userns: Convert capabilities related permsion checks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
5a0e3ad6 39#include <linux/gfp.h>
40dc166c 40#include <linux/syscore_ops.h>
be27425d
AK
41#include <linux/version.h>
42#include <linux/ctype.h>
1da177e4
LT
43
44#include <linux/compat.h>
45#include <linux/syscalls.h>
00d7c05a 46#include <linux/kprobes.h>
acce292c 47#include <linux/user_namespace.h>
1da177e4 48
04c6862c 49#include <linux/kmsg_dump.h>
be27425d
AK
50/* Move somewhere else to avoid recompiling? */
51#include <generated/utsrelease.h>
04c6862c 52
1da177e4
LT
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/unistd.h>
56
57#ifndef SET_UNALIGN_CTL
58# define SET_UNALIGN_CTL(a,b) (-EINVAL)
59#endif
60#ifndef GET_UNALIGN_CTL
61# define GET_UNALIGN_CTL(a,b) (-EINVAL)
62#endif
63#ifndef SET_FPEMU_CTL
64# define SET_FPEMU_CTL(a,b) (-EINVAL)
65#endif
66#ifndef GET_FPEMU_CTL
67# define GET_FPEMU_CTL(a,b) (-EINVAL)
68#endif
69#ifndef SET_FPEXC_CTL
70# define SET_FPEXC_CTL(a,b) (-EINVAL)
71#endif
72#ifndef GET_FPEXC_CTL
73# define GET_FPEXC_CTL(a,b) (-EINVAL)
74#endif
651d765d
AB
75#ifndef GET_ENDIAN
76# define GET_ENDIAN(a,b) (-EINVAL)
77#endif
78#ifndef SET_ENDIAN
79# define SET_ENDIAN(a,b) (-EINVAL)
80#endif
8fb402bc
EB
81#ifndef GET_TSC_CTL
82# define GET_TSC_CTL(a) (-EINVAL)
83#endif
84#ifndef SET_TSC_CTL
85# define SET_TSC_CTL(a) (-EINVAL)
86#endif
1da177e4
LT
87
88/*
89 * this is where the system-wide overflow UID and GID are defined, for
90 * architectures that now have 32-bit UID/GID but didn't in the past
91 */
92
93int overflowuid = DEFAULT_OVERFLOWUID;
94int overflowgid = DEFAULT_OVERFLOWGID;
95
1da177e4
LT
96EXPORT_SYMBOL(overflowuid);
97EXPORT_SYMBOL(overflowgid);
1da177e4
LT
98
99/*
100 * the same as above, but for filesystems which can only store a 16-bit
101 * UID and GID. as such, this is needed on all architectures
102 */
103
104int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
105int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
106
107EXPORT_SYMBOL(fs_overflowuid);
108EXPORT_SYMBOL(fs_overflowgid);
109
110/*
111 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
112 */
113
114int C_A_D = 1;
9ec52099
CLG
115struct pid *cad_pid;
116EXPORT_SYMBOL(cad_pid);
1da177e4 117
bd804eba
RW
118/*
119 * If set, this is used for preparing the system to power off.
120 */
121
122void (*pm_power_off_prepare)(void);
bd804eba 123
fc832ad3
SH
124/*
125 * Returns true if current's euid is same as p's uid or euid,
126 * or has CAP_SYS_NICE to p's user_ns.
127 *
128 * Called with rcu_read_lock, creds are safe
129 */
130static bool set_one_prio_perm(struct task_struct *p)
131{
132 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
133
c4a4d603 134 if (pcred->user_ns == cred->user_ns &&
fc832ad3
SH
135 (pcred->uid == cred->euid ||
136 pcred->euid == cred->euid))
137 return true;
c4a4d603 138 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
139 return true;
140 return false;
141}
142
c69e8d9c
DH
143/*
144 * set the priority of a task
145 * - the caller must hold the RCU read lock
146 */
1da177e4
LT
147static int set_one_prio(struct task_struct *p, int niceval, int error)
148{
149 int no_nice;
150
fc832ad3 151 if (!set_one_prio_perm(p)) {
1da177e4
LT
152 error = -EPERM;
153 goto out;
154 }
e43379f1 155 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
156 error = -EACCES;
157 goto out;
158 }
159 no_nice = security_task_setnice(p, niceval);
160 if (no_nice) {
161 error = no_nice;
162 goto out;
163 }
164 if (error == -ESRCH)
165 error = 0;
166 set_user_nice(p, niceval);
167out:
168 return error;
169}
170
754fe8d2 171SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
172{
173 struct task_struct *g, *p;
174 struct user_struct *user;
86a264ab 175 const struct cred *cred = current_cred();
1da177e4 176 int error = -EINVAL;
41487c65 177 struct pid *pgrp;
7b44ab97 178 kuid_t uid;
1da177e4 179
3e88c553 180 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
181 goto out;
182
183 /* normalize: avoid signed division (rounding problems) */
184 error = -ESRCH;
185 if (niceval < -20)
186 niceval = -20;
187 if (niceval > 19)
188 niceval = 19;
189
d4581a23 190 rcu_read_lock();
1da177e4
LT
191 read_lock(&tasklist_lock);
192 switch (which) {
193 case PRIO_PROCESS:
41487c65 194 if (who)
228ebcbe 195 p = find_task_by_vpid(who);
41487c65
EB
196 else
197 p = current;
1da177e4
LT
198 if (p)
199 error = set_one_prio(p, niceval, error);
200 break;
201 case PRIO_PGRP:
41487c65 202 if (who)
b488893a 203 pgrp = find_vpid(who);
41487c65
EB
204 else
205 pgrp = task_pgrp(current);
2d70b68d 206 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 207 error = set_one_prio(p, niceval, error);
2d70b68d 208 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
209 break;
210 case PRIO_USER:
7b44ab97 211 uid = make_kuid(cred->user_ns, who);
74ba508f 212 user = cred->user;
1da177e4 213 if (!who)
078de5f7
EB
214 uid = cred->uid;
215 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 216 !(user = find_user(uid)))
86a264ab 217 goto out_unlock; /* No processes for this user */
1da177e4 218
dfc6a736 219 do_each_thread(g, p) {
078de5f7 220 if (uid_eq(task_uid(p), uid))
1da177e4 221 error = set_one_prio(p, niceval, error);
dfc6a736 222 } while_each_thread(g, p);
078de5f7 223 if (!uid_eq(uid, cred->uid))
1da177e4
LT
224 free_uid(user); /* For find_user() */
225 break;
226 }
227out_unlock:
228 read_unlock(&tasklist_lock);
d4581a23 229 rcu_read_unlock();
1da177e4
LT
230out:
231 return error;
232}
233
234/*
235 * Ugh. To avoid negative return values, "getpriority()" will
236 * not return the normal nice-value, but a negated value that
237 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238 * to stay compatible.
239 */
754fe8d2 240SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
241{
242 struct task_struct *g, *p;
243 struct user_struct *user;
86a264ab 244 const struct cred *cred = current_cred();
1da177e4 245 long niceval, retval = -ESRCH;
41487c65 246 struct pid *pgrp;
7b44ab97 247 kuid_t uid;
1da177e4 248
3e88c553 249 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
250 return -EINVAL;
251
70118837 252 rcu_read_lock();
1da177e4
LT
253 read_lock(&tasklist_lock);
254 switch (which) {
255 case PRIO_PROCESS:
41487c65 256 if (who)
228ebcbe 257 p = find_task_by_vpid(who);
41487c65
EB
258 else
259 p = current;
1da177e4
LT
260 if (p) {
261 niceval = 20 - task_nice(p);
262 if (niceval > retval)
263 retval = niceval;
264 }
265 break;
266 case PRIO_PGRP:
41487c65 267 if (who)
b488893a 268 pgrp = find_vpid(who);
41487c65
EB
269 else
270 pgrp = task_pgrp(current);
2d70b68d 271 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
272 niceval = 20 - task_nice(p);
273 if (niceval > retval)
274 retval = niceval;
2d70b68d 275 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
276 break;
277 case PRIO_USER:
7b44ab97 278 uid = make_kuid(cred->user_ns, who);
74ba508f 279 user = cred->user;
1da177e4 280 if (!who)
078de5f7
EB
281 uid = cred->uid;
282 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 283 !(user = find_user(uid)))
86a264ab 284 goto out_unlock; /* No processes for this user */
1da177e4 285
dfc6a736 286 do_each_thread(g, p) {
078de5f7 287 if (uid_eq(task_uid(p), uid)) {
1da177e4
LT
288 niceval = 20 - task_nice(p);
289 if (niceval > retval)
290 retval = niceval;
291 }
dfc6a736 292 } while_each_thread(g, p);
078de5f7 293 if (!uid_eq(uid, cred->uid))
1da177e4
LT
294 free_uid(user); /* for find_user() */
295 break;
296 }
297out_unlock:
298 read_unlock(&tasklist_lock);
70118837 299 rcu_read_unlock();
1da177e4
LT
300
301 return retval;
302}
303
e4c94330
EB
304/**
305 * emergency_restart - reboot the system
306 *
307 * Without shutting down any hardware or taking any locks
308 * reboot the system. This is called when we know we are in
309 * trouble so this is our best effort to reboot. This is
310 * safe to call in interrupt context.
311 */
7c903473
EB
312void emergency_restart(void)
313{
04c6862c 314 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
315 machine_emergency_restart();
316}
317EXPORT_SYMBOL_GPL(emergency_restart);
318
ca195b7f 319void kernel_restart_prepare(char *cmd)
4a00ea1e 320{
e041c683 321 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 322 system_state = SYSTEM_RESTART;
b50fa7c8 323 usermodehelper_disable();
4a00ea1e 324 device_shutdown();
40dc166c 325 syscore_shutdown();
e4c94330 326}
1e5d5331 327
c5f41752
AW
328/**
329 * register_reboot_notifier - Register function to be called at reboot time
330 * @nb: Info about notifier function to be called
331 *
332 * Registers a function with the list of functions
333 * to be called at reboot time.
334 *
335 * Currently always returns zero, as blocking_notifier_chain_register()
336 * always returns zero.
337 */
338int register_reboot_notifier(struct notifier_block *nb)
339{
340 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
341}
342EXPORT_SYMBOL(register_reboot_notifier);
343
344/**
345 * unregister_reboot_notifier - Unregister previously registered reboot notifier
346 * @nb: Hook to be unregistered
347 *
348 * Unregisters a previously registered reboot
349 * notifier function.
350 *
351 * Returns zero on success, or %-ENOENT on failure.
352 */
353int unregister_reboot_notifier(struct notifier_block *nb)
354{
355 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
356}
357EXPORT_SYMBOL(unregister_reboot_notifier);
358
1e5d5331
RD
359/**
360 * kernel_restart - reboot the system
361 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 362 * or %NULL
1e5d5331
RD
363 *
364 * Shutdown everything and perform a clean reboot.
365 * This is not safe to call in interrupt context.
366 */
e4c94330
EB
367void kernel_restart(char *cmd)
368{
369 kernel_restart_prepare(cmd);
756184b7 370 if (!cmd)
4a00ea1e 371 printk(KERN_EMERG "Restarting system.\n");
756184b7 372 else
4a00ea1e 373 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 374 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
375 machine_restart(cmd);
376}
377EXPORT_SYMBOL_GPL(kernel_restart);
378
4ef7229f 379static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 380{
e041c683 381 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
382 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
383 system_state = state;
b50fa7c8 384 usermodehelper_disable();
729b4d4c
AS
385 device_shutdown();
386}
e4c94330
EB
387/**
388 * kernel_halt - halt the system
389 *
390 * Shutdown everything and perform a clean system halt.
391 */
e4c94330
EB
392void kernel_halt(void)
393{
729b4d4c 394 kernel_shutdown_prepare(SYSTEM_HALT);
40dc166c 395 syscore_shutdown();
4a00ea1e 396 printk(KERN_EMERG "System halted.\n");
04c6862c 397 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
398 machine_halt();
399}
729b4d4c 400
4a00ea1e
EB
401EXPORT_SYMBOL_GPL(kernel_halt);
402
e4c94330
EB
403/**
404 * kernel_power_off - power_off the system
405 *
406 * Shutdown everything and perform a clean system power_off.
407 */
e4c94330
EB
408void kernel_power_off(void)
409{
729b4d4c 410 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
411 if (pm_power_off_prepare)
412 pm_power_off_prepare();
4047727e 413 disable_nonboot_cpus();
40dc166c 414 syscore_shutdown();
4a00ea1e 415 printk(KERN_EMERG "Power down.\n");
04c6862c 416 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
417 machine_power_off();
418}
419EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
420
421static DEFINE_MUTEX(reboot_mutex);
422
1da177e4
LT
423/*
424 * Reboot system call: for obvious reasons only root may call it,
425 * and even root needs to set up some magic numbers in the registers
426 * so that some mistake won't make this reboot the whole machine.
427 * You can also set the meaning of the ctrl-alt-del-key here.
428 *
429 * reboot doesn't sync: do that yourself before calling this.
430 */
754fe8d2
HC
431SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
432 void __user *, arg)
1da177e4
LT
433{
434 char buffer[256];
3d26dcf7 435 int ret = 0;
1da177e4
LT
436
437 /* We only trust the superuser with rebooting the system. */
438 if (!capable(CAP_SYS_BOOT))
439 return -EPERM;
440
441 /* For safety, we require "magic" arguments. */
442 if (magic1 != LINUX_REBOOT_MAGIC1 ||
443 (magic2 != LINUX_REBOOT_MAGIC2 &&
444 magic2 != LINUX_REBOOT_MAGIC2A &&
445 magic2 != LINUX_REBOOT_MAGIC2B &&
446 magic2 != LINUX_REBOOT_MAGIC2C))
447 return -EINVAL;
448
cf3f8921
DL
449 /*
450 * If pid namespaces are enabled and the current task is in a child
451 * pid_namespace, the command is handled by reboot_pid_ns() which will
452 * call do_exit().
453 */
454 ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
455 if (ret)
456 return ret;
457
5e38291d
EB
458 /* Instead of trying to make the power_off code look like
459 * halt when pm_power_off is not set do it the easy way.
460 */
461 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
462 cmd = LINUX_REBOOT_CMD_HALT;
463
6f15fa50 464 mutex_lock(&reboot_mutex);
1da177e4
LT
465 switch (cmd) {
466 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 467 kernel_restart(NULL);
1da177e4
LT
468 break;
469
470 case LINUX_REBOOT_CMD_CAD_ON:
471 C_A_D = 1;
472 break;
473
474 case LINUX_REBOOT_CMD_CAD_OFF:
475 C_A_D = 0;
476 break;
477
478 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 479 kernel_halt();
1da177e4 480 do_exit(0);
3d26dcf7 481 panic("cannot halt");
1da177e4
LT
482
483 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 484 kernel_power_off();
1da177e4
LT
485 do_exit(0);
486 break;
487
488 case LINUX_REBOOT_CMD_RESTART2:
489 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
490 ret = -EFAULT;
491 break;
1da177e4
LT
492 }
493 buffer[sizeof(buffer) - 1] = '\0';
494
4a00ea1e 495 kernel_restart(buffer);
1da177e4
LT
496 break;
497
3ab83521 498#ifdef CONFIG_KEXEC
dc009d92 499 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
500 ret = kernel_kexec();
501 break;
3ab83521 502#endif
4a00ea1e 503
b0cb1a19 504#ifdef CONFIG_HIBERNATION
1da177e4 505 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
506 ret = hibernate();
507 break;
1da177e4
LT
508#endif
509
510 default:
3d26dcf7
AK
511 ret = -EINVAL;
512 break;
1da177e4 513 }
6f15fa50 514 mutex_unlock(&reboot_mutex);
3d26dcf7 515 return ret;
1da177e4
LT
516}
517
65f27f38 518static void deferred_cad(struct work_struct *dummy)
1da177e4 519{
abcd9e51 520 kernel_restart(NULL);
1da177e4
LT
521}
522
523/*
524 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
525 * As it's called within an interrupt, it may NOT sync: the only choice
526 * is whether to reboot at once, or just ignore the ctrl-alt-del.
527 */
528void ctrl_alt_del(void)
529{
65f27f38 530 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
531
532 if (C_A_D)
533 schedule_work(&cad_work);
534 else
9ec52099 535 kill_cad_pid(SIGINT, 1);
1da177e4
LT
536}
537
1da177e4
LT
538/*
539 * Unprivileged users may change the real gid to the effective gid
540 * or vice versa. (BSD-style)
541 *
542 * If you set the real gid at all, or set the effective gid to a value not
543 * equal to the real gid, then the saved gid is set to the new effective gid.
544 *
545 * This makes it possible for a setgid program to completely drop its
546 * privileges, which is often a useful assertion to make when you are doing
547 * a security audit over a program.
548 *
549 * The general idea is that a program which uses just setregid() will be
550 * 100% compatible with BSD. A program which uses just setgid() will be
551 * 100% compatible with POSIX with saved IDs.
552 *
553 * SMP: There are not races, the GIDs are checked only by filesystem
554 * operations (as far as semantic preservation is concerned).
555 */
ae1251ab 556SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 557{
d84f4f99
DH
558 const struct cred *old;
559 struct cred *new;
1da177e4
LT
560 int retval;
561
d84f4f99
DH
562 new = prepare_creds();
563 if (!new)
564 return -ENOMEM;
565 old = current_cred();
566
d84f4f99 567 retval = -EPERM;
1da177e4 568 if (rgid != (gid_t) -1) {
d84f4f99
DH
569 if (old->gid == rgid ||
570 old->egid == rgid ||
fc832ad3 571 nsown_capable(CAP_SETGID))
d84f4f99 572 new->gid = rgid;
1da177e4 573 else
d84f4f99 574 goto error;
1da177e4
LT
575 }
576 if (egid != (gid_t) -1) {
d84f4f99
DH
577 if (old->gid == egid ||
578 old->egid == egid ||
579 old->sgid == egid ||
fc832ad3 580 nsown_capable(CAP_SETGID))
d84f4f99 581 new->egid = egid;
756184b7 582 else
d84f4f99 583 goto error;
1da177e4 584 }
d84f4f99 585
1da177e4 586 if (rgid != (gid_t) -1 ||
d84f4f99
DH
587 (egid != (gid_t) -1 && egid != old->gid))
588 new->sgid = new->egid;
589 new->fsgid = new->egid;
590
591 return commit_creds(new);
592
593error:
594 abort_creds(new);
595 return retval;
1da177e4
LT
596}
597
598/*
599 * setgid() is implemented like SysV w/ SAVED_IDS
600 *
601 * SMP: Same implicit races as above.
602 */
ae1251ab 603SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 604{
d84f4f99
DH
605 const struct cred *old;
606 struct cred *new;
1da177e4
LT
607 int retval;
608
d84f4f99
DH
609 new = prepare_creds();
610 if (!new)
611 return -ENOMEM;
612 old = current_cred();
613
d84f4f99 614 retval = -EPERM;
fc832ad3 615 if (nsown_capable(CAP_SETGID))
d84f4f99
DH
616 new->gid = new->egid = new->sgid = new->fsgid = gid;
617 else if (gid == old->gid || gid == old->sgid)
618 new->egid = new->fsgid = gid;
1da177e4 619 else
d84f4f99 620 goto error;
1da177e4 621
d84f4f99
DH
622 return commit_creds(new);
623
624error:
625 abort_creds(new);
626 return retval;
1da177e4 627}
54e99124 628
d84f4f99
DH
629/*
630 * change the user struct in a credentials set to match the new UID
631 */
632static int set_user(struct cred *new)
1da177e4
LT
633{
634 struct user_struct *new_user;
635
078de5f7 636 new_user = alloc_uid(new->uid);
1da177e4
LT
637 if (!new_user)
638 return -EAGAIN;
639
72fa5997
VK
640 /*
641 * We don't fail in case of NPROC limit excess here because too many
642 * poorly written programs don't check set*uid() return code, assuming
643 * it never fails if called by root. We may still enforce NPROC limit
644 * for programs doing set*uid()+execve() by harmlessly deferring the
645 * failure to the execve() stage.
646 */
78d7d407 647 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
648 new_user != INIT_USER)
649 current->flags |= PF_NPROC_EXCEEDED;
650 else
651 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 652
d84f4f99
DH
653 free_uid(new->user);
654 new->user = new_user;
1da177e4
LT
655 return 0;
656}
657
658/*
659 * Unprivileged users may change the real uid to the effective uid
660 * or vice versa. (BSD-style)
661 *
662 * If you set the real uid at all, or set the effective uid to a value not
663 * equal to the real uid, then the saved uid is set to the new effective uid.
664 *
665 * This makes it possible for a setuid program to completely drop its
666 * privileges, which is often a useful assertion to make when you are doing
667 * a security audit over a program.
668 *
669 * The general idea is that a program which uses just setreuid() will be
670 * 100% compatible with BSD. A program which uses just setuid() will be
671 * 100% compatible with POSIX with saved IDs.
672 */
ae1251ab 673SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 674{
d84f4f99
DH
675 const struct cred *old;
676 struct cred *new;
1da177e4
LT
677 int retval;
678
d84f4f99
DH
679 new = prepare_creds();
680 if (!new)
681 return -ENOMEM;
682 old = current_cred();
683
d84f4f99 684 retval = -EPERM;
1da177e4 685 if (ruid != (uid_t) -1) {
d84f4f99
DH
686 new->uid = ruid;
687 if (old->uid != ruid &&
688 old->euid != ruid &&
fc832ad3 689 !nsown_capable(CAP_SETUID))
d84f4f99 690 goto error;
1da177e4
LT
691 }
692
693 if (euid != (uid_t) -1) {
d84f4f99
DH
694 new->euid = euid;
695 if (old->uid != euid &&
696 old->euid != euid &&
697 old->suid != euid &&
fc832ad3 698 !nsown_capable(CAP_SETUID))
d84f4f99 699 goto error;
1da177e4
LT
700 }
701
54e99124
DG
702 if (new->uid != old->uid) {
703 retval = set_user(new);
704 if (retval < 0)
705 goto error;
706 }
1da177e4 707 if (ruid != (uid_t) -1 ||
d84f4f99
DH
708 (euid != (uid_t) -1 && euid != old->uid))
709 new->suid = new->euid;
710 new->fsuid = new->euid;
1da177e4 711
d84f4f99
DH
712 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
713 if (retval < 0)
714 goto error;
1da177e4 715
d84f4f99 716 return commit_creds(new);
1da177e4 717
d84f4f99
DH
718error:
719 abort_creds(new);
720 return retval;
721}
1da177e4
LT
722
723/*
724 * setuid() is implemented like SysV with SAVED_IDS
725 *
726 * Note that SAVED_ID's is deficient in that a setuid root program
727 * like sendmail, for example, cannot set its uid to be a normal
728 * user and then switch back, because if you're root, setuid() sets
729 * the saved uid too. If you don't like this, blame the bright people
730 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
731 * will allow a root program to temporarily drop privileges and be able to
732 * regain them by swapping the real and effective uid.
733 */
ae1251ab 734SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 735{
d84f4f99
DH
736 const struct cred *old;
737 struct cred *new;
1da177e4
LT
738 int retval;
739
d84f4f99
DH
740 new = prepare_creds();
741 if (!new)
742 return -ENOMEM;
743 old = current_cred();
744
d84f4f99 745 retval = -EPERM;
fc832ad3 746 if (nsown_capable(CAP_SETUID)) {
d84f4f99 747 new->suid = new->uid = uid;
54e99124
DG
748 if (uid != old->uid) {
749 retval = set_user(new);
750 if (retval < 0)
751 goto error;
d84f4f99
DH
752 }
753 } else if (uid != old->uid && uid != new->suid) {
754 goto error;
1da177e4 755 }
1da177e4 756
d84f4f99
DH
757 new->fsuid = new->euid = uid;
758
759 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
760 if (retval < 0)
761 goto error;
1da177e4 762
d84f4f99 763 return commit_creds(new);
1da177e4 764
d84f4f99
DH
765error:
766 abort_creds(new);
767 return retval;
1da177e4
LT
768}
769
770
771/*
772 * This function implements a generic ability to update ruid, euid,
773 * and suid. This allows you to implement the 4.4 compatible seteuid().
774 */
ae1251ab 775SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 776{
d84f4f99
DH
777 const struct cred *old;
778 struct cred *new;
1da177e4
LT
779 int retval;
780
d84f4f99
DH
781 new = prepare_creds();
782 if (!new)
783 return -ENOMEM;
784
d84f4f99 785 old = current_cred();
1da177e4 786
d84f4f99 787 retval = -EPERM;
fc832ad3 788 if (!nsown_capable(CAP_SETUID)) {
d84f4f99
DH
789 if (ruid != (uid_t) -1 && ruid != old->uid &&
790 ruid != old->euid && ruid != old->suid)
791 goto error;
792 if (euid != (uid_t) -1 && euid != old->uid &&
793 euid != old->euid && euid != old->suid)
794 goto error;
795 if (suid != (uid_t) -1 && suid != old->uid &&
796 suid != old->euid && suid != old->suid)
797 goto error;
1da177e4 798 }
d84f4f99 799
1da177e4 800 if (ruid != (uid_t) -1) {
d84f4f99 801 new->uid = ruid;
54e99124
DG
802 if (ruid != old->uid) {
803 retval = set_user(new);
804 if (retval < 0)
805 goto error;
806 }
1da177e4 807 }
d84f4f99
DH
808 if (euid != (uid_t) -1)
809 new->euid = euid;
1da177e4 810 if (suid != (uid_t) -1)
d84f4f99
DH
811 new->suid = suid;
812 new->fsuid = new->euid;
1da177e4 813
d84f4f99
DH
814 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
815 if (retval < 0)
816 goto error;
1da177e4 817
d84f4f99 818 return commit_creds(new);
1da177e4 819
d84f4f99
DH
820error:
821 abort_creds(new);
822 return retval;
1da177e4
LT
823}
824
dbf040d9 825SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 826{
86a264ab 827 const struct cred *cred = current_cred();
1da177e4
LT
828 int retval;
829
86a264ab
DH
830 if (!(retval = put_user(cred->uid, ruid)) &&
831 !(retval = put_user(cred->euid, euid)))
b6dff3ec 832 retval = put_user(cred->suid, suid);
1da177e4
LT
833
834 return retval;
835}
836
837/*
838 * Same as above, but for rgid, egid, sgid.
839 */
ae1251ab 840SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 841{
d84f4f99
DH
842 const struct cred *old;
843 struct cred *new;
1da177e4
LT
844 int retval;
845
d84f4f99
DH
846 new = prepare_creds();
847 if (!new)
848 return -ENOMEM;
849 old = current_cred();
850
d84f4f99 851 retval = -EPERM;
fc832ad3 852 if (!nsown_capable(CAP_SETGID)) {
d84f4f99
DH
853 if (rgid != (gid_t) -1 && rgid != old->gid &&
854 rgid != old->egid && rgid != old->sgid)
855 goto error;
856 if (egid != (gid_t) -1 && egid != old->gid &&
857 egid != old->egid && egid != old->sgid)
858 goto error;
859 if (sgid != (gid_t) -1 && sgid != old->gid &&
860 sgid != old->egid && sgid != old->sgid)
861 goto error;
1da177e4 862 }
d84f4f99 863
1da177e4 864 if (rgid != (gid_t) -1)
d84f4f99
DH
865 new->gid = rgid;
866 if (egid != (gid_t) -1)
867 new->egid = egid;
1da177e4 868 if (sgid != (gid_t) -1)
d84f4f99
DH
869 new->sgid = sgid;
870 new->fsgid = new->egid;
1da177e4 871
d84f4f99
DH
872 return commit_creds(new);
873
874error:
875 abort_creds(new);
876 return retval;
1da177e4
LT
877}
878
dbf040d9 879SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 880{
86a264ab 881 const struct cred *cred = current_cred();
1da177e4
LT
882 int retval;
883
86a264ab
DH
884 if (!(retval = put_user(cred->gid, rgid)) &&
885 !(retval = put_user(cred->egid, egid)))
b6dff3ec 886 retval = put_user(cred->sgid, sgid);
1da177e4
LT
887
888 return retval;
889}
890
891
892/*
893 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
894 * is used for "access()" and for the NFS daemon (letting nfsd stay at
895 * whatever uid it wants to). It normally shadows "euid", except when
896 * explicitly set by setfsuid() or for access..
897 */
ae1251ab 898SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 899{
d84f4f99
DH
900 const struct cred *old;
901 struct cred *new;
902 uid_t old_fsuid;
1da177e4 903
d84f4f99
DH
904 new = prepare_creds();
905 if (!new)
906 return current_fsuid();
907 old = current_cred();
908 old_fsuid = old->fsuid;
1da177e4 909
d84f4f99
DH
910 if (uid == old->uid || uid == old->euid ||
911 uid == old->suid || uid == old->fsuid ||
fc832ad3 912 nsown_capable(CAP_SETUID)) {
756184b7 913 if (uid != old_fsuid) {
d84f4f99
DH
914 new->fsuid = uid;
915 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
916 goto change_okay;
1da177e4 917 }
1da177e4
LT
918 }
919
d84f4f99
DH
920 abort_creds(new);
921 return old_fsuid;
1da177e4 922
d84f4f99
DH
923change_okay:
924 commit_creds(new);
1da177e4
LT
925 return old_fsuid;
926}
927
928/*
f42df9e6 929 * Samma på svenska..
1da177e4 930 */
ae1251ab 931SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 932{
d84f4f99
DH
933 const struct cred *old;
934 struct cred *new;
935 gid_t old_fsgid;
936
937 new = prepare_creds();
938 if (!new)
939 return current_fsgid();
940 old = current_cred();
941 old_fsgid = old->fsgid;
1da177e4 942
d84f4f99
DH
943 if (gid == old->gid || gid == old->egid ||
944 gid == old->sgid || gid == old->fsgid ||
fc832ad3 945 nsown_capable(CAP_SETGID)) {
756184b7 946 if (gid != old_fsgid) {
d84f4f99
DH
947 new->fsgid = gid;
948 goto change_okay;
1da177e4 949 }
1da177e4 950 }
d84f4f99 951
d84f4f99
DH
952 abort_creds(new);
953 return old_fsgid;
954
955change_okay:
956 commit_creds(new);
1da177e4
LT
957 return old_fsgid;
958}
959
f06febc9
FM
960void do_sys_times(struct tms *tms)
961{
0cf55e1e 962 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 963
2b5fe6de 964 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 965 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
966 cutime = current->signal->cutime;
967 cstime = current->signal->cstime;
968 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
969 tms->tms_utime = cputime_to_clock_t(tgutime);
970 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
971 tms->tms_cutime = cputime_to_clock_t(cutime);
972 tms->tms_cstime = cputime_to_clock_t(cstime);
973}
974
58fd3aa2 975SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 976{
1da177e4
LT
977 if (tbuf) {
978 struct tms tmp;
f06febc9
FM
979
980 do_sys_times(&tmp);
1da177e4
LT
981 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
982 return -EFAULT;
983 }
e3d5a27d 984 force_successful_syscall_return();
1da177e4
LT
985 return (long) jiffies_64_to_clock_t(get_jiffies_64());
986}
987
988/*
989 * This needs some heavy checking ...
990 * I just haven't the stomach for it. I also don't fully
991 * understand sessions/pgrp etc. Let somebody who does explain it.
992 *
993 * OK, I think I have the protection semantics right.... this is really
994 * only important on a multi-user system anyway, to make sure one user
995 * can't send a signal to a process owned by another. -TYT, 12/12/91
996 *
997 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
998 * LBT 04.03.94
999 */
b290ebe2 1000SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1001{
1002 struct task_struct *p;
ee0acf90 1003 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1004 struct pid *pgrp;
1005 int err;
1da177e4
LT
1006
1007 if (!pid)
b488893a 1008 pid = task_pid_vnr(group_leader);
1da177e4
LT
1009 if (!pgid)
1010 pgid = pid;
1011 if (pgid < 0)
1012 return -EINVAL;
950eaaca 1013 rcu_read_lock();
1da177e4
LT
1014
1015 /* From this point forward we keep holding onto the tasklist lock
1016 * so that our parent does not change from under us. -DaveM
1017 */
1018 write_lock_irq(&tasklist_lock);
1019
1020 err = -ESRCH;
4e021306 1021 p = find_task_by_vpid(pid);
1da177e4
LT
1022 if (!p)
1023 goto out;
1024
1025 err = -EINVAL;
1026 if (!thread_group_leader(p))
1027 goto out;
1028
4e021306 1029 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1030 err = -EPERM;
41487c65 1031 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1032 goto out;
1033 err = -EACCES;
1034 if (p->did_exec)
1035 goto out;
1036 } else {
1037 err = -ESRCH;
ee0acf90 1038 if (p != group_leader)
1da177e4
LT
1039 goto out;
1040 }
1041
1042 err = -EPERM;
1043 if (p->signal->leader)
1044 goto out;
1045
4e021306 1046 pgrp = task_pid(p);
1da177e4 1047 if (pgid != pid) {
b488893a 1048 struct task_struct *g;
1da177e4 1049
4e021306
ON
1050 pgrp = find_vpid(pgid);
1051 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1052 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1053 goto out;
1da177e4
LT
1054 }
1055
1da177e4
LT
1056 err = security_task_setpgid(p, pgid);
1057 if (err)
1058 goto out;
1059
1b0f7ffd 1060 if (task_pgrp(p) != pgrp)
83beaf3c 1061 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1062
1063 err = 0;
1064out:
1065 /* All paths lead to here, thus we are safe. -DaveM */
1066 write_unlock_irq(&tasklist_lock);
950eaaca 1067 rcu_read_unlock();
1da177e4
LT
1068 return err;
1069}
1070
dbf040d9 1071SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1072{
12a3de0a
ON
1073 struct task_struct *p;
1074 struct pid *grp;
1075 int retval;
1076
1077 rcu_read_lock();
756184b7 1078 if (!pid)
12a3de0a 1079 grp = task_pgrp(current);
756184b7 1080 else {
1da177e4 1081 retval = -ESRCH;
12a3de0a
ON
1082 p = find_task_by_vpid(pid);
1083 if (!p)
1084 goto out;
1085 grp = task_pgrp(p);
1086 if (!grp)
1087 goto out;
1088
1089 retval = security_task_getpgid(p);
1090 if (retval)
1091 goto out;
1da177e4 1092 }
12a3de0a
ON
1093 retval = pid_vnr(grp);
1094out:
1095 rcu_read_unlock();
1096 return retval;
1da177e4
LT
1097}
1098
1099#ifdef __ARCH_WANT_SYS_GETPGRP
1100
dbf040d9 1101SYSCALL_DEFINE0(getpgrp)
1da177e4 1102{
12a3de0a 1103 return sys_getpgid(0);
1da177e4
LT
1104}
1105
1106#endif
1107
dbf040d9 1108SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1109{
1dd768c0
ON
1110 struct task_struct *p;
1111 struct pid *sid;
1112 int retval;
1113
1114 rcu_read_lock();
756184b7 1115 if (!pid)
1dd768c0 1116 sid = task_session(current);
756184b7 1117 else {
1da177e4 1118 retval = -ESRCH;
1dd768c0
ON
1119 p = find_task_by_vpid(pid);
1120 if (!p)
1121 goto out;
1122 sid = task_session(p);
1123 if (!sid)
1124 goto out;
1125
1126 retval = security_task_getsid(p);
1127 if (retval)
1128 goto out;
1da177e4 1129 }
1dd768c0
ON
1130 retval = pid_vnr(sid);
1131out:
1132 rcu_read_unlock();
1133 return retval;
1da177e4
LT
1134}
1135
b290ebe2 1136SYSCALL_DEFINE0(setsid)
1da177e4 1137{
e19f247a 1138 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1139 struct pid *sid = task_pid(group_leader);
1140 pid_t session = pid_vnr(sid);
1da177e4
LT
1141 int err = -EPERM;
1142
1da177e4 1143 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1144 /* Fail if I am already a session leader */
1145 if (group_leader->signal->leader)
1146 goto out;
1147
430c6231
ON
1148 /* Fail if a process group id already exists that equals the
1149 * proposed session id.
390e2ff0 1150 */
6806aac6 1151 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1152 goto out;
1153
e19f247a 1154 group_leader->signal->leader = 1;
8520d7c7 1155 __set_special_pids(sid);
24ec839c 1156
9c9f4ded 1157 proc_clear_tty(group_leader);
24ec839c 1158
e4cc0a9c 1159 err = session;
1da177e4
LT
1160out:
1161 write_unlock_irq(&tasklist_lock);
5091faa4 1162 if (err > 0) {
0d0df599 1163 proc_sid_connector(group_leader);
5091faa4
MG
1164 sched_autogroup_create_attach(group_leader);
1165 }
1da177e4
LT
1166 return err;
1167}
1168
1da177e4
LT
1169DECLARE_RWSEM(uts_sem);
1170
e28cbf22
CH
1171#ifdef COMPAT_UTS_MACHINE
1172#define override_architecture(name) \
46da2766 1173 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1174 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1175 sizeof(COMPAT_UTS_MACHINE)))
1176#else
1177#define override_architecture(name) 0
1178#endif
1179
be27425d
AK
1180/*
1181 * Work around broken programs that cannot handle "Linux 3.0".
1182 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1183 */
1184static int override_release(char __user *release, int len)
1185{
1186 int ret = 0;
a84a79e4 1187 char buf[65];
be27425d
AK
1188
1189 if (current->personality & UNAME26) {
1190 char *rest = UTS_RELEASE;
1191 int ndots = 0;
1192 unsigned v;
1193
1194 while (*rest) {
1195 if (*rest == '.' && ++ndots >= 3)
1196 break;
1197 if (!isdigit(*rest) && *rest != '.')
1198 break;
1199 rest++;
1200 }
1201 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1202 snprintf(buf, len, "2.6.%u%s", v, rest);
1203 ret = copy_to_user(release, buf, len);
1204 }
1205 return ret;
1206}
1207
e48fbb69 1208SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1209{
1210 int errno = 0;
1211
1212 down_read(&uts_sem);
e9ff3990 1213 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1214 errno = -EFAULT;
1215 up_read(&uts_sem);
e28cbf22 1216
be27425d
AK
1217 if (!errno && override_release(name->release, sizeof(name->release)))
1218 errno = -EFAULT;
e28cbf22
CH
1219 if (!errno && override_architecture(name))
1220 errno = -EFAULT;
1da177e4
LT
1221 return errno;
1222}
1223
5cacdb4a
CH
1224#ifdef __ARCH_WANT_SYS_OLD_UNAME
1225/*
1226 * Old cruft
1227 */
1228SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1229{
1230 int error = 0;
1231
1232 if (!name)
1233 return -EFAULT;
1234
1235 down_read(&uts_sem);
1236 if (copy_to_user(name, utsname(), sizeof(*name)))
1237 error = -EFAULT;
1238 up_read(&uts_sem);
1239
be27425d
AK
1240 if (!error && override_release(name->release, sizeof(name->release)))
1241 error = -EFAULT;
5cacdb4a
CH
1242 if (!error && override_architecture(name))
1243 error = -EFAULT;
1244 return error;
1245}
1246
1247SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1248{
1249 int error;
1250
1251 if (!name)
1252 return -EFAULT;
1253 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1254 return -EFAULT;
1255
1256 down_read(&uts_sem);
1257 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1258 __OLD_UTS_LEN);
1259 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1260 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1261 __OLD_UTS_LEN);
1262 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1263 error |= __copy_to_user(&name->release, &utsname()->release,
1264 __OLD_UTS_LEN);
1265 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1266 error |= __copy_to_user(&name->version, &utsname()->version,
1267 __OLD_UTS_LEN);
1268 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1269 error |= __copy_to_user(&name->machine, &utsname()->machine,
1270 __OLD_UTS_LEN);
1271 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1272 up_read(&uts_sem);
1273
1274 if (!error && override_architecture(name))
1275 error = -EFAULT;
be27425d
AK
1276 if (!error && override_release(name->release, sizeof(name->release)))
1277 error = -EFAULT;
5cacdb4a
CH
1278 return error ? -EFAULT : 0;
1279}
1280#endif
1281
5a8a82b1 1282SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1283{
1284 int errno;
1285 char tmp[__NEW_UTS_LEN];
1286
bb96a6f5 1287 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1288 return -EPERM;
fc832ad3 1289
1da177e4
LT
1290 if (len < 0 || len > __NEW_UTS_LEN)
1291 return -EINVAL;
1292 down_write(&uts_sem);
1293 errno = -EFAULT;
1294 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1295 struct new_utsname *u = utsname();
1296
1297 memcpy(u->nodename, tmp, len);
1298 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1299 errno = 0;
1300 }
f1ecf068 1301 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1302 up_write(&uts_sem);
1303 return errno;
1304}
1305
1306#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1307
5a8a82b1 1308SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1309{
1310 int i, errno;
9679e4dd 1311 struct new_utsname *u;
1da177e4
LT
1312
1313 if (len < 0)
1314 return -EINVAL;
1315 down_read(&uts_sem);
9679e4dd
AM
1316 u = utsname();
1317 i = 1 + strlen(u->nodename);
1da177e4
LT
1318 if (i > len)
1319 i = len;
1320 errno = 0;
9679e4dd 1321 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1322 errno = -EFAULT;
1323 up_read(&uts_sem);
1324 return errno;
1325}
1326
1327#endif
1328
1329/*
1330 * Only setdomainname; getdomainname can be implemented by calling
1331 * uname()
1332 */
5a8a82b1 1333SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1334{
1335 int errno;
1336 char tmp[__NEW_UTS_LEN];
1337
fc832ad3 1338 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1339 return -EPERM;
1340 if (len < 0 || len > __NEW_UTS_LEN)
1341 return -EINVAL;
1342
1343 down_write(&uts_sem);
1344 errno = -EFAULT;
1345 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1346 struct new_utsname *u = utsname();
1347
1348 memcpy(u->domainname, tmp, len);
1349 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1350 errno = 0;
1351 }
f1ecf068 1352 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1353 up_write(&uts_sem);
1354 return errno;
1355}
1356
e48fbb69 1357SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1358{
b9518345
JS
1359 struct rlimit value;
1360 int ret;
1361
1362 ret = do_prlimit(current, resource, NULL, &value);
1363 if (!ret)
1364 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1365
1366 return ret;
1da177e4
LT
1367}
1368
1369#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1370
1371/*
1372 * Back compatibility for getrlimit. Needed for some apps.
1373 */
1374
e48fbb69
HC
1375SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1376 struct rlimit __user *, rlim)
1da177e4
LT
1377{
1378 struct rlimit x;
1379 if (resource >= RLIM_NLIMITS)
1380 return -EINVAL;
1381
1382 task_lock(current->group_leader);
1383 x = current->signal->rlim[resource];
1384 task_unlock(current->group_leader);
756184b7 1385 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1386 x.rlim_cur = 0x7FFFFFFF;
756184b7 1387 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1388 x.rlim_max = 0x7FFFFFFF;
1389 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1390}
1391
1392#endif
1393
c022a0ac
JS
1394static inline bool rlim64_is_infinity(__u64 rlim64)
1395{
1396#if BITS_PER_LONG < 64
1397 return rlim64 >= ULONG_MAX;
1398#else
1399 return rlim64 == RLIM64_INFINITY;
1400#endif
1401}
1402
1403static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1404{
1405 if (rlim->rlim_cur == RLIM_INFINITY)
1406 rlim64->rlim_cur = RLIM64_INFINITY;
1407 else
1408 rlim64->rlim_cur = rlim->rlim_cur;
1409 if (rlim->rlim_max == RLIM_INFINITY)
1410 rlim64->rlim_max = RLIM64_INFINITY;
1411 else
1412 rlim64->rlim_max = rlim->rlim_max;
1413}
1414
1415static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1416{
1417 if (rlim64_is_infinity(rlim64->rlim_cur))
1418 rlim->rlim_cur = RLIM_INFINITY;
1419 else
1420 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1421 if (rlim64_is_infinity(rlim64->rlim_max))
1422 rlim->rlim_max = RLIM_INFINITY;
1423 else
1424 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1425}
1426
1c1e618d 1427/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1428int do_prlimit(struct task_struct *tsk, unsigned int resource,
1429 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1430{
5b41535a 1431 struct rlimit *rlim;
86f162f4 1432 int retval = 0;
1da177e4
LT
1433
1434 if (resource >= RLIM_NLIMITS)
1435 return -EINVAL;
5b41535a
JS
1436 if (new_rlim) {
1437 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1438 return -EINVAL;
1439 if (resource == RLIMIT_NOFILE &&
1440 new_rlim->rlim_max > sysctl_nr_open)
1441 return -EPERM;
1442 }
1da177e4 1443
1c1e618d
JS
1444 /* protect tsk->signal and tsk->sighand from disappearing */
1445 read_lock(&tasklist_lock);
1446 if (!tsk->sighand) {
1447 retval = -ESRCH;
1448 goto out;
1449 }
1450
5b41535a 1451 rlim = tsk->signal->rlim + resource;
86f162f4 1452 task_lock(tsk->group_leader);
5b41535a 1453 if (new_rlim) {
fc832ad3
SH
1454 /* Keep the capable check against init_user_ns until
1455 cgroups can contain all limits */
5b41535a
JS
1456 if (new_rlim->rlim_max > rlim->rlim_max &&
1457 !capable(CAP_SYS_RESOURCE))
1458 retval = -EPERM;
1459 if (!retval)
1460 retval = security_task_setrlimit(tsk->group_leader,
1461 resource, new_rlim);
1462 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1463 /*
1464 * The caller is asking for an immediate RLIMIT_CPU
1465 * expiry. But we use the zero value to mean "it was
1466 * never set". So let's cheat and make it one second
1467 * instead
1468 */
1469 new_rlim->rlim_cur = 1;
1470 }
1471 }
1472 if (!retval) {
1473 if (old_rlim)
1474 *old_rlim = *rlim;
1475 if (new_rlim)
1476 *rlim = *new_rlim;
9926e4c7 1477 }
7855c35d 1478 task_unlock(tsk->group_leader);
1da177e4 1479
d3561f78
AM
1480 /*
1481 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1482 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1483 * very long-standing error, and fixing it now risks breakage of
1484 * applications, so we live with it
1485 */
5b41535a
JS
1486 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1487 new_rlim->rlim_cur != RLIM_INFINITY)
1488 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1489out:
1c1e618d 1490 read_unlock(&tasklist_lock);
2fb9d268 1491 return retval;
1da177e4
LT
1492}
1493
c022a0ac
JS
1494/* rcu lock must be held */
1495static int check_prlimit_permission(struct task_struct *task)
1496{
1497 const struct cred *cred = current_cred(), *tcred;
1498
fc832ad3
SH
1499 if (current == task)
1500 return 0;
c022a0ac 1501
fc832ad3 1502 tcred = __task_cred(task);
c4a4d603 1503 if (cred->user_ns == tcred->user_ns &&
fc832ad3
SH
1504 (cred->uid == tcred->euid &&
1505 cred->uid == tcred->suid &&
1506 cred->uid == tcred->uid &&
1507 cred->gid == tcred->egid &&
1508 cred->gid == tcred->sgid &&
1509 cred->gid == tcred->gid))
1510 return 0;
c4a4d603 1511 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1512 return 0;
1513
1514 return -EPERM;
c022a0ac
JS
1515}
1516
1517SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1518 const struct rlimit64 __user *, new_rlim,
1519 struct rlimit64 __user *, old_rlim)
1520{
1521 struct rlimit64 old64, new64;
1522 struct rlimit old, new;
1523 struct task_struct *tsk;
1524 int ret;
1525
1526 if (new_rlim) {
1527 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1528 return -EFAULT;
1529 rlim64_to_rlim(&new64, &new);
1530 }
1531
1532 rcu_read_lock();
1533 tsk = pid ? find_task_by_vpid(pid) : current;
1534 if (!tsk) {
1535 rcu_read_unlock();
1536 return -ESRCH;
1537 }
1538 ret = check_prlimit_permission(tsk);
1539 if (ret) {
1540 rcu_read_unlock();
1541 return ret;
1542 }
1543 get_task_struct(tsk);
1544 rcu_read_unlock();
1545
1546 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1547 old_rlim ? &old : NULL);
1548
1549 if (!ret && old_rlim) {
1550 rlim_to_rlim64(&old, &old64);
1551 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1552 ret = -EFAULT;
1553 }
1554
1555 put_task_struct(tsk);
1556 return ret;
1557}
1558
7855c35d
JS
1559SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1560{
1561 struct rlimit new_rlim;
1562
1563 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1564 return -EFAULT;
5b41535a 1565 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1566}
1567
1da177e4
LT
1568/*
1569 * It would make sense to put struct rusage in the task_struct,
1570 * except that would make the task_struct be *really big*. After
1571 * task_struct gets moved into malloc'ed memory, it would
1572 * make sense to do this. It will make moving the rest of the information
1573 * a lot simpler! (Which we're not doing right now because we're not
1574 * measuring them yet).
1575 *
1da177e4
LT
1576 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1577 * races with threads incrementing their own counters. But since word
1578 * reads are atomic, we either get new values or old values and we don't
1579 * care which for the sums. We always take the siglock to protect reading
1580 * the c* fields from p->signal from races with exit.c updating those
1581 * fields when reaping, so a sample either gets all the additions of a
1582 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1583 *
de047c1b
RT
1584 * Locking:
1585 * We need to take the siglock for CHILDEREN, SELF and BOTH
1586 * for the cases current multithreaded, non-current single threaded
1587 * non-current multithreaded. Thread traversal is now safe with
1588 * the siglock held.
1589 * Strictly speaking, we donot need to take the siglock if we are current and
1590 * single threaded, as no one else can take our signal_struct away, no one
1591 * else can reap the children to update signal->c* counters, and no one else
1592 * can race with the signal-> fields. If we do not take any lock, the
1593 * signal-> fields could be read out of order while another thread was just
1594 * exiting. So we should place a read memory barrier when we avoid the lock.
1595 * On the writer side, write memory barrier is implied in __exit_signal
1596 * as __exit_signal releases the siglock spinlock after updating the signal->
1597 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1598 *
1da177e4
LT
1599 */
1600
f06febc9 1601static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1602{
679c9cd4
SK
1603 r->ru_nvcsw += t->nvcsw;
1604 r->ru_nivcsw += t->nivcsw;
1605 r->ru_minflt += t->min_flt;
1606 r->ru_majflt += t->maj_flt;
1607 r->ru_inblock += task_io_get_inblock(t);
1608 r->ru_oublock += task_io_get_oublock(t);
1609}
1610
1da177e4
LT
1611static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1612{
1613 struct task_struct *t;
1614 unsigned long flags;
0cf55e1e 1615 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1616 unsigned long maxrss = 0;
1da177e4
LT
1617
1618 memset((char *) r, 0, sizeof *r);
64861634 1619 utime = stime = 0;
1da177e4 1620
679c9cd4 1621 if (who == RUSAGE_THREAD) {
d180c5bc 1622 task_times(current, &utime, &stime);
f06febc9 1623 accumulate_thread_rusage(p, r);
1f10206c 1624 maxrss = p->signal->maxrss;
679c9cd4
SK
1625 goto out;
1626 }
1627
d6cf723a 1628 if (!lock_task_sighand(p, &flags))
de047c1b 1629 return;
0f59cc4a 1630
1da177e4 1631 switch (who) {
0f59cc4a 1632 case RUSAGE_BOTH:
1da177e4 1633 case RUSAGE_CHILDREN:
1da177e4
LT
1634 utime = p->signal->cutime;
1635 stime = p->signal->cstime;
1636 r->ru_nvcsw = p->signal->cnvcsw;
1637 r->ru_nivcsw = p->signal->cnivcsw;
1638 r->ru_minflt = p->signal->cmin_flt;
1639 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1640 r->ru_inblock = p->signal->cinblock;
1641 r->ru_oublock = p->signal->coublock;
1f10206c 1642 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1643
1644 if (who == RUSAGE_CHILDREN)
1645 break;
1646
1da177e4 1647 case RUSAGE_SELF:
0cf55e1e 1648 thread_group_times(p, &tgutime, &tgstime);
64861634
MS
1649 utime += tgutime;
1650 stime += tgstime;
1da177e4
LT
1651 r->ru_nvcsw += p->signal->nvcsw;
1652 r->ru_nivcsw += p->signal->nivcsw;
1653 r->ru_minflt += p->signal->min_flt;
1654 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1655 r->ru_inblock += p->signal->inblock;
1656 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1657 if (maxrss < p->signal->maxrss)
1658 maxrss = p->signal->maxrss;
1da177e4
LT
1659 t = p;
1660 do {
f06febc9 1661 accumulate_thread_rusage(t, r);
1da177e4
LT
1662 t = next_thread(t);
1663 } while (t != p);
1da177e4 1664 break;
0f59cc4a 1665
1da177e4
LT
1666 default:
1667 BUG();
1668 }
de047c1b 1669 unlock_task_sighand(p, &flags);
de047c1b 1670
679c9cd4 1671out:
0f59cc4a
ON
1672 cputime_to_timeval(utime, &r->ru_utime);
1673 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1674
1675 if (who != RUSAGE_CHILDREN) {
1676 struct mm_struct *mm = get_task_mm(p);
1677 if (mm) {
1678 setmax_mm_hiwater_rss(&maxrss, mm);
1679 mmput(mm);
1680 }
1681 }
1682 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1683}
1684
1685int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1686{
1687 struct rusage r;
1da177e4 1688 k_getrusage(p, who, &r);
1da177e4
LT
1689 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1690}
1691
e48fbb69 1692SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1693{
679c9cd4
SK
1694 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1695 who != RUSAGE_THREAD)
1da177e4
LT
1696 return -EINVAL;
1697 return getrusage(current, who, ru);
1698}
1699
e48fbb69 1700SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1701{
1702 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1703 return mask;
1704}
3b7391de 1705
028ee4be
CG
1706#ifdef CONFIG_CHECKPOINT_RESTORE
1707static int prctl_set_mm(int opt, unsigned long addr,
1708 unsigned long arg4, unsigned long arg5)
1709{
1710 unsigned long rlim = rlimit(RLIMIT_DATA);
1711 unsigned long vm_req_flags;
1712 unsigned long vm_bad_flags;
1713 struct vm_area_struct *vma;
1714 int error = 0;
1715 struct mm_struct *mm = current->mm;
1716
1717 if (arg4 | arg5)
1718 return -EINVAL;
1719
79f0713d 1720 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1721 return -EPERM;
1722
1723 if (addr >= TASK_SIZE)
1724 return -EINVAL;
1725
1726 down_read(&mm->mmap_sem);
1727 vma = find_vma(mm, addr);
1728
1729 if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
1730 /* It must be existing VMA */
1731 if (!vma || vma->vm_start > addr)
1732 goto out;
1733 }
1734
1735 error = -EINVAL;
1736 switch (opt) {
1737 case PR_SET_MM_START_CODE:
1738 case PR_SET_MM_END_CODE:
1739 vm_req_flags = VM_READ | VM_EXEC;
1740 vm_bad_flags = VM_WRITE | VM_MAYSHARE;
1741
1742 if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1743 (vma->vm_flags & vm_bad_flags))
1744 goto out;
1745
1746 if (opt == PR_SET_MM_START_CODE)
1747 mm->start_code = addr;
1748 else
1749 mm->end_code = addr;
1750 break;
1751
1752 case PR_SET_MM_START_DATA:
1753 case PR_SET_MM_END_DATA:
1754 vm_req_flags = VM_READ | VM_WRITE;
1755 vm_bad_flags = VM_EXEC | VM_MAYSHARE;
1756
1757 if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1758 (vma->vm_flags & vm_bad_flags))
1759 goto out;
1760
1761 if (opt == PR_SET_MM_START_DATA)
1762 mm->start_data = addr;
1763 else
1764 mm->end_data = addr;
1765 break;
1766
1767 case PR_SET_MM_START_STACK:
1768
1769#ifdef CONFIG_STACK_GROWSUP
1770 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
1771#else
1772 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
1773#endif
1774 if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
1775 goto out;
1776
1777 mm->start_stack = addr;
1778 break;
1779
1780 case PR_SET_MM_START_BRK:
1781 if (addr <= mm->end_data)
1782 goto out;
1783
1784 if (rlim < RLIM_INFINITY &&
1785 (mm->brk - addr) +
1786 (mm->end_data - mm->start_data) > rlim)
1787 goto out;
1788
1789 mm->start_brk = addr;
1790 break;
1791
1792 case PR_SET_MM_BRK:
1793 if (addr <= mm->end_data)
1794 goto out;
1795
1796 if (rlim < RLIM_INFINITY &&
1797 (addr - mm->start_brk) +
1798 (mm->end_data - mm->start_data) > rlim)
1799 goto out;
1800
1801 mm->brk = addr;
1802 break;
1803
1804 default:
1805 error = -EINVAL;
1806 goto out;
1807 }
1808
1809 error = 0;
1810
1811out:
1812 up_read(&mm->mmap_sem);
1813
1814 return error;
1815}
1816#else /* CONFIG_CHECKPOINT_RESTORE */
1817static int prctl_set_mm(int opt, unsigned long addr,
1818 unsigned long arg4, unsigned long arg5)
1819{
1820 return -EINVAL;
1821}
1822#endif
1823
c4ea37c2
HC
1824SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1825 unsigned long, arg4, unsigned long, arg5)
1da177e4 1826{
b6dff3ec
DH
1827 struct task_struct *me = current;
1828 unsigned char comm[sizeof(me->comm)];
1829 long error;
1da177e4 1830
d84f4f99
DH
1831 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1832 if (error != -ENOSYS)
1da177e4
LT
1833 return error;
1834
d84f4f99 1835 error = 0;
1da177e4
LT
1836 switch (option) {
1837 case PR_SET_PDEATHSIG:
0730ded5 1838 if (!valid_signal(arg2)) {
1da177e4
LT
1839 error = -EINVAL;
1840 break;
1841 }
b6dff3ec
DH
1842 me->pdeath_signal = arg2;
1843 error = 0;
1da177e4
LT
1844 break;
1845 case PR_GET_PDEATHSIG:
b6dff3ec 1846 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1847 break;
1848 case PR_GET_DUMPABLE:
b6dff3ec 1849 error = get_dumpable(me->mm);
1da177e4
LT
1850 break;
1851 case PR_SET_DUMPABLE:
abf75a50 1852 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1853 error = -EINVAL;
1854 break;
1855 }
b6dff3ec
DH
1856 set_dumpable(me->mm, arg2);
1857 error = 0;
1da177e4
LT
1858 break;
1859
1860 case PR_SET_UNALIGN:
b6dff3ec 1861 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1862 break;
1863 case PR_GET_UNALIGN:
b6dff3ec 1864 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1865 break;
1866 case PR_SET_FPEMU:
b6dff3ec 1867 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1868 break;
1869 case PR_GET_FPEMU:
b6dff3ec 1870 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1871 break;
1872 case PR_SET_FPEXC:
b6dff3ec 1873 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1874 break;
1875 case PR_GET_FPEXC:
b6dff3ec 1876 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1877 break;
1878 case PR_GET_TIMING:
1879 error = PR_TIMING_STATISTICAL;
1880 break;
1881 case PR_SET_TIMING:
7b26655f 1882 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1883 error = -EINVAL;
b6dff3ec
DH
1884 else
1885 error = 0;
1da177e4
LT
1886 break;
1887
b6dff3ec
DH
1888 case PR_SET_NAME:
1889 comm[sizeof(me->comm)-1] = 0;
1890 if (strncpy_from_user(comm, (char __user *)arg2,
1891 sizeof(me->comm) - 1) < 0)
1da177e4 1892 return -EFAULT;
b6dff3ec 1893 set_task_comm(me, comm);
f786ecba 1894 proc_comm_connector(me);
1da177e4 1895 return 0;
b6dff3ec
DH
1896 case PR_GET_NAME:
1897 get_task_comm(comm, me);
1898 if (copy_to_user((char __user *)arg2, comm,
1899 sizeof(comm)))
1da177e4
LT
1900 return -EFAULT;
1901 return 0;
651d765d 1902 case PR_GET_ENDIAN:
b6dff3ec 1903 error = GET_ENDIAN(me, arg2);
651d765d
AB
1904 break;
1905 case PR_SET_ENDIAN:
b6dff3ec 1906 error = SET_ENDIAN(me, arg2);
651d765d
AB
1907 break;
1908
1d9d02fe
AA
1909 case PR_GET_SECCOMP:
1910 error = prctl_get_seccomp();
1911 break;
1912 case PR_SET_SECCOMP:
1913 error = prctl_set_seccomp(arg2);
1914 break;
8fb402bc
EB
1915 case PR_GET_TSC:
1916 error = GET_TSC_CTL(arg2);
1917 break;
1918 case PR_SET_TSC:
1919 error = SET_TSC_CTL(arg2);
1920 break;
cdd6c482
IM
1921 case PR_TASK_PERF_EVENTS_DISABLE:
1922 error = perf_event_task_disable();
1d1c7ddb 1923 break;
cdd6c482
IM
1924 case PR_TASK_PERF_EVENTS_ENABLE:
1925 error = perf_event_task_enable();
1d1c7ddb 1926 break;
6976675d
AV
1927 case PR_GET_TIMERSLACK:
1928 error = current->timer_slack_ns;
1929 break;
1930 case PR_SET_TIMERSLACK:
1931 if (arg2 <= 0)
1932 current->timer_slack_ns =
1933 current->default_timer_slack_ns;
1934 else
1935 current->timer_slack_ns = arg2;
b6dff3ec 1936 error = 0;
6976675d 1937 break;
4db96cf0
AK
1938 case PR_MCE_KILL:
1939 if (arg4 | arg5)
1940 return -EINVAL;
1941 switch (arg2) {
1087e9b4 1942 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1943 if (arg3 != 0)
1944 return -EINVAL;
1945 current->flags &= ~PF_MCE_PROCESS;
1946 break;
1087e9b4 1947 case PR_MCE_KILL_SET:
4db96cf0 1948 current->flags |= PF_MCE_PROCESS;
1087e9b4 1949 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1950 current->flags |= PF_MCE_EARLY;
1087e9b4 1951 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1952 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1953 else if (arg3 == PR_MCE_KILL_DEFAULT)
1954 current->flags &=
1955 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1956 else
1957 return -EINVAL;
4db96cf0
AK
1958 break;
1959 default:
1960 return -EINVAL;
1961 }
1962 error = 0;
1963 break;
1087e9b4
AK
1964 case PR_MCE_KILL_GET:
1965 if (arg2 | arg3 | arg4 | arg5)
1966 return -EINVAL;
1967 if (current->flags & PF_MCE_PROCESS)
1968 error = (current->flags & PF_MCE_EARLY) ?
1969 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1970 else
1971 error = PR_MCE_KILL_DEFAULT;
1972 break;
028ee4be
CG
1973 case PR_SET_MM:
1974 error = prctl_set_mm(arg2, arg3, arg4, arg5);
1975 break;
ebec18a6
LP
1976 case PR_SET_CHILD_SUBREAPER:
1977 me->signal->is_child_subreaper = !!arg2;
1978 error = 0;
1979 break;
1980 case PR_GET_CHILD_SUBREAPER:
1981 error = put_user(me->signal->is_child_subreaper,
1982 (int __user *) arg2);
1983 break;
1da177e4
LT
1984 default:
1985 error = -EINVAL;
1986 break;
1987 }
1988 return error;
1989}
3cfc348b 1990
836f92ad
HC
1991SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1992 struct getcpu_cache __user *, unused)
3cfc348b
AK
1993{
1994 int err = 0;
1995 int cpu = raw_smp_processor_id();
1996 if (cpup)
1997 err |= put_user(cpu, cpup);
1998 if (nodep)
1999 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2000 return err ? -EFAULT : 0;
2001}
10a0a8d4
JF
2002
2003char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2004
a06a4dc3 2005static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 2006{
a06a4dc3 2007 argv_free(info->argv);
10a0a8d4
JF
2008}
2009
2010/**
2011 * orderly_poweroff - Trigger an orderly system poweroff
2012 * @force: force poweroff if command execution fails
2013 *
2014 * This may be called from any context to trigger a system shutdown.
2015 * If the orderly shutdown fails, it will force an immediate shutdown.
2016 */
2017int orderly_poweroff(bool force)
2018{
2019 int argc;
2020 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2021 static char *envp[] = {
2022 "HOME=/",
2023 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2024 NULL
2025 };
2026 int ret = -ENOMEM;
2027 struct subprocess_info *info;
2028
2029 if (argv == NULL) {
2030 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2031 __func__, poweroff_cmd);
2032 goto out;
2033 }
2034
ac331d15 2035 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
2036 if (info == NULL) {
2037 argv_free(argv);
2038 goto out;
2039 }
2040
a06a4dc3 2041 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
10a0a8d4 2042
86313c48 2043 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
2044
2045 out:
2046 if (ret && force) {
2047 printk(KERN_WARNING "Failed to start orderly shutdown: "
2048 "forcing the issue\n");
2049
2050 /* I guess this should try to kick off some daemon to
2051 sync and poweroff asap. Or not even bother syncing
2052 if we're doing an emergency shutdown? */
2053 emergency_sync();
2054 kernel_power_off();
2055 }
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL_GPL(orderly_poweroff);