security: update selinux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / selinux / ss / conditional.c
1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2 * Frank Mayer <mayerf@tresys.com>
3 *
4 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, version 2.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15
16 #include "security.h"
17 #include "conditional.h"
18 #include "services.h"
19
20 /*
21 * cond_evaluate_expr evaluates a conditional expr
22 * in reverse polish notation. It returns true (1), false (0),
23 * or undefined (-1). Undefined occurs when the expression
24 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
25 */
26 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
27 {
28
29 struct cond_expr *cur;
30 int s[COND_EXPR_MAXDEPTH];
31 int sp = -1;
32
33 for (cur = expr; cur; cur = cur->next) {
34 switch (cur->expr_type) {
35 case COND_BOOL:
36 if (sp == (COND_EXPR_MAXDEPTH - 1))
37 return -1;
38 sp++;
39 s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
40 break;
41 case COND_NOT:
42 if (sp < 0)
43 return -1;
44 s[sp] = !s[sp];
45 break;
46 case COND_OR:
47 if (sp < 1)
48 return -1;
49 sp--;
50 s[sp] |= s[sp + 1];
51 break;
52 case COND_AND:
53 if (sp < 1)
54 return -1;
55 sp--;
56 s[sp] &= s[sp + 1];
57 break;
58 case COND_XOR:
59 if (sp < 1)
60 return -1;
61 sp--;
62 s[sp] ^= s[sp + 1];
63 break;
64 case COND_EQ:
65 if (sp < 1)
66 return -1;
67 sp--;
68 s[sp] = (s[sp] == s[sp + 1]);
69 break;
70 case COND_NEQ:
71 if (sp < 1)
72 return -1;
73 sp--;
74 s[sp] = (s[sp] != s[sp + 1]);
75 break;
76 default:
77 return -1;
78 }
79 }
80 return s[0];
81 }
82
83 /*
84 * evaluate_cond_node evaluates the conditional stored in
85 * a struct cond_node and if the result is different than the
86 * current state of the node it sets the rules in the true/false
87 * list appropriately. If the result of the expression is undefined
88 * all of the rules are disabled for safety.
89 */
90 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
91 {
92 int new_state;
93 struct cond_av_list *cur;
94
95 new_state = cond_evaluate_expr(p, node->expr);
96 if (new_state != node->cur_state) {
97 node->cur_state = new_state;
98 if (new_state == -1)
99 printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
100 /* turn the rules on or off */
101 for (cur = node->true_list; cur; cur = cur->next) {
102 if (new_state <= 0)
103 cur->node->key.specified &= ~AVTAB_ENABLED;
104 else
105 cur->node->key.specified |= AVTAB_ENABLED;
106 }
107
108 for (cur = node->false_list; cur; cur = cur->next) {
109 /* -1 or 1 */
110 if (new_state)
111 cur->node->key.specified &= ~AVTAB_ENABLED;
112 else
113 cur->node->key.specified |= AVTAB_ENABLED;
114 }
115 }
116 return 0;
117 }
118
119 int cond_policydb_init(struct policydb *p)
120 {
121 int rc;
122
123 p->bool_val_to_struct = NULL;
124 p->cond_list = NULL;
125
126 rc = avtab_init(&p->te_cond_avtab);
127 if (rc)
128 return rc;
129
130 return 0;
131 }
132
133 static void cond_av_list_destroy(struct cond_av_list *list)
134 {
135 struct cond_av_list *cur, *next;
136 for (cur = list; cur; cur = next) {
137 next = cur->next;
138 /* the avtab_ptr_t node is destroy by the avtab */
139 kfree(cur);
140 }
141 }
142
143 static void cond_node_destroy(struct cond_node *node)
144 {
145 struct cond_expr *cur_expr, *next_expr;
146
147 for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
148 next_expr = cur_expr->next;
149 kfree(cur_expr);
150 }
151 cond_av_list_destroy(node->true_list);
152 cond_av_list_destroy(node->false_list);
153 kfree(node);
154 }
155
156 static void cond_list_destroy(struct cond_node *list)
157 {
158 struct cond_node *next, *cur;
159
160 if (list == NULL)
161 return;
162
163 for (cur = list; cur; cur = next) {
164 next = cur->next;
165 cond_node_destroy(cur);
166 }
167 }
168
169 void cond_policydb_destroy(struct policydb *p)
170 {
171 kfree(p->bool_val_to_struct);
172 avtab_destroy(&p->te_cond_avtab);
173 cond_list_destroy(p->cond_list);
174 }
175
176 int cond_init_bool_indexes(struct policydb *p)
177 {
178 kfree(p->bool_val_to_struct);
179 p->bool_val_to_struct =
180 kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
181 if (!p->bool_val_to_struct)
182 return -ENOMEM;
183 return 0;
184 }
185
186 int cond_destroy_bool(void *key, void *datum, void *p)
187 {
188 kfree(key);
189 kfree(datum);
190 return 0;
191 }
192
193 int cond_index_bool(void *key, void *datum, void *datap)
194 {
195 struct policydb *p;
196 struct cond_bool_datum *booldatum;
197 struct flex_array *fa;
198
199 booldatum = datum;
200 p = datap;
201
202 if (!booldatum->value || booldatum->value > p->p_bools.nprim)
203 return -EINVAL;
204
205 fa = p->sym_val_to_name[SYM_BOOLS];
206 if (flex_array_put_ptr(fa, booldatum->value - 1, key,
207 GFP_KERNEL | __GFP_ZERO))
208 BUG();
209 p->bool_val_to_struct[booldatum->value - 1] = booldatum;
210
211 return 0;
212 }
213
214 static int bool_isvalid(struct cond_bool_datum *b)
215 {
216 if (!(b->state == 0 || b->state == 1))
217 return 0;
218 return 1;
219 }
220
221 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
222 {
223 char *key = NULL;
224 struct cond_bool_datum *booldatum;
225 __le32 buf[3];
226 u32 len;
227 int rc;
228
229 booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
230 if (!booldatum)
231 return -ENOMEM;
232
233 rc = next_entry(buf, fp, sizeof buf);
234 if (rc)
235 goto err;
236
237 booldatum->value = le32_to_cpu(buf[0]);
238 booldatum->state = le32_to_cpu(buf[1]);
239
240 rc = -EINVAL;
241 if (!bool_isvalid(booldatum))
242 goto err;
243
244 len = le32_to_cpu(buf[2]);
245
246 rc = -ENOMEM;
247 key = kmalloc(len + 1, GFP_KERNEL);
248 if (!key)
249 goto err;
250 rc = next_entry(key, fp, len);
251 if (rc)
252 goto err;
253 key[len] = '\0';
254 rc = hashtab_insert(h, key, booldatum);
255 if (rc)
256 goto err;
257
258 return 0;
259 err:
260 cond_destroy_bool(key, booldatum, NULL);
261 return rc;
262 }
263
264 struct cond_insertf_data {
265 struct policydb *p;
266 struct cond_av_list *other;
267 struct cond_av_list *head;
268 struct cond_av_list *tail;
269 };
270
271 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
272 {
273 struct cond_insertf_data *data = ptr;
274 struct policydb *p = data->p;
275 struct cond_av_list *other = data->other, *list, *cur;
276 struct avtab_node *node_ptr;
277 u8 found;
278 int rc = -EINVAL;
279
280 /*
281 * For type rules we have to make certain there aren't any
282 * conflicting rules by searching the te_avtab and the
283 * cond_te_avtab.
284 */
285 if (k->specified & AVTAB_TYPE) {
286 if (avtab_search(&p->te_avtab, k)) {
287 printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
288 goto err;
289 }
290 /*
291 * If we are reading the false list other will be a pointer to
292 * the true list. We can have duplicate entries if there is only
293 * 1 other entry and it is in our true list.
294 *
295 * If we are reading the true list (other == NULL) there shouldn't
296 * be any other entries.
297 */
298 if (other) {
299 node_ptr = avtab_search_node(&p->te_cond_avtab, k);
300 if (node_ptr) {
301 if (avtab_search_node_next(node_ptr, k->specified)) {
302 printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
303 goto err;
304 }
305 found = 0;
306 for (cur = other; cur; cur = cur->next) {
307 if (cur->node == node_ptr) {
308 found = 1;
309 break;
310 }
311 }
312 if (!found) {
313 printk(KERN_ERR "SELinux: conflicting type rules.\n");
314 goto err;
315 }
316 }
317 } else {
318 if (avtab_search(&p->te_cond_avtab, k)) {
319 printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
320 goto err;
321 }
322 }
323 }
324
325 node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
326 if (!node_ptr) {
327 printk(KERN_ERR "SELinux: could not insert rule.\n");
328 rc = -ENOMEM;
329 goto err;
330 }
331
332 list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
333 if (!list) {
334 rc = -ENOMEM;
335 goto err;
336 }
337
338 list->node = node_ptr;
339 if (!data->head)
340 data->head = list;
341 else
342 data->tail->next = list;
343 data->tail = list;
344 return 0;
345
346 err:
347 cond_av_list_destroy(data->head);
348 data->head = NULL;
349 return rc;
350 }
351
352 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
353 {
354 int i, rc;
355 __le32 buf[1];
356 u32 len;
357 struct cond_insertf_data data;
358
359 *ret_list = NULL;
360
361 len = 0;
362 rc = next_entry(buf, fp, sizeof(u32));
363 if (rc)
364 return rc;
365
366 len = le32_to_cpu(buf[0]);
367 if (len == 0)
368 return 0;
369
370 data.p = p;
371 data.other = other;
372 data.head = NULL;
373 data.tail = NULL;
374 for (i = 0; i < len; i++) {
375 rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
376 &data);
377 if (rc)
378 return rc;
379 }
380
381 *ret_list = data.head;
382 return 0;
383 }
384
385 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
386 {
387 if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
388 printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
389 return 0;
390 }
391
392 if (expr->bool > p->p_bools.nprim) {
393 printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
394 return 0;
395 }
396 return 1;
397 }
398
399 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
400 {
401 __le32 buf[2];
402 u32 len, i;
403 int rc;
404 struct cond_expr *expr = NULL, *last = NULL;
405
406 rc = next_entry(buf, fp, sizeof(u32));
407 if (rc)
408 return rc;
409
410 node->cur_state = le32_to_cpu(buf[0]);
411
412 len = 0;
413 rc = next_entry(buf, fp, sizeof(u32));
414 if (rc)
415 return rc;
416
417 /* expr */
418 len = le32_to_cpu(buf[0]);
419
420 for (i = 0; i < len; i++) {
421 rc = next_entry(buf, fp, sizeof(u32) * 2);
422 if (rc)
423 goto err;
424
425 rc = -ENOMEM;
426 expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
427 if (!expr)
428 goto err;
429
430 expr->expr_type = le32_to_cpu(buf[0]);
431 expr->bool = le32_to_cpu(buf[1]);
432
433 if (!expr_isvalid(p, expr)) {
434 rc = -EINVAL;
435 kfree(expr);
436 goto err;
437 }
438
439 if (i == 0)
440 node->expr = expr;
441 else
442 last->next = expr;
443 last = expr;
444 }
445
446 rc = cond_read_av_list(p, fp, &node->true_list, NULL);
447 if (rc)
448 goto err;
449 rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
450 if (rc)
451 goto err;
452 return 0;
453 err:
454 cond_node_destroy(node);
455 return rc;
456 }
457
458 int cond_read_list(struct policydb *p, void *fp)
459 {
460 struct cond_node *node, *last = NULL;
461 __le32 buf[1];
462 u32 i, len;
463 int rc;
464
465 rc = next_entry(buf, fp, sizeof buf);
466 if (rc)
467 return rc;
468
469 len = le32_to_cpu(buf[0]);
470
471 rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
472 if (rc)
473 goto err;
474
475 for (i = 0; i < len; i++) {
476 rc = -ENOMEM;
477 node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
478 if (!node)
479 goto err;
480
481 rc = cond_read_node(p, node, fp);
482 if (rc)
483 goto err;
484
485 if (i == 0)
486 p->cond_list = node;
487 else
488 last->next = node;
489 last = node;
490 }
491 return 0;
492 err:
493 cond_list_destroy(p->cond_list);
494 p->cond_list = NULL;
495 return rc;
496 }
497
498 int cond_write_bool(void *vkey, void *datum, void *ptr)
499 {
500 char *key = vkey;
501 struct cond_bool_datum *booldatum = datum;
502 struct policy_data *pd = ptr;
503 void *fp = pd->fp;
504 __le32 buf[3];
505 u32 len;
506 int rc;
507
508 len = strlen(key);
509 buf[0] = cpu_to_le32(booldatum->value);
510 buf[1] = cpu_to_le32(booldatum->state);
511 buf[2] = cpu_to_le32(len);
512 rc = put_entry(buf, sizeof(u32), 3, fp);
513 if (rc)
514 return rc;
515 rc = put_entry(key, 1, len, fp);
516 if (rc)
517 return rc;
518 return 0;
519 }
520
521 /*
522 * cond_write_cond_av_list doesn't write out the av_list nodes.
523 * Instead it writes out the key/value pairs from the avtab. This
524 * is necessary because there is no way to uniquely identifying rules
525 * in the avtab so it is not possible to associate individual rules
526 * in the avtab with a conditional without saving them as part of
527 * the conditional. This means that the avtab with the conditional
528 * rules will not be saved but will be rebuilt on policy load.
529 */
530 static int cond_write_av_list(struct policydb *p,
531 struct cond_av_list *list, struct policy_file *fp)
532 {
533 __le32 buf[1];
534 struct cond_av_list *cur_list;
535 u32 len;
536 int rc;
537
538 len = 0;
539 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
540 len++;
541
542 buf[0] = cpu_to_le32(len);
543 rc = put_entry(buf, sizeof(u32), 1, fp);
544 if (rc)
545 return rc;
546
547 if (len == 0)
548 return 0;
549
550 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
551 rc = avtab_write_item(p, cur_list->node, fp);
552 if (rc)
553 return rc;
554 }
555
556 return 0;
557 }
558
559 static int cond_write_node(struct policydb *p, struct cond_node *node,
560 struct policy_file *fp)
561 {
562 struct cond_expr *cur_expr;
563 __le32 buf[2];
564 int rc;
565 u32 len = 0;
566
567 buf[0] = cpu_to_le32(node->cur_state);
568 rc = put_entry(buf, sizeof(u32), 1, fp);
569 if (rc)
570 return rc;
571
572 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
573 len++;
574
575 buf[0] = cpu_to_le32(len);
576 rc = put_entry(buf, sizeof(u32), 1, fp);
577 if (rc)
578 return rc;
579
580 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
581 buf[0] = cpu_to_le32(cur_expr->expr_type);
582 buf[1] = cpu_to_le32(cur_expr->bool);
583 rc = put_entry(buf, sizeof(u32), 2, fp);
584 if (rc)
585 return rc;
586 }
587
588 rc = cond_write_av_list(p, node->true_list, fp);
589 if (rc)
590 return rc;
591 rc = cond_write_av_list(p, node->false_list, fp);
592 if (rc)
593 return rc;
594
595 return 0;
596 }
597
598 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
599 {
600 struct cond_node *cur;
601 u32 len;
602 __le32 buf[1];
603 int rc;
604
605 len = 0;
606 for (cur = list; cur != NULL; cur = cur->next)
607 len++;
608 buf[0] = cpu_to_le32(len);
609 rc = put_entry(buf, sizeof(u32), 1, fp);
610 if (rc)
611 return rc;
612
613 for (cur = list; cur != NULL; cur = cur->next) {
614 rc = cond_write_node(p, cur, fp);
615 if (rc)
616 return rc;
617 }
618
619 return 0;
620 }
621
622 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
623 struct extended_perms_decision *xpermd)
624 {
625 struct avtab_node *node;
626
627 if (!ctab || !key || !xpermd)
628 return;
629
630 for (node = avtab_search_node(ctab, key); node;
631 node = avtab_search_node_next(node, key->specified)) {
632 if (node->key.specified & AVTAB_ENABLED)
633 services_compute_xperms_decision(xpermd, node);
634 }
635 return;
636
637 }
638 /* Determine whether additional permissions are granted by the conditional
639 * av table, and if so, add them to the result
640 */
641 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
642 struct av_decision *avd, struct extended_perms *xperms)
643 {
644 struct avtab_node *node;
645
646 if (!ctab || !key || !avd)
647 return;
648
649 for (node = avtab_search_node(ctab, key); node;
650 node = avtab_search_node_next(node, key->specified)) {
651 if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
652 (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
653 avd->allowed |= node->datum.u.data;
654 if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
655 (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
656 /* Since a '0' in an auditdeny mask represents a
657 * permission we do NOT want to audit (dontaudit), we use
658 * the '&' operand to ensure that all '0's in the mask
659 * are retained (much unlike the allow and auditallow cases).
660 */
661 avd->auditdeny &= node->datum.u.data;
662 if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
663 (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
664 avd->auditallow |= node->datum.u.data;
665 if (xperms && (node->key.specified & AVTAB_ENABLED) &&
666 (node->key.specified & AVTAB_XPERMS))
667 services_compute_xperms_drivers(xperms, node);
668 }
669 return;
670 }