security: update selinux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <linux/list.h>
26 #include <net/sock.h>
27 #include <linux/un.h>
28 #include <net/af_unix.h>
29 #include <linux/ip.h>
30 #include <linux/audit.h>
31 #include <linux/ipv6.h>
32 #include <net/ipv6.h>
33 #include "avc.h"
34 #include "avc_ss.h"
35 #include "classmap.h"
36
37 #define AVC_CACHE_SLOTS 512
38 #define AVC_DEF_CACHE_THRESHOLD 512
39 #define AVC_CACHE_RECLAIM 16
40
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field) do {} while (0)
45 #endif
46
47 struct avc_entry {
48 u32 ssid;
49 u32 tsid;
50 u16 tclass;
51 struct av_decision avd;
52 struct avc_xperms_node *xp_node;
53 };
54
55 struct avc_node {
56 struct avc_entry ae;
57 struct hlist_node list; /* anchored in avc_cache->slots[i] */
58 struct rcu_head rhead;
59 };
60
61 struct avc_xperms_decision_node {
62 struct extended_perms_decision xpd;
63 struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65
66 struct avc_xperms_node {
67 struct extended_perms xp;
68 struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70
71 struct avc_cache {
72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 atomic_t lru_hint; /* LRU hint for reclaim scan */
75 atomic_t active_nodes;
76 u32 latest_notif; /* latest revocation notification */
77 };
78
79 struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83 };
84
85 /* Exported via selinufs */
86 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
87
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
91
92 static struct avc_cache avc_cache;
93 static struct avc_callback_node *avc_callbacks;
94 static struct kmem_cache *avc_node_cachep;
95 static struct kmem_cache *avc_xperms_data_cachep;
96 static struct kmem_cache *avc_xperms_decision_cachep;
97 static struct kmem_cache *avc_xperms_cachep;
98
99 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
100 {
101 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
102 }
103
104 /**
105 * avc_dump_av - Display an access vector in human-readable form.
106 * @tclass: target security class
107 * @av: access vector
108 */
109 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
110 {
111 const char **perms;
112 int i, perm;
113
114 if (av == 0) {
115 audit_log_format(ab, " null");
116 return;
117 }
118
119 perms = secclass_map[tclass-1].perms;
120
121 audit_log_format(ab, " {");
122 i = 0;
123 perm = 1;
124 while (i < (sizeof(av) * 8)) {
125 if ((perm & av) && perms[i]) {
126 audit_log_format(ab, " %s", perms[i]);
127 av &= ~perm;
128 }
129 i++;
130 perm <<= 1;
131 }
132
133 if (av)
134 audit_log_format(ab, " 0x%x", av);
135
136 audit_log_format(ab, " }");
137 }
138
139 /**
140 * avc_dump_query - Display a SID pair and a class in human-readable form.
141 * @ssid: source security identifier
142 * @tsid: target security identifier
143 * @tclass: target security class
144 */
145 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
146 {
147 int rc;
148 char *scontext;
149 u32 scontext_len;
150
151 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
152 if (rc)
153 audit_log_format(ab, "ssid=%d", ssid);
154 else {
155 audit_log_format(ab, "scontext=%s", scontext);
156 kfree(scontext);
157 }
158
159 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
160 if (rc)
161 audit_log_format(ab, " tsid=%d", tsid);
162 else {
163 audit_log_format(ab, " tcontext=%s", scontext);
164 kfree(scontext);
165 }
166
167 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
168 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
169 }
170
171 /**
172 * avc_init - Initialize the AVC.
173 *
174 * Initialize the access vector cache.
175 */
176 void __init avc_init(void)
177 {
178 int i;
179
180 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
181 INIT_HLIST_HEAD(&avc_cache.slots[i]);
182 spin_lock_init(&avc_cache.slots_lock[i]);
183 }
184 atomic_set(&avc_cache.active_nodes, 0);
185 atomic_set(&avc_cache.lru_hint, 0);
186
187 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
188 0, SLAB_PANIC, NULL);
189 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
190 sizeof(struct avc_xperms_node),
191 0, SLAB_PANIC, NULL);
192 avc_xperms_decision_cachep = kmem_cache_create(
193 "avc_xperms_decision_node",
194 sizeof(struct avc_xperms_decision_node),
195 0, SLAB_PANIC, NULL);
196 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
197 sizeof(struct extended_perms_data),
198 0, SLAB_PANIC, NULL);
199
200 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
201 }
202
203 int avc_get_hash_stats(char *page)
204 {
205 int i, chain_len, max_chain_len, slots_used;
206 struct avc_node *node;
207 struct hlist_head *head;
208
209 rcu_read_lock();
210
211 slots_used = 0;
212 max_chain_len = 0;
213 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
214 head = &avc_cache.slots[i];
215 if (!hlist_empty(head)) {
216 slots_used++;
217 chain_len = 0;
218 hlist_for_each_entry_rcu(node, head, list)
219 chain_len++;
220 if (chain_len > max_chain_len)
221 max_chain_len = chain_len;
222 }
223 }
224
225 rcu_read_unlock();
226
227 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
228 "longest chain: %d\n",
229 atomic_read(&avc_cache.active_nodes),
230 slots_used, AVC_CACHE_SLOTS, max_chain_len);
231 }
232
233 /*
234 * using a linked list for extended_perms_decision lookup because the list is
235 * always small. i.e. less than 5, typically 1
236 */
237 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
238 struct avc_xperms_node *xp_node)
239 {
240 struct avc_xperms_decision_node *xpd_node;
241
242 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
243 if (xpd_node->xpd.driver == driver)
244 return &xpd_node->xpd;
245 }
246 return NULL;
247 }
248
249 static inline unsigned int
250 avc_xperms_has_perm(struct extended_perms_decision *xpd,
251 u8 perm, u8 which)
252 {
253 unsigned int rc = 0;
254
255 if ((which == XPERMS_ALLOWED) &&
256 (xpd->used & XPERMS_ALLOWED))
257 rc = security_xperm_test(xpd->allowed->p, perm);
258 else if ((which == XPERMS_AUDITALLOW) &&
259 (xpd->used & XPERMS_AUDITALLOW))
260 rc = security_xperm_test(xpd->auditallow->p, perm);
261 else if ((which == XPERMS_DONTAUDIT) &&
262 (xpd->used & XPERMS_DONTAUDIT))
263 rc = security_xperm_test(xpd->dontaudit->p, perm);
264 return rc;
265 }
266
267 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
268 u8 driver, u8 perm)
269 {
270 struct extended_perms_decision *xpd;
271 security_xperm_set(xp_node->xp.drivers.p, driver);
272 xpd = avc_xperms_decision_lookup(driver, xp_node);
273 if (xpd && xpd->allowed)
274 security_xperm_set(xpd->allowed->p, perm);
275 }
276
277 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
278 {
279 struct extended_perms_decision *xpd;
280
281 xpd = &xpd_node->xpd;
282 if (xpd->allowed)
283 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
284 if (xpd->auditallow)
285 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
286 if (xpd->dontaudit)
287 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
288 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
289 }
290
291 static void avc_xperms_free(struct avc_xperms_node *xp_node)
292 {
293 struct avc_xperms_decision_node *xpd_node, *tmp;
294
295 if (!xp_node)
296 return;
297
298 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
299 list_del(&xpd_node->xpd_list);
300 avc_xperms_decision_free(xpd_node);
301 }
302 kmem_cache_free(avc_xperms_cachep, xp_node);
303 }
304
305 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
306 struct extended_perms_decision *src)
307 {
308 dest->driver = src->driver;
309 dest->used = src->used;
310 if (dest->used & XPERMS_ALLOWED)
311 memcpy(dest->allowed->p, src->allowed->p,
312 sizeof(src->allowed->p));
313 if (dest->used & XPERMS_AUDITALLOW)
314 memcpy(dest->auditallow->p, src->auditallow->p,
315 sizeof(src->auditallow->p));
316 if (dest->used & XPERMS_DONTAUDIT)
317 memcpy(dest->dontaudit->p, src->dontaudit->p,
318 sizeof(src->dontaudit->p));
319 }
320
321 /*
322 * similar to avc_copy_xperms_decision, but only copy decision
323 * information relevant to this perm
324 */
325 static inline void avc_quick_copy_xperms_decision(u8 perm,
326 struct extended_perms_decision *dest,
327 struct extended_perms_decision *src)
328 {
329 /*
330 * compute index of the u32 of the 256 bits (8 u32s) that contain this
331 * command permission
332 */
333 u8 i = perm >> 5;
334
335 dest->used = src->used;
336 if (dest->used & XPERMS_ALLOWED)
337 dest->allowed->p[i] = src->allowed->p[i];
338 if (dest->used & XPERMS_AUDITALLOW)
339 dest->auditallow->p[i] = src->auditallow->p[i];
340 if (dest->used & XPERMS_DONTAUDIT)
341 dest->dontaudit->p[i] = src->dontaudit->p[i];
342 }
343
344 static struct avc_xperms_decision_node
345 *avc_xperms_decision_alloc(u8 which)
346 {
347 struct avc_xperms_decision_node *xpd_node;
348 struct extended_perms_decision *xpd;
349
350 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
351 GFP_ATOMIC | __GFP_NOMEMALLOC);
352 if (!xpd_node)
353 return NULL;
354
355 xpd = &xpd_node->xpd;
356 if (which & XPERMS_ALLOWED) {
357 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
358 GFP_ATOMIC | __GFP_NOMEMALLOC);
359 if (!xpd->allowed)
360 goto error;
361 }
362 if (which & XPERMS_AUDITALLOW) {
363 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
364 GFP_ATOMIC | __GFP_NOMEMALLOC);
365 if (!xpd->auditallow)
366 goto error;
367 }
368 if (which & XPERMS_DONTAUDIT) {
369 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
370 GFP_ATOMIC | __GFP_NOMEMALLOC);
371 if (!xpd->dontaudit)
372 goto error;
373 }
374 return xpd_node;
375 error:
376 avc_xperms_decision_free(xpd_node);
377 return NULL;
378 }
379
380 static int avc_add_xperms_decision(struct avc_node *node,
381 struct extended_perms_decision *src)
382 {
383 struct avc_xperms_decision_node *dest_xpd;
384
385 node->ae.xp_node->xp.len++;
386 dest_xpd = avc_xperms_decision_alloc(src->used);
387 if (!dest_xpd)
388 return -ENOMEM;
389 avc_copy_xperms_decision(&dest_xpd->xpd, src);
390 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
391 return 0;
392 }
393
394 static struct avc_xperms_node *avc_xperms_alloc(void)
395 {
396 struct avc_xperms_node *xp_node;
397
398 xp_node = kmem_cache_zalloc(avc_xperms_cachep,
399 GFP_ATOMIC|__GFP_NOMEMALLOC);
400 if (!xp_node)
401 return xp_node;
402 INIT_LIST_HEAD(&xp_node->xpd_head);
403 return xp_node;
404 }
405
406 static int avc_xperms_populate(struct avc_node *node,
407 struct avc_xperms_node *src)
408 {
409 struct avc_xperms_node *dest;
410 struct avc_xperms_decision_node *dest_xpd;
411 struct avc_xperms_decision_node *src_xpd;
412
413 if (src->xp.len == 0)
414 return 0;
415 dest = avc_xperms_alloc();
416 if (!dest)
417 return -ENOMEM;
418
419 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
420 dest->xp.len = src->xp.len;
421
422 /* for each source xpd allocate a destination xpd and copy */
423 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
424 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
425 if (!dest_xpd)
426 goto error;
427 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
428 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
429 }
430 node->ae.xp_node = dest;
431 return 0;
432 error:
433 avc_xperms_free(dest);
434 return -ENOMEM;
435
436 }
437
438 static inline u32 avc_xperms_audit_required(u32 requested,
439 struct av_decision *avd,
440 struct extended_perms_decision *xpd,
441 u8 perm,
442 int result,
443 u32 *deniedp)
444 {
445 u32 denied, audited;
446
447 denied = requested & ~avd->allowed;
448 if (unlikely(denied)) {
449 audited = denied & avd->auditdeny;
450 if (audited && xpd) {
451 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
452 audited &= ~requested;
453 }
454 } else if (result) {
455 audited = denied = requested;
456 } else {
457 audited = requested & avd->auditallow;
458 if (audited && xpd) {
459 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
460 audited &= ~requested;
461 }
462 }
463
464 *deniedp = denied;
465 return audited;
466 }
467
468 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
469 u32 requested, struct av_decision *avd,
470 struct extended_perms_decision *xpd,
471 u8 perm, int result,
472 struct common_audit_data *ad)
473 {
474 u32 audited, denied;
475
476 audited = avc_xperms_audit_required(
477 requested, avd, xpd, perm, result, &denied);
478 if (likely(!audited))
479 return 0;
480 return slow_avc_audit(ssid, tsid, tclass, requested,
481 audited, denied, result, ad, 0);
482 }
483
484 static void avc_node_free(struct rcu_head *rhead)
485 {
486 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
487 avc_xperms_free(node->ae.xp_node);
488 kmem_cache_free(avc_node_cachep, node);
489 avc_cache_stats_incr(frees);
490 }
491
492 static void avc_node_delete(struct avc_node *node)
493 {
494 hlist_del_rcu(&node->list);
495 call_rcu(&node->rhead, avc_node_free);
496 atomic_dec(&avc_cache.active_nodes);
497 }
498
499 static void avc_node_kill(struct avc_node *node)
500 {
501 avc_xperms_free(node->ae.xp_node);
502 kmem_cache_free(avc_node_cachep, node);
503 avc_cache_stats_incr(frees);
504 atomic_dec(&avc_cache.active_nodes);
505 }
506
507 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
508 {
509 hlist_replace_rcu(&old->list, &new->list);
510 call_rcu(&old->rhead, avc_node_free);
511 atomic_dec(&avc_cache.active_nodes);
512 }
513
514 static inline int avc_reclaim_node(void)
515 {
516 struct avc_node *node;
517 int hvalue, try, ecx;
518 unsigned long flags;
519 struct hlist_head *head;
520 spinlock_t *lock;
521
522 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
523 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
524 head = &avc_cache.slots[hvalue];
525 lock = &avc_cache.slots_lock[hvalue];
526
527 if (!spin_trylock_irqsave(lock, flags))
528 continue;
529
530 rcu_read_lock();
531 hlist_for_each_entry(node, head, list) {
532 avc_node_delete(node);
533 avc_cache_stats_incr(reclaims);
534 ecx++;
535 if (ecx >= AVC_CACHE_RECLAIM) {
536 rcu_read_unlock();
537 spin_unlock_irqrestore(lock, flags);
538 goto out;
539 }
540 }
541 rcu_read_unlock();
542 spin_unlock_irqrestore(lock, flags);
543 }
544 out:
545 return ecx;
546 }
547
548 static struct avc_node *avc_alloc_node(void)
549 {
550 struct avc_node *node;
551
552 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
553 if (!node)
554 goto out;
555
556 INIT_HLIST_NODE(&node->list);
557 avc_cache_stats_incr(allocations);
558
559 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
560 avc_reclaim_node();
561
562 out:
563 return node;
564 }
565
566 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
567 {
568 node->ae.ssid = ssid;
569 node->ae.tsid = tsid;
570 node->ae.tclass = tclass;
571 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
572 }
573
574 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
575 {
576 struct avc_node *node, *ret = NULL;
577 int hvalue;
578 struct hlist_head *head;
579
580 hvalue = avc_hash(ssid, tsid, tclass);
581 head = &avc_cache.slots[hvalue];
582 hlist_for_each_entry_rcu(node, head, list) {
583 if (ssid == node->ae.ssid &&
584 tclass == node->ae.tclass &&
585 tsid == node->ae.tsid) {
586 ret = node;
587 break;
588 }
589 }
590
591 return ret;
592 }
593
594 /**
595 * avc_lookup - Look up an AVC entry.
596 * @ssid: source security identifier
597 * @tsid: target security identifier
598 * @tclass: target security class
599 *
600 * Look up an AVC entry that is valid for the
601 * (@ssid, @tsid), interpreting the permissions
602 * based on @tclass. If a valid AVC entry exists,
603 * then this function returns the avc_node.
604 * Otherwise, this function returns NULL.
605 */
606 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
607 {
608 struct avc_node *node;
609
610 avc_cache_stats_incr(lookups);
611 node = avc_search_node(ssid, tsid, tclass);
612
613 if (node)
614 return node;
615
616 avc_cache_stats_incr(misses);
617 return NULL;
618 }
619
620 static int avc_latest_notif_update(int seqno, int is_insert)
621 {
622 int ret = 0;
623 static DEFINE_SPINLOCK(notif_lock);
624 unsigned long flag;
625
626 spin_lock_irqsave(&notif_lock, flag);
627 if (is_insert) {
628 if (seqno < avc_cache.latest_notif) {
629 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
630 seqno, avc_cache.latest_notif);
631 ret = -EAGAIN;
632 }
633 } else {
634 if (seqno > avc_cache.latest_notif)
635 avc_cache.latest_notif = seqno;
636 }
637 spin_unlock_irqrestore(&notif_lock, flag);
638
639 return ret;
640 }
641
642 /**
643 * avc_insert - Insert an AVC entry.
644 * @ssid: source security identifier
645 * @tsid: target security identifier
646 * @tclass: target security class
647 * @avd: resulting av decision
648 * @xp_node: resulting extended permissions
649 *
650 * Insert an AVC entry for the SID pair
651 * (@ssid, @tsid) and class @tclass.
652 * The access vectors and the sequence number are
653 * normally provided by the security server in
654 * response to a security_compute_av() call. If the
655 * sequence number @avd->seqno is not less than the latest
656 * revocation notification, then the function copies
657 * the access vectors into a cache entry, returns
658 * avc_node inserted. Otherwise, this function returns NULL.
659 */
660 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
661 struct av_decision *avd,
662 struct avc_xperms_node *xp_node)
663 {
664 struct avc_node *pos, *node = NULL;
665 int hvalue;
666 unsigned long flag;
667
668 if (avc_latest_notif_update(avd->seqno, 1))
669 goto out;
670
671 node = avc_alloc_node();
672 if (node) {
673 struct hlist_head *head;
674 spinlock_t *lock;
675 int rc = 0;
676
677 hvalue = avc_hash(ssid, tsid, tclass);
678 avc_node_populate(node, ssid, tsid, tclass, avd);
679 rc = avc_xperms_populate(node, xp_node);
680 if (rc) {
681 kmem_cache_free(avc_node_cachep, node);
682 return NULL;
683 }
684 head = &avc_cache.slots[hvalue];
685 lock = &avc_cache.slots_lock[hvalue];
686
687 spin_lock_irqsave(lock, flag);
688 hlist_for_each_entry(pos, head, list) {
689 if (pos->ae.ssid == ssid &&
690 pos->ae.tsid == tsid &&
691 pos->ae.tclass == tclass) {
692 avc_node_replace(node, pos);
693 goto found;
694 }
695 }
696 hlist_add_head_rcu(&node->list, head);
697 found:
698 spin_unlock_irqrestore(lock, flag);
699 }
700 out:
701 return node;
702 }
703
704 /**
705 * avc_audit_pre_callback - SELinux specific information
706 * will be called by generic audit code
707 * @ab: the audit buffer
708 * @a: audit_data
709 */
710 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
711 {
712 struct common_audit_data *ad = a;
713 audit_log_format(ab, "avc: %s ",
714 ad->selinux_audit_data->denied ? "denied" : "granted");
715 avc_dump_av(ab, ad->selinux_audit_data->tclass,
716 ad->selinux_audit_data->audited);
717 audit_log_format(ab, " for ");
718 }
719
720 /**
721 * avc_audit_post_callback - SELinux specific information
722 * will be called by generic audit code
723 * @ab: the audit buffer
724 * @a: audit_data
725 */
726 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
727 {
728 struct common_audit_data *ad = a;
729 audit_log_format(ab, " ");
730 avc_dump_query(ab, ad->selinux_audit_data->ssid,
731 ad->selinux_audit_data->tsid,
732 ad->selinux_audit_data->tclass);
733 if (ad->selinux_audit_data->denied) {
734 audit_log_format(ab, " permissive=%u",
735 ad->selinux_audit_data->result ? 0 : 1);
736 }
737 }
738
739 /* This is the slow part of avc audit with big stack footprint */
740 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
741 u32 requested, u32 audited, u32 denied, int result,
742 struct common_audit_data *a,
743 unsigned flags)
744 {
745 struct common_audit_data stack_data;
746 struct selinux_audit_data sad;
747
748 if (!a) {
749 a = &stack_data;
750 a->type = LSM_AUDIT_DATA_NONE;
751 }
752
753 /*
754 * When in a RCU walk do the audit on the RCU retry. This is because
755 * the collection of the dname in an inode audit message is not RCU
756 * safe. Note this may drop some audits when the situation changes
757 * during retry. However this is logically just as if the operation
758 * happened a little later.
759 */
760 if ((a->type == LSM_AUDIT_DATA_INODE) &&
761 (flags & MAY_NOT_BLOCK))
762 return -ECHILD;
763
764 sad.tclass = tclass;
765 sad.requested = requested;
766 sad.ssid = ssid;
767 sad.tsid = tsid;
768 sad.audited = audited;
769 sad.denied = denied;
770 sad.result = result;
771
772 a->selinux_audit_data = &sad;
773
774 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
775 return 0;
776 }
777
778 /**
779 * avc_add_callback - Register a callback for security events.
780 * @callback: callback function
781 * @events: security events
782 *
783 * Register a callback function for events in the set @events.
784 * Returns %0 on success or -%ENOMEM if insufficient memory
785 * exists to add the callback.
786 */
787 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
788 {
789 struct avc_callback_node *c;
790 int rc = 0;
791
792 c = kmalloc(sizeof(*c), GFP_KERNEL);
793 if (!c) {
794 rc = -ENOMEM;
795 goto out;
796 }
797
798 c->callback = callback;
799 c->events = events;
800 c->next = avc_callbacks;
801 avc_callbacks = c;
802 out:
803 return rc;
804 }
805
806 static inline int avc_sidcmp(u32 x, u32 y)
807 {
808 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
809 }
810
811 /**
812 * avc_update_node Update an AVC entry
813 * @event : Updating event
814 * @perms : Permission mask bits
815 * @ssid,@tsid,@tclass : identifier of an AVC entry
816 * @seqno : sequence number when decision was made
817 * @xpd: extended_perms_decision to be added to the node
818 *
819 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
820 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
821 * otherwise, this function updates the AVC entry. The original AVC-entry object
822 * will release later by RCU.
823 */
824 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
825 u32 tsid, u16 tclass, u32 seqno,
826 struct extended_perms_decision *xpd,
827 u32 flags)
828 {
829 int hvalue, rc = 0;
830 unsigned long flag;
831 struct avc_node *pos, *node, *orig = NULL;
832 struct hlist_head *head;
833 spinlock_t *lock;
834
835 node = avc_alloc_node();
836 if (!node) {
837 rc = -ENOMEM;
838 goto out;
839 }
840
841 /* Lock the target slot */
842 hvalue = avc_hash(ssid, tsid, tclass);
843
844 head = &avc_cache.slots[hvalue];
845 lock = &avc_cache.slots_lock[hvalue];
846
847 spin_lock_irqsave(lock, flag);
848
849 hlist_for_each_entry(pos, head, list) {
850 if (ssid == pos->ae.ssid &&
851 tsid == pos->ae.tsid &&
852 tclass == pos->ae.tclass &&
853 seqno == pos->ae.avd.seqno){
854 orig = pos;
855 break;
856 }
857 }
858
859 if (!orig) {
860 rc = -ENOENT;
861 avc_node_kill(node);
862 goto out_unlock;
863 }
864
865 /*
866 * Copy and replace original node.
867 */
868
869 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
870
871 if (orig->ae.xp_node) {
872 rc = avc_xperms_populate(node, orig->ae.xp_node);
873 if (rc) {
874 kmem_cache_free(avc_node_cachep, node);
875 goto out_unlock;
876 }
877 }
878
879 switch (event) {
880 case AVC_CALLBACK_GRANT:
881 node->ae.avd.allowed |= perms;
882 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
883 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
884 break;
885 case AVC_CALLBACK_TRY_REVOKE:
886 case AVC_CALLBACK_REVOKE:
887 node->ae.avd.allowed &= ~perms;
888 break;
889 case AVC_CALLBACK_AUDITALLOW_ENABLE:
890 node->ae.avd.auditallow |= perms;
891 break;
892 case AVC_CALLBACK_AUDITALLOW_DISABLE:
893 node->ae.avd.auditallow &= ~perms;
894 break;
895 case AVC_CALLBACK_AUDITDENY_ENABLE:
896 node->ae.avd.auditdeny |= perms;
897 break;
898 case AVC_CALLBACK_AUDITDENY_DISABLE:
899 node->ae.avd.auditdeny &= ~perms;
900 break;
901 case AVC_CALLBACK_ADD_XPERMS:
902 avc_add_xperms_decision(node, xpd);
903 break;
904 }
905 avc_node_replace(node, orig);
906 out_unlock:
907 spin_unlock_irqrestore(lock, flag);
908 out:
909 return rc;
910 }
911
912 /**
913 * avc_flush - Flush the cache
914 */
915 static void avc_flush(void)
916 {
917 struct hlist_head *head;
918 struct avc_node *node;
919 spinlock_t *lock;
920 unsigned long flag;
921 int i;
922
923 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
924 head = &avc_cache.slots[i];
925 lock = &avc_cache.slots_lock[i];
926
927 spin_lock_irqsave(lock, flag);
928 /*
929 * With preemptable RCU, the outer spinlock does not
930 * prevent RCU grace periods from ending.
931 */
932 rcu_read_lock();
933 hlist_for_each_entry(node, head, list)
934 avc_node_delete(node);
935 rcu_read_unlock();
936 spin_unlock_irqrestore(lock, flag);
937 }
938 }
939
940 /**
941 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
942 * @seqno: policy sequence number
943 */
944 int avc_ss_reset(u32 seqno)
945 {
946 struct avc_callback_node *c;
947 int rc = 0, tmprc;
948
949 avc_flush();
950
951 for (c = avc_callbacks; c; c = c->next) {
952 if (c->events & AVC_CALLBACK_RESET) {
953 tmprc = c->callback(AVC_CALLBACK_RESET);
954 /* save the first error encountered for the return
955 value and continue processing the callbacks */
956 if (!rc)
957 rc = tmprc;
958 }
959 }
960
961 avc_latest_notif_update(seqno, 0);
962 return rc;
963 }
964
965 /*
966 * Slow-path helper function for avc_has_perm_noaudit,
967 * when the avc_node lookup fails. We get called with
968 * the RCU read lock held, and need to return with it
969 * still held, but drop if for the security compute.
970 *
971 * Don't inline this, since it's the slow-path and just
972 * results in a bigger stack frame.
973 */
974 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
975 u16 tclass, struct av_decision *avd,
976 struct avc_xperms_node *xp_node)
977 {
978 rcu_read_unlock();
979 INIT_LIST_HEAD(&xp_node->xpd_head);
980 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
981 rcu_read_lock();
982 return avc_insert(ssid, tsid, tclass, avd, xp_node);
983 }
984
985 static noinline int avc_denied(u32 ssid, u32 tsid,
986 u16 tclass, u32 requested,
987 u8 driver, u8 xperm, unsigned flags,
988 struct av_decision *avd)
989 {
990
991 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
992 tsid, tclass, avd->seqno, NULL, flags);
993 return 0;
994 }
995
996 /*
997 * The avc extended permissions logic adds an additional 256 bits of
998 * permissions to an avc node when extended permissions for that node are
999 * specified in the avtab. If the additional 256 permissions is not adequate,
1000 * as-is the case with ioctls, then multiple may be chained together and the
1001 * driver field is used to specify which set contains the permission.
1002 */
1003 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1004 u8 driver, u8 xperm, struct common_audit_data *ad)
1005 {
1006 struct avc_node *node;
1007 struct av_decision avd;
1008 u32 denied;
1009 struct extended_perms_decision local_xpd;
1010 struct extended_perms_decision *xpd = NULL;
1011 struct extended_perms_data allowed;
1012 struct extended_perms_data auditallow;
1013 struct extended_perms_data dontaudit;
1014 struct avc_xperms_node local_xp_node;
1015 struct avc_xperms_node *xp_node;
1016 int rc = 0, rc2;
1017
1018 xp_node = &local_xp_node;
1019 BUG_ON(!requested);
1020
1021 rcu_read_lock();
1022
1023 node = avc_lookup(ssid, tsid, tclass);
1024 if (unlikely(!node)) {
1025 node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1026 } else {
1027 memcpy(&avd, &node->ae.avd, sizeof(avd));
1028 xp_node = node->ae.xp_node;
1029 }
1030 /* if extended permissions are not defined, only consider av_decision */
1031 if (!xp_node || !xp_node->xp.len)
1032 goto decision;
1033
1034 local_xpd.allowed = &allowed;
1035 local_xpd.auditallow = &auditallow;
1036 local_xpd.dontaudit = &dontaudit;
1037
1038 xpd = avc_xperms_decision_lookup(driver, xp_node);
1039 if (unlikely(!xpd)) {
1040 /*
1041 * Compute the extended_perms_decision only if the driver
1042 * is flagged
1043 */
1044 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1045 avd.allowed &= ~requested;
1046 goto decision;
1047 }
1048 rcu_read_unlock();
1049 security_compute_xperms_decision(ssid, tsid, tclass, driver,
1050 &local_xpd);
1051 rcu_read_lock();
1052 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1053 ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
1054 } else {
1055 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1056 }
1057 xpd = &local_xpd;
1058
1059 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1060 avd.allowed &= ~requested;
1061
1062 decision:
1063 denied = requested & ~(avd.allowed);
1064 if (unlikely(denied))
1065 rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1066 AVC_EXTENDED_PERMS, &avd);
1067
1068 rcu_read_unlock();
1069
1070 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1071 &avd, xpd, xperm, rc, ad);
1072 if (rc2)
1073 return rc2;
1074 return rc;
1075 }
1076
1077 /**
1078 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1079 * @ssid: source security identifier
1080 * @tsid: target security identifier
1081 * @tclass: target security class
1082 * @requested: requested permissions, interpreted based on @tclass
1083 * @flags: AVC_STRICT or 0
1084 * @avd: access vector decisions
1085 *
1086 * Check the AVC to determine whether the @requested permissions are granted
1087 * for the SID pair (@ssid, @tsid), interpreting the permissions
1088 * based on @tclass, and call the security server on a cache miss to obtain
1089 * a new decision and add it to the cache. Return a copy of the decisions
1090 * in @avd. Return %0 if all @requested permissions are granted,
1091 * -%EACCES if any permissions are denied, or another -errno upon
1092 * other errors. This function is typically called by avc_has_perm(),
1093 * but may also be called directly to separate permission checking from
1094 * auditing, e.g. in cases where a lock must be held for the check but
1095 * should be released for the auditing.
1096 */
1097 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1098 u16 tclass, u32 requested,
1099 unsigned flags,
1100 struct av_decision *avd)
1101 {
1102 struct avc_node *node;
1103 struct avc_xperms_node xp_node;
1104 int rc = 0;
1105 u32 denied;
1106
1107 BUG_ON(!requested);
1108
1109 rcu_read_lock();
1110
1111 node = avc_lookup(ssid, tsid, tclass);
1112 if (unlikely(!node))
1113 node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1114 else
1115 memcpy(avd, &node->ae.avd, sizeof(*avd));
1116
1117 denied = requested & ~(avd->allowed);
1118 if (unlikely(denied))
1119 rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
1120
1121 rcu_read_unlock();
1122 return rc;
1123 }
1124
1125 /**
1126 * avc_has_perm - Check permissions and perform any appropriate auditing.
1127 * @ssid: source security identifier
1128 * @tsid: target security identifier
1129 * @tclass: target security class
1130 * @requested: requested permissions, interpreted based on @tclass
1131 * @auditdata: auxiliary audit data
1132 * @flags: VFS walk flags
1133 *
1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache. Audit the granting or denial of
1138 * permissions in accordance with the policy. Return %0 if all @requested
1139 * permissions are granted, -%EACCES if any permissions are denied, or
1140 * another -errno upon other errors.
1141 */
1142 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1143 u32 requested, struct common_audit_data *auditdata,
1144 unsigned flags)
1145 {
1146 struct av_decision avd;
1147 int rc, rc2;
1148
1149 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1150
1151 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
1152 flags);
1153 if (rc2)
1154 return rc2;
1155 return rc;
1156 }
1157
1158 u32 avc_policy_seqno(void)
1159 {
1160 return avc_cache.latest_notif;
1161 }
1162
1163 void avc_disable(void)
1164 {
1165 /*
1166 * If you are looking at this because you have realized that we are
1167 * not destroying the avc_node_cachep it might be easy to fix, but
1168 * I don't know the memory barrier semantics well enough to know. It's
1169 * possible that some other task dereferenced security_ops when
1170 * it still pointed to selinux operations. If that is the case it's
1171 * possible that it is about to use the avc and is about to need the
1172 * avc_node_cachep. I know I could wrap the security.c security_ops call
1173 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1174 * the cache and get that memory back.
1175 */
1176 if (avc_node_cachep) {
1177 avc_flush();
1178 /* kmem_cache_destroy(avc_node_cachep); */
1179 }
1180 }