CRISv10: Fix return before mutex_unlock in pcf8563
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
dd6414b5 104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
6e453a67
VP
105}
106
107static inline void
a6fa8e5a 108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 109{
a6fa8e5a 110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 111 tbase_get_deferrable(timer->base));
6e453a67
VP
112}
113
9c133c46
AS
114static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
4c36a5de
AV
116{
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 137 * But never round down if @force_up is set.
4c36a5de 138 */
9c133c46 139 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150}
9c133c46
AS
151
152/**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172unsigned long __round_jiffies(unsigned long j, int cpu)
173{
174 return round_jiffies_common(j, cpu, false);
175}
4c36a5de
AV
176EXPORT_SYMBOL_GPL(__round_jiffies);
177
178/**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
72fd4a35 183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
72fd4a35 196 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
197 */
198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199{
9c133c46
AS
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
204}
205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207/**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
72fd4a35 211 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
72fd4a35 220 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
221 */
222unsigned long round_jiffies(unsigned long j)
223{
9c133c46 224 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
225}
226EXPORT_SYMBOL_GPL(round_jiffies);
227
228/**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
72fd4a35 232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
72fd4a35 241 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
242 */
243unsigned long round_jiffies_relative(unsigned long j)
244{
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246}
247EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
9c133c46
AS
249/**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259unsigned long __round_jiffies_up(unsigned long j, int cpu)
260{
261 return round_jiffies_common(j, cpu, true);
262}
263EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265/**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276{
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281}
282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284/**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293unsigned long round_jiffies_up(unsigned long j)
294{
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296}
297EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299/**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308unsigned long round_jiffies_up_relative(unsigned long j)
309{
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311}
312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
3bbb9ec9
AV
314/**
315 * set_timer_slack - set the allowed slack for a timer
0caa6210 316 * @timer: the timer to be modified
3bbb9ec9
AV
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327void set_timer_slack(struct timer_list *timer, int slack_hz)
328{
329 timer->slack = slack_hz;
330}
331EXPORT_SYMBOL_GPL(set_timer_slack);
332
a6fa8e5a 333static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
334{
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
338
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
352 /*
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
355 */
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
361 */
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
365 }
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
368 }
369 /*
370 * Timers are FIFO:
371 */
372 list_add_tail(&timer->entry, vec);
373}
374
82f67cd9
IM
375#ifdef CONFIG_TIMER_STATS
376void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377{
378 if (timer->start_site)
379 return;
380
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
384}
c5c061b8
VP
385
386static void timer_stats_account_timer(struct timer_list *timer)
387{
388 unsigned int flag = 0;
389
507e1231
HC
390 if (likely(!timer->start_site))
391 return;
c5c061b8
VP
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
397}
398
399#else
400static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
401#endif
402
c6f3a97f
TG
403#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405static struct debug_obj_descr timer_debug_descr;
406
407/*
408 * fixup_init is called when:
409 * - an active object is initialized
55c888d6 410 */
c6f3a97f
TG
411static int timer_fixup_init(void *addr, enum debug_obj_state state)
412{
413 struct timer_list *timer = addr;
414
415 switch (state) {
416 case ODEBUG_STATE_ACTIVE:
417 del_timer_sync(timer);
418 debug_object_init(timer, &timer_debug_descr);
419 return 1;
420 default:
421 return 0;
422 }
423}
424
425/*
426 * fixup_activate is called when:
427 * - an active object is activated
428 * - an unknown object is activated (might be a statically initialized object)
429 */
430static int timer_fixup_activate(void *addr, enum debug_obj_state state)
431{
432 struct timer_list *timer = addr;
433
434 switch (state) {
435
436 case ODEBUG_STATE_NOTAVAILABLE:
437 /*
438 * This is not really a fixup. The timer was
439 * statically initialized. We just make sure that it
440 * is tracked in the object tracker.
441 */
442 if (timer->entry.next == NULL &&
443 timer->entry.prev == TIMER_ENTRY_STATIC) {
444 debug_object_init(timer, &timer_debug_descr);
445 debug_object_activate(timer, &timer_debug_descr);
446 return 0;
447 } else {
448 WARN_ON_ONCE(1);
449 }
450 return 0;
451
452 case ODEBUG_STATE_ACTIVE:
453 WARN_ON(1);
454
455 default:
456 return 0;
457 }
458}
459
460/*
461 * fixup_free is called when:
462 * - an active object is freed
463 */
464static int timer_fixup_free(void *addr, enum debug_obj_state state)
465{
466 struct timer_list *timer = addr;
467
468 switch (state) {
469 case ODEBUG_STATE_ACTIVE:
470 del_timer_sync(timer);
471 debug_object_free(timer, &timer_debug_descr);
472 return 1;
473 default:
474 return 0;
475 }
476}
477
478static struct debug_obj_descr timer_debug_descr = {
479 .name = "timer_list",
480 .fixup_init = timer_fixup_init,
481 .fixup_activate = timer_fixup_activate,
482 .fixup_free = timer_fixup_free,
483};
484
485static inline void debug_timer_init(struct timer_list *timer)
486{
487 debug_object_init(timer, &timer_debug_descr);
488}
489
490static inline void debug_timer_activate(struct timer_list *timer)
491{
492 debug_object_activate(timer, &timer_debug_descr);
493}
494
495static inline void debug_timer_deactivate(struct timer_list *timer)
496{
497 debug_object_deactivate(timer, &timer_debug_descr);
498}
499
500static inline void debug_timer_free(struct timer_list *timer)
501{
502 debug_object_free(timer, &timer_debug_descr);
503}
504
6f2b9b9a
JB
505static void __init_timer(struct timer_list *timer,
506 const char *name,
507 struct lock_class_key *key);
c6f3a97f 508
6f2b9b9a
JB
509void init_timer_on_stack_key(struct timer_list *timer,
510 const char *name,
511 struct lock_class_key *key)
c6f3a97f
TG
512{
513 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 514 __init_timer(timer, name, key);
c6f3a97f 515}
6f2b9b9a 516EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
517
518void destroy_timer_on_stack(struct timer_list *timer)
519{
520 debug_object_free(timer, &timer_debug_descr);
521}
522EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
523
524#else
525static inline void debug_timer_init(struct timer_list *timer) { }
526static inline void debug_timer_activate(struct timer_list *timer) { }
527static inline void debug_timer_deactivate(struct timer_list *timer) { }
528#endif
529
2b022e3d
XG
530static inline void debug_init(struct timer_list *timer)
531{
532 debug_timer_init(timer);
533 trace_timer_init(timer);
534}
535
536static inline void
537debug_activate(struct timer_list *timer, unsigned long expires)
538{
539 debug_timer_activate(timer);
540 trace_timer_start(timer, expires);
541}
542
543static inline void debug_deactivate(struct timer_list *timer)
544{
545 debug_timer_deactivate(timer);
546 trace_timer_cancel(timer);
547}
548
6f2b9b9a
JB
549static void __init_timer(struct timer_list *timer,
550 const char *name,
551 struct lock_class_key *key)
55c888d6
ON
552{
553 timer->entry.next = NULL;
bfe5d834 554 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 555 timer->slack = -1;
82f67cd9
IM
556#ifdef CONFIG_TIMER_STATS
557 timer->start_site = NULL;
558 timer->start_pid = -1;
559 memset(timer->start_comm, 0, TASK_COMM_LEN);
560#endif
6f2b9b9a 561 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 562}
c6f3a97f 563
8cadd283
JB
564void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
565 const char *name,
566 struct lock_class_key *key,
567 void (*function)(unsigned long),
568 unsigned long data)
569{
570 timer->function = function;
571 timer->data = data;
572 init_timer_on_stack_key(timer, name, key);
573 timer_set_deferrable(timer);
574}
575EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
576
c6f3a97f 577/**
633fe795 578 * init_timer_key - initialize a timer
c6f3a97f 579 * @timer: the timer to be initialized
633fe795
RD
580 * @name: name of the timer
581 * @key: lockdep class key of the fake lock used for tracking timer
582 * sync lock dependencies
c6f3a97f 583 *
633fe795 584 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
585 * other timer functions.
586 */
6f2b9b9a
JB
587void init_timer_key(struct timer_list *timer,
588 const char *name,
589 struct lock_class_key *key)
c6f3a97f 590{
2b022e3d 591 debug_init(timer);
6f2b9b9a 592 __init_timer(timer, name, key);
c6f3a97f 593}
6f2b9b9a 594EXPORT_SYMBOL(init_timer_key);
55c888d6 595
6f2b9b9a
JB
596void init_timer_deferrable_key(struct timer_list *timer,
597 const char *name,
598 struct lock_class_key *key)
6e453a67 599{
6f2b9b9a 600 init_timer_key(timer, name, key);
6e453a67
VP
601 timer_set_deferrable(timer);
602}
6f2b9b9a 603EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 604
55c888d6 605static inline void detach_timer(struct timer_list *timer,
82f67cd9 606 int clear_pending)
55c888d6
ON
607{
608 struct list_head *entry = &timer->entry;
609
2b022e3d 610 debug_deactivate(timer);
c6f3a97f 611
55c888d6
ON
612 __list_del(entry->prev, entry->next);
613 if (clear_pending)
614 entry->next = NULL;
615 entry->prev = LIST_POISON2;
616}
617
618/*
3691c519 619 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
620 * means that all timers which are tied to this base via timer->base are
621 * locked, and the base itself is locked too.
622 *
623 * So __run_timers/migrate_timers can safely modify all timers which could
624 * be found on ->tvX lists.
625 *
626 * When the timer's base is locked, and the timer removed from list, it is
627 * possible to set timer->base = NULL and drop the lock: the timer remains
628 * locked.
629 */
a6fa8e5a 630static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 631 unsigned long *flags)
89e7e374 632 __acquires(timer->base->lock)
55c888d6 633{
a6fa8e5a 634 struct tvec_base *base;
55c888d6
ON
635
636 for (;;) {
a6fa8e5a 637 struct tvec_base *prelock_base = timer->base;
6e453a67 638 base = tbase_get_base(prelock_base);
55c888d6
ON
639 if (likely(base != NULL)) {
640 spin_lock_irqsave(&base->lock, *flags);
6e453a67 641 if (likely(prelock_base == timer->base))
55c888d6
ON
642 return base;
643 /* The timer has migrated to another CPU */
644 spin_unlock_irqrestore(&base->lock, *flags);
645 }
646 cpu_relax();
647 }
648}
649
74019224 650static inline int
597d0275
AB
651__mod_timer(struct timer_list *timer, unsigned long expires,
652 bool pending_only, int pinned)
1da177e4 653{
a6fa8e5a 654 struct tvec_base *base, *new_base;
1da177e4 655 unsigned long flags;
eea08f32 656 int ret = 0 , cpu;
1da177e4 657
82f67cd9 658 timer_stats_timer_set_start_info(timer);
1da177e4 659 BUG_ON(!timer->function);
1da177e4 660
55c888d6
ON
661 base = lock_timer_base(timer, &flags);
662
663 if (timer_pending(timer)) {
664 detach_timer(timer, 0);
97fd9ed4
MS
665 if (timer->expires == base->next_timer &&
666 !tbase_get_deferrable(timer->base))
667 base->next_timer = base->timer_jiffies;
55c888d6 668 ret = 1;
74019224
IM
669 } else {
670 if (pending_only)
671 goto out_unlock;
55c888d6
ON
672 }
673
2b022e3d 674 debug_activate(timer, expires);
c6f3a97f 675
eea08f32
AB
676 cpu = smp_processor_id();
677
678#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
679 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
680 cpu = get_nohz_timer_target();
eea08f32
AB
681#endif
682 new_base = per_cpu(tvec_bases, cpu);
683
3691c519 684 if (base != new_base) {
1da177e4 685 /*
55c888d6
ON
686 * We are trying to schedule the timer on the local CPU.
687 * However we can't change timer's base while it is running,
688 * otherwise del_timer_sync() can't detect that the timer's
689 * handler yet has not finished. This also guarantees that
690 * the timer is serialized wrt itself.
1da177e4 691 */
a2c348fe 692 if (likely(base->running_timer != timer)) {
55c888d6 693 /* See the comment in lock_timer_base() */
6e453a67 694 timer_set_base(timer, NULL);
55c888d6 695 spin_unlock(&base->lock);
a2c348fe
ON
696 base = new_base;
697 spin_lock(&base->lock);
6e453a67 698 timer_set_base(timer, base);
1da177e4
LT
699 }
700 }
701
1da177e4 702 timer->expires = expires;
97fd9ed4
MS
703 if (time_before(timer->expires, base->next_timer) &&
704 !tbase_get_deferrable(timer->base))
705 base->next_timer = timer->expires;
a2c348fe 706 internal_add_timer(base, timer);
74019224
IM
707
708out_unlock:
a2c348fe 709 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
710
711 return ret;
712}
713
2aae4a10 714/**
74019224
IM
715 * mod_timer_pending - modify a pending timer's timeout
716 * @timer: the pending timer to be modified
717 * @expires: new timeout in jiffies
1da177e4 718 *
74019224
IM
719 * mod_timer_pending() is the same for pending timers as mod_timer(),
720 * but will not re-activate and modify already deleted timers.
721 *
722 * It is useful for unserialized use of timers.
1da177e4 723 */
74019224 724int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 725{
597d0275 726 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 727}
74019224 728EXPORT_SYMBOL(mod_timer_pending);
1da177e4 729
3bbb9ec9
AV
730/*
731 * Decide where to put the timer while taking the slack into account
732 *
733 * Algorithm:
734 * 1) calculate the maximum (absolute) time
735 * 2) calculate the highest bit where the expires and new max are different
736 * 3) use this bit to make a mask
737 * 4) use the bitmask to round down the maximum time, so that all last
738 * bits are zeros
739 */
740static inline
741unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
742{
743 unsigned long expires_limit, mask;
744 int bit;
745
f00e047e 746 expires_limit = expires;
3bbb9ec9 747
8e63d779 748 if (timer->slack >= 0) {
f00e047e 749 expires_limit = expires + timer->slack;
8e63d779 750 } else {
2abfb9e1 751 unsigned long now = jiffies;
3bbb9ec9 752
8e63d779
TG
753 /* No slack, if already expired else auto slack 0.4% */
754 if (time_after(expires, now))
755 expires_limit = expires + (expires - now)/256;
756 }
3bbb9ec9 757 mask = expires ^ expires_limit;
3bbb9ec9
AV
758 if (mask == 0)
759 return expires;
760
761 bit = find_last_bit(&mask, BITS_PER_LONG);
762
763 mask = (1 << bit) - 1;
764
765 expires_limit = expires_limit & ~(mask);
766
767 return expires_limit;
768}
769
2aae4a10 770/**
1da177e4
LT
771 * mod_timer - modify a timer's timeout
772 * @timer: the timer to be modified
2aae4a10 773 * @expires: new timeout in jiffies
1da177e4 774 *
72fd4a35 775 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
776 * active timer (if the timer is inactive it will be activated)
777 *
778 * mod_timer(timer, expires) is equivalent to:
779 *
780 * del_timer(timer); timer->expires = expires; add_timer(timer);
781 *
782 * Note that if there are multiple unserialized concurrent users of the
783 * same timer, then mod_timer() is the only safe way to modify the timeout,
784 * since add_timer() cannot modify an already running timer.
785 *
786 * The function returns whether it has modified a pending timer or not.
787 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
788 * active timer returns 1.)
789 */
790int mod_timer(struct timer_list *timer, unsigned long expires)
791{
1da177e4
LT
792 /*
793 * This is a common optimization triggered by the
794 * networking code - if the timer is re-modified
795 * to be the same thing then just return:
796 */
4841158b 797 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
798 return 1;
799
3bbb9ec9
AV
800 expires = apply_slack(timer, expires);
801
597d0275 802 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 803}
1da177e4
LT
804EXPORT_SYMBOL(mod_timer);
805
597d0275
AB
806/**
807 * mod_timer_pinned - modify a timer's timeout
808 * @timer: the timer to be modified
809 * @expires: new timeout in jiffies
810 *
811 * mod_timer_pinned() is a way to update the expire field of an
812 * active timer (if the timer is inactive it will be activated)
813 * and not allow the timer to be migrated to a different CPU.
814 *
815 * mod_timer_pinned(timer, expires) is equivalent to:
816 *
817 * del_timer(timer); timer->expires = expires; add_timer(timer);
818 */
819int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
820{
821 if (timer->expires == expires && timer_pending(timer))
822 return 1;
823
824 return __mod_timer(timer, expires, false, TIMER_PINNED);
825}
826EXPORT_SYMBOL(mod_timer_pinned);
827
74019224
IM
828/**
829 * add_timer - start a timer
830 * @timer: the timer to be added
831 *
832 * The kernel will do a ->function(->data) callback from the
833 * timer interrupt at the ->expires point in the future. The
834 * current time is 'jiffies'.
835 *
836 * The timer's ->expires, ->function (and if the handler uses it, ->data)
837 * fields must be set prior calling this function.
838 *
839 * Timers with an ->expires field in the past will be executed in the next
840 * timer tick.
841 */
842void add_timer(struct timer_list *timer)
843{
844 BUG_ON(timer_pending(timer));
845 mod_timer(timer, timer->expires);
846}
847EXPORT_SYMBOL(add_timer);
848
849/**
850 * add_timer_on - start a timer on a particular CPU
851 * @timer: the timer to be added
852 * @cpu: the CPU to start it on
853 *
854 * This is not very scalable on SMP. Double adds are not possible.
855 */
856void add_timer_on(struct timer_list *timer, int cpu)
857{
858 struct tvec_base *base = per_cpu(tvec_bases, cpu);
859 unsigned long flags;
860
861 timer_stats_timer_set_start_info(timer);
862 BUG_ON(timer_pending(timer) || !timer->function);
863 spin_lock_irqsave(&base->lock, flags);
864 timer_set_base(timer, base);
2b022e3d 865 debug_activate(timer, timer->expires);
97fd9ed4
MS
866 if (time_before(timer->expires, base->next_timer) &&
867 !tbase_get_deferrable(timer->base))
868 base->next_timer = timer->expires;
74019224
IM
869 internal_add_timer(base, timer);
870 /*
871 * Check whether the other CPU is idle and needs to be
872 * triggered to reevaluate the timer wheel when nohz is
873 * active. We are protected against the other CPU fiddling
874 * with the timer by holding the timer base lock. This also
875 * makes sure that a CPU on the way to idle can not evaluate
876 * the timer wheel.
877 */
878 wake_up_idle_cpu(cpu);
879 spin_unlock_irqrestore(&base->lock, flags);
880}
a9862e05 881EXPORT_SYMBOL_GPL(add_timer_on);
74019224 882
2aae4a10 883/**
1da177e4
LT
884 * del_timer - deactive a timer.
885 * @timer: the timer to be deactivated
886 *
887 * del_timer() deactivates a timer - this works on both active and inactive
888 * timers.
889 *
890 * The function returns whether it has deactivated a pending timer or not.
891 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
892 * active timer returns 1.)
893 */
894int del_timer(struct timer_list *timer)
895{
a6fa8e5a 896 struct tvec_base *base;
1da177e4 897 unsigned long flags;
55c888d6 898 int ret = 0;
1da177e4 899
82f67cd9 900 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
901 if (timer_pending(timer)) {
902 base = lock_timer_base(timer, &flags);
903 if (timer_pending(timer)) {
904 detach_timer(timer, 1);
97fd9ed4
MS
905 if (timer->expires == base->next_timer &&
906 !tbase_get_deferrable(timer->base))
907 base->next_timer = base->timer_jiffies;
55c888d6
ON
908 ret = 1;
909 }
1da177e4 910 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 911 }
1da177e4 912
55c888d6 913 return ret;
1da177e4 914}
1da177e4
LT
915EXPORT_SYMBOL(del_timer);
916
2aae4a10
REB
917/**
918 * try_to_del_timer_sync - Try to deactivate a timer
919 * @timer: timer do del
920 *
fd450b73
ON
921 * This function tries to deactivate a timer. Upon successful (ret >= 0)
922 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
923 */
924int try_to_del_timer_sync(struct timer_list *timer)
925{
a6fa8e5a 926 struct tvec_base *base;
fd450b73
ON
927 unsigned long flags;
928 int ret = -1;
929
930 base = lock_timer_base(timer, &flags);
931
932 if (base->running_timer == timer)
933 goto out;
934
829b6c1e 935 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
936 ret = 0;
937 if (timer_pending(timer)) {
938 detach_timer(timer, 1);
97fd9ed4
MS
939 if (timer->expires == base->next_timer &&
940 !tbase_get_deferrable(timer->base))
941 base->next_timer = base->timer_jiffies;
fd450b73
ON
942 ret = 1;
943 }
944out:
945 spin_unlock_irqrestore(&base->lock, flags);
946
947 return ret;
948}
e19dff1f
DH
949EXPORT_SYMBOL(try_to_del_timer_sync);
950
6f1bc451 951#ifdef CONFIG_SMP
2aae4a10 952/**
1da177e4
LT
953 * del_timer_sync - deactivate a timer and wait for the handler to finish.
954 * @timer: the timer to be deactivated
955 *
956 * This function only differs from del_timer() on SMP: besides deactivating
957 * the timer it also makes sure the handler has finished executing on other
958 * CPUs.
959 *
72fd4a35 960 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 961 * otherwise this function is meaningless. It must not be called from
7ff20792 962 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
963 * completion of the timer's handler. The timer's handler must not call
964 * add_timer_on(). Upon exit the timer is not queued and the handler is
965 * not running on any CPU.
1da177e4
LT
966 *
967 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
968 */
969int del_timer_sync(struct timer_list *timer)
970{
6f2b9b9a 971#ifdef CONFIG_LOCKDEP
f266a511
PZ
972 unsigned long flags;
973
7ff20792 974 local_irq_save(flags);
6f2b9b9a
JB
975 lock_map_acquire(&timer->lockdep_map);
976 lock_map_release(&timer->lockdep_map);
7ff20792 977 local_irq_restore(flags);
6f2b9b9a 978#endif
466bd303
YZ
979 /*
980 * don't use it in hardirq context, because it
981 * could lead to deadlock.
982 */
983 WARN_ON(in_irq());
fd450b73
ON
984 for (;;) {
985 int ret = try_to_del_timer_sync(timer);
986 if (ret >= 0)
987 return ret;
a0009652 988 cpu_relax();
fd450b73 989 }
1da177e4 990}
55c888d6 991EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
992#endif
993
a6fa8e5a 994static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
995{
996 /* cascade all the timers from tv up one level */
3439dd86
P
997 struct timer_list *timer, *tmp;
998 struct list_head tv_list;
999
1000 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1001
1da177e4 1002 /*
3439dd86
P
1003 * We are removing _all_ timers from the list, so we
1004 * don't have to detach them individually.
1da177e4 1005 */
3439dd86 1006 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1007 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1008 internal_add_timer(base, timer);
1da177e4 1009 }
1da177e4
LT
1010
1011 return index;
1012}
1013
576da126
TG
1014static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1015 unsigned long data)
1016{
1017 int preempt_count = preempt_count();
1018
1019#ifdef CONFIG_LOCKDEP
1020 /*
1021 * It is permissible to free the timer from inside the
1022 * function that is called from it, this we need to take into
1023 * account for lockdep too. To avoid bogus "held lock freed"
1024 * warnings as well as problems when looking into
1025 * timer->lockdep_map, make a copy and use that here.
1026 */
1027 struct lockdep_map lockdep_map = timer->lockdep_map;
1028#endif
1029 /*
1030 * Couple the lock chain with the lock chain at
1031 * del_timer_sync() by acquiring the lock_map around the fn()
1032 * call here and in del_timer_sync().
1033 */
1034 lock_map_acquire(&lockdep_map);
1035
1036 trace_timer_expire_entry(timer);
1037 fn(data);
1038 trace_timer_expire_exit(timer);
1039
1040 lock_map_release(&lockdep_map);
1041
1042 if (preempt_count != preempt_count()) {
802702e0
TG
1043 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1044 fn, preempt_count, preempt_count());
1045 /*
1046 * Restore the preempt count. That gives us a decent
1047 * chance to survive and extract information. If the
1048 * callback kept a lock held, bad luck, but not worse
1049 * than the BUG() we had.
1050 */
1051 preempt_count() = preempt_count;
576da126
TG
1052 }
1053}
1054
2aae4a10
REB
1055#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1056
1057/**
1da177e4
LT
1058 * __run_timers - run all expired timers (if any) on this CPU.
1059 * @base: the timer vector to be processed.
1060 *
1061 * This function cascades all vectors and executes all expired timer
1062 * vectors.
1063 */
a6fa8e5a 1064static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1065{
1066 struct timer_list *timer;
1067
3691c519 1068 spin_lock_irq(&base->lock);
1da177e4 1069 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1070 struct list_head work_list;
1da177e4 1071 struct list_head *head = &work_list;
6819457d 1072 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1073
1da177e4
LT
1074 /*
1075 * Cascade timers:
1076 */
1077 if (!index &&
1078 (!cascade(base, &base->tv2, INDEX(0))) &&
1079 (!cascade(base, &base->tv3, INDEX(1))) &&
1080 !cascade(base, &base->tv4, INDEX(2)))
1081 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1082 ++base->timer_jiffies;
1083 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1084 while (!list_empty(head)) {
1da177e4
LT
1085 void (*fn)(unsigned long);
1086 unsigned long data;
1087
b5e61818 1088 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1089 fn = timer->function;
1090 data = timer->data;
1da177e4 1091
82f67cd9
IM
1092 timer_stats_account_timer(timer);
1093
6f1bc451 1094 base->running_timer = timer;
55c888d6 1095 detach_timer(timer, 1);
6f2b9b9a 1096
3691c519 1097 spin_unlock_irq(&base->lock);
576da126 1098 call_timer_fn(timer, fn, data);
3691c519 1099 spin_lock_irq(&base->lock);
1da177e4
LT
1100 }
1101 }
6f1bc451 1102 base->running_timer = NULL;
3691c519 1103 spin_unlock_irq(&base->lock);
1da177e4
LT
1104}
1105
ee9c5785 1106#ifdef CONFIG_NO_HZ
1da177e4
LT
1107/*
1108 * Find out when the next timer event is due to happen. This
90cba64a
RD
1109 * is used on S/390 to stop all activity when a CPU is idle.
1110 * This function needs to be called with interrupts disabled.
1da177e4 1111 */
a6fa8e5a 1112static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1113{
1cfd6849 1114 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1115 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1116 int index, slot, array, found = 0;
1da177e4 1117 struct timer_list *nte;
a6fa8e5a 1118 struct tvec *varray[4];
1da177e4
LT
1119
1120 /* Look for timer events in tv1. */
1cfd6849 1121 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1122 do {
1cfd6849 1123 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1124 if (tbase_get_deferrable(nte->base))
1125 continue;
6e453a67 1126
1cfd6849 1127 found = 1;
1da177e4 1128 expires = nte->expires;
1cfd6849
TG
1129 /* Look at the cascade bucket(s)? */
1130 if (!index || slot < index)
1131 goto cascade;
1132 return expires;
1da177e4 1133 }
1cfd6849
TG
1134 slot = (slot + 1) & TVR_MASK;
1135 } while (slot != index);
1136
1137cascade:
1138 /* Calculate the next cascade event */
1139 if (index)
1140 timer_jiffies += TVR_SIZE - index;
1141 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1142
1143 /* Check tv2-tv5. */
1144 varray[0] = &base->tv2;
1145 varray[1] = &base->tv3;
1146 varray[2] = &base->tv4;
1147 varray[3] = &base->tv5;
1cfd6849
TG
1148
1149 for (array = 0; array < 4; array++) {
a6fa8e5a 1150 struct tvec *varp = varray[array];
1cfd6849
TG
1151
1152 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1153 do {
1cfd6849 1154 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1155 if (tbase_get_deferrable(nte->base))
1156 continue;
1157
1cfd6849 1158 found = 1;
1da177e4
LT
1159 if (time_before(nte->expires, expires))
1160 expires = nte->expires;
1cfd6849
TG
1161 }
1162 /*
1163 * Do we still search for the first timer or are
1164 * we looking up the cascade buckets ?
1165 */
1166 if (found) {
1167 /* Look at the cascade bucket(s)? */
1168 if (!index || slot < index)
1169 break;
1170 return expires;
1171 }
1172 slot = (slot + 1) & TVN_MASK;
1173 } while (slot != index);
1174
1175 if (index)
1176 timer_jiffies += TVN_SIZE - index;
1177 timer_jiffies >>= TVN_BITS;
1da177e4 1178 }
1cfd6849
TG
1179 return expires;
1180}
69239749 1181
1cfd6849
TG
1182/*
1183 * Check, if the next hrtimer event is before the next timer wheel
1184 * event:
1185 */
1186static unsigned long cmp_next_hrtimer_event(unsigned long now,
1187 unsigned long expires)
1188{
1189 ktime_t hr_delta = hrtimer_get_next_event();
1190 struct timespec tsdelta;
9501b6cf 1191 unsigned long delta;
1cfd6849
TG
1192
1193 if (hr_delta.tv64 == KTIME_MAX)
1194 return expires;
0662b713 1195
9501b6cf
TG
1196 /*
1197 * Expired timer available, let it expire in the next tick
1198 */
1199 if (hr_delta.tv64 <= 0)
1200 return now + 1;
69239749 1201
1cfd6849 1202 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1203 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1204
1205 /*
1206 * Limit the delta to the max value, which is checked in
1207 * tick_nohz_stop_sched_tick():
1208 */
1209 if (delta > NEXT_TIMER_MAX_DELTA)
1210 delta = NEXT_TIMER_MAX_DELTA;
1211
9501b6cf
TG
1212 /*
1213 * Take rounding errors in to account and make sure, that it
1214 * expires in the next tick. Otherwise we go into an endless
1215 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1216 * the timer softirq
1217 */
1218 if (delta < 1)
1219 delta = 1;
1220 now += delta;
1cfd6849
TG
1221 if (time_before(now, expires))
1222 return now;
1da177e4
LT
1223 return expires;
1224}
1cfd6849
TG
1225
1226/**
8dce39c2 1227 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1228 * @now: current time (in jiffies)
1cfd6849 1229 */
fd064b9b 1230unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1231{
7496351a 1232 struct tvec_base *base = __this_cpu_read(tvec_bases);
fd064b9b 1233 unsigned long expires;
1cfd6849 1234
dbd87b5a
HC
1235 /*
1236 * Pretend that there is no timer pending if the cpu is offline.
1237 * Possible pending timers will be migrated later to an active cpu.
1238 */
1239 if (cpu_is_offline(smp_processor_id()))
1240 return now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1241 spin_lock(&base->lock);
97fd9ed4
MS
1242 if (time_before_eq(base->next_timer, base->timer_jiffies))
1243 base->next_timer = __next_timer_interrupt(base);
1244 expires = base->next_timer;
1cfd6849
TG
1245 spin_unlock(&base->lock);
1246
1247 if (time_before_eq(expires, now))
1248 return now;
1249
1250 return cmp_next_hrtimer_event(now, expires);
1251}
1da177e4
LT
1252#endif
1253
1da177e4 1254/*
5b4db0c2 1255 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1256 * process. user_tick is 1 if the tick is user time, 0 for system.
1257 */
1258void update_process_times(int user_tick)
1259{
1260 struct task_struct *p = current;
1261 int cpu = smp_processor_id();
1262
1263 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1264 account_process_tick(p, user_tick);
1da177e4 1265 run_local_timers();
a157229c 1266 rcu_check_callbacks(cpu, user_tick);
b845b517 1267 printk_tick();
e360adbe
PZ
1268#ifdef CONFIG_IRQ_WORK
1269 if (in_irq())
1270 irq_work_run();
1271#endif
1da177e4 1272 scheduler_tick();
6819457d 1273 run_posix_cpu_timers(p);
1da177e4
LT
1274}
1275
1da177e4
LT
1276/*
1277 * This function runs timers and the timer-tq in bottom half context.
1278 */
1279static void run_timer_softirq(struct softirq_action *h)
1280{
7496351a 1281 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1282
d3d74453 1283 hrtimer_run_pending();
82f67cd9 1284
1da177e4
LT
1285 if (time_after_eq(jiffies, base->timer_jiffies))
1286 __run_timers(base);
1287}
1288
1289/*
1290 * Called by the local, per-CPU timer interrupt on SMP.
1291 */
1292void run_local_timers(void)
1293{
d3d74453 1294 hrtimer_run_queues();
1da177e4
LT
1295 raise_softirq(TIMER_SOFTIRQ);
1296}
1297
1da177e4
LT
1298/*
1299 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1300 * without sampling the sequence number in xtime_lock.
1301 * jiffies is defined in the linker script...
1302 */
1303
3171a030 1304void do_timer(unsigned long ticks)
1da177e4 1305{
3171a030 1306 jiffies_64 += ticks;
dce48a84 1307 update_wall_time();
0f004f5a 1308 calc_global_load(ticks);
1da177e4
LT
1309}
1310
1311#ifdef __ARCH_WANT_SYS_ALARM
1312
1313/*
1314 * For backwards compatibility? This can be done in libc so Alpha
1315 * and all newer ports shouldn't need it.
1316 */
58fd3aa2 1317SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1318{
c08b8a49 1319 return alarm_setitimer(seconds);
1da177e4
LT
1320}
1321
1322#endif
1323
1324#ifndef __alpha__
1325
1326/*
1327 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1328 * should be moved into arch/i386 instead?
1329 */
1330
1331/**
1332 * sys_getpid - return the thread group id of the current process
1333 *
1334 * Note, despite the name, this returns the tgid not the pid. The tgid and
1335 * the pid are identical unless CLONE_THREAD was specified on clone() in
1336 * which case the tgid is the same in all threads of the same group.
1337 *
1338 * This is SMP safe as current->tgid does not change.
1339 */
58fd3aa2 1340SYSCALL_DEFINE0(getpid)
1da177e4 1341{
b488893a 1342 return task_tgid_vnr(current);
1da177e4
LT
1343}
1344
1345/*
6997a6fa
KK
1346 * Accessing ->real_parent is not SMP-safe, it could
1347 * change from under us. However, we can use a stale
1348 * value of ->real_parent under rcu_read_lock(), see
1349 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1350 */
dbf040d9 1351SYSCALL_DEFINE0(getppid)
1da177e4
LT
1352{
1353 int pid;
1da177e4 1354
6997a6fa 1355 rcu_read_lock();
6c5f3e7b 1356 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1357 rcu_read_unlock();
1da177e4 1358
1da177e4
LT
1359 return pid;
1360}
1361
dbf040d9 1362SYSCALL_DEFINE0(getuid)
1da177e4
LT
1363{
1364 /* Only we change this so SMP safe */
76aac0e9 1365 return current_uid();
1da177e4
LT
1366}
1367
dbf040d9 1368SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1369{
1370 /* Only we change this so SMP safe */
76aac0e9 1371 return current_euid();
1da177e4
LT
1372}
1373
dbf040d9 1374SYSCALL_DEFINE0(getgid)
1da177e4
LT
1375{
1376 /* Only we change this so SMP safe */
76aac0e9 1377 return current_gid();
1da177e4
LT
1378}
1379
dbf040d9 1380SYSCALL_DEFINE0(getegid)
1da177e4
LT
1381{
1382 /* Only we change this so SMP safe */
76aac0e9 1383 return current_egid();
1da177e4
LT
1384}
1385
1386#endif
1387
1388static void process_timeout(unsigned long __data)
1389{
36c8b586 1390 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1391}
1392
1393/**
1394 * schedule_timeout - sleep until timeout
1395 * @timeout: timeout value in jiffies
1396 *
1397 * Make the current task sleep until @timeout jiffies have
1398 * elapsed. The routine will return immediately unless
1399 * the current task state has been set (see set_current_state()).
1400 *
1401 * You can set the task state as follows -
1402 *
1403 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1404 * pass before the routine returns. The routine will return 0
1405 *
1406 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1407 * delivered to the current task. In this case the remaining time
1408 * in jiffies will be returned, or 0 if the timer expired in time
1409 *
1410 * The current task state is guaranteed to be TASK_RUNNING when this
1411 * routine returns.
1412 *
1413 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1414 * the CPU away without a bound on the timeout. In this case the return
1415 * value will be %MAX_SCHEDULE_TIMEOUT.
1416 *
1417 * In all cases the return value is guaranteed to be non-negative.
1418 */
7ad5b3a5 1419signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1420{
1421 struct timer_list timer;
1422 unsigned long expire;
1423
1424 switch (timeout)
1425 {
1426 case MAX_SCHEDULE_TIMEOUT:
1427 /*
1428 * These two special cases are useful to be comfortable
1429 * in the caller. Nothing more. We could take
1430 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1431 * but I' d like to return a valid offset (>=0) to allow
1432 * the caller to do everything it want with the retval.
1433 */
1434 schedule();
1435 goto out;
1436 default:
1437 /*
1438 * Another bit of PARANOID. Note that the retval will be
1439 * 0 since no piece of kernel is supposed to do a check
1440 * for a negative retval of schedule_timeout() (since it
1441 * should never happens anyway). You just have the printk()
1442 * that will tell you if something is gone wrong and where.
1443 */
5b149bcc 1444 if (timeout < 0) {
1da177e4 1445 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1446 "value %lx\n", timeout);
1447 dump_stack();
1da177e4
LT
1448 current->state = TASK_RUNNING;
1449 goto out;
1450 }
1451 }
1452
1453 expire = timeout + jiffies;
1454
c6f3a97f 1455 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1456 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1457 schedule();
1458 del_singleshot_timer_sync(&timer);
1459
c6f3a97f
TG
1460 /* Remove the timer from the object tracker */
1461 destroy_timer_on_stack(&timer);
1462
1da177e4
LT
1463 timeout = expire - jiffies;
1464
1465 out:
1466 return timeout < 0 ? 0 : timeout;
1467}
1da177e4
LT
1468EXPORT_SYMBOL(schedule_timeout);
1469
8a1c1757
AM
1470/*
1471 * We can use __set_current_state() here because schedule_timeout() calls
1472 * schedule() unconditionally.
1473 */
64ed93a2
NA
1474signed long __sched schedule_timeout_interruptible(signed long timeout)
1475{
a5a0d52c
AM
1476 __set_current_state(TASK_INTERRUPTIBLE);
1477 return schedule_timeout(timeout);
64ed93a2
NA
1478}
1479EXPORT_SYMBOL(schedule_timeout_interruptible);
1480
294d5cc2
MW
1481signed long __sched schedule_timeout_killable(signed long timeout)
1482{
1483 __set_current_state(TASK_KILLABLE);
1484 return schedule_timeout(timeout);
1485}
1486EXPORT_SYMBOL(schedule_timeout_killable);
1487
64ed93a2
NA
1488signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1489{
a5a0d52c
AM
1490 __set_current_state(TASK_UNINTERRUPTIBLE);
1491 return schedule_timeout(timeout);
64ed93a2
NA
1492}
1493EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1494
1da177e4 1495/* Thread ID - the internal kernel "pid" */
58fd3aa2 1496SYSCALL_DEFINE0(gettid)
1da177e4 1497{
b488893a 1498 return task_pid_vnr(current);
1da177e4
LT
1499}
1500
2aae4a10 1501/**
d4d23add 1502 * do_sysinfo - fill in sysinfo struct
2aae4a10 1503 * @info: pointer to buffer to fill
6819457d 1504 */
d4d23add 1505int do_sysinfo(struct sysinfo *info)
1da177e4 1506{
1da177e4
LT
1507 unsigned long mem_total, sav_total;
1508 unsigned int mem_unit, bitcount;
2d02494f 1509 struct timespec tp;
1da177e4 1510
d4d23add 1511 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1512
2d02494f
TG
1513 ktime_get_ts(&tp);
1514 monotonic_to_bootbased(&tp);
1515 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1516
2d02494f 1517 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1518
2d02494f 1519 info->procs = nr_threads;
1da177e4 1520
d4d23add
KM
1521 si_meminfo(info);
1522 si_swapinfo(info);
1da177e4
LT
1523
1524 /*
1525 * If the sum of all the available memory (i.e. ram + swap)
1526 * is less than can be stored in a 32 bit unsigned long then
1527 * we can be binary compatible with 2.2.x kernels. If not,
1528 * well, in that case 2.2.x was broken anyways...
1529 *
1530 * -Erik Andersen <andersee@debian.org>
1531 */
1532
d4d23add
KM
1533 mem_total = info->totalram + info->totalswap;
1534 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1535 goto out;
1536 bitcount = 0;
d4d23add 1537 mem_unit = info->mem_unit;
1da177e4
LT
1538 while (mem_unit > 1) {
1539 bitcount++;
1540 mem_unit >>= 1;
1541 sav_total = mem_total;
1542 mem_total <<= 1;
1543 if (mem_total < sav_total)
1544 goto out;
1545 }
1546
1547 /*
1548 * If mem_total did not overflow, multiply all memory values by
d4d23add 1549 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1550 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1551 * kernels...
1552 */
1553
d4d23add
KM
1554 info->mem_unit = 1;
1555 info->totalram <<= bitcount;
1556 info->freeram <<= bitcount;
1557 info->sharedram <<= bitcount;
1558 info->bufferram <<= bitcount;
1559 info->totalswap <<= bitcount;
1560 info->freeswap <<= bitcount;
1561 info->totalhigh <<= bitcount;
1562 info->freehigh <<= bitcount;
1563
1564out:
1565 return 0;
1566}
1567
1e7bfb21 1568SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1569{
1570 struct sysinfo val;
1571
1572 do_sysinfo(&val);
1da177e4 1573
1da177e4
LT
1574 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1575 return -EFAULT;
1576
1577 return 0;
1578}
1579
b4be6258 1580static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1581{
1582 int j;
a6fa8e5a 1583 struct tvec_base *base;
b4be6258 1584 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1585
ba6edfcd 1586 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1587 static char boot_done;
1588
a4a6198b 1589 if (boot_done) {
ba6edfcd
AM
1590 /*
1591 * The APs use this path later in boot
1592 */
94f6030c
CL
1593 base = kmalloc_node(sizeof(*base),
1594 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1595 cpu_to_node(cpu));
1596 if (!base)
1597 return -ENOMEM;
6e453a67
VP
1598
1599 /* Make sure that tvec_base is 2 byte aligned */
1600 if (tbase_get_deferrable(base)) {
1601 WARN_ON(1);
1602 kfree(base);
1603 return -ENOMEM;
1604 }
ba6edfcd 1605 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1606 } else {
ba6edfcd
AM
1607 /*
1608 * This is for the boot CPU - we use compile-time
1609 * static initialisation because per-cpu memory isn't
1610 * ready yet and because the memory allocators are not
1611 * initialised either.
1612 */
a4a6198b 1613 boot_done = 1;
ba6edfcd 1614 base = &boot_tvec_bases;
a4a6198b 1615 }
ba6edfcd
AM
1616 tvec_base_done[cpu] = 1;
1617 } else {
1618 base = per_cpu(tvec_bases, cpu);
a4a6198b 1619 }
ba6edfcd 1620
3691c519 1621 spin_lock_init(&base->lock);
d730e882 1622
1da177e4
LT
1623 for (j = 0; j < TVN_SIZE; j++) {
1624 INIT_LIST_HEAD(base->tv5.vec + j);
1625 INIT_LIST_HEAD(base->tv4.vec + j);
1626 INIT_LIST_HEAD(base->tv3.vec + j);
1627 INIT_LIST_HEAD(base->tv2.vec + j);
1628 }
1629 for (j = 0; j < TVR_SIZE; j++)
1630 INIT_LIST_HEAD(base->tv1.vec + j);
1631
1632 base->timer_jiffies = jiffies;
97fd9ed4 1633 base->next_timer = base->timer_jiffies;
a4a6198b 1634 return 0;
1da177e4
LT
1635}
1636
1637#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1638static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1639{
1640 struct timer_list *timer;
1641
1642 while (!list_empty(head)) {
b5e61818 1643 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1644 detach_timer(timer, 0);
6e453a67 1645 timer_set_base(timer, new_base);
97fd9ed4
MS
1646 if (time_before(timer->expires, new_base->next_timer) &&
1647 !tbase_get_deferrable(timer->base))
1648 new_base->next_timer = timer->expires;
1da177e4 1649 internal_add_timer(new_base, timer);
1da177e4 1650 }
1da177e4
LT
1651}
1652
48ccf3da 1653static void __cpuinit migrate_timers(int cpu)
1da177e4 1654{
a6fa8e5a
PM
1655 struct tvec_base *old_base;
1656 struct tvec_base *new_base;
1da177e4
LT
1657 int i;
1658
1659 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1660 old_base = per_cpu(tvec_bases, cpu);
1661 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1662 /*
1663 * The caller is globally serialized and nobody else
1664 * takes two locks at once, deadlock is not possible.
1665 */
1666 spin_lock_irq(&new_base->lock);
0d180406 1667 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1668
1669 BUG_ON(old_base->running_timer);
1da177e4 1670
1da177e4 1671 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1672 migrate_timer_list(new_base, old_base->tv1.vec + i);
1673 for (i = 0; i < TVN_SIZE; i++) {
1674 migrate_timer_list(new_base, old_base->tv2.vec + i);
1675 migrate_timer_list(new_base, old_base->tv3.vec + i);
1676 migrate_timer_list(new_base, old_base->tv4.vec + i);
1677 migrate_timer_list(new_base, old_base->tv5.vec + i);
1678 }
1679
0d180406 1680 spin_unlock(&old_base->lock);
d82f0b0f 1681 spin_unlock_irq(&new_base->lock);
1da177e4 1682 put_cpu_var(tvec_bases);
1da177e4
LT
1683}
1684#endif /* CONFIG_HOTPLUG_CPU */
1685
8c78f307 1686static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1687 unsigned long action, void *hcpu)
1688{
1689 long cpu = (long)hcpu;
80b5184c
AM
1690 int err;
1691
1da177e4
LT
1692 switch(action) {
1693 case CPU_UP_PREPARE:
8bb78442 1694 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1695 err = init_timers_cpu(cpu);
1696 if (err < 0)
1697 return notifier_from_errno(err);
1da177e4
LT
1698 break;
1699#ifdef CONFIG_HOTPLUG_CPU
1700 case CPU_DEAD:
8bb78442 1701 case CPU_DEAD_FROZEN:
1da177e4
LT
1702 migrate_timers(cpu);
1703 break;
1704#endif
1705 default:
1706 break;
1707 }
1708 return NOTIFY_OK;
1709}
1710
8c78f307 1711static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1712 .notifier_call = timer_cpu_notify,
1713};
1714
1715
1716void __init init_timers(void)
1717{
07dccf33 1718 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1719 (void *)(long)smp_processor_id());
07dccf33 1720
82f67cd9
IM
1721 init_timer_stats();
1722
9e506f7a 1723 BUG_ON(err != NOTIFY_OK);
1da177e4 1724 register_cpu_notifier(&timers_nb);
962cf36c 1725 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1726}
1727
1da177e4
LT
1728/**
1729 * msleep - sleep safely even with waitqueue interruptions
1730 * @msecs: Time in milliseconds to sleep for
1731 */
1732void msleep(unsigned int msecs)
1733{
1734 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1735
75bcc8c5
NA
1736 while (timeout)
1737 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1738}
1739
1740EXPORT_SYMBOL(msleep);
1741
1742/**
96ec3efd 1743 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1744 * @msecs: Time in milliseconds to sleep for
1745 */
1746unsigned long msleep_interruptible(unsigned int msecs)
1747{
1748 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1749
75bcc8c5
NA
1750 while (timeout && !signal_pending(current))
1751 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1752 return jiffies_to_msecs(timeout);
1753}
1754
1755EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1756
1757static int __sched do_usleep_range(unsigned long min, unsigned long max)
1758{
1759 ktime_t kmin;
1760 unsigned long delta;
1761
1762 kmin = ktime_set(0, min * NSEC_PER_USEC);
1763 delta = (max - min) * NSEC_PER_USEC;
1764 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1765}
1766
1767/**
1768 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1769 * @min: Minimum time in usecs to sleep
1770 * @max: Maximum time in usecs to sleep
1771 */
1772void usleep_range(unsigned long min, unsigned long max)
1773{
1774 __set_current_state(TASK_UNINTERRUPTIBLE);
1775 do_usleep_range(min, max);
1776}
1777EXPORT_SYMBOL(usleep_range);