[PATCH] md: optimise reconstruction when re-adding a recently failed drive.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
CommitLineData
1da177e4
LT
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
32a7627c
N
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
1da177e4
LT
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33*/
34
35#include <linux/module.h>
36#include <linux/config.h>
37#include <linux/linkage.h>
38#include <linux/raid/md.h>
32a7627c 39#include <linux/raid/bitmap.h>
1da177e4
LT
40#include <linux/sysctl.h>
41#include <linux/devfs_fs_kernel.h>
42#include <linux/buffer_head.h> /* for invalidate_bdev */
43#include <linux/suspend.h>
44
45#include <linux/init.h>
46
32a7627c
N
47#include <linux/file.h>
48
1da177e4
LT
49#ifdef CONFIG_KMOD
50#include <linux/kmod.h>
51#endif
52
53#include <asm/unaligned.h>
54
55#define MAJOR_NR MD_MAJOR
56#define MD_DRIVER
57
58/* 63 partitions with the alternate major number (mdp) */
59#define MdpMinorShift 6
60
61#define DEBUG 0
62#define dprintk(x...) ((void)(DEBUG && printk(x)))
63
64
65#ifndef MODULE
66static void autostart_arrays (int part);
67#endif
68
69static mdk_personality_t *pers[MAX_PERSONALITY];
70static DEFINE_SPINLOCK(pers_lock);
71
72/*
73 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74 * is 1000 KB/sec, so the extra system load does not show up that much.
75 * Increase it if you want to have more _guaranteed_ speed. Note that
76 * the RAID driver will use the maximum available bandwith if the IO
77 * subsystem is idle. There is also an 'absolute maximum' reconstruction
78 * speed limit - in case reconstruction slows down your system despite
79 * idle IO detection.
80 *
81 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
82 */
83
84static int sysctl_speed_limit_min = 1000;
85static int sysctl_speed_limit_max = 200000;
86
87static struct ctl_table_header *raid_table_header;
88
89static ctl_table raid_table[] = {
90 {
91 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
92 .procname = "speed_limit_min",
93 .data = &sysctl_speed_limit_min,
94 .maxlen = sizeof(int),
95 .mode = 0644,
96 .proc_handler = &proc_dointvec,
97 },
98 {
99 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
100 .procname = "speed_limit_max",
101 .data = &sysctl_speed_limit_max,
102 .maxlen = sizeof(int),
103 .mode = 0644,
104 .proc_handler = &proc_dointvec,
105 },
106 { .ctl_name = 0 }
107};
108
109static ctl_table raid_dir_table[] = {
110 {
111 .ctl_name = DEV_RAID,
112 .procname = "raid",
113 .maxlen = 0,
114 .mode = 0555,
115 .child = raid_table,
116 },
117 { .ctl_name = 0 }
118};
119
120static ctl_table raid_root_table[] = {
121 {
122 .ctl_name = CTL_DEV,
123 .procname = "dev",
124 .maxlen = 0,
125 .mode = 0555,
126 .child = raid_dir_table,
127 },
128 { .ctl_name = 0 }
129};
130
131static struct block_device_operations md_fops;
132
133/*
134 * Enables to iterate over all existing md arrays
135 * all_mddevs_lock protects this list.
136 */
137static LIST_HEAD(all_mddevs);
138static DEFINE_SPINLOCK(all_mddevs_lock);
139
140
141/*
142 * iterates through all used mddevs in the system.
143 * We take care to grab the all_mddevs_lock whenever navigating
144 * the list, and to always hold a refcount when unlocked.
145 * Any code which breaks out of this loop while own
146 * a reference to the current mddev and must mddev_put it.
147 */
148#define ITERATE_MDDEV(mddev,tmp) \
149 \
150 for (({ spin_lock(&all_mddevs_lock); \
151 tmp = all_mddevs.next; \
152 mddev = NULL;}); \
153 ({ if (tmp != &all_mddevs) \
154 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 spin_unlock(&all_mddevs_lock); \
156 if (mddev) mddev_put(mddev); \
157 mddev = list_entry(tmp, mddev_t, all_mddevs); \
158 tmp != &all_mddevs;}); \
159 ({ spin_lock(&all_mddevs_lock); \
160 tmp = tmp->next;}) \
161 )
162
163
164static int md_fail_request (request_queue_t *q, struct bio *bio)
165{
166 bio_io_error(bio, bio->bi_size);
167 return 0;
168}
169
170static inline mddev_t *mddev_get(mddev_t *mddev)
171{
172 atomic_inc(&mddev->active);
173 return mddev;
174}
175
176static void mddev_put(mddev_t *mddev)
177{
178 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179 return;
180 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181 list_del(&mddev->all_mddevs);
182 blk_put_queue(mddev->queue);
183 kfree(mddev);
184 }
185 spin_unlock(&all_mddevs_lock);
186}
187
188static mddev_t * mddev_find(dev_t unit)
189{
190 mddev_t *mddev, *new = NULL;
191
192 retry:
193 spin_lock(&all_mddevs_lock);
194 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195 if (mddev->unit == unit) {
196 mddev_get(mddev);
197 spin_unlock(&all_mddevs_lock);
198 if (new)
199 kfree(new);
200 return mddev;
201 }
202
203 if (new) {
204 list_add(&new->all_mddevs, &all_mddevs);
205 spin_unlock(&all_mddevs_lock);
206 return new;
207 }
208 spin_unlock(&all_mddevs_lock);
209
210 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 if (!new)
212 return NULL;
213
214 memset(new, 0, sizeof(*new));
215
216 new->unit = unit;
217 if (MAJOR(unit) == MD_MAJOR)
218 new->md_minor = MINOR(unit);
219 else
220 new->md_minor = MINOR(unit) >> MdpMinorShift;
221
222 init_MUTEX(&new->reconfig_sem);
223 INIT_LIST_HEAD(&new->disks);
224 INIT_LIST_HEAD(&new->all_mddevs);
225 init_timer(&new->safemode_timer);
226 atomic_set(&new->active, 1);
06d91a5f
N
227 bio_list_init(&new->write_list);
228 spin_lock_init(&new->write_lock);
1da177e4
LT
229
230 new->queue = blk_alloc_queue(GFP_KERNEL);
231 if (!new->queue) {
232 kfree(new);
233 return NULL;
234 }
235
236 blk_queue_make_request(new->queue, md_fail_request);
237
238 goto retry;
239}
240
241static inline int mddev_lock(mddev_t * mddev)
242{
243 return down_interruptible(&mddev->reconfig_sem);
244}
245
246static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247{
248 down(&mddev->reconfig_sem);
249}
250
251static inline int mddev_trylock(mddev_t * mddev)
252{
253 return down_trylock(&mddev->reconfig_sem);
254}
255
256static inline void mddev_unlock(mddev_t * mddev)
257{
258 up(&mddev->reconfig_sem);
259
260 if (mddev->thread)
261 md_wakeup_thread(mddev->thread);
262}
263
264mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
265{
266 mdk_rdev_t * rdev;
267 struct list_head *tmp;
268
269 ITERATE_RDEV(mddev,rdev,tmp) {
270 if (rdev->desc_nr == nr)
271 return rdev;
272 }
273 return NULL;
274}
275
276static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
277{
278 struct list_head *tmp;
279 mdk_rdev_t *rdev;
280
281 ITERATE_RDEV(mddev,rdev,tmp) {
282 if (rdev->bdev->bd_dev == dev)
283 return rdev;
284 }
285 return NULL;
286}
287
288inline static sector_t calc_dev_sboffset(struct block_device *bdev)
289{
290 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
291 return MD_NEW_SIZE_BLOCKS(size);
292}
293
294static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
295{
296 sector_t size;
297
298 size = rdev->sb_offset;
299
300 if (chunk_size)
301 size &= ~((sector_t)chunk_size/1024 - 1);
302 return size;
303}
304
305static int alloc_disk_sb(mdk_rdev_t * rdev)
306{
307 if (rdev->sb_page)
308 MD_BUG();
309
310 rdev->sb_page = alloc_page(GFP_KERNEL);
311 if (!rdev->sb_page) {
312 printk(KERN_ALERT "md: out of memory.\n");
313 return -EINVAL;
314 }
315
316 return 0;
317}
318
319static void free_disk_sb(mdk_rdev_t * rdev)
320{
321 if (rdev->sb_page) {
322 page_cache_release(rdev->sb_page);
323 rdev->sb_loaded = 0;
324 rdev->sb_page = NULL;
325 rdev->sb_offset = 0;
326 rdev->size = 0;
327 }
328}
329
330
331static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
332{
333 if (bio->bi_size)
334 return 1;
335
336 complete((struct completion*)bio->bi_private);
337 return 0;
338}
339
340static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
341 struct page *page, int rw)
342{
baaa2c51 343 struct bio *bio = bio_alloc(GFP_NOIO, 1);
1da177e4
LT
344 struct completion event;
345 int ret;
346
347 rw |= (1 << BIO_RW_SYNC);
348
349 bio->bi_bdev = bdev;
350 bio->bi_sector = sector;
351 bio_add_page(bio, page, size, 0);
352 init_completion(&event);
353 bio->bi_private = &event;
354 bio->bi_end_io = bi_complete;
355 submit_bio(rw, bio);
356 wait_for_completion(&event);
357
358 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
359 bio_put(bio);
360 return ret;
361}
362
363static int read_disk_sb(mdk_rdev_t * rdev)
364{
365 char b[BDEVNAME_SIZE];
366 if (!rdev->sb_page) {
367 MD_BUG();
368 return -EINVAL;
369 }
370 if (rdev->sb_loaded)
371 return 0;
372
373
374 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
375 goto fail;
376 rdev->sb_loaded = 1;
377 return 0;
378
379fail:
380 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
381 bdevname(rdev->bdev,b));
382 return -EINVAL;
383}
384
385static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
386{
387 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
388 (sb1->set_uuid1 == sb2->set_uuid1) &&
389 (sb1->set_uuid2 == sb2->set_uuid2) &&
390 (sb1->set_uuid3 == sb2->set_uuid3))
391
392 return 1;
393
394 return 0;
395}
396
397
398static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
399{
400 int ret;
401 mdp_super_t *tmp1, *tmp2;
402
403 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
404 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
405
406 if (!tmp1 || !tmp2) {
407 ret = 0;
408 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
409 goto abort;
410 }
411
412 *tmp1 = *sb1;
413 *tmp2 = *sb2;
414
415 /*
416 * nr_disks is not constant
417 */
418 tmp1->nr_disks = 0;
419 tmp2->nr_disks = 0;
420
421 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
422 ret = 0;
423 else
424 ret = 1;
425
426abort:
427 if (tmp1)
428 kfree(tmp1);
429 if (tmp2)
430 kfree(tmp2);
431
432 return ret;
433}
434
435static unsigned int calc_sb_csum(mdp_super_t * sb)
436{
437 unsigned int disk_csum, csum;
438
439 disk_csum = sb->sb_csum;
440 sb->sb_csum = 0;
441 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
442 sb->sb_csum = disk_csum;
443 return csum;
444}
445
446
447/*
448 * Handle superblock details.
449 * We want to be able to handle multiple superblock formats
450 * so we have a common interface to them all, and an array of
451 * different handlers.
452 * We rely on user-space to write the initial superblock, and support
453 * reading and updating of superblocks.
454 * Interface methods are:
455 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
456 * loads and validates a superblock on dev.
457 * if refdev != NULL, compare superblocks on both devices
458 * Return:
459 * 0 - dev has a superblock that is compatible with refdev
460 * 1 - dev has a superblock that is compatible and newer than refdev
461 * so dev should be used as the refdev in future
462 * -EINVAL superblock incompatible or invalid
463 * -othererror e.g. -EIO
464 *
465 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
466 * Verify that dev is acceptable into mddev.
467 * The first time, mddev->raid_disks will be 0, and data from
468 * dev should be merged in. Subsequent calls check that dev
469 * is new enough. Return 0 or -EINVAL
470 *
471 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
472 * Update the superblock for rdev with data in mddev
473 * This does not write to disc.
474 *
475 */
476
477struct super_type {
478 char *name;
479 struct module *owner;
480 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
481 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
482 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
483};
484
485/*
486 * load_super for 0.90.0
487 */
488static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
489{
490 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
491 mdp_super_t *sb;
492 int ret;
493 sector_t sb_offset;
494
495 /*
496 * Calculate the position of the superblock,
497 * it's at the end of the disk.
498 *
499 * It also happens to be a multiple of 4Kb.
500 */
501 sb_offset = calc_dev_sboffset(rdev->bdev);
502 rdev->sb_offset = sb_offset;
503
504 ret = read_disk_sb(rdev);
505 if (ret) return ret;
506
507 ret = -EINVAL;
508
509 bdevname(rdev->bdev, b);
510 sb = (mdp_super_t*)page_address(rdev->sb_page);
511
512 if (sb->md_magic != MD_SB_MAGIC) {
513 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
514 b);
515 goto abort;
516 }
517
518 if (sb->major_version != 0 ||
519 sb->minor_version != 90) {
520 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
521 sb->major_version, sb->minor_version,
522 b);
523 goto abort;
524 }
525
526 if (sb->raid_disks <= 0)
527 goto abort;
528
529 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
530 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
531 b);
532 goto abort;
533 }
534
535 rdev->preferred_minor = sb->md_minor;
536 rdev->data_offset = 0;
537
538 if (sb->level == LEVEL_MULTIPATH)
539 rdev->desc_nr = -1;
540 else
541 rdev->desc_nr = sb->this_disk.number;
542
543 if (refdev == 0)
544 ret = 1;
545 else {
546 __u64 ev1, ev2;
547 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
548 if (!uuid_equal(refsb, sb)) {
549 printk(KERN_WARNING "md: %s has different UUID to %s\n",
550 b, bdevname(refdev->bdev,b2));
551 goto abort;
552 }
553 if (!sb_equal(refsb, sb)) {
554 printk(KERN_WARNING "md: %s has same UUID"
555 " but different superblock to %s\n",
556 b, bdevname(refdev->bdev, b2));
557 goto abort;
558 }
559 ev1 = md_event(sb);
560 ev2 = md_event(refsb);
561 if (ev1 > ev2)
562 ret = 1;
563 else
564 ret = 0;
565 }
566 rdev->size = calc_dev_size(rdev, sb->chunk_size);
567
568 abort:
569 return ret;
570}
571
572/*
573 * validate_super for 0.90.0
574 */
575static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
576{
577 mdp_disk_t *desc;
578 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
579
41158c7e
N
580 rdev->raid_disk = -1;
581 rdev->in_sync = 0;
1da177e4
LT
582 if (mddev->raid_disks == 0) {
583 mddev->major_version = 0;
584 mddev->minor_version = sb->minor_version;
585 mddev->patch_version = sb->patch_version;
586 mddev->persistent = ! sb->not_persistent;
587 mddev->chunk_size = sb->chunk_size;
588 mddev->ctime = sb->ctime;
589 mddev->utime = sb->utime;
590 mddev->level = sb->level;
591 mddev->layout = sb->layout;
592 mddev->raid_disks = sb->raid_disks;
593 mddev->size = sb->size;
594 mddev->events = md_event(sb);
595
596 if (sb->state & (1<<MD_SB_CLEAN))
597 mddev->recovery_cp = MaxSector;
598 else {
599 if (sb->events_hi == sb->cp_events_hi &&
600 sb->events_lo == sb->cp_events_lo) {
601 mddev->recovery_cp = sb->recovery_cp;
602 } else
603 mddev->recovery_cp = 0;
604 }
605
606 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
607 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
608 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
609 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
610
611 mddev->max_disks = MD_SB_DISKS;
41158c7e
N
612 } else if (mddev->pers == NULL) {
613 /* Insist on good event counter while assembling */
614 __u64 ev1 = md_event(sb);
1da177e4
LT
615 ++ev1;
616 if (ev1 < mddev->events)
617 return -EINVAL;
41158c7e
N
618 } else if (mddev->bitmap) {
619 /* if adding to array with a bitmap, then we can accept an
620 * older device ... but not too old.
621 */
622 __u64 ev1 = md_event(sb);
623 if (ev1 < mddev->bitmap->events_cleared)
624 return 0;
625 } else /* just a hot-add of a new device, leave raid_disk at -1 */
626 return 0;
627
1da177e4 628 if (mddev->level != LEVEL_MULTIPATH) {
41158c7e 629 rdev->faulty = 0;
1da177e4
LT
630 desc = sb->disks + rdev->desc_nr;
631
632 if (desc->state & (1<<MD_DISK_FAULTY))
633 rdev->faulty = 1;
634 else if (desc->state & (1<<MD_DISK_SYNC) &&
635 desc->raid_disk < mddev->raid_disks) {
636 rdev->in_sync = 1;
637 rdev->raid_disk = desc->raid_disk;
638 }
41158c7e
N
639 } else /* MULTIPATH are always insync */
640 rdev->in_sync = 1;
1da177e4
LT
641 return 0;
642}
643
644/*
645 * sync_super for 0.90.0
646 */
647static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
648{
649 mdp_super_t *sb;
650 struct list_head *tmp;
651 mdk_rdev_t *rdev2;
652 int next_spare = mddev->raid_disks;
653
654 /* make rdev->sb match mddev data..
655 *
656 * 1/ zero out disks
657 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
658 * 3/ any empty disks < next_spare become removed
659 *
660 * disks[0] gets initialised to REMOVED because
661 * we cannot be sure from other fields if it has
662 * been initialised or not.
663 */
664 int i;
665 int active=0, working=0,failed=0,spare=0,nr_disks=0;
666
667 sb = (mdp_super_t*)page_address(rdev->sb_page);
668
669 memset(sb, 0, sizeof(*sb));
670
671 sb->md_magic = MD_SB_MAGIC;
672 sb->major_version = mddev->major_version;
673 sb->minor_version = mddev->minor_version;
674 sb->patch_version = mddev->patch_version;
675 sb->gvalid_words = 0; /* ignored */
676 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
677 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
678 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
679 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
680
681 sb->ctime = mddev->ctime;
682 sb->level = mddev->level;
683 sb->size = mddev->size;
684 sb->raid_disks = mddev->raid_disks;
685 sb->md_minor = mddev->md_minor;
686 sb->not_persistent = !mddev->persistent;
687 sb->utime = mddev->utime;
688 sb->state = 0;
689 sb->events_hi = (mddev->events>>32);
690 sb->events_lo = (u32)mddev->events;
691
692 if (mddev->in_sync)
693 {
694 sb->recovery_cp = mddev->recovery_cp;
695 sb->cp_events_hi = (mddev->events>>32);
696 sb->cp_events_lo = (u32)mddev->events;
697 if (mddev->recovery_cp == MaxSector)
698 sb->state = (1<< MD_SB_CLEAN);
699 } else
700 sb->recovery_cp = 0;
701
702 sb->layout = mddev->layout;
703 sb->chunk_size = mddev->chunk_size;
704
705 sb->disks[0].state = (1<<MD_DISK_REMOVED);
706 ITERATE_RDEV(mddev,rdev2,tmp) {
707 mdp_disk_t *d;
708 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
709 rdev2->desc_nr = rdev2->raid_disk;
710 else
711 rdev2->desc_nr = next_spare++;
712 d = &sb->disks[rdev2->desc_nr];
713 nr_disks++;
714 d->number = rdev2->desc_nr;
715 d->major = MAJOR(rdev2->bdev->bd_dev);
716 d->minor = MINOR(rdev2->bdev->bd_dev);
717 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
718 d->raid_disk = rdev2->raid_disk;
719 else
720 d->raid_disk = rdev2->desc_nr; /* compatibility */
721 if (rdev2->faulty) {
722 d->state = (1<<MD_DISK_FAULTY);
723 failed++;
724 } else if (rdev2->in_sync) {
725 d->state = (1<<MD_DISK_ACTIVE);
726 d->state |= (1<<MD_DISK_SYNC);
727 active++;
728 working++;
729 } else {
730 d->state = 0;
731 spare++;
732 working++;
733 }
734 }
735
736 /* now set the "removed" and "faulty" bits on any missing devices */
737 for (i=0 ; i < mddev->raid_disks ; i++) {
738 mdp_disk_t *d = &sb->disks[i];
739 if (d->state == 0 && d->number == 0) {
740 d->number = i;
741 d->raid_disk = i;
742 d->state = (1<<MD_DISK_REMOVED);
743 d->state |= (1<<MD_DISK_FAULTY);
744 failed++;
745 }
746 }
747 sb->nr_disks = nr_disks;
748 sb->active_disks = active;
749 sb->working_disks = working;
750 sb->failed_disks = failed;
751 sb->spare_disks = spare;
752
753 sb->this_disk = sb->disks[rdev->desc_nr];
754 sb->sb_csum = calc_sb_csum(sb);
755}
756
757/*
758 * version 1 superblock
759 */
760
761static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
762{
763 unsigned int disk_csum, csum;
764 unsigned long long newcsum;
765 int size = 256 + le32_to_cpu(sb->max_dev)*2;
766 unsigned int *isuper = (unsigned int*)sb;
767 int i;
768
769 disk_csum = sb->sb_csum;
770 sb->sb_csum = 0;
771 newcsum = 0;
772 for (i=0; size>=4; size -= 4 )
773 newcsum += le32_to_cpu(*isuper++);
774
775 if (size == 2)
776 newcsum += le16_to_cpu(*(unsigned short*) isuper);
777
778 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
779 sb->sb_csum = disk_csum;
780 return cpu_to_le32(csum);
781}
782
783static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
784{
785 struct mdp_superblock_1 *sb;
786 int ret;
787 sector_t sb_offset;
788 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
789
790 /*
791 * Calculate the position of the superblock.
792 * It is always aligned to a 4K boundary and
793 * depeding on minor_version, it can be:
794 * 0: At least 8K, but less than 12K, from end of device
795 * 1: At start of device
796 * 2: 4K from start of device.
797 */
798 switch(minor_version) {
799 case 0:
800 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
801 sb_offset -= 8*2;
802 sb_offset &= ~(4*2-1);
803 /* convert from sectors to K */
804 sb_offset /= 2;
805 break;
806 case 1:
807 sb_offset = 0;
808 break;
809 case 2:
810 sb_offset = 4;
811 break;
812 default:
813 return -EINVAL;
814 }
815 rdev->sb_offset = sb_offset;
816
817 ret = read_disk_sb(rdev);
818 if (ret) return ret;
819
820
821 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
822
823 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
824 sb->major_version != cpu_to_le32(1) ||
825 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
826 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
827 sb->feature_map != 0)
828 return -EINVAL;
829
830 if (calc_sb_1_csum(sb) != sb->sb_csum) {
831 printk("md: invalid superblock checksum on %s\n",
832 bdevname(rdev->bdev,b));
833 return -EINVAL;
834 }
835 if (le64_to_cpu(sb->data_size) < 10) {
836 printk("md: data_size too small on %s\n",
837 bdevname(rdev->bdev,b));
838 return -EINVAL;
839 }
840 rdev->preferred_minor = 0xffff;
841 rdev->data_offset = le64_to_cpu(sb->data_offset);
842
843 if (refdev == 0)
844 return 1;
845 else {
846 __u64 ev1, ev2;
847 struct mdp_superblock_1 *refsb =
848 (struct mdp_superblock_1*)page_address(refdev->sb_page);
849
850 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
851 sb->level != refsb->level ||
852 sb->layout != refsb->layout ||
853 sb->chunksize != refsb->chunksize) {
854 printk(KERN_WARNING "md: %s has strangely different"
855 " superblock to %s\n",
856 bdevname(rdev->bdev,b),
857 bdevname(refdev->bdev,b2));
858 return -EINVAL;
859 }
860 ev1 = le64_to_cpu(sb->events);
861 ev2 = le64_to_cpu(refsb->events);
862
863 if (ev1 > ev2)
864 return 1;
865 }
866 if (minor_version)
867 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
868 else
869 rdev->size = rdev->sb_offset;
870 if (rdev->size < le64_to_cpu(sb->data_size)/2)
871 return -EINVAL;
872 rdev->size = le64_to_cpu(sb->data_size)/2;
873 if (le32_to_cpu(sb->chunksize))
874 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
875 return 0;
876}
877
878static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
879{
880 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
881
41158c7e
N
882 rdev->raid_disk = -1;
883 rdev->in_sync = 0;
1da177e4
LT
884 if (mddev->raid_disks == 0) {
885 mddev->major_version = 1;
886 mddev->patch_version = 0;
887 mddev->persistent = 1;
888 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
889 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
890 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
891 mddev->level = le32_to_cpu(sb->level);
892 mddev->layout = le32_to_cpu(sb->layout);
893 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
894 mddev->size = le64_to_cpu(sb->size)/2;
895 mddev->events = le64_to_cpu(sb->events);
896
897 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
898 memcpy(mddev->uuid, sb->set_uuid, 16);
899
900 mddev->max_disks = (4096-256)/2;
41158c7e
N
901 } else if (mddev->pers == NULL) {
902 /* Insist of good event counter while assembling */
903 __u64 ev1 = le64_to_cpu(sb->events);
1da177e4
LT
904 ++ev1;
905 if (ev1 < mddev->events)
906 return -EINVAL;
41158c7e
N
907 } else if (mddev->bitmap) {
908 /* If adding to array with a bitmap, then we can accept an
909 * older device, but not too old.
910 */
911 __u64 ev1 = le64_to_cpu(sb->events);
912 if (ev1 < mddev->bitmap->events_cleared)
913 return 0;
914 } else /* just a hot-add of a new device, leave raid_disk at -1 */
915 return 0;
1da177e4
LT
916
917 if (mddev->level != LEVEL_MULTIPATH) {
918 int role;
919 rdev->desc_nr = le32_to_cpu(sb->dev_number);
920 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
921 switch(role) {
922 case 0xffff: /* spare */
1da177e4 923 rdev->faulty = 0;
1da177e4
LT
924 break;
925 case 0xfffe: /* faulty */
1da177e4 926 rdev->faulty = 1;
1da177e4
LT
927 break;
928 default:
929 rdev->in_sync = 1;
930 rdev->faulty = 0;
931 rdev->raid_disk = role;
932 break;
933 }
41158c7e
N
934 } else /* MULTIPATH are always insync */
935 rdev->in_sync = 1;
936
1da177e4
LT
937 return 0;
938}
939
940static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
941{
942 struct mdp_superblock_1 *sb;
943 struct list_head *tmp;
944 mdk_rdev_t *rdev2;
945 int max_dev, i;
946 /* make rdev->sb match mddev and rdev data. */
947
948 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
949
950 sb->feature_map = 0;
951 sb->pad0 = 0;
952 memset(sb->pad1, 0, sizeof(sb->pad1));
953 memset(sb->pad2, 0, sizeof(sb->pad2));
954 memset(sb->pad3, 0, sizeof(sb->pad3));
955
956 sb->utime = cpu_to_le64((__u64)mddev->utime);
957 sb->events = cpu_to_le64(mddev->events);
958 if (mddev->in_sync)
959 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
960 else
961 sb->resync_offset = cpu_to_le64(0);
962
963 max_dev = 0;
964 ITERATE_RDEV(mddev,rdev2,tmp)
965 if (rdev2->desc_nr+1 > max_dev)
966 max_dev = rdev2->desc_nr+1;
967
968 sb->max_dev = cpu_to_le32(max_dev);
969 for (i=0; i<max_dev;i++)
970 sb->dev_roles[i] = cpu_to_le16(0xfffe);
971
972 ITERATE_RDEV(mddev,rdev2,tmp) {
973 i = rdev2->desc_nr;
974 if (rdev2->faulty)
975 sb->dev_roles[i] = cpu_to_le16(0xfffe);
976 else if (rdev2->in_sync)
977 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
978 else
979 sb->dev_roles[i] = cpu_to_le16(0xffff);
980 }
981
982 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
983 sb->sb_csum = calc_sb_1_csum(sb);
984}
985
986
75c96f85 987static struct super_type super_types[] = {
1da177e4
LT
988 [0] = {
989 .name = "0.90.0",
990 .owner = THIS_MODULE,
991 .load_super = super_90_load,
992 .validate_super = super_90_validate,
993 .sync_super = super_90_sync,
994 },
995 [1] = {
996 .name = "md-1",
997 .owner = THIS_MODULE,
998 .load_super = super_1_load,
999 .validate_super = super_1_validate,
1000 .sync_super = super_1_sync,
1001 },
1002};
1003
1004static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1005{
1006 struct list_head *tmp;
1007 mdk_rdev_t *rdev;
1008
1009 ITERATE_RDEV(mddev,rdev,tmp)
1010 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1011 return rdev;
1012
1013 return NULL;
1014}
1015
1016static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1017{
1018 struct list_head *tmp;
1019 mdk_rdev_t *rdev;
1020
1021 ITERATE_RDEV(mddev1,rdev,tmp)
1022 if (match_dev_unit(mddev2, rdev))
1023 return 1;
1024
1025 return 0;
1026}
1027
1028static LIST_HEAD(pending_raid_disks);
1029
1030static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1031{
1032 mdk_rdev_t *same_pdev;
1033 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1034
1035 if (rdev->mddev) {
1036 MD_BUG();
1037 return -EINVAL;
1038 }
1039 same_pdev = match_dev_unit(mddev, rdev);
1040 if (same_pdev)
1041 printk(KERN_WARNING
1042 "%s: WARNING: %s appears to be on the same physical"
1043 " disk as %s. True\n protection against single-disk"
1044 " failure might be compromised.\n",
1045 mdname(mddev), bdevname(rdev->bdev,b),
1046 bdevname(same_pdev->bdev,b2));
1047
1048 /* Verify rdev->desc_nr is unique.
1049 * If it is -1, assign a free number, else
1050 * check number is not in use
1051 */
1052 if (rdev->desc_nr < 0) {
1053 int choice = 0;
1054 if (mddev->pers) choice = mddev->raid_disks;
1055 while (find_rdev_nr(mddev, choice))
1056 choice++;
1057 rdev->desc_nr = choice;
1058 } else {
1059 if (find_rdev_nr(mddev, rdev->desc_nr))
1060 return -EBUSY;
1061 }
1062
1063 list_add(&rdev->same_set, &mddev->disks);
1064 rdev->mddev = mddev;
1065 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1066 return 0;
1067}
1068
1069static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1070{
1071 char b[BDEVNAME_SIZE];
1072 if (!rdev->mddev) {
1073 MD_BUG();
1074 return;
1075 }
1076 list_del_init(&rdev->same_set);
1077 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1078 rdev->mddev = NULL;
1079}
1080
1081/*
1082 * prevent the device from being mounted, repartitioned or
1083 * otherwise reused by a RAID array (or any other kernel
1084 * subsystem), by bd_claiming the device.
1085 */
1086static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1087{
1088 int err = 0;
1089 struct block_device *bdev;
1090 char b[BDEVNAME_SIZE];
1091
1092 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1093 if (IS_ERR(bdev)) {
1094 printk(KERN_ERR "md: could not open %s.\n",
1095 __bdevname(dev, b));
1096 return PTR_ERR(bdev);
1097 }
1098 err = bd_claim(bdev, rdev);
1099 if (err) {
1100 printk(KERN_ERR "md: could not bd_claim %s.\n",
1101 bdevname(bdev, b));
1102 blkdev_put(bdev);
1103 return err;
1104 }
1105 rdev->bdev = bdev;
1106 return err;
1107}
1108
1109static void unlock_rdev(mdk_rdev_t *rdev)
1110{
1111 struct block_device *bdev = rdev->bdev;
1112 rdev->bdev = NULL;
1113 if (!bdev)
1114 MD_BUG();
1115 bd_release(bdev);
1116 blkdev_put(bdev);
1117}
1118
1119void md_autodetect_dev(dev_t dev);
1120
1121static void export_rdev(mdk_rdev_t * rdev)
1122{
1123 char b[BDEVNAME_SIZE];
1124 printk(KERN_INFO "md: export_rdev(%s)\n",
1125 bdevname(rdev->bdev,b));
1126 if (rdev->mddev)
1127 MD_BUG();
1128 free_disk_sb(rdev);
1129 list_del_init(&rdev->same_set);
1130#ifndef MODULE
1131 md_autodetect_dev(rdev->bdev->bd_dev);
1132#endif
1133 unlock_rdev(rdev);
1134 kfree(rdev);
1135}
1136
1137static void kick_rdev_from_array(mdk_rdev_t * rdev)
1138{
1139 unbind_rdev_from_array(rdev);
1140 export_rdev(rdev);
1141}
1142
1143static void export_array(mddev_t *mddev)
1144{
1145 struct list_head *tmp;
1146 mdk_rdev_t *rdev;
1147
1148 ITERATE_RDEV(mddev,rdev,tmp) {
1149 if (!rdev->mddev) {
1150 MD_BUG();
1151 continue;
1152 }
1153 kick_rdev_from_array(rdev);
1154 }
1155 if (!list_empty(&mddev->disks))
1156 MD_BUG();
1157 mddev->raid_disks = 0;
1158 mddev->major_version = 0;
1159}
1160
1161static void print_desc(mdp_disk_t *desc)
1162{
1163 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1164 desc->major,desc->minor,desc->raid_disk,desc->state);
1165}
1166
1167static void print_sb(mdp_super_t *sb)
1168{
1169 int i;
1170
1171 printk(KERN_INFO
1172 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1173 sb->major_version, sb->minor_version, sb->patch_version,
1174 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1175 sb->ctime);
1176 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1177 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1178 sb->md_minor, sb->layout, sb->chunk_size);
1179 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1180 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1181 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1182 sb->failed_disks, sb->spare_disks,
1183 sb->sb_csum, (unsigned long)sb->events_lo);
1184
1185 printk(KERN_INFO);
1186 for (i = 0; i < MD_SB_DISKS; i++) {
1187 mdp_disk_t *desc;
1188
1189 desc = sb->disks + i;
1190 if (desc->number || desc->major || desc->minor ||
1191 desc->raid_disk || (desc->state && (desc->state != 4))) {
1192 printk(" D %2d: ", i);
1193 print_desc(desc);
1194 }
1195 }
1196 printk(KERN_INFO "md: THIS: ");
1197 print_desc(&sb->this_disk);
1198
1199}
1200
1201static void print_rdev(mdk_rdev_t *rdev)
1202{
1203 char b[BDEVNAME_SIZE];
1204 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1205 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1206 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1207 if (rdev->sb_loaded) {
1208 printk(KERN_INFO "md: rdev superblock:\n");
1209 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1210 } else
1211 printk(KERN_INFO "md: no rdev superblock!\n");
1212}
1213
1214void md_print_devices(void)
1215{
1216 struct list_head *tmp, *tmp2;
1217 mdk_rdev_t *rdev;
1218 mddev_t *mddev;
1219 char b[BDEVNAME_SIZE];
1220
1221 printk("\n");
1222 printk("md: **********************************\n");
1223 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1224 printk("md: **********************************\n");
1225 ITERATE_MDDEV(mddev,tmp) {
1da177e4 1226
32a7627c
N
1227 if (mddev->bitmap)
1228 bitmap_print_sb(mddev->bitmap);
1229 else
1230 printk("%s: ", mdname(mddev));
1da177e4
LT
1231 ITERATE_RDEV(mddev,rdev,tmp2)
1232 printk("<%s>", bdevname(rdev->bdev,b));
1233 printk("\n");
1234
1235 ITERATE_RDEV(mddev,rdev,tmp2)
1236 print_rdev(rdev);
1237 }
1238 printk("md: **********************************\n");
1239 printk("\n");
1240}
1241
1242
1243static int write_disk_sb(mdk_rdev_t * rdev)
1244{
1245 char b[BDEVNAME_SIZE];
1246 if (!rdev->sb_loaded) {
1247 MD_BUG();
1248 return 1;
1249 }
1250 if (rdev->faulty) {
1251 MD_BUG();
1252 return 1;
1253 }
1254
1255 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1256 bdevname(rdev->bdev,b),
1257 (unsigned long long)rdev->sb_offset);
1258
1259 if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1260 return 0;
1261
1262 printk("md: write_disk_sb failed for device %s\n",
1263 bdevname(rdev->bdev,b));
1264 return 1;
1265}
1266
1267static void sync_sbs(mddev_t * mddev)
1268{
1269 mdk_rdev_t *rdev;
1270 struct list_head *tmp;
1271
1272 ITERATE_RDEV(mddev,rdev,tmp) {
1273 super_types[mddev->major_version].
1274 sync_super(mddev, rdev);
1275 rdev->sb_loaded = 1;
1276 }
1277}
1278
1279static void md_update_sb(mddev_t * mddev)
1280{
1281 int err, count = 100;
1282 struct list_head *tmp;
1283 mdk_rdev_t *rdev;
06d91a5f 1284 int sync_req;
1da177e4 1285
1da177e4 1286repeat:
06d91a5f
N
1287 spin_lock(&mddev->write_lock);
1288 sync_req = mddev->in_sync;
1da177e4
LT
1289 mddev->utime = get_seconds();
1290 mddev->events ++;
1291
1292 if (!mddev->events) {
1293 /*
1294 * oops, this 64-bit counter should never wrap.
1295 * Either we are in around ~1 trillion A.C., assuming
1296 * 1 reboot per second, or we have a bug:
1297 */
1298 MD_BUG();
1299 mddev->events --;
1300 }
1301 sync_sbs(mddev);
1302
1303 /*
1304 * do not write anything to disk if using
1305 * nonpersistent superblocks
1306 */
06d91a5f
N
1307 if (!mddev->persistent) {
1308 mddev->sb_dirty = 0;
1309 spin_unlock(&mddev->write_lock);
1da177e4 1310 return;
06d91a5f
N
1311 }
1312 spin_unlock(&mddev->write_lock);
1da177e4
LT
1313
1314 dprintk(KERN_INFO
1315 "md: updating %s RAID superblock on device (in sync %d)\n",
1316 mdname(mddev),mddev->in_sync);
1317
32a7627c 1318 err = bitmap_update_sb(mddev->bitmap);
1da177e4
LT
1319 ITERATE_RDEV(mddev,rdev,tmp) {
1320 char b[BDEVNAME_SIZE];
1321 dprintk(KERN_INFO "md: ");
1322 if (rdev->faulty)
1323 dprintk("(skipping faulty ");
1324
1325 dprintk("%s ", bdevname(rdev->bdev,b));
1326 if (!rdev->faulty) {
1327 err += write_disk_sb(rdev);
1328 } else
1329 dprintk(")\n");
1330 if (!err && mddev->level == LEVEL_MULTIPATH)
1331 /* only need to write one superblock... */
1332 break;
1333 }
1334 if (err) {
1335 if (--count) {
1336 printk(KERN_ERR "md: errors occurred during superblock"
1337 " update, repeating\n");
1338 goto repeat;
1339 }
1340 printk(KERN_ERR \
1341 "md: excessive errors occurred during superblock update, exiting\n");
1342 }
06d91a5f
N
1343 spin_lock(&mddev->write_lock);
1344 if (mddev->in_sync != sync_req) {
1345 /* have to write it out again */
1346 spin_unlock(&mddev->write_lock);
1347 goto repeat;
1348 }
1349 mddev->sb_dirty = 0;
1350 spin_unlock(&mddev->write_lock);
1351
1da177e4
LT
1352}
1353
1354/*
1355 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1356 *
1357 * mark the device faulty if:
1358 *
1359 * - the device is nonexistent (zero size)
1360 * - the device has no valid superblock
1361 *
1362 * a faulty rdev _never_ has rdev->sb set.
1363 */
1364static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1365{
1366 char b[BDEVNAME_SIZE];
1367 int err;
1368 mdk_rdev_t *rdev;
1369 sector_t size;
1370
1371 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1372 if (!rdev) {
1373 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1374 return ERR_PTR(-ENOMEM);
1375 }
1376 memset(rdev, 0, sizeof(*rdev));
1377
1378 if ((err = alloc_disk_sb(rdev)))
1379 goto abort_free;
1380
1381 err = lock_rdev(rdev, newdev);
1382 if (err)
1383 goto abort_free;
1384
1385 rdev->desc_nr = -1;
1386 rdev->faulty = 0;
1387 rdev->in_sync = 0;
1388 rdev->data_offset = 0;
1389 atomic_set(&rdev->nr_pending, 0);
1390
1391 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1392 if (!size) {
1393 printk(KERN_WARNING
1394 "md: %s has zero or unknown size, marking faulty!\n",
1395 bdevname(rdev->bdev,b));
1396 err = -EINVAL;
1397 goto abort_free;
1398 }
1399
1400 if (super_format >= 0) {
1401 err = super_types[super_format].
1402 load_super(rdev, NULL, super_minor);
1403 if (err == -EINVAL) {
1404 printk(KERN_WARNING
1405 "md: %s has invalid sb, not importing!\n",
1406 bdevname(rdev->bdev,b));
1407 goto abort_free;
1408 }
1409 if (err < 0) {
1410 printk(KERN_WARNING
1411 "md: could not read %s's sb, not importing!\n",
1412 bdevname(rdev->bdev,b));
1413 goto abort_free;
1414 }
1415 }
1416 INIT_LIST_HEAD(&rdev->same_set);
1417
1418 return rdev;
1419
1420abort_free:
1421 if (rdev->sb_page) {
1422 if (rdev->bdev)
1423 unlock_rdev(rdev);
1424 free_disk_sb(rdev);
1425 }
1426 kfree(rdev);
1427 return ERR_PTR(err);
1428}
1429
1430/*
1431 * Check a full RAID array for plausibility
1432 */
1433
1434
a757e64c 1435static void analyze_sbs(mddev_t * mddev)
1da177e4
LT
1436{
1437 int i;
1438 struct list_head *tmp;
1439 mdk_rdev_t *rdev, *freshest;
1440 char b[BDEVNAME_SIZE];
1441
1442 freshest = NULL;
1443 ITERATE_RDEV(mddev,rdev,tmp)
1444 switch (super_types[mddev->major_version].
1445 load_super(rdev, freshest, mddev->minor_version)) {
1446 case 1:
1447 freshest = rdev;
1448 break;
1449 case 0:
1450 break;
1451 default:
1452 printk( KERN_ERR \
1453 "md: fatal superblock inconsistency in %s"
1454 " -- removing from array\n",
1455 bdevname(rdev->bdev,b));
1456 kick_rdev_from_array(rdev);
1457 }
1458
1459
1460 super_types[mddev->major_version].
1461 validate_super(mddev, freshest);
1462
1463 i = 0;
1464 ITERATE_RDEV(mddev,rdev,tmp) {
1465 if (rdev != freshest)
1466 if (super_types[mddev->major_version].
1467 validate_super(mddev, rdev)) {
1468 printk(KERN_WARNING "md: kicking non-fresh %s"
1469 " from array!\n",
1470 bdevname(rdev->bdev,b));
1471 kick_rdev_from_array(rdev);
1472 continue;
1473 }
1474 if (mddev->level == LEVEL_MULTIPATH) {
1475 rdev->desc_nr = i++;
1476 rdev->raid_disk = rdev->desc_nr;
1477 rdev->in_sync = 1;
1478 }
1479 }
1480
1481
1482
1483 if (mddev->recovery_cp != MaxSector &&
1484 mddev->level >= 1)
1485 printk(KERN_ERR "md: %s: raid array is not clean"
1486 " -- starting background reconstruction\n",
1487 mdname(mddev));
1488
1da177e4
LT
1489}
1490
1491int mdp_major = 0;
1492
1493static struct kobject *md_probe(dev_t dev, int *part, void *data)
1494{
1495 static DECLARE_MUTEX(disks_sem);
1496 mddev_t *mddev = mddev_find(dev);
1497 struct gendisk *disk;
1498 int partitioned = (MAJOR(dev) != MD_MAJOR);
1499 int shift = partitioned ? MdpMinorShift : 0;
1500 int unit = MINOR(dev) >> shift;
1501
1502 if (!mddev)
1503 return NULL;
1504
1505 down(&disks_sem);
1506 if (mddev->gendisk) {
1507 up(&disks_sem);
1508 mddev_put(mddev);
1509 return NULL;
1510 }
1511 disk = alloc_disk(1 << shift);
1512 if (!disk) {
1513 up(&disks_sem);
1514 mddev_put(mddev);
1515 return NULL;
1516 }
1517 disk->major = MAJOR(dev);
1518 disk->first_minor = unit << shift;
1519 if (partitioned) {
1520 sprintf(disk->disk_name, "md_d%d", unit);
1521 sprintf(disk->devfs_name, "md/d%d", unit);
1522 } else {
1523 sprintf(disk->disk_name, "md%d", unit);
1524 sprintf(disk->devfs_name, "md/%d", unit);
1525 }
1526 disk->fops = &md_fops;
1527 disk->private_data = mddev;
1528 disk->queue = mddev->queue;
1529 add_disk(disk);
1530 mddev->gendisk = disk;
1531 up(&disks_sem);
1532 return NULL;
1533}
1534
1535void md_wakeup_thread(mdk_thread_t *thread);
1536
1537static void md_safemode_timeout(unsigned long data)
1538{
1539 mddev_t *mddev = (mddev_t *) data;
1540
1541 mddev->safemode = 1;
1542 md_wakeup_thread(mddev->thread);
1543}
1544
1545
1546static int do_md_run(mddev_t * mddev)
1547{
1548 int pnum, err;
1549 int chunk_size;
1550 struct list_head *tmp;
1551 mdk_rdev_t *rdev;
1552 struct gendisk *disk;
1553 char b[BDEVNAME_SIZE];
1554
a757e64c
N
1555 if (list_empty(&mddev->disks))
1556 /* cannot run an array with no devices.. */
1da177e4 1557 return -EINVAL;
1da177e4
LT
1558
1559 if (mddev->pers)
1560 return -EBUSY;
1561
1562 /*
1563 * Analyze all RAID superblock(s)
1564 */
a757e64c
N
1565 if (!mddev->raid_disks)
1566 analyze_sbs(mddev);
1da177e4
LT
1567
1568 chunk_size = mddev->chunk_size;
1569 pnum = level_to_pers(mddev->level);
1570
1571 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1572 if (!chunk_size) {
1573 /*
1574 * 'default chunksize' in the old md code used to
1575 * be PAGE_SIZE, baaad.
1576 * we abort here to be on the safe side. We don't
1577 * want to continue the bad practice.
1578 */
1579 printk(KERN_ERR
1580 "no chunksize specified, see 'man raidtab'\n");
1581 return -EINVAL;
1582 }
1583 if (chunk_size > MAX_CHUNK_SIZE) {
1584 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1585 chunk_size, MAX_CHUNK_SIZE);
1586 return -EINVAL;
1587 }
1588 /*
1589 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1590 */
1591 if ( (1 << ffz(~chunk_size)) != chunk_size) {
a757e64c 1592 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1da177e4
LT
1593 return -EINVAL;
1594 }
1595 if (chunk_size < PAGE_SIZE) {
1596 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1597 chunk_size, PAGE_SIZE);
1598 return -EINVAL;
1599 }
1600
1601 /* devices must have minimum size of one chunk */
1602 ITERATE_RDEV(mddev,rdev,tmp) {
1603 if (rdev->faulty)
1604 continue;
1605 if (rdev->size < chunk_size / 1024) {
1606 printk(KERN_WARNING
1607 "md: Dev %s smaller than chunk_size:"
1608 " %lluk < %dk\n",
1609 bdevname(rdev->bdev,b),
1610 (unsigned long long)rdev->size,
1611 chunk_size / 1024);
1612 return -EINVAL;
1613 }
1614 }
1615 }
1616
1da177e4
LT
1617#ifdef CONFIG_KMOD
1618 if (!pers[pnum])
1619 {
1620 request_module("md-personality-%d", pnum);
1621 }
1622#endif
1623
1624 /*
1625 * Drop all container device buffers, from now on
1626 * the only valid external interface is through the md
1627 * device.
1628 * Also find largest hardsector size
1629 */
1630 ITERATE_RDEV(mddev,rdev,tmp) {
1631 if (rdev->faulty)
1632 continue;
1633 sync_blockdev(rdev->bdev);
1634 invalidate_bdev(rdev->bdev, 0);
1635 }
1636
1637 md_probe(mddev->unit, NULL, NULL);
1638 disk = mddev->gendisk;
1639 if (!disk)
1640 return -ENOMEM;
1641
1642 spin_lock(&pers_lock);
1643 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1644 spin_unlock(&pers_lock);
1645 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1646 pnum);
1647 return -EINVAL;
1648 }
1649
1650 mddev->pers = pers[pnum];
1651 spin_unlock(&pers_lock);
1652
1653 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1654
32a7627c
N
1655 /* before we start the array running, initialise the bitmap */
1656 err = bitmap_create(mddev);
1657 if (err)
1658 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1659 mdname(mddev), err);
1660 else
1661 err = mddev->pers->run(mddev);
1da177e4
LT
1662 if (err) {
1663 printk(KERN_ERR "md: pers->run() failed ...\n");
1664 module_put(mddev->pers->owner);
1665 mddev->pers = NULL;
32a7627c
N
1666 bitmap_destroy(mddev);
1667 return err;
1da177e4
LT
1668 }
1669 atomic_set(&mddev->writes_pending,0);
1670 mddev->safemode = 0;
1671 mddev->safemode_timer.function = md_safemode_timeout;
1672 mddev->safemode_timer.data = (unsigned long) mddev;
1673 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1674 mddev->in_sync = 1;
1675
1676 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1677
1678 if (mddev->sb_dirty)
1679 md_update_sb(mddev);
1680
1681 set_capacity(disk, mddev->array_size<<1);
1682
1683 /* If we call blk_queue_make_request here, it will
1684 * re-initialise max_sectors etc which may have been
1685 * refined inside -> run. So just set the bits we need to set.
1686 * Most initialisation happended when we called
1687 * blk_queue_make_request(..., md_fail_request)
1688 * earlier.
1689 */
1690 mddev->queue->queuedata = mddev;
1691 mddev->queue->make_request_fn = mddev->pers->make_request;
1692
1693 mddev->changed = 1;
1694 return 0;
1695}
1696
1697static int restart_array(mddev_t *mddev)
1698{
1699 struct gendisk *disk = mddev->gendisk;
1700 int err;
1701
1702 /*
1703 * Complain if it has no devices
1704 */
1705 err = -ENXIO;
1706 if (list_empty(&mddev->disks))
1707 goto out;
1708
1709 if (mddev->pers) {
1710 err = -EBUSY;
1711 if (!mddev->ro)
1712 goto out;
1713
1714 mddev->safemode = 0;
1715 mddev->ro = 0;
1716 set_disk_ro(disk, 0);
1717
1718 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1719 mdname(mddev));
1720 /*
1721 * Kick recovery or resync if necessary
1722 */
1723 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1724 md_wakeup_thread(mddev->thread);
1725 err = 0;
1726 } else {
1727 printk(KERN_ERR "md: %s has no personality assigned.\n",
1728 mdname(mddev));
1729 err = -EINVAL;
1730 }
1731
1732out:
1733 return err;
1734}
1735
1736static int do_md_stop(mddev_t * mddev, int ro)
1737{
1738 int err = 0;
1739 struct gendisk *disk = mddev->gendisk;
1740
1741 if (mddev->pers) {
1742 if (atomic_read(&mddev->active)>2) {
1743 printk("md: %s still in use.\n",mdname(mddev));
1744 return -EBUSY;
1745 }
1746
1747 if (mddev->sync_thread) {
1748 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1749 md_unregister_thread(mddev->sync_thread);
1750 mddev->sync_thread = NULL;
1751 }
1752
1753 del_timer_sync(&mddev->safemode_timer);
1754
1755 invalidate_partition(disk, 0);
1756
1757 if (ro) {
1758 err = -ENXIO;
1759 if (mddev->ro)
1760 goto out;
1761 mddev->ro = 1;
1762 } else {
1763 if (mddev->ro)
1764 set_disk_ro(disk, 0);
1765 blk_queue_make_request(mddev->queue, md_fail_request);
1766 mddev->pers->stop(mddev);
1767 module_put(mddev->pers->owner);
1768 mddev->pers = NULL;
1769 if (mddev->ro)
1770 mddev->ro = 0;
1771 }
1772 if (!mddev->in_sync) {
1773 /* mark array as shutdown cleanly */
1774 mddev->in_sync = 1;
1775 md_update_sb(mddev);
1776 }
1777 if (ro)
1778 set_disk_ro(disk, 1);
1779 }
32a7627c
N
1780
1781 bitmap_destroy(mddev);
1782 if (mddev->bitmap_file) {
1783 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1784 fput(mddev->bitmap_file);
1785 mddev->bitmap_file = NULL;
1786 }
1787
1da177e4
LT
1788 /*
1789 * Free resources if final stop
1790 */
1791 if (!ro) {
1792 struct gendisk *disk;
1793 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1794
1795 export_array(mddev);
1796
1797 mddev->array_size = 0;
1798 disk = mddev->gendisk;
1799 if (disk)
1800 set_capacity(disk, 0);
1801 mddev->changed = 1;
1802 } else
1803 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1804 mdname(mddev));
1805 err = 0;
1806out:
1807 return err;
1808}
1809
1810static void autorun_array(mddev_t *mddev)
1811{
1812 mdk_rdev_t *rdev;
1813 struct list_head *tmp;
1814 int err;
1815
a757e64c 1816 if (list_empty(&mddev->disks))
1da177e4 1817 return;
1da177e4
LT
1818
1819 printk(KERN_INFO "md: running: ");
1820
1821 ITERATE_RDEV(mddev,rdev,tmp) {
1822 char b[BDEVNAME_SIZE];
1823 printk("<%s>", bdevname(rdev->bdev,b));
1824 }
1825 printk("\n");
1826
1827 err = do_md_run (mddev);
1828 if (err) {
1829 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1830 do_md_stop (mddev, 0);
1831 }
1832}
1833
1834/*
1835 * lets try to run arrays based on all disks that have arrived
1836 * until now. (those are in pending_raid_disks)
1837 *
1838 * the method: pick the first pending disk, collect all disks with
1839 * the same UUID, remove all from the pending list and put them into
1840 * the 'same_array' list. Then order this list based on superblock
1841 * update time (freshest comes first), kick out 'old' disks and
1842 * compare superblocks. If everything's fine then run it.
1843 *
1844 * If "unit" is allocated, then bump its reference count
1845 */
1846static void autorun_devices(int part)
1847{
1848 struct list_head candidates;
1849 struct list_head *tmp;
1850 mdk_rdev_t *rdev0, *rdev;
1851 mddev_t *mddev;
1852 char b[BDEVNAME_SIZE];
1853
1854 printk(KERN_INFO "md: autorun ...\n");
1855 while (!list_empty(&pending_raid_disks)) {
1856 dev_t dev;
1857 rdev0 = list_entry(pending_raid_disks.next,
1858 mdk_rdev_t, same_set);
1859
1860 printk(KERN_INFO "md: considering %s ...\n",
1861 bdevname(rdev0->bdev,b));
1862 INIT_LIST_HEAD(&candidates);
1863 ITERATE_RDEV_PENDING(rdev,tmp)
1864 if (super_90_load(rdev, rdev0, 0) >= 0) {
1865 printk(KERN_INFO "md: adding %s ...\n",
1866 bdevname(rdev->bdev,b));
1867 list_move(&rdev->same_set, &candidates);
1868 }
1869 /*
1870 * now we have a set of devices, with all of them having
1871 * mostly sane superblocks. It's time to allocate the
1872 * mddev.
1873 */
1874 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1875 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1876 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1877 break;
1878 }
1879 if (part)
1880 dev = MKDEV(mdp_major,
1881 rdev0->preferred_minor << MdpMinorShift);
1882 else
1883 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1884
1885 md_probe(dev, NULL, NULL);
1886 mddev = mddev_find(dev);
1887 if (!mddev) {
1888 printk(KERN_ERR
1889 "md: cannot allocate memory for md drive.\n");
1890 break;
1891 }
1892 if (mddev_lock(mddev))
1893 printk(KERN_WARNING "md: %s locked, cannot run\n",
1894 mdname(mddev));
1895 else if (mddev->raid_disks || mddev->major_version
1896 || !list_empty(&mddev->disks)) {
1897 printk(KERN_WARNING
1898 "md: %s already running, cannot run %s\n",
1899 mdname(mddev), bdevname(rdev0->bdev,b));
1900 mddev_unlock(mddev);
1901 } else {
1902 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1903 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1904 list_del_init(&rdev->same_set);
1905 if (bind_rdev_to_array(rdev, mddev))
1906 export_rdev(rdev);
1907 }
1908 autorun_array(mddev);
1909 mddev_unlock(mddev);
1910 }
1911 /* on success, candidates will be empty, on error
1912 * it won't...
1913 */
1914 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1915 export_rdev(rdev);
1916 mddev_put(mddev);
1917 }
1918 printk(KERN_INFO "md: ... autorun DONE.\n");
1919}
1920
1921/*
1922 * import RAID devices based on one partition
1923 * if possible, the array gets run as well.
1924 */
1925
1926static int autostart_array(dev_t startdev)
1927{
1928 char b[BDEVNAME_SIZE];
1929 int err = -EINVAL, i;
1930 mdp_super_t *sb = NULL;
1931 mdk_rdev_t *start_rdev = NULL, *rdev;
1932
1933 start_rdev = md_import_device(startdev, 0, 0);
1934 if (IS_ERR(start_rdev))
1935 return err;
1936
1937
1938 /* NOTE: this can only work for 0.90.0 superblocks */
1939 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1940 if (sb->major_version != 0 ||
1941 sb->minor_version != 90 ) {
1942 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1943 export_rdev(start_rdev);
1944 return err;
1945 }
1946
1947 if (start_rdev->faulty) {
1948 printk(KERN_WARNING
1949 "md: can not autostart based on faulty %s!\n",
1950 bdevname(start_rdev->bdev,b));
1951 export_rdev(start_rdev);
1952 return err;
1953 }
1954 list_add(&start_rdev->same_set, &pending_raid_disks);
1955
1956 for (i = 0; i < MD_SB_DISKS; i++) {
1957 mdp_disk_t *desc = sb->disks + i;
1958 dev_t dev = MKDEV(desc->major, desc->minor);
1959
1960 if (!dev)
1961 continue;
1962 if (dev == startdev)
1963 continue;
1964 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
1965 continue;
1966 rdev = md_import_device(dev, 0, 0);
1967 if (IS_ERR(rdev))
1968 continue;
1969
1970 list_add(&rdev->same_set, &pending_raid_disks);
1971 }
1972
1973 /*
1974 * possibly return codes
1975 */
1976 autorun_devices(0);
1977 return 0;
1978
1979}
1980
1981
1982static int get_version(void __user * arg)
1983{
1984 mdu_version_t ver;
1985
1986 ver.major = MD_MAJOR_VERSION;
1987 ver.minor = MD_MINOR_VERSION;
1988 ver.patchlevel = MD_PATCHLEVEL_VERSION;
1989
1990 if (copy_to_user(arg, &ver, sizeof(ver)))
1991 return -EFAULT;
1992
1993 return 0;
1994}
1995
1996static int get_array_info(mddev_t * mddev, void __user * arg)
1997{
1998 mdu_array_info_t info;
1999 int nr,working,active,failed,spare;
2000 mdk_rdev_t *rdev;
2001 struct list_head *tmp;
2002
2003 nr=working=active=failed=spare=0;
2004 ITERATE_RDEV(mddev,rdev,tmp) {
2005 nr++;
2006 if (rdev->faulty)
2007 failed++;
2008 else {
2009 working++;
2010 if (rdev->in_sync)
2011 active++;
2012 else
2013 spare++;
2014 }
2015 }
2016
2017 info.major_version = mddev->major_version;
2018 info.minor_version = mddev->minor_version;
2019 info.patch_version = MD_PATCHLEVEL_VERSION;
2020 info.ctime = mddev->ctime;
2021 info.level = mddev->level;
2022 info.size = mddev->size;
2023 info.nr_disks = nr;
2024 info.raid_disks = mddev->raid_disks;
2025 info.md_minor = mddev->md_minor;
2026 info.not_persistent= !mddev->persistent;
2027
2028 info.utime = mddev->utime;
2029 info.state = 0;
2030 if (mddev->in_sync)
2031 info.state = (1<<MD_SB_CLEAN);
2032 info.active_disks = active;
2033 info.working_disks = working;
2034 info.failed_disks = failed;
2035 info.spare_disks = spare;
2036
2037 info.layout = mddev->layout;
2038 info.chunk_size = mddev->chunk_size;
2039
2040 if (copy_to_user(arg, &info, sizeof(info)))
2041 return -EFAULT;
2042
2043 return 0;
2044}
2045
32a7627c
N
2046static int get_bitmap_file(mddev_t * mddev, void * arg)
2047{
2048 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2049 char *ptr, *buf = NULL;
2050 int err = -ENOMEM;
2051
2052 file = kmalloc(sizeof(*file), GFP_KERNEL);
2053 if (!file)
2054 goto out;
2055
2056 /* bitmap disabled, zero the first byte and copy out */
2057 if (!mddev->bitmap || !mddev->bitmap->file) {
2058 file->pathname[0] = '\0';
2059 goto copy_out;
2060 }
2061
2062 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2063 if (!buf)
2064 goto out;
2065
2066 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2067 if (!ptr)
2068 goto out;
2069
2070 strcpy(file->pathname, ptr);
2071
2072copy_out:
2073 err = 0;
2074 if (copy_to_user(arg, file, sizeof(*file)))
2075 err = -EFAULT;
2076out:
2077 kfree(buf);
2078 kfree(file);
2079 return err;
2080}
2081
1da177e4
LT
2082static int get_disk_info(mddev_t * mddev, void __user * arg)
2083{
2084 mdu_disk_info_t info;
2085 unsigned int nr;
2086 mdk_rdev_t *rdev;
2087
2088 if (copy_from_user(&info, arg, sizeof(info)))
2089 return -EFAULT;
2090
2091 nr = info.number;
2092
2093 rdev = find_rdev_nr(mddev, nr);
2094 if (rdev) {
2095 info.major = MAJOR(rdev->bdev->bd_dev);
2096 info.minor = MINOR(rdev->bdev->bd_dev);
2097 info.raid_disk = rdev->raid_disk;
2098 info.state = 0;
2099 if (rdev->faulty)
2100 info.state |= (1<<MD_DISK_FAULTY);
2101 else if (rdev->in_sync) {
2102 info.state |= (1<<MD_DISK_ACTIVE);
2103 info.state |= (1<<MD_DISK_SYNC);
2104 }
2105 } else {
2106 info.major = info.minor = 0;
2107 info.raid_disk = -1;
2108 info.state = (1<<MD_DISK_REMOVED);
2109 }
2110
2111 if (copy_to_user(arg, &info, sizeof(info)))
2112 return -EFAULT;
2113
2114 return 0;
2115}
2116
2117static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2118{
2119 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2120 mdk_rdev_t *rdev;
2121 dev_t dev = MKDEV(info->major,info->minor);
2122
2123 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2124 return -EOVERFLOW;
2125
2126 if (!mddev->raid_disks) {
2127 int err;
2128 /* expecting a device which has a superblock */
2129 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2130 if (IS_ERR(rdev)) {
2131 printk(KERN_WARNING
2132 "md: md_import_device returned %ld\n",
2133 PTR_ERR(rdev));
2134 return PTR_ERR(rdev);
2135 }
2136 if (!list_empty(&mddev->disks)) {
2137 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2138 mdk_rdev_t, same_set);
2139 int err = super_types[mddev->major_version]
2140 .load_super(rdev, rdev0, mddev->minor_version);
2141 if (err < 0) {
2142 printk(KERN_WARNING
2143 "md: %s has different UUID to %s\n",
2144 bdevname(rdev->bdev,b),
2145 bdevname(rdev0->bdev,b2));
2146 export_rdev(rdev);
2147 return -EINVAL;
2148 }
2149 }
2150 err = bind_rdev_to_array(rdev, mddev);
2151 if (err)
2152 export_rdev(rdev);
2153 return err;
2154 }
2155
2156 /*
2157 * add_new_disk can be used once the array is assembled
2158 * to add "hot spares". They must already have a superblock
2159 * written
2160 */
2161 if (mddev->pers) {
2162 int err;
2163 if (!mddev->pers->hot_add_disk) {
2164 printk(KERN_WARNING
2165 "%s: personality does not support diskops!\n",
2166 mdname(mddev));
2167 return -EINVAL;
2168 }
2169 rdev = md_import_device(dev, mddev->major_version,
2170 mddev->minor_version);
2171 if (IS_ERR(rdev)) {
2172 printk(KERN_WARNING
2173 "md: md_import_device returned %ld\n",
2174 PTR_ERR(rdev));
2175 return PTR_ERR(rdev);
2176 }
41158c7e
N
2177 /* set save_raid_disk if appropriate */
2178 if (!mddev->persistent) {
2179 if (info->state & (1<<MD_DISK_SYNC) &&
2180 info->raid_disk < mddev->raid_disks)
2181 rdev->raid_disk = info->raid_disk;
2182 else
2183 rdev->raid_disk = -1;
2184 } else
2185 super_types[mddev->major_version].
2186 validate_super(mddev, rdev);
2187 rdev->saved_raid_disk = rdev->raid_disk;
2188
1da177e4
LT
2189 rdev->in_sync = 0; /* just to be sure */
2190 rdev->raid_disk = -1;
2191 err = bind_rdev_to_array(rdev, mddev);
2192 if (err)
2193 export_rdev(rdev);
c361777f
N
2194
2195 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1da177e4
LT
2196 if (mddev->thread)
2197 md_wakeup_thread(mddev->thread);
2198 return err;
2199 }
2200
2201 /* otherwise, add_new_disk is only allowed
2202 * for major_version==0 superblocks
2203 */
2204 if (mddev->major_version != 0) {
2205 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2206 mdname(mddev));
2207 return -EINVAL;
2208 }
2209
2210 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2211 int err;
2212 rdev = md_import_device (dev, -1, 0);
2213 if (IS_ERR(rdev)) {
2214 printk(KERN_WARNING
2215 "md: error, md_import_device() returned %ld\n",
2216 PTR_ERR(rdev));
2217 return PTR_ERR(rdev);
2218 }
2219 rdev->desc_nr = info->number;
2220 if (info->raid_disk < mddev->raid_disks)
2221 rdev->raid_disk = info->raid_disk;
2222 else
2223 rdev->raid_disk = -1;
2224
2225 rdev->faulty = 0;
2226 if (rdev->raid_disk < mddev->raid_disks)
2227 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2228 else
2229 rdev->in_sync = 0;
2230
2231 err = bind_rdev_to_array(rdev, mddev);
2232 if (err) {
2233 export_rdev(rdev);
2234 return err;
2235 }
2236
2237 if (!mddev->persistent) {
2238 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2239 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2240 } else
2241 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2242 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2243
2244 if (!mddev->size || (mddev->size > rdev->size))
2245 mddev->size = rdev->size;
2246 }
2247
2248 return 0;
2249}
2250
2251static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2252{
2253 char b[BDEVNAME_SIZE];
2254 mdk_rdev_t *rdev;
2255
2256 if (!mddev->pers)
2257 return -ENODEV;
2258
2259 rdev = find_rdev(mddev, dev);
2260 if (!rdev)
2261 return -ENXIO;
2262
2263 if (rdev->raid_disk >= 0)
2264 goto busy;
2265
2266 kick_rdev_from_array(rdev);
2267 md_update_sb(mddev);
2268
2269 return 0;
2270busy:
2271 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2272 bdevname(rdev->bdev,b), mdname(mddev));
2273 return -EBUSY;
2274}
2275
2276static int hot_add_disk(mddev_t * mddev, dev_t dev)
2277{
2278 char b[BDEVNAME_SIZE];
2279 int err;
2280 unsigned int size;
2281 mdk_rdev_t *rdev;
2282
2283 if (!mddev->pers)
2284 return -ENODEV;
2285
2286 if (mddev->major_version != 0) {
2287 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2288 " version-0 superblocks.\n",
2289 mdname(mddev));
2290 return -EINVAL;
2291 }
2292 if (!mddev->pers->hot_add_disk) {
2293 printk(KERN_WARNING
2294 "%s: personality does not support diskops!\n",
2295 mdname(mddev));
2296 return -EINVAL;
2297 }
2298
2299 rdev = md_import_device (dev, -1, 0);
2300 if (IS_ERR(rdev)) {
2301 printk(KERN_WARNING
2302 "md: error, md_import_device() returned %ld\n",
2303 PTR_ERR(rdev));
2304 return -EINVAL;
2305 }
2306
2307 if (mddev->persistent)
2308 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2309 else
2310 rdev->sb_offset =
2311 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2312
2313 size = calc_dev_size(rdev, mddev->chunk_size);
2314 rdev->size = size;
2315
2316 if (size < mddev->size) {
2317 printk(KERN_WARNING
2318 "%s: disk size %llu blocks < array size %llu\n",
2319 mdname(mddev), (unsigned long long)size,
2320 (unsigned long long)mddev->size);
2321 err = -ENOSPC;
2322 goto abort_export;
2323 }
2324
2325 if (rdev->faulty) {
2326 printk(KERN_WARNING
2327 "md: can not hot-add faulty %s disk to %s!\n",
2328 bdevname(rdev->bdev,b), mdname(mddev));
2329 err = -EINVAL;
2330 goto abort_export;
2331 }
2332 rdev->in_sync = 0;
2333 rdev->desc_nr = -1;
2334 bind_rdev_to_array(rdev, mddev);
2335
2336 /*
2337 * The rest should better be atomic, we can have disk failures
2338 * noticed in interrupt contexts ...
2339 */
2340
2341 if (rdev->desc_nr == mddev->max_disks) {
2342 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2343 mdname(mddev));
2344 err = -EBUSY;
2345 goto abort_unbind_export;
2346 }
2347
2348 rdev->raid_disk = -1;
2349
2350 md_update_sb(mddev);
2351
2352 /*
2353 * Kick recovery, maybe this spare has to be added to the
2354 * array immediately.
2355 */
2356 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2357 md_wakeup_thread(mddev->thread);
2358
2359 return 0;
2360
2361abort_unbind_export:
2362 unbind_rdev_from_array(rdev);
2363
2364abort_export:
2365 export_rdev(rdev);
2366 return err;
2367}
2368
32a7627c
N
2369/* similar to deny_write_access, but accounts for our holding a reference
2370 * to the file ourselves */
2371static int deny_bitmap_write_access(struct file * file)
2372{
2373 struct inode *inode = file->f_mapping->host;
2374
2375 spin_lock(&inode->i_lock);
2376 if (atomic_read(&inode->i_writecount) > 1) {
2377 spin_unlock(&inode->i_lock);
2378 return -ETXTBSY;
2379 }
2380 atomic_set(&inode->i_writecount, -1);
2381 spin_unlock(&inode->i_lock);
2382
2383 return 0;
2384}
2385
2386static int set_bitmap_file(mddev_t *mddev, int fd)
2387{
2388 int err;
2389
2390 if (mddev->pers)
2391 return -EBUSY;
2392
2393 mddev->bitmap_file = fget(fd);
2394
2395 if (mddev->bitmap_file == NULL) {
2396 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2397 mdname(mddev));
2398 return -EBADF;
2399 }
2400
2401 err = deny_bitmap_write_access(mddev->bitmap_file);
2402 if (err) {
2403 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2404 mdname(mddev));
2405 fput(mddev->bitmap_file);
2406 mddev->bitmap_file = NULL;
2407 }
2408 return err;
2409}
2410
1da177e4
LT
2411/*
2412 * set_array_info is used two different ways
2413 * The original usage is when creating a new array.
2414 * In this usage, raid_disks is > 0 and it together with
2415 * level, size, not_persistent,layout,chunksize determine the
2416 * shape of the array.
2417 * This will always create an array with a type-0.90.0 superblock.
2418 * The newer usage is when assembling an array.
2419 * In this case raid_disks will be 0, and the major_version field is
2420 * use to determine which style super-blocks are to be found on the devices.
2421 * The minor and patch _version numbers are also kept incase the
2422 * super_block handler wishes to interpret them.
2423 */
2424static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2425{
2426
2427 if (info->raid_disks == 0) {
2428 /* just setting version number for superblock loading */
2429 if (info->major_version < 0 ||
2430 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2431 super_types[info->major_version].name == NULL) {
2432 /* maybe try to auto-load a module? */
2433 printk(KERN_INFO
2434 "md: superblock version %d not known\n",
2435 info->major_version);
2436 return -EINVAL;
2437 }
2438 mddev->major_version = info->major_version;
2439 mddev->minor_version = info->minor_version;
2440 mddev->patch_version = info->patch_version;
2441 return 0;
2442 }
2443 mddev->major_version = MD_MAJOR_VERSION;
2444 mddev->minor_version = MD_MINOR_VERSION;
2445 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2446 mddev->ctime = get_seconds();
2447
2448 mddev->level = info->level;
2449 mddev->size = info->size;
2450 mddev->raid_disks = info->raid_disks;
2451 /* don't set md_minor, it is determined by which /dev/md* was
2452 * openned
2453 */
2454 if (info->state & (1<<MD_SB_CLEAN))
2455 mddev->recovery_cp = MaxSector;
2456 else
2457 mddev->recovery_cp = 0;
2458 mddev->persistent = ! info->not_persistent;
2459
2460 mddev->layout = info->layout;
2461 mddev->chunk_size = info->chunk_size;
2462
2463 mddev->max_disks = MD_SB_DISKS;
2464
2465 mddev->sb_dirty = 1;
2466
2467 /*
2468 * Generate a 128 bit UUID
2469 */
2470 get_random_bytes(mddev->uuid, 16);
2471
2472 return 0;
2473}
2474
2475/*
2476 * update_array_info is used to change the configuration of an
2477 * on-line array.
2478 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2479 * fields in the info are checked against the array.
2480 * Any differences that cannot be handled will cause an error.
2481 * Normally, only one change can be managed at a time.
2482 */
2483static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2484{
2485 int rv = 0;
2486 int cnt = 0;
2487
2488 if (mddev->major_version != info->major_version ||
2489 mddev->minor_version != info->minor_version ||
2490/* mddev->patch_version != info->patch_version || */
2491 mddev->ctime != info->ctime ||
2492 mddev->level != info->level ||
2493/* mddev->layout != info->layout || */
2494 !mddev->persistent != info->not_persistent||
2495 mddev->chunk_size != info->chunk_size )
2496 return -EINVAL;
2497 /* Check there is only one change */
2498 if (mddev->size != info->size) cnt++;
2499 if (mddev->raid_disks != info->raid_disks) cnt++;
2500 if (mddev->layout != info->layout) cnt++;
2501 if (cnt == 0) return 0;
2502 if (cnt > 1) return -EINVAL;
2503
2504 if (mddev->layout != info->layout) {
2505 /* Change layout
2506 * we don't need to do anything at the md level, the
2507 * personality will take care of it all.
2508 */
2509 if (mddev->pers->reconfig == NULL)
2510 return -EINVAL;
2511 else
2512 return mddev->pers->reconfig(mddev, info->layout, -1);
2513 }
2514 if (mddev->size != info->size) {
2515 mdk_rdev_t * rdev;
2516 struct list_head *tmp;
2517 if (mddev->pers->resize == NULL)
2518 return -EINVAL;
2519 /* The "size" is the amount of each device that is used.
2520 * This can only make sense for arrays with redundancy.
2521 * linear and raid0 always use whatever space is available
2522 * We can only consider changing the size if no resync
2523 * or reconstruction is happening, and if the new size
2524 * is acceptable. It must fit before the sb_offset or,
2525 * if that is <data_offset, it must fit before the
2526 * size of each device.
2527 * If size is zero, we find the largest size that fits.
2528 */
2529 if (mddev->sync_thread)
2530 return -EBUSY;
2531 ITERATE_RDEV(mddev,rdev,tmp) {
2532 sector_t avail;
2533 int fit = (info->size == 0);
2534 if (rdev->sb_offset > rdev->data_offset)
2535 avail = (rdev->sb_offset*2) - rdev->data_offset;
2536 else
2537 avail = get_capacity(rdev->bdev->bd_disk)
2538 - rdev->data_offset;
2539 if (fit && (info->size == 0 || info->size > avail/2))
2540 info->size = avail/2;
2541 if (avail < ((sector_t)info->size << 1))
2542 return -ENOSPC;
2543 }
2544 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2545 if (!rv) {
2546 struct block_device *bdev;
2547
2548 bdev = bdget_disk(mddev->gendisk, 0);
2549 if (bdev) {
2550 down(&bdev->bd_inode->i_sem);
2551 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2552 up(&bdev->bd_inode->i_sem);
2553 bdput(bdev);
2554 }
2555 }
2556 }
2557 if (mddev->raid_disks != info->raid_disks) {
2558 /* change the number of raid disks */
2559 if (mddev->pers->reshape == NULL)
2560 return -EINVAL;
2561 if (info->raid_disks <= 0 ||
2562 info->raid_disks >= mddev->max_disks)
2563 return -EINVAL;
2564 if (mddev->sync_thread)
2565 return -EBUSY;
2566 rv = mddev->pers->reshape(mddev, info->raid_disks);
2567 if (!rv) {
2568 struct block_device *bdev;
2569
2570 bdev = bdget_disk(mddev->gendisk, 0);
2571 if (bdev) {
2572 down(&bdev->bd_inode->i_sem);
2573 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2574 up(&bdev->bd_inode->i_sem);
2575 bdput(bdev);
2576 }
2577 }
2578 }
2579 md_update_sb(mddev);
2580 return rv;
2581}
2582
2583static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2584{
2585 mdk_rdev_t *rdev;
2586
2587 if (mddev->pers == NULL)
2588 return -ENODEV;
2589
2590 rdev = find_rdev(mddev, dev);
2591 if (!rdev)
2592 return -ENODEV;
2593
2594 md_error(mddev, rdev);
2595 return 0;
2596}
2597
2598static int md_ioctl(struct inode *inode, struct file *file,
2599 unsigned int cmd, unsigned long arg)
2600{
2601 int err = 0;
2602 void __user *argp = (void __user *)arg;
2603 struct hd_geometry __user *loc = argp;
2604 mddev_t *mddev = NULL;
2605
2606 if (!capable(CAP_SYS_ADMIN))
2607 return -EACCES;
2608
2609 /*
2610 * Commands dealing with the RAID driver but not any
2611 * particular array:
2612 */
2613 switch (cmd)
2614 {
2615 case RAID_VERSION:
2616 err = get_version(argp);
2617 goto done;
2618
2619 case PRINT_RAID_DEBUG:
2620 err = 0;
2621 md_print_devices();
2622 goto done;
2623
2624#ifndef MODULE
2625 case RAID_AUTORUN:
2626 err = 0;
2627 autostart_arrays(arg);
2628 goto done;
2629#endif
2630 default:;
2631 }
2632
2633 /*
2634 * Commands creating/starting a new array:
2635 */
2636
2637 mddev = inode->i_bdev->bd_disk->private_data;
2638
2639 if (!mddev) {
2640 BUG();
2641 goto abort;
2642 }
2643
2644
2645 if (cmd == START_ARRAY) {
2646 /* START_ARRAY doesn't need to lock the array as autostart_array
2647 * does the locking, and it could even be a different array
2648 */
2649 static int cnt = 3;
2650 if (cnt > 0 ) {
2651 printk(KERN_WARNING
2652 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2653 "This will not be supported beyond 2.6\n",
2654 current->comm, current->pid);
2655 cnt--;
2656 }
2657 err = autostart_array(new_decode_dev(arg));
2658 if (err) {
2659 printk(KERN_WARNING "md: autostart failed!\n");
2660 goto abort;
2661 }
2662 goto done;
2663 }
2664
2665 err = mddev_lock(mddev);
2666 if (err) {
2667 printk(KERN_INFO
2668 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2669 err, cmd);
2670 goto abort;
2671 }
2672
2673 switch (cmd)
2674 {
2675 case SET_ARRAY_INFO:
2676 {
2677 mdu_array_info_t info;
2678 if (!arg)
2679 memset(&info, 0, sizeof(info));
2680 else if (copy_from_user(&info, argp, sizeof(info))) {
2681 err = -EFAULT;
2682 goto abort_unlock;
2683 }
2684 if (mddev->pers) {
2685 err = update_array_info(mddev, &info);
2686 if (err) {
2687 printk(KERN_WARNING "md: couldn't update"
2688 " array info. %d\n", err);
2689 goto abort_unlock;
2690 }
2691 goto done_unlock;
2692 }
2693 if (!list_empty(&mddev->disks)) {
2694 printk(KERN_WARNING
2695 "md: array %s already has disks!\n",
2696 mdname(mddev));
2697 err = -EBUSY;
2698 goto abort_unlock;
2699 }
2700 if (mddev->raid_disks) {
2701 printk(KERN_WARNING
2702 "md: array %s already initialised!\n",
2703 mdname(mddev));
2704 err = -EBUSY;
2705 goto abort_unlock;
2706 }
2707 err = set_array_info(mddev, &info);
2708 if (err) {
2709 printk(KERN_WARNING "md: couldn't set"
2710 " array info. %d\n", err);
2711 goto abort_unlock;
2712 }
2713 }
2714 goto done_unlock;
2715
2716 default:;
2717 }
2718
2719 /*
2720 * Commands querying/configuring an existing array:
2721 */
32a7627c
N
2722 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2723 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2724 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2725 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
1da177e4
LT
2726 err = -ENODEV;
2727 goto abort_unlock;
2728 }
2729
2730 /*
2731 * Commands even a read-only array can execute:
2732 */
2733 switch (cmd)
2734 {
2735 case GET_ARRAY_INFO:
2736 err = get_array_info(mddev, argp);
2737 goto done_unlock;
2738
32a7627c
N
2739 case GET_BITMAP_FILE:
2740 err = get_bitmap_file(mddev, (void *)arg);
2741 goto done_unlock;
2742
1da177e4
LT
2743 case GET_DISK_INFO:
2744 err = get_disk_info(mddev, argp);
2745 goto done_unlock;
2746
2747 case RESTART_ARRAY_RW:
2748 err = restart_array(mddev);
2749 goto done_unlock;
2750
2751 case STOP_ARRAY:
2752 err = do_md_stop (mddev, 0);
2753 goto done_unlock;
2754
2755 case STOP_ARRAY_RO:
2756 err = do_md_stop (mddev, 1);
2757 goto done_unlock;
2758
2759 /*
2760 * We have a problem here : there is no easy way to give a CHS
2761 * virtual geometry. We currently pretend that we have a 2 heads
2762 * 4 sectors (with a BIG number of cylinders...). This drives
2763 * dosfs just mad... ;-)
2764 */
2765 case HDIO_GETGEO:
2766 if (!loc) {
2767 err = -EINVAL;
2768 goto abort_unlock;
2769 }
2770 err = put_user (2, (char __user *) &loc->heads);
2771 if (err)
2772 goto abort_unlock;
2773 err = put_user (4, (char __user *) &loc->sectors);
2774 if (err)
2775 goto abort_unlock;
2776 err = put_user(get_capacity(mddev->gendisk)/8,
2777 (short __user *) &loc->cylinders);
2778 if (err)
2779 goto abort_unlock;
2780 err = put_user (get_start_sect(inode->i_bdev),
2781 (long __user *) &loc->start);
2782 goto done_unlock;
2783 }
2784
2785 /*
2786 * The remaining ioctls are changing the state of the
2787 * superblock, so we do not allow read-only arrays
2788 * here:
2789 */
2790 if (mddev->ro) {
2791 err = -EROFS;
2792 goto abort_unlock;
2793 }
2794
2795 switch (cmd)
2796 {
2797 case ADD_NEW_DISK:
2798 {
2799 mdu_disk_info_t info;
2800 if (copy_from_user(&info, argp, sizeof(info)))
2801 err = -EFAULT;
2802 else
2803 err = add_new_disk(mddev, &info);
2804 goto done_unlock;
2805 }
2806
2807 case HOT_REMOVE_DISK:
2808 err = hot_remove_disk(mddev, new_decode_dev(arg));
2809 goto done_unlock;
2810
2811 case HOT_ADD_DISK:
2812 err = hot_add_disk(mddev, new_decode_dev(arg));
2813 goto done_unlock;
2814
2815 case SET_DISK_FAULTY:
2816 err = set_disk_faulty(mddev, new_decode_dev(arg));
2817 goto done_unlock;
2818
2819 case RUN_ARRAY:
2820 err = do_md_run (mddev);
2821 goto done_unlock;
2822
32a7627c
N
2823 case SET_BITMAP_FILE:
2824 err = set_bitmap_file(mddev, (int)arg);
2825 goto done_unlock;
2826
1da177e4
LT
2827 default:
2828 if (_IOC_TYPE(cmd) == MD_MAJOR)
2829 printk(KERN_WARNING "md: %s(pid %d) used"
2830 " obsolete MD ioctl, upgrade your"
2831 " software to use new ictls.\n",
2832 current->comm, current->pid);
2833 err = -EINVAL;
2834 goto abort_unlock;
2835 }
2836
2837done_unlock:
2838abort_unlock:
2839 mddev_unlock(mddev);
2840
2841 return err;
2842done:
2843 if (err)
2844 MD_BUG();
2845abort:
2846 return err;
2847}
2848
2849static int md_open(struct inode *inode, struct file *file)
2850{
2851 /*
2852 * Succeed if we can lock the mddev, which confirms that
2853 * it isn't being stopped right now.
2854 */
2855 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2856 int err;
2857
2858 if ((err = mddev_lock(mddev)))
2859 goto out;
2860
2861 err = 0;
2862 mddev_get(mddev);
2863 mddev_unlock(mddev);
2864
2865 check_disk_change(inode->i_bdev);
2866 out:
2867 return err;
2868}
2869
2870static int md_release(struct inode *inode, struct file * file)
2871{
2872 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2873
2874 if (!mddev)
2875 BUG();
2876 mddev_put(mddev);
2877
2878 return 0;
2879}
2880
2881static int md_media_changed(struct gendisk *disk)
2882{
2883 mddev_t *mddev = disk->private_data;
2884
2885 return mddev->changed;
2886}
2887
2888static int md_revalidate(struct gendisk *disk)
2889{
2890 mddev_t *mddev = disk->private_data;
2891
2892 mddev->changed = 0;
2893 return 0;
2894}
2895static struct block_device_operations md_fops =
2896{
2897 .owner = THIS_MODULE,
2898 .open = md_open,
2899 .release = md_release,
2900 .ioctl = md_ioctl,
2901 .media_changed = md_media_changed,
2902 .revalidate_disk= md_revalidate,
2903};
2904
75c96f85 2905static int md_thread(void * arg)
1da177e4
LT
2906{
2907 mdk_thread_t *thread = arg;
2908
2909 lock_kernel();
2910
2911 /*
2912 * Detach thread
2913 */
2914
2915 daemonize(thread->name, mdname(thread->mddev));
2916
2917 current->exit_signal = SIGCHLD;
2918 allow_signal(SIGKILL);
2919 thread->tsk = current;
2920
2921 /*
2922 * md_thread is a 'system-thread', it's priority should be very
2923 * high. We avoid resource deadlocks individually in each
2924 * raid personality. (RAID5 does preallocation) We also use RR and
2925 * the very same RT priority as kswapd, thus we will never get
2926 * into a priority inversion deadlock.
2927 *
2928 * we definitely have to have equal or higher priority than
2929 * bdflush, otherwise bdflush will deadlock if there are too
2930 * many dirty RAID5 blocks.
2931 */
2932 unlock_kernel();
2933
2934 complete(thread->event);
2935 while (thread->run) {
2936 void (*run)(mddev_t *);
2937
32a7627c
N
2938 wait_event_interruptible_timeout(thread->wqueue,
2939 test_bit(THREAD_WAKEUP, &thread->flags),
2940 thread->timeout);
1da177e4
LT
2941 if (current->flags & PF_FREEZE)
2942 refrigerator(PF_FREEZE);
2943
2944 clear_bit(THREAD_WAKEUP, &thread->flags);
2945
2946 run = thread->run;
2947 if (run)
2948 run(thread->mddev);
2949
2950 if (signal_pending(current))
2951 flush_signals(current);
2952 }
2953 complete(thread->event);
2954 return 0;
2955}
2956
2957void md_wakeup_thread(mdk_thread_t *thread)
2958{
2959 if (thread) {
2960 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2961 set_bit(THREAD_WAKEUP, &thread->flags);
2962 wake_up(&thread->wqueue);
2963 }
2964}
2965
2966mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2967 const char *name)
2968{
2969 mdk_thread_t *thread;
2970 int ret;
2971 struct completion event;
2972
2973 thread = (mdk_thread_t *) kmalloc
2974 (sizeof(mdk_thread_t), GFP_KERNEL);
2975 if (!thread)
2976 return NULL;
2977
2978 memset(thread, 0, sizeof(mdk_thread_t));
2979 init_waitqueue_head(&thread->wqueue);
2980
2981 init_completion(&event);
2982 thread->event = &event;
2983 thread->run = run;
2984 thread->mddev = mddev;
2985 thread->name = name;
32a7627c 2986 thread->timeout = MAX_SCHEDULE_TIMEOUT;
1da177e4
LT
2987 ret = kernel_thread(md_thread, thread, 0);
2988 if (ret < 0) {
2989 kfree(thread);
2990 return NULL;
2991 }
2992 wait_for_completion(&event);
2993 return thread;
2994}
2995
1da177e4
LT
2996void md_unregister_thread(mdk_thread_t *thread)
2997{
2998 struct completion event;
2999
3000 init_completion(&event);
3001
3002 thread->event = &event;
d28446fe
N
3003
3004 /* As soon as ->run is set to NULL, the task could disappear,
3005 * so we need to hold tasklist_lock until we have sent the signal
3006 */
3007 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3008 read_lock(&tasklist_lock);
1da177e4 3009 thread->run = NULL;
d28446fe
N
3010 send_sig(SIGKILL, thread->tsk, 1);
3011 read_unlock(&tasklist_lock);
1da177e4
LT
3012 wait_for_completion(&event);
3013 kfree(thread);
3014}
3015
3016void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3017{
3018 if (!mddev) {
3019 MD_BUG();
3020 return;
3021 }
3022
3023 if (!rdev || rdev->faulty)
3024 return;
32a7627c 3025/*
1da177e4
LT
3026 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3027 mdname(mddev),
3028 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3029 __builtin_return_address(0),__builtin_return_address(1),
3030 __builtin_return_address(2),__builtin_return_address(3));
32a7627c 3031*/
1da177e4
LT
3032 if (!mddev->pers->error_handler)
3033 return;
3034 mddev->pers->error_handler(mddev,rdev);
3035 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3036 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3037 md_wakeup_thread(mddev->thread);
3038}
3039
3040/* seq_file implementation /proc/mdstat */
3041
3042static void status_unused(struct seq_file *seq)
3043{
3044 int i = 0;
3045 mdk_rdev_t *rdev;
3046 struct list_head *tmp;
3047
3048 seq_printf(seq, "unused devices: ");
3049
3050 ITERATE_RDEV_PENDING(rdev,tmp) {
3051 char b[BDEVNAME_SIZE];
3052 i++;
3053 seq_printf(seq, "%s ",
3054 bdevname(rdev->bdev,b));
3055 }
3056 if (!i)
3057 seq_printf(seq, "<none>");
3058
3059 seq_printf(seq, "\n");
3060}
3061
3062
3063static void status_resync(struct seq_file *seq, mddev_t * mddev)
3064{
3065 unsigned long max_blocks, resync, res, dt, db, rt;
3066
3067 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3068
3069 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3070 max_blocks = mddev->resync_max_sectors >> 1;
3071 else
3072 max_blocks = mddev->size;
3073
3074 /*
3075 * Should not happen.
3076 */
3077 if (!max_blocks) {
3078 MD_BUG();
3079 return;
3080 }
3081 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3082 {
3083 int i, x = res/50, y = 20-x;
3084 seq_printf(seq, "[");
3085 for (i = 0; i < x; i++)
3086 seq_printf(seq, "=");
3087 seq_printf(seq, ">");
3088 for (i = 0; i < y; i++)
3089 seq_printf(seq, ".");
3090 seq_printf(seq, "] ");
3091 }
3092 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3093 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3094 "resync" : "recovery"),
3095 res/10, res % 10, resync, max_blocks);
3096
3097 /*
3098 * We do not want to overflow, so the order of operands and
3099 * the * 100 / 100 trick are important. We do a +1 to be
3100 * safe against division by zero. We only estimate anyway.
3101 *
3102 * dt: time from mark until now
3103 * db: blocks written from mark until now
3104 * rt: remaining time
3105 */
3106 dt = ((jiffies - mddev->resync_mark) / HZ);
3107 if (!dt) dt++;
3108 db = resync - (mddev->resync_mark_cnt/2);
3109 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3110
3111 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3112
3113 seq_printf(seq, " speed=%ldK/sec", db/dt);
3114}
3115
3116static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3117{
3118 struct list_head *tmp;
3119 loff_t l = *pos;
3120 mddev_t *mddev;
3121
3122 if (l >= 0x10000)
3123 return NULL;
3124 if (!l--)
3125 /* header */
3126 return (void*)1;
3127
3128 spin_lock(&all_mddevs_lock);
3129 list_for_each(tmp,&all_mddevs)
3130 if (!l--) {
3131 mddev = list_entry(tmp, mddev_t, all_mddevs);
3132 mddev_get(mddev);
3133 spin_unlock(&all_mddevs_lock);
3134 return mddev;
3135 }
3136 spin_unlock(&all_mddevs_lock);
3137 if (!l--)
3138 return (void*)2;/* tail */
3139 return NULL;
3140}
3141
3142static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3143{
3144 struct list_head *tmp;
3145 mddev_t *next_mddev, *mddev = v;
3146
3147 ++*pos;
3148 if (v == (void*)2)
3149 return NULL;
3150
3151 spin_lock(&all_mddevs_lock);
3152 if (v == (void*)1)
3153 tmp = all_mddevs.next;
3154 else
3155 tmp = mddev->all_mddevs.next;
3156 if (tmp != &all_mddevs)
3157 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3158 else {
3159 next_mddev = (void*)2;
3160 *pos = 0x10000;
3161 }
3162 spin_unlock(&all_mddevs_lock);
3163
3164 if (v != (void*)1)
3165 mddev_put(mddev);
3166 return next_mddev;
3167
3168}
3169
3170static void md_seq_stop(struct seq_file *seq, void *v)
3171{
3172 mddev_t *mddev = v;
3173
3174 if (mddev && v != (void*)1 && v != (void*)2)
3175 mddev_put(mddev);
3176}
3177
3178static int md_seq_show(struct seq_file *seq, void *v)
3179{
3180 mddev_t *mddev = v;
3181 sector_t size;
3182 struct list_head *tmp2;
3183 mdk_rdev_t *rdev;
3184 int i;
32a7627c 3185 struct bitmap *bitmap;
1da177e4
LT
3186
3187 if (v == (void*)1) {
3188 seq_printf(seq, "Personalities : ");
3189 spin_lock(&pers_lock);
3190 for (i = 0; i < MAX_PERSONALITY; i++)
3191 if (pers[i])
3192 seq_printf(seq, "[%s] ", pers[i]->name);
3193
3194 spin_unlock(&pers_lock);
3195 seq_printf(seq, "\n");
3196 return 0;
3197 }
3198 if (v == (void*)2) {
3199 status_unused(seq);
3200 return 0;
3201 }
3202
3203 if (mddev_lock(mddev)!=0)
3204 return -EINTR;
3205 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3206 seq_printf(seq, "%s : %sactive", mdname(mddev),
3207 mddev->pers ? "" : "in");
3208 if (mddev->pers) {
3209 if (mddev->ro)
3210 seq_printf(seq, " (read-only)");
3211 seq_printf(seq, " %s", mddev->pers->name);
3212 }
3213
3214 size = 0;
3215 ITERATE_RDEV(mddev,rdev,tmp2) {
3216 char b[BDEVNAME_SIZE];
3217 seq_printf(seq, " %s[%d]",
3218 bdevname(rdev->bdev,b), rdev->desc_nr);
3219 if (rdev->faulty) {
3220 seq_printf(seq, "(F)");
3221 continue;
3222 }
3223 size += rdev->size;
3224 }
3225
3226 if (!list_empty(&mddev->disks)) {
3227 if (mddev->pers)
3228 seq_printf(seq, "\n %llu blocks",
3229 (unsigned long long)mddev->array_size);
3230 else
3231 seq_printf(seq, "\n %llu blocks",
3232 (unsigned long long)size);
3233 }
3234
3235 if (mddev->pers) {
3236 mddev->pers->status (seq, mddev);
3237 seq_printf(seq, "\n ");
32a7627c 3238 if (mddev->curr_resync > 2) {
1da177e4 3239 status_resync (seq, mddev);
32a7627c
N
3240 seq_printf(seq, "\n ");
3241 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3242 seq_printf(seq, " resync=DELAYED\n ");
3243 } else
3244 seq_printf(seq, "\n ");
3245
3246 if ((bitmap = mddev->bitmap)) {
32a7627c
N
3247 unsigned long chunk_kb;
3248 unsigned long flags;
32a7627c
N
3249 spin_lock_irqsave(&bitmap->lock, flags);
3250 chunk_kb = bitmap->chunksize >> 10;
3251 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3252 "%lu%s chunk",
3253 bitmap->pages - bitmap->missing_pages,
3254 bitmap->pages,
3255 (bitmap->pages - bitmap->missing_pages)
3256 << (PAGE_SHIFT - 10),
3257 chunk_kb ? chunk_kb : bitmap->chunksize,
3258 chunk_kb ? "KB" : "B");
78d742d8
N
3259 if (bitmap->file) {
3260 seq_printf(seq, ", file: ");
3261 seq_path(seq, bitmap->file->f_vfsmnt,
3262 bitmap->file->f_dentry," \t\n");
32a7627c 3263 }
78d742d8 3264
32a7627c
N
3265 seq_printf(seq, "\n");
3266 spin_unlock_irqrestore(&bitmap->lock, flags);
1da177e4
LT
3267 }
3268
3269 seq_printf(seq, "\n");
3270 }
3271 mddev_unlock(mddev);
3272
3273 return 0;
3274}
3275
3276static struct seq_operations md_seq_ops = {
3277 .start = md_seq_start,
3278 .next = md_seq_next,
3279 .stop = md_seq_stop,
3280 .show = md_seq_show,
3281};
3282
3283static int md_seq_open(struct inode *inode, struct file *file)
3284{
3285 int error;
3286
3287 error = seq_open(file, &md_seq_ops);
3288 return error;
3289}
3290
3291static struct file_operations md_seq_fops = {
3292 .open = md_seq_open,
3293 .read = seq_read,
3294 .llseek = seq_lseek,
3295 .release = seq_release,
3296};
3297
3298int register_md_personality(int pnum, mdk_personality_t *p)
3299{
3300 if (pnum >= MAX_PERSONALITY) {
3301 printk(KERN_ERR
3302 "md: tried to install personality %s as nr %d, but max is %lu\n",
3303 p->name, pnum, MAX_PERSONALITY-1);
3304 return -EINVAL;
3305 }
3306
3307 spin_lock(&pers_lock);
3308 if (pers[pnum]) {
3309 spin_unlock(&pers_lock);
1da177e4
LT
3310 return -EBUSY;
3311 }
3312
3313 pers[pnum] = p;
3314 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3315 spin_unlock(&pers_lock);
3316 return 0;
3317}
3318
3319int unregister_md_personality(int pnum)
3320{
a757e64c 3321 if (pnum >= MAX_PERSONALITY)
1da177e4 3322 return -EINVAL;
1da177e4
LT
3323
3324 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3325 spin_lock(&pers_lock);
3326 pers[pnum] = NULL;
3327 spin_unlock(&pers_lock);
3328 return 0;
3329}
3330
3331static int is_mddev_idle(mddev_t *mddev)
3332{
3333 mdk_rdev_t * rdev;
3334 struct list_head *tmp;
3335 int idle;
3336 unsigned long curr_events;
3337
3338 idle = 1;
3339 ITERATE_RDEV(mddev,rdev,tmp) {
3340 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3341 curr_events = disk_stat_read(disk, read_sectors) +
3342 disk_stat_read(disk, write_sectors) -
3343 atomic_read(&disk->sync_io);
3344 /* Allow some slack between valud of curr_events and last_events,
3345 * as there are some uninteresting races.
3346 * Note: the following is an unsigned comparison.
3347 */
3348 if ((curr_events - rdev->last_events + 32) > 64) {
3349 rdev->last_events = curr_events;
3350 idle = 0;
3351 }
3352 }
3353 return idle;
3354}
3355
3356void md_done_sync(mddev_t *mddev, int blocks, int ok)
3357{
3358 /* another "blocks" (512byte) blocks have been synced */
3359 atomic_sub(blocks, &mddev->recovery_active);
3360 wake_up(&mddev->recovery_wait);
3361 if (!ok) {
3362 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3363 md_wakeup_thread(mddev->thread);
3364 // stop recovery, signal do_sync ....
3365 }
3366}
3367
3368
06d91a5f
N
3369/* md_write_start(mddev, bi)
3370 * If we need to update some array metadata (e.g. 'active' flag
3371 * in superblock) before writing, queue bi for later writing
3372 * and return 0, else return 1 and it will be written now
3373 */
3374int md_write_start(mddev_t *mddev, struct bio *bi)
1da177e4 3375{
06d91a5f
N
3376 if (bio_data_dir(bi) != WRITE)
3377 return 1;
3378
3379 atomic_inc(&mddev->writes_pending);
3380 spin_lock(&mddev->write_lock);
3381 if (mddev->in_sync == 0 && mddev->sb_dirty == 0) {
3382 spin_unlock(&mddev->write_lock);
3383 return 1;
3384 }
3385 bio_list_add(&mddev->write_list, bi);
3386
3387 if (mddev->in_sync) {
3388 mddev->in_sync = 0;
3389 mddev->sb_dirty = 1;
3390 }
3391 spin_unlock(&mddev->write_lock);
3392 md_wakeup_thread(mddev->thread);
3393 return 0;
1da177e4
LT
3394}
3395
3396void md_write_end(mddev_t *mddev)
3397{
3398 if (atomic_dec_and_test(&mddev->writes_pending)) {
3399 if (mddev->safemode == 2)
3400 md_wakeup_thread(mddev->thread);
3401 else
3402 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3403 }
3404}
3405
75c96f85 3406static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
1da177e4
LT
3407
3408#define SYNC_MARKS 10
3409#define SYNC_MARK_STEP (3*HZ)
3410static void md_do_sync(mddev_t *mddev)
3411{
3412 mddev_t *mddev2;
3413 unsigned int currspeed = 0,
3414 window;
57afd89f 3415 sector_t max_sectors,j, io_sectors;
1da177e4
LT
3416 unsigned long mark[SYNC_MARKS];
3417 sector_t mark_cnt[SYNC_MARKS];
3418 int last_mark,m;
3419 struct list_head *tmp;
3420 sector_t last_check;
57afd89f 3421 int skipped = 0;
1da177e4
LT
3422
3423 /* just incase thread restarts... */
3424 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3425 return;
3426
3427 /* we overload curr_resync somewhat here.
3428 * 0 == not engaged in resync at all
3429 * 2 == checking that there is no conflict with another sync
3430 * 1 == like 2, but have yielded to allow conflicting resync to
3431 * commense
3432 * other == active in resync - this many blocks
3433 *
3434 * Before starting a resync we must have set curr_resync to
3435 * 2, and then checked that every "conflicting" array has curr_resync
3436 * less than ours. When we find one that is the same or higher
3437 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3438 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3439 * This will mean we have to start checking from the beginning again.
3440 *
3441 */
3442
3443 do {
3444 mddev->curr_resync = 2;
3445
3446 try_again:
3447 if (signal_pending(current)) {
3448 flush_signals(current);
3449 goto skip;
3450 }
3451 ITERATE_MDDEV(mddev2,tmp) {
3452 printk(".");
3453 if (mddev2 == mddev)
3454 continue;
3455 if (mddev2->curr_resync &&
3456 match_mddev_units(mddev,mddev2)) {
3457 DEFINE_WAIT(wq);
3458 if (mddev < mddev2 && mddev->curr_resync == 2) {
3459 /* arbitrarily yield */
3460 mddev->curr_resync = 1;
3461 wake_up(&resync_wait);
3462 }
3463 if (mddev > mddev2 && mddev->curr_resync == 1)
3464 /* no need to wait here, we can wait the next
3465 * time 'round when curr_resync == 2
3466 */
3467 continue;
3468 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3469 if (!signal_pending(current)
3470 && mddev2->curr_resync >= mddev->curr_resync) {
3471 printk(KERN_INFO "md: delaying resync of %s"
3472 " until %s has finished resync (they"
3473 " share one or more physical units)\n",
3474 mdname(mddev), mdname(mddev2));
3475 mddev_put(mddev2);
3476 schedule();
3477 finish_wait(&resync_wait, &wq);
3478 goto try_again;
3479 }
3480 finish_wait(&resync_wait, &wq);
3481 }
3482 }
3483 } while (mddev->curr_resync < 2);
3484
3485 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3486 /* resync follows the size requested by the personality,
57afd89f 3487 * which defaults to physical size, but can be virtual size
1da177e4
LT
3488 */
3489 max_sectors = mddev->resync_max_sectors;
3490 else
3491 /* recovery follows the physical size of devices */
3492 max_sectors = mddev->size << 1;
3493
3494 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3495 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3496 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3497 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3498 "(but not more than %d KB/sec) for reconstruction.\n",
3499 sysctl_speed_limit_max);
3500
3501 is_mddev_idle(mddev); /* this also initializes IO event counters */
32a7627c
N
3502 /* we don't use the checkpoint if there's a bitmap */
3503 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
1da177e4
LT
3504 j = mddev->recovery_cp;
3505 else
3506 j = 0;
57afd89f 3507 io_sectors = 0;
1da177e4
LT
3508 for (m = 0; m < SYNC_MARKS; m++) {
3509 mark[m] = jiffies;
57afd89f 3510 mark_cnt[m] = io_sectors;
1da177e4
LT
3511 }
3512 last_mark = 0;
3513 mddev->resync_mark = mark[last_mark];
3514 mddev->resync_mark_cnt = mark_cnt[last_mark];
3515
3516 /*
3517 * Tune reconstruction:
3518 */
3519 window = 32*(PAGE_SIZE/512);
3520 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3521 window/2,(unsigned long long) max_sectors/2);
3522
3523 atomic_set(&mddev->recovery_active, 0);
3524 init_waitqueue_head(&mddev->recovery_wait);
3525 last_check = 0;
3526
3527 if (j>2) {
3528 printk(KERN_INFO
3529 "md: resuming recovery of %s from checkpoint.\n",
3530 mdname(mddev));
3531 mddev->curr_resync = j;
3532 }
3533
3534 while (j < max_sectors) {
57afd89f 3535 sector_t sectors;
1da177e4 3536
57afd89f
N
3537 skipped = 0;
3538 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3539 currspeed < sysctl_speed_limit_min);
3540 if (sectors == 0) {
1da177e4
LT
3541 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3542 goto out;
3543 }
57afd89f
N
3544
3545 if (!skipped) { /* actual IO requested */
3546 io_sectors += sectors;
3547 atomic_add(sectors, &mddev->recovery_active);
3548 }
3549
1da177e4
LT
3550 j += sectors;
3551 if (j>1) mddev->curr_resync = j;
3552
57afd89f
N
3553
3554 if (last_check + window > io_sectors || j == max_sectors)
1da177e4
LT
3555 continue;
3556
57afd89f 3557 last_check = io_sectors;
1da177e4
LT
3558
3559 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3560 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3561 break;
3562
3563 repeat:
3564 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3565 /* step marks */
3566 int next = (last_mark+1) % SYNC_MARKS;
3567
3568 mddev->resync_mark = mark[next];
3569 mddev->resync_mark_cnt = mark_cnt[next];
3570 mark[next] = jiffies;
57afd89f 3571 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
1da177e4
LT
3572 last_mark = next;
3573 }
3574
3575
3576 if (signal_pending(current)) {
3577 /*
3578 * got a signal, exit.
3579 */
3580 printk(KERN_INFO
3581 "md: md_do_sync() got signal ... exiting\n");
3582 flush_signals(current);
3583 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3584 goto out;
3585 }
3586
3587 /*
3588 * this loop exits only if either when we are slower than
3589 * the 'hard' speed limit, or the system was IO-idle for
3590 * a jiffy.
3591 * the system might be non-idle CPU-wise, but we only care
3592 * about not overloading the IO subsystem. (things like an
3593 * e2fsck being done on the RAID array should execute fast)
3594 */
3595 mddev->queue->unplug_fn(mddev->queue);
3596 cond_resched();
3597
57afd89f
N
3598 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3599 /((jiffies-mddev->resync_mark)/HZ +1) +1;
1da177e4
LT
3600
3601 if (currspeed > sysctl_speed_limit_min) {
3602 if ((currspeed > sysctl_speed_limit_max) ||
3603 !is_mddev_idle(mddev)) {
3604 msleep_interruptible(250);
3605 goto repeat;
3606 }
3607 }
3608 }
3609 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3610 /*
3611 * this also signals 'finished resyncing' to md_stop
3612 */
3613 out:
3614 mddev->queue->unplug_fn(mddev->queue);
3615
3616 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3617
3618 /* tell personality that we are finished */
57afd89f 3619 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
1da177e4
LT
3620
3621 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3622 mddev->curr_resync > 2 &&
3623 mddev->curr_resync >= mddev->recovery_cp) {
3624 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3625 printk(KERN_INFO
3626 "md: checkpointing recovery of %s.\n",
3627 mdname(mddev));
3628 mddev->recovery_cp = mddev->curr_resync;
3629 } else
3630 mddev->recovery_cp = MaxSector;
3631 }
3632
1da177e4
LT
3633 skip:
3634 mddev->curr_resync = 0;
3635 wake_up(&resync_wait);
3636 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3637 md_wakeup_thread(mddev->thread);
3638}
3639
3640
3641/*
3642 * This routine is regularly called by all per-raid-array threads to
3643 * deal with generic issues like resync and super-block update.
3644 * Raid personalities that don't have a thread (linear/raid0) do not
3645 * need this as they never do any recovery or update the superblock.
3646 *
3647 * It does not do any resync itself, but rather "forks" off other threads
3648 * to do that as needed.
3649 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3650 * "->recovery" and create a thread at ->sync_thread.
3651 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3652 * and wakeups up this thread which will reap the thread and finish up.
3653 * This thread also removes any faulty devices (with nr_pending == 0).
3654 *
3655 * The overall approach is:
3656 * 1/ if the superblock needs updating, update it.
3657 * 2/ If a recovery thread is running, don't do anything else.
3658 * 3/ If recovery has finished, clean up, possibly marking spares active.
3659 * 4/ If there are any faulty devices, remove them.
3660 * 5/ If array is degraded, try to add spares devices
3661 * 6/ If array has spares or is not in-sync, start a resync thread.
3662 */
3663void md_check_recovery(mddev_t *mddev)
3664{
3665 mdk_rdev_t *rdev;
3666 struct list_head *rtmp;
3667
3668
5f40402d
N
3669 if (mddev->bitmap)
3670 bitmap_daemon_work(mddev->bitmap);
1da177e4
LT
3671
3672 if (mddev->ro)
3673 return;
fca4d848
N
3674
3675 if (signal_pending(current)) {
3676 if (mddev->pers->sync_request) {
3677 printk(KERN_INFO "md: %s in immediate safe mode\n",
3678 mdname(mddev));
3679 mddev->safemode = 2;
3680 }
3681 flush_signals(current);
3682 }
3683
1da177e4
LT
3684 if ( ! (
3685 mddev->sb_dirty ||
3686 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
fca4d848 3687 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
06d91a5f 3688 mddev->write_list.head ||
fca4d848
N
3689 (mddev->safemode == 1) ||
3690 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3691 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
1da177e4
LT
3692 ))
3693 return;
fca4d848 3694
1da177e4
LT
3695 if (mddev_trylock(mddev)==0) {
3696 int spares =0;
06d91a5f 3697 struct bio *blist;
fca4d848 3698
06d91a5f 3699 spin_lock(&mddev->write_lock);
fca4d848
N
3700 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3701 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3702 mddev->in_sync = 1;
3703 mddev->sb_dirty = 1;
3704 }
3705 if (mddev->safemode == 1)
3706 mddev->safemode = 0;
06d91a5f
N
3707 blist = bio_list_get(&mddev->write_list);
3708 spin_unlock(&mddev->write_lock);
fca4d848 3709
1da177e4
LT
3710 if (mddev->sb_dirty)
3711 md_update_sb(mddev);
06d91a5f
N
3712
3713 while (blist) {
3714 struct bio *b = blist;
3715 blist = blist->bi_next;
3716 b->bi_next = NULL;
3717 generic_make_request(b);
3718 /* we already counted this, so need to un-count */
3719 md_write_end(mddev);
3720 }
3721
3722
1da177e4
LT
3723 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3724 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3725 /* resync/recovery still happening */
3726 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3727 goto unlock;
3728 }
3729 if (mddev->sync_thread) {
3730 /* resync has finished, collect result */
3731 md_unregister_thread(mddev->sync_thread);
3732 mddev->sync_thread = NULL;
3733 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3734 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3735 /* success...*/
3736 /* activate any spares */
3737 mddev->pers->spare_active(mddev);
3738 }
3739 md_update_sb(mddev);
41158c7e
N
3740
3741 /* if array is no-longer degraded, then any saved_raid_disk
3742 * information must be scrapped
3743 */
3744 if (!mddev->degraded)
3745 ITERATE_RDEV(mddev,rdev,rtmp)
3746 rdev->saved_raid_disk = -1;
3747
1da177e4
LT
3748 mddev->recovery = 0;
3749 /* flag recovery needed just to double check */
3750 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3751 goto unlock;
3752 }
3753 if (mddev->recovery)
3754 /* probably just the RECOVERY_NEEDED flag */
3755 mddev->recovery = 0;
3756
3757 /* no recovery is running.
3758 * remove any failed drives, then
3759 * add spares if possible.
3760 * Spare are also removed and re-added, to allow
3761 * the personality to fail the re-add.
3762 */
3763 ITERATE_RDEV(mddev,rdev,rtmp)
3764 if (rdev->raid_disk >= 0 &&
3765 (rdev->faulty || ! rdev->in_sync) &&
3766 atomic_read(&rdev->nr_pending)==0) {
3767 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3768 rdev->raid_disk = -1;
3769 }
3770
3771 if (mddev->degraded) {
3772 ITERATE_RDEV(mddev,rdev,rtmp)
3773 if (rdev->raid_disk < 0
3774 && !rdev->faulty) {
3775 if (mddev->pers->hot_add_disk(mddev,rdev))
3776 spares++;
3777 else
3778 break;
3779 }
3780 }
3781
3782 if (!spares && (mddev->recovery_cp == MaxSector )) {
3783 /* nothing we can do ... */
3784 goto unlock;
3785 }
3786 if (mddev->pers->sync_request) {
3787 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3788 if (!spares)
3789 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3790 mddev->sync_thread = md_register_thread(md_do_sync,
3791 mddev,
3792 "%s_resync");
3793 if (!mddev->sync_thread) {
3794 printk(KERN_ERR "%s: could not start resync"
3795 " thread...\n",
3796 mdname(mddev));
3797 /* leave the spares where they are, it shouldn't hurt */
3798 mddev->recovery = 0;
3799 } else {
3800 md_wakeup_thread(mddev->sync_thread);
3801 }
3802 }
3803 unlock:
3804 mddev_unlock(mddev);
3805 }
3806}
3807
75c96f85
AB
3808static int md_notify_reboot(struct notifier_block *this,
3809 unsigned long code, void *x)
1da177e4
LT
3810{
3811 struct list_head *tmp;
3812 mddev_t *mddev;
3813
3814 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3815
3816 printk(KERN_INFO "md: stopping all md devices.\n");
3817
3818 ITERATE_MDDEV(mddev,tmp)
3819 if (mddev_trylock(mddev)==0)
3820 do_md_stop (mddev, 1);
3821 /*
3822 * certain more exotic SCSI devices are known to be
3823 * volatile wrt too early system reboots. While the
3824 * right place to handle this issue is the given
3825 * driver, we do want to have a safe RAID driver ...
3826 */
3827 mdelay(1000*1);
3828 }
3829 return NOTIFY_DONE;
3830}
3831
75c96f85 3832static struct notifier_block md_notifier = {
1da177e4
LT
3833 .notifier_call = md_notify_reboot,
3834 .next = NULL,
3835 .priority = INT_MAX, /* before any real devices */
3836};
3837
3838static void md_geninit(void)
3839{
3840 struct proc_dir_entry *p;
3841
3842 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3843
3844 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3845 if (p)
3846 p->proc_fops = &md_seq_fops;
3847}
3848
75c96f85 3849static int __init md_init(void)
1da177e4
LT
3850{
3851 int minor;
3852
3853 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3854 " MD_SB_DISKS=%d\n",
3855 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3856 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
32a7627c
N
3857 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3858 BITMAP_MINOR);
1da177e4
LT
3859
3860 if (register_blkdev(MAJOR_NR, "md"))
3861 return -1;
3862 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3863 unregister_blkdev(MAJOR_NR, "md");
3864 return -1;
3865 }
3866 devfs_mk_dir("md");
3867 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3868 md_probe, NULL, NULL);
3869 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3870 md_probe, NULL, NULL);
3871
3872 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3873 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3874 S_IFBLK|S_IRUSR|S_IWUSR,
3875 "md/%d", minor);
3876
3877 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3878 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3879 S_IFBLK|S_IRUSR|S_IWUSR,
3880 "md/mdp%d", minor);
3881
3882
3883 register_reboot_notifier(&md_notifier);
3884 raid_table_header = register_sysctl_table(raid_root_table, 1);
3885
3886 md_geninit();
3887 return (0);
3888}
3889
3890
3891#ifndef MODULE
3892
3893/*
3894 * Searches all registered partitions for autorun RAID arrays
3895 * at boot time.
3896 */
3897static dev_t detected_devices[128];
3898static int dev_cnt;
3899
3900void md_autodetect_dev(dev_t dev)
3901{
3902 if (dev_cnt >= 0 && dev_cnt < 127)
3903 detected_devices[dev_cnt++] = dev;
3904}
3905
3906
3907static void autostart_arrays(int part)
3908{
3909 mdk_rdev_t *rdev;
3910 int i;
3911
3912 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3913
3914 for (i = 0; i < dev_cnt; i++) {
3915 dev_t dev = detected_devices[i];
3916
3917 rdev = md_import_device(dev,0, 0);
3918 if (IS_ERR(rdev))
3919 continue;
3920
3921 if (rdev->faulty) {
3922 MD_BUG();
3923 continue;
3924 }
3925 list_add(&rdev->same_set, &pending_raid_disks);
3926 }
3927 dev_cnt = 0;
3928
3929 autorun_devices(part);
3930}
3931
3932#endif
3933
3934static __exit void md_exit(void)
3935{
3936 mddev_t *mddev;
3937 struct list_head *tmp;
3938 int i;
3939 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3940 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3941 for (i=0; i < MAX_MD_DEVS; i++)
3942 devfs_remove("md/%d", i);
3943 for (i=0; i < MAX_MD_DEVS; i++)
3944 devfs_remove("md/d%d", i);
3945
3946 devfs_remove("md");
3947
3948 unregister_blkdev(MAJOR_NR,"md");
3949 unregister_blkdev(mdp_major, "mdp");
3950 unregister_reboot_notifier(&md_notifier);
3951 unregister_sysctl_table(raid_table_header);
3952 remove_proc_entry("mdstat", NULL);
3953 ITERATE_MDDEV(mddev,tmp) {
3954 struct gendisk *disk = mddev->gendisk;
3955 if (!disk)
3956 continue;
3957 export_array(mddev);
3958 del_gendisk(disk);
3959 put_disk(disk);
3960 mddev->gendisk = NULL;
3961 mddev_put(mddev);
3962 }
3963}
3964
3965module_init(md_init)
3966module_exit(md_exit)
3967
3968EXPORT_SYMBOL(register_md_personality);
3969EXPORT_SYMBOL(unregister_md_personality);
3970EXPORT_SYMBOL(md_error);
3971EXPORT_SYMBOL(md_done_sync);
3972EXPORT_SYMBOL(md_write_start);
3973EXPORT_SYMBOL(md_write_end);
1da177e4
LT
3974EXPORT_SYMBOL(md_register_thread);
3975EXPORT_SYMBOL(md_unregister_thread);
3976EXPORT_SYMBOL(md_wakeup_thread);
3977EXPORT_SYMBOL(md_print_devices);
3978EXPORT_SYMBOL(md_check_recovery);
3979MODULE_LICENSE("GPL");