Linux 2.6.38-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/notifier.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
5a0e3ad6 39#include <linux/gfp.h>
1da177e4
LT
40
41#include <linux/compat.h>
42#include <linux/syscalls.h>
00d7c05a 43#include <linux/kprobes.h>
acce292c 44#include <linux/user_namespace.h>
1da177e4 45
04c6862c
SA
46#include <linux/kmsg_dump.h>
47
1da177e4
LT
48#include <asm/uaccess.h>
49#include <asm/io.h>
50#include <asm/unistd.h>
51
52#ifndef SET_UNALIGN_CTL
53# define SET_UNALIGN_CTL(a,b) (-EINVAL)
54#endif
55#ifndef GET_UNALIGN_CTL
56# define GET_UNALIGN_CTL(a,b) (-EINVAL)
57#endif
58#ifndef SET_FPEMU_CTL
59# define SET_FPEMU_CTL(a,b) (-EINVAL)
60#endif
61#ifndef GET_FPEMU_CTL
62# define GET_FPEMU_CTL(a,b) (-EINVAL)
63#endif
64#ifndef SET_FPEXC_CTL
65# define SET_FPEXC_CTL(a,b) (-EINVAL)
66#endif
67#ifndef GET_FPEXC_CTL
68# define GET_FPEXC_CTL(a,b) (-EINVAL)
69#endif
651d765d
AB
70#ifndef GET_ENDIAN
71# define GET_ENDIAN(a,b) (-EINVAL)
72#endif
73#ifndef SET_ENDIAN
74# define SET_ENDIAN(a,b) (-EINVAL)
75#endif
8fb402bc
EB
76#ifndef GET_TSC_CTL
77# define GET_TSC_CTL(a) (-EINVAL)
78#endif
79#ifndef SET_TSC_CTL
80# define SET_TSC_CTL(a) (-EINVAL)
81#endif
1da177e4
LT
82
83/*
84 * this is where the system-wide overflow UID and GID are defined, for
85 * architectures that now have 32-bit UID/GID but didn't in the past
86 */
87
88int overflowuid = DEFAULT_OVERFLOWUID;
89int overflowgid = DEFAULT_OVERFLOWGID;
90
91#ifdef CONFIG_UID16
92EXPORT_SYMBOL(overflowuid);
93EXPORT_SYMBOL(overflowgid);
94#endif
95
96/*
97 * the same as above, but for filesystems which can only store a 16-bit
98 * UID and GID. as such, this is needed on all architectures
99 */
100
101int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
102int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
103
104EXPORT_SYMBOL(fs_overflowuid);
105EXPORT_SYMBOL(fs_overflowgid);
106
107/*
108 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
109 */
110
111int C_A_D = 1;
9ec52099
CLG
112struct pid *cad_pid;
113EXPORT_SYMBOL(cad_pid);
1da177e4 114
bd804eba
RW
115/*
116 * If set, this is used for preparing the system to power off.
117 */
118
119void (*pm_power_off_prepare)(void);
bd804eba 120
c69e8d9c
DH
121/*
122 * set the priority of a task
123 * - the caller must hold the RCU read lock
124 */
1da177e4
LT
125static int set_one_prio(struct task_struct *p, int niceval, int error)
126{
c69e8d9c 127 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
1da177e4
LT
128 int no_nice;
129
c69e8d9c
DH
130 if (pcred->uid != cred->euid &&
131 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
1da177e4
LT
132 error = -EPERM;
133 goto out;
134 }
e43379f1 135 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
136 error = -EACCES;
137 goto out;
138 }
139 no_nice = security_task_setnice(p, niceval);
140 if (no_nice) {
141 error = no_nice;
142 goto out;
143 }
144 if (error == -ESRCH)
145 error = 0;
146 set_user_nice(p, niceval);
147out:
148 return error;
149}
150
754fe8d2 151SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
152{
153 struct task_struct *g, *p;
154 struct user_struct *user;
86a264ab 155 const struct cred *cred = current_cred();
1da177e4 156 int error = -EINVAL;
41487c65 157 struct pid *pgrp;
1da177e4 158
3e88c553 159 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
160 goto out;
161
162 /* normalize: avoid signed division (rounding problems) */
163 error = -ESRCH;
164 if (niceval < -20)
165 niceval = -20;
166 if (niceval > 19)
167 niceval = 19;
168
d4581a23 169 rcu_read_lock();
1da177e4
LT
170 read_lock(&tasklist_lock);
171 switch (which) {
172 case PRIO_PROCESS:
41487c65 173 if (who)
228ebcbe 174 p = find_task_by_vpid(who);
41487c65
EB
175 else
176 p = current;
1da177e4
LT
177 if (p)
178 error = set_one_prio(p, niceval, error);
179 break;
180 case PRIO_PGRP:
41487c65 181 if (who)
b488893a 182 pgrp = find_vpid(who);
41487c65
EB
183 else
184 pgrp = task_pgrp(current);
2d70b68d 185 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 186 error = set_one_prio(p, niceval, error);
2d70b68d 187 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
188 break;
189 case PRIO_USER:
d84f4f99 190 user = (struct user_struct *) cred->user;
1da177e4 191 if (!who)
86a264ab
DH
192 who = cred->uid;
193 else if ((who != cred->uid) &&
194 !(user = find_user(who)))
195 goto out_unlock; /* No processes for this user */
1da177e4 196
dfc6a736 197 do_each_thread(g, p) {
86a264ab 198 if (__task_cred(p)->uid == who)
1da177e4 199 error = set_one_prio(p, niceval, error);
dfc6a736 200 } while_each_thread(g, p);
86a264ab 201 if (who != cred->uid)
1da177e4
LT
202 free_uid(user); /* For find_user() */
203 break;
204 }
205out_unlock:
206 read_unlock(&tasklist_lock);
d4581a23 207 rcu_read_unlock();
1da177e4
LT
208out:
209 return error;
210}
211
212/*
213 * Ugh. To avoid negative return values, "getpriority()" will
214 * not return the normal nice-value, but a negated value that
215 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
216 * to stay compatible.
217 */
754fe8d2 218SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
219{
220 struct task_struct *g, *p;
221 struct user_struct *user;
86a264ab 222 const struct cred *cred = current_cred();
1da177e4 223 long niceval, retval = -ESRCH;
41487c65 224 struct pid *pgrp;
1da177e4 225
3e88c553 226 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
227 return -EINVAL;
228
70118837 229 rcu_read_lock();
1da177e4
LT
230 read_lock(&tasklist_lock);
231 switch (which) {
232 case PRIO_PROCESS:
41487c65 233 if (who)
228ebcbe 234 p = find_task_by_vpid(who);
41487c65
EB
235 else
236 p = current;
1da177e4
LT
237 if (p) {
238 niceval = 20 - task_nice(p);
239 if (niceval > retval)
240 retval = niceval;
241 }
242 break;
243 case PRIO_PGRP:
41487c65 244 if (who)
b488893a 245 pgrp = find_vpid(who);
41487c65
EB
246 else
247 pgrp = task_pgrp(current);
2d70b68d 248 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
249 niceval = 20 - task_nice(p);
250 if (niceval > retval)
251 retval = niceval;
2d70b68d 252 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
253 break;
254 case PRIO_USER:
86a264ab 255 user = (struct user_struct *) cred->user;
1da177e4 256 if (!who)
86a264ab
DH
257 who = cred->uid;
258 else if ((who != cred->uid) &&
259 !(user = find_user(who)))
260 goto out_unlock; /* No processes for this user */
1da177e4 261
dfc6a736 262 do_each_thread(g, p) {
86a264ab 263 if (__task_cred(p)->uid == who) {
1da177e4
LT
264 niceval = 20 - task_nice(p);
265 if (niceval > retval)
266 retval = niceval;
267 }
dfc6a736 268 } while_each_thread(g, p);
86a264ab 269 if (who != cred->uid)
1da177e4
LT
270 free_uid(user); /* for find_user() */
271 break;
272 }
273out_unlock:
274 read_unlock(&tasklist_lock);
70118837 275 rcu_read_unlock();
1da177e4
LT
276
277 return retval;
278}
279
e4c94330
EB
280/**
281 * emergency_restart - reboot the system
282 *
283 * Without shutting down any hardware or taking any locks
284 * reboot the system. This is called when we know we are in
285 * trouble so this is our best effort to reboot. This is
286 * safe to call in interrupt context.
287 */
7c903473
EB
288void emergency_restart(void)
289{
04c6862c 290 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
291 machine_emergency_restart();
292}
293EXPORT_SYMBOL_GPL(emergency_restart);
294
ca195b7f 295void kernel_restart_prepare(char *cmd)
4a00ea1e 296{
e041c683 297 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 298 system_state = SYSTEM_RESTART;
4a00ea1e 299 device_shutdown();
58b3b71d 300 sysdev_shutdown();
e4c94330 301}
1e5d5331
RD
302
303/**
304 * kernel_restart - reboot the system
305 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 306 * or %NULL
1e5d5331
RD
307 *
308 * Shutdown everything and perform a clean reboot.
309 * This is not safe to call in interrupt context.
310 */
e4c94330
EB
311void kernel_restart(char *cmd)
312{
313 kernel_restart_prepare(cmd);
756184b7 314 if (!cmd)
4a00ea1e 315 printk(KERN_EMERG "Restarting system.\n");
756184b7 316 else
4a00ea1e 317 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 318 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
319 machine_restart(cmd);
320}
321EXPORT_SYMBOL_GPL(kernel_restart);
322
4ef7229f 323static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 324{
e041c683 325 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
326 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
327 system_state = state;
328 device_shutdown();
329}
e4c94330
EB
330/**
331 * kernel_halt - halt the system
332 *
333 * Shutdown everything and perform a clean system halt.
334 */
e4c94330
EB
335void kernel_halt(void)
336{
729b4d4c 337 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 338 sysdev_shutdown();
4a00ea1e 339 printk(KERN_EMERG "System halted.\n");
04c6862c 340 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
341 machine_halt();
342}
729b4d4c 343
4a00ea1e
EB
344EXPORT_SYMBOL_GPL(kernel_halt);
345
e4c94330
EB
346/**
347 * kernel_power_off - power_off the system
348 *
349 * Shutdown everything and perform a clean system power_off.
350 */
e4c94330
EB
351void kernel_power_off(void)
352{
729b4d4c 353 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
354 if (pm_power_off_prepare)
355 pm_power_off_prepare();
4047727e 356 disable_nonboot_cpus();
58b3b71d 357 sysdev_shutdown();
4a00ea1e 358 printk(KERN_EMERG "Power down.\n");
04c6862c 359 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
360 machine_power_off();
361}
362EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
363
364static DEFINE_MUTEX(reboot_mutex);
365
1da177e4
LT
366/*
367 * Reboot system call: for obvious reasons only root may call it,
368 * and even root needs to set up some magic numbers in the registers
369 * so that some mistake won't make this reboot the whole machine.
370 * You can also set the meaning of the ctrl-alt-del-key here.
371 *
372 * reboot doesn't sync: do that yourself before calling this.
373 */
754fe8d2
HC
374SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
375 void __user *, arg)
1da177e4
LT
376{
377 char buffer[256];
3d26dcf7 378 int ret = 0;
1da177e4
LT
379
380 /* We only trust the superuser with rebooting the system. */
381 if (!capable(CAP_SYS_BOOT))
382 return -EPERM;
383
384 /* For safety, we require "magic" arguments. */
385 if (magic1 != LINUX_REBOOT_MAGIC1 ||
386 (magic2 != LINUX_REBOOT_MAGIC2 &&
387 magic2 != LINUX_REBOOT_MAGIC2A &&
388 magic2 != LINUX_REBOOT_MAGIC2B &&
389 magic2 != LINUX_REBOOT_MAGIC2C))
390 return -EINVAL;
391
5e38291d
EB
392 /* Instead of trying to make the power_off code look like
393 * halt when pm_power_off is not set do it the easy way.
394 */
395 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
396 cmd = LINUX_REBOOT_CMD_HALT;
397
6f15fa50 398 mutex_lock(&reboot_mutex);
1da177e4
LT
399 switch (cmd) {
400 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 401 kernel_restart(NULL);
1da177e4
LT
402 break;
403
404 case LINUX_REBOOT_CMD_CAD_ON:
405 C_A_D = 1;
406 break;
407
408 case LINUX_REBOOT_CMD_CAD_OFF:
409 C_A_D = 0;
410 break;
411
412 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 413 kernel_halt();
1da177e4 414 do_exit(0);
3d26dcf7 415 panic("cannot halt");
1da177e4
LT
416
417 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 418 kernel_power_off();
1da177e4
LT
419 do_exit(0);
420 break;
421
422 case LINUX_REBOOT_CMD_RESTART2:
423 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
424 ret = -EFAULT;
425 break;
1da177e4
LT
426 }
427 buffer[sizeof(buffer) - 1] = '\0';
428
4a00ea1e 429 kernel_restart(buffer);
1da177e4
LT
430 break;
431
3ab83521 432#ifdef CONFIG_KEXEC
dc009d92 433 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
434 ret = kernel_kexec();
435 break;
3ab83521 436#endif
4a00ea1e 437
b0cb1a19 438#ifdef CONFIG_HIBERNATION
1da177e4 439 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
440 ret = hibernate();
441 break;
1da177e4
LT
442#endif
443
444 default:
3d26dcf7
AK
445 ret = -EINVAL;
446 break;
1da177e4 447 }
6f15fa50 448 mutex_unlock(&reboot_mutex);
3d26dcf7 449 return ret;
1da177e4
LT
450}
451
65f27f38 452static void deferred_cad(struct work_struct *dummy)
1da177e4 453{
abcd9e51 454 kernel_restart(NULL);
1da177e4
LT
455}
456
457/*
458 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
459 * As it's called within an interrupt, it may NOT sync: the only choice
460 * is whether to reboot at once, or just ignore the ctrl-alt-del.
461 */
462void ctrl_alt_del(void)
463{
65f27f38 464 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
465
466 if (C_A_D)
467 schedule_work(&cad_work);
468 else
9ec52099 469 kill_cad_pid(SIGINT, 1);
1da177e4
LT
470}
471
1da177e4
LT
472/*
473 * Unprivileged users may change the real gid to the effective gid
474 * or vice versa. (BSD-style)
475 *
476 * If you set the real gid at all, or set the effective gid to a value not
477 * equal to the real gid, then the saved gid is set to the new effective gid.
478 *
479 * This makes it possible for a setgid program to completely drop its
480 * privileges, which is often a useful assertion to make when you are doing
481 * a security audit over a program.
482 *
483 * The general idea is that a program which uses just setregid() will be
484 * 100% compatible with BSD. A program which uses just setgid() will be
485 * 100% compatible with POSIX with saved IDs.
486 *
487 * SMP: There are not races, the GIDs are checked only by filesystem
488 * operations (as far as semantic preservation is concerned).
489 */
ae1251ab 490SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 491{
d84f4f99
DH
492 const struct cred *old;
493 struct cred *new;
1da177e4
LT
494 int retval;
495
d84f4f99
DH
496 new = prepare_creds();
497 if (!new)
498 return -ENOMEM;
499 old = current_cred();
500
d84f4f99 501 retval = -EPERM;
1da177e4 502 if (rgid != (gid_t) -1) {
d84f4f99
DH
503 if (old->gid == rgid ||
504 old->egid == rgid ||
1da177e4 505 capable(CAP_SETGID))
d84f4f99 506 new->gid = rgid;
1da177e4 507 else
d84f4f99 508 goto error;
1da177e4
LT
509 }
510 if (egid != (gid_t) -1) {
d84f4f99
DH
511 if (old->gid == egid ||
512 old->egid == egid ||
513 old->sgid == egid ||
1da177e4 514 capable(CAP_SETGID))
d84f4f99 515 new->egid = egid;
756184b7 516 else
d84f4f99 517 goto error;
1da177e4 518 }
d84f4f99 519
1da177e4 520 if (rgid != (gid_t) -1 ||
d84f4f99
DH
521 (egid != (gid_t) -1 && egid != old->gid))
522 new->sgid = new->egid;
523 new->fsgid = new->egid;
524
525 return commit_creds(new);
526
527error:
528 abort_creds(new);
529 return retval;
1da177e4
LT
530}
531
532/*
533 * setgid() is implemented like SysV w/ SAVED_IDS
534 *
535 * SMP: Same implicit races as above.
536 */
ae1251ab 537SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 538{
d84f4f99
DH
539 const struct cred *old;
540 struct cred *new;
1da177e4
LT
541 int retval;
542
d84f4f99
DH
543 new = prepare_creds();
544 if (!new)
545 return -ENOMEM;
546 old = current_cred();
547
d84f4f99
DH
548 retval = -EPERM;
549 if (capable(CAP_SETGID))
550 new->gid = new->egid = new->sgid = new->fsgid = gid;
551 else if (gid == old->gid || gid == old->sgid)
552 new->egid = new->fsgid = gid;
1da177e4 553 else
d84f4f99 554 goto error;
1da177e4 555
d84f4f99
DH
556 return commit_creds(new);
557
558error:
559 abort_creds(new);
560 return retval;
1da177e4 561}
54e99124 562
d84f4f99
DH
563/*
564 * change the user struct in a credentials set to match the new UID
565 */
566static int set_user(struct cred *new)
1da177e4
LT
567{
568 struct user_struct *new_user;
569
18b6e041 570 new_user = alloc_uid(current_user_ns(), new->uid);
1da177e4
LT
571 if (!new_user)
572 return -EAGAIN;
573
78d7d407 574 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
18b6e041 575 new_user != INIT_USER) {
1da177e4
LT
576 free_uid(new_user);
577 return -EAGAIN;
578 }
579
d84f4f99
DH
580 free_uid(new->user);
581 new->user = new_user;
1da177e4
LT
582 return 0;
583}
584
585/*
586 * Unprivileged users may change the real uid to the effective uid
587 * or vice versa. (BSD-style)
588 *
589 * If you set the real uid at all, or set the effective uid to a value not
590 * equal to the real uid, then the saved uid is set to the new effective uid.
591 *
592 * This makes it possible for a setuid program to completely drop its
593 * privileges, which is often a useful assertion to make when you are doing
594 * a security audit over a program.
595 *
596 * The general idea is that a program which uses just setreuid() will be
597 * 100% compatible with BSD. A program which uses just setuid() will be
598 * 100% compatible with POSIX with saved IDs.
599 */
ae1251ab 600SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 601{
d84f4f99
DH
602 const struct cred *old;
603 struct cred *new;
1da177e4
LT
604 int retval;
605
d84f4f99
DH
606 new = prepare_creds();
607 if (!new)
608 return -ENOMEM;
609 old = current_cred();
610
d84f4f99 611 retval = -EPERM;
1da177e4 612 if (ruid != (uid_t) -1) {
d84f4f99
DH
613 new->uid = ruid;
614 if (old->uid != ruid &&
615 old->euid != ruid &&
1da177e4 616 !capable(CAP_SETUID))
d84f4f99 617 goto error;
1da177e4
LT
618 }
619
620 if (euid != (uid_t) -1) {
d84f4f99
DH
621 new->euid = euid;
622 if (old->uid != euid &&
623 old->euid != euid &&
624 old->suid != euid &&
1da177e4 625 !capable(CAP_SETUID))
d84f4f99 626 goto error;
1da177e4
LT
627 }
628
54e99124
DG
629 if (new->uid != old->uid) {
630 retval = set_user(new);
631 if (retval < 0)
632 goto error;
633 }
1da177e4 634 if (ruid != (uid_t) -1 ||
d84f4f99
DH
635 (euid != (uid_t) -1 && euid != old->uid))
636 new->suid = new->euid;
637 new->fsuid = new->euid;
1da177e4 638
d84f4f99
DH
639 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
640 if (retval < 0)
641 goto error;
1da177e4 642
d84f4f99 643 return commit_creds(new);
1da177e4 644
d84f4f99
DH
645error:
646 abort_creds(new);
647 return retval;
648}
1da177e4
LT
649
650/*
651 * setuid() is implemented like SysV with SAVED_IDS
652 *
653 * Note that SAVED_ID's is deficient in that a setuid root program
654 * like sendmail, for example, cannot set its uid to be a normal
655 * user and then switch back, because if you're root, setuid() sets
656 * the saved uid too. If you don't like this, blame the bright people
657 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
658 * will allow a root program to temporarily drop privileges and be able to
659 * regain them by swapping the real and effective uid.
660 */
ae1251ab 661SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 662{
d84f4f99
DH
663 const struct cred *old;
664 struct cred *new;
1da177e4
LT
665 int retval;
666
d84f4f99
DH
667 new = prepare_creds();
668 if (!new)
669 return -ENOMEM;
670 old = current_cred();
671
d84f4f99 672 retval = -EPERM;
1da177e4 673 if (capable(CAP_SETUID)) {
d84f4f99 674 new->suid = new->uid = uid;
54e99124
DG
675 if (uid != old->uid) {
676 retval = set_user(new);
677 if (retval < 0)
678 goto error;
d84f4f99
DH
679 }
680 } else if (uid != old->uid && uid != new->suid) {
681 goto error;
1da177e4 682 }
1da177e4 683
d84f4f99
DH
684 new->fsuid = new->euid = uid;
685
686 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
687 if (retval < 0)
688 goto error;
1da177e4 689
d84f4f99 690 return commit_creds(new);
1da177e4 691
d84f4f99
DH
692error:
693 abort_creds(new);
694 return retval;
1da177e4
LT
695}
696
697
698/*
699 * This function implements a generic ability to update ruid, euid,
700 * and suid. This allows you to implement the 4.4 compatible seteuid().
701 */
ae1251ab 702SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 703{
d84f4f99
DH
704 const struct cred *old;
705 struct cred *new;
1da177e4
LT
706 int retval;
707
d84f4f99
DH
708 new = prepare_creds();
709 if (!new)
710 return -ENOMEM;
711
d84f4f99 712 old = current_cred();
1da177e4 713
d84f4f99 714 retval = -EPERM;
1da177e4 715 if (!capable(CAP_SETUID)) {
d84f4f99
DH
716 if (ruid != (uid_t) -1 && ruid != old->uid &&
717 ruid != old->euid && ruid != old->suid)
718 goto error;
719 if (euid != (uid_t) -1 && euid != old->uid &&
720 euid != old->euid && euid != old->suid)
721 goto error;
722 if (suid != (uid_t) -1 && suid != old->uid &&
723 suid != old->euid && suid != old->suid)
724 goto error;
1da177e4 725 }
d84f4f99 726
1da177e4 727 if (ruid != (uid_t) -1) {
d84f4f99 728 new->uid = ruid;
54e99124
DG
729 if (ruid != old->uid) {
730 retval = set_user(new);
731 if (retval < 0)
732 goto error;
733 }
1da177e4 734 }
d84f4f99
DH
735 if (euid != (uid_t) -1)
736 new->euid = euid;
1da177e4 737 if (suid != (uid_t) -1)
d84f4f99
DH
738 new->suid = suid;
739 new->fsuid = new->euid;
1da177e4 740
d84f4f99
DH
741 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
742 if (retval < 0)
743 goto error;
1da177e4 744
d84f4f99 745 return commit_creds(new);
1da177e4 746
d84f4f99
DH
747error:
748 abort_creds(new);
749 return retval;
1da177e4
LT
750}
751
dbf040d9 752SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 753{
86a264ab 754 const struct cred *cred = current_cred();
1da177e4
LT
755 int retval;
756
86a264ab
DH
757 if (!(retval = put_user(cred->uid, ruid)) &&
758 !(retval = put_user(cred->euid, euid)))
b6dff3ec 759 retval = put_user(cred->suid, suid);
1da177e4
LT
760
761 return retval;
762}
763
764/*
765 * Same as above, but for rgid, egid, sgid.
766 */
ae1251ab 767SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 768{
d84f4f99
DH
769 const struct cred *old;
770 struct cred *new;
1da177e4
LT
771 int retval;
772
d84f4f99
DH
773 new = prepare_creds();
774 if (!new)
775 return -ENOMEM;
776 old = current_cred();
777
d84f4f99 778 retval = -EPERM;
1da177e4 779 if (!capable(CAP_SETGID)) {
d84f4f99
DH
780 if (rgid != (gid_t) -1 && rgid != old->gid &&
781 rgid != old->egid && rgid != old->sgid)
782 goto error;
783 if (egid != (gid_t) -1 && egid != old->gid &&
784 egid != old->egid && egid != old->sgid)
785 goto error;
786 if (sgid != (gid_t) -1 && sgid != old->gid &&
787 sgid != old->egid && sgid != old->sgid)
788 goto error;
1da177e4 789 }
d84f4f99 790
1da177e4 791 if (rgid != (gid_t) -1)
d84f4f99
DH
792 new->gid = rgid;
793 if (egid != (gid_t) -1)
794 new->egid = egid;
1da177e4 795 if (sgid != (gid_t) -1)
d84f4f99
DH
796 new->sgid = sgid;
797 new->fsgid = new->egid;
1da177e4 798
d84f4f99
DH
799 return commit_creds(new);
800
801error:
802 abort_creds(new);
803 return retval;
1da177e4
LT
804}
805
dbf040d9 806SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 807{
86a264ab 808 const struct cred *cred = current_cred();
1da177e4
LT
809 int retval;
810
86a264ab
DH
811 if (!(retval = put_user(cred->gid, rgid)) &&
812 !(retval = put_user(cred->egid, egid)))
b6dff3ec 813 retval = put_user(cred->sgid, sgid);
1da177e4
LT
814
815 return retval;
816}
817
818
819/*
820 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
821 * is used for "access()" and for the NFS daemon (letting nfsd stay at
822 * whatever uid it wants to). It normally shadows "euid", except when
823 * explicitly set by setfsuid() or for access..
824 */
ae1251ab 825SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 826{
d84f4f99
DH
827 const struct cred *old;
828 struct cred *new;
829 uid_t old_fsuid;
1da177e4 830
d84f4f99
DH
831 new = prepare_creds();
832 if (!new)
833 return current_fsuid();
834 old = current_cred();
835 old_fsuid = old->fsuid;
1da177e4 836
d84f4f99
DH
837 if (uid == old->uid || uid == old->euid ||
838 uid == old->suid || uid == old->fsuid ||
756184b7
CP
839 capable(CAP_SETUID)) {
840 if (uid != old_fsuid) {
d84f4f99
DH
841 new->fsuid = uid;
842 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
843 goto change_okay;
1da177e4 844 }
1da177e4
LT
845 }
846
d84f4f99
DH
847 abort_creds(new);
848 return old_fsuid;
1da177e4 849
d84f4f99
DH
850change_okay:
851 commit_creds(new);
1da177e4
LT
852 return old_fsuid;
853}
854
855/*
f42df9e6 856 * Samma på svenska..
1da177e4 857 */
ae1251ab 858SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 859{
d84f4f99
DH
860 const struct cred *old;
861 struct cred *new;
862 gid_t old_fsgid;
863
864 new = prepare_creds();
865 if (!new)
866 return current_fsgid();
867 old = current_cred();
868 old_fsgid = old->fsgid;
1da177e4 869
d84f4f99
DH
870 if (gid == old->gid || gid == old->egid ||
871 gid == old->sgid || gid == old->fsgid ||
756184b7
CP
872 capable(CAP_SETGID)) {
873 if (gid != old_fsgid) {
d84f4f99
DH
874 new->fsgid = gid;
875 goto change_okay;
1da177e4 876 }
1da177e4 877 }
d84f4f99 878
d84f4f99
DH
879 abort_creds(new);
880 return old_fsgid;
881
882change_okay:
883 commit_creds(new);
1da177e4
LT
884 return old_fsgid;
885}
886
f06febc9
FM
887void do_sys_times(struct tms *tms)
888{
0cf55e1e 889 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 890
2b5fe6de 891 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 892 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
893 cutime = current->signal->cutime;
894 cstime = current->signal->cstime;
895 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
896 tms->tms_utime = cputime_to_clock_t(tgutime);
897 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
898 tms->tms_cutime = cputime_to_clock_t(cutime);
899 tms->tms_cstime = cputime_to_clock_t(cstime);
900}
901
58fd3aa2 902SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 903{
1da177e4
LT
904 if (tbuf) {
905 struct tms tmp;
f06febc9
FM
906
907 do_sys_times(&tmp);
1da177e4
LT
908 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
909 return -EFAULT;
910 }
e3d5a27d 911 force_successful_syscall_return();
1da177e4
LT
912 return (long) jiffies_64_to_clock_t(get_jiffies_64());
913}
914
915/*
916 * This needs some heavy checking ...
917 * I just haven't the stomach for it. I also don't fully
918 * understand sessions/pgrp etc. Let somebody who does explain it.
919 *
920 * OK, I think I have the protection semantics right.... this is really
921 * only important on a multi-user system anyway, to make sure one user
922 * can't send a signal to a process owned by another. -TYT, 12/12/91
923 *
924 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
925 * LBT 04.03.94
926 */
b290ebe2 927SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
928{
929 struct task_struct *p;
ee0acf90 930 struct task_struct *group_leader = current->group_leader;
4e021306
ON
931 struct pid *pgrp;
932 int err;
1da177e4
LT
933
934 if (!pid)
b488893a 935 pid = task_pid_vnr(group_leader);
1da177e4
LT
936 if (!pgid)
937 pgid = pid;
938 if (pgid < 0)
939 return -EINVAL;
950eaaca 940 rcu_read_lock();
1da177e4
LT
941
942 /* From this point forward we keep holding onto the tasklist lock
943 * so that our parent does not change from under us. -DaveM
944 */
945 write_lock_irq(&tasklist_lock);
946
947 err = -ESRCH;
4e021306 948 p = find_task_by_vpid(pid);
1da177e4
LT
949 if (!p)
950 goto out;
951
952 err = -EINVAL;
953 if (!thread_group_leader(p))
954 goto out;
955
4e021306 956 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 957 err = -EPERM;
41487c65 958 if (task_session(p) != task_session(group_leader))
1da177e4
LT
959 goto out;
960 err = -EACCES;
961 if (p->did_exec)
962 goto out;
963 } else {
964 err = -ESRCH;
ee0acf90 965 if (p != group_leader)
1da177e4
LT
966 goto out;
967 }
968
969 err = -EPERM;
970 if (p->signal->leader)
971 goto out;
972
4e021306 973 pgrp = task_pid(p);
1da177e4 974 if (pgid != pid) {
b488893a 975 struct task_struct *g;
1da177e4 976
4e021306
ON
977 pgrp = find_vpid(pgid);
978 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 979 if (!g || task_session(g) != task_session(group_leader))
f020bc46 980 goto out;
1da177e4
LT
981 }
982
1da177e4
LT
983 err = security_task_setpgid(p, pgid);
984 if (err)
985 goto out;
986
1b0f7ffd 987 if (task_pgrp(p) != pgrp)
83beaf3c 988 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
989
990 err = 0;
991out:
992 /* All paths lead to here, thus we are safe. -DaveM */
993 write_unlock_irq(&tasklist_lock);
950eaaca 994 rcu_read_unlock();
1da177e4
LT
995 return err;
996}
997
dbf040d9 998SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 999{
12a3de0a
ON
1000 struct task_struct *p;
1001 struct pid *grp;
1002 int retval;
1003
1004 rcu_read_lock();
756184b7 1005 if (!pid)
12a3de0a 1006 grp = task_pgrp(current);
756184b7 1007 else {
1da177e4 1008 retval = -ESRCH;
12a3de0a
ON
1009 p = find_task_by_vpid(pid);
1010 if (!p)
1011 goto out;
1012 grp = task_pgrp(p);
1013 if (!grp)
1014 goto out;
1015
1016 retval = security_task_getpgid(p);
1017 if (retval)
1018 goto out;
1da177e4 1019 }
12a3de0a
ON
1020 retval = pid_vnr(grp);
1021out:
1022 rcu_read_unlock();
1023 return retval;
1da177e4
LT
1024}
1025
1026#ifdef __ARCH_WANT_SYS_GETPGRP
1027
dbf040d9 1028SYSCALL_DEFINE0(getpgrp)
1da177e4 1029{
12a3de0a 1030 return sys_getpgid(0);
1da177e4
LT
1031}
1032
1033#endif
1034
dbf040d9 1035SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1036{
1dd768c0
ON
1037 struct task_struct *p;
1038 struct pid *sid;
1039 int retval;
1040
1041 rcu_read_lock();
756184b7 1042 if (!pid)
1dd768c0 1043 sid = task_session(current);
756184b7 1044 else {
1da177e4 1045 retval = -ESRCH;
1dd768c0
ON
1046 p = find_task_by_vpid(pid);
1047 if (!p)
1048 goto out;
1049 sid = task_session(p);
1050 if (!sid)
1051 goto out;
1052
1053 retval = security_task_getsid(p);
1054 if (retval)
1055 goto out;
1da177e4 1056 }
1dd768c0
ON
1057 retval = pid_vnr(sid);
1058out:
1059 rcu_read_unlock();
1060 return retval;
1da177e4
LT
1061}
1062
b290ebe2 1063SYSCALL_DEFINE0(setsid)
1da177e4 1064{
e19f247a 1065 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1066 struct pid *sid = task_pid(group_leader);
1067 pid_t session = pid_vnr(sid);
1da177e4
LT
1068 int err = -EPERM;
1069
1da177e4 1070 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1071 /* Fail if I am already a session leader */
1072 if (group_leader->signal->leader)
1073 goto out;
1074
430c6231
ON
1075 /* Fail if a process group id already exists that equals the
1076 * proposed session id.
390e2ff0 1077 */
6806aac6 1078 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1079 goto out;
1080
e19f247a 1081 group_leader->signal->leader = 1;
8520d7c7 1082 __set_special_pids(sid);
24ec839c 1083
9c9f4ded 1084 proc_clear_tty(group_leader);
24ec839c 1085
e4cc0a9c 1086 err = session;
1da177e4
LT
1087out:
1088 write_unlock_irq(&tasklist_lock);
5091faa4 1089 if (err > 0) {
0d0df599 1090 proc_sid_connector(group_leader);
5091faa4
MG
1091 sched_autogroup_create_attach(group_leader);
1092 }
1da177e4
LT
1093 return err;
1094}
1095
1da177e4
LT
1096DECLARE_RWSEM(uts_sem);
1097
e28cbf22
CH
1098#ifdef COMPAT_UTS_MACHINE
1099#define override_architecture(name) \
46da2766 1100 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1101 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1102 sizeof(COMPAT_UTS_MACHINE)))
1103#else
1104#define override_architecture(name) 0
1105#endif
1106
e48fbb69 1107SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1108{
1109 int errno = 0;
1110
1111 down_read(&uts_sem);
e9ff3990 1112 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1113 errno = -EFAULT;
1114 up_read(&uts_sem);
e28cbf22
CH
1115
1116 if (!errno && override_architecture(name))
1117 errno = -EFAULT;
1da177e4
LT
1118 return errno;
1119}
1120
5cacdb4a
CH
1121#ifdef __ARCH_WANT_SYS_OLD_UNAME
1122/*
1123 * Old cruft
1124 */
1125SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1126{
1127 int error = 0;
1128
1129 if (!name)
1130 return -EFAULT;
1131
1132 down_read(&uts_sem);
1133 if (copy_to_user(name, utsname(), sizeof(*name)))
1134 error = -EFAULT;
1135 up_read(&uts_sem);
1136
1137 if (!error && override_architecture(name))
1138 error = -EFAULT;
1139 return error;
1140}
1141
1142SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1143{
1144 int error;
1145
1146 if (!name)
1147 return -EFAULT;
1148 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1149 return -EFAULT;
1150
1151 down_read(&uts_sem);
1152 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1153 __OLD_UTS_LEN);
1154 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1155 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1156 __OLD_UTS_LEN);
1157 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1158 error |= __copy_to_user(&name->release, &utsname()->release,
1159 __OLD_UTS_LEN);
1160 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1161 error |= __copy_to_user(&name->version, &utsname()->version,
1162 __OLD_UTS_LEN);
1163 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1164 error |= __copy_to_user(&name->machine, &utsname()->machine,
1165 __OLD_UTS_LEN);
1166 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1167 up_read(&uts_sem);
1168
1169 if (!error && override_architecture(name))
1170 error = -EFAULT;
1171 return error ? -EFAULT : 0;
1172}
1173#endif
1174
5a8a82b1 1175SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1176{
1177 int errno;
1178 char tmp[__NEW_UTS_LEN];
1179
1180 if (!capable(CAP_SYS_ADMIN))
1181 return -EPERM;
1182 if (len < 0 || len > __NEW_UTS_LEN)
1183 return -EINVAL;
1184 down_write(&uts_sem);
1185 errno = -EFAULT;
1186 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1187 struct new_utsname *u = utsname();
1188
1189 memcpy(u->nodename, tmp, len);
1190 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1191 errno = 0;
1192 }
1193 up_write(&uts_sem);
1194 return errno;
1195}
1196
1197#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1198
5a8a82b1 1199SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1200{
1201 int i, errno;
9679e4dd 1202 struct new_utsname *u;
1da177e4
LT
1203
1204 if (len < 0)
1205 return -EINVAL;
1206 down_read(&uts_sem);
9679e4dd
AM
1207 u = utsname();
1208 i = 1 + strlen(u->nodename);
1da177e4
LT
1209 if (i > len)
1210 i = len;
1211 errno = 0;
9679e4dd 1212 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1213 errno = -EFAULT;
1214 up_read(&uts_sem);
1215 return errno;
1216}
1217
1218#endif
1219
1220/*
1221 * Only setdomainname; getdomainname can be implemented by calling
1222 * uname()
1223 */
5a8a82b1 1224SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1225{
1226 int errno;
1227 char tmp[__NEW_UTS_LEN];
1228
1229 if (!capable(CAP_SYS_ADMIN))
1230 return -EPERM;
1231 if (len < 0 || len > __NEW_UTS_LEN)
1232 return -EINVAL;
1233
1234 down_write(&uts_sem);
1235 errno = -EFAULT;
1236 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1237 struct new_utsname *u = utsname();
1238
1239 memcpy(u->domainname, tmp, len);
1240 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1241 errno = 0;
1242 }
1243 up_write(&uts_sem);
1244 return errno;
1245}
1246
e48fbb69 1247SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1248{
b9518345
JS
1249 struct rlimit value;
1250 int ret;
1251
1252 ret = do_prlimit(current, resource, NULL, &value);
1253 if (!ret)
1254 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1255
1256 return ret;
1da177e4
LT
1257}
1258
1259#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1260
1261/*
1262 * Back compatibility for getrlimit. Needed for some apps.
1263 */
1264
e48fbb69
HC
1265SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1266 struct rlimit __user *, rlim)
1da177e4
LT
1267{
1268 struct rlimit x;
1269 if (resource >= RLIM_NLIMITS)
1270 return -EINVAL;
1271
1272 task_lock(current->group_leader);
1273 x = current->signal->rlim[resource];
1274 task_unlock(current->group_leader);
756184b7 1275 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1276 x.rlim_cur = 0x7FFFFFFF;
756184b7 1277 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1278 x.rlim_max = 0x7FFFFFFF;
1279 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1280}
1281
1282#endif
1283
c022a0ac
JS
1284static inline bool rlim64_is_infinity(__u64 rlim64)
1285{
1286#if BITS_PER_LONG < 64
1287 return rlim64 >= ULONG_MAX;
1288#else
1289 return rlim64 == RLIM64_INFINITY;
1290#endif
1291}
1292
1293static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1294{
1295 if (rlim->rlim_cur == RLIM_INFINITY)
1296 rlim64->rlim_cur = RLIM64_INFINITY;
1297 else
1298 rlim64->rlim_cur = rlim->rlim_cur;
1299 if (rlim->rlim_max == RLIM_INFINITY)
1300 rlim64->rlim_max = RLIM64_INFINITY;
1301 else
1302 rlim64->rlim_max = rlim->rlim_max;
1303}
1304
1305static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1306{
1307 if (rlim64_is_infinity(rlim64->rlim_cur))
1308 rlim->rlim_cur = RLIM_INFINITY;
1309 else
1310 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1311 if (rlim64_is_infinity(rlim64->rlim_max))
1312 rlim->rlim_max = RLIM_INFINITY;
1313 else
1314 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1315}
1316
1c1e618d 1317/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1318int do_prlimit(struct task_struct *tsk, unsigned int resource,
1319 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1320{
5b41535a 1321 struct rlimit *rlim;
86f162f4 1322 int retval = 0;
1da177e4
LT
1323
1324 if (resource >= RLIM_NLIMITS)
1325 return -EINVAL;
5b41535a
JS
1326 if (new_rlim) {
1327 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1328 return -EINVAL;
1329 if (resource == RLIMIT_NOFILE &&
1330 new_rlim->rlim_max > sysctl_nr_open)
1331 return -EPERM;
1332 }
1da177e4 1333
1c1e618d
JS
1334 /* protect tsk->signal and tsk->sighand from disappearing */
1335 read_lock(&tasklist_lock);
1336 if (!tsk->sighand) {
1337 retval = -ESRCH;
1338 goto out;
1339 }
1340
5b41535a 1341 rlim = tsk->signal->rlim + resource;
86f162f4 1342 task_lock(tsk->group_leader);
5b41535a
JS
1343 if (new_rlim) {
1344 if (new_rlim->rlim_max > rlim->rlim_max &&
1345 !capable(CAP_SYS_RESOURCE))
1346 retval = -EPERM;
1347 if (!retval)
1348 retval = security_task_setrlimit(tsk->group_leader,
1349 resource, new_rlim);
1350 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1351 /*
1352 * The caller is asking for an immediate RLIMIT_CPU
1353 * expiry. But we use the zero value to mean "it was
1354 * never set". So let's cheat and make it one second
1355 * instead
1356 */
1357 new_rlim->rlim_cur = 1;
1358 }
1359 }
1360 if (!retval) {
1361 if (old_rlim)
1362 *old_rlim = *rlim;
1363 if (new_rlim)
1364 *rlim = *new_rlim;
9926e4c7 1365 }
7855c35d 1366 task_unlock(tsk->group_leader);
1da177e4 1367
d3561f78
AM
1368 /*
1369 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1370 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1371 * very long-standing error, and fixing it now risks breakage of
1372 * applications, so we live with it
1373 */
5b41535a
JS
1374 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1375 new_rlim->rlim_cur != RLIM_INFINITY)
1376 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1377out:
1c1e618d 1378 read_unlock(&tasklist_lock);
2fb9d268 1379 return retval;
1da177e4
LT
1380}
1381
c022a0ac
JS
1382/* rcu lock must be held */
1383static int check_prlimit_permission(struct task_struct *task)
1384{
1385 const struct cred *cred = current_cred(), *tcred;
1386
1387 tcred = __task_cred(task);
1388 if ((cred->uid != tcred->euid ||
1389 cred->uid != tcred->suid ||
1390 cred->uid != tcred->uid ||
1391 cred->gid != tcred->egid ||
1392 cred->gid != tcred->sgid ||
1393 cred->gid != tcred->gid) &&
1394 !capable(CAP_SYS_RESOURCE)) {
1395 return -EPERM;
1396 }
1397
1398 return 0;
1399}
1400
1401SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1402 const struct rlimit64 __user *, new_rlim,
1403 struct rlimit64 __user *, old_rlim)
1404{
1405 struct rlimit64 old64, new64;
1406 struct rlimit old, new;
1407 struct task_struct *tsk;
1408 int ret;
1409
1410 if (new_rlim) {
1411 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1412 return -EFAULT;
1413 rlim64_to_rlim(&new64, &new);
1414 }
1415
1416 rcu_read_lock();
1417 tsk = pid ? find_task_by_vpid(pid) : current;
1418 if (!tsk) {
1419 rcu_read_unlock();
1420 return -ESRCH;
1421 }
1422 ret = check_prlimit_permission(tsk);
1423 if (ret) {
1424 rcu_read_unlock();
1425 return ret;
1426 }
1427 get_task_struct(tsk);
1428 rcu_read_unlock();
1429
1430 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1431 old_rlim ? &old : NULL);
1432
1433 if (!ret && old_rlim) {
1434 rlim_to_rlim64(&old, &old64);
1435 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1436 ret = -EFAULT;
1437 }
1438
1439 put_task_struct(tsk);
1440 return ret;
1441}
1442
7855c35d
JS
1443SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1444{
1445 struct rlimit new_rlim;
1446
1447 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1448 return -EFAULT;
5b41535a 1449 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1450}
1451
1da177e4
LT
1452/*
1453 * It would make sense to put struct rusage in the task_struct,
1454 * except that would make the task_struct be *really big*. After
1455 * task_struct gets moved into malloc'ed memory, it would
1456 * make sense to do this. It will make moving the rest of the information
1457 * a lot simpler! (Which we're not doing right now because we're not
1458 * measuring them yet).
1459 *
1da177e4
LT
1460 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1461 * races with threads incrementing their own counters. But since word
1462 * reads are atomic, we either get new values or old values and we don't
1463 * care which for the sums. We always take the siglock to protect reading
1464 * the c* fields from p->signal from races with exit.c updating those
1465 * fields when reaping, so a sample either gets all the additions of a
1466 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1467 *
de047c1b
RT
1468 * Locking:
1469 * We need to take the siglock for CHILDEREN, SELF and BOTH
1470 * for the cases current multithreaded, non-current single threaded
1471 * non-current multithreaded. Thread traversal is now safe with
1472 * the siglock held.
1473 * Strictly speaking, we donot need to take the siglock if we are current and
1474 * single threaded, as no one else can take our signal_struct away, no one
1475 * else can reap the children to update signal->c* counters, and no one else
1476 * can race with the signal-> fields. If we do not take any lock, the
1477 * signal-> fields could be read out of order while another thread was just
1478 * exiting. So we should place a read memory barrier when we avoid the lock.
1479 * On the writer side, write memory barrier is implied in __exit_signal
1480 * as __exit_signal releases the siglock spinlock after updating the signal->
1481 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1482 *
1da177e4
LT
1483 */
1484
f06febc9 1485static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1486{
679c9cd4
SK
1487 r->ru_nvcsw += t->nvcsw;
1488 r->ru_nivcsw += t->nivcsw;
1489 r->ru_minflt += t->min_flt;
1490 r->ru_majflt += t->maj_flt;
1491 r->ru_inblock += task_io_get_inblock(t);
1492 r->ru_oublock += task_io_get_oublock(t);
1493}
1494
1da177e4
LT
1495static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1496{
1497 struct task_struct *t;
1498 unsigned long flags;
0cf55e1e 1499 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1500 unsigned long maxrss = 0;
1da177e4
LT
1501
1502 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1503 utime = stime = cputime_zero;
1da177e4 1504
679c9cd4 1505 if (who == RUSAGE_THREAD) {
d180c5bc 1506 task_times(current, &utime, &stime);
f06febc9 1507 accumulate_thread_rusage(p, r);
1f10206c 1508 maxrss = p->signal->maxrss;
679c9cd4
SK
1509 goto out;
1510 }
1511
d6cf723a 1512 if (!lock_task_sighand(p, &flags))
de047c1b 1513 return;
0f59cc4a 1514
1da177e4 1515 switch (who) {
0f59cc4a 1516 case RUSAGE_BOTH:
1da177e4 1517 case RUSAGE_CHILDREN:
1da177e4
LT
1518 utime = p->signal->cutime;
1519 stime = p->signal->cstime;
1520 r->ru_nvcsw = p->signal->cnvcsw;
1521 r->ru_nivcsw = p->signal->cnivcsw;
1522 r->ru_minflt = p->signal->cmin_flt;
1523 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1524 r->ru_inblock = p->signal->cinblock;
1525 r->ru_oublock = p->signal->coublock;
1f10206c 1526 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1527
1528 if (who == RUSAGE_CHILDREN)
1529 break;
1530
1da177e4 1531 case RUSAGE_SELF:
0cf55e1e
HS
1532 thread_group_times(p, &tgutime, &tgstime);
1533 utime = cputime_add(utime, tgutime);
1534 stime = cputime_add(stime, tgstime);
1da177e4
LT
1535 r->ru_nvcsw += p->signal->nvcsw;
1536 r->ru_nivcsw += p->signal->nivcsw;
1537 r->ru_minflt += p->signal->min_flt;
1538 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1539 r->ru_inblock += p->signal->inblock;
1540 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1541 if (maxrss < p->signal->maxrss)
1542 maxrss = p->signal->maxrss;
1da177e4
LT
1543 t = p;
1544 do {
f06febc9 1545 accumulate_thread_rusage(t, r);
1da177e4
LT
1546 t = next_thread(t);
1547 } while (t != p);
1da177e4 1548 break;
0f59cc4a 1549
1da177e4
LT
1550 default:
1551 BUG();
1552 }
de047c1b 1553 unlock_task_sighand(p, &flags);
de047c1b 1554
679c9cd4 1555out:
0f59cc4a
ON
1556 cputime_to_timeval(utime, &r->ru_utime);
1557 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1558
1559 if (who != RUSAGE_CHILDREN) {
1560 struct mm_struct *mm = get_task_mm(p);
1561 if (mm) {
1562 setmax_mm_hiwater_rss(&maxrss, mm);
1563 mmput(mm);
1564 }
1565 }
1566 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1567}
1568
1569int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1570{
1571 struct rusage r;
1da177e4 1572 k_getrusage(p, who, &r);
1da177e4
LT
1573 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1574}
1575
e48fbb69 1576SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1577{
679c9cd4
SK
1578 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1579 who != RUSAGE_THREAD)
1da177e4
LT
1580 return -EINVAL;
1581 return getrusage(current, who, ru);
1582}
1583
e48fbb69 1584SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1585{
1586 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1587 return mask;
1588}
3b7391de 1589
c4ea37c2
HC
1590SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1591 unsigned long, arg4, unsigned long, arg5)
1da177e4 1592{
b6dff3ec
DH
1593 struct task_struct *me = current;
1594 unsigned char comm[sizeof(me->comm)];
1595 long error;
1da177e4 1596
d84f4f99
DH
1597 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1598 if (error != -ENOSYS)
1da177e4
LT
1599 return error;
1600
d84f4f99 1601 error = 0;
1da177e4
LT
1602 switch (option) {
1603 case PR_SET_PDEATHSIG:
0730ded5 1604 if (!valid_signal(arg2)) {
1da177e4
LT
1605 error = -EINVAL;
1606 break;
1607 }
b6dff3ec
DH
1608 me->pdeath_signal = arg2;
1609 error = 0;
1da177e4
LT
1610 break;
1611 case PR_GET_PDEATHSIG:
b6dff3ec 1612 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1613 break;
1614 case PR_GET_DUMPABLE:
b6dff3ec 1615 error = get_dumpable(me->mm);
1da177e4
LT
1616 break;
1617 case PR_SET_DUMPABLE:
abf75a50 1618 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1619 error = -EINVAL;
1620 break;
1621 }
b6dff3ec
DH
1622 set_dumpable(me->mm, arg2);
1623 error = 0;
1da177e4
LT
1624 break;
1625
1626 case PR_SET_UNALIGN:
b6dff3ec 1627 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1628 break;
1629 case PR_GET_UNALIGN:
b6dff3ec 1630 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1631 break;
1632 case PR_SET_FPEMU:
b6dff3ec 1633 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1634 break;
1635 case PR_GET_FPEMU:
b6dff3ec 1636 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1637 break;
1638 case PR_SET_FPEXC:
b6dff3ec 1639 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1640 break;
1641 case PR_GET_FPEXC:
b6dff3ec 1642 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1643 break;
1644 case PR_GET_TIMING:
1645 error = PR_TIMING_STATISTICAL;
1646 break;
1647 case PR_SET_TIMING:
7b26655f 1648 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1649 error = -EINVAL;
b6dff3ec
DH
1650 else
1651 error = 0;
1da177e4
LT
1652 break;
1653
b6dff3ec
DH
1654 case PR_SET_NAME:
1655 comm[sizeof(me->comm)-1] = 0;
1656 if (strncpy_from_user(comm, (char __user *)arg2,
1657 sizeof(me->comm) - 1) < 0)
1da177e4 1658 return -EFAULT;
b6dff3ec 1659 set_task_comm(me, comm);
1da177e4 1660 return 0;
b6dff3ec
DH
1661 case PR_GET_NAME:
1662 get_task_comm(comm, me);
1663 if (copy_to_user((char __user *)arg2, comm,
1664 sizeof(comm)))
1da177e4
LT
1665 return -EFAULT;
1666 return 0;
651d765d 1667 case PR_GET_ENDIAN:
b6dff3ec 1668 error = GET_ENDIAN(me, arg2);
651d765d
AB
1669 break;
1670 case PR_SET_ENDIAN:
b6dff3ec 1671 error = SET_ENDIAN(me, arg2);
651d765d
AB
1672 break;
1673
1d9d02fe
AA
1674 case PR_GET_SECCOMP:
1675 error = prctl_get_seccomp();
1676 break;
1677 case PR_SET_SECCOMP:
1678 error = prctl_set_seccomp(arg2);
1679 break;
8fb402bc
EB
1680 case PR_GET_TSC:
1681 error = GET_TSC_CTL(arg2);
1682 break;
1683 case PR_SET_TSC:
1684 error = SET_TSC_CTL(arg2);
1685 break;
cdd6c482
IM
1686 case PR_TASK_PERF_EVENTS_DISABLE:
1687 error = perf_event_task_disable();
1d1c7ddb 1688 break;
cdd6c482
IM
1689 case PR_TASK_PERF_EVENTS_ENABLE:
1690 error = perf_event_task_enable();
1d1c7ddb 1691 break;
6976675d
AV
1692 case PR_GET_TIMERSLACK:
1693 error = current->timer_slack_ns;
1694 break;
1695 case PR_SET_TIMERSLACK:
1696 if (arg2 <= 0)
1697 current->timer_slack_ns =
1698 current->default_timer_slack_ns;
1699 else
1700 current->timer_slack_ns = arg2;
b6dff3ec 1701 error = 0;
6976675d 1702 break;
4db96cf0
AK
1703 case PR_MCE_KILL:
1704 if (arg4 | arg5)
1705 return -EINVAL;
1706 switch (arg2) {
1087e9b4 1707 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1708 if (arg3 != 0)
1709 return -EINVAL;
1710 current->flags &= ~PF_MCE_PROCESS;
1711 break;
1087e9b4 1712 case PR_MCE_KILL_SET:
4db96cf0 1713 current->flags |= PF_MCE_PROCESS;
1087e9b4 1714 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1715 current->flags |= PF_MCE_EARLY;
1087e9b4 1716 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1717 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1718 else if (arg3 == PR_MCE_KILL_DEFAULT)
1719 current->flags &=
1720 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1721 else
1722 return -EINVAL;
4db96cf0
AK
1723 break;
1724 default:
1725 return -EINVAL;
1726 }
1727 error = 0;
1728 break;
1087e9b4
AK
1729 case PR_MCE_KILL_GET:
1730 if (arg2 | arg3 | arg4 | arg5)
1731 return -EINVAL;
1732 if (current->flags & PF_MCE_PROCESS)
1733 error = (current->flags & PF_MCE_EARLY) ?
1734 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1735 else
1736 error = PR_MCE_KILL_DEFAULT;
1737 break;
1da177e4
LT
1738 default:
1739 error = -EINVAL;
1740 break;
1741 }
1742 return error;
1743}
3cfc348b 1744
836f92ad
HC
1745SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1746 struct getcpu_cache __user *, unused)
3cfc348b
AK
1747{
1748 int err = 0;
1749 int cpu = raw_smp_processor_id();
1750 if (cpup)
1751 err |= put_user(cpu, cpup);
1752 if (nodep)
1753 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1754 return err ? -EFAULT : 0;
1755}
10a0a8d4
JF
1756
1757char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1758
a06a4dc3 1759static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 1760{
a06a4dc3 1761 argv_free(info->argv);
10a0a8d4
JF
1762}
1763
1764/**
1765 * orderly_poweroff - Trigger an orderly system poweroff
1766 * @force: force poweroff if command execution fails
1767 *
1768 * This may be called from any context to trigger a system shutdown.
1769 * If the orderly shutdown fails, it will force an immediate shutdown.
1770 */
1771int orderly_poweroff(bool force)
1772{
1773 int argc;
1774 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1775 static char *envp[] = {
1776 "HOME=/",
1777 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1778 NULL
1779 };
1780 int ret = -ENOMEM;
1781 struct subprocess_info *info;
1782
1783 if (argv == NULL) {
1784 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1785 __func__, poweroff_cmd);
1786 goto out;
1787 }
1788
ac331d15 1789 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1790 if (info == NULL) {
1791 argv_free(argv);
1792 goto out;
1793 }
1794
a06a4dc3 1795 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
10a0a8d4 1796
86313c48 1797 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1798
1799 out:
1800 if (ret && force) {
1801 printk(KERN_WARNING "Failed to start orderly shutdown: "
1802 "forcing the issue\n");
1803
1804 /* I guess this should try to kick off some daemon to
1805 sync and poweroff asap. Or not even bother syncing
1806 if we're doing an emergency shutdown? */
1807 emergency_sync();
1808 kernel_power_off();
1809 }
1810
1811 return ret;
1812}
1813EXPORT_SYMBOL_GPL(orderly_poweroff);