[PATCH] md: make sure recovery happens when add_new_disk is used for hot_add
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
CommitLineData
1da177e4
LT
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 This program is free software; you can redistribute it and/or modify
23 it under the terms of the GNU General Public License as published by
24 the Free Software Foundation; either version 2, or (at your option)
25 any later version.
26
27 You should have received a copy of the GNU General Public License
28 (for example /usr/src/linux/COPYING); if not, write to the Free
29 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
30*/
31
32#include <linux/module.h>
33#include <linux/config.h>
34#include <linux/linkage.h>
35#include <linux/raid/md.h>
36#include <linux/sysctl.h>
37#include <linux/devfs_fs_kernel.h>
38#include <linux/buffer_head.h> /* for invalidate_bdev */
39#include <linux/suspend.h>
40
41#include <linux/init.h>
42
43#ifdef CONFIG_KMOD
44#include <linux/kmod.h>
45#endif
46
47#include <asm/unaligned.h>
48
49#define MAJOR_NR MD_MAJOR
50#define MD_DRIVER
51
52/* 63 partitions with the alternate major number (mdp) */
53#define MdpMinorShift 6
54
55#define DEBUG 0
56#define dprintk(x...) ((void)(DEBUG && printk(x)))
57
58
59#ifndef MODULE
60static void autostart_arrays (int part);
61#endif
62
63static mdk_personality_t *pers[MAX_PERSONALITY];
64static DEFINE_SPINLOCK(pers_lock);
65
66/*
67 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
68 * is 1000 KB/sec, so the extra system load does not show up that much.
69 * Increase it if you want to have more _guaranteed_ speed. Note that
70 * the RAID driver will use the maximum available bandwith if the IO
71 * subsystem is idle. There is also an 'absolute maximum' reconstruction
72 * speed limit - in case reconstruction slows down your system despite
73 * idle IO detection.
74 *
75 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
76 */
77
78static int sysctl_speed_limit_min = 1000;
79static int sysctl_speed_limit_max = 200000;
80
81static struct ctl_table_header *raid_table_header;
82
83static ctl_table raid_table[] = {
84 {
85 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
86 .procname = "speed_limit_min",
87 .data = &sysctl_speed_limit_min,
88 .maxlen = sizeof(int),
89 .mode = 0644,
90 .proc_handler = &proc_dointvec,
91 },
92 {
93 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
94 .procname = "speed_limit_max",
95 .data = &sysctl_speed_limit_max,
96 .maxlen = sizeof(int),
97 .mode = 0644,
98 .proc_handler = &proc_dointvec,
99 },
100 { .ctl_name = 0 }
101};
102
103static ctl_table raid_dir_table[] = {
104 {
105 .ctl_name = DEV_RAID,
106 .procname = "raid",
107 .maxlen = 0,
108 .mode = 0555,
109 .child = raid_table,
110 },
111 { .ctl_name = 0 }
112};
113
114static ctl_table raid_root_table[] = {
115 {
116 .ctl_name = CTL_DEV,
117 .procname = "dev",
118 .maxlen = 0,
119 .mode = 0555,
120 .child = raid_dir_table,
121 },
122 { .ctl_name = 0 }
123};
124
125static struct block_device_operations md_fops;
126
127/*
128 * Enables to iterate over all existing md arrays
129 * all_mddevs_lock protects this list.
130 */
131static LIST_HEAD(all_mddevs);
132static DEFINE_SPINLOCK(all_mddevs_lock);
133
134
135/*
136 * iterates through all used mddevs in the system.
137 * We take care to grab the all_mddevs_lock whenever navigating
138 * the list, and to always hold a refcount when unlocked.
139 * Any code which breaks out of this loop while own
140 * a reference to the current mddev and must mddev_put it.
141 */
142#define ITERATE_MDDEV(mddev,tmp) \
143 \
144 for (({ spin_lock(&all_mddevs_lock); \
145 tmp = all_mddevs.next; \
146 mddev = NULL;}); \
147 ({ if (tmp != &all_mddevs) \
148 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
149 spin_unlock(&all_mddevs_lock); \
150 if (mddev) mddev_put(mddev); \
151 mddev = list_entry(tmp, mddev_t, all_mddevs); \
152 tmp != &all_mddevs;}); \
153 ({ spin_lock(&all_mddevs_lock); \
154 tmp = tmp->next;}) \
155 )
156
157
158static int md_fail_request (request_queue_t *q, struct bio *bio)
159{
160 bio_io_error(bio, bio->bi_size);
161 return 0;
162}
163
164static inline mddev_t *mddev_get(mddev_t *mddev)
165{
166 atomic_inc(&mddev->active);
167 return mddev;
168}
169
170static void mddev_put(mddev_t *mddev)
171{
172 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
173 return;
174 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
175 list_del(&mddev->all_mddevs);
176 blk_put_queue(mddev->queue);
177 kfree(mddev);
178 }
179 spin_unlock(&all_mddevs_lock);
180}
181
182static mddev_t * mddev_find(dev_t unit)
183{
184 mddev_t *mddev, *new = NULL;
185
186 retry:
187 spin_lock(&all_mddevs_lock);
188 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
189 if (mddev->unit == unit) {
190 mddev_get(mddev);
191 spin_unlock(&all_mddevs_lock);
192 if (new)
193 kfree(new);
194 return mddev;
195 }
196
197 if (new) {
198 list_add(&new->all_mddevs, &all_mddevs);
199 spin_unlock(&all_mddevs_lock);
200 return new;
201 }
202 spin_unlock(&all_mddevs_lock);
203
204 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
205 if (!new)
206 return NULL;
207
208 memset(new, 0, sizeof(*new));
209
210 new->unit = unit;
211 if (MAJOR(unit) == MD_MAJOR)
212 new->md_minor = MINOR(unit);
213 else
214 new->md_minor = MINOR(unit) >> MdpMinorShift;
215
216 init_MUTEX(&new->reconfig_sem);
217 INIT_LIST_HEAD(&new->disks);
218 INIT_LIST_HEAD(&new->all_mddevs);
219 init_timer(&new->safemode_timer);
220 atomic_set(&new->active, 1);
221
222 new->queue = blk_alloc_queue(GFP_KERNEL);
223 if (!new->queue) {
224 kfree(new);
225 return NULL;
226 }
227
228 blk_queue_make_request(new->queue, md_fail_request);
229
230 goto retry;
231}
232
233static inline int mddev_lock(mddev_t * mddev)
234{
235 return down_interruptible(&mddev->reconfig_sem);
236}
237
238static inline void mddev_lock_uninterruptible(mddev_t * mddev)
239{
240 down(&mddev->reconfig_sem);
241}
242
243static inline int mddev_trylock(mddev_t * mddev)
244{
245 return down_trylock(&mddev->reconfig_sem);
246}
247
248static inline void mddev_unlock(mddev_t * mddev)
249{
250 up(&mddev->reconfig_sem);
251
252 if (mddev->thread)
253 md_wakeup_thread(mddev->thread);
254}
255
256mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
257{
258 mdk_rdev_t * rdev;
259 struct list_head *tmp;
260
261 ITERATE_RDEV(mddev,rdev,tmp) {
262 if (rdev->desc_nr == nr)
263 return rdev;
264 }
265 return NULL;
266}
267
268static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
269{
270 struct list_head *tmp;
271 mdk_rdev_t *rdev;
272
273 ITERATE_RDEV(mddev,rdev,tmp) {
274 if (rdev->bdev->bd_dev == dev)
275 return rdev;
276 }
277 return NULL;
278}
279
280inline static sector_t calc_dev_sboffset(struct block_device *bdev)
281{
282 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
283 return MD_NEW_SIZE_BLOCKS(size);
284}
285
286static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
287{
288 sector_t size;
289
290 size = rdev->sb_offset;
291
292 if (chunk_size)
293 size &= ~((sector_t)chunk_size/1024 - 1);
294 return size;
295}
296
297static int alloc_disk_sb(mdk_rdev_t * rdev)
298{
299 if (rdev->sb_page)
300 MD_BUG();
301
302 rdev->sb_page = alloc_page(GFP_KERNEL);
303 if (!rdev->sb_page) {
304 printk(KERN_ALERT "md: out of memory.\n");
305 return -EINVAL;
306 }
307
308 return 0;
309}
310
311static void free_disk_sb(mdk_rdev_t * rdev)
312{
313 if (rdev->sb_page) {
314 page_cache_release(rdev->sb_page);
315 rdev->sb_loaded = 0;
316 rdev->sb_page = NULL;
317 rdev->sb_offset = 0;
318 rdev->size = 0;
319 }
320}
321
322
323static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
324{
325 if (bio->bi_size)
326 return 1;
327
328 complete((struct completion*)bio->bi_private);
329 return 0;
330}
331
332static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
333 struct page *page, int rw)
334{
baaa2c51 335 struct bio *bio = bio_alloc(GFP_NOIO, 1);
1da177e4
LT
336 struct completion event;
337 int ret;
338
339 rw |= (1 << BIO_RW_SYNC);
340
341 bio->bi_bdev = bdev;
342 bio->bi_sector = sector;
343 bio_add_page(bio, page, size, 0);
344 init_completion(&event);
345 bio->bi_private = &event;
346 bio->bi_end_io = bi_complete;
347 submit_bio(rw, bio);
348 wait_for_completion(&event);
349
350 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
351 bio_put(bio);
352 return ret;
353}
354
355static int read_disk_sb(mdk_rdev_t * rdev)
356{
357 char b[BDEVNAME_SIZE];
358 if (!rdev->sb_page) {
359 MD_BUG();
360 return -EINVAL;
361 }
362 if (rdev->sb_loaded)
363 return 0;
364
365
366 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
367 goto fail;
368 rdev->sb_loaded = 1;
369 return 0;
370
371fail:
372 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
373 bdevname(rdev->bdev,b));
374 return -EINVAL;
375}
376
377static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
378{
379 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
380 (sb1->set_uuid1 == sb2->set_uuid1) &&
381 (sb1->set_uuid2 == sb2->set_uuid2) &&
382 (sb1->set_uuid3 == sb2->set_uuid3))
383
384 return 1;
385
386 return 0;
387}
388
389
390static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
391{
392 int ret;
393 mdp_super_t *tmp1, *tmp2;
394
395 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
396 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
397
398 if (!tmp1 || !tmp2) {
399 ret = 0;
400 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
401 goto abort;
402 }
403
404 *tmp1 = *sb1;
405 *tmp2 = *sb2;
406
407 /*
408 * nr_disks is not constant
409 */
410 tmp1->nr_disks = 0;
411 tmp2->nr_disks = 0;
412
413 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
414 ret = 0;
415 else
416 ret = 1;
417
418abort:
419 if (tmp1)
420 kfree(tmp1);
421 if (tmp2)
422 kfree(tmp2);
423
424 return ret;
425}
426
427static unsigned int calc_sb_csum(mdp_super_t * sb)
428{
429 unsigned int disk_csum, csum;
430
431 disk_csum = sb->sb_csum;
432 sb->sb_csum = 0;
433 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
434 sb->sb_csum = disk_csum;
435 return csum;
436}
437
438
439/*
440 * Handle superblock details.
441 * We want to be able to handle multiple superblock formats
442 * so we have a common interface to them all, and an array of
443 * different handlers.
444 * We rely on user-space to write the initial superblock, and support
445 * reading and updating of superblocks.
446 * Interface methods are:
447 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
448 * loads and validates a superblock on dev.
449 * if refdev != NULL, compare superblocks on both devices
450 * Return:
451 * 0 - dev has a superblock that is compatible with refdev
452 * 1 - dev has a superblock that is compatible and newer than refdev
453 * so dev should be used as the refdev in future
454 * -EINVAL superblock incompatible or invalid
455 * -othererror e.g. -EIO
456 *
457 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
458 * Verify that dev is acceptable into mddev.
459 * The first time, mddev->raid_disks will be 0, and data from
460 * dev should be merged in. Subsequent calls check that dev
461 * is new enough. Return 0 or -EINVAL
462 *
463 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
464 * Update the superblock for rdev with data in mddev
465 * This does not write to disc.
466 *
467 */
468
469struct super_type {
470 char *name;
471 struct module *owner;
472 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
473 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
474 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
475};
476
477/*
478 * load_super for 0.90.0
479 */
480static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
481{
482 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
483 mdp_super_t *sb;
484 int ret;
485 sector_t sb_offset;
486
487 /*
488 * Calculate the position of the superblock,
489 * it's at the end of the disk.
490 *
491 * It also happens to be a multiple of 4Kb.
492 */
493 sb_offset = calc_dev_sboffset(rdev->bdev);
494 rdev->sb_offset = sb_offset;
495
496 ret = read_disk_sb(rdev);
497 if (ret) return ret;
498
499 ret = -EINVAL;
500
501 bdevname(rdev->bdev, b);
502 sb = (mdp_super_t*)page_address(rdev->sb_page);
503
504 if (sb->md_magic != MD_SB_MAGIC) {
505 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
506 b);
507 goto abort;
508 }
509
510 if (sb->major_version != 0 ||
511 sb->minor_version != 90) {
512 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
513 sb->major_version, sb->minor_version,
514 b);
515 goto abort;
516 }
517
518 if (sb->raid_disks <= 0)
519 goto abort;
520
521 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
522 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
523 b);
524 goto abort;
525 }
526
527 rdev->preferred_minor = sb->md_minor;
528 rdev->data_offset = 0;
529
530 if (sb->level == LEVEL_MULTIPATH)
531 rdev->desc_nr = -1;
532 else
533 rdev->desc_nr = sb->this_disk.number;
534
535 if (refdev == 0)
536 ret = 1;
537 else {
538 __u64 ev1, ev2;
539 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
540 if (!uuid_equal(refsb, sb)) {
541 printk(KERN_WARNING "md: %s has different UUID to %s\n",
542 b, bdevname(refdev->bdev,b2));
543 goto abort;
544 }
545 if (!sb_equal(refsb, sb)) {
546 printk(KERN_WARNING "md: %s has same UUID"
547 " but different superblock to %s\n",
548 b, bdevname(refdev->bdev, b2));
549 goto abort;
550 }
551 ev1 = md_event(sb);
552 ev2 = md_event(refsb);
553 if (ev1 > ev2)
554 ret = 1;
555 else
556 ret = 0;
557 }
558 rdev->size = calc_dev_size(rdev, sb->chunk_size);
559
560 abort:
561 return ret;
562}
563
564/*
565 * validate_super for 0.90.0
566 */
567static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
568{
569 mdp_disk_t *desc;
570 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
571
572 if (mddev->raid_disks == 0) {
573 mddev->major_version = 0;
574 mddev->minor_version = sb->minor_version;
575 mddev->patch_version = sb->patch_version;
576 mddev->persistent = ! sb->not_persistent;
577 mddev->chunk_size = sb->chunk_size;
578 mddev->ctime = sb->ctime;
579 mddev->utime = sb->utime;
580 mddev->level = sb->level;
581 mddev->layout = sb->layout;
582 mddev->raid_disks = sb->raid_disks;
583 mddev->size = sb->size;
584 mddev->events = md_event(sb);
585
586 if (sb->state & (1<<MD_SB_CLEAN))
587 mddev->recovery_cp = MaxSector;
588 else {
589 if (sb->events_hi == sb->cp_events_hi &&
590 sb->events_lo == sb->cp_events_lo) {
591 mddev->recovery_cp = sb->recovery_cp;
592 } else
593 mddev->recovery_cp = 0;
594 }
595
596 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
597 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
598 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
599 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
600
601 mddev->max_disks = MD_SB_DISKS;
602 } else {
603 __u64 ev1;
604 ev1 = md_event(sb);
605 ++ev1;
606 if (ev1 < mddev->events)
607 return -EINVAL;
608 }
609 if (mddev->level != LEVEL_MULTIPATH) {
610 rdev->raid_disk = -1;
611 rdev->in_sync = rdev->faulty = 0;
612 desc = sb->disks + rdev->desc_nr;
613
614 if (desc->state & (1<<MD_DISK_FAULTY))
615 rdev->faulty = 1;
616 else if (desc->state & (1<<MD_DISK_SYNC) &&
617 desc->raid_disk < mddev->raid_disks) {
618 rdev->in_sync = 1;
619 rdev->raid_disk = desc->raid_disk;
620 }
621 }
622 return 0;
623}
624
625/*
626 * sync_super for 0.90.0
627 */
628static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
629{
630 mdp_super_t *sb;
631 struct list_head *tmp;
632 mdk_rdev_t *rdev2;
633 int next_spare = mddev->raid_disks;
634
635 /* make rdev->sb match mddev data..
636 *
637 * 1/ zero out disks
638 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
639 * 3/ any empty disks < next_spare become removed
640 *
641 * disks[0] gets initialised to REMOVED because
642 * we cannot be sure from other fields if it has
643 * been initialised or not.
644 */
645 int i;
646 int active=0, working=0,failed=0,spare=0,nr_disks=0;
647
648 sb = (mdp_super_t*)page_address(rdev->sb_page);
649
650 memset(sb, 0, sizeof(*sb));
651
652 sb->md_magic = MD_SB_MAGIC;
653 sb->major_version = mddev->major_version;
654 sb->minor_version = mddev->minor_version;
655 sb->patch_version = mddev->patch_version;
656 sb->gvalid_words = 0; /* ignored */
657 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
658 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
659 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
660 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
661
662 sb->ctime = mddev->ctime;
663 sb->level = mddev->level;
664 sb->size = mddev->size;
665 sb->raid_disks = mddev->raid_disks;
666 sb->md_minor = mddev->md_minor;
667 sb->not_persistent = !mddev->persistent;
668 sb->utime = mddev->utime;
669 sb->state = 0;
670 sb->events_hi = (mddev->events>>32);
671 sb->events_lo = (u32)mddev->events;
672
673 if (mddev->in_sync)
674 {
675 sb->recovery_cp = mddev->recovery_cp;
676 sb->cp_events_hi = (mddev->events>>32);
677 sb->cp_events_lo = (u32)mddev->events;
678 if (mddev->recovery_cp == MaxSector)
679 sb->state = (1<< MD_SB_CLEAN);
680 } else
681 sb->recovery_cp = 0;
682
683 sb->layout = mddev->layout;
684 sb->chunk_size = mddev->chunk_size;
685
686 sb->disks[0].state = (1<<MD_DISK_REMOVED);
687 ITERATE_RDEV(mddev,rdev2,tmp) {
688 mdp_disk_t *d;
689 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
690 rdev2->desc_nr = rdev2->raid_disk;
691 else
692 rdev2->desc_nr = next_spare++;
693 d = &sb->disks[rdev2->desc_nr];
694 nr_disks++;
695 d->number = rdev2->desc_nr;
696 d->major = MAJOR(rdev2->bdev->bd_dev);
697 d->minor = MINOR(rdev2->bdev->bd_dev);
698 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
699 d->raid_disk = rdev2->raid_disk;
700 else
701 d->raid_disk = rdev2->desc_nr; /* compatibility */
702 if (rdev2->faulty) {
703 d->state = (1<<MD_DISK_FAULTY);
704 failed++;
705 } else if (rdev2->in_sync) {
706 d->state = (1<<MD_DISK_ACTIVE);
707 d->state |= (1<<MD_DISK_SYNC);
708 active++;
709 working++;
710 } else {
711 d->state = 0;
712 spare++;
713 working++;
714 }
715 }
716
717 /* now set the "removed" and "faulty" bits on any missing devices */
718 for (i=0 ; i < mddev->raid_disks ; i++) {
719 mdp_disk_t *d = &sb->disks[i];
720 if (d->state == 0 && d->number == 0) {
721 d->number = i;
722 d->raid_disk = i;
723 d->state = (1<<MD_DISK_REMOVED);
724 d->state |= (1<<MD_DISK_FAULTY);
725 failed++;
726 }
727 }
728 sb->nr_disks = nr_disks;
729 sb->active_disks = active;
730 sb->working_disks = working;
731 sb->failed_disks = failed;
732 sb->spare_disks = spare;
733
734 sb->this_disk = sb->disks[rdev->desc_nr];
735 sb->sb_csum = calc_sb_csum(sb);
736}
737
738/*
739 * version 1 superblock
740 */
741
742static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
743{
744 unsigned int disk_csum, csum;
745 unsigned long long newcsum;
746 int size = 256 + le32_to_cpu(sb->max_dev)*2;
747 unsigned int *isuper = (unsigned int*)sb;
748 int i;
749
750 disk_csum = sb->sb_csum;
751 sb->sb_csum = 0;
752 newcsum = 0;
753 for (i=0; size>=4; size -= 4 )
754 newcsum += le32_to_cpu(*isuper++);
755
756 if (size == 2)
757 newcsum += le16_to_cpu(*(unsigned short*) isuper);
758
759 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
760 sb->sb_csum = disk_csum;
761 return cpu_to_le32(csum);
762}
763
764static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
765{
766 struct mdp_superblock_1 *sb;
767 int ret;
768 sector_t sb_offset;
769 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
770
771 /*
772 * Calculate the position of the superblock.
773 * It is always aligned to a 4K boundary and
774 * depeding on minor_version, it can be:
775 * 0: At least 8K, but less than 12K, from end of device
776 * 1: At start of device
777 * 2: 4K from start of device.
778 */
779 switch(minor_version) {
780 case 0:
781 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
782 sb_offset -= 8*2;
783 sb_offset &= ~(4*2-1);
784 /* convert from sectors to K */
785 sb_offset /= 2;
786 break;
787 case 1:
788 sb_offset = 0;
789 break;
790 case 2:
791 sb_offset = 4;
792 break;
793 default:
794 return -EINVAL;
795 }
796 rdev->sb_offset = sb_offset;
797
798 ret = read_disk_sb(rdev);
799 if (ret) return ret;
800
801
802 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
803
804 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
805 sb->major_version != cpu_to_le32(1) ||
806 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
807 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
808 sb->feature_map != 0)
809 return -EINVAL;
810
811 if (calc_sb_1_csum(sb) != sb->sb_csum) {
812 printk("md: invalid superblock checksum on %s\n",
813 bdevname(rdev->bdev,b));
814 return -EINVAL;
815 }
816 if (le64_to_cpu(sb->data_size) < 10) {
817 printk("md: data_size too small on %s\n",
818 bdevname(rdev->bdev,b));
819 return -EINVAL;
820 }
821 rdev->preferred_minor = 0xffff;
822 rdev->data_offset = le64_to_cpu(sb->data_offset);
823
824 if (refdev == 0)
825 return 1;
826 else {
827 __u64 ev1, ev2;
828 struct mdp_superblock_1 *refsb =
829 (struct mdp_superblock_1*)page_address(refdev->sb_page);
830
831 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
832 sb->level != refsb->level ||
833 sb->layout != refsb->layout ||
834 sb->chunksize != refsb->chunksize) {
835 printk(KERN_WARNING "md: %s has strangely different"
836 " superblock to %s\n",
837 bdevname(rdev->bdev,b),
838 bdevname(refdev->bdev,b2));
839 return -EINVAL;
840 }
841 ev1 = le64_to_cpu(sb->events);
842 ev2 = le64_to_cpu(refsb->events);
843
844 if (ev1 > ev2)
845 return 1;
846 }
847 if (minor_version)
848 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
849 else
850 rdev->size = rdev->sb_offset;
851 if (rdev->size < le64_to_cpu(sb->data_size)/2)
852 return -EINVAL;
853 rdev->size = le64_to_cpu(sb->data_size)/2;
854 if (le32_to_cpu(sb->chunksize))
855 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
856 return 0;
857}
858
859static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
860{
861 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
862
863 if (mddev->raid_disks == 0) {
864 mddev->major_version = 1;
865 mddev->patch_version = 0;
866 mddev->persistent = 1;
867 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
868 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
869 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
870 mddev->level = le32_to_cpu(sb->level);
871 mddev->layout = le32_to_cpu(sb->layout);
872 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
873 mddev->size = le64_to_cpu(sb->size)/2;
874 mddev->events = le64_to_cpu(sb->events);
875
876 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
877 memcpy(mddev->uuid, sb->set_uuid, 16);
878
879 mddev->max_disks = (4096-256)/2;
880 } else {
881 __u64 ev1;
882 ev1 = le64_to_cpu(sb->events);
883 ++ev1;
884 if (ev1 < mddev->events)
885 return -EINVAL;
886 }
887
888 if (mddev->level != LEVEL_MULTIPATH) {
889 int role;
890 rdev->desc_nr = le32_to_cpu(sb->dev_number);
891 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
892 switch(role) {
893 case 0xffff: /* spare */
894 rdev->in_sync = 0;
895 rdev->faulty = 0;
896 rdev->raid_disk = -1;
897 break;
898 case 0xfffe: /* faulty */
899 rdev->in_sync = 0;
900 rdev->faulty = 1;
901 rdev->raid_disk = -1;
902 break;
903 default:
904 rdev->in_sync = 1;
905 rdev->faulty = 0;
906 rdev->raid_disk = role;
907 break;
908 }
909 }
910 return 0;
911}
912
913static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
914{
915 struct mdp_superblock_1 *sb;
916 struct list_head *tmp;
917 mdk_rdev_t *rdev2;
918 int max_dev, i;
919 /* make rdev->sb match mddev and rdev data. */
920
921 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
922
923 sb->feature_map = 0;
924 sb->pad0 = 0;
925 memset(sb->pad1, 0, sizeof(sb->pad1));
926 memset(sb->pad2, 0, sizeof(sb->pad2));
927 memset(sb->pad3, 0, sizeof(sb->pad3));
928
929 sb->utime = cpu_to_le64((__u64)mddev->utime);
930 sb->events = cpu_to_le64(mddev->events);
931 if (mddev->in_sync)
932 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
933 else
934 sb->resync_offset = cpu_to_le64(0);
935
936 max_dev = 0;
937 ITERATE_RDEV(mddev,rdev2,tmp)
938 if (rdev2->desc_nr+1 > max_dev)
939 max_dev = rdev2->desc_nr+1;
940
941 sb->max_dev = cpu_to_le32(max_dev);
942 for (i=0; i<max_dev;i++)
943 sb->dev_roles[i] = cpu_to_le16(0xfffe);
944
945 ITERATE_RDEV(mddev,rdev2,tmp) {
946 i = rdev2->desc_nr;
947 if (rdev2->faulty)
948 sb->dev_roles[i] = cpu_to_le16(0xfffe);
949 else if (rdev2->in_sync)
950 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
951 else
952 sb->dev_roles[i] = cpu_to_le16(0xffff);
953 }
954
955 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
956 sb->sb_csum = calc_sb_1_csum(sb);
957}
958
959
75c96f85 960static struct super_type super_types[] = {
1da177e4
LT
961 [0] = {
962 .name = "0.90.0",
963 .owner = THIS_MODULE,
964 .load_super = super_90_load,
965 .validate_super = super_90_validate,
966 .sync_super = super_90_sync,
967 },
968 [1] = {
969 .name = "md-1",
970 .owner = THIS_MODULE,
971 .load_super = super_1_load,
972 .validate_super = super_1_validate,
973 .sync_super = super_1_sync,
974 },
975};
976
977static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
978{
979 struct list_head *tmp;
980 mdk_rdev_t *rdev;
981
982 ITERATE_RDEV(mddev,rdev,tmp)
983 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
984 return rdev;
985
986 return NULL;
987}
988
989static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
990{
991 struct list_head *tmp;
992 mdk_rdev_t *rdev;
993
994 ITERATE_RDEV(mddev1,rdev,tmp)
995 if (match_dev_unit(mddev2, rdev))
996 return 1;
997
998 return 0;
999}
1000
1001static LIST_HEAD(pending_raid_disks);
1002
1003static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1004{
1005 mdk_rdev_t *same_pdev;
1006 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1007
1008 if (rdev->mddev) {
1009 MD_BUG();
1010 return -EINVAL;
1011 }
1012 same_pdev = match_dev_unit(mddev, rdev);
1013 if (same_pdev)
1014 printk(KERN_WARNING
1015 "%s: WARNING: %s appears to be on the same physical"
1016 " disk as %s. True\n protection against single-disk"
1017 " failure might be compromised.\n",
1018 mdname(mddev), bdevname(rdev->bdev,b),
1019 bdevname(same_pdev->bdev,b2));
1020
1021 /* Verify rdev->desc_nr is unique.
1022 * If it is -1, assign a free number, else
1023 * check number is not in use
1024 */
1025 if (rdev->desc_nr < 0) {
1026 int choice = 0;
1027 if (mddev->pers) choice = mddev->raid_disks;
1028 while (find_rdev_nr(mddev, choice))
1029 choice++;
1030 rdev->desc_nr = choice;
1031 } else {
1032 if (find_rdev_nr(mddev, rdev->desc_nr))
1033 return -EBUSY;
1034 }
1035
1036 list_add(&rdev->same_set, &mddev->disks);
1037 rdev->mddev = mddev;
1038 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1039 return 0;
1040}
1041
1042static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1043{
1044 char b[BDEVNAME_SIZE];
1045 if (!rdev->mddev) {
1046 MD_BUG();
1047 return;
1048 }
1049 list_del_init(&rdev->same_set);
1050 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1051 rdev->mddev = NULL;
1052}
1053
1054/*
1055 * prevent the device from being mounted, repartitioned or
1056 * otherwise reused by a RAID array (or any other kernel
1057 * subsystem), by bd_claiming the device.
1058 */
1059static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1060{
1061 int err = 0;
1062 struct block_device *bdev;
1063 char b[BDEVNAME_SIZE];
1064
1065 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1066 if (IS_ERR(bdev)) {
1067 printk(KERN_ERR "md: could not open %s.\n",
1068 __bdevname(dev, b));
1069 return PTR_ERR(bdev);
1070 }
1071 err = bd_claim(bdev, rdev);
1072 if (err) {
1073 printk(KERN_ERR "md: could not bd_claim %s.\n",
1074 bdevname(bdev, b));
1075 blkdev_put(bdev);
1076 return err;
1077 }
1078 rdev->bdev = bdev;
1079 return err;
1080}
1081
1082static void unlock_rdev(mdk_rdev_t *rdev)
1083{
1084 struct block_device *bdev = rdev->bdev;
1085 rdev->bdev = NULL;
1086 if (!bdev)
1087 MD_BUG();
1088 bd_release(bdev);
1089 blkdev_put(bdev);
1090}
1091
1092void md_autodetect_dev(dev_t dev);
1093
1094static void export_rdev(mdk_rdev_t * rdev)
1095{
1096 char b[BDEVNAME_SIZE];
1097 printk(KERN_INFO "md: export_rdev(%s)\n",
1098 bdevname(rdev->bdev,b));
1099 if (rdev->mddev)
1100 MD_BUG();
1101 free_disk_sb(rdev);
1102 list_del_init(&rdev->same_set);
1103#ifndef MODULE
1104 md_autodetect_dev(rdev->bdev->bd_dev);
1105#endif
1106 unlock_rdev(rdev);
1107 kfree(rdev);
1108}
1109
1110static void kick_rdev_from_array(mdk_rdev_t * rdev)
1111{
1112 unbind_rdev_from_array(rdev);
1113 export_rdev(rdev);
1114}
1115
1116static void export_array(mddev_t *mddev)
1117{
1118 struct list_head *tmp;
1119 mdk_rdev_t *rdev;
1120
1121 ITERATE_RDEV(mddev,rdev,tmp) {
1122 if (!rdev->mddev) {
1123 MD_BUG();
1124 continue;
1125 }
1126 kick_rdev_from_array(rdev);
1127 }
1128 if (!list_empty(&mddev->disks))
1129 MD_BUG();
1130 mddev->raid_disks = 0;
1131 mddev->major_version = 0;
1132}
1133
1134static void print_desc(mdp_disk_t *desc)
1135{
1136 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1137 desc->major,desc->minor,desc->raid_disk,desc->state);
1138}
1139
1140static void print_sb(mdp_super_t *sb)
1141{
1142 int i;
1143
1144 printk(KERN_INFO
1145 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1146 sb->major_version, sb->minor_version, sb->patch_version,
1147 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1148 sb->ctime);
1149 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1150 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1151 sb->md_minor, sb->layout, sb->chunk_size);
1152 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1153 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1154 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1155 sb->failed_disks, sb->spare_disks,
1156 sb->sb_csum, (unsigned long)sb->events_lo);
1157
1158 printk(KERN_INFO);
1159 for (i = 0; i < MD_SB_DISKS; i++) {
1160 mdp_disk_t *desc;
1161
1162 desc = sb->disks + i;
1163 if (desc->number || desc->major || desc->minor ||
1164 desc->raid_disk || (desc->state && (desc->state != 4))) {
1165 printk(" D %2d: ", i);
1166 print_desc(desc);
1167 }
1168 }
1169 printk(KERN_INFO "md: THIS: ");
1170 print_desc(&sb->this_disk);
1171
1172}
1173
1174static void print_rdev(mdk_rdev_t *rdev)
1175{
1176 char b[BDEVNAME_SIZE];
1177 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1178 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1179 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1180 if (rdev->sb_loaded) {
1181 printk(KERN_INFO "md: rdev superblock:\n");
1182 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1183 } else
1184 printk(KERN_INFO "md: no rdev superblock!\n");
1185}
1186
1187void md_print_devices(void)
1188{
1189 struct list_head *tmp, *tmp2;
1190 mdk_rdev_t *rdev;
1191 mddev_t *mddev;
1192 char b[BDEVNAME_SIZE];
1193
1194 printk("\n");
1195 printk("md: **********************************\n");
1196 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1197 printk("md: **********************************\n");
1198 ITERATE_MDDEV(mddev,tmp) {
1199 printk("%s: ", mdname(mddev));
1200
1201 ITERATE_RDEV(mddev,rdev,tmp2)
1202 printk("<%s>", bdevname(rdev->bdev,b));
1203 printk("\n");
1204
1205 ITERATE_RDEV(mddev,rdev,tmp2)
1206 print_rdev(rdev);
1207 }
1208 printk("md: **********************************\n");
1209 printk("\n");
1210}
1211
1212
1213static int write_disk_sb(mdk_rdev_t * rdev)
1214{
1215 char b[BDEVNAME_SIZE];
1216 if (!rdev->sb_loaded) {
1217 MD_BUG();
1218 return 1;
1219 }
1220 if (rdev->faulty) {
1221 MD_BUG();
1222 return 1;
1223 }
1224
1225 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1226 bdevname(rdev->bdev,b),
1227 (unsigned long long)rdev->sb_offset);
1228
1229 if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1230 return 0;
1231
1232 printk("md: write_disk_sb failed for device %s\n",
1233 bdevname(rdev->bdev,b));
1234 return 1;
1235}
1236
1237static void sync_sbs(mddev_t * mddev)
1238{
1239 mdk_rdev_t *rdev;
1240 struct list_head *tmp;
1241
1242 ITERATE_RDEV(mddev,rdev,tmp) {
1243 super_types[mddev->major_version].
1244 sync_super(mddev, rdev);
1245 rdev->sb_loaded = 1;
1246 }
1247}
1248
1249static void md_update_sb(mddev_t * mddev)
1250{
1251 int err, count = 100;
1252 struct list_head *tmp;
1253 mdk_rdev_t *rdev;
1254
1255 mddev->sb_dirty = 0;
1256repeat:
1257 mddev->utime = get_seconds();
1258 mddev->events ++;
1259
1260 if (!mddev->events) {
1261 /*
1262 * oops, this 64-bit counter should never wrap.
1263 * Either we are in around ~1 trillion A.C., assuming
1264 * 1 reboot per second, or we have a bug:
1265 */
1266 MD_BUG();
1267 mddev->events --;
1268 }
1269 sync_sbs(mddev);
1270
1271 /*
1272 * do not write anything to disk if using
1273 * nonpersistent superblocks
1274 */
1275 if (!mddev->persistent)
1276 return;
1277
1278 dprintk(KERN_INFO
1279 "md: updating %s RAID superblock on device (in sync %d)\n",
1280 mdname(mddev),mddev->in_sync);
1281
1282 err = 0;
1283 ITERATE_RDEV(mddev,rdev,tmp) {
1284 char b[BDEVNAME_SIZE];
1285 dprintk(KERN_INFO "md: ");
1286 if (rdev->faulty)
1287 dprintk("(skipping faulty ");
1288
1289 dprintk("%s ", bdevname(rdev->bdev,b));
1290 if (!rdev->faulty) {
1291 err += write_disk_sb(rdev);
1292 } else
1293 dprintk(")\n");
1294 if (!err && mddev->level == LEVEL_MULTIPATH)
1295 /* only need to write one superblock... */
1296 break;
1297 }
1298 if (err) {
1299 if (--count) {
1300 printk(KERN_ERR "md: errors occurred during superblock"
1301 " update, repeating\n");
1302 goto repeat;
1303 }
1304 printk(KERN_ERR \
1305 "md: excessive errors occurred during superblock update, exiting\n");
1306 }
1307}
1308
1309/*
1310 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1311 *
1312 * mark the device faulty if:
1313 *
1314 * - the device is nonexistent (zero size)
1315 * - the device has no valid superblock
1316 *
1317 * a faulty rdev _never_ has rdev->sb set.
1318 */
1319static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1320{
1321 char b[BDEVNAME_SIZE];
1322 int err;
1323 mdk_rdev_t *rdev;
1324 sector_t size;
1325
1326 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1327 if (!rdev) {
1328 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1329 return ERR_PTR(-ENOMEM);
1330 }
1331 memset(rdev, 0, sizeof(*rdev));
1332
1333 if ((err = alloc_disk_sb(rdev)))
1334 goto abort_free;
1335
1336 err = lock_rdev(rdev, newdev);
1337 if (err)
1338 goto abort_free;
1339
1340 rdev->desc_nr = -1;
1341 rdev->faulty = 0;
1342 rdev->in_sync = 0;
1343 rdev->data_offset = 0;
1344 atomic_set(&rdev->nr_pending, 0);
1345
1346 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1347 if (!size) {
1348 printk(KERN_WARNING
1349 "md: %s has zero or unknown size, marking faulty!\n",
1350 bdevname(rdev->bdev,b));
1351 err = -EINVAL;
1352 goto abort_free;
1353 }
1354
1355 if (super_format >= 0) {
1356 err = super_types[super_format].
1357 load_super(rdev, NULL, super_minor);
1358 if (err == -EINVAL) {
1359 printk(KERN_WARNING
1360 "md: %s has invalid sb, not importing!\n",
1361 bdevname(rdev->bdev,b));
1362 goto abort_free;
1363 }
1364 if (err < 0) {
1365 printk(KERN_WARNING
1366 "md: could not read %s's sb, not importing!\n",
1367 bdevname(rdev->bdev,b));
1368 goto abort_free;
1369 }
1370 }
1371 INIT_LIST_HEAD(&rdev->same_set);
1372
1373 return rdev;
1374
1375abort_free:
1376 if (rdev->sb_page) {
1377 if (rdev->bdev)
1378 unlock_rdev(rdev);
1379 free_disk_sb(rdev);
1380 }
1381 kfree(rdev);
1382 return ERR_PTR(err);
1383}
1384
1385/*
1386 * Check a full RAID array for plausibility
1387 */
1388
1389
a757e64c 1390static void analyze_sbs(mddev_t * mddev)
1da177e4
LT
1391{
1392 int i;
1393 struct list_head *tmp;
1394 mdk_rdev_t *rdev, *freshest;
1395 char b[BDEVNAME_SIZE];
1396
1397 freshest = NULL;
1398 ITERATE_RDEV(mddev,rdev,tmp)
1399 switch (super_types[mddev->major_version].
1400 load_super(rdev, freshest, mddev->minor_version)) {
1401 case 1:
1402 freshest = rdev;
1403 break;
1404 case 0:
1405 break;
1406 default:
1407 printk( KERN_ERR \
1408 "md: fatal superblock inconsistency in %s"
1409 " -- removing from array\n",
1410 bdevname(rdev->bdev,b));
1411 kick_rdev_from_array(rdev);
1412 }
1413
1414
1415 super_types[mddev->major_version].
1416 validate_super(mddev, freshest);
1417
1418 i = 0;
1419 ITERATE_RDEV(mddev,rdev,tmp) {
1420 if (rdev != freshest)
1421 if (super_types[mddev->major_version].
1422 validate_super(mddev, rdev)) {
1423 printk(KERN_WARNING "md: kicking non-fresh %s"
1424 " from array!\n",
1425 bdevname(rdev->bdev,b));
1426 kick_rdev_from_array(rdev);
1427 continue;
1428 }
1429 if (mddev->level == LEVEL_MULTIPATH) {
1430 rdev->desc_nr = i++;
1431 rdev->raid_disk = rdev->desc_nr;
1432 rdev->in_sync = 1;
1433 }
1434 }
1435
1436
1437
1438 if (mddev->recovery_cp != MaxSector &&
1439 mddev->level >= 1)
1440 printk(KERN_ERR "md: %s: raid array is not clean"
1441 " -- starting background reconstruction\n",
1442 mdname(mddev));
1443
1da177e4
LT
1444}
1445
1446int mdp_major = 0;
1447
1448static struct kobject *md_probe(dev_t dev, int *part, void *data)
1449{
1450 static DECLARE_MUTEX(disks_sem);
1451 mddev_t *mddev = mddev_find(dev);
1452 struct gendisk *disk;
1453 int partitioned = (MAJOR(dev) != MD_MAJOR);
1454 int shift = partitioned ? MdpMinorShift : 0;
1455 int unit = MINOR(dev) >> shift;
1456
1457 if (!mddev)
1458 return NULL;
1459
1460 down(&disks_sem);
1461 if (mddev->gendisk) {
1462 up(&disks_sem);
1463 mddev_put(mddev);
1464 return NULL;
1465 }
1466 disk = alloc_disk(1 << shift);
1467 if (!disk) {
1468 up(&disks_sem);
1469 mddev_put(mddev);
1470 return NULL;
1471 }
1472 disk->major = MAJOR(dev);
1473 disk->first_minor = unit << shift;
1474 if (partitioned) {
1475 sprintf(disk->disk_name, "md_d%d", unit);
1476 sprintf(disk->devfs_name, "md/d%d", unit);
1477 } else {
1478 sprintf(disk->disk_name, "md%d", unit);
1479 sprintf(disk->devfs_name, "md/%d", unit);
1480 }
1481 disk->fops = &md_fops;
1482 disk->private_data = mddev;
1483 disk->queue = mddev->queue;
1484 add_disk(disk);
1485 mddev->gendisk = disk;
1486 up(&disks_sem);
1487 return NULL;
1488}
1489
1490void md_wakeup_thread(mdk_thread_t *thread);
1491
1492static void md_safemode_timeout(unsigned long data)
1493{
1494 mddev_t *mddev = (mddev_t *) data;
1495
1496 mddev->safemode = 1;
1497 md_wakeup_thread(mddev->thread);
1498}
1499
1500
1501static int do_md_run(mddev_t * mddev)
1502{
1503 int pnum, err;
1504 int chunk_size;
1505 struct list_head *tmp;
1506 mdk_rdev_t *rdev;
1507 struct gendisk *disk;
1508 char b[BDEVNAME_SIZE];
1509
a757e64c
N
1510 if (list_empty(&mddev->disks))
1511 /* cannot run an array with no devices.. */
1da177e4 1512 return -EINVAL;
1da177e4
LT
1513
1514 if (mddev->pers)
1515 return -EBUSY;
1516
1517 /*
1518 * Analyze all RAID superblock(s)
1519 */
a757e64c
N
1520 if (!mddev->raid_disks)
1521 analyze_sbs(mddev);
1da177e4
LT
1522
1523 chunk_size = mddev->chunk_size;
1524 pnum = level_to_pers(mddev->level);
1525
1526 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1527 if (!chunk_size) {
1528 /*
1529 * 'default chunksize' in the old md code used to
1530 * be PAGE_SIZE, baaad.
1531 * we abort here to be on the safe side. We don't
1532 * want to continue the bad practice.
1533 */
1534 printk(KERN_ERR
1535 "no chunksize specified, see 'man raidtab'\n");
1536 return -EINVAL;
1537 }
1538 if (chunk_size > MAX_CHUNK_SIZE) {
1539 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1540 chunk_size, MAX_CHUNK_SIZE);
1541 return -EINVAL;
1542 }
1543 /*
1544 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1545 */
1546 if ( (1 << ffz(~chunk_size)) != chunk_size) {
a757e64c 1547 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1da177e4
LT
1548 return -EINVAL;
1549 }
1550 if (chunk_size < PAGE_SIZE) {
1551 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1552 chunk_size, PAGE_SIZE);
1553 return -EINVAL;
1554 }
1555
1556 /* devices must have minimum size of one chunk */
1557 ITERATE_RDEV(mddev,rdev,tmp) {
1558 if (rdev->faulty)
1559 continue;
1560 if (rdev->size < chunk_size / 1024) {
1561 printk(KERN_WARNING
1562 "md: Dev %s smaller than chunk_size:"
1563 " %lluk < %dk\n",
1564 bdevname(rdev->bdev,b),
1565 (unsigned long long)rdev->size,
1566 chunk_size / 1024);
1567 return -EINVAL;
1568 }
1569 }
1570 }
1571
1da177e4
LT
1572#ifdef CONFIG_KMOD
1573 if (!pers[pnum])
1574 {
1575 request_module("md-personality-%d", pnum);
1576 }
1577#endif
1578
1579 /*
1580 * Drop all container device buffers, from now on
1581 * the only valid external interface is through the md
1582 * device.
1583 * Also find largest hardsector size
1584 */
1585 ITERATE_RDEV(mddev,rdev,tmp) {
1586 if (rdev->faulty)
1587 continue;
1588 sync_blockdev(rdev->bdev);
1589 invalidate_bdev(rdev->bdev, 0);
1590 }
1591
1592 md_probe(mddev->unit, NULL, NULL);
1593 disk = mddev->gendisk;
1594 if (!disk)
1595 return -ENOMEM;
1596
1597 spin_lock(&pers_lock);
1598 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1599 spin_unlock(&pers_lock);
1600 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1601 pnum);
1602 return -EINVAL;
1603 }
1604
1605 mddev->pers = pers[pnum];
1606 spin_unlock(&pers_lock);
1607
1608 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1609
1610 err = mddev->pers->run(mddev);
1611 if (err) {
1612 printk(KERN_ERR "md: pers->run() failed ...\n");
1613 module_put(mddev->pers->owner);
1614 mddev->pers = NULL;
1615 return -EINVAL;
1616 }
1617 atomic_set(&mddev->writes_pending,0);
1618 mddev->safemode = 0;
1619 mddev->safemode_timer.function = md_safemode_timeout;
1620 mddev->safemode_timer.data = (unsigned long) mddev;
1621 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1622 mddev->in_sync = 1;
1623
1624 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1625
1626 if (mddev->sb_dirty)
1627 md_update_sb(mddev);
1628
1629 set_capacity(disk, mddev->array_size<<1);
1630
1631 /* If we call blk_queue_make_request here, it will
1632 * re-initialise max_sectors etc which may have been
1633 * refined inside -> run. So just set the bits we need to set.
1634 * Most initialisation happended when we called
1635 * blk_queue_make_request(..., md_fail_request)
1636 * earlier.
1637 */
1638 mddev->queue->queuedata = mddev;
1639 mddev->queue->make_request_fn = mddev->pers->make_request;
1640
1641 mddev->changed = 1;
1642 return 0;
1643}
1644
1645static int restart_array(mddev_t *mddev)
1646{
1647 struct gendisk *disk = mddev->gendisk;
1648 int err;
1649
1650 /*
1651 * Complain if it has no devices
1652 */
1653 err = -ENXIO;
1654 if (list_empty(&mddev->disks))
1655 goto out;
1656
1657 if (mddev->pers) {
1658 err = -EBUSY;
1659 if (!mddev->ro)
1660 goto out;
1661
1662 mddev->safemode = 0;
1663 mddev->ro = 0;
1664 set_disk_ro(disk, 0);
1665
1666 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1667 mdname(mddev));
1668 /*
1669 * Kick recovery or resync if necessary
1670 */
1671 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1672 md_wakeup_thread(mddev->thread);
1673 err = 0;
1674 } else {
1675 printk(KERN_ERR "md: %s has no personality assigned.\n",
1676 mdname(mddev));
1677 err = -EINVAL;
1678 }
1679
1680out:
1681 return err;
1682}
1683
1684static int do_md_stop(mddev_t * mddev, int ro)
1685{
1686 int err = 0;
1687 struct gendisk *disk = mddev->gendisk;
1688
1689 if (mddev->pers) {
1690 if (atomic_read(&mddev->active)>2) {
1691 printk("md: %s still in use.\n",mdname(mddev));
1692 return -EBUSY;
1693 }
1694
1695 if (mddev->sync_thread) {
1696 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1697 md_unregister_thread(mddev->sync_thread);
1698 mddev->sync_thread = NULL;
1699 }
1700
1701 del_timer_sync(&mddev->safemode_timer);
1702
1703 invalidate_partition(disk, 0);
1704
1705 if (ro) {
1706 err = -ENXIO;
1707 if (mddev->ro)
1708 goto out;
1709 mddev->ro = 1;
1710 } else {
1711 if (mddev->ro)
1712 set_disk_ro(disk, 0);
1713 blk_queue_make_request(mddev->queue, md_fail_request);
1714 mddev->pers->stop(mddev);
1715 module_put(mddev->pers->owner);
1716 mddev->pers = NULL;
1717 if (mddev->ro)
1718 mddev->ro = 0;
1719 }
1720 if (!mddev->in_sync) {
1721 /* mark array as shutdown cleanly */
1722 mddev->in_sync = 1;
1723 md_update_sb(mddev);
1724 }
1725 if (ro)
1726 set_disk_ro(disk, 1);
1727 }
1728 /*
1729 * Free resources if final stop
1730 */
1731 if (!ro) {
1732 struct gendisk *disk;
1733 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1734
1735 export_array(mddev);
1736
1737 mddev->array_size = 0;
1738 disk = mddev->gendisk;
1739 if (disk)
1740 set_capacity(disk, 0);
1741 mddev->changed = 1;
1742 } else
1743 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1744 mdname(mddev));
1745 err = 0;
1746out:
1747 return err;
1748}
1749
1750static void autorun_array(mddev_t *mddev)
1751{
1752 mdk_rdev_t *rdev;
1753 struct list_head *tmp;
1754 int err;
1755
a757e64c 1756 if (list_empty(&mddev->disks))
1da177e4 1757 return;
1da177e4
LT
1758
1759 printk(KERN_INFO "md: running: ");
1760
1761 ITERATE_RDEV(mddev,rdev,tmp) {
1762 char b[BDEVNAME_SIZE];
1763 printk("<%s>", bdevname(rdev->bdev,b));
1764 }
1765 printk("\n");
1766
1767 err = do_md_run (mddev);
1768 if (err) {
1769 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1770 do_md_stop (mddev, 0);
1771 }
1772}
1773
1774/*
1775 * lets try to run arrays based on all disks that have arrived
1776 * until now. (those are in pending_raid_disks)
1777 *
1778 * the method: pick the first pending disk, collect all disks with
1779 * the same UUID, remove all from the pending list and put them into
1780 * the 'same_array' list. Then order this list based on superblock
1781 * update time (freshest comes first), kick out 'old' disks and
1782 * compare superblocks. If everything's fine then run it.
1783 *
1784 * If "unit" is allocated, then bump its reference count
1785 */
1786static void autorun_devices(int part)
1787{
1788 struct list_head candidates;
1789 struct list_head *tmp;
1790 mdk_rdev_t *rdev0, *rdev;
1791 mddev_t *mddev;
1792 char b[BDEVNAME_SIZE];
1793
1794 printk(KERN_INFO "md: autorun ...\n");
1795 while (!list_empty(&pending_raid_disks)) {
1796 dev_t dev;
1797 rdev0 = list_entry(pending_raid_disks.next,
1798 mdk_rdev_t, same_set);
1799
1800 printk(KERN_INFO "md: considering %s ...\n",
1801 bdevname(rdev0->bdev,b));
1802 INIT_LIST_HEAD(&candidates);
1803 ITERATE_RDEV_PENDING(rdev,tmp)
1804 if (super_90_load(rdev, rdev0, 0) >= 0) {
1805 printk(KERN_INFO "md: adding %s ...\n",
1806 bdevname(rdev->bdev,b));
1807 list_move(&rdev->same_set, &candidates);
1808 }
1809 /*
1810 * now we have a set of devices, with all of them having
1811 * mostly sane superblocks. It's time to allocate the
1812 * mddev.
1813 */
1814 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1815 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1816 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1817 break;
1818 }
1819 if (part)
1820 dev = MKDEV(mdp_major,
1821 rdev0->preferred_minor << MdpMinorShift);
1822 else
1823 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1824
1825 md_probe(dev, NULL, NULL);
1826 mddev = mddev_find(dev);
1827 if (!mddev) {
1828 printk(KERN_ERR
1829 "md: cannot allocate memory for md drive.\n");
1830 break;
1831 }
1832 if (mddev_lock(mddev))
1833 printk(KERN_WARNING "md: %s locked, cannot run\n",
1834 mdname(mddev));
1835 else if (mddev->raid_disks || mddev->major_version
1836 || !list_empty(&mddev->disks)) {
1837 printk(KERN_WARNING
1838 "md: %s already running, cannot run %s\n",
1839 mdname(mddev), bdevname(rdev0->bdev,b));
1840 mddev_unlock(mddev);
1841 } else {
1842 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1843 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1844 list_del_init(&rdev->same_set);
1845 if (bind_rdev_to_array(rdev, mddev))
1846 export_rdev(rdev);
1847 }
1848 autorun_array(mddev);
1849 mddev_unlock(mddev);
1850 }
1851 /* on success, candidates will be empty, on error
1852 * it won't...
1853 */
1854 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1855 export_rdev(rdev);
1856 mddev_put(mddev);
1857 }
1858 printk(KERN_INFO "md: ... autorun DONE.\n");
1859}
1860
1861/*
1862 * import RAID devices based on one partition
1863 * if possible, the array gets run as well.
1864 */
1865
1866static int autostart_array(dev_t startdev)
1867{
1868 char b[BDEVNAME_SIZE];
1869 int err = -EINVAL, i;
1870 mdp_super_t *sb = NULL;
1871 mdk_rdev_t *start_rdev = NULL, *rdev;
1872
1873 start_rdev = md_import_device(startdev, 0, 0);
1874 if (IS_ERR(start_rdev))
1875 return err;
1876
1877
1878 /* NOTE: this can only work for 0.90.0 superblocks */
1879 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1880 if (sb->major_version != 0 ||
1881 sb->minor_version != 90 ) {
1882 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1883 export_rdev(start_rdev);
1884 return err;
1885 }
1886
1887 if (start_rdev->faulty) {
1888 printk(KERN_WARNING
1889 "md: can not autostart based on faulty %s!\n",
1890 bdevname(start_rdev->bdev,b));
1891 export_rdev(start_rdev);
1892 return err;
1893 }
1894 list_add(&start_rdev->same_set, &pending_raid_disks);
1895
1896 for (i = 0; i < MD_SB_DISKS; i++) {
1897 mdp_disk_t *desc = sb->disks + i;
1898 dev_t dev = MKDEV(desc->major, desc->minor);
1899
1900 if (!dev)
1901 continue;
1902 if (dev == startdev)
1903 continue;
1904 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
1905 continue;
1906 rdev = md_import_device(dev, 0, 0);
1907 if (IS_ERR(rdev))
1908 continue;
1909
1910 list_add(&rdev->same_set, &pending_raid_disks);
1911 }
1912
1913 /*
1914 * possibly return codes
1915 */
1916 autorun_devices(0);
1917 return 0;
1918
1919}
1920
1921
1922static int get_version(void __user * arg)
1923{
1924 mdu_version_t ver;
1925
1926 ver.major = MD_MAJOR_VERSION;
1927 ver.minor = MD_MINOR_VERSION;
1928 ver.patchlevel = MD_PATCHLEVEL_VERSION;
1929
1930 if (copy_to_user(arg, &ver, sizeof(ver)))
1931 return -EFAULT;
1932
1933 return 0;
1934}
1935
1936static int get_array_info(mddev_t * mddev, void __user * arg)
1937{
1938 mdu_array_info_t info;
1939 int nr,working,active,failed,spare;
1940 mdk_rdev_t *rdev;
1941 struct list_head *tmp;
1942
1943 nr=working=active=failed=spare=0;
1944 ITERATE_RDEV(mddev,rdev,tmp) {
1945 nr++;
1946 if (rdev->faulty)
1947 failed++;
1948 else {
1949 working++;
1950 if (rdev->in_sync)
1951 active++;
1952 else
1953 spare++;
1954 }
1955 }
1956
1957 info.major_version = mddev->major_version;
1958 info.minor_version = mddev->minor_version;
1959 info.patch_version = MD_PATCHLEVEL_VERSION;
1960 info.ctime = mddev->ctime;
1961 info.level = mddev->level;
1962 info.size = mddev->size;
1963 info.nr_disks = nr;
1964 info.raid_disks = mddev->raid_disks;
1965 info.md_minor = mddev->md_minor;
1966 info.not_persistent= !mddev->persistent;
1967
1968 info.utime = mddev->utime;
1969 info.state = 0;
1970 if (mddev->in_sync)
1971 info.state = (1<<MD_SB_CLEAN);
1972 info.active_disks = active;
1973 info.working_disks = working;
1974 info.failed_disks = failed;
1975 info.spare_disks = spare;
1976
1977 info.layout = mddev->layout;
1978 info.chunk_size = mddev->chunk_size;
1979
1980 if (copy_to_user(arg, &info, sizeof(info)))
1981 return -EFAULT;
1982
1983 return 0;
1984}
1985
1986static int get_disk_info(mddev_t * mddev, void __user * arg)
1987{
1988 mdu_disk_info_t info;
1989 unsigned int nr;
1990 mdk_rdev_t *rdev;
1991
1992 if (copy_from_user(&info, arg, sizeof(info)))
1993 return -EFAULT;
1994
1995 nr = info.number;
1996
1997 rdev = find_rdev_nr(mddev, nr);
1998 if (rdev) {
1999 info.major = MAJOR(rdev->bdev->bd_dev);
2000 info.minor = MINOR(rdev->bdev->bd_dev);
2001 info.raid_disk = rdev->raid_disk;
2002 info.state = 0;
2003 if (rdev->faulty)
2004 info.state |= (1<<MD_DISK_FAULTY);
2005 else if (rdev->in_sync) {
2006 info.state |= (1<<MD_DISK_ACTIVE);
2007 info.state |= (1<<MD_DISK_SYNC);
2008 }
2009 } else {
2010 info.major = info.minor = 0;
2011 info.raid_disk = -1;
2012 info.state = (1<<MD_DISK_REMOVED);
2013 }
2014
2015 if (copy_to_user(arg, &info, sizeof(info)))
2016 return -EFAULT;
2017
2018 return 0;
2019}
2020
2021static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2022{
2023 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2024 mdk_rdev_t *rdev;
2025 dev_t dev = MKDEV(info->major,info->minor);
2026
2027 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2028 return -EOVERFLOW;
2029
2030 if (!mddev->raid_disks) {
2031 int err;
2032 /* expecting a device which has a superblock */
2033 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2034 if (IS_ERR(rdev)) {
2035 printk(KERN_WARNING
2036 "md: md_import_device returned %ld\n",
2037 PTR_ERR(rdev));
2038 return PTR_ERR(rdev);
2039 }
2040 if (!list_empty(&mddev->disks)) {
2041 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2042 mdk_rdev_t, same_set);
2043 int err = super_types[mddev->major_version]
2044 .load_super(rdev, rdev0, mddev->minor_version);
2045 if (err < 0) {
2046 printk(KERN_WARNING
2047 "md: %s has different UUID to %s\n",
2048 bdevname(rdev->bdev,b),
2049 bdevname(rdev0->bdev,b2));
2050 export_rdev(rdev);
2051 return -EINVAL;
2052 }
2053 }
2054 err = bind_rdev_to_array(rdev, mddev);
2055 if (err)
2056 export_rdev(rdev);
2057 return err;
2058 }
2059
2060 /*
2061 * add_new_disk can be used once the array is assembled
2062 * to add "hot spares". They must already have a superblock
2063 * written
2064 */
2065 if (mddev->pers) {
2066 int err;
2067 if (!mddev->pers->hot_add_disk) {
2068 printk(KERN_WARNING
2069 "%s: personality does not support diskops!\n",
2070 mdname(mddev));
2071 return -EINVAL;
2072 }
2073 rdev = md_import_device(dev, mddev->major_version,
2074 mddev->minor_version);
2075 if (IS_ERR(rdev)) {
2076 printk(KERN_WARNING
2077 "md: md_import_device returned %ld\n",
2078 PTR_ERR(rdev));
2079 return PTR_ERR(rdev);
2080 }
2081 rdev->in_sync = 0; /* just to be sure */
2082 rdev->raid_disk = -1;
2083 err = bind_rdev_to_array(rdev, mddev);
2084 if (err)
2085 export_rdev(rdev);
c361777f
N
2086
2087 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1da177e4
LT
2088 if (mddev->thread)
2089 md_wakeup_thread(mddev->thread);
2090 return err;
2091 }
2092
2093 /* otherwise, add_new_disk is only allowed
2094 * for major_version==0 superblocks
2095 */
2096 if (mddev->major_version != 0) {
2097 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2098 mdname(mddev));
2099 return -EINVAL;
2100 }
2101
2102 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2103 int err;
2104 rdev = md_import_device (dev, -1, 0);
2105 if (IS_ERR(rdev)) {
2106 printk(KERN_WARNING
2107 "md: error, md_import_device() returned %ld\n",
2108 PTR_ERR(rdev));
2109 return PTR_ERR(rdev);
2110 }
2111 rdev->desc_nr = info->number;
2112 if (info->raid_disk < mddev->raid_disks)
2113 rdev->raid_disk = info->raid_disk;
2114 else
2115 rdev->raid_disk = -1;
2116
2117 rdev->faulty = 0;
2118 if (rdev->raid_disk < mddev->raid_disks)
2119 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2120 else
2121 rdev->in_sync = 0;
2122
2123 err = bind_rdev_to_array(rdev, mddev);
2124 if (err) {
2125 export_rdev(rdev);
2126 return err;
2127 }
2128
2129 if (!mddev->persistent) {
2130 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2131 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2132 } else
2133 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2134 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2135
2136 if (!mddev->size || (mddev->size > rdev->size))
2137 mddev->size = rdev->size;
2138 }
2139
2140 return 0;
2141}
2142
2143static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2144{
2145 char b[BDEVNAME_SIZE];
2146 mdk_rdev_t *rdev;
2147
2148 if (!mddev->pers)
2149 return -ENODEV;
2150
2151 rdev = find_rdev(mddev, dev);
2152 if (!rdev)
2153 return -ENXIO;
2154
2155 if (rdev->raid_disk >= 0)
2156 goto busy;
2157
2158 kick_rdev_from_array(rdev);
2159 md_update_sb(mddev);
2160
2161 return 0;
2162busy:
2163 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2164 bdevname(rdev->bdev,b), mdname(mddev));
2165 return -EBUSY;
2166}
2167
2168static int hot_add_disk(mddev_t * mddev, dev_t dev)
2169{
2170 char b[BDEVNAME_SIZE];
2171 int err;
2172 unsigned int size;
2173 mdk_rdev_t *rdev;
2174
2175 if (!mddev->pers)
2176 return -ENODEV;
2177
2178 if (mddev->major_version != 0) {
2179 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2180 " version-0 superblocks.\n",
2181 mdname(mddev));
2182 return -EINVAL;
2183 }
2184 if (!mddev->pers->hot_add_disk) {
2185 printk(KERN_WARNING
2186 "%s: personality does not support diskops!\n",
2187 mdname(mddev));
2188 return -EINVAL;
2189 }
2190
2191 rdev = md_import_device (dev, -1, 0);
2192 if (IS_ERR(rdev)) {
2193 printk(KERN_WARNING
2194 "md: error, md_import_device() returned %ld\n",
2195 PTR_ERR(rdev));
2196 return -EINVAL;
2197 }
2198
2199 if (mddev->persistent)
2200 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2201 else
2202 rdev->sb_offset =
2203 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2204
2205 size = calc_dev_size(rdev, mddev->chunk_size);
2206 rdev->size = size;
2207
2208 if (size < mddev->size) {
2209 printk(KERN_WARNING
2210 "%s: disk size %llu blocks < array size %llu\n",
2211 mdname(mddev), (unsigned long long)size,
2212 (unsigned long long)mddev->size);
2213 err = -ENOSPC;
2214 goto abort_export;
2215 }
2216
2217 if (rdev->faulty) {
2218 printk(KERN_WARNING
2219 "md: can not hot-add faulty %s disk to %s!\n",
2220 bdevname(rdev->bdev,b), mdname(mddev));
2221 err = -EINVAL;
2222 goto abort_export;
2223 }
2224 rdev->in_sync = 0;
2225 rdev->desc_nr = -1;
2226 bind_rdev_to_array(rdev, mddev);
2227
2228 /*
2229 * The rest should better be atomic, we can have disk failures
2230 * noticed in interrupt contexts ...
2231 */
2232
2233 if (rdev->desc_nr == mddev->max_disks) {
2234 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2235 mdname(mddev));
2236 err = -EBUSY;
2237 goto abort_unbind_export;
2238 }
2239
2240 rdev->raid_disk = -1;
2241
2242 md_update_sb(mddev);
2243
2244 /*
2245 * Kick recovery, maybe this spare has to be added to the
2246 * array immediately.
2247 */
2248 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2249 md_wakeup_thread(mddev->thread);
2250
2251 return 0;
2252
2253abort_unbind_export:
2254 unbind_rdev_from_array(rdev);
2255
2256abort_export:
2257 export_rdev(rdev);
2258 return err;
2259}
2260
2261/*
2262 * set_array_info is used two different ways
2263 * The original usage is when creating a new array.
2264 * In this usage, raid_disks is > 0 and it together with
2265 * level, size, not_persistent,layout,chunksize determine the
2266 * shape of the array.
2267 * This will always create an array with a type-0.90.0 superblock.
2268 * The newer usage is when assembling an array.
2269 * In this case raid_disks will be 0, and the major_version field is
2270 * use to determine which style super-blocks are to be found on the devices.
2271 * The minor and patch _version numbers are also kept incase the
2272 * super_block handler wishes to interpret them.
2273 */
2274static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2275{
2276
2277 if (info->raid_disks == 0) {
2278 /* just setting version number for superblock loading */
2279 if (info->major_version < 0 ||
2280 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2281 super_types[info->major_version].name == NULL) {
2282 /* maybe try to auto-load a module? */
2283 printk(KERN_INFO
2284 "md: superblock version %d not known\n",
2285 info->major_version);
2286 return -EINVAL;
2287 }
2288 mddev->major_version = info->major_version;
2289 mddev->minor_version = info->minor_version;
2290 mddev->patch_version = info->patch_version;
2291 return 0;
2292 }
2293 mddev->major_version = MD_MAJOR_VERSION;
2294 mddev->minor_version = MD_MINOR_VERSION;
2295 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2296 mddev->ctime = get_seconds();
2297
2298 mddev->level = info->level;
2299 mddev->size = info->size;
2300 mddev->raid_disks = info->raid_disks;
2301 /* don't set md_minor, it is determined by which /dev/md* was
2302 * openned
2303 */
2304 if (info->state & (1<<MD_SB_CLEAN))
2305 mddev->recovery_cp = MaxSector;
2306 else
2307 mddev->recovery_cp = 0;
2308 mddev->persistent = ! info->not_persistent;
2309
2310 mddev->layout = info->layout;
2311 mddev->chunk_size = info->chunk_size;
2312
2313 mddev->max_disks = MD_SB_DISKS;
2314
2315 mddev->sb_dirty = 1;
2316
2317 /*
2318 * Generate a 128 bit UUID
2319 */
2320 get_random_bytes(mddev->uuid, 16);
2321
2322 return 0;
2323}
2324
2325/*
2326 * update_array_info is used to change the configuration of an
2327 * on-line array.
2328 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2329 * fields in the info are checked against the array.
2330 * Any differences that cannot be handled will cause an error.
2331 * Normally, only one change can be managed at a time.
2332 */
2333static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2334{
2335 int rv = 0;
2336 int cnt = 0;
2337
2338 if (mddev->major_version != info->major_version ||
2339 mddev->minor_version != info->minor_version ||
2340/* mddev->patch_version != info->patch_version || */
2341 mddev->ctime != info->ctime ||
2342 mddev->level != info->level ||
2343/* mddev->layout != info->layout || */
2344 !mddev->persistent != info->not_persistent||
2345 mddev->chunk_size != info->chunk_size )
2346 return -EINVAL;
2347 /* Check there is only one change */
2348 if (mddev->size != info->size) cnt++;
2349 if (mddev->raid_disks != info->raid_disks) cnt++;
2350 if (mddev->layout != info->layout) cnt++;
2351 if (cnt == 0) return 0;
2352 if (cnt > 1) return -EINVAL;
2353
2354 if (mddev->layout != info->layout) {
2355 /* Change layout
2356 * we don't need to do anything at the md level, the
2357 * personality will take care of it all.
2358 */
2359 if (mddev->pers->reconfig == NULL)
2360 return -EINVAL;
2361 else
2362 return mddev->pers->reconfig(mddev, info->layout, -1);
2363 }
2364 if (mddev->size != info->size) {
2365 mdk_rdev_t * rdev;
2366 struct list_head *tmp;
2367 if (mddev->pers->resize == NULL)
2368 return -EINVAL;
2369 /* The "size" is the amount of each device that is used.
2370 * This can only make sense for arrays with redundancy.
2371 * linear and raid0 always use whatever space is available
2372 * We can only consider changing the size if no resync
2373 * or reconstruction is happening, and if the new size
2374 * is acceptable. It must fit before the sb_offset or,
2375 * if that is <data_offset, it must fit before the
2376 * size of each device.
2377 * If size is zero, we find the largest size that fits.
2378 */
2379 if (mddev->sync_thread)
2380 return -EBUSY;
2381 ITERATE_RDEV(mddev,rdev,tmp) {
2382 sector_t avail;
2383 int fit = (info->size == 0);
2384 if (rdev->sb_offset > rdev->data_offset)
2385 avail = (rdev->sb_offset*2) - rdev->data_offset;
2386 else
2387 avail = get_capacity(rdev->bdev->bd_disk)
2388 - rdev->data_offset;
2389 if (fit && (info->size == 0 || info->size > avail/2))
2390 info->size = avail/2;
2391 if (avail < ((sector_t)info->size << 1))
2392 return -ENOSPC;
2393 }
2394 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2395 if (!rv) {
2396 struct block_device *bdev;
2397
2398 bdev = bdget_disk(mddev->gendisk, 0);
2399 if (bdev) {
2400 down(&bdev->bd_inode->i_sem);
2401 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2402 up(&bdev->bd_inode->i_sem);
2403 bdput(bdev);
2404 }
2405 }
2406 }
2407 if (mddev->raid_disks != info->raid_disks) {
2408 /* change the number of raid disks */
2409 if (mddev->pers->reshape == NULL)
2410 return -EINVAL;
2411 if (info->raid_disks <= 0 ||
2412 info->raid_disks >= mddev->max_disks)
2413 return -EINVAL;
2414 if (mddev->sync_thread)
2415 return -EBUSY;
2416 rv = mddev->pers->reshape(mddev, info->raid_disks);
2417 if (!rv) {
2418 struct block_device *bdev;
2419
2420 bdev = bdget_disk(mddev->gendisk, 0);
2421 if (bdev) {
2422 down(&bdev->bd_inode->i_sem);
2423 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2424 up(&bdev->bd_inode->i_sem);
2425 bdput(bdev);
2426 }
2427 }
2428 }
2429 md_update_sb(mddev);
2430 return rv;
2431}
2432
2433static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2434{
2435 mdk_rdev_t *rdev;
2436
2437 if (mddev->pers == NULL)
2438 return -ENODEV;
2439
2440 rdev = find_rdev(mddev, dev);
2441 if (!rdev)
2442 return -ENODEV;
2443
2444 md_error(mddev, rdev);
2445 return 0;
2446}
2447
2448static int md_ioctl(struct inode *inode, struct file *file,
2449 unsigned int cmd, unsigned long arg)
2450{
2451 int err = 0;
2452 void __user *argp = (void __user *)arg;
2453 struct hd_geometry __user *loc = argp;
2454 mddev_t *mddev = NULL;
2455
2456 if (!capable(CAP_SYS_ADMIN))
2457 return -EACCES;
2458
2459 /*
2460 * Commands dealing with the RAID driver but not any
2461 * particular array:
2462 */
2463 switch (cmd)
2464 {
2465 case RAID_VERSION:
2466 err = get_version(argp);
2467 goto done;
2468
2469 case PRINT_RAID_DEBUG:
2470 err = 0;
2471 md_print_devices();
2472 goto done;
2473
2474#ifndef MODULE
2475 case RAID_AUTORUN:
2476 err = 0;
2477 autostart_arrays(arg);
2478 goto done;
2479#endif
2480 default:;
2481 }
2482
2483 /*
2484 * Commands creating/starting a new array:
2485 */
2486
2487 mddev = inode->i_bdev->bd_disk->private_data;
2488
2489 if (!mddev) {
2490 BUG();
2491 goto abort;
2492 }
2493
2494
2495 if (cmd == START_ARRAY) {
2496 /* START_ARRAY doesn't need to lock the array as autostart_array
2497 * does the locking, and it could even be a different array
2498 */
2499 static int cnt = 3;
2500 if (cnt > 0 ) {
2501 printk(KERN_WARNING
2502 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2503 "This will not be supported beyond 2.6\n",
2504 current->comm, current->pid);
2505 cnt--;
2506 }
2507 err = autostart_array(new_decode_dev(arg));
2508 if (err) {
2509 printk(KERN_WARNING "md: autostart failed!\n");
2510 goto abort;
2511 }
2512 goto done;
2513 }
2514
2515 err = mddev_lock(mddev);
2516 if (err) {
2517 printk(KERN_INFO
2518 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2519 err, cmd);
2520 goto abort;
2521 }
2522
2523 switch (cmd)
2524 {
2525 case SET_ARRAY_INFO:
2526 {
2527 mdu_array_info_t info;
2528 if (!arg)
2529 memset(&info, 0, sizeof(info));
2530 else if (copy_from_user(&info, argp, sizeof(info))) {
2531 err = -EFAULT;
2532 goto abort_unlock;
2533 }
2534 if (mddev->pers) {
2535 err = update_array_info(mddev, &info);
2536 if (err) {
2537 printk(KERN_WARNING "md: couldn't update"
2538 " array info. %d\n", err);
2539 goto abort_unlock;
2540 }
2541 goto done_unlock;
2542 }
2543 if (!list_empty(&mddev->disks)) {
2544 printk(KERN_WARNING
2545 "md: array %s already has disks!\n",
2546 mdname(mddev));
2547 err = -EBUSY;
2548 goto abort_unlock;
2549 }
2550 if (mddev->raid_disks) {
2551 printk(KERN_WARNING
2552 "md: array %s already initialised!\n",
2553 mdname(mddev));
2554 err = -EBUSY;
2555 goto abort_unlock;
2556 }
2557 err = set_array_info(mddev, &info);
2558 if (err) {
2559 printk(KERN_WARNING "md: couldn't set"
2560 " array info. %d\n", err);
2561 goto abort_unlock;
2562 }
2563 }
2564 goto done_unlock;
2565
2566 default:;
2567 }
2568
2569 /*
2570 * Commands querying/configuring an existing array:
2571 */
2572 /* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
2573 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) {
2574 err = -ENODEV;
2575 goto abort_unlock;
2576 }
2577
2578 /*
2579 * Commands even a read-only array can execute:
2580 */
2581 switch (cmd)
2582 {
2583 case GET_ARRAY_INFO:
2584 err = get_array_info(mddev, argp);
2585 goto done_unlock;
2586
2587 case GET_DISK_INFO:
2588 err = get_disk_info(mddev, argp);
2589 goto done_unlock;
2590
2591 case RESTART_ARRAY_RW:
2592 err = restart_array(mddev);
2593 goto done_unlock;
2594
2595 case STOP_ARRAY:
2596 err = do_md_stop (mddev, 0);
2597 goto done_unlock;
2598
2599 case STOP_ARRAY_RO:
2600 err = do_md_stop (mddev, 1);
2601 goto done_unlock;
2602
2603 /*
2604 * We have a problem here : there is no easy way to give a CHS
2605 * virtual geometry. We currently pretend that we have a 2 heads
2606 * 4 sectors (with a BIG number of cylinders...). This drives
2607 * dosfs just mad... ;-)
2608 */
2609 case HDIO_GETGEO:
2610 if (!loc) {
2611 err = -EINVAL;
2612 goto abort_unlock;
2613 }
2614 err = put_user (2, (char __user *) &loc->heads);
2615 if (err)
2616 goto abort_unlock;
2617 err = put_user (4, (char __user *) &loc->sectors);
2618 if (err)
2619 goto abort_unlock;
2620 err = put_user(get_capacity(mddev->gendisk)/8,
2621 (short __user *) &loc->cylinders);
2622 if (err)
2623 goto abort_unlock;
2624 err = put_user (get_start_sect(inode->i_bdev),
2625 (long __user *) &loc->start);
2626 goto done_unlock;
2627 }
2628
2629 /*
2630 * The remaining ioctls are changing the state of the
2631 * superblock, so we do not allow read-only arrays
2632 * here:
2633 */
2634 if (mddev->ro) {
2635 err = -EROFS;
2636 goto abort_unlock;
2637 }
2638
2639 switch (cmd)
2640 {
2641 case ADD_NEW_DISK:
2642 {
2643 mdu_disk_info_t info;
2644 if (copy_from_user(&info, argp, sizeof(info)))
2645 err = -EFAULT;
2646 else
2647 err = add_new_disk(mddev, &info);
2648 goto done_unlock;
2649 }
2650
2651 case HOT_REMOVE_DISK:
2652 err = hot_remove_disk(mddev, new_decode_dev(arg));
2653 goto done_unlock;
2654
2655 case HOT_ADD_DISK:
2656 err = hot_add_disk(mddev, new_decode_dev(arg));
2657 goto done_unlock;
2658
2659 case SET_DISK_FAULTY:
2660 err = set_disk_faulty(mddev, new_decode_dev(arg));
2661 goto done_unlock;
2662
2663 case RUN_ARRAY:
2664 err = do_md_run (mddev);
2665 goto done_unlock;
2666
2667 default:
2668 if (_IOC_TYPE(cmd) == MD_MAJOR)
2669 printk(KERN_WARNING "md: %s(pid %d) used"
2670 " obsolete MD ioctl, upgrade your"
2671 " software to use new ictls.\n",
2672 current->comm, current->pid);
2673 err = -EINVAL;
2674 goto abort_unlock;
2675 }
2676
2677done_unlock:
2678abort_unlock:
2679 mddev_unlock(mddev);
2680
2681 return err;
2682done:
2683 if (err)
2684 MD_BUG();
2685abort:
2686 return err;
2687}
2688
2689static int md_open(struct inode *inode, struct file *file)
2690{
2691 /*
2692 * Succeed if we can lock the mddev, which confirms that
2693 * it isn't being stopped right now.
2694 */
2695 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2696 int err;
2697
2698 if ((err = mddev_lock(mddev)))
2699 goto out;
2700
2701 err = 0;
2702 mddev_get(mddev);
2703 mddev_unlock(mddev);
2704
2705 check_disk_change(inode->i_bdev);
2706 out:
2707 return err;
2708}
2709
2710static int md_release(struct inode *inode, struct file * file)
2711{
2712 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2713
2714 if (!mddev)
2715 BUG();
2716 mddev_put(mddev);
2717
2718 return 0;
2719}
2720
2721static int md_media_changed(struct gendisk *disk)
2722{
2723 mddev_t *mddev = disk->private_data;
2724
2725 return mddev->changed;
2726}
2727
2728static int md_revalidate(struct gendisk *disk)
2729{
2730 mddev_t *mddev = disk->private_data;
2731
2732 mddev->changed = 0;
2733 return 0;
2734}
2735static struct block_device_operations md_fops =
2736{
2737 .owner = THIS_MODULE,
2738 .open = md_open,
2739 .release = md_release,
2740 .ioctl = md_ioctl,
2741 .media_changed = md_media_changed,
2742 .revalidate_disk= md_revalidate,
2743};
2744
75c96f85 2745static int md_thread(void * arg)
1da177e4
LT
2746{
2747 mdk_thread_t *thread = arg;
2748
2749 lock_kernel();
2750
2751 /*
2752 * Detach thread
2753 */
2754
2755 daemonize(thread->name, mdname(thread->mddev));
2756
2757 current->exit_signal = SIGCHLD;
2758 allow_signal(SIGKILL);
2759 thread->tsk = current;
2760
2761 /*
2762 * md_thread is a 'system-thread', it's priority should be very
2763 * high. We avoid resource deadlocks individually in each
2764 * raid personality. (RAID5 does preallocation) We also use RR and
2765 * the very same RT priority as kswapd, thus we will never get
2766 * into a priority inversion deadlock.
2767 *
2768 * we definitely have to have equal or higher priority than
2769 * bdflush, otherwise bdflush will deadlock if there are too
2770 * many dirty RAID5 blocks.
2771 */
2772 unlock_kernel();
2773
2774 complete(thread->event);
2775 while (thread->run) {
2776 void (*run)(mddev_t *);
2777
2778 wait_event_interruptible(thread->wqueue,
2779 test_bit(THREAD_WAKEUP, &thread->flags));
2780 if (current->flags & PF_FREEZE)
2781 refrigerator(PF_FREEZE);
2782
2783 clear_bit(THREAD_WAKEUP, &thread->flags);
2784
2785 run = thread->run;
2786 if (run)
2787 run(thread->mddev);
2788
2789 if (signal_pending(current))
2790 flush_signals(current);
2791 }
2792 complete(thread->event);
2793 return 0;
2794}
2795
2796void md_wakeup_thread(mdk_thread_t *thread)
2797{
2798 if (thread) {
2799 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2800 set_bit(THREAD_WAKEUP, &thread->flags);
2801 wake_up(&thread->wqueue);
2802 }
2803}
2804
2805mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2806 const char *name)
2807{
2808 mdk_thread_t *thread;
2809 int ret;
2810 struct completion event;
2811
2812 thread = (mdk_thread_t *) kmalloc
2813 (sizeof(mdk_thread_t), GFP_KERNEL);
2814 if (!thread)
2815 return NULL;
2816
2817 memset(thread, 0, sizeof(mdk_thread_t));
2818 init_waitqueue_head(&thread->wqueue);
2819
2820 init_completion(&event);
2821 thread->event = &event;
2822 thread->run = run;
2823 thread->mddev = mddev;
2824 thread->name = name;
2825 ret = kernel_thread(md_thread, thread, 0);
2826 if (ret < 0) {
2827 kfree(thread);
2828 return NULL;
2829 }
2830 wait_for_completion(&event);
2831 return thread;
2832}
2833
1da177e4
LT
2834void md_unregister_thread(mdk_thread_t *thread)
2835{
2836 struct completion event;
2837
2838 init_completion(&event);
2839
2840 thread->event = &event;
d28446fe
N
2841
2842 /* As soon as ->run is set to NULL, the task could disappear,
2843 * so we need to hold tasklist_lock until we have sent the signal
2844 */
2845 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
2846 read_lock(&tasklist_lock);
1da177e4 2847 thread->run = NULL;
d28446fe
N
2848 send_sig(SIGKILL, thread->tsk, 1);
2849 read_unlock(&tasklist_lock);
1da177e4
LT
2850 wait_for_completion(&event);
2851 kfree(thread);
2852}
2853
2854void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
2855{
2856 if (!mddev) {
2857 MD_BUG();
2858 return;
2859 }
2860
2861 if (!rdev || rdev->faulty)
2862 return;
2863
2864 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
2865 mdname(mddev),
2866 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
2867 __builtin_return_address(0),__builtin_return_address(1),
2868 __builtin_return_address(2),__builtin_return_address(3));
2869
2870 if (!mddev->pers->error_handler)
2871 return;
2872 mddev->pers->error_handler(mddev,rdev);
2873 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2874 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2875 md_wakeup_thread(mddev->thread);
2876}
2877
2878/* seq_file implementation /proc/mdstat */
2879
2880static void status_unused(struct seq_file *seq)
2881{
2882 int i = 0;
2883 mdk_rdev_t *rdev;
2884 struct list_head *tmp;
2885
2886 seq_printf(seq, "unused devices: ");
2887
2888 ITERATE_RDEV_PENDING(rdev,tmp) {
2889 char b[BDEVNAME_SIZE];
2890 i++;
2891 seq_printf(seq, "%s ",
2892 bdevname(rdev->bdev,b));
2893 }
2894 if (!i)
2895 seq_printf(seq, "<none>");
2896
2897 seq_printf(seq, "\n");
2898}
2899
2900
2901static void status_resync(struct seq_file *seq, mddev_t * mddev)
2902{
2903 unsigned long max_blocks, resync, res, dt, db, rt;
2904
2905 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
2906
2907 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2908 max_blocks = mddev->resync_max_sectors >> 1;
2909 else
2910 max_blocks = mddev->size;
2911
2912 /*
2913 * Should not happen.
2914 */
2915 if (!max_blocks) {
2916 MD_BUG();
2917 return;
2918 }
2919 res = (resync/1024)*1000/(max_blocks/1024 + 1);
2920 {
2921 int i, x = res/50, y = 20-x;
2922 seq_printf(seq, "[");
2923 for (i = 0; i < x; i++)
2924 seq_printf(seq, "=");
2925 seq_printf(seq, ">");
2926 for (i = 0; i < y; i++)
2927 seq_printf(seq, ".");
2928 seq_printf(seq, "] ");
2929 }
2930 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
2931 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
2932 "resync" : "recovery"),
2933 res/10, res % 10, resync, max_blocks);
2934
2935 /*
2936 * We do not want to overflow, so the order of operands and
2937 * the * 100 / 100 trick are important. We do a +1 to be
2938 * safe against division by zero. We only estimate anyway.
2939 *
2940 * dt: time from mark until now
2941 * db: blocks written from mark until now
2942 * rt: remaining time
2943 */
2944 dt = ((jiffies - mddev->resync_mark) / HZ);
2945 if (!dt) dt++;
2946 db = resync - (mddev->resync_mark_cnt/2);
2947 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
2948
2949 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
2950
2951 seq_printf(seq, " speed=%ldK/sec", db/dt);
2952}
2953
2954static void *md_seq_start(struct seq_file *seq, loff_t *pos)
2955{
2956 struct list_head *tmp;
2957 loff_t l = *pos;
2958 mddev_t *mddev;
2959
2960 if (l >= 0x10000)
2961 return NULL;
2962 if (!l--)
2963 /* header */
2964 return (void*)1;
2965
2966 spin_lock(&all_mddevs_lock);
2967 list_for_each(tmp,&all_mddevs)
2968 if (!l--) {
2969 mddev = list_entry(tmp, mddev_t, all_mddevs);
2970 mddev_get(mddev);
2971 spin_unlock(&all_mddevs_lock);
2972 return mddev;
2973 }
2974 spin_unlock(&all_mddevs_lock);
2975 if (!l--)
2976 return (void*)2;/* tail */
2977 return NULL;
2978}
2979
2980static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2981{
2982 struct list_head *tmp;
2983 mddev_t *next_mddev, *mddev = v;
2984
2985 ++*pos;
2986 if (v == (void*)2)
2987 return NULL;
2988
2989 spin_lock(&all_mddevs_lock);
2990 if (v == (void*)1)
2991 tmp = all_mddevs.next;
2992 else
2993 tmp = mddev->all_mddevs.next;
2994 if (tmp != &all_mddevs)
2995 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
2996 else {
2997 next_mddev = (void*)2;
2998 *pos = 0x10000;
2999 }
3000 spin_unlock(&all_mddevs_lock);
3001
3002 if (v != (void*)1)
3003 mddev_put(mddev);
3004 return next_mddev;
3005
3006}
3007
3008static void md_seq_stop(struct seq_file *seq, void *v)
3009{
3010 mddev_t *mddev = v;
3011
3012 if (mddev && v != (void*)1 && v != (void*)2)
3013 mddev_put(mddev);
3014}
3015
3016static int md_seq_show(struct seq_file *seq, void *v)
3017{
3018 mddev_t *mddev = v;
3019 sector_t size;
3020 struct list_head *tmp2;
3021 mdk_rdev_t *rdev;
3022 int i;
3023
3024 if (v == (void*)1) {
3025 seq_printf(seq, "Personalities : ");
3026 spin_lock(&pers_lock);
3027 for (i = 0; i < MAX_PERSONALITY; i++)
3028 if (pers[i])
3029 seq_printf(seq, "[%s] ", pers[i]->name);
3030
3031 spin_unlock(&pers_lock);
3032 seq_printf(seq, "\n");
3033 return 0;
3034 }
3035 if (v == (void*)2) {
3036 status_unused(seq);
3037 return 0;
3038 }
3039
3040 if (mddev_lock(mddev)!=0)
3041 return -EINTR;
3042 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3043 seq_printf(seq, "%s : %sactive", mdname(mddev),
3044 mddev->pers ? "" : "in");
3045 if (mddev->pers) {
3046 if (mddev->ro)
3047 seq_printf(seq, " (read-only)");
3048 seq_printf(seq, " %s", mddev->pers->name);
3049 }
3050
3051 size = 0;
3052 ITERATE_RDEV(mddev,rdev,tmp2) {
3053 char b[BDEVNAME_SIZE];
3054 seq_printf(seq, " %s[%d]",
3055 bdevname(rdev->bdev,b), rdev->desc_nr);
3056 if (rdev->faulty) {
3057 seq_printf(seq, "(F)");
3058 continue;
3059 }
3060 size += rdev->size;
3061 }
3062
3063 if (!list_empty(&mddev->disks)) {
3064 if (mddev->pers)
3065 seq_printf(seq, "\n %llu blocks",
3066 (unsigned long long)mddev->array_size);
3067 else
3068 seq_printf(seq, "\n %llu blocks",
3069 (unsigned long long)size);
3070 }
3071
3072 if (mddev->pers) {
3073 mddev->pers->status (seq, mddev);
3074 seq_printf(seq, "\n ");
3075 if (mddev->curr_resync > 2)
3076 status_resync (seq, mddev);
3077 else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3078 seq_printf(seq, " resync=DELAYED");
3079 }
3080
3081 seq_printf(seq, "\n");
3082 }
3083 mddev_unlock(mddev);
3084
3085 return 0;
3086}
3087
3088static struct seq_operations md_seq_ops = {
3089 .start = md_seq_start,
3090 .next = md_seq_next,
3091 .stop = md_seq_stop,
3092 .show = md_seq_show,
3093};
3094
3095static int md_seq_open(struct inode *inode, struct file *file)
3096{
3097 int error;
3098
3099 error = seq_open(file, &md_seq_ops);
3100 return error;
3101}
3102
3103static struct file_operations md_seq_fops = {
3104 .open = md_seq_open,
3105 .read = seq_read,
3106 .llseek = seq_lseek,
3107 .release = seq_release,
3108};
3109
3110int register_md_personality(int pnum, mdk_personality_t *p)
3111{
3112 if (pnum >= MAX_PERSONALITY) {
3113 printk(KERN_ERR
3114 "md: tried to install personality %s as nr %d, but max is %lu\n",
3115 p->name, pnum, MAX_PERSONALITY-1);
3116 return -EINVAL;
3117 }
3118
3119 spin_lock(&pers_lock);
3120 if (pers[pnum]) {
3121 spin_unlock(&pers_lock);
1da177e4
LT
3122 return -EBUSY;
3123 }
3124
3125 pers[pnum] = p;
3126 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3127 spin_unlock(&pers_lock);
3128 return 0;
3129}
3130
3131int unregister_md_personality(int pnum)
3132{
a757e64c 3133 if (pnum >= MAX_PERSONALITY)
1da177e4 3134 return -EINVAL;
1da177e4
LT
3135
3136 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3137 spin_lock(&pers_lock);
3138 pers[pnum] = NULL;
3139 spin_unlock(&pers_lock);
3140 return 0;
3141}
3142
3143static int is_mddev_idle(mddev_t *mddev)
3144{
3145 mdk_rdev_t * rdev;
3146 struct list_head *tmp;
3147 int idle;
3148 unsigned long curr_events;
3149
3150 idle = 1;
3151 ITERATE_RDEV(mddev,rdev,tmp) {
3152 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3153 curr_events = disk_stat_read(disk, read_sectors) +
3154 disk_stat_read(disk, write_sectors) -
3155 atomic_read(&disk->sync_io);
3156 /* Allow some slack between valud of curr_events and last_events,
3157 * as there are some uninteresting races.
3158 * Note: the following is an unsigned comparison.
3159 */
3160 if ((curr_events - rdev->last_events + 32) > 64) {
3161 rdev->last_events = curr_events;
3162 idle = 0;
3163 }
3164 }
3165 return idle;
3166}
3167
3168void md_done_sync(mddev_t *mddev, int blocks, int ok)
3169{
3170 /* another "blocks" (512byte) blocks have been synced */
3171 atomic_sub(blocks, &mddev->recovery_active);
3172 wake_up(&mddev->recovery_wait);
3173 if (!ok) {
3174 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3175 md_wakeup_thread(mddev->thread);
3176 // stop recovery, signal do_sync ....
3177 }
3178}
3179
3180
3181void md_write_start(mddev_t *mddev)
3182{
3183 if (!atomic_read(&mddev->writes_pending)) {
3184 mddev_lock_uninterruptible(mddev);
3185 if (mddev->in_sync) {
3186 mddev->in_sync = 0;
3187 del_timer(&mddev->safemode_timer);
3188 md_update_sb(mddev);
3189 }
3190 atomic_inc(&mddev->writes_pending);
3191 mddev_unlock(mddev);
3192 } else
3193 atomic_inc(&mddev->writes_pending);
3194}
3195
3196void md_write_end(mddev_t *mddev)
3197{
3198 if (atomic_dec_and_test(&mddev->writes_pending)) {
3199 if (mddev->safemode == 2)
3200 md_wakeup_thread(mddev->thread);
3201 else
3202 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3203 }
3204}
3205
3206static inline void md_enter_safemode(mddev_t *mddev)
3207{
3208 if (!mddev->safemode) return;
3209 if (mddev->safemode == 2 &&
3210 (atomic_read(&mddev->writes_pending) || mddev->in_sync ||
3211 mddev->recovery_cp != MaxSector))
3212 return; /* avoid the lock */
3213 mddev_lock_uninterruptible(mddev);
3214 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3215 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3216 mddev->in_sync = 1;
3217 md_update_sb(mddev);
3218 }
3219 mddev_unlock(mddev);
3220
3221 if (mddev->safemode == 1)
3222 mddev->safemode = 0;
3223}
3224
3225void md_handle_safemode(mddev_t *mddev)
3226{
3227 if (signal_pending(current)) {
3228 printk(KERN_INFO "md: %s in immediate safe mode\n",
3229 mdname(mddev));
3230 mddev->safemode = 2;
3231 flush_signals(current);
3232 }
3233 md_enter_safemode(mddev);
3234}
3235
3236
75c96f85 3237static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
1da177e4
LT
3238
3239#define SYNC_MARKS 10
3240#define SYNC_MARK_STEP (3*HZ)
3241static void md_do_sync(mddev_t *mddev)
3242{
3243 mddev_t *mddev2;
3244 unsigned int currspeed = 0,
3245 window;
3246 sector_t max_sectors,j;
3247 unsigned long mark[SYNC_MARKS];
3248 sector_t mark_cnt[SYNC_MARKS];
3249 int last_mark,m;
3250 struct list_head *tmp;
3251 sector_t last_check;
3252
3253 /* just incase thread restarts... */
3254 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3255 return;
3256
3257 /* we overload curr_resync somewhat here.
3258 * 0 == not engaged in resync at all
3259 * 2 == checking that there is no conflict with another sync
3260 * 1 == like 2, but have yielded to allow conflicting resync to
3261 * commense
3262 * other == active in resync - this many blocks
3263 *
3264 * Before starting a resync we must have set curr_resync to
3265 * 2, and then checked that every "conflicting" array has curr_resync
3266 * less than ours. When we find one that is the same or higher
3267 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3268 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3269 * This will mean we have to start checking from the beginning again.
3270 *
3271 */
3272
3273 do {
3274 mddev->curr_resync = 2;
3275
3276 try_again:
3277 if (signal_pending(current)) {
3278 flush_signals(current);
3279 goto skip;
3280 }
3281 ITERATE_MDDEV(mddev2,tmp) {
3282 printk(".");
3283 if (mddev2 == mddev)
3284 continue;
3285 if (mddev2->curr_resync &&
3286 match_mddev_units(mddev,mddev2)) {
3287 DEFINE_WAIT(wq);
3288 if (mddev < mddev2 && mddev->curr_resync == 2) {
3289 /* arbitrarily yield */
3290 mddev->curr_resync = 1;
3291 wake_up(&resync_wait);
3292 }
3293 if (mddev > mddev2 && mddev->curr_resync == 1)
3294 /* no need to wait here, we can wait the next
3295 * time 'round when curr_resync == 2
3296 */
3297 continue;
3298 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3299 if (!signal_pending(current)
3300 && mddev2->curr_resync >= mddev->curr_resync) {
3301 printk(KERN_INFO "md: delaying resync of %s"
3302 " until %s has finished resync (they"
3303 " share one or more physical units)\n",
3304 mdname(mddev), mdname(mddev2));
3305 mddev_put(mddev2);
3306 schedule();
3307 finish_wait(&resync_wait, &wq);
3308 goto try_again;
3309 }
3310 finish_wait(&resync_wait, &wq);
3311 }
3312 }
3313 } while (mddev->curr_resync < 2);
3314
3315 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3316 /* resync follows the size requested by the personality,
3317 * which default to physical size, but can be virtual size
3318 */
3319 max_sectors = mddev->resync_max_sectors;
3320 else
3321 /* recovery follows the physical size of devices */
3322 max_sectors = mddev->size << 1;
3323
3324 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3325 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3326 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3327 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3328 "(but not more than %d KB/sec) for reconstruction.\n",
3329 sysctl_speed_limit_max);
3330
3331 is_mddev_idle(mddev); /* this also initializes IO event counters */
3332 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3333 j = mddev->recovery_cp;
3334 else
3335 j = 0;
3336 for (m = 0; m < SYNC_MARKS; m++) {
3337 mark[m] = jiffies;
3338 mark_cnt[m] = j;
3339 }
3340 last_mark = 0;
3341 mddev->resync_mark = mark[last_mark];
3342 mddev->resync_mark_cnt = mark_cnt[last_mark];
3343
3344 /*
3345 * Tune reconstruction:
3346 */
3347 window = 32*(PAGE_SIZE/512);
3348 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3349 window/2,(unsigned long long) max_sectors/2);
3350
3351 atomic_set(&mddev->recovery_active, 0);
3352 init_waitqueue_head(&mddev->recovery_wait);
3353 last_check = 0;
3354
3355 if (j>2) {
3356 printk(KERN_INFO
3357 "md: resuming recovery of %s from checkpoint.\n",
3358 mdname(mddev));
3359 mddev->curr_resync = j;
3360 }
3361
3362 while (j < max_sectors) {
3363 int sectors;
3364
3365 sectors = mddev->pers->sync_request(mddev, j, currspeed < sysctl_speed_limit_min);
3366 if (sectors < 0) {
3367 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3368 goto out;
3369 }
3370 atomic_add(sectors, &mddev->recovery_active);
3371 j += sectors;
3372 if (j>1) mddev->curr_resync = j;
3373
3374 if (last_check + window > j || j == max_sectors)
3375 continue;
3376
3377 last_check = j;
3378
3379 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3380 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3381 break;
3382
3383 repeat:
3384 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3385 /* step marks */
3386 int next = (last_mark+1) % SYNC_MARKS;
3387
3388 mddev->resync_mark = mark[next];
3389 mddev->resync_mark_cnt = mark_cnt[next];
3390 mark[next] = jiffies;
3391 mark_cnt[next] = j - atomic_read(&mddev->recovery_active);
3392 last_mark = next;
3393 }
3394
3395
3396 if (signal_pending(current)) {
3397 /*
3398 * got a signal, exit.
3399 */
3400 printk(KERN_INFO
3401 "md: md_do_sync() got signal ... exiting\n");
3402 flush_signals(current);
3403 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3404 goto out;
3405 }
3406
3407 /*
3408 * this loop exits only if either when we are slower than
3409 * the 'hard' speed limit, or the system was IO-idle for
3410 * a jiffy.
3411 * the system might be non-idle CPU-wise, but we only care
3412 * about not overloading the IO subsystem. (things like an
3413 * e2fsck being done on the RAID array should execute fast)
3414 */
3415 mddev->queue->unplug_fn(mddev->queue);
3416 cond_resched();
3417
3418 currspeed = ((unsigned long)(j-mddev->resync_mark_cnt))/2/((jiffies-mddev->resync_mark)/HZ +1) +1;
3419
3420 if (currspeed > sysctl_speed_limit_min) {
3421 if ((currspeed > sysctl_speed_limit_max) ||
3422 !is_mddev_idle(mddev)) {
3423 msleep_interruptible(250);
3424 goto repeat;
3425 }
3426 }
3427 }
3428 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3429 /*
3430 * this also signals 'finished resyncing' to md_stop
3431 */
3432 out:
3433 mddev->queue->unplug_fn(mddev->queue);
3434
3435 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3436
3437 /* tell personality that we are finished */
3438 mddev->pers->sync_request(mddev, max_sectors, 1);
3439
3440 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3441 mddev->curr_resync > 2 &&
3442 mddev->curr_resync >= mddev->recovery_cp) {
3443 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3444 printk(KERN_INFO
3445 "md: checkpointing recovery of %s.\n",
3446 mdname(mddev));
3447 mddev->recovery_cp = mddev->curr_resync;
3448 } else
3449 mddev->recovery_cp = MaxSector;
3450 }
3451
3452 md_enter_safemode(mddev);
3453 skip:
3454 mddev->curr_resync = 0;
3455 wake_up(&resync_wait);
3456 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3457 md_wakeup_thread(mddev->thread);
3458}
3459
3460
3461/*
3462 * This routine is regularly called by all per-raid-array threads to
3463 * deal with generic issues like resync and super-block update.
3464 * Raid personalities that don't have a thread (linear/raid0) do not
3465 * need this as they never do any recovery or update the superblock.
3466 *
3467 * It does not do any resync itself, but rather "forks" off other threads
3468 * to do that as needed.
3469 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3470 * "->recovery" and create a thread at ->sync_thread.
3471 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3472 * and wakeups up this thread which will reap the thread and finish up.
3473 * This thread also removes any faulty devices (with nr_pending == 0).
3474 *
3475 * The overall approach is:
3476 * 1/ if the superblock needs updating, update it.
3477 * 2/ If a recovery thread is running, don't do anything else.
3478 * 3/ If recovery has finished, clean up, possibly marking spares active.
3479 * 4/ If there are any faulty devices, remove them.
3480 * 5/ If array is degraded, try to add spares devices
3481 * 6/ If array has spares or is not in-sync, start a resync thread.
3482 */
3483void md_check_recovery(mddev_t *mddev)
3484{
3485 mdk_rdev_t *rdev;
3486 struct list_head *rtmp;
3487
3488
3489 dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
3490
3491 if (mddev->ro)
3492 return;
3493 if ( ! (
3494 mddev->sb_dirty ||
3495 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3496 test_bit(MD_RECOVERY_DONE, &mddev->recovery)
3497 ))
3498 return;
3499 if (mddev_trylock(mddev)==0) {
3500 int spares =0;
3501 if (mddev->sb_dirty)
3502 md_update_sb(mddev);
3503 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3504 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3505 /* resync/recovery still happening */
3506 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3507 goto unlock;
3508 }
3509 if (mddev->sync_thread) {
3510 /* resync has finished, collect result */
3511 md_unregister_thread(mddev->sync_thread);
3512 mddev->sync_thread = NULL;
3513 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3514 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3515 /* success...*/
3516 /* activate any spares */
3517 mddev->pers->spare_active(mddev);
3518 }
3519 md_update_sb(mddev);
3520 mddev->recovery = 0;
3521 /* flag recovery needed just to double check */
3522 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3523 goto unlock;
3524 }
3525 if (mddev->recovery)
3526 /* probably just the RECOVERY_NEEDED flag */
3527 mddev->recovery = 0;
3528
3529 /* no recovery is running.
3530 * remove any failed drives, then
3531 * add spares if possible.
3532 * Spare are also removed and re-added, to allow
3533 * the personality to fail the re-add.
3534 */
3535 ITERATE_RDEV(mddev,rdev,rtmp)
3536 if (rdev->raid_disk >= 0 &&
3537 (rdev->faulty || ! rdev->in_sync) &&
3538 atomic_read(&rdev->nr_pending)==0) {
3539 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3540 rdev->raid_disk = -1;
3541 }
3542
3543 if (mddev->degraded) {
3544 ITERATE_RDEV(mddev,rdev,rtmp)
3545 if (rdev->raid_disk < 0
3546 && !rdev->faulty) {
3547 if (mddev->pers->hot_add_disk(mddev,rdev))
3548 spares++;
3549 else
3550 break;
3551 }
3552 }
3553
3554 if (!spares && (mddev->recovery_cp == MaxSector )) {
3555 /* nothing we can do ... */
3556 goto unlock;
3557 }
3558 if (mddev->pers->sync_request) {
3559 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3560 if (!spares)
3561 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3562 mddev->sync_thread = md_register_thread(md_do_sync,
3563 mddev,
3564 "%s_resync");
3565 if (!mddev->sync_thread) {
3566 printk(KERN_ERR "%s: could not start resync"
3567 " thread...\n",
3568 mdname(mddev));
3569 /* leave the spares where they are, it shouldn't hurt */
3570 mddev->recovery = 0;
3571 } else {
3572 md_wakeup_thread(mddev->sync_thread);
3573 }
3574 }
3575 unlock:
3576 mddev_unlock(mddev);
3577 }
3578}
3579
75c96f85
AB
3580static int md_notify_reboot(struct notifier_block *this,
3581 unsigned long code, void *x)
1da177e4
LT
3582{
3583 struct list_head *tmp;
3584 mddev_t *mddev;
3585
3586 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3587
3588 printk(KERN_INFO "md: stopping all md devices.\n");
3589
3590 ITERATE_MDDEV(mddev,tmp)
3591 if (mddev_trylock(mddev)==0)
3592 do_md_stop (mddev, 1);
3593 /*
3594 * certain more exotic SCSI devices are known to be
3595 * volatile wrt too early system reboots. While the
3596 * right place to handle this issue is the given
3597 * driver, we do want to have a safe RAID driver ...
3598 */
3599 mdelay(1000*1);
3600 }
3601 return NOTIFY_DONE;
3602}
3603
75c96f85 3604static struct notifier_block md_notifier = {
1da177e4
LT
3605 .notifier_call = md_notify_reboot,
3606 .next = NULL,
3607 .priority = INT_MAX, /* before any real devices */
3608};
3609
3610static void md_geninit(void)
3611{
3612 struct proc_dir_entry *p;
3613
3614 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3615
3616 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3617 if (p)
3618 p->proc_fops = &md_seq_fops;
3619}
3620
75c96f85 3621static int __init md_init(void)
1da177e4
LT
3622{
3623 int minor;
3624
3625 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3626 " MD_SB_DISKS=%d\n",
3627 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3628 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3629
3630 if (register_blkdev(MAJOR_NR, "md"))
3631 return -1;
3632 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3633 unregister_blkdev(MAJOR_NR, "md");
3634 return -1;
3635 }
3636 devfs_mk_dir("md");
3637 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3638 md_probe, NULL, NULL);
3639 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3640 md_probe, NULL, NULL);
3641
3642 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3643 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3644 S_IFBLK|S_IRUSR|S_IWUSR,
3645 "md/%d", minor);
3646
3647 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3648 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3649 S_IFBLK|S_IRUSR|S_IWUSR,
3650 "md/mdp%d", minor);
3651
3652
3653 register_reboot_notifier(&md_notifier);
3654 raid_table_header = register_sysctl_table(raid_root_table, 1);
3655
3656 md_geninit();
3657 return (0);
3658}
3659
3660
3661#ifndef MODULE
3662
3663/*
3664 * Searches all registered partitions for autorun RAID arrays
3665 * at boot time.
3666 */
3667static dev_t detected_devices[128];
3668static int dev_cnt;
3669
3670void md_autodetect_dev(dev_t dev)
3671{
3672 if (dev_cnt >= 0 && dev_cnt < 127)
3673 detected_devices[dev_cnt++] = dev;
3674}
3675
3676
3677static void autostart_arrays(int part)
3678{
3679 mdk_rdev_t *rdev;
3680 int i;
3681
3682 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3683
3684 for (i = 0; i < dev_cnt; i++) {
3685 dev_t dev = detected_devices[i];
3686
3687 rdev = md_import_device(dev,0, 0);
3688 if (IS_ERR(rdev))
3689 continue;
3690
3691 if (rdev->faulty) {
3692 MD_BUG();
3693 continue;
3694 }
3695 list_add(&rdev->same_set, &pending_raid_disks);
3696 }
3697 dev_cnt = 0;
3698
3699 autorun_devices(part);
3700}
3701
3702#endif
3703
3704static __exit void md_exit(void)
3705{
3706 mddev_t *mddev;
3707 struct list_head *tmp;
3708 int i;
3709 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3710 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3711 for (i=0; i < MAX_MD_DEVS; i++)
3712 devfs_remove("md/%d", i);
3713 for (i=0; i < MAX_MD_DEVS; i++)
3714 devfs_remove("md/d%d", i);
3715
3716 devfs_remove("md");
3717
3718 unregister_blkdev(MAJOR_NR,"md");
3719 unregister_blkdev(mdp_major, "mdp");
3720 unregister_reboot_notifier(&md_notifier);
3721 unregister_sysctl_table(raid_table_header);
3722 remove_proc_entry("mdstat", NULL);
3723 ITERATE_MDDEV(mddev,tmp) {
3724 struct gendisk *disk = mddev->gendisk;
3725 if (!disk)
3726 continue;
3727 export_array(mddev);
3728 del_gendisk(disk);
3729 put_disk(disk);
3730 mddev->gendisk = NULL;
3731 mddev_put(mddev);
3732 }
3733}
3734
3735module_init(md_init)
3736module_exit(md_exit)
3737
3738EXPORT_SYMBOL(register_md_personality);
3739EXPORT_SYMBOL(unregister_md_personality);
3740EXPORT_SYMBOL(md_error);
3741EXPORT_SYMBOL(md_done_sync);
3742EXPORT_SYMBOL(md_write_start);
3743EXPORT_SYMBOL(md_write_end);
3744EXPORT_SYMBOL(md_handle_safemode);
3745EXPORT_SYMBOL(md_register_thread);
3746EXPORT_SYMBOL(md_unregister_thread);
3747EXPORT_SYMBOL(md_wakeup_thread);
3748EXPORT_SYMBOL(md_print_devices);
3749EXPORT_SYMBOL(md_check_recovery);
3750MODULE_LICENSE("GPL");