_to_le32(max_dev);
1051 for (i=0; i<max_dev;i++)
1052 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1053
1054 ITERATE_RDEV(mddev,rdev2,tmp) {
1055 i = rdev2->desc_nr;
1056 if (rdev2->faulty)
1057 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1058 else if (rdev2->in_sync)
1059 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1060 else
1061 sb->dev_roles[i] = cpu_to_le16(0xffff);
1062 }
1063
1064 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1065 sb->sb_csum = calc_sb_1_csum(sb);
1066}
1067
1068
75c96f85 1069static struct super_type super_types[] = {
1da177e4
LT
1070 [0] = {
1071 .name = "0.90.0",
1072 .owner = THIS_MODULE,
1073 .load_super = super_90_load,
1074 .validate_super = super_90_validate,
1075 .sync_super = super_90_sync,
1076 },
1077 [1] = {
1078 .name = "md-1",
1079 .owner = THIS_MODULE,
1080 .load_super = super_1_load,
1081 .validate_super = super_1_validate,
1082 .sync_super = super_1_sync,
1083 },
1084};
1085
1086static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1087{
1088 struct list_head *tmp;
1089 mdk_rdev_t *rdev;
1090
1091 ITERATE_RDEV(mddev,rdev,tmp)
1092 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1093 return rdev;
1094
1095 return NULL;
1096}
1097
1098static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1099{
1100 struct list_head *tmp;
1101 mdk_rdev_t *rdev;
1102
1103 ITERATE_RDEV(mddev1,rdev,tmp)
1104 if (match_dev_unit(mddev2, rdev))
1105 return 1;
1106
1107 return 0;
1108}
1109
1110static LIST_HEAD(pending_raid_disks);
1111
1112static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1113{
1114 mdk_rdev_t *same_pdev;
1115 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1116
1117 if (rdev->mddev) {
1118 MD_BUG();
1119 return -EINVAL;
1120 }
1121 same_pdev = match_dev_unit(mddev, rdev);
1122 if (same_pdev)
1123 printk(KERN_WARNING
1124 "%s: WARNING: %s appears to be on the same physical"
1125 " disk as %s. True\n protection against single-disk"
1126 " failure might be compromised.\n",
1127 mdname(mddev), bdevname(rdev->bdev,b),
1128 bdevname(same_pdev->bdev,b2));
1129
1130 /* Verify rdev->desc_nr is unique.
1131 * If it is -1, assign a free number, else
1132 * check number is not in use
1133 */
1134 if (rdev->desc_nr < 0) {
1135 int choice = 0;
1136 if (mddev->pers) choice = mddev->raid_disks;
1137 while (find_rdev_nr(mddev, choice))
1138 choice++;
1139 rdev->desc_nr = choice;
1140 } else {
1141 if (find_rdev_nr(mddev, rdev->desc_nr))
1142 return -EBUSY;
1143 }
1144
1145 list_add(&rdev->same_set, &mddev->disks);
1146 rdev->mddev = mddev;
1147 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1148 return 0;
1149}
1150
1151static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1152{
1153 char b[BDEVNAME_SIZE];
1154 if (!rdev->mddev) {
1155 MD_BUG();
1156 return;
1157 }
1158 list_del_init(&rdev->same_set);
1159 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1160 rdev->mddev = NULL;
1161}
1162
1163/*
1164 * prevent the device from being mounted, repartitioned or
1165 * otherwise reused by a RAID array (or any other kernel
1166 * subsystem), by bd_claiming the device.
1167 */
1168static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1169{
1170 int err = 0;
1171 struct block_device *bdev;
1172 char b[BDEVNAME_SIZE];
1173
1174 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1175 if (IS_ERR(bdev)) {
1176 printk(KERN_ERR "md: could not open %s.\n",
1177 __bdevname(dev, b));
1178 return PTR_ERR(bdev);
1179 }
1180 err = bd_claim(bdev, rdev);
1181 if (err) {
1182 printk(KERN_ERR "md: could not bd_claim %s.\n",
1183 bdevname(bdev, b));
1184 blkdev_put(bdev);
1185 return err;
1186 }
1187 rdev->bdev = bdev;
1188 return err;
1189}
1190
1191static void unlock_rdev(mdk_rdev_t *rdev)
1192{
1193 struct block_device *bdev = rdev->bdev;
1194 rdev->bdev = NULL;
1195 if (!bdev)
1196 MD_BUG();
1197 bd_release(bdev);
1198 blkdev_put(bdev);
1199}
1200
1201void md_autodetect_dev(dev_t dev);
1202
1203static void export_rdev(mdk_rdev_t * rdev)
1204{
1205 char b[BDEVNAME_SIZE];
1206 printk(KERN_INFO "md: export_rdev(%s)\n",
1207 bdevname(rdev->bdev,b));
1208 if (rdev->mddev)
1209 MD_BUG();
1210 free_disk_sb(rdev);
1211 list_del_init(&rdev->same_set);
1212#ifndef MODULE
1213 md_autodetect_dev(rdev->bdev->bd_dev);
1214#endif
1215 unlock_rdev(rdev);
1216 kfree(rdev);
1217}
1218
1219static void kick_rdev_from_array(mdk_rdev_t * rdev)
1220{
1221 unbind_rdev_from_array(rdev);
1222 export_rdev(rdev);
1223}
1224
1225static void export_array(mddev_t *mddev)
1226{
1227 struct list_head *tmp;
1228 mdk_rdev_t *rdev;
1229
1230 ITERATE_RDEV(mddev,rdev,tmp) {
1231 if (!rdev->mddev) {
1232 MD_BUG();
1233 continue;
1234 }
1235 kick_rdev_from_array(rdev);
1236 }
1237 if (!list_empty(&mddev->disks))
1238 MD_BUG();
1239 mddev->raid_disks = 0;
1240 mddev->major_version = 0;
1241}
1242
1243static void print_desc(mdp_disk_t *desc)
1244{
1245 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1246 desc->major,desc->minor,desc->raid_disk,desc->state);
1247}
1248
1249static void print_sb(mdp_super_t *sb)
1250{
1251 int i;
1252
1253 printk(KERN_INFO
1254 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1255 sb->major_version, sb->minor_version, sb->patch_version,
1256 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1257 sb->ctime);
1258 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1259 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1260 sb->md_minor, sb->layout, sb->chunk_size);
1261 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1262 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1263 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1264 sb->failed_disks, sb->spare_disks,
1265 sb->sb_csum, (unsigned long)sb->events_lo);
1266
1267 printk(KERN_INFO);
1268 for (i = 0; i < MD_SB_DISKS; i++) {
1269 mdp_disk_t *desc;
1270
1271 desc = sb->disks + i;
1272 if (desc->number || desc->major || desc->minor ||
1273 desc->raid_disk || (desc->state && (desc->state != 4))) {
1274 printk(" D %2d: ", i);
1275 print_desc(desc);
1276 }
1277 }
1278 printk(KERN_INFO "md: THIS: ");
1279 print_desc(&sb->this_disk);
1280
1281}
1282
1283static void print_rdev(mdk_rdev_t *rdev)
1284{
1285 char b[BDEVNAME_SIZE];
1286 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1287 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1288 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1289 if (rdev->sb_loaded) {
1290 printk(KERN_INFO "md: rdev superblock:\n");
1291 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1292 } else
1293 printk(KERN_INFO "md: no rdev superblock!\n");
1294}
1295
1296void md_print_devices(void)
1297{
1298 struct list_head *tmp, *tmp2;
1299 mdk_rdev_t *rdev;
1300 mddev_t *mddev;
1301 char b[BDEVNAME_SIZE];
1302
1303 printk("\n");
1304 printk("md: **********************************\n");
1305 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1306 printk("md: **********************************\n");
1307 ITERATE_MDDEV(mddev,tmp) {
1da177e4 1308
32a7627c
N
1309 if (mddev->bitmap)
1310 bitmap_print_sb(mddev->bitmap);
1311 else
1312 printk("%s: ", mdname(mddev));
1da177e4
LT
1313 ITERATE_RDEV(mddev,rdev,tmp2)
1314 printk("<%s>", bdevname(rdev->bdev,b));
1315 printk("\n");
1316
1317 ITERATE_RDEV(mddev,rdev,tmp2)
1318 print_rdev(rdev);
1319 }
1320 printk("md: **********************************\n");
1321 printk("\n");
1322}
1323
1324
1da177e4
LT
1325static void sync_sbs(mddev_t * mddev)
1326{
1327 mdk_rdev_t *rdev;
1328 struct list_head *tmp;
1329
1330 ITERATE_RDEV(mddev,rdev,tmp) {
1331 super_types[mddev->major_version].
1332 sync_super(mddev, rdev);
1333 rdev->sb_loaded = 1;
1334 }
1335}
1336
1337static void md_update_sb(mddev_t * mddev)
1338{
7bfa19f2 1339 int err;
1da177e4
LT
1340 struct list_head *tmp;
1341 mdk_rdev_t *rdev;
06d91a5f 1342 int sync_req;
1da177e4 1343
1da177e4 1344repeat:
06d91a5f
N
1345 spin_lock(&mddev->write_lock);
1346 sync_req = mddev->in_sync;
1da177e4
LT
1347 mddev->utime = get_seconds();
1348 mddev->events ++;
1349
1350 if (!mddev->events) {
1351 /*
1352 * oops, this 64-bit counter should never wrap.
1353 * Either we are in around ~1 trillion A.C., assuming
1354 * 1 reboot per second, or we have a bug:
1355 */
1356 MD_BUG();
1357 mddev->events --;
1358 }
7bfa19f2 1359 mddev->sb_dirty = 2;
1da177e4
LT
1360 sync_sbs(mddev);
1361
1362 /*
1363 * do not write anything to disk if using
1364 * nonpersistent superblocks
1365 */
06d91a5f
N
1366 if (!mddev->persistent) {
1367 mddev->sb_dirty = 0;
1368 spin_unlock(&mddev->write_lock);
3d310eb7 1369 wake_up(&mddev->sb_wait);
1da177e4 1370 return;
06d91a5f
N
1371 }
1372 spin_unlock(&mddev->write_lock);
1da177e4
LT
1373
1374 dprintk(KERN_INFO
1375 "md: updating %s RAID superblock on device (in sync %d)\n",
1376 mdname(mddev),mddev->in_sync);
1377
32a7627c 1378 err = bitmap_update_sb(mddev->bitmap);
1da177e4
LT
1379 ITERATE_RDEV(mddev,rdev,tmp) {
1380 char b[BDEVNAME_SIZE];
1381 dprintk(KERN_INFO "md: ");
1382 if (rdev->faulty)
1383 dprintk("(skipping faulty ");
1384
1385 dprintk("%s ", bdevname(rdev->bdev,b));
1386 if (!rdev->faulty) {
7bfa19f2 1387 md_super_write(mddev,rdev,
0002b271 1388 rdev->sb_offset<<1, rdev->sb_size,
7bfa19f2
N
1389 rdev->sb_page);
1390 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1391 bdevname(rdev->bdev,b),
1392 (unsigned long long)rdev->sb_offset);
1393
1da177e4
LT
1394 } else
1395 dprintk(")\n");
7bfa19f2 1396 if (mddev->level == LEVEL_MULTIPATH)
1da177e4
LT
1397 /* only need to write one superblock... */
1398 break;
1399 }
7bfa19f2
N
1400 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1401 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1402
06d91a5f 1403 spin_lock(&mddev->write_lock);
7bfa19f2 1404 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
06d91a5f
N
1405 /* have to write it out again */
1406 spin_unlock(&mddev->write_lock);
1407 goto repeat;
1408 }
1409 mddev->sb_dirty = 0;
1410 spin_unlock(&mddev->write_lock);
3d310eb7 1411 wake_up(&mddev->sb_wait);
06d91a5f 1412
1da177e4
LT
1413}
1414
1415/*
1416 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1417 *
1418 * mark the device faulty if:
1419 *
1420 * - the device is nonexistent (zero size)
1421 * - the device has no valid superblock
1422 *
1423 * a faulty rdev _never_ has rdev->sb set.
1424 */
1425static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1426{
1427 char b[BDEVNAME_SIZE];
1428 int err;
1429 mdk_rdev_t *rdev;
1430 sector_t size;
1431
1432 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1433 if (!rdev) {
1434 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1435 return ERR_PTR(-ENOMEM);
1436 }
1437 memset(rdev, 0, sizeof(*rdev));
1438
1439 if ((err = alloc_disk_sb(rdev)))
1440 goto abort_free;
1441
1442 err = lock_rdev(rdev, newdev);
1443 if (err)
1444 goto abort_free;
1445
1446 rdev->desc_nr = -1;
1447 rdev->faulty = 0;
1448 rdev->in_sync = 0;
1449 rdev->data_offset = 0;
1450 atomic_set(&rdev->nr_pending, 0);
1451
1452 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1453 if (!size) {
1454 printk(KERN_WARNING
1455 "md: %s has zero or unknown size, marking faulty!\n",
1456 bdevname(rdev->bdev,b));
1457 err = -EINVAL;
1458 goto abort_free;
1459 }
1460
1461 if (super_format >= 0) {
1462 err = super_types[super_format].
1463 load_super(rdev, NULL, super_minor);
1464 if (err == -EINVAL) {
1465 printk(KERN_WARNING
1466 "md: %s has invalid sb, not importing!\n",
1467 bdevname(rdev->bdev,b));
1468 goto abort_free;
1469 }
1470 if (err < 0) {
1471 printk(KERN_WARNING
1472 "md: could not read %s's sb, not importing!\n",
1473 bdevname(rdev->bdev,b));
1474 goto abort_free;
1475 }
1476 }
1477 INIT_LIST_HEAD(&rdev->same_set);
1478
1479 return rdev;
1480
1481abort_free:
1482 if (rdev->sb_page) {
1483 if (rdev->bdev)
1484 unlock_rdev(rdev);
1485 free_disk_sb(rdev);
1486 }
1487 kfree(rdev);
1488 return ERR_PTR(err);
1489}
1490
1491/*
1492 * Check a full RAID array for plausibility
1493 */
1494
1495
a757e64c 1496static void analyze_sbs(mddev_t * mddev)
1da177e4
LT
1497{
1498 int i;
1499 struct list_head *tmp;
1500 mdk_rdev_t *rdev, *freshest;
1501 char b[BDEVNAME_SIZE];
1502
1503 freshest = NULL;
1504 ITERATE_RDEV(mddev,rdev,tmp)
1505 switch (super_types[mddev->major_version].
1506 load_super(rdev, freshest, mddev->minor_version)) {
1507 case 1:
1508 freshest = rdev;
1509 break;
1510 case 0:
1511 break;
1512 default:
1513 printk( KERN_ERR \
1514 "md: fatal superblock inconsistency in %s"
1515 " -- removing from array\n",
1516 bdevname(rdev->bdev,b));
1517 kick_rdev_from_array(rdev);
1518 }
1519
1520
1521 super_types[mddev->major_version].
1522 validate_super(mddev, freshest);
1523
1524 i = 0;
1525 ITERATE_RDEV(mddev,rdev,tmp) {
1526 if (rdev != freshest)
1527 if (super_types[mddev->major_version].
1528 validate_super(mddev, rdev)) {
1529 printk(KERN_WARNING "md: kicking non-fresh %s"
1530 " from array!\n",
1531 bdevname(rdev->bdev,b));
1532 kick_rdev_from_array(rdev);
1533 continue;
1534 }
1535 if (mddev->level == LEVEL_MULTIPATH) {
1536 rdev->desc_nr = i++;
1537 rdev->raid_disk = rdev->desc_nr;
1538 rdev->in_sync = 1;
1539 }
1540 }
1541
1542
1543
1544 if (mddev->recovery_cp != MaxSector &&
1545 mddev->level >= 1)
1546 printk(KERN_ERR "md: %s: raid array is not clean"
1547 " -- starting background reconstruction\n",
1548 mdname(mddev));
1549
1da177e4
LT
1550}
1551
1552int mdp_major = 0;
1553
1554static struct kobject *md_probe(dev_t dev, int *part, void *data)
1555{
1556 static DECLARE_MUTEX(disks_sem);
1557 mddev_t *mddev = mddev_find(dev);
1558 struct gendisk *disk;
1559 int partitioned = (MAJOR(dev) != MD_MAJOR);
1560 int shift = partitioned ? MdpMinorShift : 0;
1561 int unit = MINOR(dev) >> shift;
1562
1563 if (!mddev)
1564 return NULL;
1565
1566 down(&disks_sem);
1567 if (mddev->gendisk) {
1568 up(&disks_sem);
1569 mddev_put(mddev);
1570 return NULL;
1571 }
1572 disk = alloc_disk(1 << shift);
1573 if (!disk) {
1574 up(&disks_sem);
1575 mddev_put(mddev);
1576 return NULL;
1577 }
1578 disk->major = MAJOR(dev);
1579 disk->first_minor = unit << shift;
1580 if (partitioned) {
1581 sprintf(disk->disk_name, "md_d%d", unit);
1582 sprintf(disk->devfs_name, "md/d%d", unit);
1583 } else {
1584 sprintf(disk->disk_name, "md%d", unit);
1585 sprintf(disk->devfs_name, "md/%d", unit);
1586 }
1587 disk->fops = &md_fops;
1588 disk->private_data = mddev;
1589 disk->queue = mddev->queue;
1590 add_disk(disk);
1591 mddev->gendisk = disk;
1592 up(&disks_sem);
1593 return NULL;
1594}
1595
1596void md_wakeup_thread(mdk_thread_t *thread);
1597
1598static void md_safemode_timeout(unsigned long data)
1599{
1600 mddev_t *mddev = (mddev_t *) data;
1601
1602 mddev->safemode = 1;
1603 md_wakeup_thread(mddev->thread);
1604}
1605
1606
1607static int do_md_run(mddev_t * mddev)
1608{
1609 int pnum, err;
1610 int chunk_size;
1611 struct list_head *tmp;
1612 mdk_rdev_t *rdev;
1613 struct gendisk *disk;
1614 char b[BDEVNAME_SIZE];
1615
a757e64c
N
1616 if (list_empty(&mddev->disks))
1617 /* cannot run an array with no devices.. */
1da177e4 1618 return -EINVAL;
1da177e4
LT
1619
1620 if (mddev->pers)
1621 return -EBUSY;
1622
1623 /*
1624 * Analyze all RAID superblock(s)
1625 */
a757e64c
N
1626 if (!mddev->raid_disks)
1627 analyze_sbs(mddev);
1da177e4
LT
1628
1629 chunk_size = mddev->chunk_size;
1630 pnum = level_to_pers(mddev->level);
1631
1632 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1633 if (!chunk_size) {
1634 /*
1635 * 'default chunksize' in the old md code used to
1636 * be PAGE_SIZE, baaad.
1637 * we abort here to be on the safe side. We don't
1638 * want to continue the bad practice.
1639 */
1640 printk(KERN_ERR
1641 "no chunksize specified, see 'man raidtab'\n");
1642 return -EINVAL;
1643 }
1644 if (chunk_size > MAX_CHUNK_SIZE) {
1645 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1646 chunk_size, MAX_CHUNK_SIZE);
1647 return -EINVAL;
1648 }
1649 /*
1650 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1651 */
1652 if ( (1 << ffz(~chunk_size)) != chunk_size) {
a757e64c 1653 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1da177e4
LT
1654 return -EINVAL;
1655 }
1656 if (chunk_size < PAGE_SIZE) {
1657 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1658 chunk_size, PAGE_SIZE);
1659 return -EINVAL;
1660 }
1661
1662 /* devices must have minimum size of one chunk */
1663 ITERATE_RDEV(mddev,rdev,tmp) {
1664 if (rdev->faulty)
1665 continue;
1666 if (rdev->size < chunk_size / 1024) {
1667 printk(KERN_WARNING
1668 "md: Dev %s smaller than chunk_size:"
1669 " %lluk < %dk\n",
1670 bdevname(rdev->bdev,b),
1671 (unsigned long long)rdev->size,
1672 chunk_size / 1024);
1673 return -EINVAL;
1674 }
1675 }
1676 }
1677
1da177e4
LT
1678#ifdef CONFIG_KMOD
1679 if (!pers[pnum])
1680 {
1681 request_module("md-personality-%d", pnum);
1682 }
1683#endif
1684
1685 /*
1686 * Drop all container device buffers, from now on
1687 * the only valid external interface is through the md
1688 * device.
1689 * Also find largest hardsector size
1690 */
1691 ITERATE_RDEV(mddev,rdev,tmp) {
1692 if (rdev->faulty)
1693 continue;
1694 sync_blockdev(rdev->bdev);
1695 invalidate_bdev(rdev->bdev, 0);
1696 }
1697
1698 md_probe(mddev->unit, NULL, NULL);
1699 disk = mddev->gendisk;
1700 if (!disk)
1701 return -ENOMEM;
1702
1703 spin_lock(&pers_lock);
1704 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1705 spin_unlock(&pers_lock);
1706 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1707 pnum);
1708 return -EINVAL;
1709 }
1710
1711 mddev->pers = pers[pnum];
1712 spin_unlock(&pers_lock);
1713
657390d2 1714 mddev->recovery = 0;
1da177e4
LT
1715 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1716
32a7627c
N
1717 /* before we start the array running, initialise the bitmap */
1718 err = bitmap_create(mddev);
1719 if (err)
1720 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1721 mdname(mddev), err);
1722 else
1723 err = mddev->pers->run(mddev);
1da177e4
LT
1724 if (err) {
1725 printk(KERN_ERR "md: pers->run() failed ...\n");
1726 module_put(mddev->pers->owner);
1727 mddev->pers = NULL;
32a7627c
N
1728 bitmap_destroy(mddev);
1729 return err;
1da177e4
LT
1730 }
1731 atomic_set(&mddev->writes_pending,0);
1732 mddev->safemode = 0;
1733 mddev->safemode_timer.function = md_safemode_timeout;
1734 mddev->safemode_timer.data = (unsigned long) mddev;
1735 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1736 mddev->in_sync = 1;
1737
1738 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
005eca5e 1739 md_wakeup_thread(mddev->thread);
1da177e4
LT
1740
1741 if (mddev->sb_dirty)
1742 md_update_sb(mddev);
1743
1744 set_capacity(disk, mddev->array_size<<1);
1745
1746 /* If we call blk_queue_make_request here, it will
1747 * re-initialise max_sectors etc which may have been
1748 * refined inside -> run. So just set the bits we need to set.
1749 * Most initialisation happended when we called
1750 * blk_queue_make_request(..., md_fail_request)
1751 * earlier.
1752 */
1753 mddev->queue->queuedata = mddev;
1754 mddev->queue->make_request_fn = mddev->pers->make_request;
1755
1756 mddev->changed = 1;
1757 return 0;
1758}
1759
1760static int restart_array(mddev_t *mddev)
1761{
1762 struct gendisk *disk = mddev->gendisk;
1763 int err;
1764
1765 /*
1766 * Complain if it has no devices
1767 */
1768 err = -ENXIO;
1769 if (list_empty(&mddev->disks))
1770 goto out;
1771
1772 if (mddev->pers) {
1773 err = -EBUSY;
1774 if (!mddev->ro)
1775 goto out;
1776
1777 mddev->safemode = 0;
1778 mddev->ro = 0;
1779 set_disk_ro(disk, 0);
1780
1781 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1782 mdname(mddev));
1783 /*
1784 * Kick recovery or resync if necessary
1785 */
1786 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1787 md_wakeup_thread(mddev->thread);
1788 err = 0;
1789 } else {
1790 printk(KERN_ERR "md: %s has no personality assigned.\n",
1791 mdname(mddev));
1792 err = -EINVAL;
1793 }
1794
1795out:
1796 return err;
1797}
1798
1799static int do_md_stop(mddev_t * mddev, int ro)
1800{
1801 int err = 0;
1802 struct gendisk *disk = mddev->gendisk;
1803
1804 if (mddev->pers) {
1805 if (atomic_read(&mddev->active)>2) {
1806 printk("md: %s still in use.\n",mdname(mddev));
1807 return -EBUSY;
1808 }
1809
1810 if (mddev->sync_thread) {
1811 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1812 md_unregister_thread(mddev->sync_thread);
1813 mddev->sync_thread = NULL;
1814 }
1815
1816 del_timer_sync(&mddev->safemode_timer);
1817
1818 invalidate_partition(disk, 0);
1819
1820 if (ro) {
1821 err = -ENXIO;
1822 if (mddev->ro)
1823 goto out;
1824 mddev->ro = 1;
1825 } else {
6b8b3e8a
N
1826 bitmap_flush(mddev);
1827 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1da177e4
LT
1828 if (mddev->ro)
1829 set_disk_ro(disk, 0);
1830 blk_queue_make_request(mddev->queue, md_fail_request);
1831 mddev->pers->stop(mddev);
1832 module_put(mddev->pers->owner);
1833 mddev->pers = NULL;
1834 if (mddev->ro)
1835 mddev->ro = 0;
1836 }
1837 if (!mddev->in_sync) {
1838 /* mark array as shutdown cleanly */
1839 mddev->in_sync = 1;
1840 md_update_sb(mddev);
1841 }
1842 if (ro)
1843 set_disk_ro(disk, 1);
1844 }
32a7627c
N
1845
1846 bitmap_destroy(mddev);
1847 if (mddev->bitmap_file) {
1848 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1849 fput(mddev->bitmap_file);
1850 mddev->bitmap_file = NULL;
1851 }
9223214e 1852 mddev->bitmap_offset = 0;
32a7627c 1853
1da177e4
LT
1854 /*
1855 * Free resources if final stop
1856 */
1857 if (!ro) {
1858 struct gendisk *disk;
1859 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1860
1861 export_array(mddev);
1862
1863 mddev->array_size = 0;
1864 disk = mddev->gendisk;
1865 if (disk)
1866 set_capacity(disk, 0);
1867 mddev->changed = 1;
1868 } else
1869 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1870 mdname(mddev));
1871 err = 0;
1872out:
1873 return err;
1874}
1875
1876static void autorun_array(mddev_t *mddev)
1877{
1878 mdk_rdev_t *rdev;
1879 struct list_head *tmp;
1880 int err;
1881
a757e64c 1882 if (list_empty(&mddev->disks))
1da177e4 1883 return;
1da177e4
LT
1884
1885 printk(KERN_INFO "md: running: ");
1886
1887 ITERATE_RDEV(mddev,rdev,tmp) {
1888 char b[BDEVNAME_SIZE];
1889 printk("<%s>", bdevname(rdev->bdev,b));
1890 }
1891 printk("\n");
1892
1893 err = do_md_run (mddev);
1894 if (err) {
1895 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1896 do_md_stop (mddev, 0);
1897 }
1898}
1899
1900/*
1901 * lets try to run arrays based on all disks that have arrived
1902 * until now. (those are in pending_raid_disks)
1903 *
1904 * the method: pick the first pending disk, collect all disks with
1905 * the same UUID, remove all from the pending list and put them into
1906 * the 'same_array' list. Then order this list based on superblock
1907 * update time (freshest comes first), kick out 'old' disks and
1908 * compare superblocks. If everything's fine then run it.
1909 *
1910 * If "unit" is allocated, then bump its reference count
1911 */
1912static void autorun_devices(int part)
1913{
1914 struct list_head candidates;
1915 struct list_head *tmp;
1916 mdk_rdev_t *rdev0, *rdev;
1917 mddev_t *mddev;
1918 char b[BDEVNAME_SIZE];
1919
1920 printk(KERN_INFO "md: autorun ...\n");
1921 while (!list_empty(&pending_raid_disks)) {
1922 dev_t dev;
1923 rdev0 = list_entry(pending_raid_disks.next,
1924 mdk_rdev_t, same_set);
1925
1926 printk(KERN_INFO "md: considering %s ...\n",
1927 bdevname(rdev0->bdev,b));
1928 INIT_LIST_HEAD(&candidates);
1929 ITERATE_RDEV_PENDING(rdev,tmp)
1930 if (super_90_load(rdev, rdev0, 0) >= 0) {
1931 printk(KERN_INFO "md: adding %s ...\n",
1932 bdevname(rdev->bdev,b));
1933 list_move(&rdev->same_set, &candidates);
1934 }
1935 /*
1936 * now we have a set of devices, with all of them having
1937 * mostly sane superblocks. It's time to allocate the
1938 * mddev.
1939 */
1940 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1941 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1942 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1943 break;
1944 }
1945 if (part)
1946 dev = MKDEV(mdp_major,
1947 rdev0->preferred_minor << MdpMinorShift);
1948 else
1949 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1950
1951 md_probe(dev, NULL, NULL);
1952 mddev = mddev_find(dev);
1953 if (!mddev) {
1954 printk(KERN_ERR
1955 "md: cannot allocate memory for md drive.\n");
1956 break;
1957 }
1958 if (mddev_lock(mddev))
1959 printk(KERN_WARNING "md: %s locked, cannot run\n",
1960 mdname(mddev));
1961 else if (mddev->raid_disks || mddev->major_version
1962 || !list_empty(&mddev->disks)) {
1963 printk(KERN_WARNING
1964 "md: %s already running, cannot run %s\n",
1965 mdname(mddev), bdevname(rdev0->bdev,b));
1966 mddev_unlock(mddev);
1967 } else {
1968 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1969 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1970 list_del_init(&rdev->same_set);
1971 if (bind_rdev_to_array(rdev, mddev))
1972 export_rdev(rdev);
1973 }
1974 autorun_array(mddev);
1975 mddev_unlock(mddev);
1976 }
1977 /* on success, candidates will be empty, on error
1978 * it won't...
1979 */
1980 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1981 export_rdev(rdev);
1982 mddev_put(mddev);
1983 }
1984 printk(KERN_INFO "md: ... autorun DONE.\n");
1985}
1986
1987/*
1988 * import RAID devices based on one partition
1989 * if possible, the array gets run as well.
1990 */
1991
1992static int autostart_array(dev_t startdev)
1993{
1994 char b[BDEVNAME_SIZE];
1995 int err = -EINVAL, i;
1996 mdp_super_t *sb = NULL;
1997 mdk_rdev_t *start_rdev = NULL, *rdev;
1998
1999 start_rdev = md_import_device(startdev, 0, 0);
2000 if (IS_ERR(start_rdev))
2001 return err;
2002
2003
2004 /* NOTE: this can only work for 0.90.0 superblocks */
2005 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2006 if (sb->major_version != 0 ||
2007 sb->minor_version != 90 ) {
2008 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2009 export_rdev(start_rdev);
2010 return err;
2011 }
2012
2013 if (start_rdev->faulty) {
2014 printk(KERN_WARNING
2015 "md: can not autostart based on faulty %s!\n",
2016 bdevname(start_rdev->bdev,b));
2017 export_rdev(start_rdev);
2018 return err;
2019 }
2020 list_add(&start_rdev->same_set, &pending_raid_disks);
2021
2022 for (i = 0; i < MD_SB_DISKS; i++) {
2023 mdp_disk_t *desc = sb->disks + i;
2024 dev_t dev = MKDEV(desc->major, desc->minor);
2025
2026 if (!dev)
2027 continue;
2028 if (dev == startdev)
2029 continue;
2030 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2031 continue;
2032 rdev = md_import_device(dev, 0, 0);
2033 if (IS_ERR(rdev))
2034 continue;
2035
2036 list_add(&rdev->same_set, &pending_raid_disks);
2037 }
2038
2039 /*
2040 * possibly return codes
2041 */
2042 autorun_devices(0);
2043 return 0;
2044
2045}
2046
2047
2048static int get_version(void __user * arg)
2049{
2050 mdu_version_t ver;
2051
2052 ver.major = MD_MAJOR_VERSION;
2053 ver.minor = MD_MINOR_VERSION;
2054 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2055
2056 if (copy_to_user(arg, &ver, sizeof(ver)))
2057 return -EFAULT;
2058
2059 return 0;
2060}
2061
2062static int get_array_info(mddev_t * mddev, void __user * arg)
2063{
2064 mdu_array_info_t info;
2065 int nr,working,active,failed,spare;
2066 mdk_rdev_t *rdev;
2067 struct list_head *tmp;
2068
2069 nr=working=active=failed=spare=0;
2070 ITERATE_RDEV(mddev,rdev,tmp) {
2071 nr++;
2072 if (rdev->faulty)
2073 failed++;
2074 else {
2075 working++;
2076 if (rdev->in_sync)
2077 active++;
2078 else
2079 spare++;
2080 }
2081 }
2082
2083 info.major_version = mddev->major_version;
2084 info.minor_version = mddev->minor_version;
2085 info.patch_version = MD_PATCHLEVEL_VERSION;
2086 info.ctime = mddev->ctime;
2087 info.level = mddev->level;
2088 info.size = mddev->size;
2089 info.nr_disks = nr;
2090 info.raid_disks = mddev->raid_disks;
2091 info.md_minor = mddev->md_minor;
2092 info.not_persistent= !mddev->persistent;
2093
2094 info.utime = mddev->utime;
2095 info.state = 0;
2096 if (mddev->in_sync)
2097 info.state = (1<<MD_SB_CLEAN);
36fa3063
N
2098 if (mddev->bitmap && mddev->bitmap_offset)
2099 info.state = (1<<MD_SB_BITMAP_PRESENT);
1da177e4
LT
2100 info.active_disks = active;
2101 info.working_disks = working;
2102 info.failed_disks = failed;
2103 info.spare_disks = spare;
2104
2105 info.layout = mddev->layout;
2106 info.chunk_size = mddev->chunk_size;
2107
2108 if (copy_to_user(arg, &info, sizeof(info)))
2109 return -EFAULT;
2110
2111 return 0;
2112}
2113
87162a28 2114static int get_bitmap_file(mddev_t * mddev, void __user * arg)
32a7627c
N
2115{
2116 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2117 char *ptr, *buf = NULL;
2118 int err = -ENOMEM;
2119
2120 file = kmalloc(sizeof(*file), GFP_KERNEL);
2121 if (!file)
2122 goto out;
2123
2124 /* bitmap disabled, zero the first byte and copy out */
2125 if (!mddev->bitmap || !mddev->bitmap->file) {
2126 file->pathname[0] = '\0';
2127 goto copy_out;
2128 }
2129
2130 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2131 if (!buf)
2132 goto out;
2133
2134 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2135 if (!ptr)
2136 goto out;
2137
2138 strcpy(file->pathname, ptr);
2139
2140copy_out:
2141 err = 0;
2142 if (copy_to_user(arg, file, sizeof(*file)))
2143 err = -EFAULT;
2144out:
2145 kfree(buf);
2146 kfree(file);
2147 return err;
2148}
2149
1da177e4
LT
2150static int get_disk_info(mddev_t * mddev, void __user * arg)
2151{
2152 mdu_disk_info_t info;
2153 unsigned int nr;
2154 mdk_rdev_t *rdev;
2155
2156 if (copy_from_user(&info, arg, sizeof(info)))
2157 return -EFAULT;
2158
2159 nr = info.number;
2160
2161 rdev = find_rdev_nr(mddev, nr);
2162 if (rdev) {
2163 info.major = MAJOR(rdev->bdev->bd_dev);
2164 info.minor = MINOR(rdev->bdev->bd_dev);
2165 info.raid_disk = rdev->raid_disk;
2166 info.state = 0;
2167 if (rdev->faulty)
2168 info.state |= (1<<MD_DISK_FAULTY);
2169 else if (rdev->in_sync) {
2170 info.state |= (1<<MD_DISK_ACTIVE);
2171 info.state |= (1<<MD_DISK_SYNC);
2172 }
8ddf9efe
N
2173 if (test_bit(WriteMostly, &rdev->flags))
2174 info.state |= (1<<MD_DISK_WRITEMOSTLY);
1da177e4
LT
2175 } else {
2176 info.major = info.minor = 0;
2177 info.raid_disk = -1;
2178 info.state = (1<<MD_DISK_REMOVED);
2179 }
2180
2181 if (copy_to_user(arg, &info, sizeof(info)))
2182 return -EFAULT;
2183
2184 return 0;
2185}
2186
2187static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2188{
2189 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2190 mdk_rdev_t *rdev;
2191 dev_t dev = MKDEV(info->major,info->minor);
2192
2193 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2194 return -EOVERFLOW;
2195
2196 if (!mddev->raid_disks) {
2197 int err;
2198 /* expecting a device which has a superblock */
2199 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2200 if (IS_ERR(rdev)) {
2201 printk(KERN_WARNING
2202 "md: md_import_device returned %ld\n",
2203 PTR_ERR(rdev));
2204 return PTR_ERR(rdev);
2205 }
2206 if (!list_empty(&mddev->disks)) {
2207 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2208 mdk_rdev_t, same_set);
2209 int err = super_types[mddev->major_version]
2210 .load_super(rdev, rdev0, mddev->minor_version);
2211 if (err < 0) {
2212 printk(KERN_WARNING
2213 "md: %s has different UUID to %s\n",
2214 bdevname(rdev->bdev,b),
2215 bdevname(rdev0->bdev,b2));
2216 export_rdev(rdev);
2217 return -EINVAL;
2218 }
2219 }
2220 err = bind_rdev_to_array(rdev, mddev);
2221 if (err)
2222 export_rdev(rdev);
2223 return err;
2224 }
2225
2226 /*
2227 * add_new_disk can be used once the array is assembled
2228 * to add "hot spares". They must already have a superblock
2229 * written
2230 */
2231 if (mddev->pers) {
2232 int err;
2233 if (!mddev->pers->hot_add_disk) {
2234 printk(KERN_WARNING
2235 "%s: personality does not support diskops!\n",
2236 mdname(mddev));
2237 return -EINVAL;
2238 }
7b1e35f6
N
2239 if (mddev->persistent)
2240 rdev = md_import_device(dev, mddev->major_version,
2241 mddev->minor_version);
2242 else
2243 rdev = md_import_device(dev, -1, -1);
1da177e4
LT
2244 if (IS_ERR(rdev)) {
2245 printk(KERN_WARNING
2246 "md: md_import_device returned %ld\n",
2247 PTR_ERR(rdev));
2248 return PTR_ERR(rdev);
2249 }
41158c7e
N
2250 /* set save_raid_disk if appropriate */
2251 if (!mddev->persistent) {
2252 if (info->state & (1<<MD_DISK_SYNC) &&
2253 info->raid_disk < mddev->raid_disks)
2254 rdev->raid_disk = info->raid_disk;
2255 else
2256 rdev->raid_disk = -1;
2257 } else
2258 super_types[mddev->major_version].
2259 validate_super(mddev, rdev);
2260 rdev->saved_raid_disk = rdev->raid_disk;
2261
1da177e4 2262 rdev->in_sync = 0; /* just to be sure */
8ddf9efe
N
2263 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2264 set_bit(WriteMostly, &rdev->flags);
2265
1da177e4
LT
2266 rdev->raid_disk = -1;
2267 err = bind_rdev_to_array(rdev, mddev);
2268 if (err)
2269 export_rdev(rdev);
c361777f
N
2270
2271 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
005eca5e 2272 md_wakeup_thread(mddev->thread);
1da177e4
LT
2273 return err;
2274 }
2275
2276 /* otherwise, add_new_disk is only allowed
2277 * for major_version==0 superblocks
2278 */
2279 if (mddev->major_version != 0) {
2280 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2281 mdname(mddev));
2282 return -EINVAL;
2283 }
2284
2285 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2286 int err;
2287 rdev = md_import_device (dev, -1, 0);
2288 if (IS_ERR(rdev)) {
2289 printk(KERN_WARNING
2290 "md: error, md_import_device() returned %ld\n",
2291 PTR_ERR(rdev));
2292 return PTR_ERR(rdev);
2293 }
2294 rdev->desc_nr = info->number;
2295 if (info->raid_disk < mddev->raid_disks)
2296 rdev->raid_disk = info->raid_disk;
2297 else
2298 rdev->raid_disk = -1;
2299
2300 rdev->faulty = 0;
2301 if (rdev->raid_disk < mddev->raid_disks)
2302 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2303 else
2304 rdev->in_sync = 0;
2305
188c18fd
N
2306 rdev->sb_size = MD_SB_BYTES;
2307
8ddf9efe
N
2308 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2309 set_bit(WriteMostly, &rdev->flags);
2310
1da177e4
LT
2311 err = bind_rdev_to_array(rdev, mddev);
2312 if (err) {
2313 export_rdev(rdev);
2314 return err;
2315 }
2316
2317 if (!mddev->persistent) {
2318 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2319 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2320 } else
2321 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2322 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2323
2324 if (!mddev->size || (mddev->size > rdev->size))
2325 mddev->size = rdev->size;
2326 }
2327
2328 return 0;
2329}
2330
2331static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2332{
2333 char b[BDEVNAME_SIZE];
2334 mdk_rdev_t *rdev;
2335
2336 if (!mddev->pers)
2337 return -ENODEV;
2338
2339 rdev = find_rdev(mddev, dev);
2340 if (!rdev)
2341 return -ENXIO;
2342
2343 if (rdev->raid_disk >= 0)
2344 goto busy;
2345
2346 kick_rdev_from_array(rdev);
2347 md_update_sb(mddev);
2348
2349 return 0;
2350busy:
2351 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2352 bdevname(rdev->bdev,b), mdname(mddev));
2353 return -EBUSY;
2354}
2355
2356static int hot_add_disk(mddev_t * mddev, dev_t dev)
2357{
2358 char b[BDEVNAME_SIZE];
2359 int err;
2360 unsigned int size;
2361 mdk_rdev_t *rdev;
2362
2363 if (!mddev->pers)
2364 return -ENODEV;
2365
2366 if (mddev->major_version != 0) {
2367 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2368 " version-0 superblocks.\n",
2369 mdname(mddev));
2370 return -EINVAL;
2371 }
2372 if (!mddev->pers->hot_add_disk) {
2373 printk(KERN_WARNING
2374 "%s: personality does not support diskops!\n",
2375 mdname(mddev));
2376 return -EINVAL;
2377 }
2378
2379 rdev = md_import_device (dev, -1, 0);
2380 if (IS_ERR(rdev)) {
2381 printk(KERN_WARNING
2382 "md: error, md_import_device() returned %ld\n",
2383 PTR_ERR(rdev));
2384 return -EINVAL;
2385 }
2386
2387 if (mddev->persistent)
2388 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2389 else
2390 rdev->sb_offset =
2391 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2392
2393 size = calc_dev_size(rdev, mddev->chunk_size);
2394 rdev->size = size;
2395
2396 if (size < mddev->size) {
2397 printk(KERN_WARNING
2398 "%s: disk size %llu blocks < array size %llu\n",
2399 mdname(mddev), (unsigned long long)size,
2400 (unsigned long long)mddev->size);
2401 err = -ENOSPC;
2402 goto abort_export;
2403 }
2404
2405 if (rdev->faulty) {
2406 printk(KERN_WARNING
2407 "md: can not hot-add faulty %s disk to %s!\n",
2408 bdevname(rdev->bdev,b), mdname(mddev));
2409 err = -EINVAL;
2410 goto abort_export;
2411 }
2412 rdev->in_sync = 0;
2413 rdev->desc_nr = -1;
2414 bind_rdev_to_array(rdev, mddev);
2415
2416 /*
2417 * The rest should better be atomic, we can have disk failures
2418 * noticed in interrupt contexts ...
2419 */
2420
2421 if (rdev->desc_nr == mddev->max_disks) {
2422 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2423 mdname(mddev));
2424 err = -EBUSY;
2425 goto abort_unbind_export;
2426 }
2427
2428 rdev->raid_disk = -1;
2429
2430 md_update_sb(mddev);
2431
2432 /*
2433 * Kick recovery, maybe this spare has to be added to the
2434 * array immediately.
2435 */
2436 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2437 md_wakeup_thread(mddev->thread);
2438
2439 return 0;
2440
2441abort_unbind_export:
2442 unbind_rdev_from_array(rdev);
2443
2444abort_export:
2445 export_rdev(rdev);
2446 return err;
2447}
2448
32a7627c
N
2449/* similar to deny_write_access, but accounts for our holding a reference
2450 * to the file ourselves */
2451static int deny_bitmap_write_access(struct file * file)
2452{
2453 struct inode *inode = file->f_mapping->host;
2454
2455 spin_lock(&inode->i_lock);
2456 if (atomic_read(&inode->i_writecount) > 1) {
2457 spin_unlock(&inode->i_lock);
2458 return -ETXTBSY;
2459 }
2460 atomic_set(&inode->i_writecount, -1);
2461 spin_unlock(&inode->i_lock);
2462
2463 return 0;
2464}
2465
2466static int set_bitmap_file(mddev_t *mddev, int fd)
2467{
2468 int err;
2469
36fa3063
N
2470 if (mddev->pers) {
2471 if (!mddev->pers->quiesce)
2472 return -EBUSY;
2473 if (mddev->recovery || mddev->sync_thread)
2474 return -EBUSY;
2475 /* we should be able to change the bitmap.. */
2476 }
32a7627c 2477
32a7627c 2478
36fa3063
N
2479 if (fd >= 0) {
2480 if (mddev->bitmap)
2481 return -EEXIST; /* cannot add when bitmap is present */
2482 mddev->bitmap_file = fget(fd);
32a7627c 2483
36fa3063
N
2484 if (mddev->bitmap_file == NULL) {
2485 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2486 mdname(mddev));
2487 return -EBADF;
2488 }
2489
2490 err = deny_bitmap_write_access(mddev->bitmap_file);
2491 if (err) {
2492 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2493 mdname(mddev));
2494 fput(mddev->bitmap_file);
2495 mddev->bitmap_file = NULL;
2496 return err;
2497 }
a654b9d8 2498 mddev->bitmap_offset = 0; /* file overrides offset */
36fa3063
N
2499 } else if (mddev->bitmap == NULL)
2500 return -ENOENT; /* cannot remove what isn't there */
2501 err = 0;
2502 if (mddev->pers) {
2503 mddev->pers->quiesce(mddev, 1);
2504 if (fd >= 0)
2505 err = bitmap_create(mddev);
2506 if (fd < 0 || err)
2507 bitmap_destroy(mddev);
2508 mddev->pers->quiesce(mddev, 0);
2509 } else if (fd < 0) {
2510 if (mddev->bitmap_file)
2511 fput(mddev->bitmap_file);
2512 mddev->bitmap_file = NULL;
2513 }
2514
32a7627c
N
2515 return err;
2516}
2517
1da177e4
LT
2518/*
2519 * set_array_info is used two different ways
2520 * The original usage is when creating a new array.
2521 * In this usage, raid_disks is > 0 and it together with
2522 * level, size, not_persistent,layout,chunksize determine the
2523 * shape of the array.
2524 * This will always create an array with a type-0.90.0 superblock.
2525 * The newer usage is when assembling an array.
2526 * In this case raid_disks will be 0, and the major_version field is
2527 * use to determine which style super-blocks are to be found on the devices.
2528 * The minor and patch _version numbers are also kept incase the
2529 * super_block handler wishes to interpret them.
2530 */
2531static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2532{
2533
2534 if (info->raid_disks == 0) {
2535 /* just setting version number for superblock loading */
2536 if (info->major_version < 0 ||
2537 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2538 super_types[info->major_version].name == NULL) {
2539 /* maybe try to auto-load a module? */
2540 printk(KERN_INFO
2541 "md: superblock version %d not known\n",
2542 info->major_version);
2543 return -EINVAL;
2544 }
2545 mddev->major_version = info->major_version;
2546 mddev->minor_version = info->minor_version;
2547 mddev->patch_version = info->patch_version;
2548 return 0;
2549 }
2550 mddev->major_version = MD_MAJOR_VERSION;
2551 mddev->minor_version = MD_MINOR_VERSION;
2552 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2553 mddev->ctime = get_seconds();
2554
2555 mddev->level = info->level;
2556 mddev->size = info->size;
2557 mddev->raid_disks = info->raid_disks;
2558 /* don't set md_minor, it is determined by which /dev/md* was
2559 * openned
2560 */
2561 if (info->state & (1<<MD_SB_CLEAN))
2562 mddev->recovery_cp = MaxSector;
2563 else
2564 mddev->recovery_cp = 0;
2565 mddev->persistent = ! info->not_persistent;
2566
2567 mddev->layout = info->layout;
2568 mddev->chunk_size = info->chunk_size;
2569
2570 mddev->max_disks = MD_SB_DISKS;
2571
2572 mddev->sb_dirty = 1;
2573
2574 /*
2575 * Generate a 128 bit UUID
2576 */
2577 get_random_bytes(mddev->uuid, 16);
2578
2579 return 0;
2580}
2581
2582/*
2583 * update_array_info is used to change the configuration of an
2584 * on-line array.
2585 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2586 * fields in the info are checked against the array.
2587 * Any differences that cannot be handled will cause an error.
2588 * Normally, only one change can be managed at a time.
2589 */
2590static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2591{
2592 int rv = 0;
2593 int cnt = 0;
36fa3063
N
2594 int state = 0;
2595
2596 /* calculate expected state,ignoring low bits */
2597 if (mddev->bitmap && mddev->bitmap_offset)
2598 state |= (1 << MD_SB_BITMAP_PRESENT);
1da177e4
LT
2599
2600 if (mddev->major_version != info->major_version ||
2601 mddev->minor_version != info->minor_version ||
2602/* mddev->patch_version != info->patch_version || */
2603 mddev->ctime != info->ctime ||
2604 mddev->level != info->level ||
2605/* mddev->layout != info->layout || */
2606 !mddev->persistent != info->not_persistent||
36fa3063
N
2607 mddev->chunk_size != info->chunk_size ||
2608 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2609 ((state^info->state) & 0xfffffe00)
2610 )
1da177e4
LT
2611 return -EINVAL;
2612 /* Check there is only one change */
2613 if (mddev->size != info->size) cnt++;
2614 if (mddev->raid_disks != info->raid_disks) cnt++;
2615 if (mddev->layout != info->layout) cnt++;
36fa3063 2616 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
1da177e4
LT
2617 if (cnt == 0) return 0;
2618 if (cnt > 1) return -EINVAL;
2619
2620 if (mddev->layout != info->layout) {
2621 /* Change layout
2622 * we don't need to do anything at the md level, the
2623 * personality will take care of it all.
2624 */
2625 if (mddev->pers->reconfig == NULL)
2626 return -EINVAL;
2627 else
2628 return mddev->pers->reconfig(mddev, info->layout, -1);
2629 }
2630 if (mddev->size != info->size) {
2631 mdk_rdev_t * rdev;
2632 struct list_head *tmp;
2633 if (mddev->pers->resize == NULL)
2634 return -EINVAL;
2635 /* The "size" is the amount of each device that is used.
2636 * This can only make sense for arrays with redundancy.
2637 * linear and raid0 always use whatever space is available
2638 * We can only consider changing the size if no resync
2639 * or reconstruction is happening, and if the new size
2640 * is acceptable. It must fit before the sb_offset or,
2641 * if that is <data_offset, it must fit before the
2642 * size of each device.
2643 * If size is zero, we find the largest size that fits.
2644 */
2645 if (mddev->sync_thread)
2646 return -EBUSY;
2647 ITERATE_RDEV(mddev,rdev,tmp) {
2648 sector_t avail;
2649 int fit = (info->size == 0);
2650 if (rdev->sb_offset > rdev->data_offset)
2651 avail = (rdev->sb_offset*2) - rdev->data_offset;
2652 else
2653 avail = get_capacity(rdev->bdev->bd_disk)
2654 - rdev->data_offset;
2655 if (fit && (info->size == 0 || info->size > avail/2))
2656 info->size = avail/2;
2657 if (avail < ((sector_t)info->size << 1))
2658 return -ENOSPC;
2659 }
2660 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2661 if (!rv) {
2662 struct block_device *bdev;
2663
2664 bdev = bdget_disk(mddev->gendisk, 0);
2665 if (bdev) {
2666 down(&bdev->bd_inode->i_sem);
2667 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2668 up(&bdev->bd_inode->i_sem);
2669 bdput(bdev);
2670 }
2671 }
2672 }
2673 if (mddev->raid_disks != info->raid_disks) {
2674 /* change the number of raid disks */
2675 if (mddev->pers->reshape == NULL)
2676 return -EINVAL;
2677 if (info->raid_disks <= 0 ||
2678 info->raid_disks >= mddev->max_disks)
2679 return -EINVAL;
2680 if (mddev->sync_thread)
2681 return -EBUSY;
2682 rv = mddev->pers->reshape(mddev, info->raid_disks);
2683 if (!rv) {
2684 struct block_device *bdev;
2685
2686 bdev = bdget_disk(mddev->gendisk, 0);
2687 if (bdev) {
2688 down(&bdev->bd_inode->i_sem);
2689 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2690 up(&bdev->bd_inode->i_sem);
2691 bdput(bdev);
2692 }
2693 }
2694 }
36fa3063
N
2695 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
2696 if (mddev->pers->quiesce == NULL)
2697 return -EINVAL;
2698 if (mddev->recovery || mddev->sync_thread)
2699 return -EBUSY;
2700 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
2701 /* add the bitmap */
2702 if (mddev->bitmap)
2703 return -EEXIST;
2704 if (mddev->default_bitmap_offset == 0)
2705 return -EINVAL;
2706 mddev->bitmap_offset = mddev->default_bitmap_offset;
2707 mddev->pers->quiesce(mddev, 1);
2708 rv = bitmap_create(mddev);
2709 if (rv)
2710 bitmap_destroy(mddev);
2711 mddev->pers->quiesce(mddev, 0);
2712 } else {
2713 /* remove the bitmap */
2714 if (!mddev->bitmap)
2715 return -ENOENT;
2716 if (mddev->bitmap->file)
2717 return -EINVAL;
2718 mddev->pers->quiesce(mddev, 1);
2719 bitmap_destroy(mddev);
2720 mddev->pers->quiesce(mddev, 0);
2721 mddev->bitmap_offset = 0;
2722 }
2723 }
1da177e4
LT
2724 md_update_sb(mddev);
2725 return rv;
2726}
2727
2728static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2729{
2730 mdk_rdev_t *rdev;
2731
2732 if (mddev->pers == NULL)
2733 return -ENODEV;
2734
2735 rdev = find_rdev(mddev, dev);
2736 if (!rdev)
2737 return -ENODEV;
2738
2739 md_error(mddev, rdev);
2740 return 0;
2741}
2742
2743static int md_ioctl(struct inode *inode, struct file *file,
2744 unsigned int cmd, unsigned long arg)
2745{
2746 int err = 0;
2747 void __user *argp = (void __user *)arg;
2748 struct hd_geometry __user *loc = argp;
2749 mddev_t *mddev = NULL;
2750
2751 if (!capable(CAP_SYS_ADMIN))
2752 return -EACCES;
2753
2754 /*
2755 * Commands dealing with the RAID driver but not any
2756 * particular array:
2757 */
2758 switch (cmd)
2759 {
2760 case RAID_VERSION:
2761 err = get_version(argp);
2762 goto done;
2763
2764 case PRINT_RAID_DEBUG:
2765 err = 0;
2766 md_print_devices();
2767 goto done;
2768
2769#ifndef MODULE
2770 case RAID_AUTORUN:
2771 err = 0;
2772 autostart_arrays(arg);
2773 goto done;
2774#endif
2775 default:;
2776 }
2777
2778 /*
2779 * Commands creating/starting a new array:
2780 */
2781
2782 mddev = inode->i_bdev->bd_disk->private_data;
2783
2784 if (!mddev) {
2785 BUG();
2786 goto abort;
2787 }
2788
2789
2790 if (cmd == START_ARRAY) {
2791 /* START_ARRAY doesn't need to lock the array as autostart_array
2792 * does the locking, and it could even be a different array
2793 */
2794 static int cnt = 3;
2795 if (cnt > 0 ) {
2796 printk(KERN_WARNING
2797 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2798 "This will not be supported beyond 2.6\n",
2799 current->comm, current->pid);
2800 cnt--;
2801 }
2802 err = autostart_array(new_decode_dev(arg));
2803 if (err) {
2804 printk(KERN_WARNING "md: autostart failed!\n");
2805 goto abort;
2806 }
2807 goto done;
2808 }
2809
2810 err = mddev_lock(mddev);
2811 if (err) {
2812 printk(KERN_INFO
2813 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2814 err, cmd);
2815 goto abort;
2816 }
2817
2818 switch (cmd)
2819 {
2820 case SET_ARRAY_INFO:
2821 {
2822 mdu_array_info_t info;
2823 if (!arg)
2824 memset(&info, 0, sizeof(info));
2825 else if (copy_from_user(&info, argp, sizeof(info))) {
2826 err = -EFAULT;
2827 goto abort_unlock;
2828 }
2829 if (mddev->pers) {
2830 err = update_array_info(mddev, &info);
2831 if (err) {
2832 printk(KERN_WARNING "md: couldn't update"
2833 " array info. %d\n", err);
2834 goto abort_unlock;
2835 }
2836 goto done_unlock;
2837 }
2838 if (!list_empty(&mddev->disks)) {
2839 printk(KERN_WARNING
2840 "md: array %s already has disks!\n",
2841 mdname(mddev));
2842 err = -EBUSY;
2843 goto abort_unlock;
2844 }
2845 if (mddev->raid_disks) {
2846 printk(KERN_WARNING
2847 "md: array %s already initialised!\n",
2848 mdname(mddev));
2849 err = -EBUSY;
2850 goto abort_unlock;
2851 }
2852 err = set_array_info(mddev, &info);
2853 if (err) {
2854 printk(KERN_WARNING "md: couldn't set"
2855 " array info. %d\n", err);
2856 goto abort_unlock;
2857 }
2858 }
2859 goto done_unlock;
2860
2861 default:;
2862 }
2863
2864 /*
2865 * Commands querying/configuring an existing array:
2866 */
32a7627c
N
2867 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2868 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2869 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2870 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
1da177e4
LT
2871 err = -ENODEV;
2872 goto abort_unlock;
2873 }
2874
2875 /*
2876 * Commands even a read-only array can execute:
2877 */
2878 switch (cmd)
2879 {
2880 case GET_ARRAY_INFO:
2881 err = get_array_info(mddev, argp);
2882 goto done_unlock;
2883
32a7627c 2884 case GET_BITMAP_FILE:
87162a28 2885 err = get_bitmap_file(mddev, argp);
32a7627c
N
2886 goto done_unlock;
2887
1da177e4
LT
2888 case GET_DISK_INFO:
2889 err = get_disk_info(mddev, argp);
2890 goto done_unlock;
2891
2892 case RESTART_ARRAY_RW:
2893 err = restart_array(mddev);
2894 goto done_unlock;
2895
2896 case STOP_ARRAY:
2897 err = do_md_stop (mddev, 0);
2898 goto done_unlock;
2899
2900 case STOP_ARRAY_RO:
2901 err = do_md_stop (mddev, 1);
2902 goto done_unlock;
2903
2904 /*
2905 * We have a problem here : there is no easy way to give a CHS
2906 * virtual geometry. We currently pretend that we have a 2 heads
2907 * 4 sectors (with a BIG number of cylinders...). This drives
2908 * dosfs just mad... ;-)
2909 */
2910 case HDIO_GETGEO:
2911 if (!loc) {
2912 err = -EINVAL;
2913 goto abort_unlock;
2914 }
2915 err = put_user (2, (char __user *) &loc->heads);
2916 if (err)
2917 goto abort_unlock;
2918 err = put_user (4, (char __user *) &loc->sectors);
2919 if (err)
2920 goto abort_unlock;
2921 err = put_user(get_capacity(mddev->gendisk)/8,
2922 (short __user *) &loc->cylinders);
2923 if (err)
2924 goto abort_unlock;
2925 err = put_user (get_start_sect(inode->i_bdev),
2926 (long __user *) &loc->start);
2927 goto done_unlock;
2928 }
2929
2930 /*
2931 * The remaining ioctls are changing the state of the
2932 * superblock, so we do not allow read-only arrays
2933 * here:
2934 */
2935 if (mddev->ro) {
2936 err = -EROFS;
2937 goto abort_unlock;
2938 }
2939
2940 switch (cmd)
2941 {
2942 case ADD_NEW_DISK:
2943 {
2944 mdu_disk_info_t info;
2945 if (copy_from_user(&info, argp, sizeof(info)))
2946 err = -EFAULT;
2947 else
2948 err = add_new_disk(mddev, &info);
2949 goto done_unlock;
2950 }
2951
2952 case HOT_REMOVE_DISK:
2953 err = hot_remove_disk(mddev, new_decode_dev(arg));
2954 goto done_unlock;
2955
2956 case HOT_ADD_DISK:
2957 err = hot_add_disk(mddev, new_decode_dev(arg));
2958 goto done_unlock;
2959
2960 case SET_DISK_FAULTY:
2961 err = set_disk_faulty(mddev, new_decode_dev(arg));
2962 goto done_unlock;
2963
2964 case RUN_ARRAY:
2965 err = do_md_run (mddev);
2966 goto done_unlock;
2967
32a7627c
N
2968 case SET_BITMAP_FILE:
2969 err = set_bitmap_file(mddev, (int)arg);
2970 goto done_unlock;
2971
1da177e4
LT
2972 default:
2973 if (_IOC_TYPE(cmd) == MD_MAJOR)
2974 printk(KERN_WARNING "md: %s(pid %d) used"
2975 " obsolete MD ioctl, upgrade your"
2976 " software to use new ictls.\n",
2977 current->comm, current->pid);
2978 err = -EINVAL;
2979 goto abort_unlock;
2980 }
2981
2982done_unlock:
2983abort_unlock:
2984 mddev_unlock(mddev);
2985
2986 return err;
2987done:
2988 if (err)
2989 MD_BUG();
2990abort:
2991 return err;
2992}
2993
2994static int md_open(struct inode *inode, struct file *file)
2995{
2996 /*
2997 * Succeed if we can lock the mddev, which confirms that
2998 * it isn't being stopped right now.
2999 */
3000 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3001 int err;
3002
3003 if ((err = mddev_lock(mddev)))
3004 goto out;
3005
3006 err = 0;
3007 mddev_get(mddev);
3008 mddev_unlock(mddev);
3009
3010 check_disk_change(inode->i_bdev);
3011 out:
3012 return err;
3013}
3014
3015static int md_release(struct inode *inode, struct file * file)
3016{
3017 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3018
3019 if (!mddev)
3020 BUG();
3021 mddev_put(mddev);
3022
3023 return 0;
3024}
3025
3026static int md_media_changed(struct gendisk *disk)
3027{
3028 mddev_t *mddev = disk->private_data;
3029
3030 return mddev->changed;
3031}
3032
3033static int md_revalidate(struct gendisk *disk)
3034{
3035 mddev_t *mddev = disk->private_data;
3036
3037 mddev->changed = 0;
3038 return 0;
3039}
3040static struct block_device_operations md_fops =
3041{
3042 .owner = THIS_MODULE,
3043 .open = md_open,
3044 .release = md_release,
3045 .ioctl = md_ioctl,
3046 .media_changed = md_media_changed,
3047 .revalidate_disk= md_revalidate,
3048};
3049
75c96f85 3050static int md_thread(void * arg)
1da177e4
LT
3051{
3052 mdk_thread_t *thread = arg;
3053
1da177e4
LT
3054 /*
3055 * md_thread is a 'system-thread', it's priority should be very
3056 * high. We avoid resource deadlocks individually in each
3057 * raid personality. (RAID5 does preallocation) We also use RR and
3058 * the very same RT priority as kswapd, thus we will never get
3059 * into a priority inversion deadlock.
3060 *
3061 * we definitely have to have equal or higher priority than
3062 * bdflush, otherwise bdflush will deadlock if there are too
3063 * many dirty RAID5 blocks.
3064 */
1da177e4
LT
3065
3066 complete(thread->event);
a6fb0934 3067 while (!kthread_should_stop()) {
1da177e4
LT
3068 void (*run)(mddev_t *);
3069
32a7627c 3070 wait_event_interruptible_timeout(thread->wqueue,
a6fb0934
N
3071 test_bit(THREAD_WAKEUP, &thread->flags)
3072 || kthread_should_stop(),
32a7627c 3073 thread->timeout);
3e1d1d28 3074 try_to_freeze();
1da177e4
LT
3075
3076 clear_bit(THREAD_WAKEUP, &thread->flags);
3077
3078 run = thread->run;
3079 if (run)
3080 run(thread->mddev);
1da177e4 3081 }
a6fb0934 3082
1da177e4
LT
3083 return 0;
3084}
3085
3086void md_wakeup_thread(mdk_thread_t *thread)
3087{
3088 if (thread) {
3089 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3090 set_bit(THREAD_WAKEUP, &thread->flags);
3091 wake_up(&thread->wqueue);
3092 }
3093}
3094
3095mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3096 const char *name)
3097{
3098 mdk_thread_t *thread;
1da177e4
LT
3099 struct completion event;
3100
a6fb0934 3101 thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
1da177e4
LT
3102 if (!thread)
3103 return NULL;
3104
3105 memset(thread, 0, sizeof(mdk_thread_t));
3106 init_waitqueue_head(&thread->wqueue);
3107
3108 init_completion(&event);
3109 thread->event = &event;
3110 thread->run = run;
3111 thread->mddev = mddev;
3112 thread->name = name;
32a7627c 3113 thread->timeout = MAX_SCHEDULE_TIMEOUT;
a6fb0934
N
3114 thread->tsk = kthread_run(md_thread, thread, mdname(thread->mddev));
3115 if (IS_ERR(thread->tsk)) {
1da177e4
LT
3116 kfree(thread);
3117 return NULL;
3118 }
3119 wait_for_completion(&event);
3120 return thread;
3121}
3122
1da177e4
LT
3123void md_unregister_thread(mdk_thread_t *thread)
3124{
d28446fe 3125 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
a6fb0934
N
3126
3127 kthread_stop(thread->tsk);
1da177e4
LT
3128 kfree(thread);
3129}
3130
3131void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3132{
3133 if (!mddev) {
3134 MD_BUG();
3135 return;
3136 }
3137
3138 if (!rdev || rdev->faulty)
3139 return;
32a7627c 3140/*
1da177e4
LT
3141 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3142 mdname(mddev),
3143 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3144 __builtin_return_address(0),__builtin_return_address(1),
3145 __builtin_return_address(2),__builtin_return_address(3));
32a7627c 3146*/
1da177e4
LT
3147 if (!mddev->pers->error_handler)
3148 return;
3149 mddev->pers->error_handler(mddev,rdev);
3150 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3151 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3152 md_wakeup_thread(mddev->thread);
3153}
3154
3155/* seq_file implementation /proc/mdstat */
3156
3157static void status_unused(struct seq_file *seq)
3158{
3159 int i = 0;
3160 mdk_rdev_t *rdev;
3161 struct list_head *tmp;
3162
3163 seq_printf(seq, "unused devices: ");
3164
3165 ITERATE_RDEV_PENDING(rdev,tmp) {
3166 char b[BDEVNAME_SIZE];
3167 i++;
3168 seq_printf(seq, "%s ",
3169 bdevname(rdev->bdev,b));
3170 }
3171 if (!i)
3172 seq_printf(seq, "<none>");
3173
3174 seq_printf(seq, "\n");
3175}
3176
3177
3178static void status_resync(struct seq_file *seq, mddev_t * mddev)
3179{
3180 unsigned long max_blocks, resync, res, dt, db, rt;
3181
3182 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3183
3184 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3185 max_blocks = mddev->resync_max_sectors >> 1;
3186 else
3187 max_blocks = mddev->size;
3188
3189 /*
3190 * Should not happen.
3191 */
3192 if (!max_blocks) {
3193 MD_BUG();
3194 return;
3195 }
3196 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3197 {
3198 int i, x = res/50, y = 20-x;
3199 seq_printf(seq, "[");
3200 for (i = 0; i < x; i++)
3201 seq_printf(seq, "=");
3202 seq_printf(seq, ">");
3203 for (i = 0; i < y; i++)
3204 seq_printf(seq, ".");
3205 seq_printf(seq, "] ");
3206 }
3207 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3208 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3209 "resync" : "recovery"),
3210 res/10, res % 10, resync, max_blocks);
3211
3212 /*
3213 * We do not want to overflow, so the order of operands and
3214 * the * 100 / 100 trick are important. We do a +1 to be
3215 * safe against division by zero. We only estimate anyway.
3216 *
3217 * dt: time from mark until now
3218 * db: blocks written from mark until now
3219 * rt: remaining time
3220 */
3221 dt = ((jiffies - mddev->resync_mark) / HZ);
3222 if (!dt) dt++;
3223 db = resync - (mddev->resync_mark_cnt/2);
3224 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3225
3226 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3227
3228 seq_printf(seq, " speed=%ldK/sec", db/dt);
3229}
3230
3231static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3232{
3233 struct list_head *tmp;
3234 loff_t l = *pos;
3235 mddev_t *mddev;
3236
3237 if (l >= 0x10000)
3238 return NULL;
3239 if (!l--)
3240 /* header */
3241 return (void*)1;
3242
3243 spin_lock(&all_mddevs_lock);
3244 list_for_each(tmp,&all_mddevs)
3245 if (!l--) {
3246 mddev = list_entry(tmp, mddev_t, all_mddevs);
3247 mddev_get(mddev);
3248 spin_unlock(&all_mddevs_lock);
3249 return mddev;
3250 }
3251 spin_unlock(&all_mddevs_lock);
3252 if (!l--)
3253 return (void*)2;/* tail */
3254 return NULL;
3255}
3256
3257static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3258{
3259 struct list_head *tmp;
3260 mddev_t *next_mddev, *mddev = v;
3261
3262 ++*pos;
3263 if (v == (void*)2)
3264 return NULL;
3265
3266 spin_lock(&all_mddevs_lock);
3267 if (v == (void*)1)
3268 tmp = all_mddevs.next;
3269 else
3270 tmp = mddev->all_mddevs.next;
3271 if (tmp != &all_mddevs)
3272 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3273 else {
3274 next_mddev = (void*)2;
3275 *pos = 0x10000;
3276 }
3277 spin_unlock(&all_mddevs_lock);
3278
3279 if (v != (void*)1)
3280 mddev_put(mddev);
3281 return next_mddev;
3282
3283}
3284
3285static void md_seq_stop(struct seq_file *seq, void *v)
3286{
3287 mddev_t *mddev = v;
3288
3289 if (mddev && v != (void*)1 && v != (void*)2)
3290 mddev_put(mddev);
3291}
3292
3293static int md_seq_show(struct seq_file *seq, void *v)
3294{
3295 mddev_t *mddev = v;
3296 sector_t size;
3297 struct list_head *tmp2;
3298 mdk_rdev_t *rdev;
3299 int i;
32a7627c 3300 struct bitmap *bitmap;
1da177e4
LT
3301
3302 if (v == (void*)1) {
3303 seq_printf(seq, "Personalities : ");
3304 spin_lock(&pers_lock);
3305 for (i = 0; i < MAX_PERSONALITY; i++)
3306 if (pers[i])
3307 seq_printf(seq, "[%s] ", pers[i]->name);
3308
3309 spin_unlock(&pers_lock);
3310 seq_printf(seq, "\n");
3311 return 0;
3312 }
3313 if (v == (void*)2) {
3314 status_unused(seq);
3315 return 0;
3316 }
3317
3318 if (mddev_lock(mddev)!=0)
3319 return -EINTR;
3320 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3321 seq_printf(seq, "%s : %sactive", mdname(mddev),
3322 mddev->pers ? "" : "in");
3323 if (mddev->pers) {
3324 if (mddev->ro)
3325 seq_printf(seq, " (read-only)");
3326 seq_printf(seq, " %s", mddev->pers->name);
3327 }
3328
3329 size = 0;
3330 ITERATE_RDEV(mddev,rdev,tmp2) {
3331 char b[BDEVNAME_SIZE];
3332 seq_printf(seq, " %s[%d]",
3333 bdevname(rdev->bdev,b), rdev->desc_nr);
8ddf9efe
N
3334 if (test_bit(WriteMostly, &rdev->flags))
3335 seq_printf(seq, "(W)");
1da177e4
LT
3336 if (rdev->faulty) {
3337 seq_printf(seq, "(F)");
3338 continue;
b325a32e
N
3339 } else if (rdev->raid_disk < 0)
3340 seq_printf(seq, "(S)"); /* spare */
1da177e4
LT
3341 size += rdev->size;
3342 }
3343
3344 if (!list_empty(&mddev->disks)) {
3345 if (mddev->pers)
3346 seq_printf(seq, "\n %llu blocks",
3347 (unsigned long long)mddev->array_size);
3348 else
3349 seq_printf(seq, "\n %llu blocks",
3350 (unsigned long long)size);
3351 }
1cd6bf19
N
3352 if (mddev->persistent) {
3353 if (mddev->major_version != 0 ||
3354 mddev->minor_version != 90) {
3355 seq_printf(seq," super %d.%d",
3356 mddev->major_version,
3357 mddev->minor_version);
3358 }
3359 } else
3360 seq_printf(seq, " super non-persistent");
1da177e4
LT
3361
3362 if (mddev->pers) {
3363 mddev->pers->status (seq, mddev);
3364 seq_printf(seq, "\n ");
32a7627c 3365 if (mddev->curr_resync > 2) {
1da177e4 3366 status_resync (seq, mddev);
32a7627c
N
3367 seq_printf(seq, "\n ");
3368 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3369 seq_printf(seq, " resync=DELAYED\n ");
3370 } else
3371 seq_printf(seq, "\n ");
3372
3373 if ((bitmap = mddev->bitmap)) {
32a7627c
N
3374 unsigned long chunk_kb;
3375 unsigned long flags;
32a7627c
N
3376 spin_lock_irqsave(&bitmap->lock, flags);
3377 chunk_kb = bitmap->chunksize >> 10;
3378 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3379 "%lu%s chunk",
3380 bitmap->pages - bitmap->missing_pages,
3381 bitmap->pages,
3382 (bitmap->pages - bitmap->missing_pages)
3383 << (PAGE_SHIFT - 10),
3384 chunk_kb ? chunk_kb : bitmap->chunksize,
3385 chunk_kb ? "KB" : "B");
78d742d8
N
3386 if (bitmap->file) {
3387 seq_printf(seq, ", file: ");
3388 seq_path(seq, bitmap->file->f_vfsmnt,
3389 bitmap->file->f_dentry," \t\n");
32a7627c 3390 }
78d742d8 3391
32a7627c
N
3392 seq_printf(seq, "\n");
3393 spin_unlock_irqrestore(&bitmap->lock, flags);
1da177e4
LT
3394 }
3395
3396 seq_printf(seq, "\n");
3397 }
3398 mddev_unlock(mddev);
3399
3400 return 0;
3401}
3402
3403static struct seq_operations md_seq_ops = {
3404 .start = md_seq_start,
3405 .next = md_seq_next,
3406 .stop = md_seq_stop,
3407 .show = md_seq_show,
3408};
3409
3410static int md_seq_open(struct inode *inode, struct file *file)
3411{
3412 int error;
3413
3414 error = seq_open(file, &md_seq_ops);
3415 return error;
3416}
3417
3418static struct file_operations md_seq_fops = {
3419 .open = md_seq_open,
3420 .read = seq_read,
3421 .llseek = seq_lseek,
3422 .release = seq_release,
3423};
3424
3425int register_md_personality(int pnum, mdk_personality_t *p)
3426{
3427 if (pnum >= MAX_PERSONALITY) {
3428 printk(KERN_ERR
3429 "md: tried to install personality %s as nr %d, but max is %lu\n",
3430 p->name, pnum, MAX_PERSONALITY-1);
3431 return -EINVAL;
3432 }
3433
3434 spin_lock(&pers_lock);
3435 if (pers[pnum]) {
3436 spin_unlock(&pers_lock);
1da177e4
LT
3437 return -EBUSY;
3438 }
3439
3440 pers[pnum] = p;
3441 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3442 spin_unlock(&pers_lock);
3443 return 0;
3444}
3445
3446int unregister_md_personality(int pnum)
3447{
a757e64c 3448 if (pnum >= MAX_PERSONALITY)
1da177e4 3449 return -EINVAL;
1da177e4
LT
3450
3451 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3452 spin_lock(&pers_lock);
3453 pers[pnum] = NULL;
3454 spin_unlock(&pers_lock);
3455 return 0;
3456}
3457
3458static int is_mddev_idle(mddev_t *mddev)
3459{
3460 mdk_rdev_t * rdev;
3461 struct list_head *tmp;
3462 int idle;
3463 unsigned long curr_events;
3464
3465 idle = 1;
3466 ITERATE_RDEV(mddev,rdev,tmp) {
3467 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3468 curr_events = disk_stat_read(disk, read_sectors) +
3469 disk_stat_read(disk, write_sectors) -
3470 atomic_read(&disk->sync_io);
3471 /* Allow some slack between valud of curr_events and last_events,
3472 * as there are some uninteresting races.
3473 * Note: the following is an unsigned comparison.
3474 */
3475 if ((curr_events - rdev->last_events + 32) > 64) {
3476 rdev->last_events = curr_events;
3477 idle = 0;
3478 }
3479 }
3480 return idle;
3481}
3482
3483void md_done_sync(mddev_t *mddev, int blocks, int ok)
3484{
3485 /* another "blocks" (512byte) blocks have been synced */
3486 atomic_sub(blocks, &mddev->recovery_active);
3487 wake_up(&mddev->recovery_wait);
3488 if (!ok) {
3489 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3490 md_wakeup_thread(mddev->thread);
3491 // stop recovery, signal do_sync ....
3492 }
3493}
3494
3495
06d91a5f
N
3496/* md_write_start(mddev, bi)
3497 * If we need to update some array metadata (e.g. 'active' flag
3d310eb7
N
3498 * in superblock) before writing, schedule a superblock update
3499 * and wait for it to complete.
06d91a5f 3500 */
3d310eb7 3501void md_write_start(mddev_t *mddev, struct bio *bi)
1da177e4 3502{
06d91a5f 3503 if (bio_data_dir(bi) != WRITE)
3d310eb7 3504 return;
06d91a5f
N
3505
3506 atomic_inc(&mddev->writes_pending);
06d91a5f 3507 if (mddev->in_sync) {
3d310eb7
N
3508 spin_lock(&mddev->write_lock);
3509 if (mddev->in_sync) {
3510 mddev->in_sync = 0;
3511 mddev->sb_dirty = 1;
3512 md_wakeup_thread(mddev->thread);
3513 }
3514 spin_unlock(&mddev->write_lock);
06d91a5f 3515 }
3d310eb7 3516 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
1da177e4
LT
3517}
3518
3519void md_write_end(mddev_t *mddev)
3520{
3521 if (atomic_dec_and_test(&mddev->writes_pending)) {
3522 if (mddev->safemode == 2)
3523 md_wakeup_thread(mddev->thread);
3524 else
3525 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3526 }
3527}
3528
75c96f85 3529static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
1da177e4
LT
3530
3531#define SYNC_MARKS 10
3532#define SYNC_MARK_STEP (3*HZ)
3533static void md_do_sync(mddev_t *mddev)
3534{
3535 mddev_t *mddev2;
3536 unsigned int currspeed = 0,
3537 window;
57afd89f 3538 sector_t max_sectors,j, io_sectors;
1da177e4
LT
3539 unsigned long mark[SYNC_MARKS];
3540 sector_t mark_cnt[SYNC_MARKS];
3541 int last_mark,m;
3542 struct list_head *tmp;
3543 sector_t last_check;
57afd89f 3544 int skipped = 0;
1da177e4
LT
3545
3546 /* just incase thread restarts... */
3547 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3548 return;
3549
3550 /* we overload curr_resync somewhat here.
3551 * 0 == not engaged in resync at all
3552 * 2 == checking that there is no conflict with another sync
3553 * 1 == like 2, but have yielded to allow conflicting resync to
3554 * commense
3555 * other == active in resync - this many blocks
3556 *
3557 * Before starting a resync we must have set curr_resync to
3558 * 2, and then checked that every "conflicting" array has curr_resync
3559 * less than ours. When we find one that is the same or higher
3560 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3561 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3562 * This will mean we have to start checking from the beginning again.
3563 *
3564 */
3565
3566 do {
3567 mddev->curr_resync = 2;
3568
3569 try_again:
3570 if (signal_pending(current)) {
3571 flush_signals(current);
3572 goto skip;
3573 }
3574 ITERATE_MDDEV(mddev2,tmp) {
1da177e4
LT
3575 if (mddev2 == mddev)
3576 continue;
3577 if (mddev2->curr_resync &&
3578 match_mddev_units(mddev,mddev2)) {
3579 DEFINE_WAIT(wq);
3580 if (mddev < mddev2 && mddev->curr_resync == 2) {
3581 /* arbitrarily yield */
3582 mddev->curr_resync = 1;
3583 wake_up(&resync_wait);
3584 }
3585 if (mddev > mddev2 && mddev->curr_resync == 1)
3586 /* no need to wait here, we can wait the next
3587 * time 'round when curr_resync == 2
3588 */
3589 continue;
3590 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3591 if (!signal_pending(current)
3592 && mddev2->curr_resync >= mddev->curr_resync) {
3593 printk(KERN_INFO "md: delaying resync of %s"
3594 " until %s has finished resync (they"
3595 " share one or more physical units)\n",
3596 mdname(mddev), mdname(mddev2));
3597 mddev_put(mddev2);
3598 schedule();
3599 finish_wait(&resync_wait, &wq);
3600 goto try_again;
3601 }
3602 finish_wait(&resync_wait, &wq);
3603 }
3604 }
3605 } while (mddev->curr_resync < 2);
3606
3607 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3608 /* resync follows the size requested by the personality,
57afd89f 3609 * which defaults to physical size, but can be virtual size
1da177e4
LT
3610 */
3611 max_sectors = mddev->resync_max_sectors;
3612 else
3613 /* recovery follows the physical size of devices */
3614 max_sectors = mddev->size << 1;
3615
3616 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3617 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3618 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3619 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3620 "(but not more than %d KB/sec) for reconstruction.\n",
3621 sysctl_speed_limit_max);
3622
3623 is_mddev_idle(mddev); /* this also initializes IO event counters */
32a7627c
N
3624 /* we don't use the checkpoint if there's a bitmap */
3625 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
1da177e4
LT
3626 j = mddev->recovery_cp;
3627 else
3628 j = 0;
57afd89f 3629 io_sectors = 0;
1da177e4
LT
3630 for (m = 0; m < SYNC_MARKS; m++) {
3631 mark[m] = jiffies;
57afd89f 3632 mark_cnt[m] = io_sectors;
1da177e4
LT
3633 }
3634 last_mark = 0;
3635 mddev->resync_mark = mark[last_mark];
3636 mddev->resync_mark_cnt = mark_cnt[last_mark];
3637
3638 /*
3639 * Tune reconstruction:
3640 */
3641 window = 32*(PAGE_SIZE/512);
3642 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3643 window/2,(unsigned long long) max_sectors/2);
3644
3645 atomic_set(&mddev->recovery_active, 0);
3646 init_waitqueue_head(&mddev->recovery_wait);
3647 last_check = 0;
3648
3649 if (j>2) {
3650 printk(KERN_INFO
3651 "md: resuming recovery of %s from checkpoint.\n",
3652 mdname(mddev));
3653 mddev->curr_resync = j;
3654 }
3655
3656 while (j < max_sectors) {
57afd89f 3657 sector_t sectors;
1da177e4 3658
57afd89f
N
3659 skipped = 0;
3660 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3661 currspeed < sysctl_speed_limit_min);
3662 if (sectors == 0) {
1da177e4
LT
3663 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3664 goto out;
3665 }
57afd89f
N
3666
3667 if (!skipped) { /* actual IO requested */
3668 io_sectors += sectors;
3669 atomic_add(sectors, &mddev->recovery_active);
3670 }
3671
1da177e4
LT
3672 j += sectors;
3673 if (j>1) mddev->curr_resync = j;
3674
57afd89f
N
3675
3676 if (last_check + window > io_sectors || j == max_sectors)
1da177e4
LT
3677 continue;
3678
57afd89f 3679 last_check = io_sectors;
1da177e4
LT
3680
3681 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3682 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3683 break;
3684
3685 repeat:
3686 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3687 /* step marks */
3688 int next = (last_mark+1) % SYNC_MARKS;
3689
3690 mddev->resync_mark = mark[next];
3691 mddev->resync_mark_cnt = mark_cnt[next];
3692 mark[next] = jiffies;
57afd89f 3693 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
1da177e4
LT
3694 last_mark = next;
3695 }
3696
3697
3698 if (signal_pending(current)) {
3699 /*
3700 * got a signal, exit.
3701 */
3702 printk(KERN_INFO
3703 "md: md_do_sync() got signal ... exiting\n");
3704 flush_signals(current);
3705 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3706 goto out;
3707 }
3708
3709 /*
3710 * this loop exits only if either when we are slower than
3711 * the 'hard' speed limit, or the system was IO-idle for
3712 * a jiffy.
3713 * the system might be non-idle CPU-wise, but we only care
3714 * about not overloading the IO subsystem. (things like an
3715 * e2fsck being done on the RAID array should execute fast)
3716 */
3717 mddev->queue->unplug_fn(mddev->queue);
3718 cond_resched();
3719
57afd89f
N
3720 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3721 /((jiffies-mddev->resync_mark)/HZ +1) +1;
1da177e4
LT
3722
3723 if (currspeed > sysctl_speed_limit_min) {
3724 if ((currspeed > sysctl_speed_limit_max) ||
3725 !is_mddev_idle(mddev)) {
3726 msleep_interruptible(250);
3727 goto repeat;
3728 }
3729 }
3730 }
3731 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3732 /*
3733 * this also signals 'finished resyncing' to md_stop
3734 */
3735 out:
3736 mddev->queue->unplug_fn(mddev->queue);
3737
3738 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3739
3740 /* tell personality that we are finished */
57afd89f 3741 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
1da177e4
LT
3742
3743 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3744 mddev->curr_resync > 2 &&
3745 mddev->curr_resync >= mddev->recovery_cp) {
3746 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3747 printk(KERN_INFO
3748 "md: checkpointing recovery of %s.\n",
3749 mdname(mddev));
3750 mddev->recovery_cp = mddev->curr_resync;
3751 } else
3752 mddev->recovery_cp = MaxSector;
3753 }
3754
1da177e4
LT
3755 skip:
3756 mddev->curr_resync = 0;
3757 wake_up(&resync_wait);
3758 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3759 md_wakeup_thread(mddev->thread);
3760}
3761
3762
3763/*
3764 * This routine is regularly called by all per-raid-array threads to
3765 * deal with generic issues like resync and super-block update.
3766 * Raid personalities that don't have a thread (linear/raid0) do not
3767 * need this as they never do any recovery or update the superblock.
3768 *
3769 * It does not do any resync itself, but rather "forks" off other threads
3770 * to do that as needed.
3771 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3772 * "->recovery" and create a thread at ->sync_thread.
3773 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3774 * and wakeups up this thread which will reap the thread and finish up.
3775 * This thread also removes any faulty devices (with nr_pending == 0).
3776 *
3777 * The overall approach is:
3778 * 1/ if the superblock needs updating, update it.
3779 * 2/ If a recovery thread is running, don't do anything else.
3780 * 3/ If recovery has finished, clean up, possibly marking spares active.
3781 * 4/ If there are any faulty devices, remove them.
3782 * 5/ If array is degraded, try to add spares devices
3783 * 6/ If array has spares or is not in-sync, start a resync thread.
3784 */
3785void md_check_recovery(mddev_t *mddev)
3786{
3787 mdk_rdev_t *rdev;
3788 struct list_head *rtmp;
3789
3790
5f40402d
N
3791 if (mddev->bitmap)
3792 bitmap_daemon_work(mddev->bitmap);
1da177e4
LT
3793
3794 if (mddev->ro)
3795 return;
fca4d848
N
3796
3797 if (signal_pending(current)) {
3798 if (mddev->pers->sync_request) {
3799 printk(KERN_INFO "md: %s in immediate safe mode\n",
3800 mdname(mddev));
3801 mddev->safemode = 2;
3802 }
3803 flush_signals(current);
3804 }
3805
1da177e4
LT
3806 if ( ! (
3807 mddev->sb_dirty ||
3808 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
fca4d848
N
3809 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3810 (mddev->safemode == 1) ||
3811 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3812 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
1da177e4
LT
3813 ))
3814 return;
fca4d848 3815
1da177e4
LT
3816 if (mddev_trylock(mddev)==0) {
3817 int spares =0;
fca4d848 3818
06d91a5f 3819 spin_lock(&mddev->write_lock);
fca4d848
N
3820 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3821 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3822 mddev->in_sync = 1;
3823 mddev->sb_dirty = 1;
3824 }
3825 if (mddev->safemode == 1)
3826 mddev->safemode = 0;
06d91a5f 3827 spin_unlock(&mddev->write_lock);
fca4d848 3828
1da177e4
LT
3829 if (mddev->sb_dirty)
3830 md_update_sb(mddev);
06d91a5f 3831
06d91a5f 3832
1da177e4
LT
3833 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3834 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3835 /* resync/recovery still happening */
3836 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3837 goto unlock;
3838 }
3839 if (mddev->sync_thread) {
3840 /* resync has finished, collect result */
3841 md_unregister_thread(mddev->sync_thread);
3842 mddev->sync_thread = NULL;
3843 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3844 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3845 /* success...*/
3846 /* activate any spares */
3847 mddev->pers->spare_active(mddev);
3848 }
3849 md_update_sb(mddev);
41158c7e
N
3850
3851 /* if array is no-longer degraded, then any saved_raid_disk
3852 * information must be scrapped
3853 */
3854 if (!mddev->degraded)
3855 ITERATE_RDEV(mddev,rdev,rtmp)
3856 rdev->saved_raid_disk = -1;
3857
1da177e4
LT
3858 mddev->recovery = 0;
3859 /* flag recovery needed just to double check */
3860 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3861 goto unlock;
3862 }
3863 if (mddev->recovery)
3864 /* probably just the RECOVERY_NEEDED flag */
3865 mddev->recovery = 0;
3866
3867 /* no recovery is running.
3868 * remove any failed drives, then
3869 * add spares if possible.
3870 * Spare are also removed and re-added, to allow
3871 * the personality to fail the re-add.
3872 */
3873 ITERATE_RDEV(mddev,rdev,rtmp)
3874 if (rdev->raid_disk >= 0 &&
3875 (rdev->faulty || ! rdev->in_sync) &&
3876 atomic_read(&rdev->nr_pending)==0) {
3877 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3878 rdev->raid_disk = -1;
3879 }
3880
3881 if (mddev->degraded) {
3882 ITERATE_RDEV(mddev,rdev,rtmp)
3883 if (rdev->raid_disk < 0
3884 && !rdev->faulty) {
3885 if (mddev->pers->hot_add_disk(mddev,rdev))
3886 spares++;
3887 else
3888 break;
3889 }
3890 }
3891
3892 if (!spares && (mddev->recovery_cp == MaxSector )) {
3893 /* nothing we can do ... */
3894 goto unlock;
3895 }
3896 if (mddev->pers->sync_request) {
3897 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3898 if (!spares)
3899 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
a654b9d8
N
3900 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3901 /* We are adding a device or devices to an array
3902 * which has the bitmap stored on all devices.
3903 * So make sure all bitmap pages get written
3904 */
3905 bitmap_write_all(mddev->bitmap);
3906 }
1da177e4
LT
3907 mddev->sync_thread = md_register_thread(md_do_sync,
3908 mddev,
3909 "%s_resync");
3910 if (!mddev->sync_thread) {
3911 printk(KERN_ERR "%s: could not start resync"
3912 " thread...\n",
3913 mdname(mddev));
3914 /* leave the spares where they are, it shouldn't hurt */
3915 mddev->recovery = 0;
3916 } else {
3917 md_wakeup_thread(mddev->sync_thread);
3918 }
3919 }
3920 unlock:
3921 mddev_unlock(mddev);
3922 }
3923}
3924
75c96f85
AB
3925static int md_notify_reboot(struct notifier_block *this,
3926 unsigned long code, void *x)
1da177e4
LT
3927{
3928 struct list_head *tmp;
3929 mddev_t *mddev;
3930
3931 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3932
3933 printk(KERN_INFO "md: stopping all md devices.\n");
3934
3935 ITERATE_MDDEV(mddev,tmp)
3936 if (mddev_trylock(mddev)==0)
3937 do_md_stop (mddev, 1);
3938 /*
3939 * certain more exotic SCSI devices are known to be
3940 * volatile wrt too early system reboots. While the
3941 * right place to handle this issue is the given
3942 * driver, we do want to have a safe RAID driver ...
3943 */
3944 mdelay(1000*1);
3945 }
3946 return NOTIFY_DONE;
3947}
3948
75c96f85 3949static struct notifier_block md_notifier = {
1da177e4
LT
3950 .notifier_call = md_notify_reboot,
3951 .next = NULL,
3952 .priority = INT_MAX, /* before any real devices */
3953};
3954
3955static void md_geninit(void)
3956{
3957 struct proc_dir_entry *p;
3958
3959 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3960
3961 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3962 if (p)
3963 p->proc_fops = &md_seq_fops;
3964}
3965
75c96f85 3966static int __init md_init(void)
1da177e4
LT
3967{
3968 int minor;
3969
3970 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3971 " MD_SB_DISKS=%d\n",
3972 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3973 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
32a7627c
N
3974 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3975 BITMAP_MINOR);
1da177e4
LT
3976
3977 if (register_blkdev(MAJOR_NR, "md"))
3978 return -1;
3979 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3980 unregister_blkdev(MAJOR_NR, "md");
3981 return -1;
3982 }
3983 devfs_mk_dir("md");
3984 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3985 md_probe, NULL, NULL);
3986 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3987 md_probe, NULL, NULL);
3988
3989 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3990 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3991 S_IFBLK|S_IRUSR|S_IWUSR,
3992 "md/%d", minor);
3993
3994 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3995 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3996 S_IFBLK|S_IRUSR|S_IWUSR,
3997 "md/mdp%d", minor);
3998
3999
4000 register_reboot_notifier(&md_notifier);
4001 raid_table_header = register_sysctl_table(raid_root_table, 1);
4002
4003 md_geninit();
4004 return (0);
4005}
4006
4007
4008#ifndef MODULE
4009
4010/*
4011 * Searches all registered partitions for autorun RAID arrays
4012 * at boot time.
4013 */
4014static dev_t detected_devices[128];
4015static int dev_cnt;
4016
4017void md_autodetect_dev(dev_t dev)
4018{
4019 if (dev_cnt >= 0 && dev_cnt < 127)
4020 detected_devices[dev_cnt++] = dev;
4021}
4022
4023
4024static void autostart_arrays(int part)
4025{
4026 mdk_rdev_t *rdev;
4027 int i;
4028
4029 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4030
4031 for (i = 0; i < dev_cnt; i++) {
4032 dev_t dev = detected_devices[i];
4033
4034 rdev = md_import_device(dev,0, 0);
4035 if (IS_ERR(rdev))
4036 continue;
4037
4038 if (rdev->faulty) {
4039 MD_BUG();
4040 continue;
4041 }
4042 list_add(&rdev->same_set, &pending_raid_disks);
4043 }
4044 dev_cnt = 0;
4045
4046 autorun_devices(part);
4047}
4048
4049#endif
4050
4051static __exit void md_exit(void)
4052{
4053 mddev_t *mddev;
4054 struct list_head *tmp;
4055 int i;
4056 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4057 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4058 for (i=0; i < MAX_MD_DEVS; i++)
4059 devfs_remove("md/%d", i);
4060 for (i=0; i < MAX_MD_DEVS; i++)
4061 devfs_remove("md/d%d", i);
4062
4063 devfs_remove("md");
4064
4065 unregister_blkdev(MAJOR_NR,"md");
4066 unregister_blkdev(mdp_major, "mdp");
4067 unregister_reboot_notifier(&md_notifier);
4068 unregister_sysctl_table(raid_table_header);
4069 remove_proc_entry("mdstat", NULL);
4070 ITERATE_MDDEV(mddev,tmp) {
4071 struct gendisk *disk = mddev->gendisk;
4072 if (!disk)
4073 continue;
4074 export_array(mddev);
4075 del_gendisk(disk);
4076 put_disk(disk);
4077 mddev->gendisk = NULL;
4078 mddev_put(mddev);
4079 }
4080}
4081
4082module_init(md_init)
4083module_exit(md_exit)
4084
4085EXPORT_SYMBOL(register_md_personality);
4086EXPORT_SYMBOL(unregister_md_personality);
4087EXPORT_SYMBOL(md_error);
4088EXPORT_SYMBOL(md_done_sync);
4089EXPORT_SYMBOL(md_write_start);
4090EXPORT_SYMBOL(md_write_end);
1da177e4
LT
4091EXPORT_SYMBOL(md_register_thread);
4092EXPORT_SYMBOL(md_unregister_thread);
4093EXPORT_SYMBOL(md_wakeup_thread);
4094EXPORT_SYMBOL(md_print_devices);
4095EXPORT_SYMBOL(md_check_recovery);
4096MODULE_LICENSE("GPL");
aa1595e9 4097MODULE_ALIAS("md");
72008652 4098MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);