sparc64: Fix several bugs in memmove().
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
e22bee78 50
ea138446 51#include "workqueue_internal.h"
1da177e4 52
c8e55f36 53enum {
24647570
TH
54 /*
55 * worker_pool flags
bc2ae0f5 56 *
24647570 57 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 64 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 65 *
bc3a1afc
TH
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
24647570 68 * create_worker() is in progress.
bc2ae0f5 69 */
11ebea50 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36
TH
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
3270476a 105 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
822d8405
TH
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
3c25a55d
LJ
133 * WQ: wq->mutex protected.
134 *
b5927605 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
136 *
137 * MD: wq_mayday_lock protected.
1da177e4 138 */
1da177e4 139
2eaebdb3 140/* struct worker is defined in workqueue_internal.h */
c34056a3 141
bd7bdd43 142struct worker_pool {
d565ed63 143 spinlock_t lock; /* the pool lock */
d84ff051 144 int cpu; /* I: the associated cpu */
f3f90ad4 145 int node; /* I: the associated node ID */
9daf9e67 146 int id; /* I: pool ID */
11ebea50 147 unsigned int flags; /* X: flags */
bd7bdd43
TH
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
151
152 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
c5aa87bb 159 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
bc3a1afc 163 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 164 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 165 struct mutex manager_mutex; /* manager exclusion */
822d8405 166 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
bce90380
TH
275static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
4c16bd32
TH
277/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
68e13a67 280static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 281static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 282
68e13a67
LJ
283static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
285
286/* the per-cpu worker pools */
287static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
68e13a67 290static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 291
68e13a67 292/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
293static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
c5aa87bb 295/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
296static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
ced4ac92
TH
298/* I: attributes used when instantiating ordered pools on demand */
299static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
d320c038 301struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 302EXPORT_SYMBOL(system_wq);
044c782c 303struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 304EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 305struct workqueue_struct *system_long_wq __read_mostly;
d320c038 306EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 307struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 308EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 309struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 310EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 311
7d19c5ce
TH
312static int worker_thread(void *__worker);
313static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
97bd2347
TH
316#define CREATE_TRACE_POINTS
317#include <trace/events/workqueue.h>
318
68e13a67 319#define assert_rcu_or_pool_mutex() \
5bcab335 320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
5bcab335 323
b09f4fd3 324#define assert_rcu_or_wq_mutex(wq) \
76af4d93 325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 326 lockdep_is_held(&wq->mutex), \
b09f4fd3 327 "sched RCU or wq->mutex should be held")
76af4d93 328
822d8405
TH
329#ifdef CONFIG_LOCKDEP
330#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335#else
336#define assert_manager_or_pool_lock(pool) do { } while (0)
337#endif
338
f02ae73a
TH
339#define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 342 (pool)++)
4ce62e9e 343
17116969
TH
344/**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
611c92a0 347 * @pi: integer used for iteration
fa1b54e6 348 *
68e13a67
LJ
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
17116969 355 */
611c92a0
TH
356#define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 359 else
17116969 360
822d8405
TH
361/**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372#define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
49e3cf44
TH
377/**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
76af4d93 381 *
b09f4fd3 382 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
49e3cf44
TH
388 */
389#define for_each_pwq(pwq, wq) \
76af4d93 390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 392 else
f3421797 393
dc186ad7
TG
394#ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396static struct debug_obj_descr work_debug_descr;
397
99777288
SG
398static void *work_debug_hint(void *addr)
399{
400 return ((struct work_struct *) addr)->func;
401}
402
dc186ad7
TG
403/*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407static int work_fixup_init(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421/*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426static int work_fixup_activate(void *addr, enum debug_obj_state state)
427{
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
22df02bb 438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452}
453
454/*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458static int work_fixup_free(void *addr, enum debug_obj_state state)
459{
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470}
471
472static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
99777288 474 .debug_hint = work_debug_hint,
dc186ad7
TG
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478};
479
480static inline void debug_work_activate(struct work_struct *work)
481{
482 debug_object_activate(work, &work_debug_descr);
483}
484
485static inline void debug_work_deactivate(struct work_struct *work)
486{
487 debug_object_deactivate(work, &work_debug_descr);
488}
489
490void __init_work(struct work_struct *work, int onstack)
491{
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496}
497EXPORT_SYMBOL_GPL(__init_work);
498
499void destroy_work_on_stack(struct work_struct *work)
500{
501 debug_object_free(work, &work_debug_descr);
502}
503EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505#else
506static inline void debug_work_activate(struct work_struct *work) { }
507static inline void debug_work_deactivate(struct work_struct *work) { }
508#endif
509
9daf9e67
TH
510/* allocate ID and assign it to @pool */
511static int worker_pool_assign_id(struct worker_pool *pool)
512{
513 int ret;
514
68e13a67 515 lockdep_assert_held(&wq_pool_mutex);
5bcab335 516
e68035fb 517 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
229641a6 518 if (ret >= 0) {
e68035fb 519 pool->id = ret;
229641a6
TH
520 return 0;
521 }
fa1b54e6 522 return ret;
7c3eed5c
TH
523}
524
df2d5ae4
TH
525/**
526 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
527 * @wq: the target workqueue
528 * @node: the node ID
529 *
530 * This must be called either with pwq_lock held or sched RCU read locked.
531 * If the pwq needs to be used beyond the locking in effect, the caller is
532 * responsible for guaranteeing that the pwq stays online.
533 */
534static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
535 int node)
536{
537 assert_rcu_or_wq_mutex(wq);
538 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
539}
540
73f53c4a
TH
541static unsigned int work_color_to_flags(int color)
542{
543 return color << WORK_STRUCT_COLOR_SHIFT;
544}
545
546static int get_work_color(struct work_struct *work)
547{
548 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
549 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
550}
551
552static int work_next_color(int color)
553{
554 return (color + 1) % WORK_NR_COLORS;
555}
1da177e4 556
14441960 557/*
112202d9
TH
558 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
559 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 560 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 561 *
112202d9
TH
562 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
563 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
564 * work->data. These functions should only be called while the work is
565 * owned - ie. while the PENDING bit is set.
7a22ad75 566 *
112202d9 567 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 568 * corresponding to a work. Pool is available once the work has been
112202d9 569 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 570 * available only while the work item is queued.
7a22ad75 571 *
bbb68dfa
TH
572 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
573 * canceled. While being canceled, a work item may have its PENDING set
574 * but stay off timer and worklist for arbitrarily long and nobody should
575 * try to steal the PENDING bit.
14441960 576 */
7a22ad75
TH
577static inline void set_work_data(struct work_struct *work, unsigned long data,
578 unsigned long flags)
365970a1 579{
6183c009 580 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
581 atomic_long_set(&work->data, data | flags | work_static(work));
582}
365970a1 583
112202d9 584static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
585 unsigned long extra_flags)
586{
112202d9
TH
587 set_work_data(work, (unsigned long)pwq,
588 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
589}
590
4468a00f
LJ
591static void set_work_pool_and_keep_pending(struct work_struct *work,
592 int pool_id)
593{
594 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
595 WORK_STRUCT_PENDING);
596}
597
7c3eed5c
TH
598static void set_work_pool_and_clear_pending(struct work_struct *work,
599 int pool_id)
7a22ad75 600{
23657bb1
TH
601 /*
602 * The following wmb is paired with the implied mb in
603 * test_and_set_bit(PENDING) and ensures all updates to @work made
604 * here are visible to and precede any updates by the next PENDING
605 * owner.
606 */
607 smp_wmb();
7c3eed5c 608 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 609}
f756d5e2 610
7a22ad75 611static void clear_work_data(struct work_struct *work)
1da177e4 612{
7c3eed5c
TH
613 smp_wmb(); /* see set_work_pool_and_clear_pending() */
614 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
615}
616
112202d9 617static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 618{
e120153d 619 unsigned long data = atomic_long_read(&work->data);
7a22ad75 620
112202d9 621 if (data & WORK_STRUCT_PWQ)
e120153d
TH
622 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
623 else
624 return NULL;
4d707b9f
ON
625}
626
7c3eed5c
TH
627/**
628 * get_work_pool - return the worker_pool a given work was associated with
629 * @work: the work item of interest
630 *
631 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 632 *
68e13a67
LJ
633 * Pools are created and destroyed under wq_pool_mutex, and allows read
634 * access under sched-RCU read lock. As such, this function should be
635 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
636 *
637 * All fields of the returned pool are accessible as long as the above
638 * mentioned locking is in effect. If the returned pool needs to be used
639 * beyond the critical section, the caller is responsible for ensuring the
640 * returned pool is and stays online.
7c3eed5c
TH
641 */
642static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 643{
e120153d 644 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 645 int pool_id;
7a22ad75 646
68e13a67 647 assert_rcu_or_pool_mutex();
fa1b54e6 648
112202d9
TH
649 if (data & WORK_STRUCT_PWQ)
650 return ((struct pool_workqueue *)
7c3eed5c 651 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 652
7c3eed5c
TH
653 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
654 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
655 return NULL;
656
fa1b54e6 657 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
658}
659
660/**
661 * get_work_pool_id - return the worker pool ID a given work is associated with
662 * @work: the work item of interest
663 *
664 * Return the worker_pool ID @work was last associated with.
665 * %WORK_OFFQ_POOL_NONE if none.
666 */
667static int get_work_pool_id(struct work_struct *work)
668{
54d5b7d0
LJ
669 unsigned long data = atomic_long_read(&work->data);
670
112202d9
TH
671 if (data & WORK_STRUCT_PWQ)
672 return ((struct pool_workqueue *)
54d5b7d0 673 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 674
54d5b7d0 675 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
676}
677
bbb68dfa
TH
678static void mark_work_canceling(struct work_struct *work)
679{
7c3eed5c 680 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 681
7c3eed5c
TH
682 pool_id <<= WORK_OFFQ_POOL_SHIFT;
683 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
684}
685
686static bool work_is_canceling(struct work_struct *work)
687{
688 unsigned long data = atomic_long_read(&work->data);
689
112202d9 690 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
691}
692
e22bee78 693/*
3270476a
TH
694 * Policy functions. These define the policies on how the global worker
695 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 696 * they're being called with pool->lock held.
e22bee78
TH
697 */
698
63d95a91 699static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 700{
e19e397a 701 return !atomic_read(&pool->nr_running);
a848e3b6
ON
702}
703
4594bf15 704/*
e22bee78
TH
705 * Need to wake up a worker? Called from anything but currently
706 * running workers.
974271c4
TH
707 *
708 * Note that, because unbound workers never contribute to nr_running, this
706026c2 709 * function will always return %true for unbound pools as long as the
974271c4 710 * worklist isn't empty.
4594bf15 711 */
63d95a91 712static bool need_more_worker(struct worker_pool *pool)
365970a1 713{
63d95a91 714 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 715}
4594bf15 716
e22bee78 717/* Can I start working? Called from busy but !running workers. */
63d95a91 718static bool may_start_working(struct worker_pool *pool)
e22bee78 719{
63d95a91 720 return pool->nr_idle;
e22bee78
TH
721}
722
723/* Do I need to keep working? Called from currently running workers. */
63d95a91 724static bool keep_working(struct worker_pool *pool)
e22bee78 725{
e19e397a
TH
726 return !list_empty(&pool->worklist) &&
727 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
728}
729
730/* Do we need a new worker? Called from manager. */
63d95a91 731static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 732{
63d95a91 733 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 734}
365970a1 735
e22bee78 736/* Do I need to be the manager? */
63d95a91 737static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 738{
63d95a91 739 return need_to_create_worker(pool) ||
11ebea50 740 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
741}
742
743/* Do we have too many workers and should some go away? */
63d95a91 744static bool too_many_workers(struct worker_pool *pool)
e22bee78 745{
34a06bd6 746 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
747 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
748 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 749
ea1abd61
LJ
750 /*
751 * nr_idle and idle_list may disagree if idle rebinding is in
752 * progress. Never return %true if idle_list is empty.
753 */
754 if (list_empty(&pool->idle_list))
755 return false;
756
e22bee78 757 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
758}
759
4d707b9f 760/*
e22bee78
TH
761 * Wake up functions.
762 */
763
7e11629d 764/* Return the first worker. Safe with preemption disabled */
63d95a91 765static struct worker *first_worker(struct worker_pool *pool)
7e11629d 766{
63d95a91 767 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
768 return NULL;
769
63d95a91 770 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
771}
772
773/**
774 * wake_up_worker - wake up an idle worker
63d95a91 775 * @pool: worker pool to wake worker from
7e11629d 776 *
63d95a91 777 * Wake up the first idle worker of @pool.
7e11629d
TH
778 *
779 * CONTEXT:
d565ed63 780 * spin_lock_irq(pool->lock).
7e11629d 781 */
63d95a91 782static void wake_up_worker(struct worker_pool *pool)
7e11629d 783{
63d95a91 784 struct worker *worker = first_worker(pool);
7e11629d
TH
785
786 if (likely(worker))
787 wake_up_process(worker->task);
788}
789
d302f017 790/**
e22bee78
TH
791 * wq_worker_waking_up - a worker is waking up
792 * @task: task waking up
793 * @cpu: CPU @task is waking up to
794 *
795 * This function is called during try_to_wake_up() when a worker is
796 * being awoken.
797 *
798 * CONTEXT:
799 * spin_lock_irq(rq->lock)
800 */
d84ff051 801void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
802{
803 struct worker *worker = kthread_data(task);
804
36576000 805 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 806 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 807 atomic_inc(&worker->pool->nr_running);
36576000 808 }
e22bee78
TH
809}
810
811/**
812 * wq_worker_sleeping - a worker is going to sleep
813 * @task: task going to sleep
814 * @cpu: CPU in question, must be the current CPU number
815 *
816 * This function is called during schedule() when a busy worker is
817 * going to sleep. Worker on the same cpu can be woken up by
818 * returning pointer to its task.
819 *
820 * CONTEXT:
821 * spin_lock_irq(rq->lock)
822 *
823 * RETURNS:
824 * Worker task on @cpu to wake up, %NULL if none.
825 */
d84ff051 826struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
827{
828 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 829 struct worker_pool *pool;
e22bee78 830
111c225a
TH
831 /*
832 * Rescuers, which may not have all the fields set up like normal
833 * workers, also reach here, let's not access anything before
834 * checking NOT_RUNNING.
835 */
2d64672e 836 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
837 return NULL;
838
111c225a 839 pool = worker->pool;
111c225a 840
e22bee78 841 /* this can only happen on the local cpu */
6183c009
TH
842 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
843 return NULL;
e22bee78
TH
844
845 /*
846 * The counterpart of the following dec_and_test, implied mb,
847 * worklist not empty test sequence is in insert_work().
848 * Please read comment there.
849 *
628c78e7
TH
850 * NOT_RUNNING is clear. This means that we're bound to and
851 * running on the local cpu w/ rq lock held and preemption
852 * disabled, which in turn means that none else could be
d565ed63 853 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 854 * lock is safe.
e22bee78 855 */
e19e397a
TH
856 if (atomic_dec_and_test(&pool->nr_running) &&
857 !list_empty(&pool->worklist))
63d95a91 858 to_wakeup = first_worker(pool);
e22bee78
TH
859 return to_wakeup ? to_wakeup->task : NULL;
860}
861
862/**
863 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 864 * @worker: self
d302f017
TH
865 * @flags: flags to set
866 * @wakeup: wakeup an idle worker if necessary
867 *
e22bee78
TH
868 * Set @flags in @worker->flags and adjust nr_running accordingly. If
869 * nr_running becomes zero and @wakeup is %true, an idle worker is
870 * woken up.
d302f017 871 *
cb444766 872 * CONTEXT:
d565ed63 873 * spin_lock_irq(pool->lock)
d302f017
TH
874 */
875static inline void worker_set_flags(struct worker *worker, unsigned int flags,
876 bool wakeup)
877{
bd7bdd43 878 struct worker_pool *pool = worker->pool;
e22bee78 879
cb444766
TH
880 WARN_ON_ONCE(worker->task != current);
881
e22bee78
TH
882 /*
883 * If transitioning into NOT_RUNNING, adjust nr_running and
884 * wake up an idle worker as necessary if requested by
885 * @wakeup.
886 */
887 if ((flags & WORKER_NOT_RUNNING) &&
888 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 889 if (wakeup) {
e19e397a 890 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 891 !list_empty(&pool->worklist))
63d95a91 892 wake_up_worker(pool);
e22bee78 893 } else
e19e397a 894 atomic_dec(&pool->nr_running);
e22bee78
TH
895 }
896
d302f017
TH
897 worker->flags |= flags;
898}
899
900/**
e22bee78 901 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 902 * @worker: self
d302f017
TH
903 * @flags: flags to clear
904 *
e22bee78 905 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 906 *
cb444766 907 * CONTEXT:
d565ed63 908 * spin_lock_irq(pool->lock)
d302f017
TH
909 */
910static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
911{
63d95a91 912 struct worker_pool *pool = worker->pool;
e22bee78
TH
913 unsigned int oflags = worker->flags;
914
cb444766
TH
915 WARN_ON_ONCE(worker->task != current);
916
d302f017 917 worker->flags &= ~flags;
e22bee78 918
42c025f3
TH
919 /*
920 * If transitioning out of NOT_RUNNING, increment nr_running. Note
921 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
922 * of multiple flags, not a single flag.
923 */
e22bee78
TH
924 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
925 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 926 atomic_inc(&pool->nr_running);
d302f017
TH
927}
928
8cca0eea
TH
929/**
930 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 931 * @pool: pool of interest
8cca0eea
TH
932 * @work: work to find worker for
933 *
c9e7cf27
TH
934 * Find a worker which is executing @work on @pool by searching
935 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
936 * to match, its current execution should match the address of @work and
937 * its work function. This is to avoid unwanted dependency between
938 * unrelated work executions through a work item being recycled while still
939 * being executed.
940 *
941 * This is a bit tricky. A work item may be freed once its execution
942 * starts and nothing prevents the freed area from being recycled for
943 * another work item. If the same work item address ends up being reused
944 * before the original execution finishes, workqueue will identify the
945 * recycled work item as currently executing and make it wait until the
946 * current execution finishes, introducing an unwanted dependency.
947 *
c5aa87bb
TH
948 * This function checks the work item address and work function to avoid
949 * false positives. Note that this isn't complete as one may construct a
950 * work function which can introduce dependency onto itself through a
951 * recycled work item. Well, if somebody wants to shoot oneself in the
952 * foot that badly, there's only so much we can do, and if such deadlock
953 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
954 *
955 * CONTEXT:
d565ed63 956 * spin_lock_irq(pool->lock).
8cca0eea
TH
957 *
958 * RETURNS:
959 * Pointer to worker which is executing @work if found, NULL
960 * otherwise.
4d707b9f 961 */
c9e7cf27 962static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 963 struct work_struct *work)
4d707b9f 964{
42f8570f 965 struct worker *worker;
42f8570f 966
b67bfe0d 967 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
968 (unsigned long)work)
969 if (worker->current_work == work &&
970 worker->current_func == work->func)
42f8570f
SL
971 return worker;
972
973 return NULL;
4d707b9f
ON
974}
975
bf4ede01
TH
976/**
977 * move_linked_works - move linked works to a list
978 * @work: start of series of works to be scheduled
979 * @head: target list to append @work to
980 * @nextp: out paramter for nested worklist walking
981 *
982 * Schedule linked works starting from @work to @head. Work series to
983 * be scheduled starts at @work and includes any consecutive work with
984 * WORK_STRUCT_LINKED set in its predecessor.
985 *
986 * If @nextp is not NULL, it's updated to point to the next work of
987 * the last scheduled work. This allows move_linked_works() to be
988 * nested inside outer list_for_each_entry_safe().
989 *
990 * CONTEXT:
d565ed63 991 * spin_lock_irq(pool->lock).
bf4ede01
TH
992 */
993static void move_linked_works(struct work_struct *work, struct list_head *head,
994 struct work_struct **nextp)
995{
996 struct work_struct *n;
997
998 /*
999 * Linked worklist will always end before the end of the list,
1000 * use NULL for list head.
1001 */
1002 list_for_each_entry_safe_from(work, n, NULL, entry) {
1003 list_move_tail(&work->entry, head);
1004 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1005 break;
1006 }
1007
1008 /*
1009 * If we're already inside safe list traversal and have moved
1010 * multiple works to the scheduled queue, the next position
1011 * needs to be updated.
1012 */
1013 if (nextp)
1014 *nextp = n;
1015}
1016
8864b4e5
TH
1017/**
1018 * get_pwq - get an extra reference on the specified pool_workqueue
1019 * @pwq: pool_workqueue to get
1020 *
1021 * Obtain an extra reference on @pwq. The caller should guarantee that
1022 * @pwq has positive refcnt and be holding the matching pool->lock.
1023 */
1024static void get_pwq(struct pool_workqueue *pwq)
1025{
1026 lockdep_assert_held(&pwq->pool->lock);
1027 WARN_ON_ONCE(pwq->refcnt <= 0);
1028 pwq->refcnt++;
1029}
1030
1031/**
1032 * put_pwq - put a pool_workqueue reference
1033 * @pwq: pool_workqueue to put
1034 *
1035 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1036 * destruction. The caller should be holding the matching pool->lock.
1037 */
1038static void put_pwq(struct pool_workqueue *pwq)
1039{
1040 lockdep_assert_held(&pwq->pool->lock);
1041 if (likely(--pwq->refcnt))
1042 return;
1043 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1044 return;
1045 /*
1046 * @pwq can't be released under pool->lock, bounce to
1047 * pwq_unbound_release_workfn(). This never recurses on the same
1048 * pool->lock as this path is taken only for unbound workqueues and
1049 * the release work item is scheduled on a per-cpu workqueue. To
1050 * avoid lockdep warning, unbound pool->locks are given lockdep
1051 * subclass of 1 in get_unbound_pool().
1052 */
1053 schedule_work(&pwq->unbound_release_work);
1054}
1055
dce90d47
TH
1056/**
1057 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1058 * @pwq: pool_workqueue to put (can be %NULL)
1059 *
1060 * put_pwq() with locking. This function also allows %NULL @pwq.
1061 */
1062static void put_pwq_unlocked(struct pool_workqueue *pwq)
1063{
1064 if (pwq) {
1065 /*
1066 * As both pwqs and pools are sched-RCU protected, the
1067 * following lock operations are safe.
1068 */
1069 spin_lock_irq(&pwq->pool->lock);
1070 put_pwq(pwq);
1071 spin_unlock_irq(&pwq->pool->lock);
1072 }
1073}
1074
112202d9 1075static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1076{
112202d9 1077 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1078
1079 trace_workqueue_activate_work(work);
112202d9 1080 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1081 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1082 pwq->nr_active++;
bf4ede01
TH
1083}
1084
112202d9 1085static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1086{
112202d9 1087 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1088 struct work_struct, entry);
1089
112202d9 1090 pwq_activate_delayed_work(work);
3aa62497
LJ
1091}
1092
bf4ede01 1093/**
112202d9
TH
1094 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1095 * @pwq: pwq of interest
bf4ede01 1096 * @color: color of work which left the queue
bf4ede01
TH
1097 *
1098 * A work either has completed or is removed from pending queue,
112202d9 1099 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1100 *
1101 * CONTEXT:
d565ed63 1102 * spin_lock_irq(pool->lock).
bf4ede01 1103 */
112202d9 1104static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1105{
8864b4e5 1106 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1107 if (color == WORK_NO_COLOR)
8864b4e5 1108 goto out_put;
bf4ede01 1109
112202d9 1110 pwq->nr_in_flight[color]--;
bf4ede01 1111
112202d9
TH
1112 pwq->nr_active--;
1113 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1114 /* one down, submit a delayed one */
112202d9
TH
1115 if (pwq->nr_active < pwq->max_active)
1116 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1117 }
1118
1119 /* is flush in progress and are we at the flushing tip? */
112202d9 1120 if (likely(pwq->flush_color != color))
8864b4e5 1121 goto out_put;
bf4ede01
TH
1122
1123 /* are there still in-flight works? */
112202d9 1124 if (pwq->nr_in_flight[color])
8864b4e5 1125 goto out_put;
bf4ede01 1126
112202d9
TH
1127 /* this pwq is done, clear flush_color */
1128 pwq->flush_color = -1;
bf4ede01
TH
1129
1130 /*
112202d9 1131 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1132 * will handle the rest.
1133 */
112202d9
TH
1134 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1135 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1136out_put:
1137 put_pwq(pwq);
bf4ede01
TH
1138}
1139
36e227d2 1140/**
bbb68dfa 1141 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1142 * @work: work item to steal
1143 * @is_dwork: @work is a delayed_work
bbb68dfa 1144 * @flags: place to store irq state
36e227d2
TH
1145 *
1146 * Try to grab PENDING bit of @work. This function can handle @work in any
1147 * stable state - idle, on timer or on worklist. Return values are
1148 *
1149 * 1 if @work was pending and we successfully stole PENDING
1150 * 0 if @work was idle and we claimed PENDING
1151 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1152 * -ENOENT if someone else is canceling @work, this state may persist
1153 * for arbitrarily long
36e227d2 1154 *
bbb68dfa 1155 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1156 * interrupted while holding PENDING and @work off queue, irq must be
1157 * disabled on entry. This, combined with delayed_work->timer being
1158 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1159 *
1160 * On successful return, >= 0, irq is disabled and the caller is
1161 * responsible for releasing it using local_irq_restore(*@flags).
1162 *
e0aecdd8 1163 * This function is safe to call from any context including IRQ handler.
bf4ede01 1164 */
bbb68dfa
TH
1165static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1166 unsigned long *flags)
bf4ede01 1167{
d565ed63 1168 struct worker_pool *pool;
112202d9 1169 struct pool_workqueue *pwq;
bf4ede01 1170
bbb68dfa
TH
1171 local_irq_save(*flags);
1172
36e227d2
TH
1173 /* try to steal the timer if it exists */
1174 if (is_dwork) {
1175 struct delayed_work *dwork = to_delayed_work(work);
1176
e0aecdd8
TH
1177 /*
1178 * dwork->timer is irqsafe. If del_timer() fails, it's
1179 * guaranteed that the timer is not queued anywhere and not
1180 * running on the local CPU.
1181 */
36e227d2
TH
1182 if (likely(del_timer(&dwork->timer)))
1183 return 1;
1184 }
1185
1186 /* try to claim PENDING the normal way */
bf4ede01
TH
1187 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1188 return 0;
1189
1190 /*
1191 * The queueing is in progress, or it is already queued. Try to
1192 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1193 */
d565ed63
TH
1194 pool = get_work_pool(work);
1195 if (!pool)
bbb68dfa 1196 goto fail;
bf4ede01 1197
d565ed63 1198 spin_lock(&pool->lock);
0b3dae68 1199 /*
112202d9
TH
1200 * work->data is guaranteed to point to pwq only while the work
1201 * item is queued on pwq->wq, and both updating work->data to point
1202 * to pwq on queueing and to pool on dequeueing are done under
1203 * pwq->pool->lock. This in turn guarantees that, if work->data
1204 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1205 * item is currently queued on that pool.
1206 */
112202d9
TH
1207 pwq = get_work_pwq(work);
1208 if (pwq && pwq->pool == pool) {
16062836
TH
1209 debug_work_deactivate(work);
1210
1211 /*
1212 * A delayed work item cannot be grabbed directly because
1213 * it might have linked NO_COLOR work items which, if left
112202d9 1214 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1215 * management later on and cause stall. Make sure the work
1216 * item is activated before grabbing.
1217 */
1218 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1219 pwq_activate_delayed_work(work);
16062836
TH
1220
1221 list_del_init(&work->entry);
112202d9 1222 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1223
112202d9 1224 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1225 set_work_pool_and_keep_pending(work, pool->id);
1226
1227 spin_unlock(&pool->lock);
1228 return 1;
bf4ede01 1229 }
d565ed63 1230 spin_unlock(&pool->lock);
bbb68dfa
TH
1231fail:
1232 local_irq_restore(*flags);
1233 if (work_is_canceling(work))
1234 return -ENOENT;
1235 cpu_relax();
36e227d2 1236 return -EAGAIN;
bf4ede01
TH
1237}
1238
4690c4ab 1239/**
706026c2 1240 * insert_work - insert a work into a pool
112202d9 1241 * @pwq: pwq @work belongs to
4690c4ab
TH
1242 * @work: work to insert
1243 * @head: insertion point
1244 * @extra_flags: extra WORK_STRUCT_* flags to set
1245 *
112202d9 1246 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1247 * work_struct flags.
4690c4ab
TH
1248 *
1249 * CONTEXT:
d565ed63 1250 * spin_lock_irq(pool->lock).
4690c4ab 1251 */
112202d9
TH
1252static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1253 struct list_head *head, unsigned int extra_flags)
b89deed3 1254{
112202d9 1255 struct worker_pool *pool = pwq->pool;
e22bee78 1256
4690c4ab 1257 /* we own @work, set data and link */
112202d9 1258 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1259 list_add_tail(&work->entry, head);
8864b4e5 1260 get_pwq(pwq);
e22bee78
TH
1261
1262 /*
c5aa87bb
TH
1263 * Ensure either wq_worker_sleeping() sees the above
1264 * list_add_tail() or we see zero nr_running to avoid workers lying
1265 * around lazily while there are works to be processed.
e22bee78
TH
1266 */
1267 smp_mb();
1268
63d95a91
TH
1269 if (__need_more_worker(pool))
1270 wake_up_worker(pool);
b89deed3
ON
1271}
1272
c8efcc25
TH
1273/*
1274 * Test whether @work is being queued from another work executing on the
8d03ecfe 1275 * same workqueue.
c8efcc25
TH
1276 */
1277static bool is_chained_work(struct workqueue_struct *wq)
1278{
8d03ecfe
TH
1279 struct worker *worker;
1280
1281 worker = current_wq_worker();
1282 /*
1283 * Return %true iff I'm a worker execuing a work item on @wq. If
1284 * I'm @worker, it's safe to dereference it without locking.
1285 */
112202d9 1286 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1287}
1288
d84ff051 1289static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1290 struct work_struct *work)
1291{
112202d9 1292 struct pool_workqueue *pwq;
c9178087 1293 struct worker_pool *last_pool;
1e19ffc6 1294 struct list_head *worklist;
8a2e8e5d 1295 unsigned int work_flags;
b75cac93 1296 unsigned int req_cpu = cpu;
8930caba
TH
1297
1298 /*
1299 * While a work item is PENDING && off queue, a task trying to
1300 * steal the PENDING will busy-loop waiting for it to either get
1301 * queued or lose PENDING. Grabbing PENDING and queueing should
1302 * happen with IRQ disabled.
1303 */
1304 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1305
dc186ad7 1306 debug_work_activate(work);
1e19ffc6 1307
c8efcc25 1308 /* if dying, only works from the same workqueue are allowed */
618b01eb 1309 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1310 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1311 return;
9e8cd2f5 1312retry:
df2d5ae4
TH
1313 if (req_cpu == WORK_CPU_UNBOUND)
1314 cpu = raw_smp_processor_id();
1315
c9178087 1316 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1317 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1318 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1319 else
1320 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1321
c9178087
TH
1322 /*
1323 * If @work was previously on a different pool, it might still be
1324 * running there, in which case the work needs to be queued on that
1325 * pool to guarantee non-reentrancy.
1326 */
1327 last_pool = get_work_pool(work);
1328 if (last_pool && last_pool != pwq->pool) {
1329 struct worker *worker;
18aa9eff 1330
c9178087 1331 spin_lock(&last_pool->lock);
18aa9eff 1332
c9178087 1333 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1334
c9178087
TH
1335 if (worker && worker->current_pwq->wq == wq) {
1336 pwq = worker->current_pwq;
8930caba 1337 } else {
c9178087
TH
1338 /* meh... not running there, queue here */
1339 spin_unlock(&last_pool->lock);
112202d9 1340 spin_lock(&pwq->pool->lock);
8930caba 1341 }
f3421797 1342 } else {
112202d9 1343 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1344 }
1345
9e8cd2f5
TH
1346 /*
1347 * pwq is determined and locked. For unbound pools, we could have
1348 * raced with pwq release and it could already be dead. If its
1349 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1350 * without another pwq replacing it in the numa_pwq_tbl or while
1351 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1352 * make forward-progress.
1353 */
1354 if (unlikely(!pwq->refcnt)) {
1355 if (wq->flags & WQ_UNBOUND) {
1356 spin_unlock(&pwq->pool->lock);
1357 cpu_relax();
1358 goto retry;
1359 }
1360 /* oops */
1361 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1362 wq->name, cpu);
1363 }
1364
112202d9
TH
1365 /* pwq determined, queue */
1366 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1367
f5b2552b 1368 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1369 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1370 return;
1371 }
1e19ffc6 1372
112202d9
TH
1373 pwq->nr_in_flight[pwq->work_color]++;
1374 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1375
112202d9 1376 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1377 trace_workqueue_activate_work(work);
112202d9
TH
1378 pwq->nr_active++;
1379 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1380 } else {
1381 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1382 worklist = &pwq->delayed_works;
8a2e8e5d 1383 }
1e19ffc6 1384
112202d9 1385 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1386
112202d9 1387 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1388}
1389
0fcb78c2 1390/**
c1a220e7
ZR
1391 * queue_work_on - queue work on specific cpu
1392 * @cpu: CPU number to execute work on
0fcb78c2
REB
1393 * @wq: workqueue to use
1394 * @work: work to queue
1395 *
d4283e93 1396 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1397 *
c1a220e7
ZR
1398 * We queue the work to a specific CPU, the caller must ensure it
1399 * can't go away.
1da177e4 1400 */
d4283e93
TH
1401bool queue_work_on(int cpu, struct workqueue_struct *wq,
1402 struct work_struct *work)
1da177e4 1403{
d4283e93 1404 bool ret = false;
8930caba 1405 unsigned long flags;
ef1ca236 1406
8930caba 1407 local_irq_save(flags);
c1a220e7 1408
22df02bb 1409 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1410 __queue_work(cpu, wq, work);
d4283e93 1411 ret = true;
c1a220e7 1412 }
ef1ca236 1413
8930caba 1414 local_irq_restore(flags);
1da177e4
LT
1415 return ret;
1416}
ad7b1f84 1417EXPORT_SYMBOL(queue_work_on);
1da177e4 1418
d8e794df 1419void delayed_work_timer_fn(unsigned long __data)
1da177e4 1420{
52bad64d 1421 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1422
e0aecdd8 1423 /* should have been called from irqsafe timer with irq already off */
60c057bc 1424 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1425}
1438ade5 1426EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1427
7beb2edf
TH
1428static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1429 struct delayed_work *dwork, unsigned long delay)
1da177e4 1430{
7beb2edf
TH
1431 struct timer_list *timer = &dwork->timer;
1432 struct work_struct *work = &dwork->work;
7beb2edf
TH
1433
1434 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1435 timer->data != (unsigned long)dwork);
fc4b514f
TH
1436 WARN_ON_ONCE(timer_pending(timer));
1437 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1438
8852aac2
TH
1439 /*
1440 * If @delay is 0, queue @dwork->work immediately. This is for
1441 * both optimization and correctness. The earliest @timer can
1442 * expire is on the closest next tick and delayed_work users depend
1443 * on that there's no such delay when @delay is 0.
1444 */
1445 if (!delay) {
1446 __queue_work(cpu, wq, &dwork->work);
1447 return;
1448 }
1449
7beb2edf 1450 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1451
60c057bc 1452 dwork->wq = wq;
1265057f 1453 dwork->cpu = cpu;
7beb2edf
TH
1454 timer->expires = jiffies + delay;
1455
1456 if (unlikely(cpu != WORK_CPU_UNBOUND))
1457 add_timer_on(timer, cpu);
1458 else
1459 add_timer(timer);
1da177e4
LT
1460}
1461
0fcb78c2
REB
1462/**
1463 * queue_delayed_work_on - queue work on specific CPU after delay
1464 * @cpu: CPU number to execute work on
1465 * @wq: workqueue to use
af9997e4 1466 * @dwork: work to queue
0fcb78c2
REB
1467 * @delay: number of jiffies to wait before queueing
1468 *
715f1300
TH
1469 * Returns %false if @work was already on a queue, %true otherwise. If
1470 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1471 * execution.
0fcb78c2 1472 */
d4283e93
TH
1473bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1474 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1475{
52bad64d 1476 struct work_struct *work = &dwork->work;
d4283e93 1477 bool ret = false;
8930caba 1478 unsigned long flags;
7a6bc1cd 1479
8930caba
TH
1480 /* read the comment in __queue_work() */
1481 local_irq_save(flags);
7a6bc1cd 1482
22df02bb 1483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1484 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1485 ret = true;
7a6bc1cd 1486 }
8a3e77cc 1487
8930caba 1488 local_irq_restore(flags);
7a6bc1cd
VP
1489 return ret;
1490}
ad7b1f84 1491EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1492
8376fe22
TH
1493/**
1494 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1495 * @cpu: CPU number to execute work on
1496 * @wq: workqueue to use
1497 * @dwork: work to queue
1498 * @delay: number of jiffies to wait before queueing
1499 *
1500 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1501 * modify @dwork's timer so that it expires after @delay. If @delay is
1502 * zero, @work is guaranteed to be scheduled immediately regardless of its
1503 * current state.
1504 *
1505 * Returns %false if @dwork was idle and queued, %true if @dwork was
1506 * pending and its timer was modified.
1507 *
e0aecdd8 1508 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1509 * See try_to_grab_pending() for details.
1510 */
1511bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1512 struct delayed_work *dwork, unsigned long delay)
1513{
1514 unsigned long flags;
1515 int ret;
c7fc77f7 1516
8376fe22
TH
1517 do {
1518 ret = try_to_grab_pending(&dwork->work, true, &flags);
1519 } while (unlikely(ret == -EAGAIN));
63bc0362 1520
8376fe22
TH
1521 if (likely(ret >= 0)) {
1522 __queue_delayed_work(cpu, wq, dwork, delay);
1523 local_irq_restore(flags);
7a6bc1cd 1524 }
8376fe22
TH
1525
1526 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1527 return ret;
1528}
8376fe22
TH
1529EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1530
c8e55f36
TH
1531/**
1532 * worker_enter_idle - enter idle state
1533 * @worker: worker which is entering idle state
1534 *
1535 * @worker is entering idle state. Update stats and idle timer if
1536 * necessary.
1537 *
1538 * LOCKING:
d565ed63 1539 * spin_lock_irq(pool->lock).
c8e55f36
TH
1540 */
1541static void worker_enter_idle(struct worker *worker)
1da177e4 1542{
bd7bdd43 1543 struct worker_pool *pool = worker->pool;
c8e55f36 1544
6183c009
TH
1545 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1546 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1547 (worker->hentry.next || worker->hentry.pprev)))
1548 return;
c8e55f36 1549
cb444766
TH
1550 /* can't use worker_set_flags(), also called from start_worker() */
1551 worker->flags |= WORKER_IDLE;
bd7bdd43 1552 pool->nr_idle++;
e22bee78 1553 worker->last_active = jiffies;
c8e55f36
TH
1554
1555 /* idle_list is LIFO */
bd7bdd43 1556 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1557
628c78e7
TH
1558 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1559 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1560
544ecf31 1561 /*
706026c2 1562 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1563 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1564 * nr_running, the warning may trigger spuriously. Check iff
1565 * unbind is not in progress.
544ecf31 1566 */
24647570 1567 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1568 pool->nr_workers == pool->nr_idle &&
e19e397a 1569 atomic_read(&pool->nr_running));
c8e55f36
TH
1570}
1571
1572/**
1573 * worker_leave_idle - leave idle state
1574 * @worker: worker which is leaving idle state
1575 *
1576 * @worker is leaving idle state. Update stats.
1577 *
1578 * LOCKING:
d565ed63 1579 * spin_lock_irq(pool->lock).
c8e55f36
TH
1580 */
1581static void worker_leave_idle(struct worker *worker)
1582{
bd7bdd43 1583 struct worker_pool *pool = worker->pool;
c8e55f36 1584
6183c009
TH
1585 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1586 return;
d302f017 1587 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1588 pool->nr_idle--;
c8e55f36
TH
1589 list_del_init(&worker->entry);
1590}
1591
e22bee78 1592/**
f36dc67b
LJ
1593 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1594 * @pool: target worker_pool
1595 *
1596 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1597 *
1598 * Works which are scheduled while the cpu is online must at least be
1599 * scheduled to a worker which is bound to the cpu so that if they are
1600 * flushed from cpu callbacks while cpu is going down, they are
1601 * guaranteed to execute on the cpu.
1602 *
f5faa077 1603 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1604 * themselves to the target cpu and may race with cpu going down or
1605 * coming online. kthread_bind() can't be used because it may put the
1606 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1607 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1608 * [dis]associated in the meantime.
1609 *
706026c2 1610 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1611 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1612 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1613 * enters idle state or fetches works without dropping lock, it can
1614 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1615 *
1616 * CONTEXT:
d565ed63 1617 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1618 * held.
1619 *
1620 * RETURNS:
706026c2 1621 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1622 * bound), %false if offline.
1623 */
f36dc67b 1624static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1625__acquires(&pool->lock)
e22bee78 1626{
e22bee78 1627 while (true) {
4e6045f1 1628 /*
e22bee78
TH
1629 * The following call may fail, succeed or succeed
1630 * without actually migrating the task to the cpu if
1631 * it races with cpu hotunplug operation. Verify
24647570 1632 * against POOL_DISASSOCIATED.
4e6045f1 1633 */
24647570 1634 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1635 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1636
d565ed63 1637 spin_lock_irq(&pool->lock);
24647570 1638 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1639 return false;
f5faa077 1640 if (task_cpu(current) == pool->cpu &&
7a4e344c 1641 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1642 return true;
d565ed63 1643 spin_unlock_irq(&pool->lock);
e22bee78 1644
5035b20f
TH
1645 /*
1646 * We've raced with CPU hot[un]plug. Give it a breather
1647 * and retry migration. cond_resched() is required here;
1648 * otherwise, we might deadlock against cpu_stop trying to
1649 * bring down the CPU on non-preemptive kernel.
1650 */
e22bee78 1651 cpu_relax();
5035b20f 1652 cond_resched();
e22bee78
TH
1653 }
1654}
1655
c34056a3
TH
1656static struct worker *alloc_worker(void)
1657{
1658 struct worker *worker;
1659
1660 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1661 if (worker) {
1662 INIT_LIST_HEAD(&worker->entry);
affee4b2 1663 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1664 /* on creation a worker is in !idle && prep state */
1665 worker->flags = WORKER_PREP;
c8e55f36 1666 }
c34056a3
TH
1667 return worker;
1668}
1669
1670/**
1671 * create_worker - create a new workqueue worker
63d95a91 1672 * @pool: pool the new worker will belong to
c34056a3 1673 *
63d95a91 1674 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1675 * can be started by calling start_worker() or destroyed using
1676 * destroy_worker().
1677 *
1678 * CONTEXT:
1679 * Might sleep. Does GFP_KERNEL allocations.
1680 *
1681 * RETURNS:
1682 * Pointer to the newly created worker.
1683 */
bc2ae0f5 1684static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1685{
c34056a3 1686 struct worker *worker = NULL;
f3421797 1687 int id = -1;
e3c916a4 1688 char id_buf[16];
c34056a3 1689
cd549687
TH
1690 lockdep_assert_held(&pool->manager_mutex);
1691
822d8405
TH
1692 /*
1693 * ID is needed to determine kthread name. Allocate ID first
1694 * without installing the pointer.
1695 */
1696 idr_preload(GFP_KERNEL);
d565ed63 1697 spin_lock_irq(&pool->lock);
822d8405
TH
1698
1699 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1700
d565ed63 1701 spin_unlock_irq(&pool->lock);
822d8405
TH
1702 idr_preload_end();
1703 if (id < 0)
1704 goto fail;
c34056a3
TH
1705
1706 worker = alloc_worker();
1707 if (!worker)
1708 goto fail;
1709
bd7bdd43 1710 worker->pool = pool;
c34056a3
TH
1711 worker->id = id;
1712
29c91e99 1713 if (pool->cpu >= 0)
e3c916a4
TH
1714 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1715 pool->attrs->nice < 0 ? "H" : "");
f3421797 1716 else
e3c916a4
TH
1717 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1718
f3f90ad4 1719 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1720 "kworker/%s", id_buf);
c34056a3
TH
1721 if (IS_ERR(worker->task))
1722 goto fail;
1723
c5aa87bb
TH
1724 /*
1725 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1726 * online CPUs. It'll be re-applied when any of the CPUs come up.
1727 */
7a4e344c
TH
1728 set_user_nice(worker->task, pool->attrs->nice);
1729 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1730
14a40ffc
TH
1731 /* prevent userland from meddling with cpumask of workqueue workers */
1732 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1733
1734 /*
1735 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1736 * remains stable across this function. See the comments above the
1737 * flag definition for details.
1738 */
1739 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1740 worker->flags |= WORKER_UNBOUND;
c34056a3 1741
822d8405
TH
1742 /* successful, commit the pointer to idr */
1743 spin_lock_irq(&pool->lock);
1744 idr_replace(&pool->worker_idr, worker, worker->id);
1745 spin_unlock_irq(&pool->lock);
1746
c34056a3 1747 return worker;
822d8405 1748
c34056a3
TH
1749fail:
1750 if (id >= 0) {
d565ed63 1751 spin_lock_irq(&pool->lock);
822d8405 1752 idr_remove(&pool->worker_idr, id);
d565ed63 1753 spin_unlock_irq(&pool->lock);
c34056a3
TH
1754 }
1755 kfree(worker);
1756 return NULL;
1757}
1758
1759/**
1760 * start_worker - start a newly created worker
1761 * @worker: worker to start
1762 *
706026c2 1763 * Make the pool aware of @worker and start it.
c34056a3
TH
1764 *
1765 * CONTEXT:
d565ed63 1766 * spin_lock_irq(pool->lock).
c34056a3
TH
1767 */
1768static void start_worker(struct worker *worker)
1769{
cb444766 1770 worker->flags |= WORKER_STARTED;
bd7bdd43 1771 worker->pool->nr_workers++;
c8e55f36 1772 worker_enter_idle(worker);
c34056a3
TH
1773 wake_up_process(worker->task);
1774}
1775
ebf44d16
TH
1776/**
1777 * create_and_start_worker - create and start a worker for a pool
1778 * @pool: the target pool
1779 *
cd549687 1780 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1781 */
1782static int create_and_start_worker(struct worker_pool *pool)
1783{
1784 struct worker *worker;
1785
cd549687
TH
1786 mutex_lock(&pool->manager_mutex);
1787
ebf44d16
TH
1788 worker = create_worker(pool);
1789 if (worker) {
1790 spin_lock_irq(&pool->lock);
1791 start_worker(worker);
1792 spin_unlock_irq(&pool->lock);
1793 }
1794
cd549687
TH
1795 mutex_unlock(&pool->manager_mutex);
1796
ebf44d16
TH
1797 return worker ? 0 : -ENOMEM;
1798}
1799
c34056a3
TH
1800/**
1801 * destroy_worker - destroy a workqueue worker
1802 * @worker: worker to be destroyed
1803 *
706026c2 1804 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1805 *
1806 * CONTEXT:
d565ed63 1807 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1808 */
1809static void destroy_worker(struct worker *worker)
1810{
bd7bdd43 1811 struct worker_pool *pool = worker->pool;
c34056a3 1812
cd549687
TH
1813 lockdep_assert_held(&pool->manager_mutex);
1814 lockdep_assert_held(&pool->lock);
1815
c34056a3 1816 /* sanity check frenzy */
6183c009
TH
1817 if (WARN_ON(worker->current_work) ||
1818 WARN_ON(!list_empty(&worker->scheduled)))
1819 return;
c34056a3 1820
c8e55f36 1821 if (worker->flags & WORKER_STARTED)
bd7bdd43 1822 pool->nr_workers--;
c8e55f36 1823 if (worker->flags & WORKER_IDLE)
bd7bdd43 1824 pool->nr_idle--;
c8e55f36 1825
4403be9e
LJ
1826 /*
1827 * Once WORKER_DIE is set, the kworker may destroy itself at any
1828 * point. Pin to ensure the task stays until we're done with it.
1829 */
1830 get_task_struct(worker->task);
1831
c8e55f36 1832 list_del_init(&worker->entry);
cb444766 1833 worker->flags |= WORKER_DIE;
c8e55f36 1834
822d8405
TH
1835 idr_remove(&pool->worker_idr, worker->id);
1836
d565ed63 1837 spin_unlock_irq(&pool->lock);
c8e55f36 1838
c34056a3 1839 kthread_stop(worker->task);
4403be9e 1840 put_task_struct(worker->task);
c34056a3
TH
1841 kfree(worker);
1842
d565ed63 1843 spin_lock_irq(&pool->lock);
c34056a3
TH
1844}
1845
63d95a91 1846static void idle_worker_timeout(unsigned long __pool)
e22bee78 1847{
63d95a91 1848 struct worker_pool *pool = (void *)__pool;
e22bee78 1849
d565ed63 1850 spin_lock_irq(&pool->lock);
e22bee78 1851
63d95a91 1852 if (too_many_workers(pool)) {
e22bee78
TH
1853 struct worker *worker;
1854 unsigned long expires;
1855
1856 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1857 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1858 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1859
1860 if (time_before(jiffies, expires))
63d95a91 1861 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1862 else {
1863 /* it's been idle for too long, wake up manager */
11ebea50 1864 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1865 wake_up_worker(pool);
d5abe669 1866 }
e22bee78
TH
1867 }
1868
d565ed63 1869 spin_unlock_irq(&pool->lock);
e22bee78 1870}
d5abe669 1871
493a1724 1872static void send_mayday(struct work_struct *work)
e22bee78 1873{
112202d9
TH
1874 struct pool_workqueue *pwq = get_work_pwq(work);
1875 struct workqueue_struct *wq = pwq->wq;
493a1724 1876
2e109a28 1877 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1878
493008a8 1879 if (!wq->rescuer)
493a1724 1880 return;
e22bee78
TH
1881
1882 /* mayday mayday mayday */
493a1724 1883 if (list_empty(&pwq->mayday_node)) {
aac8b37f
LJ
1884 /*
1885 * If @pwq is for an unbound wq, its base ref may be put at
1886 * any time due to an attribute change. Pin @pwq until the
1887 * rescuer is done with it.
1888 */
1889 get_pwq(pwq);
493a1724 1890 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1891 wake_up_process(wq->rescuer->task);
493a1724 1892 }
e22bee78
TH
1893}
1894
706026c2 1895static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1896{
63d95a91 1897 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1898 struct work_struct *work;
1899
2e109a28 1900 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1901 spin_lock(&pool->lock);
e22bee78 1902
63d95a91 1903 if (need_to_create_worker(pool)) {
e22bee78
TH
1904 /*
1905 * We've been trying to create a new worker but
1906 * haven't been successful. We might be hitting an
1907 * allocation deadlock. Send distress signals to
1908 * rescuers.
1909 */
63d95a91 1910 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1911 send_mayday(work);
1da177e4 1912 }
e22bee78 1913
493a1724 1914 spin_unlock(&pool->lock);
2e109a28 1915 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1916
63d95a91 1917 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1918}
1919
e22bee78
TH
1920/**
1921 * maybe_create_worker - create a new worker if necessary
63d95a91 1922 * @pool: pool to create a new worker for
e22bee78 1923 *
63d95a91 1924 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1925 * have at least one idle worker on return from this function. If
1926 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1927 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1928 * possible allocation deadlock.
1929 *
c5aa87bb
TH
1930 * On return, need_to_create_worker() is guaranteed to be %false and
1931 * may_start_working() %true.
e22bee78
TH
1932 *
1933 * LOCKING:
d565ed63 1934 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1935 * multiple times. Does GFP_KERNEL allocations. Called only from
1936 * manager.
e22bee78 1937 */
85be16ba 1938static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1939__releases(&pool->lock)
1940__acquires(&pool->lock)
1da177e4 1941{
63d95a91 1942 if (!need_to_create_worker(pool))
85be16ba 1943 return;
e22bee78 1944restart:
d565ed63 1945 spin_unlock_irq(&pool->lock);
9f9c2364 1946
e22bee78 1947 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1948 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1949
1950 while (true) {
1951 struct worker *worker;
1952
bc2ae0f5 1953 worker = create_worker(pool);
e22bee78 1954 if (worker) {
63d95a91 1955 del_timer_sync(&pool->mayday_timer);
d565ed63 1956 spin_lock_irq(&pool->lock);
e22bee78 1957 start_worker(worker);
6183c009
TH
1958 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1959 goto restart;
85be16ba 1960 return;
e22bee78
TH
1961 }
1962
63d95a91 1963 if (!need_to_create_worker(pool))
e22bee78 1964 break;
1da177e4 1965
e22bee78
TH
1966 __set_current_state(TASK_INTERRUPTIBLE);
1967 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1968
63d95a91 1969 if (!need_to_create_worker(pool))
e22bee78
TH
1970 break;
1971 }
1972
63d95a91 1973 del_timer_sync(&pool->mayday_timer);
d565ed63 1974 spin_lock_irq(&pool->lock);
63d95a91 1975 if (need_to_create_worker(pool))
e22bee78 1976 goto restart;
85be16ba 1977 return;
e22bee78
TH
1978}
1979
1980/**
1981 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1982 * @pool: pool to destroy workers for
e22bee78 1983 *
63d95a91 1984 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1985 * IDLE_WORKER_TIMEOUT.
1986 *
1987 * LOCKING:
d565ed63 1988 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78 1989 * multiple times. Called only from manager.
e22bee78 1990 */
85be16ba 1991static void maybe_destroy_workers(struct worker_pool *pool)
e22bee78 1992{
63d95a91 1993 while (too_many_workers(pool)) {
e22bee78
TH
1994 struct worker *worker;
1995 unsigned long expires;
3af24433 1996
63d95a91 1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1999
e22bee78 2000 if (time_before(jiffies, expires)) {
63d95a91 2001 mod_timer(&pool->idle_timer, expires);
3af24433 2002 break;
e22bee78 2003 }
1da177e4 2004
e22bee78 2005 destroy_worker(worker);
1da177e4 2006 }
1e19ffc6
TH
2007}
2008
73f53c4a 2009/**
e22bee78
TH
2010 * manage_workers - manage worker pool
2011 * @worker: self
73f53c4a 2012 *
706026c2 2013 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2014 * to. At any given time, there can be only zero or one manager per
706026c2 2015 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2016 *
2017 * The caller can safely start processing works on false return. On
2018 * true return, it's guaranteed that need_to_create_worker() is false
2019 * and may_start_working() is true.
73f53c4a
TH
2020 *
2021 * CONTEXT:
d565ed63 2022 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2023 * multiple times. Does GFP_KERNEL allocations.
2024 *
2025 * RETURNS:
85be16ba
TH
2026 * %false if the pool doesn't need management and the caller can safely
2027 * start processing works, %true if management function was performed and
2028 * the conditions that the caller verified before calling the function may
2029 * no longer be true.
73f53c4a 2030 */
e22bee78 2031static bool manage_workers(struct worker *worker)
73f53c4a 2032{
63d95a91 2033 struct worker_pool *pool = worker->pool;
73f53c4a 2034
bc3a1afc
TH
2035 /*
2036 * Managership is governed by two mutexes - manager_arb and
2037 * manager_mutex. manager_arb handles arbitration of manager role.
2038 * Anyone who successfully grabs manager_arb wins the arbitration
2039 * and becomes the manager. mutex_trylock() on pool->manager_arb
2040 * failure while holding pool->lock reliably indicates that someone
2041 * else is managing the pool and the worker which failed trylock
2042 * can proceed to executing work items. This means that anyone
2043 * grabbing manager_arb is responsible for actually performing
2044 * manager duties. If manager_arb is grabbed and released without
2045 * actual management, the pool may stall indefinitely.
2046 *
2047 * manager_mutex is used for exclusion of actual management
2048 * operations. The holder of manager_mutex can be sure that none
2049 * of management operations, including creation and destruction of
2050 * workers, won't take place until the mutex is released. Because
2051 * manager_mutex doesn't interfere with manager role arbitration,
2052 * it is guaranteed that the pool's management, while may be
2053 * delayed, won't be disturbed by someone else grabbing
2054 * manager_mutex.
2055 */
34a06bd6 2056 if (!mutex_trylock(&pool->manager_arb))
85be16ba 2057 return false;
1e19ffc6 2058
ee378aa4 2059 /*
bc3a1afc
TH
2060 * With manager arbitration won, manager_mutex would be free in
2061 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2062 */
bc3a1afc 2063 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2064 spin_unlock_irq(&pool->lock);
bc3a1afc 2065 mutex_lock(&pool->manager_mutex);
8f174b11 2066 spin_lock_irq(&pool->lock);
ee378aa4 2067 }
73f53c4a 2068
11ebea50 2069 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2070
2071 /*
e22bee78
TH
2072 * Destroy and then create so that may_start_working() is true
2073 * on return.
73f53c4a 2074 */
85be16ba
TH
2075 maybe_destroy_workers(pool);
2076 maybe_create_worker(pool);
e22bee78 2077
bc3a1afc 2078 mutex_unlock(&pool->manager_mutex);
34a06bd6 2079 mutex_unlock(&pool->manager_arb);
85be16ba 2080 return true;
73f53c4a
TH
2081}
2082
a62428c0
TH
2083/**
2084 * process_one_work - process single work
c34056a3 2085 * @worker: self
a62428c0
TH
2086 * @work: work to process
2087 *
2088 * Process @work. This function contains all the logics necessary to
2089 * process a single work including synchronization against and
2090 * interaction with other workers on the same cpu, queueing and
2091 * flushing. As long as context requirement is met, any worker can
2092 * call this function to process a work.
2093 *
2094 * CONTEXT:
d565ed63 2095 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2096 */
c34056a3 2097static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2098__releases(&pool->lock)
2099__acquires(&pool->lock)
a62428c0 2100{
112202d9 2101 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2102 struct worker_pool *pool = worker->pool;
112202d9 2103 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2104 int work_color;
7e11629d 2105 struct worker *collision;
a62428c0
TH
2106#ifdef CONFIG_LOCKDEP
2107 /*
2108 * It is permissible to free the struct work_struct from
2109 * inside the function that is called from it, this we need to
2110 * take into account for lockdep too. To avoid bogus "held
2111 * lock freed" warnings as well as problems when looking into
2112 * work->lockdep_map, make a copy and use that here.
2113 */
4d82a1de
PZ
2114 struct lockdep_map lockdep_map;
2115
2116 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2117#endif
6fec10a1
TH
2118 /*
2119 * Ensure we're on the correct CPU. DISASSOCIATED test is
2120 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2121 * unbound or a disassociated pool.
6fec10a1 2122 */
5f7dabfd 2123 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2124 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2125 raw_smp_processor_id() != pool->cpu);
25511a47 2126
7e11629d
TH
2127 /*
2128 * A single work shouldn't be executed concurrently by
2129 * multiple workers on a single cpu. Check whether anyone is
2130 * already processing the work. If so, defer the work to the
2131 * currently executing one.
2132 */
c9e7cf27 2133 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2134 if (unlikely(collision)) {
2135 move_linked_works(work, &collision->scheduled, NULL);
2136 return;
2137 }
2138
8930caba 2139 /* claim and dequeue */
a62428c0 2140 debug_work_deactivate(work);
c9e7cf27 2141 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2142 worker->current_work = work;
a2c1c57b 2143 worker->current_func = work->func;
112202d9 2144 worker->current_pwq = pwq;
73f53c4a 2145 work_color = get_work_color(work);
7a22ad75 2146
a62428c0
TH
2147 list_del_init(&work->entry);
2148
fb0e7beb
TH
2149 /*
2150 * CPU intensive works don't participate in concurrency
2151 * management. They're the scheduler's responsibility.
2152 */
2153 if (unlikely(cpu_intensive))
2154 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2155
974271c4 2156 /*
d565ed63 2157 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2158 * executed ASAP. Wake up another worker if necessary.
2159 */
63d95a91
TH
2160 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2161 wake_up_worker(pool);
974271c4 2162
8930caba 2163 /*
7c3eed5c 2164 * Record the last pool and clear PENDING which should be the last
d565ed63 2165 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2166 * PENDING and queued state changes happen together while IRQ is
2167 * disabled.
8930caba 2168 */
7c3eed5c 2169 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2170
d565ed63 2171 spin_unlock_irq(&pool->lock);
a62428c0 2172
112202d9 2173 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2174 lock_map_acquire(&lockdep_map);
e36c886a 2175 trace_workqueue_execute_start(work);
a2c1c57b 2176 worker->current_func(work);
e36c886a
AV
2177 /*
2178 * While we must be careful to not use "work" after this, the trace
2179 * point will only record its address.
2180 */
2181 trace_workqueue_execute_end(work);
a62428c0 2182 lock_map_release(&lockdep_map);
112202d9 2183 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2184
2185 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2186 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2187 " last function: %pf\n",
a2c1c57b
TH
2188 current->comm, preempt_count(), task_pid_nr(current),
2189 worker->current_func);
a62428c0
TH
2190 debug_show_held_locks(current);
2191 dump_stack();
2192 }
2193
6ff96f73
TH
2194 /*
2195 * The following prevents a kworker from hogging CPU on !PREEMPT
2196 * kernels, where a requeueing work item waiting for something to
2197 * happen could deadlock with stop_machine as such work item could
2198 * indefinitely requeue itself while all other CPUs are trapped in
2199 * stop_machine.
2200 */
2201 cond_resched();
2202
d565ed63 2203 spin_lock_irq(&pool->lock);
a62428c0 2204
fb0e7beb
TH
2205 /* clear cpu intensive status */
2206 if (unlikely(cpu_intensive))
2207 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2208
a62428c0 2209 /* we're done with it, release */
42f8570f 2210 hash_del(&worker->hentry);
c34056a3 2211 worker->current_work = NULL;
a2c1c57b 2212 worker->current_func = NULL;
112202d9 2213 worker->current_pwq = NULL;
3d1cb205 2214 worker->desc_valid = false;
112202d9 2215 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2216}
2217
affee4b2
TH
2218/**
2219 * process_scheduled_works - process scheduled works
2220 * @worker: self
2221 *
2222 * Process all scheduled works. Please note that the scheduled list
2223 * may change while processing a work, so this function repeatedly
2224 * fetches a work from the top and executes it.
2225 *
2226 * CONTEXT:
d565ed63 2227 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2228 * multiple times.
2229 */
2230static void process_scheduled_works(struct worker *worker)
1da177e4 2231{
affee4b2
TH
2232 while (!list_empty(&worker->scheduled)) {
2233 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2234 struct work_struct, entry);
c34056a3 2235 process_one_work(worker, work);
1da177e4 2236 }
1da177e4
LT
2237}
2238
4690c4ab
TH
2239/**
2240 * worker_thread - the worker thread function
c34056a3 2241 * @__worker: self
4690c4ab 2242 *
c5aa87bb
TH
2243 * The worker thread function. All workers belong to a worker_pool -
2244 * either a per-cpu one or dynamic unbound one. These workers process all
2245 * work items regardless of their specific target workqueue. The only
2246 * exception is work items which belong to workqueues with a rescuer which
2247 * will be explained in rescuer_thread().
4690c4ab 2248 */
c34056a3 2249static int worker_thread(void *__worker)
1da177e4 2250{
c34056a3 2251 struct worker *worker = __worker;
bd7bdd43 2252 struct worker_pool *pool = worker->pool;
1da177e4 2253
e22bee78
TH
2254 /* tell the scheduler that this is a workqueue worker */
2255 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2256woke_up:
d565ed63 2257 spin_lock_irq(&pool->lock);
1da177e4 2258
a9ab775b
TH
2259 /* am I supposed to die? */
2260 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2261 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2262 WARN_ON_ONCE(!list_empty(&worker->entry));
2263 worker->task->flags &= ~PF_WQ_WORKER;
2264 return 0;
c8e55f36 2265 }
affee4b2 2266
c8e55f36 2267 worker_leave_idle(worker);
db7bccf4 2268recheck:
e22bee78 2269 /* no more worker necessary? */
63d95a91 2270 if (!need_more_worker(pool))
e22bee78
TH
2271 goto sleep;
2272
2273 /* do we need to manage? */
63d95a91 2274 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2275 goto recheck;
2276
c8e55f36
TH
2277 /*
2278 * ->scheduled list can only be filled while a worker is
2279 * preparing to process a work or actually processing it.
2280 * Make sure nobody diddled with it while I was sleeping.
2281 */
6183c009 2282 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2283
e22bee78 2284 /*
a9ab775b
TH
2285 * Finish PREP stage. We're guaranteed to have at least one idle
2286 * worker or that someone else has already assumed the manager
2287 * role. This is where @worker starts participating in concurrency
2288 * management if applicable and concurrency management is restored
2289 * after being rebound. See rebind_workers() for details.
e22bee78 2290 */
a9ab775b 2291 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2292
2293 do {
c8e55f36 2294 struct work_struct *work =
bd7bdd43 2295 list_first_entry(&pool->worklist,
c8e55f36
TH
2296 struct work_struct, entry);
2297
2298 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2299 /* optimization path, not strictly necessary */
2300 process_one_work(worker, work);
2301 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2302 process_scheduled_works(worker);
c8e55f36
TH
2303 } else {
2304 move_linked_works(work, &worker->scheduled, NULL);
2305 process_scheduled_works(worker);
affee4b2 2306 }
63d95a91 2307 } while (keep_working(pool));
e22bee78
TH
2308
2309 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2310sleep:
63d95a91 2311 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2312 goto recheck;
d313dd85 2313
c8e55f36 2314 /*
d565ed63
TH
2315 * pool->lock is held and there's no work to process and no need to
2316 * manage, sleep. Workers are woken up only while holding
2317 * pool->lock or from local cpu, so setting the current state
2318 * before releasing pool->lock is enough to prevent losing any
2319 * event.
c8e55f36
TH
2320 */
2321 worker_enter_idle(worker);
2322 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2323 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2324 schedule();
2325 goto woke_up;
1da177e4
LT
2326}
2327
e22bee78
TH
2328/**
2329 * rescuer_thread - the rescuer thread function
111c225a 2330 * @__rescuer: self
e22bee78
TH
2331 *
2332 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2333 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2334 *
706026c2 2335 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2336 * worker which uses GFP_KERNEL allocation which has slight chance of
2337 * developing into deadlock if some works currently on the same queue
2338 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2339 * the problem rescuer solves.
2340 *
706026c2
TH
2341 * When such condition is possible, the pool summons rescuers of all
2342 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2343 * those works so that forward progress can be guaranteed.
2344 *
2345 * This should happen rarely.
2346 */
111c225a 2347static int rescuer_thread(void *__rescuer)
e22bee78 2348{
111c225a
TH
2349 struct worker *rescuer = __rescuer;
2350 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2351 struct list_head *scheduled = &rescuer->scheduled;
f56fb0d4 2352 bool should_stop;
e22bee78
TH
2353
2354 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2355
2356 /*
2357 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2358 * doesn't participate in concurrency management.
2359 */
2360 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2361repeat:
2362 set_current_state(TASK_INTERRUPTIBLE);
2363
f56fb0d4
LJ
2364 /*
2365 * By the time the rescuer is requested to stop, the workqueue
2366 * shouldn't have any work pending, but @wq->maydays may still have
2367 * pwq(s) queued. This can happen by non-rescuer workers consuming
2368 * all the work items before the rescuer got to them. Go through
2369 * @wq->maydays processing before acting on should_stop so that the
2370 * list is always empty on exit.
2371 */
2372 should_stop = kthread_should_stop();
e22bee78 2373
493a1724 2374 /* see whether any pwq is asking for help */
2e109a28 2375 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2376
2377 while (!list_empty(&wq->maydays)) {
2378 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2379 struct pool_workqueue, mayday_node);
112202d9 2380 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2381 struct work_struct *work, *n;
2382
2383 __set_current_state(TASK_RUNNING);
493a1724
TH
2384 list_del_init(&pwq->mayday_node);
2385
2e109a28 2386 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2387
2388 /* migrate to the target cpu if possible */
f36dc67b 2389 worker_maybe_bind_and_lock(pool);
b3104104 2390 rescuer->pool = pool;
e22bee78
TH
2391
2392 /*
2393 * Slurp in all works issued via this workqueue and
2394 * process'em.
2395 */
6183c009 2396 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2397 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2398 if (get_work_pwq(work) == pwq)
e22bee78
TH
2399 move_linked_works(work, scheduled, &n);
2400
2401 process_scheduled_works(rescuer);
7576958a 2402
aac8b37f
LJ
2403 /*
2404 * Put the reference grabbed by send_mayday(). @pool won't
2405 * go away while we're holding its lock.
2406 */
2407 put_pwq(pwq);
2408
7576958a 2409 /*
d565ed63 2410 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2411 * regular worker; otherwise, we end up with 0 concurrency
2412 * and stalling the execution.
2413 */
63d95a91
TH
2414 if (keep_working(pool))
2415 wake_up_worker(pool);
7576958a 2416
b3104104 2417 rescuer->pool = NULL;
493a1724 2418 spin_unlock(&pool->lock);
2e109a28 2419 spin_lock(&wq_mayday_lock);
e22bee78
TH
2420 }
2421
2e109a28 2422 spin_unlock_irq(&wq_mayday_lock);
493a1724 2423
f56fb0d4
LJ
2424 if (should_stop) {
2425 __set_current_state(TASK_RUNNING);
2426 rescuer->task->flags &= ~PF_WQ_WORKER;
2427 return 0;
2428 }
2429
111c225a
TH
2430 /* rescuers should never participate in concurrency management */
2431 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2432 schedule();
2433 goto repeat;
1da177e4
LT
2434}
2435
fc2e4d70
ON
2436struct wq_barrier {
2437 struct work_struct work;
2438 struct completion done;
2439};
2440
2441static void wq_barrier_func(struct work_struct *work)
2442{
2443 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2444 complete(&barr->done);
2445}
2446
4690c4ab
TH
2447/**
2448 * insert_wq_barrier - insert a barrier work
112202d9 2449 * @pwq: pwq to insert barrier into
4690c4ab 2450 * @barr: wq_barrier to insert
affee4b2
TH
2451 * @target: target work to attach @barr to
2452 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2453 *
affee4b2
TH
2454 * @barr is linked to @target such that @barr is completed only after
2455 * @target finishes execution. Please note that the ordering
2456 * guarantee is observed only with respect to @target and on the local
2457 * cpu.
2458 *
2459 * Currently, a queued barrier can't be canceled. This is because
2460 * try_to_grab_pending() can't determine whether the work to be
2461 * grabbed is at the head of the queue and thus can't clear LINKED
2462 * flag of the previous work while there must be a valid next work
2463 * after a work with LINKED flag set.
2464 *
2465 * Note that when @worker is non-NULL, @target may be modified
112202d9 2466 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2467 *
2468 * CONTEXT:
d565ed63 2469 * spin_lock_irq(pool->lock).
4690c4ab 2470 */
112202d9 2471static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2472 struct wq_barrier *barr,
2473 struct work_struct *target, struct worker *worker)
fc2e4d70 2474{
affee4b2
TH
2475 struct list_head *head;
2476 unsigned int linked = 0;
2477
dc186ad7 2478 /*
d565ed63 2479 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2480 * as we know for sure that this will not trigger any of the
2481 * checks and call back into the fixup functions where we
2482 * might deadlock.
2483 */
ca1cab37 2484 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2485 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2486 init_completion(&barr->done);
83c22520 2487
affee4b2
TH
2488 /*
2489 * If @target is currently being executed, schedule the
2490 * barrier to the worker; otherwise, put it after @target.
2491 */
2492 if (worker)
2493 head = worker->scheduled.next;
2494 else {
2495 unsigned long *bits = work_data_bits(target);
2496
2497 head = target->entry.next;
2498 /* there can already be other linked works, inherit and set */
2499 linked = *bits & WORK_STRUCT_LINKED;
2500 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2501 }
2502
dc186ad7 2503 debug_work_activate(&barr->work);
112202d9 2504 insert_work(pwq, &barr->work, head,
affee4b2 2505 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2506}
2507
73f53c4a 2508/**
112202d9 2509 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2510 * @wq: workqueue being flushed
2511 * @flush_color: new flush color, < 0 for no-op
2512 * @work_color: new work color, < 0 for no-op
2513 *
112202d9 2514 * Prepare pwqs for workqueue flushing.
73f53c4a 2515 *
112202d9
TH
2516 * If @flush_color is non-negative, flush_color on all pwqs should be
2517 * -1. If no pwq has in-flight commands at the specified color, all
2518 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2519 * has in flight commands, its pwq->flush_color is set to
2520 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2521 * wakeup logic is armed and %true is returned.
2522 *
2523 * The caller should have initialized @wq->first_flusher prior to
2524 * calling this function with non-negative @flush_color. If
2525 * @flush_color is negative, no flush color update is done and %false
2526 * is returned.
2527 *
112202d9 2528 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2529 * work_color which is previous to @work_color and all will be
2530 * advanced to @work_color.
2531 *
2532 * CONTEXT:
3c25a55d 2533 * mutex_lock(wq->mutex).
73f53c4a
TH
2534 *
2535 * RETURNS:
2536 * %true if @flush_color >= 0 and there's something to flush. %false
2537 * otherwise.
2538 */
112202d9 2539static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2540 int flush_color, int work_color)
1da177e4 2541{
73f53c4a 2542 bool wait = false;
49e3cf44 2543 struct pool_workqueue *pwq;
1da177e4 2544
73f53c4a 2545 if (flush_color >= 0) {
6183c009 2546 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2547 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2548 }
2355b70f 2549
49e3cf44 2550 for_each_pwq(pwq, wq) {
112202d9 2551 struct worker_pool *pool = pwq->pool;
fc2e4d70 2552
b09f4fd3 2553 spin_lock_irq(&pool->lock);
83c22520 2554
73f53c4a 2555 if (flush_color >= 0) {
6183c009 2556 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2557
112202d9
TH
2558 if (pwq->nr_in_flight[flush_color]) {
2559 pwq->flush_color = flush_color;
2560 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2561 wait = true;
2562 }
2563 }
1da177e4 2564
73f53c4a 2565 if (work_color >= 0) {
6183c009 2566 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2567 pwq->work_color = work_color;
73f53c4a 2568 }
1da177e4 2569
b09f4fd3 2570 spin_unlock_irq(&pool->lock);
1da177e4 2571 }
2355b70f 2572
112202d9 2573 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2574 complete(&wq->first_flusher->done);
14441960 2575
73f53c4a 2576 return wait;
1da177e4
LT
2577}
2578
0fcb78c2 2579/**
1da177e4 2580 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2581 * @wq: workqueue to flush
1da177e4 2582 *
c5aa87bb
TH
2583 * This function sleeps until all work items which were queued on entry
2584 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2585 */
7ad5b3a5 2586void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2587{
73f53c4a
TH
2588 struct wq_flusher this_flusher = {
2589 .list = LIST_HEAD_INIT(this_flusher.list),
2590 .flush_color = -1,
2591 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2592 };
2593 int next_color;
1da177e4 2594
3295f0ef
IM
2595 lock_map_acquire(&wq->lockdep_map);
2596 lock_map_release(&wq->lockdep_map);
73f53c4a 2597
3c25a55d 2598 mutex_lock(&wq->mutex);
73f53c4a
TH
2599
2600 /*
2601 * Start-to-wait phase
2602 */
2603 next_color = work_next_color(wq->work_color);
2604
2605 if (next_color != wq->flush_color) {
2606 /*
2607 * Color space is not full. The current work_color
2608 * becomes our flush_color and work_color is advanced
2609 * by one.
2610 */
6183c009 2611 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2612 this_flusher.flush_color = wq->work_color;
2613 wq->work_color = next_color;
2614
2615 if (!wq->first_flusher) {
2616 /* no flush in progress, become the first flusher */
6183c009 2617 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2618
2619 wq->first_flusher = &this_flusher;
2620
112202d9 2621 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2622 wq->work_color)) {
2623 /* nothing to flush, done */
2624 wq->flush_color = next_color;
2625 wq->first_flusher = NULL;
2626 goto out_unlock;
2627 }
2628 } else {
2629 /* wait in queue */
6183c009 2630 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2631 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2632 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2633 }
2634 } else {
2635 /*
2636 * Oops, color space is full, wait on overflow queue.
2637 * The next flush completion will assign us
2638 * flush_color and transfer to flusher_queue.
2639 */
2640 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2641 }
2642
3c25a55d 2643 mutex_unlock(&wq->mutex);
73f53c4a
TH
2644
2645 wait_for_completion(&this_flusher.done);
2646
2647 /*
2648 * Wake-up-and-cascade phase
2649 *
2650 * First flushers are responsible for cascading flushes and
2651 * handling overflow. Non-first flushers can simply return.
2652 */
2653 if (wq->first_flusher != &this_flusher)
2654 return;
2655
3c25a55d 2656 mutex_lock(&wq->mutex);
73f53c4a 2657
4ce48b37
TH
2658 /* we might have raced, check again with mutex held */
2659 if (wq->first_flusher != &this_flusher)
2660 goto out_unlock;
2661
73f53c4a
TH
2662 wq->first_flusher = NULL;
2663
6183c009
TH
2664 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2665 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2666
2667 while (true) {
2668 struct wq_flusher *next, *tmp;
2669
2670 /* complete all the flushers sharing the current flush color */
2671 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2672 if (next->flush_color != wq->flush_color)
2673 break;
2674 list_del_init(&next->list);
2675 complete(&next->done);
2676 }
2677
6183c009
TH
2678 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2679 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2680
2681 /* this flush_color is finished, advance by one */
2682 wq->flush_color = work_next_color(wq->flush_color);
2683
2684 /* one color has been freed, handle overflow queue */
2685 if (!list_empty(&wq->flusher_overflow)) {
2686 /*
2687 * Assign the same color to all overflowed
2688 * flushers, advance work_color and append to
2689 * flusher_queue. This is the start-to-wait
2690 * phase for these overflowed flushers.
2691 */
2692 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2693 tmp->flush_color = wq->work_color;
2694
2695 wq->work_color = work_next_color(wq->work_color);
2696
2697 list_splice_tail_init(&wq->flusher_overflow,
2698 &wq->flusher_queue);
112202d9 2699 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2700 }
2701
2702 if (list_empty(&wq->flusher_queue)) {
6183c009 2703 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2704 break;
2705 }
2706
2707 /*
2708 * Need to flush more colors. Make the next flusher
112202d9 2709 * the new first flusher and arm pwqs.
73f53c4a 2710 */
6183c009
TH
2711 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2712 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2713
2714 list_del_init(&next->list);
2715 wq->first_flusher = next;
2716
112202d9 2717 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2718 break;
2719
2720 /*
2721 * Meh... this color is already done, clear first
2722 * flusher and repeat cascading.
2723 */
2724 wq->first_flusher = NULL;
2725 }
2726
2727out_unlock:
3c25a55d 2728 mutex_unlock(&wq->mutex);
1da177e4 2729}
ae90dd5d 2730EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2731
9c5a2ba7
TH
2732/**
2733 * drain_workqueue - drain a workqueue
2734 * @wq: workqueue to drain
2735 *
2736 * Wait until the workqueue becomes empty. While draining is in progress,
2737 * only chain queueing is allowed. IOW, only currently pending or running
2738 * work items on @wq can queue further work items on it. @wq is flushed
2739 * repeatedly until it becomes empty. The number of flushing is detemined
2740 * by the depth of chaining and should be relatively short. Whine if it
2741 * takes too long.
2742 */
2743void drain_workqueue(struct workqueue_struct *wq)
2744{
2745 unsigned int flush_cnt = 0;
49e3cf44 2746 struct pool_workqueue *pwq;
9c5a2ba7
TH
2747
2748 /*
2749 * __queue_work() needs to test whether there are drainers, is much
2750 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2751 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2752 */
87fc741e 2753 mutex_lock(&wq->mutex);
9c5a2ba7 2754 if (!wq->nr_drainers++)
618b01eb 2755 wq->flags |= __WQ_DRAINING;
87fc741e 2756 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2757reflush:
2758 flush_workqueue(wq);
2759
b09f4fd3 2760 mutex_lock(&wq->mutex);
76af4d93 2761
49e3cf44 2762 for_each_pwq(pwq, wq) {
fa2563e4 2763 bool drained;
9c5a2ba7 2764
b09f4fd3 2765 spin_lock_irq(&pwq->pool->lock);
112202d9 2766 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2767 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2768
2769 if (drained)
9c5a2ba7
TH
2770 continue;
2771
2772 if (++flush_cnt == 10 ||
2773 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2774 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2775 wq->name, flush_cnt);
76af4d93 2776
b09f4fd3 2777 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2778 goto reflush;
2779 }
2780
9c5a2ba7 2781 if (!--wq->nr_drainers)
618b01eb 2782 wq->flags &= ~__WQ_DRAINING;
87fc741e 2783 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2784}
2785EXPORT_SYMBOL_GPL(drain_workqueue);
2786
606a5020 2787static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2788{
affee4b2 2789 struct worker *worker = NULL;
c9e7cf27 2790 struct worker_pool *pool;
112202d9 2791 struct pool_workqueue *pwq;
db700897
ON
2792
2793 might_sleep();
fa1b54e6
TH
2794
2795 local_irq_disable();
c9e7cf27 2796 pool = get_work_pool(work);
fa1b54e6
TH
2797 if (!pool) {
2798 local_irq_enable();
baf59022 2799 return false;
fa1b54e6 2800 }
db700897 2801
fa1b54e6 2802 spin_lock(&pool->lock);
0b3dae68 2803 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2804 pwq = get_work_pwq(work);
2805 if (pwq) {
2806 if (unlikely(pwq->pool != pool))
4690c4ab 2807 goto already_gone;
606a5020 2808 } else {
c9e7cf27 2809 worker = find_worker_executing_work(pool, work);
affee4b2 2810 if (!worker)
4690c4ab 2811 goto already_gone;
112202d9 2812 pwq = worker->current_pwq;
606a5020 2813 }
db700897 2814
112202d9 2815 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2816 spin_unlock_irq(&pool->lock);
7a22ad75 2817
e159489b
TH
2818 /*
2819 * If @max_active is 1 or rescuer is in use, flushing another work
2820 * item on the same workqueue may lead to deadlock. Make sure the
2821 * flusher is not running on the same workqueue by verifying write
2822 * access.
2823 */
493008a8 2824 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2825 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2826 else
112202d9
TH
2827 lock_map_acquire_read(&pwq->wq->lockdep_map);
2828 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2829
401a8d04 2830 return true;
4690c4ab 2831already_gone:
d565ed63 2832 spin_unlock_irq(&pool->lock);
401a8d04 2833 return false;
db700897 2834}
baf59022
TH
2835
2836/**
2837 * flush_work - wait for a work to finish executing the last queueing instance
2838 * @work: the work to flush
2839 *
606a5020
TH
2840 * Wait until @work has finished execution. @work is guaranteed to be idle
2841 * on return if it hasn't been requeued since flush started.
baf59022
TH
2842 *
2843 * RETURNS:
2844 * %true if flush_work() waited for the work to finish execution,
2845 * %false if it was already idle.
2846 */
2847bool flush_work(struct work_struct *work)
2848{
2849 struct wq_barrier barr;
2850
0976dfc1
SB
2851 lock_map_acquire(&work->lockdep_map);
2852 lock_map_release(&work->lockdep_map);
2853
606a5020 2854 if (start_flush_work(work, &barr)) {
401a8d04
TH
2855 wait_for_completion(&barr.done);
2856 destroy_work_on_stack(&barr.work);
2857 return true;
606a5020 2858 } else {
401a8d04 2859 return false;
6e84d644 2860 }
6e84d644 2861}
606a5020 2862EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2863
36e227d2 2864static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2865{
bbb68dfa 2866 unsigned long flags;
1f1f642e
ON
2867 int ret;
2868
2869 do {
bbb68dfa
TH
2870 ret = try_to_grab_pending(work, is_dwork, &flags);
2871 /*
2872 * If someone else is canceling, wait for the same event it
2873 * would be waiting for before retrying.
2874 */
2875 if (unlikely(ret == -ENOENT))
606a5020 2876 flush_work(work);
1f1f642e
ON
2877 } while (unlikely(ret < 0));
2878
bbb68dfa
TH
2879 /* tell other tasks trying to grab @work to back off */
2880 mark_work_canceling(work);
2881 local_irq_restore(flags);
2882
606a5020 2883 flush_work(work);
7a22ad75 2884 clear_work_data(work);
1f1f642e
ON
2885 return ret;
2886}
2887
6e84d644 2888/**
401a8d04
TH
2889 * cancel_work_sync - cancel a work and wait for it to finish
2890 * @work: the work to cancel
6e84d644 2891 *
401a8d04
TH
2892 * Cancel @work and wait for its execution to finish. This function
2893 * can be used even if the work re-queues itself or migrates to
2894 * another workqueue. On return from this function, @work is
2895 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2896 *
401a8d04
TH
2897 * cancel_work_sync(&delayed_work->work) must not be used for
2898 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2899 *
401a8d04 2900 * The caller must ensure that the workqueue on which @work was last
6e84d644 2901 * queued can't be destroyed before this function returns.
401a8d04
TH
2902 *
2903 * RETURNS:
2904 * %true if @work was pending, %false otherwise.
6e84d644 2905 */
401a8d04 2906bool cancel_work_sync(struct work_struct *work)
6e84d644 2907{
36e227d2 2908 return __cancel_work_timer(work, false);
b89deed3 2909}
28e53bdd 2910EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2911
6e84d644 2912/**
401a8d04
TH
2913 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2914 * @dwork: the delayed work to flush
6e84d644 2915 *
401a8d04
TH
2916 * Delayed timer is cancelled and the pending work is queued for
2917 * immediate execution. Like flush_work(), this function only
2918 * considers the last queueing instance of @dwork.
1f1f642e 2919 *
401a8d04
TH
2920 * RETURNS:
2921 * %true if flush_work() waited for the work to finish execution,
2922 * %false if it was already idle.
6e84d644 2923 */
401a8d04
TH
2924bool flush_delayed_work(struct delayed_work *dwork)
2925{
8930caba 2926 local_irq_disable();
401a8d04 2927 if (del_timer_sync(&dwork->timer))
60c057bc 2928 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2929 local_irq_enable();
401a8d04
TH
2930 return flush_work(&dwork->work);
2931}
2932EXPORT_SYMBOL(flush_delayed_work);
2933
09383498 2934/**
57b30ae7
TH
2935 * cancel_delayed_work - cancel a delayed work
2936 * @dwork: delayed_work to cancel
09383498 2937 *
57b30ae7
TH
2938 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2939 * and canceled; %false if wasn't pending. Note that the work callback
2940 * function may still be running on return, unless it returns %true and the
2941 * work doesn't re-arm itself. Explicitly flush or use
2942 * cancel_delayed_work_sync() to wait on it.
09383498 2943 *
57b30ae7 2944 * This function is safe to call from any context including IRQ handler.
09383498 2945 */
57b30ae7 2946bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2947{
57b30ae7
TH
2948 unsigned long flags;
2949 int ret;
2950
2951 do {
2952 ret = try_to_grab_pending(&dwork->work, true, &flags);
2953 } while (unlikely(ret == -EAGAIN));
2954
2955 if (unlikely(ret < 0))
2956 return false;
2957
7c3eed5c
TH
2958 set_work_pool_and_clear_pending(&dwork->work,
2959 get_work_pool_id(&dwork->work));
57b30ae7 2960 local_irq_restore(flags);
c0158ca6 2961 return ret;
09383498 2962}
57b30ae7 2963EXPORT_SYMBOL(cancel_delayed_work);
09383498 2964
401a8d04
TH
2965/**
2966 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2967 * @dwork: the delayed work cancel
2968 *
2969 * This is cancel_work_sync() for delayed works.
2970 *
2971 * RETURNS:
2972 * %true if @dwork was pending, %false otherwise.
2973 */
2974bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2975{
36e227d2 2976 return __cancel_work_timer(&dwork->work, true);
6e84d644 2977}
f5a421a4 2978EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2979
b6136773 2980/**
31ddd871 2981 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2982 * @func: the function to call
b6136773 2983 *
31ddd871
TH
2984 * schedule_on_each_cpu() executes @func on each online CPU using the
2985 * system workqueue and blocks until all CPUs have completed.
b6136773 2986 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2987 *
2988 * RETURNS:
2989 * 0 on success, -errno on failure.
b6136773 2990 */
65f27f38 2991int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2992{
2993 int cpu;
38f51568 2994 struct work_struct __percpu *works;
15316ba8 2995
b6136773
AM
2996 works = alloc_percpu(struct work_struct);
2997 if (!works)
15316ba8 2998 return -ENOMEM;
b6136773 2999
93981800
TH
3000 get_online_cpus();
3001
15316ba8 3002 for_each_online_cpu(cpu) {
9bfb1839
IM
3003 struct work_struct *work = per_cpu_ptr(works, cpu);
3004
3005 INIT_WORK(work, func);
b71ab8c2 3006 schedule_work_on(cpu, work);
65a64464 3007 }
93981800
TH
3008
3009 for_each_online_cpu(cpu)
3010 flush_work(per_cpu_ptr(works, cpu));
3011
95402b38 3012 put_online_cpus();
b6136773 3013 free_percpu(works);
15316ba8
CL
3014 return 0;
3015}
3016
eef6a7d5
AS
3017/**
3018 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3019 *
3020 * Forces execution of the kernel-global workqueue and blocks until its
3021 * completion.
3022 *
3023 * Think twice before calling this function! It's very easy to get into
3024 * trouble if you don't take great care. Either of the following situations
3025 * will lead to deadlock:
3026 *
3027 * One of the work items currently on the workqueue needs to acquire
3028 * a lock held by your code or its caller.
3029 *
3030 * Your code is running in the context of a work routine.
3031 *
3032 * They will be detected by lockdep when they occur, but the first might not
3033 * occur very often. It depends on what work items are on the workqueue and
3034 * what locks they need, which you have no control over.
3035 *
3036 * In most situations flushing the entire workqueue is overkill; you merely
3037 * need to know that a particular work item isn't queued and isn't running.
3038 * In such cases you should use cancel_delayed_work_sync() or
3039 * cancel_work_sync() instead.
3040 */
1da177e4
LT
3041void flush_scheduled_work(void)
3042{
d320c038 3043 flush_workqueue(system_wq);
1da177e4 3044}
ae90dd5d 3045EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3046
1fa44eca
JB
3047/**
3048 * execute_in_process_context - reliably execute the routine with user context
3049 * @fn: the function to execute
1fa44eca
JB
3050 * @ew: guaranteed storage for the execute work structure (must
3051 * be available when the work executes)
3052 *
3053 * Executes the function immediately if process context is available,
3054 * otherwise schedules the function for delayed execution.
3055 *
3056 * Returns: 0 - function was executed
3057 * 1 - function was scheduled for execution
3058 */
65f27f38 3059int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3060{
3061 if (!in_interrupt()) {
65f27f38 3062 fn(&ew->work);
1fa44eca
JB
3063 return 0;
3064 }
3065
65f27f38 3066 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3067 schedule_work(&ew->work);
3068
3069 return 1;
3070}
3071EXPORT_SYMBOL_GPL(execute_in_process_context);
3072
226223ab
TH
3073#ifdef CONFIG_SYSFS
3074/*
3075 * Workqueues with WQ_SYSFS flag set is visible to userland via
3076 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3077 * following attributes.
3078 *
3079 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3080 * max_active RW int : maximum number of in-flight work items
3081 *
3082 * Unbound workqueues have the following extra attributes.
3083 *
3084 * id RO int : the associated pool ID
3085 * nice RW int : nice value of the workers
3086 * cpumask RW mask : bitmask of allowed CPUs for the workers
3087 */
3088struct wq_device {
3089 struct workqueue_struct *wq;
3090 struct device dev;
3091};
3092
3093static struct workqueue_struct *dev_to_wq(struct device *dev)
3094{
3095 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3096
3097 return wq_dev->wq;
3098}
3099
3100static ssize_t wq_per_cpu_show(struct device *dev,
3101 struct device_attribute *attr, char *buf)
3102{
3103 struct workqueue_struct *wq = dev_to_wq(dev);
3104
3105 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3106}
3107
3108static ssize_t wq_max_active_show(struct device *dev,
3109 struct device_attribute *attr, char *buf)
3110{
3111 struct workqueue_struct *wq = dev_to_wq(dev);
3112
3113 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3114}
3115
3116static ssize_t wq_max_active_store(struct device *dev,
3117 struct device_attribute *attr,
3118 const char *buf, size_t count)
3119{
3120 struct workqueue_struct *wq = dev_to_wq(dev);
3121 int val;
3122
3123 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3124 return -EINVAL;
3125
3126 workqueue_set_max_active(wq, val);
3127 return count;
3128}
3129
3130static struct device_attribute wq_sysfs_attrs[] = {
3131 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3132 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3133 __ATTR_NULL,
3134};
3135
d55262c4
TH
3136static ssize_t wq_pool_ids_show(struct device *dev,
3137 struct device_attribute *attr, char *buf)
226223ab
TH
3138{
3139 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3140 const char *delim = "";
3141 int node, written = 0;
226223ab
TH
3142
3143 rcu_read_lock_sched();
d55262c4
TH
3144 for_each_node(node) {
3145 written += scnprintf(buf + written, PAGE_SIZE - written,
3146 "%s%d:%d", delim, node,
3147 unbound_pwq_by_node(wq, node)->pool->id);
3148 delim = " ";
3149 }
3150 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3151 rcu_read_unlock_sched();
3152
3153 return written;
3154}
3155
3156static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3157 char *buf)
3158{
3159 struct workqueue_struct *wq = dev_to_wq(dev);
3160 int written;
3161
6029a918
TH
3162 mutex_lock(&wq->mutex);
3163 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3164 mutex_unlock(&wq->mutex);
226223ab
TH
3165
3166 return written;
3167}
3168
3169/* prepare workqueue_attrs for sysfs store operations */
3170static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3171{
3172 struct workqueue_attrs *attrs;
3173
3174 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3175 if (!attrs)
3176 return NULL;
3177
6029a918
TH
3178 mutex_lock(&wq->mutex);
3179 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3180 mutex_unlock(&wq->mutex);
226223ab
TH
3181 return attrs;
3182}
3183
3184static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3185 const char *buf, size_t count)
3186{
3187 struct workqueue_struct *wq = dev_to_wq(dev);
3188 struct workqueue_attrs *attrs;
3189 int ret;
3190
3191 attrs = wq_sysfs_prep_attrs(wq);
3192 if (!attrs)
3193 return -ENOMEM;
3194
3195 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3196 attrs->nice >= -20 && attrs->nice <= 19)
3197 ret = apply_workqueue_attrs(wq, attrs);
3198 else
3199 ret = -EINVAL;
3200
3201 free_workqueue_attrs(attrs);
3202 return ret ?: count;
3203}
3204
3205static ssize_t wq_cpumask_show(struct device *dev,
3206 struct device_attribute *attr, char *buf)
3207{
3208 struct workqueue_struct *wq = dev_to_wq(dev);
3209 int written;
3210
6029a918
TH
3211 mutex_lock(&wq->mutex);
3212 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3213 mutex_unlock(&wq->mutex);
226223ab
TH
3214
3215 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3216 return written;
3217}
3218
3219static ssize_t wq_cpumask_store(struct device *dev,
3220 struct device_attribute *attr,
3221 const char *buf, size_t count)
3222{
3223 struct workqueue_struct *wq = dev_to_wq(dev);
3224 struct workqueue_attrs *attrs;
3225 int ret;
3226
3227 attrs = wq_sysfs_prep_attrs(wq);
3228 if (!attrs)
3229 return -ENOMEM;
3230
3231 ret = cpumask_parse(buf, attrs->cpumask);
3232 if (!ret)
3233 ret = apply_workqueue_attrs(wq, attrs);
3234
3235 free_workqueue_attrs(attrs);
3236 return ret ?: count;
3237}
3238
d55262c4
TH
3239static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3240 char *buf)
3241{
3242 struct workqueue_struct *wq = dev_to_wq(dev);
3243 int written;
3244
3245 mutex_lock(&wq->mutex);
3246 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3247 !wq->unbound_attrs->no_numa);
3248 mutex_unlock(&wq->mutex);
3249
3250 return written;
3251}
3252
3253static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3254 const char *buf, size_t count)
3255{
3256 struct workqueue_struct *wq = dev_to_wq(dev);
3257 struct workqueue_attrs *attrs;
3258 int v, ret;
3259
3260 attrs = wq_sysfs_prep_attrs(wq);
3261 if (!attrs)
3262 return -ENOMEM;
3263
3264 ret = -EINVAL;
3265 if (sscanf(buf, "%d", &v) == 1) {
3266 attrs->no_numa = !v;
3267 ret = apply_workqueue_attrs(wq, attrs);
3268 }
3269
3270 free_workqueue_attrs(attrs);
3271 return ret ?: count;
3272}
3273
226223ab 3274static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3275 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3276 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3277 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3278 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3279 __ATTR_NULL,
3280};
3281
3282static struct bus_type wq_subsys = {
3283 .name = "workqueue",
3284 .dev_attrs = wq_sysfs_attrs,
3285};
3286
3287static int __init wq_sysfs_init(void)
3288{
3289 return subsys_virtual_register(&wq_subsys, NULL);
3290}
3291core_initcall(wq_sysfs_init);
3292
3293static void wq_device_release(struct device *dev)
3294{
3295 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3296
3297 kfree(wq_dev);
3298}
3299
3300/**
3301 * workqueue_sysfs_register - make a workqueue visible in sysfs
3302 * @wq: the workqueue to register
3303 *
3304 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3305 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3306 * which is the preferred method.
3307 *
3308 * Workqueue user should use this function directly iff it wants to apply
3309 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3310 * apply_workqueue_attrs() may race against userland updating the
3311 * attributes.
3312 *
3313 * Returns 0 on success, -errno on failure.
3314 */
3315int workqueue_sysfs_register(struct workqueue_struct *wq)
3316{
3317 struct wq_device *wq_dev;
3318 int ret;
3319
3320 /*
3321 * Adjusting max_active or creating new pwqs by applyting
3322 * attributes breaks ordering guarantee. Disallow exposing ordered
3323 * workqueues.
3324 */
3325 if (WARN_ON(wq->flags & __WQ_ORDERED))
3326 return -EINVAL;
3327
3328 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3329 if (!wq_dev)
3330 return -ENOMEM;
3331
3332 wq_dev->wq = wq;
3333 wq_dev->dev.bus = &wq_subsys;
3334 wq_dev->dev.init_name = wq->name;
3335 wq_dev->dev.release = wq_device_release;
3336
3337 /*
3338 * unbound_attrs are created separately. Suppress uevent until
3339 * everything is ready.
3340 */
3341 dev_set_uevent_suppress(&wq_dev->dev, true);
3342
3343 ret = device_register(&wq_dev->dev);
3344 if (ret) {
3345 kfree(wq_dev);
3346 wq->wq_dev = NULL;
3347 return ret;
3348 }
3349
3350 if (wq->flags & WQ_UNBOUND) {
3351 struct device_attribute *attr;
3352
3353 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3354 ret = device_create_file(&wq_dev->dev, attr);
3355 if (ret) {
3356 device_unregister(&wq_dev->dev);
3357 wq->wq_dev = NULL;
3358 return ret;
3359 }
3360 }
3361 }
3362
7c36f88c 3363 dev_set_uevent_suppress(&wq_dev->dev, false);
226223ab
TH
3364 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3365 return 0;
3366}
3367
3368/**
3369 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3370 * @wq: the workqueue to unregister
3371 *
3372 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3373 */
3374static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3375{
3376 struct wq_device *wq_dev = wq->wq_dev;
3377
3378 if (!wq->wq_dev)
3379 return;
3380
3381 wq->wq_dev = NULL;
3382 device_unregister(&wq_dev->dev);
3383}
3384#else /* CONFIG_SYSFS */
3385static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3386#endif /* CONFIG_SYSFS */
3387
7a4e344c
TH
3388/**
3389 * free_workqueue_attrs - free a workqueue_attrs
3390 * @attrs: workqueue_attrs to free
3391 *
3392 * Undo alloc_workqueue_attrs().
3393 */
3394void free_workqueue_attrs(struct workqueue_attrs *attrs)
3395{
3396 if (attrs) {
3397 free_cpumask_var(attrs->cpumask);
3398 kfree(attrs);
3399 }
3400}
3401
3402/**
3403 * alloc_workqueue_attrs - allocate a workqueue_attrs
3404 * @gfp_mask: allocation mask to use
3405 *
3406 * Allocate a new workqueue_attrs, initialize with default settings and
3407 * return it. Returns NULL on failure.
3408 */
3409struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3410{
3411 struct workqueue_attrs *attrs;
3412
3413 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3414 if (!attrs)
3415 goto fail;
3416 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3417 goto fail;
3418
13e2e556 3419 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3420 return attrs;
3421fail:
3422 free_workqueue_attrs(attrs);
3423 return NULL;
3424}
3425
29c91e99
TH
3426static void copy_workqueue_attrs(struct workqueue_attrs *to,
3427 const struct workqueue_attrs *from)
3428{
3429 to->nice = from->nice;
3430 cpumask_copy(to->cpumask, from->cpumask);
73b8bd6d
SL
3431 /*
3432 * Unlike hash and equality test, this function doesn't ignore
3433 * ->no_numa as it is used for both pool and wq attrs. Instead,
3434 * get_unbound_pool() explicitly clears ->no_numa after copying.
3435 */
3436 to->no_numa = from->no_numa;
29c91e99
TH
3437}
3438
29c91e99
TH
3439/* hash value of the content of @attr */
3440static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3441{
3442 u32 hash = 0;
3443
3444 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3445 hash = jhash(cpumask_bits(attrs->cpumask),
3446 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3447 return hash;
3448}
3449
3450/* content equality test */
3451static bool wqattrs_equal(const struct workqueue_attrs *a,
3452 const struct workqueue_attrs *b)
3453{
3454 if (a->nice != b->nice)
3455 return false;
3456 if (!cpumask_equal(a->cpumask, b->cpumask))
3457 return false;
3458 return true;
3459}
3460
7a4e344c
TH
3461/**
3462 * init_worker_pool - initialize a newly zalloc'd worker_pool
3463 * @pool: worker_pool to initialize
3464 *
3465 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3466 * Returns 0 on success, -errno on failure. Even on failure, all fields
3467 * inside @pool proper are initialized and put_unbound_pool() can be called
3468 * on @pool safely to release it.
7a4e344c
TH
3469 */
3470static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3471{
3472 spin_lock_init(&pool->lock);
29c91e99
TH
3473 pool->id = -1;
3474 pool->cpu = -1;
f3f90ad4 3475 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3476 pool->flags |= POOL_DISASSOCIATED;
3477 INIT_LIST_HEAD(&pool->worklist);
3478 INIT_LIST_HEAD(&pool->idle_list);
3479 hash_init(pool->busy_hash);
3480
3481 init_timer_deferrable(&pool->idle_timer);
3482 pool->idle_timer.function = idle_worker_timeout;
3483 pool->idle_timer.data = (unsigned long)pool;
3484
3485 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3486 (unsigned long)pool);
3487
3488 mutex_init(&pool->manager_arb);
bc3a1afc 3489 mutex_init(&pool->manager_mutex);
822d8405 3490 idr_init(&pool->worker_idr);
7a4e344c 3491
29c91e99
TH
3492 INIT_HLIST_NODE(&pool->hash_node);
3493 pool->refcnt = 1;
3494
3495 /* shouldn't fail above this point */
7a4e344c
TH
3496 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3497 if (!pool->attrs)
3498 return -ENOMEM;
3499 return 0;
4e1a1f9a
TH
3500}
3501
29c91e99
TH
3502static void rcu_free_pool(struct rcu_head *rcu)
3503{
3504 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3505
822d8405 3506 idr_destroy(&pool->worker_idr);
29c91e99
TH
3507 free_workqueue_attrs(pool->attrs);
3508 kfree(pool);
3509}
3510
3511/**
3512 * put_unbound_pool - put a worker_pool
3513 * @pool: worker_pool to put
3514 *
3515 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3516 * safe manner. get_unbound_pool() calls this function on its failure path
3517 * and this function should be able to release pools which went through,
3518 * successfully or not, init_worker_pool().
a892cacc
TH
3519 *
3520 * Should be called with wq_pool_mutex held.
29c91e99
TH
3521 */
3522static void put_unbound_pool(struct worker_pool *pool)
3523{
3524 struct worker *worker;
3525
a892cacc
TH
3526 lockdep_assert_held(&wq_pool_mutex);
3527
3528 if (--pool->refcnt)
29c91e99 3529 return;
29c91e99
TH
3530
3531 /* sanity checks */
3532 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3533 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3534 return;
29c91e99
TH
3535
3536 /* release id and unhash */
3537 if (pool->id >= 0)
3538 idr_remove(&worker_pool_idr, pool->id);
3539 hash_del(&pool->hash_node);
3540
c5aa87bb
TH
3541 /*
3542 * Become the manager and destroy all workers. Grabbing
3543 * manager_arb prevents @pool's workers from blocking on
3544 * manager_mutex.
3545 */
29c91e99 3546 mutex_lock(&pool->manager_arb);
cd549687 3547 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3548 spin_lock_irq(&pool->lock);
3549
3550 while ((worker = first_worker(pool)))
3551 destroy_worker(worker);
3552 WARN_ON(pool->nr_workers || pool->nr_idle);
3553
3554 spin_unlock_irq(&pool->lock);
cd549687 3555 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3556 mutex_unlock(&pool->manager_arb);
3557
3558 /* shut down the timers */
3559 del_timer_sync(&pool->idle_timer);
3560 del_timer_sync(&pool->mayday_timer);
3561
3562 /* sched-RCU protected to allow dereferences from get_work_pool() */
3563 call_rcu_sched(&pool->rcu, rcu_free_pool);
3564}
3565
3566/**
3567 * get_unbound_pool - get a worker_pool with the specified attributes
3568 * @attrs: the attributes of the worker_pool to get
3569 *
3570 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3571 * reference count and return it. If there already is a matching
3572 * worker_pool, it will be used; otherwise, this function attempts to
3573 * create a new one. On failure, returns NULL.
a892cacc
TH
3574 *
3575 * Should be called with wq_pool_mutex held.
29c91e99
TH
3576 */
3577static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3578{
29c91e99
TH
3579 u32 hash = wqattrs_hash(attrs);
3580 struct worker_pool *pool;
f3f90ad4 3581 int node;
29c91e99 3582
a892cacc 3583 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3584
3585 /* do we already have a matching pool? */
29c91e99
TH
3586 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3587 if (wqattrs_equal(pool->attrs, attrs)) {
3588 pool->refcnt++;
3589 goto out_unlock;
3590 }
3591 }
29c91e99
TH
3592
3593 /* nope, create a new one */
3594 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3595 if (!pool || init_worker_pool(pool) < 0)
3596 goto fail;
3597
12ee4fc6
LJ
3598 if (workqueue_freezing)
3599 pool->flags |= POOL_FREEZING;
3600
8864b4e5 3601 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3602 copy_workqueue_attrs(pool->attrs, attrs);
3603
73b8bd6d
SL
3604 /*
3605 * no_numa isn't a worker_pool attribute, always clear it. See
3606 * 'struct workqueue_attrs' comments for detail.
3607 */
3608 pool->attrs->no_numa = false;
3609
f3f90ad4
TH
3610 /* if cpumask is contained inside a NUMA node, we belong to that node */
3611 if (wq_numa_enabled) {
3612 for_each_node(node) {
3613 if (cpumask_subset(pool->attrs->cpumask,
3614 wq_numa_possible_cpumask[node])) {
3615 pool->node = node;
3616 break;
3617 }
3618 }
3619 }
3620
29c91e99
TH
3621 if (worker_pool_assign_id(pool) < 0)
3622 goto fail;
3623
3624 /* create and start the initial worker */
ebf44d16 3625 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3626 goto fail;
3627
29c91e99 3628 /* install */
29c91e99
TH
3629 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3630out_unlock:
29c91e99
TH
3631 return pool;
3632fail:
29c91e99
TH
3633 if (pool)
3634 put_unbound_pool(pool);
3635 return NULL;
3636}
3637
8864b4e5
TH
3638static void rcu_free_pwq(struct rcu_head *rcu)
3639{
3640 kmem_cache_free(pwq_cache,
3641 container_of(rcu, struct pool_workqueue, rcu));
3642}
3643
3644/*
3645 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3646 * and needs to be destroyed.
3647 */
3648static void pwq_unbound_release_workfn(struct work_struct *work)
3649{
3650 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3651 unbound_release_work);
3652 struct workqueue_struct *wq = pwq->wq;
3653 struct worker_pool *pool = pwq->pool;
bc0caf09 3654 bool is_last;
8864b4e5
TH
3655
3656 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3657 return;
3658
75ccf595 3659 /*
3c25a55d 3660 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3661 * necessary on release but do it anyway. It's easier to verify
3662 * and consistent with the linking path.
3663 */
3c25a55d 3664 mutex_lock(&wq->mutex);
8864b4e5 3665 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3666 is_last = list_empty(&wq->pwqs);
3c25a55d 3667 mutex_unlock(&wq->mutex);
8864b4e5 3668
a892cacc 3669 mutex_lock(&wq_pool_mutex);
8864b4e5 3670 put_unbound_pool(pool);
a892cacc
TH
3671 mutex_unlock(&wq_pool_mutex);
3672
8864b4e5
TH
3673 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3674
3675 /*
3676 * If we're the last pwq going away, @wq is already dead and no one
3677 * is gonna access it anymore. Free it.
3678 */
6029a918
TH
3679 if (is_last) {
3680 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3681 kfree(wq);
6029a918 3682 }
8864b4e5
TH
3683}
3684
0fbd95aa 3685/**
699ce097 3686 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3687 * @pwq: target pool_workqueue
0fbd95aa 3688 *
699ce097
TH
3689 * If @pwq isn't freezing, set @pwq->max_active to the associated
3690 * workqueue's saved_max_active and activate delayed work items
3691 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3692 */
699ce097 3693static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3694{
699ce097
TH
3695 struct workqueue_struct *wq = pwq->wq;
3696 bool freezable = wq->flags & WQ_FREEZABLE;
3697
3698 /* for @wq->saved_max_active */
a357fc03 3699 lockdep_assert_held(&wq->mutex);
699ce097
TH
3700
3701 /* fast exit for non-freezable wqs */
3702 if (!freezable && pwq->max_active == wq->saved_max_active)
3703 return;
3704
a357fc03 3705 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3706
3707 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3708 pwq->max_active = wq->saved_max_active;
0fbd95aa 3709
699ce097
TH
3710 while (!list_empty(&pwq->delayed_works) &&
3711 pwq->nr_active < pwq->max_active)
3712 pwq_activate_first_delayed(pwq);
951a078a
LJ
3713
3714 /*
3715 * Need to kick a worker after thawed or an unbound wq's
3716 * max_active is bumped. It's a slow path. Do it always.
3717 */
3718 wake_up_worker(pwq->pool);
699ce097
TH
3719 } else {
3720 pwq->max_active = 0;
3721 }
3722
a357fc03 3723 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3724}
3725
e50aba9a 3726/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3727static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3728 struct worker_pool *pool)
d2c1d404
TH
3729{
3730 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3731
e50aba9a
TH
3732 memset(pwq, 0, sizeof(*pwq));
3733
d2c1d404
TH
3734 pwq->pool = pool;
3735 pwq->wq = wq;
3736 pwq->flush_color = -1;
8864b4e5 3737 pwq->refcnt = 1;
d2c1d404 3738 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3739 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3740 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3741 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3742}
d2c1d404 3743
f147f29e 3744/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3745static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3746{
3747 struct workqueue_struct *wq = pwq->wq;
3748
3749 lockdep_assert_held(&wq->mutex);
75ccf595 3750
1befcf30
TH
3751 /* may be called multiple times, ignore if already linked */
3752 if (!list_empty(&pwq->pwqs_node))
3753 return;
3754
983ca25e
TH
3755 /*
3756 * Set the matching work_color. This is synchronized with
3c25a55d 3757 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3758 */
75ccf595 3759 pwq->work_color = wq->work_color;
983ca25e
TH
3760
3761 /* sync max_active to the current setting */
3762 pwq_adjust_max_active(pwq);
3763
3764 /* link in @pwq */
9e8cd2f5 3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3766}
a357fc03 3767
f147f29e
TH
3768/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3769static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3770 const struct workqueue_attrs *attrs)
3771{
3772 struct worker_pool *pool;
3773 struct pool_workqueue *pwq;
3774
3775 lockdep_assert_held(&wq_pool_mutex);
3776
3777 pool = get_unbound_pool(attrs);
3778 if (!pool)
3779 return NULL;
3780
e50aba9a 3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3782 if (!pwq) {
3783 put_unbound_pool(pool);
3784 return NULL;
df2d5ae4 3785 }
6029a918 3786
f147f29e
TH
3787 init_pwq(pwq, wq, pool);
3788 return pwq;
d2c1d404
TH
3789}
3790
4c16bd32
TH
3791/* undo alloc_unbound_pwq(), used only in the error path */
3792static void free_unbound_pwq(struct pool_workqueue *pwq)
3793{
3794 lockdep_assert_held(&wq_pool_mutex);
3795
3796 if (pwq) {
3797 put_unbound_pool(pwq->pool);
cece95df 3798 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3799 }
3800}
3801
3802/**
3803 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3804 * @attrs: the wq_attrs of interest
3805 * @node: the target NUMA node
3806 * @cpu_going_down: if >= 0, the CPU to consider as offline
3807 * @cpumask: outarg, the resulting cpumask
3808 *
3809 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3810 * @cpu_going_down is >= 0, that cpu is considered offline during
3811 * calculation. The result is stored in @cpumask. This function returns
3812 * %true if the resulting @cpumask is different from @attrs->cpumask,
3813 * %false if equal.
3814 *
3815 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3816 * enabled and @node has online CPUs requested by @attrs, the returned
3817 * cpumask is the intersection of the possible CPUs of @node and
3818 * @attrs->cpumask.
3819 *
3820 * The caller is responsible for ensuring that the cpumask of @node stays
3821 * stable.
3822 */
3823static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3824 int cpu_going_down, cpumask_t *cpumask)
3825{
d55262c4 3826 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3827 goto use_dfl;
3828
3829 /* does @node have any online CPUs @attrs wants? */
3830 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3831 if (cpu_going_down >= 0)
3832 cpumask_clear_cpu(cpu_going_down, cpumask);
3833
3834 if (cpumask_empty(cpumask))
3835 goto use_dfl;
3836
3837 /* yeap, return possible CPUs in @node that @attrs wants */
3838 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3839 return !cpumask_equal(cpumask, attrs->cpumask);
3840
3841use_dfl:
3842 cpumask_copy(cpumask, attrs->cpumask);
3843 return false;
3844}
3845
1befcf30
TH
3846/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3847static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3848 int node,
3849 struct pool_workqueue *pwq)
3850{
3851 struct pool_workqueue *old_pwq;
3852
3853 lockdep_assert_held(&wq->mutex);
3854
3855 /* link_pwq() can handle duplicate calls */
3856 link_pwq(pwq);
3857
3858 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3859 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3860 return old_pwq;
3861}
3862
9e8cd2f5
TH
3863/**
3864 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3865 * @wq: the target workqueue
3866 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3867 *
4c16bd32
TH
3868 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3869 * machines, this function maps a separate pwq to each NUMA node with
3870 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3871 * NUMA node it was issued on. Older pwqs are released as in-flight work
3872 * items finish. Note that a work item which repeatedly requeues itself
3873 * back-to-back will stay on its current pwq.
9e8cd2f5
TH
3874 *
3875 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3876 * failure.
3877 */
3878int apply_workqueue_attrs(struct workqueue_struct *wq,
3879 const struct workqueue_attrs *attrs)
3880{
4c16bd32
TH
3881 struct workqueue_attrs *new_attrs, *tmp_attrs;
3882 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3883 int node, ret;
9e8cd2f5 3884
8719dcea 3885 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3886 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3887 return -EINVAL;
3888
8719dcea
TH
3889 /* creating multiple pwqs breaks ordering guarantee */
3890 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3891 return -EINVAL;
3892
4c16bd32 3893 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3894 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3895 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3896 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3897 goto enomem;
3898
4c16bd32 3899 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3900 copy_workqueue_attrs(new_attrs, attrs);
3901 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3902
4c16bd32
TH
3903 /*
3904 * We may create multiple pwqs with differing cpumasks. Make a
3905 * copy of @new_attrs which will be modified and used to obtain
3906 * pools.
3907 */
3908 copy_workqueue_attrs(tmp_attrs, new_attrs);
3909
3910 /*
3911 * CPUs should stay stable across pwq creations and installations.
3912 * Pin CPUs, determine the target cpumask for each node and create
3913 * pwqs accordingly.
3914 */
3915 get_online_cpus();
3916
a892cacc 3917 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3918
3919 /*
3920 * If something goes wrong during CPU up/down, we'll fall back to
3921 * the default pwq covering whole @attrs->cpumask. Always create
3922 * it even if we don't use it immediately.
3923 */
3924 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3925 if (!dfl_pwq)
3926 goto enomem_pwq;
3927
3928 for_each_node(node) {
3929 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3930 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3931 if (!pwq_tbl[node])
3932 goto enomem_pwq;
3933 } else {
3934 dfl_pwq->refcnt++;
3935 pwq_tbl[node] = dfl_pwq;
3936 }
3937 }
3938
f147f29e 3939 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3940
4c16bd32 3941 /* all pwqs have been created successfully, let's install'em */
f147f29e 3942 mutex_lock(&wq->mutex);
a892cacc 3943
f147f29e 3944 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3945
3946 /* save the previous pwq and install the new one */
f147f29e 3947 for_each_node(node)
4c16bd32
TH
3948 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3949
3950 /* @dfl_pwq might not have been used, ensure it's linked */
3951 link_pwq(dfl_pwq);
3952 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3953
3954 mutex_unlock(&wq->mutex);
9e8cd2f5 3955
4c16bd32
TH
3956 /* put the old pwqs */
3957 for_each_node(node)
3958 put_pwq_unlocked(pwq_tbl[node]);
3959 put_pwq_unlocked(dfl_pwq);
3960
3961 put_online_cpus();
4862125b
TH
3962 ret = 0;
3963 /* fall through */
3964out_free:
4c16bd32 3965 free_workqueue_attrs(tmp_attrs);
4862125b 3966 free_workqueue_attrs(new_attrs);
4c16bd32 3967 kfree(pwq_tbl);
4862125b 3968 return ret;
13e2e556 3969
4c16bd32
TH
3970enomem_pwq:
3971 free_unbound_pwq(dfl_pwq);
3972 for_each_node(node)
3973 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3974 free_unbound_pwq(pwq_tbl[node]);
3975 mutex_unlock(&wq_pool_mutex);
3976 put_online_cpus();
13e2e556 3977enomem:
4862125b
TH
3978 ret = -ENOMEM;
3979 goto out_free;
9e8cd2f5
TH
3980}
3981
4c16bd32
TH
3982/**
3983 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3984 * @wq: the target workqueue
3985 * @cpu: the CPU coming up or going down
3986 * @online: whether @cpu is coming up or going down
3987 *
3988 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3989 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3990 * @wq accordingly.
3991 *
3992 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3993 * falls back to @wq->dfl_pwq which may not be optimal but is always
3994 * correct.
3995 *
3996 * Note that when the last allowed CPU of a NUMA node goes offline for a
3997 * workqueue with a cpumask spanning multiple nodes, the workers which were
3998 * already executing the work items for the workqueue will lose their CPU
3999 * affinity and may execute on any CPU. This is similar to how per-cpu
4000 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4001 * affinity, it's the user's responsibility to flush the work item from
4002 * CPU_DOWN_PREPARE.
4003 */
4004static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4005 bool online)
4006{
4007 int node = cpu_to_node(cpu);
4008 int cpu_off = online ? -1 : cpu;
4009 struct pool_workqueue *old_pwq = NULL, *pwq;
4010 struct workqueue_attrs *target_attrs;
4011 cpumask_t *cpumask;
4012
4013 lockdep_assert_held(&wq_pool_mutex);
4014
4015 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4016 return;
4017
4018 /*
4019 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4020 * Let's use a preallocated one. The following buf is protected by
4021 * CPU hotplug exclusion.
4022 */
4023 target_attrs = wq_update_unbound_numa_attrs_buf;
4024 cpumask = target_attrs->cpumask;
4025
4026 mutex_lock(&wq->mutex);
d55262c4
TH
4027 if (wq->unbound_attrs->no_numa)
4028 goto out_unlock;
4c16bd32
TH
4029
4030 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4031 pwq = unbound_pwq_by_node(wq, node);
4032
4033 /*
4034 * Let's determine what needs to be done. If the target cpumask is
4035 * different from wq's, we need to compare it to @pwq's and create
4036 * a new one if they don't match. If the target cpumask equals
4037 * wq's, the default pwq should be used. If @pwq is already the
4038 * default one, nothing to do; otherwise, install the default one.
4039 */
4040 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4041 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4042 goto out_unlock;
4043 } else {
4044 if (pwq == wq->dfl_pwq)
4045 goto out_unlock;
4046 else
4047 goto use_dfl_pwq;
4048 }
4049
4050 mutex_unlock(&wq->mutex);
4051
4052 /* create a new pwq */
4053 pwq = alloc_unbound_pwq(wq, target_attrs);
4054 if (!pwq) {
4055 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4056 wq->name);
55a3dfcc
DY
4057 mutex_lock(&wq->mutex);
4058 goto use_dfl_pwq;
4c16bd32
TH
4059 }
4060
4061 /*
4062 * Install the new pwq. As this function is called only from CPU
4063 * hotplug callbacks and applying a new attrs is wrapped with
4064 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4065 * inbetween.
4066 */
4067 mutex_lock(&wq->mutex);
4068 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4069 goto out_unlock;
4070
4071use_dfl_pwq:
4072 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4073 get_pwq(wq->dfl_pwq);
4074 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4075 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4076out_unlock:
4077 mutex_unlock(&wq->mutex);
4078 put_pwq_unlocked(old_pwq);
4079}
4080
30cdf249 4081static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4082{
49e3cf44 4083 bool highpri = wq->flags & WQ_HIGHPRI;
ced4ac92 4084 int cpu, ret;
30cdf249
TH
4085
4086 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4087 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4088 if (!wq->cpu_pwqs)
30cdf249
TH
4089 return -ENOMEM;
4090
4091 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4092 struct pool_workqueue *pwq =
4093 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4094 struct worker_pool *cpu_pools =
f02ae73a 4095 per_cpu(cpu_worker_pools, cpu);
f3421797 4096
f147f29e
TH
4097 init_pwq(pwq, wq, &cpu_pools[highpri]);
4098
4099 mutex_lock(&wq->mutex);
1befcf30 4100 link_pwq(pwq);
f147f29e 4101 mutex_unlock(&wq->mutex);
30cdf249 4102 }
9e8cd2f5 4103 return 0;
ced4ac92
TH
4104 } else if (wq->flags & __WQ_ORDERED) {
4105 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4106 /* there should only be single pwq for ordering guarantee */
4107 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4108 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4109 "ordering guarantee broken for workqueue %s\n", wq->name);
4110 return ret;
30cdf249 4111 } else {
9e8cd2f5 4112 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4113 }
0f900049
TH
4114}
4115
f3421797
TH
4116static int wq_clamp_max_active(int max_active, unsigned int flags,
4117 const char *name)
b71ab8c2 4118{
f3421797
TH
4119 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4120
4121 if (max_active < 1 || max_active > lim)
044c782c
VI
4122 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4123 max_active, name, 1, lim);
b71ab8c2 4124
f3421797 4125 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4126}
4127
b196be89 4128struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4129 unsigned int flags,
4130 int max_active,
4131 struct lock_class_key *key,
b196be89 4132 const char *lock_name, ...)
1da177e4 4133{
df2d5ae4 4134 size_t tbl_size = 0;
ecf6881f 4135 va_list args;
1da177e4 4136 struct workqueue_struct *wq;
49e3cf44 4137 struct pool_workqueue *pwq;
b196be89 4138
ecf6881f 4139 /* allocate wq and format name */
df2d5ae4
TH
4140 if (flags & WQ_UNBOUND)
4141 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4142
4143 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4144 if (!wq)
d2c1d404 4145 return NULL;
b196be89 4146
6029a918
TH
4147 if (flags & WQ_UNBOUND) {
4148 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4149 if (!wq->unbound_attrs)
4150 goto err_free_wq;
4151 }
4152
ecf6881f
TH
4153 va_start(args, lock_name);
4154 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4155 va_end(args);
1da177e4 4156
d320c038 4157 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4158 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4159
b196be89 4160 /* init wq */
97e37d7b 4161 wq->flags = flags;
a0a1a5fd 4162 wq->saved_max_active = max_active;
3c25a55d 4163 mutex_init(&wq->mutex);
112202d9 4164 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4165 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4166 INIT_LIST_HEAD(&wq->flusher_queue);
4167 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4168 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4169
eb13ba87 4170 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4171 INIT_LIST_HEAD(&wq->list);
3af24433 4172
30cdf249 4173 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4174 goto err_free_wq;
1537663f 4175
493008a8
TH
4176 /*
4177 * Workqueues which may be used during memory reclaim should
4178 * have a rescuer to guarantee forward progress.
4179 */
4180 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4181 struct worker *rescuer;
4182
d2c1d404 4183 rescuer = alloc_worker();
e22bee78 4184 if (!rescuer)
d2c1d404 4185 goto err_destroy;
e22bee78 4186
111c225a
TH
4187 rescuer->rescue_wq = wq;
4188 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4189 wq->name);
d2c1d404
TH
4190 if (IS_ERR(rescuer->task)) {
4191 kfree(rescuer);
4192 goto err_destroy;
4193 }
e22bee78 4194
d2c1d404 4195 wq->rescuer = rescuer;
14a40ffc 4196 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4197 wake_up_process(rescuer->task);
3af24433
ON
4198 }
4199
226223ab
TH
4200 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4201 goto err_destroy;
4202
a0a1a5fd 4203 /*
68e13a67
LJ
4204 * wq_pool_mutex protects global freeze state and workqueues list.
4205 * Grab it, adjust max_active and add the new @wq to workqueues
4206 * list.
a0a1a5fd 4207 */
68e13a67 4208 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4209
a357fc03 4210 mutex_lock(&wq->mutex);
699ce097
TH
4211 for_each_pwq(pwq, wq)
4212 pwq_adjust_max_active(pwq);
a357fc03 4213 mutex_unlock(&wq->mutex);
a0a1a5fd 4214
1537663f 4215 list_add(&wq->list, &workqueues);
a0a1a5fd 4216
68e13a67 4217 mutex_unlock(&wq_pool_mutex);
1537663f 4218
3af24433 4219 return wq;
d2c1d404
TH
4220
4221err_free_wq:
6029a918 4222 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4223 kfree(wq);
4224 return NULL;
4225err_destroy:
4226 destroy_workqueue(wq);
4690c4ab 4227 return NULL;
3af24433 4228}
d320c038 4229EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4230
3af24433
ON
4231/**
4232 * destroy_workqueue - safely terminate a workqueue
4233 * @wq: target workqueue
4234 *
4235 * Safely destroy a workqueue. All work currently pending will be done first.
4236 */
4237void destroy_workqueue(struct workqueue_struct *wq)
4238{
49e3cf44 4239 struct pool_workqueue *pwq;
4c16bd32 4240 int node;
3af24433 4241
9c5a2ba7
TH
4242 /* drain it before proceeding with destruction */
4243 drain_workqueue(wq);
c8efcc25 4244
6183c009 4245 /* sanity checks */
b09f4fd3 4246 mutex_lock(&wq->mutex);
49e3cf44 4247 for_each_pwq(pwq, wq) {
6183c009
TH
4248 int i;
4249
76af4d93
TH
4250 for (i = 0; i < WORK_NR_COLORS; i++) {
4251 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4252 mutex_unlock(&wq->mutex);
6183c009 4253 return;
76af4d93
TH
4254 }
4255 }
4256
5c529597 4257 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4258 WARN_ON(pwq->nr_active) ||
76af4d93 4259 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4260 mutex_unlock(&wq->mutex);
6183c009 4261 return;
76af4d93 4262 }
6183c009 4263 }
b09f4fd3 4264 mutex_unlock(&wq->mutex);
6183c009 4265
a0a1a5fd
TH
4266 /*
4267 * wq list is used to freeze wq, remove from list after
4268 * flushing is complete in case freeze races us.
4269 */
68e13a67 4270 mutex_lock(&wq_pool_mutex);
d2c1d404 4271 list_del_init(&wq->list);
68e13a67 4272 mutex_unlock(&wq_pool_mutex);
3af24433 4273
226223ab
TH
4274 workqueue_sysfs_unregister(wq);
4275
493008a8 4276 if (wq->rescuer) {
e22bee78 4277 kthread_stop(wq->rescuer->task);
8d9df9f0 4278 kfree(wq->rescuer);
493008a8 4279 wq->rescuer = NULL;
e22bee78
TH
4280 }
4281
8864b4e5
TH
4282 if (!(wq->flags & WQ_UNBOUND)) {
4283 /*
4284 * The base ref is never dropped on per-cpu pwqs. Directly
4285 * free the pwqs and wq.
4286 */
4287 free_percpu(wq->cpu_pwqs);
4288 kfree(wq);
4289 } else {
4290 /*
4291 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4292 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4293 * @wq will be freed when the last pwq is released.
8864b4e5 4294 */
4c16bd32
TH
4295 for_each_node(node) {
4296 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4297 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4298 put_pwq_unlocked(pwq);
4299 }
4300
4301 /*
4302 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4303 * put. Don't access it afterwards.
4304 */
4305 pwq = wq->dfl_pwq;
4306 wq->dfl_pwq = NULL;
dce90d47 4307 put_pwq_unlocked(pwq);
29c91e99 4308 }
3af24433
ON
4309}
4310EXPORT_SYMBOL_GPL(destroy_workqueue);
4311
dcd989cb
TH
4312/**
4313 * workqueue_set_max_active - adjust max_active of a workqueue
4314 * @wq: target workqueue
4315 * @max_active: new max_active value.
4316 *
4317 * Set max_active of @wq to @max_active.
4318 *
4319 * CONTEXT:
4320 * Don't call from IRQ context.
4321 */
4322void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4323{
49e3cf44 4324 struct pool_workqueue *pwq;
dcd989cb 4325
8719dcea
TH
4326 /* disallow meddling with max_active for ordered workqueues */
4327 if (WARN_ON(wq->flags & __WQ_ORDERED))
4328 return;
4329
f3421797 4330 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4331
a357fc03 4332 mutex_lock(&wq->mutex);
dcd989cb
TH
4333
4334 wq->saved_max_active = max_active;
4335
699ce097
TH
4336 for_each_pwq(pwq, wq)
4337 pwq_adjust_max_active(pwq);
93981800 4338
a357fc03 4339 mutex_unlock(&wq->mutex);
15316ba8 4340}
dcd989cb 4341EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4342
e6267616
TH
4343/**
4344 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4345 *
4346 * Determine whether %current is a workqueue rescuer. Can be used from
4347 * work functions to determine whether it's being run off the rescuer task.
4348 */
4349bool current_is_workqueue_rescuer(void)
4350{
4351 struct worker *worker = current_wq_worker();
4352
6a092dfd 4353 return worker && worker->rescue_wq;
e6267616
TH
4354}
4355
eef6a7d5 4356/**
dcd989cb
TH
4357 * workqueue_congested - test whether a workqueue is congested
4358 * @cpu: CPU in question
4359 * @wq: target workqueue
eef6a7d5 4360 *
dcd989cb
TH
4361 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4362 * no synchronization around this function and the test result is
4363 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4364 *
d3251859
TH
4365 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4366 * Note that both per-cpu and unbound workqueues may be associated with
4367 * multiple pool_workqueues which have separate congested states. A
4368 * workqueue being congested on one CPU doesn't mean the workqueue is also
4369 * contested on other CPUs / NUMA nodes.
4370 *
dcd989cb
TH
4371 * RETURNS:
4372 * %true if congested, %false otherwise.
eef6a7d5 4373 */
d84ff051 4374bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4375{
7fb98ea7 4376 struct pool_workqueue *pwq;
76af4d93
TH
4377 bool ret;
4378
88109453 4379 rcu_read_lock_sched();
7fb98ea7 4380
d3251859
TH
4381 if (cpu == WORK_CPU_UNBOUND)
4382 cpu = smp_processor_id();
4383
7fb98ea7
TH
4384 if (!(wq->flags & WQ_UNBOUND))
4385 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4386 else
df2d5ae4 4387 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4388
76af4d93 4389 ret = !list_empty(&pwq->delayed_works);
88109453 4390 rcu_read_unlock_sched();
76af4d93
TH
4391
4392 return ret;
1da177e4 4393}
dcd989cb 4394EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4395
dcd989cb
TH
4396/**
4397 * work_busy - test whether a work is currently pending or running
4398 * @work: the work to be tested
4399 *
4400 * Test whether @work is currently pending or running. There is no
4401 * synchronization around this function and the test result is
4402 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4403 *
4404 * RETURNS:
4405 * OR'd bitmask of WORK_BUSY_* bits.
4406 */
4407unsigned int work_busy(struct work_struct *work)
1da177e4 4408{
fa1b54e6 4409 struct worker_pool *pool;
dcd989cb
TH
4410 unsigned long flags;
4411 unsigned int ret = 0;
1da177e4 4412
dcd989cb
TH
4413 if (work_pending(work))
4414 ret |= WORK_BUSY_PENDING;
1da177e4 4415
fa1b54e6
TH
4416 local_irq_save(flags);
4417 pool = get_work_pool(work);
038366c5 4418 if (pool) {
fa1b54e6 4419 spin_lock(&pool->lock);
038366c5
LJ
4420 if (find_worker_executing_work(pool, work))
4421 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4422 spin_unlock(&pool->lock);
038366c5 4423 }
fa1b54e6 4424 local_irq_restore(flags);
1da177e4 4425
dcd989cb 4426 return ret;
1da177e4 4427}
dcd989cb 4428EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4429
3d1cb205
TH
4430/**
4431 * set_worker_desc - set description for the current work item
4432 * @fmt: printf-style format string
4433 * @...: arguments for the format string
4434 *
4435 * This function can be called by a running work function to describe what
4436 * the work item is about. If the worker task gets dumped, this
4437 * information will be printed out together to help debugging. The
4438 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4439 */
4440void set_worker_desc(const char *fmt, ...)
4441{
4442 struct worker *worker = current_wq_worker();
4443 va_list args;
4444
4445 if (worker) {
4446 va_start(args, fmt);
4447 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4448 va_end(args);
4449 worker->desc_valid = true;
4450 }
4451}
4452
4453/**
4454 * print_worker_info - print out worker information and description
4455 * @log_lvl: the log level to use when printing
4456 * @task: target task
4457 *
4458 * If @task is a worker and currently executing a work item, print out the
4459 * name of the workqueue being serviced and worker description set with
4460 * set_worker_desc() by the currently executing work item.
4461 *
4462 * This function can be safely called on any task as long as the
4463 * task_struct itself is accessible. While safe, this function isn't
4464 * synchronized and may print out mixups or garbages of limited length.
4465 */
4466void print_worker_info(const char *log_lvl, struct task_struct *task)
4467{
4468 work_func_t *fn = NULL;
4469 char name[WQ_NAME_LEN] = { };
4470 char desc[WORKER_DESC_LEN] = { };
4471 struct pool_workqueue *pwq = NULL;
4472 struct workqueue_struct *wq = NULL;
4473 bool desc_valid = false;
4474 struct worker *worker;
4475
4476 if (!(task->flags & PF_WQ_WORKER))
4477 return;
4478
4479 /*
4480 * This function is called without any synchronization and @task
4481 * could be in any state. Be careful with dereferences.
4482 */
4483 worker = probe_kthread_data(task);
4484
4485 /*
4486 * Carefully copy the associated workqueue's workfn and name. Keep
4487 * the original last '\0' in case the original contains garbage.
4488 */
4489 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4490 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4491 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4492 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4493
4494 /* copy worker description */
4495 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4496 if (desc_valid)
4497 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4498
4499 if (fn || name[0] || desc[0]) {
4500 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4501 if (desc[0])
4502 pr_cont(" (%s)", desc);
4503 pr_cont("\n");
4504 }
4505}
4506
db7bccf4
TH
4507/*
4508 * CPU hotplug.
4509 *
e22bee78 4510 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4511 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4512 * pool which make migrating pending and scheduled works very
e22bee78 4513 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4514 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4515 * blocked draining impractical.
4516 *
24647570 4517 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4518 * running as an unbound one and allowing it to be reattached later if the
4519 * cpu comes back online.
db7bccf4 4520 */
1da177e4 4521
706026c2 4522static void wq_unbind_fn(struct work_struct *work)
3af24433 4523{
38db41d9 4524 int cpu = smp_processor_id();
4ce62e9e 4525 struct worker_pool *pool;
db7bccf4 4526 struct worker *worker;
a9ab775b 4527 int wi;
3af24433 4528
f02ae73a 4529 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4530 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4531
bc3a1afc 4532 mutex_lock(&pool->manager_mutex);
94cf58bb 4533 spin_lock_irq(&pool->lock);
3af24433 4534
94cf58bb 4535 /*
bc3a1afc 4536 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4537 * unbound and set DISASSOCIATED. Before this, all workers
4538 * except for the ones which are still executing works from
4539 * before the last CPU down must be on the cpu. After
4540 * this, they may become diasporas.
4541 */
a9ab775b 4542 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4543 worker->flags |= WORKER_UNBOUND;
06ba38a9 4544
24647570 4545 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4546
94cf58bb 4547 spin_unlock_irq(&pool->lock);
bc3a1afc 4548 mutex_unlock(&pool->manager_mutex);
628c78e7 4549
eb283428
LJ
4550 /*
4551 * Call schedule() so that we cross rq->lock and thus can
4552 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4553 * This is necessary as scheduler callbacks may be invoked
4554 * from other cpus.
4555 */
4556 schedule();
06ba38a9 4557
eb283428
LJ
4558 /*
4559 * Sched callbacks are disabled now. Zap nr_running.
4560 * After this, nr_running stays zero and need_more_worker()
4561 * and keep_working() are always true as long as the
4562 * worklist is not empty. This pool now behaves as an
4563 * unbound (in terms of concurrency management) pool which
4564 * are served by workers tied to the pool.
4565 */
e19e397a 4566 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4567
4568 /*
4569 * With concurrency management just turned off, a busy
4570 * worker blocking could lead to lengthy stalls. Kick off
4571 * unbound chain execution of currently pending work items.
4572 */
4573 spin_lock_irq(&pool->lock);
4574 wake_up_worker(pool);
4575 spin_unlock_irq(&pool->lock);
4576 }
3af24433 4577}
3af24433 4578
bd7c089e
TH
4579/**
4580 * rebind_workers - rebind all workers of a pool to the associated CPU
4581 * @pool: pool of interest
4582 *
a9ab775b 4583 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4584 */
4585static void rebind_workers(struct worker_pool *pool)
4586{
a9ab775b
TH
4587 struct worker *worker;
4588 int wi;
bd7c089e
TH
4589
4590 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4591
a9ab775b
TH
4592 /*
4593 * Restore CPU affinity of all workers. As all idle workers should
4594 * be on the run-queue of the associated CPU before any local
4595 * wake-ups for concurrency management happen, restore CPU affinty
4596 * of all workers first and then clear UNBOUND. As we're called
4597 * from CPU_ONLINE, the following shouldn't fail.
4598 */
4599 for_each_pool_worker(worker, wi, pool)
4600 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4601 pool->attrs->cpumask) < 0);
bd7c089e 4602
a9ab775b 4603 spin_lock_irq(&pool->lock);
bd7c089e 4604
a9ab775b
TH
4605 for_each_pool_worker(worker, wi, pool) {
4606 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4607
4608 /*
a9ab775b
TH
4609 * A bound idle worker should actually be on the runqueue
4610 * of the associated CPU for local wake-ups targeting it to
4611 * work. Kick all idle workers so that they migrate to the
4612 * associated CPU. Doing this in the same loop as
4613 * replacing UNBOUND with REBOUND is safe as no worker will
4614 * be bound before @pool->lock is released.
bd7c089e 4615 */
a9ab775b
TH
4616 if (worker_flags & WORKER_IDLE)
4617 wake_up_process(worker->task);
bd7c089e 4618
a9ab775b
TH
4619 /*
4620 * We want to clear UNBOUND but can't directly call
4621 * worker_clr_flags() or adjust nr_running. Atomically
4622 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4623 * @worker will clear REBOUND using worker_clr_flags() when
4624 * it initiates the next execution cycle thus restoring
4625 * concurrency management. Note that when or whether
4626 * @worker clears REBOUND doesn't affect correctness.
4627 *
4628 * ACCESS_ONCE() is necessary because @worker->flags may be
4629 * tested without holding any lock in
4630 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4631 * fail incorrectly leading to premature concurrency
4632 * management operations.
4633 */
4634 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4635 worker_flags |= WORKER_REBOUND;
4636 worker_flags &= ~WORKER_UNBOUND;
4637 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4638 }
a9ab775b
TH
4639
4640 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4641}
4642
7dbc725e
TH
4643/**
4644 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4645 * @pool: unbound pool of interest
4646 * @cpu: the CPU which is coming up
4647 *
4648 * An unbound pool may end up with a cpumask which doesn't have any online
4649 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4650 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4651 * online CPU before, cpus_allowed of all its workers should be restored.
4652 */
4653static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4654{
4655 static cpumask_t cpumask;
4656 struct worker *worker;
4657 int wi;
4658
4659 lockdep_assert_held(&pool->manager_mutex);
4660
4661 /* is @cpu allowed for @pool? */
4662 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4663 return;
4664
4665 /* is @cpu the only online CPU? */
4666 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4667 if (cpumask_weight(&cpumask) != 1)
4668 return;
4669
4670 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4671 for_each_pool_worker(worker, wi, pool)
4672 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4673 pool->attrs->cpumask) < 0);
4674}
4675
8db25e78
TH
4676/*
4677 * Workqueues should be brought up before normal priority CPU notifiers.
4678 * This will be registered high priority CPU notifier.
4679 */
9fdf9b73 4680static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4681 unsigned long action,
4682 void *hcpu)
3af24433 4683{
d84ff051 4684 int cpu = (unsigned long)hcpu;
4ce62e9e 4685 struct worker_pool *pool;
4c16bd32 4686 struct workqueue_struct *wq;
7dbc725e 4687 int pi;
3ce63377 4688
8db25e78 4689 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4690 case CPU_UP_PREPARE:
f02ae73a 4691 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4692 if (pool->nr_workers)
4693 continue;
ebf44d16 4694 if (create_and_start_worker(pool) < 0)
3ce63377 4695 return NOTIFY_BAD;
3af24433 4696 }
8db25e78 4697 break;
3af24433 4698
db7bccf4
TH
4699 case CPU_DOWN_FAILED:
4700 case CPU_ONLINE:
68e13a67 4701 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4702
4703 for_each_pool(pool, pi) {
bc3a1afc 4704 mutex_lock(&pool->manager_mutex);
94cf58bb 4705
7dbc725e
TH
4706 if (pool->cpu == cpu) {
4707 spin_lock_irq(&pool->lock);
4708 pool->flags &= ~POOL_DISASSOCIATED;
4709 spin_unlock_irq(&pool->lock);
a9ab775b 4710
7dbc725e
TH
4711 rebind_workers(pool);
4712 } else if (pool->cpu < 0) {
4713 restore_unbound_workers_cpumask(pool, cpu);
4714 }
94cf58bb 4715
bc3a1afc 4716 mutex_unlock(&pool->manager_mutex);
94cf58bb 4717 }
7dbc725e 4718
4c16bd32
TH
4719 /* update NUMA affinity of unbound workqueues */
4720 list_for_each_entry(wq, &workqueues, list)
4721 wq_update_unbound_numa(wq, cpu, true);
4722
68e13a67 4723 mutex_unlock(&wq_pool_mutex);
db7bccf4 4724 break;
00dfcaf7 4725 }
65758202
TH
4726 return NOTIFY_OK;
4727}
4728
4729/*
4730 * Workqueues should be brought down after normal priority CPU notifiers.
4731 * This will be registered as low priority CPU notifier.
4732 */
9fdf9b73 4733static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4734 unsigned long action,
4735 void *hcpu)
4736{
d84ff051 4737 int cpu = (unsigned long)hcpu;
8db25e78 4738 struct work_struct unbind_work;
4c16bd32 4739 struct workqueue_struct *wq;
8db25e78 4740
65758202
TH
4741 switch (action & ~CPU_TASKS_FROZEN) {
4742 case CPU_DOWN_PREPARE:
4c16bd32 4743 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4744 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4745 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4746
4747 /* update NUMA affinity of unbound workqueues */
4748 mutex_lock(&wq_pool_mutex);
4749 list_for_each_entry(wq, &workqueues, list)
4750 wq_update_unbound_numa(wq, cpu, false);
4751 mutex_unlock(&wq_pool_mutex);
4752
4753 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4754 flush_work(&unbind_work);
4755 break;
65758202
TH
4756 }
4757 return NOTIFY_OK;
4758}
4759
2d3854a3 4760#ifdef CONFIG_SMP
8ccad40d 4761
2d3854a3 4762struct work_for_cpu {
ed48ece2 4763 struct work_struct work;
2d3854a3
RR
4764 long (*fn)(void *);
4765 void *arg;
4766 long ret;
4767};
4768
ed48ece2 4769static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4770{
ed48ece2
TH
4771 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4772
2d3854a3
RR
4773 wfc->ret = wfc->fn(wfc->arg);
4774}
4775
4776/**
4777 * work_on_cpu - run a function in user context on a particular cpu
4778 * @cpu: the cpu to run on
4779 * @fn: the function to run
4780 * @arg: the function arg
4781 *
31ad9081
RR
4782 * This will return the value @fn returns.
4783 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4784 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4785 */
d84ff051 4786long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4787{
ed48ece2 4788 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4789
ed48ece2
TH
4790 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4791 schedule_work_on(cpu, &wfc.work);
4792 flush_work(&wfc.work);
2d3854a3
RR
4793 return wfc.ret;
4794}
4795EXPORT_SYMBOL_GPL(work_on_cpu);
4796#endif /* CONFIG_SMP */
4797
a0a1a5fd
TH
4798#ifdef CONFIG_FREEZER
4799
4800/**
4801 * freeze_workqueues_begin - begin freezing workqueues
4802 *
58a69cb4 4803 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4804 * workqueues will queue new works to their delayed_works list instead of
706026c2 4805 * pool->worklist.
a0a1a5fd
TH
4806 *
4807 * CONTEXT:
a357fc03 4808 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4809 */
4810void freeze_workqueues_begin(void)
4811{
17116969 4812 struct worker_pool *pool;
24b8a847
TH
4813 struct workqueue_struct *wq;
4814 struct pool_workqueue *pwq;
611c92a0 4815 int pi;
a0a1a5fd 4816
68e13a67 4817 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4818
6183c009 4819 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4820 workqueue_freezing = true;
4821
24b8a847 4822 /* set FREEZING */
611c92a0 4823 for_each_pool(pool, pi) {
5bcab335 4824 spin_lock_irq(&pool->lock);
17116969
TH
4825 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4826 pool->flags |= POOL_FREEZING;
5bcab335 4827 spin_unlock_irq(&pool->lock);
24b8a847 4828 }
a0a1a5fd 4829
24b8a847 4830 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4831 mutex_lock(&wq->mutex);
699ce097
TH
4832 for_each_pwq(pwq, wq)
4833 pwq_adjust_max_active(pwq);
a357fc03 4834 mutex_unlock(&wq->mutex);
a0a1a5fd 4835 }
5bcab335 4836
68e13a67 4837 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4838}
4839
4840/**
58a69cb4 4841 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4842 *
4843 * Check whether freezing is complete. This function must be called
4844 * between freeze_workqueues_begin() and thaw_workqueues().
4845 *
4846 * CONTEXT:
68e13a67 4847 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4848 *
4849 * RETURNS:
58a69cb4
TH
4850 * %true if some freezable workqueues are still busy. %false if freezing
4851 * is complete.
a0a1a5fd
TH
4852 */
4853bool freeze_workqueues_busy(void)
4854{
a0a1a5fd 4855 bool busy = false;
24b8a847
TH
4856 struct workqueue_struct *wq;
4857 struct pool_workqueue *pwq;
a0a1a5fd 4858
68e13a67 4859 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4860
6183c009 4861 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4862
24b8a847
TH
4863 list_for_each_entry(wq, &workqueues, list) {
4864 if (!(wq->flags & WQ_FREEZABLE))
4865 continue;
a0a1a5fd
TH
4866 /*
4867 * nr_active is monotonically decreasing. It's safe
4868 * to peek without lock.
4869 */
88109453 4870 rcu_read_lock_sched();
24b8a847 4871 for_each_pwq(pwq, wq) {
6183c009 4872 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4873 if (pwq->nr_active) {
a0a1a5fd 4874 busy = true;
88109453 4875 rcu_read_unlock_sched();
a0a1a5fd
TH
4876 goto out_unlock;
4877 }
4878 }
88109453 4879 rcu_read_unlock_sched();
a0a1a5fd
TH
4880 }
4881out_unlock:
68e13a67 4882 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4883 return busy;
4884}
4885
4886/**
4887 * thaw_workqueues - thaw workqueues
4888 *
4889 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4890 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4891 *
4892 * CONTEXT:
a357fc03 4893 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4894 */
4895void thaw_workqueues(void)
4896{
24b8a847
TH
4897 struct workqueue_struct *wq;
4898 struct pool_workqueue *pwq;
4899 struct worker_pool *pool;
611c92a0 4900 int pi;
a0a1a5fd 4901
68e13a67 4902 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4903
4904 if (!workqueue_freezing)
4905 goto out_unlock;
4906
24b8a847 4907 /* clear FREEZING */
611c92a0 4908 for_each_pool(pool, pi) {
5bcab335 4909 spin_lock_irq(&pool->lock);
24b8a847
TH
4910 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4911 pool->flags &= ~POOL_FREEZING;
5bcab335 4912 spin_unlock_irq(&pool->lock);
24b8a847 4913 }
8b03ae3c 4914
24b8a847
TH
4915 /* restore max_active and repopulate worklist */
4916 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4917 mutex_lock(&wq->mutex);
699ce097
TH
4918 for_each_pwq(pwq, wq)
4919 pwq_adjust_max_active(pwq);
a357fc03 4920 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4921 }
4922
4923 workqueue_freezing = false;
4924out_unlock:
68e13a67 4925 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4926}
4927#endif /* CONFIG_FREEZER */
4928
bce90380
TH
4929static void __init wq_numa_init(void)
4930{
4931 cpumask_var_t *tbl;
4932 int node, cpu;
4933
4934 /* determine NUMA pwq table len - highest node id + 1 */
4935 for_each_node(node)
4936 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4937
4938 if (num_possible_nodes() <= 1)
4939 return;
4940
d55262c4
TH
4941 if (wq_disable_numa) {
4942 pr_info("workqueue: NUMA affinity support disabled\n");
4943 return;
4944 }
4945
4c16bd32
TH
4946 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4947 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4948
bce90380
TH
4949 /*
4950 * We want masks of possible CPUs of each node which isn't readily
4951 * available. Build one from cpu_to_node() which should have been
4952 * fully initialized by now.
4953 */
4954 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4955 BUG_ON(!tbl);
4956
4957 for_each_node(node)
3e24998c 4958 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 4959 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4960
4961 for_each_possible_cpu(cpu) {
4962 node = cpu_to_node(cpu);
4963 if (WARN_ON(node == NUMA_NO_NODE)) {
4964 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4965 /* happens iff arch is bonkers, let's just proceed */
4966 return;
4967 }
4968 cpumask_set_cpu(cpu, tbl[node]);
4969 }
4970
4971 wq_numa_possible_cpumask = tbl;
4972 wq_numa_enabled = true;
4973}
4974
6ee0578b 4975static int __init init_workqueues(void)
1da177e4 4976{
7a4e344c
TH
4977 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4978 int i, cpu;
c34056a3 4979
7c3eed5c
TH
4980 /* make sure we have enough bits for OFFQ pool ID */
4981 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4982 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4983
e904e6c2
TH
4984 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4985
4986 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4987
65758202 4988 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4989 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4990
bce90380
TH
4991 wq_numa_init();
4992
706026c2 4993 /* initialize CPU pools */
29c91e99 4994 for_each_possible_cpu(cpu) {
4ce62e9e 4995 struct worker_pool *pool;
8b03ae3c 4996
7a4e344c 4997 i = 0;
f02ae73a 4998 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4999 BUG_ON(init_worker_pool(pool));
ec22ca5e 5000 pool->cpu = cpu;
29c91e99 5001 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5002 pool->attrs->nice = std_nice[i++];
f3f90ad4 5003 pool->node = cpu_to_node(cpu);
7a4e344c 5004
9daf9e67 5005 /* alloc pool ID */
68e13a67 5006 mutex_lock(&wq_pool_mutex);
9daf9e67 5007 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5008 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5009 }
8b03ae3c
TH
5010 }
5011
e22bee78 5012 /* create the initial worker */
29c91e99 5013 for_each_online_cpu(cpu) {
4ce62e9e 5014 struct worker_pool *pool;
e22bee78 5015
f02ae73a 5016 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5017 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5018 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5019 }
e22bee78
TH
5020 }
5021
ced4ac92 5022 /* create default unbound and ordered wq attrs */
29c91e99
TH
5023 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5024 struct workqueue_attrs *attrs;
5025
5026 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5027 attrs->nice = std_nice[i];
29c91e99 5028 unbound_std_wq_attrs[i] = attrs;
ced4ac92
TH
5029
5030 /*
5031 * An ordered wq should have only one pwq as ordering is
5032 * guaranteed by max_active which is enforced by pwqs.
5033 * Turn off NUMA so that dfl_pwq is used for all nodes.
5034 */
5035 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5036 attrs->nice = std_nice[i];
5037 attrs->no_numa = true;
5038 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5039 }
5040
d320c038 5041 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5042 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5043 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5044 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5045 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5046 system_freezable_wq = alloc_workqueue("events_freezable",
5047 WQ_FREEZABLE, 0);
1aabe902 5048 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 5049 !system_unbound_wq || !system_freezable_wq);
6ee0578b 5050 return 0;
1da177e4 5051}
6ee0578b 5052early_initcall(init_workqueues);