#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/percpu.h>
+#include <linux/list.h>
#include <net/sock.h>
#include <linux/un.h>
#include <net/af_unix.h>
u32 tsid;
u16 tclass;
struct av_decision avd;
+ struct avc_xperms_node *xp_node;
};
struct avc_node {
struct rcu_head rhead;
};
+struct avc_xperms_decision_node {
+ struct extended_perms_decision xpd;
+ struct list_head xpd_list; /* list of extended_perms_decision */
+};
+
+struct avc_xperms_node {
+ struct extended_perms xp;
+ struct list_head xpd_head; /* list head of extended_perms_decision */
+};
+
struct avc_cache {
struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
static struct avc_cache avc_cache;
static struct avc_callback_node *avc_callbacks;
static struct kmem_cache *avc_node_cachep;
+static struct kmem_cache *avc_xperms_data_cachep;
+static struct kmem_cache *avc_xperms_decision_cachep;
+static struct kmem_cache *avc_xperms_cachep;
static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
{
atomic_set(&avc_cache.lru_hint, 0);
avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
- 0, SLAB_PANIC, NULL);
+ 0, SLAB_PANIC, NULL);
+ avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
+ sizeof(struct avc_xperms_node),
+ 0, SLAB_PANIC, NULL);
+ avc_xperms_decision_cachep = kmem_cache_create(
+ "avc_xperms_decision_node",
+ sizeof(struct avc_xperms_decision_node),
+ 0, SLAB_PANIC, NULL);
+ avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
+ sizeof(struct extended_perms_data),
+ 0, SLAB_PANIC, NULL);
audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
}
slots_used, AVC_CACHE_SLOTS, max_chain_len);
}
+/*
+ * using a linked list for extended_perms_decision lookup because the list is
+ * always small. i.e. less than 5, typically 1
+ */
+static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
+ struct avc_xperms_node *xp_node)
+{
+ struct avc_xperms_decision_node *xpd_node;
+
+ list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
+ if (xpd_node->xpd.driver == driver)
+ return &xpd_node->xpd;
+ }
+ return NULL;
+}
+
+static inline unsigned int
+avc_xperms_has_perm(struct extended_perms_decision *xpd,
+ u8 perm, u8 which)
+{
+ unsigned int rc = 0;
+
+ if ((which == XPERMS_ALLOWED) &&
+ (xpd->used & XPERMS_ALLOWED))
+ rc = security_xperm_test(xpd->allowed->p, perm);
+ else if ((which == XPERMS_AUDITALLOW) &&
+ (xpd->used & XPERMS_AUDITALLOW))
+ rc = security_xperm_test(xpd->auditallow->p, perm);
+ else if ((which == XPERMS_DONTAUDIT) &&
+ (xpd->used & XPERMS_DONTAUDIT))
+ rc = security_xperm_test(xpd->dontaudit->p, perm);
+ return rc;
+}
+
+static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
+ u8 driver, u8 perm)
+{
+ struct extended_perms_decision *xpd;
+ security_xperm_set(xp_node->xp.drivers.p, driver);
+ xpd = avc_xperms_decision_lookup(driver, xp_node);
+ if (xpd && xpd->allowed)
+ security_xperm_set(xpd->allowed->p, perm);
+}
+
+static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
+{
+ struct extended_perms_decision *xpd;
+
+ xpd = &xpd_node->xpd;
+ if (xpd->allowed)
+ kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
+ if (xpd->auditallow)
+ kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
+ if (xpd->dontaudit)
+ kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
+ kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
+}
+
+static void avc_xperms_free(struct avc_xperms_node *xp_node)
+{
+ struct avc_xperms_decision_node *xpd_node, *tmp;
+
+ if (!xp_node)
+ return;
+
+ list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
+ list_del(&xpd_node->xpd_list);
+ avc_xperms_decision_free(xpd_node);
+ }
+ kmem_cache_free(avc_xperms_cachep, xp_node);
+}
+
+static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
+ struct extended_perms_decision *src)
+{
+ dest->driver = src->driver;
+ dest->used = src->used;
+ if (dest->used & XPERMS_ALLOWED)
+ memcpy(dest->allowed->p, src->allowed->p,
+ sizeof(src->allowed->p));
+ if (dest->used & XPERMS_AUDITALLOW)
+ memcpy(dest->auditallow->p, src->auditallow->p,
+ sizeof(src->auditallow->p));
+ if (dest->used & XPERMS_DONTAUDIT)
+ memcpy(dest->dontaudit->p, src->dontaudit->p,
+ sizeof(src->dontaudit->p));
+}
+
+/*
+ * similar to avc_copy_xperms_decision, but only copy decision
+ * information relevant to this perm
+ */
+static inline void avc_quick_copy_xperms_decision(u8 perm,
+ struct extended_perms_decision *dest,
+ struct extended_perms_decision *src)
+{
+ /*
+ * compute index of the u32 of the 256 bits (8 u32s) that contain this
+ * command permission
+ */
+ u8 i = perm >> 5;
+
+ dest->used = src->used;
+ if (dest->used & XPERMS_ALLOWED)
+ dest->allowed->p[i] = src->allowed->p[i];
+ if (dest->used & XPERMS_AUDITALLOW)
+ dest->auditallow->p[i] = src->auditallow->p[i];
+ if (dest->used & XPERMS_DONTAUDIT)
+ dest->dontaudit->p[i] = src->dontaudit->p[i];
+}
+
+static struct avc_xperms_decision_node
+ *avc_xperms_decision_alloc(u8 which)
+{
+ struct avc_xperms_decision_node *xpd_node;
+ struct extended_perms_decision *xpd;
+
+ xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
+ GFP_ATOMIC | __GFP_NOMEMALLOC);
+ if (!xpd_node)
+ return NULL;
+
+ xpd = &xpd_node->xpd;
+ if (which & XPERMS_ALLOWED) {
+ xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
+ GFP_ATOMIC | __GFP_NOMEMALLOC);
+ if (!xpd->allowed)
+ goto error;
+ }
+ if (which & XPERMS_AUDITALLOW) {
+ xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
+ GFP_ATOMIC | __GFP_NOMEMALLOC);
+ if (!xpd->auditallow)
+ goto error;
+ }
+ if (which & XPERMS_DONTAUDIT) {
+ xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
+ GFP_ATOMIC | __GFP_NOMEMALLOC);
+ if (!xpd->dontaudit)
+ goto error;
+ }
+ return xpd_node;
+error:
+ avc_xperms_decision_free(xpd_node);
+ return NULL;
+}
+
+static int avc_add_xperms_decision(struct avc_node *node,
+ struct extended_perms_decision *src)
+{
+ struct avc_xperms_decision_node *dest_xpd;
+
+ node->ae.xp_node->xp.len++;
+ dest_xpd = avc_xperms_decision_alloc(src->used);
+ if (!dest_xpd)
+ return -ENOMEM;
+ avc_copy_xperms_decision(&dest_xpd->xpd, src);
+ list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
+ return 0;
+}
+
+static struct avc_xperms_node *avc_xperms_alloc(void)
+{
+ struct avc_xperms_node *xp_node;
+
+ xp_node = kmem_cache_zalloc(avc_xperms_cachep,
+ GFP_ATOMIC|__GFP_NOMEMALLOC);
+ if (!xp_node)
+ return xp_node;
+ INIT_LIST_HEAD(&xp_node->xpd_head);
+ return xp_node;
+}
+
+static int avc_xperms_populate(struct avc_node *node,
+ struct avc_xperms_node *src)
+{
+ struct avc_xperms_node *dest;
+ struct avc_xperms_decision_node *dest_xpd;
+ struct avc_xperms_decision_node *src_xpd;
+
+ if (src->xp.len == 0)
+ return 0;
+ dest = avc_xperms_alloc();
+ if (!dest)
+ return -ENOMEM;
+
+ memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
+ dest->xp.len = src->xp.len;
+
+ /* for each source xpd allocate a destination xpd and copy */
+ list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
+ dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
+ if (!dest_xpd)
+ goto error;
+ avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
+ list_add(&dest_xpd->xpd_list, &dest->xpd_head);
+ }
+ node->ae.xp_node = dest;
+ return 0;
+error:
+ avc_xperms_free(dest);
+ return -ENOMEM;
+
+}
+
+static inline u32 avc_xperms_audit_required(u32 requested,
+ struct av_decision *avd,
+ struct extended_perms_decision *xpd,
+ u8 perm,
+ int result,
+ u32 *deniedp)
+{
+ u32 denied, audited;
+
+ denied = requested & ~avd->allowed;
+ if (unlikely(denied)) {
+ audited = denied & avd->auditdeny;
+ if (audited && xpd) {
+ if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
+ audited &= ~requested;
+ }
+ } else if (result) {
+ audited = denied = requested;
+ } else {
+ audited = requested & avd->auditallow;
+ if (audited && xpd) {
+ if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
+ audited &= ~requested;
+ }
+ }
+
+ *deniedp = denied;
+ return audited;
+}
+
+static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
+ u32 requested, struct av_decision *avd,
+ struct extended_perms_decision *xpd,
+ u8 perm, int result,
+ struct common_audit_data *ad)
+{
+ u32 audited, denied;
+
+ audited = avc_xperms_audit_required(
+ requested, avd, xpd, perm, result, &denied);
+ if (likely(!audited))
+ return 0;
+ return slow_avc_audit(ssid, tsid, tclass, requested,
+ audited, denied, result, ad, 0);
+}
+
static void avc_node_free(struct rcu_head *rhead)
{
struct avc_node *node = container_of(rhead, struct avc_node, rhead);
+ avc_xperms_free(node->ae.xp_node);
kmem_cache_free(avc_node_cachep, node);
avc_cache_stats_incr(frees);
}
static void avc_node_kill(struct avc_node *node)
{
+ avc_xperms_free(node->ae.xp_node);
kmem_cache_free(avc_node_cachep, node);
avc_cache_stats_incr(frees);
atomic_dec(&avc_cache.active_nodes);
* @tsid: target security identifier
* @tclass: target security class
* @avd: resulting av decision
+ * @xp_node: resulting extended permissions
*
* Insert an AVC entry for the SID pair
* (@ssid, @tsid) and class @tclass.
* the access vectors into a cache entry, returns
* avc_node inserted. Otherwise, this function returns NULL.
*/
-static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
+static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
+ struct av_decision *avd,
+ struct avc_xperms_node *xp_node)
{
struct avc_node *pos, *node = NULL;
int hvalue;
if (node) {
struct hlist_head *head;
spinlock_t *lock;
+ int rc = 0;
hvalue = avc_hash(ssid, tsid, tclass);
avc_node_populate(node, ssid, tsid, tclass, avd);
-
+ rc = avc_xperms_populate(node, xp_node);
+ if (rc) {
+ kmem_cache_free(avc_node_cachep, node);
+ return NULL;
+ }
head = &avc_cache.slots[hvalue];
lock = &avc_cache.slots_lock[hvalue];
* @ab: the audit buffer
* @a: audit_data
*/
-#ifdef CONFIG_MTK_AEE_FEATURE
-extern void mtk_audit_hook(char *data);
-#endif
static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
{
struct common_audit_data *ad = a;
if (ad->selinux_audit_data->denied) {
audit_log_format(ab, " permissive=%u",
ad->selinux_audit_data->result ? 0 : 1);
- #ifdef CONFIG_MTK_AEE_FEATURE
- {
- int rc;
- char *scontext;
- u32 scontext_len;
- rc = security_sid_to_context(ad->selinux_audit_data->ssid, &scontext, &scontext_len);
- if (!rc){
- printk(KERN_WARNING "audit avc scontext:%s\n",scontext);
- //mtk_audit_hook(scontext);
- }
- kfree(scontext);
- }
- #endif
}
}
* @perms : Permission mask bits
* @ssid,@tsid,@tclass : identifier of an AVC entry
* @seqno : sequence number when decision was made
+ * @xpd: extended_perms_decision to be added to the node
*
* if a valid AVC entry doesn't exist,this function returns -ENOENT.
* if kmalloc() called internal returns NULL, this function returns -ENOMEM.
* otherwise, this function updates the AVC entry. The original AVC-entry object
* will release later by RCU.
*/
-static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
- u32 seqno)
+static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
+ u32 tsid, u16 tclass, u32 seqno,
+ struct extended_perms_decision *xpd,
+ u32 flags)
{
int hvalue, rc = 0;
unsigned long flag;
avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
+ if (orig->ae.xp_node) {
+ rc = avc_xperms_populate(node, orig->ae.xp_node);
+ if (rc) {
+ kmem_cache_free(avc_node_cachep, node);
+ goto out_unlock;
+ }
+ }
+
switch (event) {
case AVC_CALLBACK_GRANT:
node->ae.avd.allowed |= perms;
+ if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
+ avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
break;
case AVC_CALLBACK_TRY_REVOKE:
case AVC_CALLBACK_REVOKE:
case AVC_CALLBACK_AUDITDENY_DISABLE:
node->ae.avd.auditdeny &= ~perms;
break;
+ case AVC_CALLBACK_ADD_XPERMS:
+ avc_add_xperms_decision(node, xpd);
+ break;
}
avc_node_replace(node, orig);
out_unlock:
* results in a bigger stack frame.
*/
static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
- u16 tclass, struct av_decision *avd)
+ u16 tclass, struct av_decision *avd,
+ struct avc_xperms_node *xp_node)
{
rcu_read_unlock();
- security_compute_av(ssid, tsid, tclass, avd);
+ INIT_LIST_HEAD(&xp_node->xpd_head);
+ security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
rcu_read_lock();
- return avc_insert(ssid, tsid, tclass, avd);
+ return avc_insert(ssid, tsid, tclass, avd, xp_node);
}
static noinline int avc_denied(u32 ssid, u32 tsid,
- u16 tclass, u32 requested,
- unsigned flags,
- struct av_decision *avd)
+ u16 tclass, u32 requested,
+ u8 driver, u8 xperm, unsigned flags,
+ struct av_decision *avd)
{
- if (flags & AVC_STRICT)
- return -EACCES;
-
- if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
- return -EACCES;
- avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
- tsid, tclass, avd->seqno);
+ avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
+ tsid, tclass, avd->seqno, NULL, flags);
return 0;
}
+/*
+ * The avc extended permissions logic adds an additional 256 bits of
+ * permissions to an avc node when extended permissions for that node are
+ * specified in the avtab. If the additional 256 permissions is not adequate,
+ * as-is the case with ioctls, then multiple may be chained together and the
+ * driver field is used to specify which set contains the permission.
+ */
+int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
+ u8 driver, u8 xperm, struct common_audit_data *ad)
+{
+ struct avc_node *node;
+ struct av_decision avd;
+ u32 denied;
+ struct extended_perms_decision local_xpd;
+ struct extended_perms_decision *xpd = NULL;
+ struct extended_perms_data allowed;
+ struct extended_perms_data auditallow;
+ struct extended_perms_data dontaudit;
+ struct avc_xperms_node local_xp_node;
+ struct avc_xperms_node *xp_node;
+ int rc = 0, rc2;
+
+ xp_node = &local_xp_node;
+ BUG_ON(!requested);
+
+ rcu_read_lock();
+
+ node = avc_lookup(ssid, tsid, tclass);
+ if (unlikely(!node)) {
+ node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
+ } else {
+ memcpy(&avd, &node->ae.avd, sizeof(avd));
+ xp_node = node->ae.xp_node;
+ }
+ /* if extended permissions are not defined, only consider av_decision */
+ if (!xp_node || !xp_node->xp.len)
+ goto decision;
+
+ local_xpd.allowed = &allowed;
+ local_xpd.auditallow = &auditallow;
+ local_xpd.dontaudit = &dontaudit;
+
+ xpd = avc_xperms_decision_lookup(driver, xp_node);
+ if (unlikely(!xpd)) {
+ /*
+ * Compute the extended_perms_decision only if the driver
+ * is flagged
+ */
+ if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
+ avd.allowed &= ~requested;
+ goto decision;
+ }
+ rcu_read_unlock();
+ security_compute_xperms_decision(ssid, tsid, tclass, driver,
+ &local_xpd);
+ rcu_read_lock();
+ avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
+ ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
+ } else {
+ avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
+ }
+ xpd = &local_xpd;
+
+ if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
+ avd.allowed &= ~requested;
+
+decision:
+ denied = requested & ~(avd.allowed);
+ if (unlikely(denied))
+ rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
+ AVC_EXTENDED_PERMS, &avd);
+
+ rcu_read_unlock();
+
+ rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
+ &avd, xpd, xperm, rc, ad);
+ if (rc2)
+ return rc2;
+ return rc;
+}
/**
* avc_has_perm_noaudit - Check permissions but perform no auditing.
struct av_decision *avd)
{
struct avc_node *node;
+ struct avc_xperms_node xp_node;
int rc = 0;
u32 denied;
rcu_read_lock();
node = avc_lookup(ssid, tsid, tclass);
- if (unlikely(!node)) {
- node = avc_compute_av(ssid, tsid, tclass, avd);
- } else {
+ if (unlikely(!node))
+ node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
+ else
memcpy(avd, &node->ae.avd, sizeof(*avd));
- avd = &node->ae.avd;
- }
denied = requested & ~(avd->allowed);
if (unlikely(denied))
- rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
+ rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
rcu_read_unlock();
return rc;
#include <linux/selinux.h>
#include "security.h"
+#include "avc.h"
bool selinux_is_enabled(void)
{
return selinux_enabled;
}
EXPORT_SYMBOL_GPL(selinux_is_enabled);
+
+bool selinux_is_enforcing(void)
+{
+ return selinux_enforcing;
+}
+EXPORT_SYMBOL_GPL(selinux_is_enforcing);
#include <linux/msg.h>
#include <linux/shm.h>
+// [ SEC_SELINUX_PORTING COMMON
+#include <linux/delay.h>
+// ] SEC_SELINUX_PORTING COMMON
+
#include "avc.h"
#include "objsec.h"
#include "netif.h"
unsigned long enforcing;
if (!strict_strtoul(str, 0, &enforcing))
selinux_enforcing = enforcing ? 1 : 0;
+
return 1;
}
__setup("enforcing=", enforcing_setup);
unsigned long enabled;
if (!strict_strtoul(str, 0, &enabled))
selinux_enabled = enabled ? 1 : 0;
+
return 1;
}
__setup("selinux=", selinux_enabled_setup);
sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
sbsec->flags &= ~SE_SBLABELSUPP;
- /* Special handling for sysfs. Is genfs but also has setxattr handler*/
- if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
- sbsec->flags |= SE_SBLABELSUPP;
-
- /*
- * Special handling for rootfs. Is genfs but supports
- * setting SELinux context on in-core inodes.
- */
- if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
+ /* Special handling. Is genfs but also has in-core setxattr handler*/
+ if (!strcmp(sb->s_type->name, "sysfs") ||
+ !strcmp(sb->s_type->name, "pstore") ||
+ !strcmp(sb->s_type->name, "debugfs") ||
+ !strcmp(sb->s_type->name, "tmpfs") ||
+ !strcmp(sb->s_type->name, "rootfs"))
sbsec->flags |= SE_SBLABELSUPP;
/* Initialize the root inode. */
char *context = NULL, *defcontext = NULL;
char *fscontext = NULL, *rootcontext = NULL;
int rc, num_mnt_opts = 0;
-
opts->num_mnt_opts = 0;
/* Standard string-based options. */
goto out_unlock;
sbsec = inode->i_sb->s_security;
+ /* To prevent Null pointer exception */
+ if (!sbsec) {
+ printk(KERN_ERR "[SELinux] sbsec is NULL, inode->i_sb->s_security is already freed. \n");
+ rc = -EINVAL;
+ goto out_unlock;
+ }
+
if (!(sbsec->flags & SE_SBINITIALIZED)) {
/* Defer initialization until selinux_complete_init,
after the initial policy is loaded and the security
u32 sid1, sid2;
rcu_read_lock();
+
__tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
__tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
+
rcu_read_unlock();
return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
}
sid = cred_sid(cred);
isec = inode->i_security;
+ if (unlikely(!isec)){
+ printk(KERN_CRIT "[SELinux] isec is NULL, inode->i_security is already freed. \n");
+ return -EINVAL;
+ }
+
return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
}
{
u32 fromsid = task_sid(from);
u32 tosid = task_sid(to);
+
return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, NULL);
}
void *data)
{
const struct cred *cred = current_cred();
-
if (flags & MS_REMOUNT)
return superblock_has_perm(cred, path->dentry->d_sb,
FILESYSTEM__REMOUNT, NULL);
sid = cred_sid(cred);
isec = inode->i_security;
+// [ SEC_SELINUX_PORTING COMMON
+ /* skip sid == 1(kernel), it means first boot time */
+ if(isec->initialized != 1 && sid != 1) {
+ int count = 5;
+
+ while(count-- > 0) {
+ printk(KERN_ERR "SELinux : inode->i_security is not initialized. waiting...(%d/5)\n", 5-count);
+ udelay(500);
+ if(isec->initialized == 1) {
+ printk(KERN_ERR "SELinux : inode->i_security is INITIALIZED.\n");
+ break;
+ }
+ }
+ if(isec->initialized != 1) {
+ printk(KERN_ERR "SELinux : inode->i_security is not initialized. not fixed.\n");
+ }
+ }
+// ] SEC_SELINUX_PORTING COMMON
+
rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
audited = avc_audit_required(perms, &avd, rc,
from_access ? FILE__AUDIT_ACCESS : 0,
ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
return dentry_has_perm(cred, dentry, FILE__SETATTR);
- if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
+ if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
+ && !(ia_valid & ATTR_FILE))
av |= FILE__OPEN;
return dentry_has_perm(cred, dentry, av);
static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
const int len = sizeof(XATTR_NAME_SELINUX);
+
if (buffer && len <= buffer_size)
memcpy(buffer, XATTR_NAME_SELINUX, len);
return len;
file_free_security(file);
}
+/*
+ * Check whether a task has the ioctl permission and cmd
+ * operation to an inode.
+ */
+int ioctl_has_perm(const struct cred *cred, struct file *file,
+ u32 requested, u16 cmd)
+{
+ struct common_audit_data ad;
+ struct file_security_struct *fsec = file->f_security;
+ struct inode *inode = file_inode(file);
+ struct inode_security_struct *isec = inode->i_security;
+ struct lsm_ioctlop_audit ioctl;
+ u32 ssid = cred_sid(cred);
+ int rc;
+ u8 driver = cmd >> 8;
+ u8 xperm = cmd & 0xff;
+
+ ad.type = LSM_AUDIT_DATA_IOCTL_OP;
+ ad.u.op = &ioctl;
+ ad.u.op->cmd = cmd;
+ ad.u.op->path = file->f_path;
+
+ if (ssid != fsec->sid) {
+ rc = avc_has_perm(ssid, fsec->sid,
+ SECCLASS_FD,
+ FD__USE,
+ &ad);
+ if (rc)
+ goto out;
+ }
+
+ if (unlikely(IS_PRIVATE(inode)))
+ return 0;
+
+ rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
+ requested, driver, xperm, &ad);
+out:
+ return rc;
+}
+
static int selinux_file_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
* to the file's ioctl() function.
*/
default:
- error = file_has_perm(cred, file, FILE__IOCTL);
+ error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
}
return error;
}
static int selinux_task_setioprio(struct task_struct *p, int ioprio)
{
int rc;
-
rc = cap_task_setioprio(p, ioprio);
if (rc)
return rc;
struct lsm_network_audit net = {0,};
u32 tsid = task_sid(task);
+ if (unlikely(!sksec)){
+ printk(KERN_CRIT "[SELinux] sksec is NULL, socket is already freed. \n");
+ return -EINVAL;
+ }
+
if (sksec->sid == SECINITSID_KERNEL)
return 0;
static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
{
int len = 0;
+
len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
ctx, true);
if (len < 0)
static int __init selinux_nf_ip_init(void)
{
int err = 0;
-
if (!selinux_enabled)
goto out;
a, flags);
}
-#define AVC_STRICT 1 /* Ignore permissive mode. */
+#define AVC_STRICT 0
+#define AVC_EXTENDED_PERMS 2 /* update extended permissions */
int avc_has_perm_noaudit(u32 ssid, u32 tsid,
u16 tclass, u32 requested,
unsigned flags,
return avc_has_perm_flags(ssid, tsid, tclass, requested, auditdata, 0);
}
+int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
+ u8 driver, u8 perm, struct common_audit_data *ad);
+
u32 avc_policy_seqno(void);
#define AVC_CALLBACK_GRANT 1
#define AVC_CALLBACK_AUDITALLOW_DISABLE 32
#define AVC_CALLBACK_AUDITDENY_ENABLE 64
#define AVC_CALLBACK_AUDITDENY_DISABLE 128
+#define AVC_CALLBACK_ADD_XPERMS 256
int avc_add_callback(int (*callback)(u32 event), u32 events);
#endif
#endif /* _SELINUX_AVC_H_ */
-
#define POLICYDB_VERSION_ROLETRANS 26
#define POLICYDB_VERSION_NEW_OBJECT_DEFAULTS 27
#define POLICYDB_VERSION_DEFAULT_TYPE 28
+#define POLICYDB_VERSION_CONSTRAINT_NAMES 29
+#define POLICYDB_VERSION_XPERMS_IOCTL 30
/* Range of policy versions we understand*/
#define POLICYDB_VERSION_MIN POLICYDB_VERSION_BASE
#ifdef CONFIG_SECURITY_SELINUX_POLICYDB_VERSION_MAX
#define POLICYDB_VERSION_MAX CONFIG_SECURITY_SELINUX_POLICYDB_VERSION_MAX_VALUE
#else
-#define POLICYDB_VERSION_MAX POLICYDB_VERSION_DEFAULT_TYPE
+#define POLICYDB_VERSION_MAX POLICYDB_VERSION_XPERMS_IOCTL
#endif
/* Mask for just the mount related flags */
u32 flags;
};
+#define XPERMS_ALLOWED 1
+#define XPERMS_AUDITALLOW 2
+#define XPERMS_DONTAUDIT 4
+
+#define security_xperm_set(perms, x) (perms[x >> 5] |= 1 << (x & 0x1f))
+#define security_xperm_test(perms, x) (1 & (perms[x >> 5] >> (x & 0x1f)))
+struct extended_perms_data {
+ u32 p[8];
+};
+
+struct extended_perms_decision {
+ u8 used;
+ u8 driver;
+ struct extended_perms_data *allowed;
+ struct extended_perms_data *auditallow;
+ struct extended_perms_data *dontaudit;
+};
+
+struct extended_perms {
+ u16 len; /* length associated decision chain */
+ struct extended_perms_data drivers; /* flag drivers that are used */
+};
+
/* definitions of av_decision.flags */
#define AVD_FLAGS_PERMISSIVE 0x0001
void security_compute_av(u32 ssid, u32 tsid,
- u16 tclass, struct av_decision *avd);
+ u16 tclass, struct av_decision *avd,
+ struct extended_perms *xperms);
+
+void security_compute_xperms_decision(u32 ssid, u32 tsid, u16 tclass,
+ u8 driver, struct extended_perms_decision *xpermd);
void security_compute_av_user(u32 ssid, u32 tsid,
u16 tclass, struct av_decision *avd);
#include <linux/inet_diag.h>
#include <linux/xfrm.h>
#include <linux/audit.h>
+#include <linux/sock_diag.h>
#include "flask.h"
#include "av_permissions.h"
static struct nlmsg_perm nlmsg_tcpdiag_perms[] =
{
- { TCPDIAG_GETSOCK, NETLINK_TCPDIAG_SOCKET__NLMSG_READ },
- { DCCPDIAG_GETSOCK, NETLINK_TCPDIAG_SOCKET__NLMSG_READ },
+ { TCPDIAG_GETSOCK, NETLINK_TCPDIAG_SOCKET__NLMSG_READ },
+ { DCCPDIAG_GETSOCK, NETLINK_TCPDIAG_SOCKET__NLMSG_READ },
+ { SOCK_DIAG_BY_FAMILY, NETLINK_TCPDIAG_SOCKET__NLMSG_READ },
};
static struct nlmsg_perm nlmsg_xfrm_perms[] =
#include "objsec.h"
#include "conditional.h"
+#if defined(CONFIG_TZ_ICCC)
+#include <linux/security/Iccc_Interface.h>
+#endif
+
/* Policy capability filenames */
static char *policycap_names[] = {
"network_peer_controls",
selinux_status_update_setenforce(selinux_enforcing);
}
length = count;
+
+#if defined(CONFIG_TZ_ICCC)
+ if (selinux_enabled && selinux_enforcing) {
+ if (0 != Iccc_SaveData_Kernel(SELINUX_STATUS,0x0)) {
+ printk(KERN_ERR "%s: Iccc_SaveData_Kernel failed, type = %x, value =%x\n", __func__,SELINUX_STATUS,0x0);
+ }
+ }
+ else {
+ if (0 != Iccc_SaveData_Kernel(SELINUX_STATUS,0x1)) {
+ printk(KERN_ERR "%s: Iccc_SaveData_Kernel failed, type = %x, value =%x\n", __func__,SELINUX_STATUS,0x1);
+ }
+ }
+#endif
+
out:
free_page((unsigned long) page);
return length;
#include "policydb.h"
static struct kmem_cache *avtab_node_cachep;
+static struct kmem_cache *avtab_xperms_cachep;
static inline int avtab_hash(struct avtab_key *keyp, u16 mask)
{
struct avtab_key *key, struct avtab_datum *datum)
{
struct avtab_node *newnode;
+ struct avtab_extended_perms *xperms;
newnode = kmem_cache_zalloc(avtab_node_cachep, GFP_KERNEL);
if (newnode == NULL)
return NULL;
newnode->key = *key;
- newnode->datum = *datum;
+
+ if (key->specified & AVTAB_XPERMS) {
+ xperms = kmem_cache_zalloc(avtab_xperms_cachep, GFP_KERNEL);
+ if (xperms == NULL) {
+ kmem_cache_free(avtab_node_cachep, newnode);
+ return NULL;
+ }
+ *xperms = *(datum->u.xperms);
+ newnode->datum.u.xperms = xperms;
+ } else {
+ newnode->datum.u.data = datum->u.data;
+ }
+
if (prev) {
newnode->next = prev->next;
prev->next = newnode;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
- (specified & cur->key.specified))
+ (specified & cur->key.specified)) {
+ /* extended perms may not be unique */
+ if (specified & AVTAB_XPERMS)
+ break;
return -EEXIST;
+ }
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
while (cur) {
temp = cur;
cur = cur->next;
+ if (temp->key.specified & AVTAB_XPERMS)
+ kmem_cache_free(avtab_xperms_cachep,
+ temp->datum.u.xperms);
kmem_cache_free(avtab_node_cachep, temp);
}
h->htable[i] = NULL;
chain2_len_sum);
}
+/*
+ * extended permissions compatibility. Make ToT Android kernels compatible
+ * with Android M releases
+ */
+#define AVTAB_OPTYPE_ALLOWED 0x1000
+#define AVTAB_OPTYPE_AUDITALLOW 0x2000
+#define AVTAB_OPTYPE_DONTAUDIT 0x4000
+#define AVTAB_OPTYPE (AVTAB_OPTYPE_ALLOWED | \
+ AVTAB_OPTYPE_AUDITALLOW | \
+ AVTAB_OPTYPE_DONTAUDIT)
+#define AVTAB_XPERMS_OPTYPE 4
+
+#define avtab_xperms_to_optype(x) (x << AVTAB_XPERMS_OPTYPE)
+#define avtab_optype_to_xperms(x) (x >> AVTAB_XPERMS_OPTYPE)
+
+static unsigned int avtab_android_m_compat;
+
+static void avtab_android_m_compat_set(void)
+{
+ if (!avtab_android_m_compat) {
+ pr_info("SELinux: Android master kernel running Android"
+ " M policy in compatibility mode.\n");
+ avtab_android_m_compat = 1;
+ }
+}
+
static uint16_t spec_order[] = {
AVTAB_ALLOWED,
AVTAB_AUDITDENY,
AVTAB_AUDITALLOW,
AVTAB_TRANSITION,
AVTAB_CHANGE,
- AVTAB_MEMBER
+ AVTAB_MEMBER,
+ AVTAB_XPERMS_ALLOWED,
+ AVTAB_XPERMS_AUDITALLOW,
+ AVTAB_XPERMS_DONTAUDIT
};
int avtab_read_item(struct avtab *a, void *fp, struct policydb *pol,
{
__le16 buf16[4];
u16 enabled;
- __le32 buf32[7];
u32 items, items2, val, vers = pol->policyvers;
struct avtab_key key;
struct avtab_datum datum;
+ struct avtab_extended_perms xperms;
+ __le32 buf32[ARRAY_SIZE(xperms.perms.p)];
+ unsigned int android_m_compat_optype = 0;
int i, rc;
unsigned set;
printk(KERN_ERR "SELinux: avtab: entry has both access vectors and types\n");
return -EINVAL;
}
+ if (val & AVTAB_XPERMS) {
+ printk(KERN_ERR "SELinux: avtab: entry has extended permissions\n");
+ return -EINVAL;
+ }
for (i = 0; i < ARRAY_SIZE(spec_order); i++) {
if (val & spec_order[i]) {
key.specified = spec_order[i] | enabled;
- datum.data = le32_to_cpu(buf32[items++]);
+ datum.u.data = le32_to_cpu(buf32[items++]);
rc = insertf(a, &key, &datum, p);
if (rc)
return rc;
key.target_class = le16_to_cpu(buf16[items++]);
key.specified = le16_to_cpu(buf16[items++]);
+ if ((key.specified & AVTAB_OPTYPE) &&
+ (vers == POLICYDB_VERSION_XPERMS_IOCTL)) {
+ key.specified = avtab_optype_to_xperms(key.specified);
+ android_m_compat_optype = 1;
+ avtab_android_m_compat_set();
+ }
+
if (!policydb_type_isvalid(pol, key.source_type) ||
!policydb_type_isvalid(pol, key.target_type) ||
!policydb_class_isvalid(pol, key.target_class)) {
return -EINVAL;
}
- rc = next_entry(buf32, fp, sizeof(u32));
- if (rc) {
- printk(KERN_ERR "SELinux: avtab: truncated entry\n");
- return rc;
+ if ((vers < POLICYDB_VERSION_XPERMS_IOCTL) &&
+ (key.specified & AVTAB_XPERMS)) {
+ printk(KERN_ERR "SELinux: avtab: policy version %u does not "
+ "support extended permissions rules and one "
+ "was specified\n", vers);
+ return -EINVAL;
+ } else if (key.specified & AVTAB_XPERMS) {
+ memset(&xperms, 0, sizeof(struct avtab_extended_perms));
+ rc = next_entry(&xperms.specified, fp, sizeof(u8));
+ if (rc) {
+ printk(KERN_ERR "SELinux: avtab: truncated entry\n");
+ return rc;
+ }
+ if (avtab_android_m_compat ||
+ ((xperms.specified != AVTAB_XPERMS_IOCTLFUNCTION) &&
+ (xperms.specified != AVTAB_XPERMS_IOCTLDRIVER) &&
+ (vers == POLICYDB_VERSION_XPERMS_IOCTL))) {
+ xperms.driver = xperms.specified;
+ if (android_m_compat_optype)
+ xperms.specified = AVTAB_XPERMS_IOCTLDRIVER;
+ else
+ xperms.specified = AVTAB_XPERMS_IOCTLFUNCTION;
+ avtab_android_m_compat_set();
+ } else {
+ rc = next_entry(&xperms.driver, fp, sizeof(u8));
+ if (rc) {
+ printk(KERN_ERR "SELinux: avtab: truncated entry\n");
+ return rc;
+ }
+ }
+ rc = next_entry(buf32, fp, sizeof(u32)*ARRAY_SIZE(xperms.perms.p));
+ if (rc) {
+ printk(KERN_ERR "SELinux: avtab: truncated entry\n");
+ return rc;
+ }
+ for (i = 0; i < ARRAY_SIZE(xperms.perms.p); i++)
+ xperms.perms.p[i] = le32_to_cpu(buf32[i]);
+ datum.u.xperms = &xperms;
+ } else {
+ rc = next_entry(buf32, fp, sizeof(u32));
+ if (rc) {
+ printk(KERN_ERR "SELinux: avtab: truncated entry\n");
+ return rc;
+ }
+ datum.u.data = le32_to_cpu(*buf32);
}
- datum.data = le32_to_cpu(*buf32);
if ((key.specified & AVTAB_TYPE) &&
- !policydb_type_isvalid(pol, datum.data)) {
+ !policydb_type_isvalid(pol, datum.u.data)) {
printk(KERN_ERR "SELinux: avtab: invalid type\n");
return -EINVAL;
}
int avtab_write_item(struct policydb *p, struct avtab_node *cur, void *fp)
{
__le16 buf16[4];
- __le32 buf32[1];
+ __le32 buf32[ARRAY_SIZE(cur->datum.u.xperms->perms.p)];
int rc;
+ unsigned int i;
buf16[0] = cpu_to_le16(cur->key.source_type);
buf16[1] = cpu_to_le16(cur->key.target_type);
buf16[2] = cpu_to_le16(cur->key.target_class);
- buf16[3] = cpu_to_le16(cur->key.specified);
+ if (avtab_android_m_compat && (cur->key.specified & AVTAB_XPERMS) &&
+ (cur->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER))
+ buf16[3] = cpu_to_le16(avtab_xperms_to_optype(cur->key.specified));
+ else
+ buf16[3] = cpu_to_le16(cur->key.specified);
rc = put_entry(buf16, sizeof(u16), 4, fp);
if (rc)
return rc;
- buf32[0] = cpu_to_le32(cur->datum.data);
- rc = put_entry(buf32, sizeof(u32), 1, fp);
+
+ if (cur->key.specified & AVTAB_XPERMS) {
+ if (avtab_android_m_compat == 0) {
+ rc = put_entry(&cur->datum.u.xperms->specified,
+ sizeof(u8), 1, fp);
+ if (rc)
+ return rc;
+ }
+ rc = put_entry(&cur->datum.u.xperms->driver, sizeof(u8), 1, fp);
+ if (rc)
+ return rc;
+ for (i = 0; i < ARRAY_SIZE(cur->datum.u.xperms->perms.p); i++)
+ buf32[i] = cpu_to_le32(cur->datum.u.xperms->perms.p[i]);
+ rc = put_entry(buf32, sizeof(u32),
+ ARRAY_SIZE(cur->datum.u.xperms->perms.p), fp);
+ } else {
+ buf32[0] = cpu_to_le32(cur->datum.u.data);
+ rc = put_entry(buf32, sizeof(u32), 1, fp);
+ }
if (rc)
return rc;
return 0;
avtab_node_cachep = kmem_cache_create("avtab_node",
sizeof(struct avtab_node),
0, SLAB_PANIC, NULL);
+ avtab_xperms_cachep = kmem_cache_create("avtab_extended_perms",
+ sizeof(struct avtab_extended_perms),
+ 0, SLAB_PANIC, NULL);
}
void avtab_cache_destroy(void)
{
kmem_cache_destroy(avtab_node_cachep);
+ kmem_cache_destroy(avtab_xperms_cachep);
}
#ifndef _SS_AVTAB_H_
#define _SS_AVTAB_H_
+#include "security.h"
+
struct avtab_key {
u16 source_type; /* source type */
u16 target_type; /* target type */
#define AVTAB_MEMBER 0x0020
#define AVTAB_CHANGE 0x0040
#define AVTAB_TYPE (AVTAB_TRANSITION | AVTAB_MEMBER | AVTAB_CHANGE)
+/* extended permissions */
+#define AVTAB_XPERMS_ALLOWED 0x0100
+#define AVTAB_XPERMS_AUDITALLOW 0x0200
+#define AVTAB_XPERMS_DONTAUDIT 0x0400
+#define AVTAB_XPERMS (AVTAB_XPERMS_ALLOWED | \
+ AVTAB_XPERMS_AUDITALLOW | \
+ AVTAB_XPERMS_DONTAUDIT)
#define AVTAB_ENABLED_OLD 0x80000000 /* reserved for used in cond_avtab */
#define AVTAB_ENABLED 0x8000 /* reserved for used in cond_avtab */
u16 specified; /* what field is specified */
};
+/*
+ * For operations that require more than the 32 permissions provided by the avc
+ * extended permissions may be used to provide 256 bits of permissions.
+ */
+struct avtab_extended_perms {
+/* These are not flags. All 256 values may be used */
+#define AVTAB_XPERMS_IOCTLFUNCTION 0x01
+#define AVTAB_XPERMS_IOCTLDRIVER 0x02
+ /* extension of the avtab_key specified */
+ u8 specified; /* ioctl, netfilter, ... */
+ /*
+ * if 256 bits is not adequate as is often the case with ioctls, then
+ * multiple extended perms may be used and the driver field
+ * specifies which permissions are included.
+ */
+ u8 driver;
+ /* 256 bits of permissions */
+ struct extended_perms_data perms;
+};
+
struct avtab_datum {
- u32 data; /* access vector or type value */
+ union {
+ u32 data; /* access vector or type value */
+ struct avtab_extended_perms *xperms;
+ } u;
};
struct avtab_node {
#include "security.h"
#include "conditional.h"
+#include "services.h"
/*
* cond_evaluate_expr evaluates a conditional expr
return 0;
}
+
+void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
+ struct extended_perms_decision *xpermd)
+{
+ struct avtab_node *node;
+
+ if (!ctab || !key || !xpermd)
+ return;
+
+ for (node = avtab_search_node(ctab, key); node;
+ node = avtab_search_node_next(node, key->specified)) {
+ if (node->key.specified & AVTAB_ENABLED)
+ services_compute_xperms_decision(xpermd, node);
+ }
+ return;
+
+}
/* Determine whether additional permissions are granted by the conditional
* av table, and if so, add them to the result
*/
-void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd)
+void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
+ struct av_decision *avd, struct extended_perms *xperms)
{
struct avtab_node *node;
node = avtab_search_node_next(node, key->specified)) {
if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
(node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
- avd->allowed |= node->datum.data;
+ avd->allowed |= node->datum.u.data;
if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
(node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
/* Since a '0' in an auditdeny mask represents a
* the '&' operand to ensure that all '0's in the mask
* are retained (much unlike the allow and auditallow cases).
*/
- avd->auditdeny &= node->datum.data;
+ avd->auditdeny &= node->datum.u.data;
if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
(node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
- avd->auditallow |= node->datum.data;
+ avd->auditallow |= node->datum.u.data;
+ if (xperms && (node->key.specified & AVTAB_ENABLED) &&
+ (node->key.specified & AVTAB_XPERMS))
+ services_compute_xperms_drivers(xperms, node);
}
return;
}
int cond_write_bool(void *key, void *datum, void *ptr);
int cond_write_list(struct policydb *p, struct cond_node *list, void *fp);
-void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd);
-
+void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
+ struct av_decision *avd, struct extended_perms *xperms);
+void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
+ struct extended_perms_decision *xpermd);
int evaluate_cond_node(struct policydb *p, struct cond_node *node);
#endif /* _CONDITIONAL_H_ */
u32 op; /* operator */
struct ebitmap names; /* names */
+ struct type_set *type_names;
struct constraint_expr *next; /* next expression */
};
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
+ {
+ .version = POLICYDB_VERSION_CONSTRAINT_NAMES,
+ .sym_num = SYM_NUM,
+ .ocon_num = OCON_NUM,
+ },
+ {
+ .version = POLICYDB_VERSION_XPERMS_IOCTL,
+ .sym_num = SYM_NUM,
+ .ocon_num = OCON_NUM,
+ },
};
static struct policydb_compat_info *policydb_lookup_compat(int version)
return 0;
}
+
+static void constraint_expr_destroy(struct constraint_expr *expr)
+{
+ if (expr) {
+ ebitmap_destroy(&expr->names);
+ if (expr->type_names) {
+ ebitmap_destroy(&expr->type_names->types);
+ ebitmap_destroy(&expr->type_names->negset);
+ kfree(expr->type_names);
+ }
+ kfree(expr);
+ }
+}
+
static int cls_destroy(void *key, void *datum, void *p)
{
struct class_datum *cladatum;
while (constraint) {
e = constraint->expr;
while (e) {
- ebitmap_destroy(&e->names);
etmp = e;
e = e->next;
- kfree(etmp);
+ constraint_expr_destroy(etmp);
}
ctemp = constraint;
constraint = constraint->next;
while (constraint) {
e = constraint->expr;
while (e) {
- ebitmap_destroy(&e->names);
etmp = e;
e = e->next;
- kfree(etmp);
+ constraint_expr_destroy(etmp);
}
ctemp = constraint;
constraint = constraint->next;
kfree(ctemp);
}
-
kfree(cladatum->comkey);
}
kfree(datum);
return rc;
}
-static int read_cons_helper(struct constraint_node **nodep, int ncons,
- int allowxtarget, void *fp)
+static void type_set_init(struct type_set *t)
+{
+ ebitmap_init(&t->types);
+ ebitmap_init(&t->negset);
+}
+
+static int type_set_read(struct type_set *t, void *fp)
+{
+ __le32 buf[1];
+ int rc;
+
+ if (ebitmap_read(&t->types, fp))
+ return -EINVAL;
+ if (ebitmap_read(&t->negset, fp))
+ return -EINVAL;
+
+ rc = next_entry(buf, fp, sizeof(u32));
+ if (rc < 0)
+ return -EINVAL;
+ t->flags = le32_to_cpu(buf[0]);
+
+ return 0;
+}
+
+
+static int read_cons_helper(struct policydb *p,
+ struct constraint_node **nodep,
+ int ncons, int allowxtarget, void *fp)
{
struct constraint_node *c, *lc;
struct constraint_expr *e, *le;
rc = ebitmap_read(&e->names, fp);
if (rc)
return rc;
+ if (p->policyvers >=
+ POLICYDB_VERSION_CONSTRAINT_NAMES) {
+ e->type_names = kzalloc(sizeof
+ (*e->type_names),
+ GFP_KERNEL);
+ if (!e->type_names)
+ return -ENOMEM;
+ type_set_init(e->type_names);
+ rc = type_set_read(e->type_names, fp);
+ if (rc)
+ return rc;
+ }
break;
default:
return -EINVAL;
goto bad;
}
- rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
+ rc = read_cons_helper(p, &cladatum->constraints, ncons, 0, fp);
if (rc)
goto bad;
if (rc)
goto bad;
ncons = le32_to_cpu(buf[0]);
- rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
+ rc = read_cons_helper(p, &cladatum->validatetrans,
+ ncons, 1, fp);
if (rc)
goto bad;
}
goto bad;
return 0;
bad:
+ panic("SELinux:Failed to type read");
+
type_destroy(key, typdatum, NULL);
return rc;
}
out:
return rc;
bad:
+ panic("SELinux:Failed to load policy");
+
policydb_destroy(p);
goto out;
}
return 0;
}
+static int type_set_write(struct type_set *t, void *fp)
+{
+ int rc;
+ __le32 buf[1];
+
+ if (ebitmap_write(&t->types, fp))
+ return -EINVAL;
+ if (ebitmap_write(&t->negset, fp))
+ return -EINVAL;
+
+ buf[0] = cpu_to_le32(t->flags);
+ rc = put_entry(buf, sizeof(u32), 1, fp);
+ if (rc)
+ return -EINVAL;
+
+ return 0;
+}
+
static int write_cons_helper(struct policydb *p, struct constraint_node *node,
void *fp)
{
rc = ebitmap_write(&e->names, fp);
if (rc)
return rc;
+ if (p->policyvers >=
+ POLICYDB_VERSION_CONSTRAINT_NAMES) {
+ rc = type_set_write(e->type_names, fp);
+ if (rc)
+ return rc;
+ }
break;
default:
break;
struct cond_node;
+/*
+ * type set preserves data needed to determine constraint info from
+ * policy source. This is not used by the kernel policy but allows
+ * utilities such as audit2allow to determine constraint denials.
+ */
+struct type_set {
+ struct ebitmap types;
+ struct ebitmap negset;
+ u32 flags;
+};
+
/*
* The configuration data includes security contexts for
* initial SIDs, unlabeled file systems, TCP and UDP port numbers,
u32 *scontext_len);
static void context_struct_compute_av(struct context *scontext,
- struct context *tcontext,
- u16 tclass,
- struct av_decision *avd);
+ struct context *tcontext,
+ u16 tclass,
+ struct av_decision *avd,
+ struct extended_perms *xperms);
struct selinux_mapping {
u16 value; /* policy value */
context_struct_compute_av(&lo_scontext,
tcontext,
tclass,
- &lo_avd);
+ &lo_avd,
+ NULL);
if ((lo_avd.allowed & avd->allowed) == avd->allowed)
return; /* no masked permission */
masked = ~lo_avd.allowed & avd->allowed;
context_struct_compute_av(scontext,
&lo_tcontext,
tclass,
- &lo_avd);
+ &lo_avd,
+ NULL);
if ((lo_avd.allowed & avd->allowed) == avd->allowed)
return; /* no masked permission */
masked = ~lo_avd.allowed & avd->allowed;
context_struct_compute_av(&lo_scontext,
&lo_tcontext,
tclass,
- &lo_avd);
+ &lo_avd,
+ NULL);
if ((lo_avd.allowed & avd->allowed) == avd->allowed)
return; /* no masked permission */
masked = ~lo_avd.allowed & avd->allowed;
}
/*
- * Compute access vectors based on a context structure pair for
- * the permissions in a particular class.
+ * flag which drivers have permissions
+ * only looking for ioctl based extended permssions
+ */
+void services_compute_xperms_drivers(
+ struct extended_perms *xperms,
+ struct avtab_node *node)
+{
+ unsigned int i;
+
+ if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
+ /* if one or more driver has all permissions allowed */
+ for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
+ xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
+ } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
+ /* if allowing permissions within a driver */
+ security_xperm_set(xperms->drivers.p,
+ node->datum.u.xperms->driver);
+ }
+
+ /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
+ if (node->key.specified & AVTAB_XPERMS_ALLOWED)
+ xperms->len = 1;
+}
+
+/*
+ * Compute access vectors and extended permissions based on a context
+ * structure pair for the permissions in a particular class.
*/
static void context_struct_compute_av(struct context *scontext,
- struct context *tcontext,
- u16 tclass,
- struct av_decision *avd)
+ struct context *tcontext,
+ u16 tclass,
+ struct av_decision *avd,
+ struct extended_perms *xperms)
{
struct constraint_node *constraint;
struct role_allow *ra;
avd->allowed = 0;
avd->auditallow = 0;
avd->auditdeny = 0xffffffff;
+ if (xperms) {
+ memset(&xperms->drivers, 0, sizeof(xperms->drivers));
+ xperms->len = 0;
+ }
if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
if (printk_ratelimit())
* this permission check, then use it.
*/
avkey.target_class = tclass;
- avkey.specified = AVTAB_AV;
+ avkey.specified = AVTAB_AV | AVTAB_XPERMS;
sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
BUG_ON(!sattr);
tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
node;
node = avtab_search_node_next(node, avkey.specified)) {
if (node->key.specified == AVTAB_ALLOWED)
- avd->allowed |= node->datum.data;
+ avd->allowed |= node->datum.u.data;
else if (node->key.specified == AVTAB_AUDITALLOW)
- avd->auditallow |= node->datum.data;
+ avd->auditallow |= node->datum.u.data;
else if (node->key.specified == AVTAB_AUDITDENY)
- avd->auditdeny &= node->datum.data;
+ avd->auditdeny &= node->datum.u.data;
+ else if (xperms && (node->key.specified & AVTAB_XPERMS))
+ services_compute_xperms_drivers(xperms, node);
}
/* Check conditional av table for additional permissions */
- cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
+ cond_compute_av(&policydb.te_cond_avtab, &avkey,
+ avd, xperms);
}
}
avd->flags = 0;
}
+void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
+ struct avtab_node *node)
+{
+ unsigned int i;
+
+ if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
+ if (xpermd->driver != node->datum.u.xperms->driver)
+ return;
+ } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
+ if (!security_xperm_test(node->datum.u.xperms->perms.p,
+ xpermd->driver))
+ return;
+ } else {
+ BUG();
+ }
+
+ if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
+ xpermd->used |= XPERMS_ALLOWED;
+ if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
+ memset(xpermd->allowed->p, 0xff,
+ sizeof(xpermd->allowed->p));
+ }
+ if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
+ for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
+ xpermd->allowed->p[i] |=
+ node->datum.u.xperms->perms.p[i];
+ }
+ } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
+ xpermd->used |= XPERMS_AUDITALLOW;
+ if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
+ memset(xpermd->auditallow->p, 0xff,
+ sizeof(xpermd->auditallow->p));
+ }
+ if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
+ for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
+ xpermd->auditallow->p[i] |=
+ node->datum.u.xperms->perms.p[i];
+ }
+ } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
+ xpermd->used |= XPERMS_DONTAUDIT;
+ if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
+ memset(xpermd->dontaudit->p, 0xff,
+ sizeof(xpermd->dontaudit->p));
+ }
+ if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
+ for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
+ xpermd->dontaudit->p[i] |=
+ node->datum.u.xperms->perms.p[i];
+ }
+ } else {
+ BUG();
+ }
+}
+
+void security_compute_xperms_decision(u32 ssid,
+ u32 tsid,
+ u16 orig_tclass,
+ u8 driver,
+ struct extended_perms_decision *xpermd)
+{
+ u16 tclass;
+ struct context *scontext, *tcontext;
+ struct avtab_key avkey;
+ struct avtab_node *node;
+ struct ebitmap *sattr, *tattr;
+ struct ebitmap_node *snode, *tnode;
+ unsigned int i, j;
+
+ xpermd->driver = driver;
+ xpermd->used = 0;
+ memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
+ memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
+ memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
+
+ read_lock(&policy_rwlock);
+ if (!ss_initialized)
+ goto allow;
+
+ scontext = sidtab_search(&sidtab, ssid);
+ if (!scontext) {
+ printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
+ __func__, ssid);
+ goto out;
+ }
+
+ tcontext = sidtab_search(&sidtab, tsid);
+ if (!tcontext) {
+ printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
+ __func__, tsid);
+ goto out;
+ }
+
+ tclass = unmap_class(orig_tclass);
+ if (unlikely(orig_tclass && !tclass)) {
+ if (policydb.allow_unknown)
+ goto allow;
+ goto out;
+ }
+
+
+ if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
+ pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
+ goto out;
+ }
+
+ avkey.target_class = tclass;
+ avkey.specified = AVTAB_XPERMS;
+ sattr = flex_array_get(policydb.type_attr_map_array,
+ scontext->type - 1);
+ BUG_ON(!sattr);
+ tattr = flex_array_get(policydb.type_attr_map_array,
+ tcontext->type - 1);
+ BUG_ON(!tattr);
+ ebitmap_for_each_positive_bit(sattr, snode, i) {
+ ebitmap_for_each_positive_bit(tattr, tnode, j) {
+ avkey.source_type = i + 1;
+ avkey.target_type = j + 1;
+ for (node = avtab_search_node(&policydb.te_avtab, &avkey);
+ node;
+ node = avtab_search_node_next(node, avkey.specified))
+ services_compute_xperms_decision(xpermd, node);
+
+ cond_compute_xperms(&policydb.te_cond_avtab,
+ &avkey, xpermd);
+ }
+ }
+out:
+ read_unlock(&policy_rwlock);
+ return;
+allow:
+ memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
+ goto out;
+}
/**
* security_compute_av - Compute access vector decisions.
* @tsid: target security identifier
* @tclass: target security class
* @avd: access vector decisions
+ * @xperms: extended permissions
*
* Compute a set of access vector decisions based on the
* SID pair (@ssid, @tsid) for the permissions in @tclass.
void security_compute_av(u32 ssid,
u32 tsid,
u16 orig_tclass,
- struct av_decision *avd)
+ struct av_decision *avd,
+ struct extended_perms *xperms)
{
u16 tclass;
struct context *scontext = NULL, *tcontext = NULL;
read_lock(&policy_rwlock);
avd_init(avd);
+ xperms->len = 0;
if (!ss_initialized)
goto allow;
goto allow;
goto out;
}
- context_struct_compute_av(scontext, tcontext, tclass, avd);
+ context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
map_decision(orig_tclass, avd, policydb.allow_unknown);
out:
read_unlock(&policy_rwlock);
goto out;
}
- context_struct_compute_av(scontext, tcontext, tclass, avd);
+ context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
out:
read_unlock(&policy_rwlock);
return;
kfree(s);
kfree(t);
kfree(n);
+
if (!selinux_enforcing)
return 0;
return -EACCES;
if (avdatum) {
/* Use the type from the type transition/member/change rule. */
- newcontext.type = avdatum->data;
+ newcontext.type = avdatum->u.data;
}
/* if we have a objname this is a file trans check so check those rules */
}
/**
- * security_genfs_sid - Obtain a SID for a file in a filesystem
+ * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
* @fstype: filesystem type
* @path: path from root of mount
* @sclass: file security class
* Obtain a SID to use for a file in a filesystem that
* cannot support xattr or use a fixed labeling behavior like
* transition SIDs or task SIDs.
+ *
+ * The caller must acquire the policy_rwlock before calling this function.
*/
-int security_genfs_sid(const char *fstype,
- char *path,
- u16 orig_sclass,
- u32 *sid)
+static inline int __security_genfs_sid(const char *fstype,
+ char *path,
+ u16 orig_sclass,
+ u32 *sid)
{
int len;
u16 sclass;
while (path[0] == '/' && path[1] == '/')
path++;
- read_lock(&policy_rwlock);
-
sclass = unmap_class(orig_sclass);
*sid = SECINITSID_UNLABELED;
*sid = c->sid[0];
rc = 0;
out:
- read_unlock(&policy_rwlock);
return rc;
}
+/**
+ * security_genfs_sid - Obtain a SID for a file in a filesystem
+ * @fstype: filesystem type
+ * @path: path from root of mount
+ * @sclass: file security class
+ * @sid: SID for path
+ *
+ * Acquire policy_rwlock before calling __security_genfs_sid() and release
+ * it afterward.
+ */
+int security_genfs_sid(const char *fstype,
+ char *path,
+ u16 orig_sclass,
+ u32 *sid)
+{
+ int retval;
+
+ read_lock(&policy_rwlock);
+ retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
+ read_unlock(&policy_rwlock);
+ return retval;
+}
+
/**
* security_fs_use - Determine how to handle labeling for a filesystem.
* @fstype: filesystem type
{
int rc = 0;
struct ocontext *c;
+ u32 tmpsid;
read_lock(&policy_rwlock);
*behavior = c->v.behavior;
if (!c->sid[0]) {
rc = sidtab_context_to_sid(&sidtab, &c->context[0],
- &c->sid[0]);
+ &tmpsid);
+ c->sid[0] = tmpsid;
if (rc)
goto out;
}
*sid = c->sid[0];
} else {
- rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
+ rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
+ sid);
if (rc) {
*behavior = SECURITY_FS_USE_NONE;
rc = 0;
extern struct policydb policydb;
+void services_compute_xperms_drivers(struct extended_perms *xperms,
+ struct avtab_node *node);
+
+void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
+ struct avtab_node *node);
+
#endif /* _SS_SERVICES_H_ */
status->version = SELINUX_KERNEL_STATUS_VERSION;
status->sequence = 0;
status->enforcing = selinux_enforcing;
+
/*
* NOTE: the next policyload event shall set
* a positive value on the status->policyload,