rcu: enable CPU_STALL_VERBOSE by default
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
64db4cff 50
9f77da9f
PM
51#include "rcutree.h"
52
64db4cff
PM
53/* Data structures. */
54
b668c9cf 55static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 56
64db4cff
PM
57#define RCU_STATE_INITIALIZER(name) { \
58 .level = { &name.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
cf244dc0
PM
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 65 }, \
83f5b01f 66 .signaled = RCU_GP_IDLE, \
64db4cff
PM
67 .gpnum = -300, \
68 .completed = -300, \
1304afb2 69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \
e74f4c45
PM
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \
1304afb2 73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \
64db4cff
PM
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76}
77
d6714c22
PM
78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 80
6258c4fb
IM
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 83
bbad9379
PM
84int rcu_scheduler_active __read_mostly;
85EXPORT_SYMBOL_GPL(rcu_scheduler_active);
86
fc2219d4
PM
87/*
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node
90 * structure's ->lock, but of course results can be subject to change.
91 */
92static int rcu_gp_in_progress(struct rcu_state *rsp)
93{
94 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
95}
96
b1f77b05 97/*
d6714c22 98 * Note a quiescent state. Because we do not need to know
b1f77b05 99 * how many quiescent states passed, just if there was at least
d6714c22 100 * one since the start of the grace period, this just sets a flag.
b1f77b05 101 */
d6714c22 102void rcu_sched_qs(int cpu)
b1f77b05 103{
25502a6c 104 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 105
c64ac3ce 106 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
107 barrier();
108 rdp->passed_quiesc = 1;
b1f77b05
IM
109}
110
d6714c22 111void rcu_bh_qs(int cpu)
b1f77b05 112{
25502a6c 113 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 114
c64ac3ce 115 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
116 barrier();
117 rdp->passed_quiesc = 1;
b1f77b05 118}
64db4cff 119
25502a6c
PM
120/*
121 * Note a context switch. This is a quiescent state for RCU-sched,
122 * and requires special handling for preemptible RCU.
123 */
124void rcu_note_context_switch(int cpu)
125{
126 rcu_sched_qs(cpu);
127 rcu_preempt_note_context_switch(cpu);
128}
129
64db4cff 130#ifdef CONFIG_NO_HZ
90a4d2c0
PM
131DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
132 .dynticks_nesting = 1,
133 .dynticks = 1,
134};
64db4cff
PM
135#endif /* #ifdef CONFIG_NO_HZ */
136
137static int blimit = 10; /* Maximum callbacks per softirq. */
138static int qhimark = 10000; /* If this many pending, ignore blimit. */
139static int qlowmark = 100; /* Once only this many pending, use blimit. */
140
3d76c082
PM
141module_param(blimit, int, 0);
142module_param(qhimark, int, 0);
143module_param(qlowmark, int, 0);
144
64db4cff 145static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 146static int rcu_pending(int cpu);
64db4cff
PM
147
148/*
d6714c22 149 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 150 */
d6714c22 151long rcu_batches_completed_sched(void)
64db4cff 152{
d6714c22 153 return rcu_sched_state.completed;
64db4cff 154}
d6714c22 155EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
156
157/*
158 * Return the number of RCU BH batches processed thus far for debug & stats.
159 */
160long rcu_batches_completed_bh(void)
161{
162 return rcu_bh_state.completed;
163}
164EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
165
bf66f18e
PM
166/*
167 * Force a quiescent state for RCU BH.
168 */
169void rcu_bh_force_quiescent_state(void)
170{
171 force_quiescent_state(&rcu_bh_state, 0);
172}
173EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
174
175/*
176 * Force a quiescent state for RCU-sched.
177 */
178void rcu_sched_force_quiescent_state(void)
179{
180 force_quiescent_state(&rcu_sched_state, 0);
181}
182EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
183
64db4cff
PM
184/*
185 * Does the CPU have callbacks ready to be invoked?
186 */
187static int
188cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
189{
190 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
191}
192
193/*
194 * Does the current CPU require a yet-as-unscheduled grace period?
195 */
196static int
197cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
198{
fc2219d4 199 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
200}
201
202/*
203 * Return the root node of the specified rcu_state structure.
204 */
205static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
206{
207 return &rsp->node[0];
208}
209
210#ifdef CONFIG_SMP
211
212/*
213 * If the specified CPU is offline, tell the caller that it is in
214 * a quiescent state. Otherwise, whack it with a reschedule IPI.
215 * Grace periods can end up waiting on an offline CPU when that
216 * CPU is in the process of coming online -- it will be added to the
217 * rcu_node bitmasks before it actually makes it online. The same thing
218 * can happen while a CPU is in the process of coming online. Because this
219 * race is quite rare, we check for it after detecting that the grace
220 * period has been delayed rather than checking each and every CPU
221 * each and every time we start a new grace period.
222 */
223static int rcu_implicit_offline_qs(struct rcu_data *rdp)
224{
225 /*
226 * If the CPU is offline, it is in a quiescent state. We can
227 * trust its state not to change because interrupts are disabled.
228 */
229 if (cpu_is_offline(rdp->cpu)) {
230 rdp->offline_fqs++;
231 return 1;
232 }
233
f41d911f
PM
234 /* If preemptable RCU, no point in sending reschedule IPI. */
235 if (rdp->preemptable)
236 return 0;
237
64db4cff
PM
238 /* The CPU is online, so send it a reschedule IPI. */
239 if (rdp->cpu != smp_processor_id())
240 smp_send_reschedule(rdp->cpu);
241 else
242 set_need_resched();
243 rdp->resched_ipi++;
244 return 0;
245}
246
247#endif /* #ifdef CONFIG_SMP */
248
249#ifdef CONFIG_NO_HZ
64db4cff
PM
250
251/**
252 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
253 *
254 * Enter nohz mode, in other words, -leave- the mode in which RCU
255 * read-side critical sections can occur. (Though RCU read-side
256 * critical sections can occur in irq handlers in nohz mode, a possibility
257 * handled by rcu_irq_enter() and rcu_irq_exit()).
258 */
259void rcu_enter_nohz(void)
260{
261 unsigned long flags;
262 struct rcu_dynticks *rdtp;
263
264 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
265 local_irq_save(flags);
266 rdtp = &__get_cpu_var(rcu_dynticks);
267 rdtp->dynticks++;
268 rdtp->dynticks_nesting--;
86848966 269 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
270 local_irq_restore(flags);
271}
272
273/*
274 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
275 *
276 * Exit nohz mode, in other words, -enter- the mode in which RCU
277 * read-side critical sections normally occur.
278 */
279void rcu_exit_nohz(void)
280{
281 unsigned long flags;
282 struct rcu_dynticks *rdtp;
283
284 local_irq_save(flags);
285 rdtp = &__get_cpu_var(rcu_dynticks);
286 rdtp->dynticks++;
287 rdtp->dynticks_nesting++;
86848966 288 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
289 local_irq_restore(flags);
290 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
291}
292
293/**
294 * rcu_nmi_enter - inform RCU of entry to NMI context
295 *
296 * If the CPU was idle with dynamic ticks active, and there is no
297 * irq handler running, this updates rdtp->dynticks_nmi to let the
298 * RCU grace-period handling know that the CPU is active.
299 */
300void rcu_nmi_enter(void)
301{
302 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
303
304 if (rdtp->dynticks & 0x1)
305 return;
306 rdtp->dynticks_nmi++;
86848966 307 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
308 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
309}
310
311/**
312 * rcu_nmi_exit - inform RCU of exit from NMI context
313 *
314 * If the CPU was idle with dynamic ticks active, and there is no
315 * irq handler running, this updates rdtp->dynticks_nmi to let the
316 * RCU grace-period handling know that the CPU is no longer active.
317 */
318void rcu_nmi_exit(void)
319{
320 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
321
322 if (rdtp->dynticks & 0x1)
323 return;
324 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
325 rdtp->dynticks_nmi++;
86848966 326 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
327}
328
329/**
330 * rcu_irq_enter - inform RCU of entry to hard irq context
331 *
332 * If the CPU was idle with dynamic ticks active, this updates the
333 * rdtp->dynticks to let the RCU handling know that the CPU is active.
334 */
335void rcu_irq_enter(void)
336{
337 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
338
339 if (rdtp->dynticks_nesting++)
340 return;
341 rdtp->dynticks++;
86848966 342 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
343 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
344}
345
346/**
347 * rcu_irq_exit - inform RCU of exit from hard irq context
348 *
349 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
350 * to put let the RCU handling be aware that the CPU is going back to idle
351 * with no ticks.
352 */
353void rcu_irq_exit(void)
354{
355 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
356
357 if (--rdtp->dynticks_nesting)
358 return;
359 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
360 rdtp->dynticks++;
86848966 361 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
362
363 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 364 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
365 __get_cpu_var(rcu_bh_data).nxtlist)
366 set_need_resched();
367}
368
64db4cff
PM
369#ifdef CONFIG_SMP
370
64db4cff
PM
371/*
372 * Snapshot the specified CPU's dynticks counter so that we can later
373 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 374 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
375 */
376static int dyntick_save_progress_counter(struct rcu_data *rdp)
377{
378 int ret;
379 int snap;
380 int snap_nmi;
381
382 snap = rdp->dynticks->dynticks;
383 snap_nmi = rdp->dynticks->dynticks_nmi;
384 smp_mb(); /* Order sampling of snap with end of grace period. */
385 rdp->dynticks_snap = snap;
386 rdp->dynticks_nmi_snap = snap_nmi;
387 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
388 if (ret)
389 rdp->dynticks_fqs++;
390 return ret;
391}
392
393/*
394 * Return true if the specified CPU has passed through a quiescent
395 * state by virtue of being in or having passed through an dynticks
396 * idle state since the last call to dyntick_save_progress_counter()
397 * for this same CPU.
398 */
399static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
400{
401 long curr;
402 long curr_nmi;
403 long snap;
404 long snap_nmi;
405
406 curr = rdp->dynticks->dynticks;
407 snap = rdp->dynticks_snap;
408 curr_nmi = rdp->dynticks->dynticks_nmi;
409 snap_nmi = rdp->dynticks_nmi_snap;
410 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
411
412 /*
413 * If the CPU passed through or entered a dynticks idle phase with
414 * no active irq/NMI handlers, then we can safely pretend that the CPU
415 * already acknowledged the request to pass through a quiescent
416 * state. Either way, that CPU cannot possibly be in an RCU
417 * read-side critical section that started before the beginning
418 * of the current RCU grace period.
419 */
420 if ((curr != snap || (curr & 0x1) == 0) &&
421 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
422 rdp->dynticks_fqs++;
423 return 1;
424 }
425
426 /* Go check for the CPU being offline. */
427 return rcu_implicit_offline_qs(rdp);
428}
429
430#endif /* #ifdef CONFIG_SMP */
431
432#else /* #ifdef CONFIG_NO_HZ */
433
64db4cff
PM
434#ifdef CONFIG_SMP
435
64db4cff
PM
436static int dyntick_save_progress_counter(struct rcu_data *rdp)
437{
438 return 0;
439}
440
441static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
442{
443 return rcu_implicit_offline_qs(rdp);
444}
445
446#endif /* #ifdef CONFIG_SMP */
447
448#endif /* #else #ifdef CONFIG_NO_HZ */
449
450#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
451
452static void record_gp_stall_check_time(struct rcu_state *rsp)
453{
454 rsp->gp_start = jiffies;
455 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
456}
457
458static void print_other_cpu_stall(struct rcu_state *rsp)
459{
460 int cpu;
461 long delta;
462 unsigned long flags;
463 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
464
465 /* Only let one CPU complain about others per time interval. */
466
1304afb2 467 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 468 delta = jiffies - rsp->jiffies_stall;
fc2219d4 469 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 470 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
471 return;
472 }
473 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
474
475 /*
476 * Now rat on any tasks that got kicked up to the root rcu_node
477 * due to CPU offlining.
478 */
479 rcu_print_task_stall(rnp);
1304afb2 480 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
481
482 /* OK, time to rat on our buddy... */
483
484 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
a0b6c9a7 485 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 486 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 487 rcu_print_task_stall(rnp);
3acd9eb3 488 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 489 if (rnp->qsmask == 0)
64db4cff 490 continue;
a0b6c9a7
PM
491 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
492 if (rnp->qsmask & (1UL << cpu))
493 printk(" %d", rnp->grplo + cpu);
64db4cff
PM
494 }
495 printk(" (detected by %d, t=%ld jiffies)\n",
496 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
497 trigger_all_cpu_backtrace();
498
1ed509a2
PM
499 /* If so configured, complain about tasks blocking the grace period. */
500
501 rcu_print_detail_task_stall(rsp);
502
64db4cff
PM
503 force_quiescent_state(rsp, 0); /* Kick them all. */
504}
505
506static void print_cpu_stall(struct rcu_state *rsp)
507{
508 unsigned long flags;
509 struct rcu_node *rnp = rcu_get_root(rsp);
510
511 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
512 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
513 trigger_all_cpu_backtrace();
514
1304afb2 515 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 516 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
517 rsp->jiffies_stall =
518 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 519 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 520
64db4cff
PM
521 set_need_resched(); /* kick ourselves to get things going. */
522}
523
524static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
525{
526 long delta;
527 struct rcu_node *rnp;
528
529 delta = jiffies - rsp->jiffies_stall;
530 rnp = rdp->mynode;
531 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
532
533 /* We haven't checked in, so go dump stack. */
534 print_cpu_stall(rsp);
535
fc2219d4 536 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
537
538 /* They had two time units to dump stack, so complain. */
539 print_other_cpu_stall(rsp);
540 }
541}
542
543#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
544
545static void record_gp_stall_check_time(struct rcu_state *rsp)
546{
547}
548
549static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
550{
551}
552
553#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
554
555/*
556 * Update CPU-local rcu_data state to record the newly noticed grace period.
557 * This is used both when we started the grace period and when we notice
9160306e
PM
558 * that someone else started the grace period. The caller must hold the
559 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
560 * and must have irqs disabled.
64db4cff 561 */
9160306e
PM
562static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
563{
564 if (rdp->gpnum != rnp->gpnum) {
565 rdp->qs_pending = 1;
566 rdp->passed_quiesc = 0;
567 rdp->gpnum = rnp->gpnum;
568 }
569}
570
64db4cff
PM
571static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
572{
9160306e
PM
573 unsigned long flags;
574 struct rcu_node *rnp;
575
576 local_irq_save(flags);
577 rnp = rdp->mynode;
578 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 579 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
580 local_irq_restore(flags);
581 return;
582 }
583 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 584 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
585}
586
587/*
588 * Did someone else start a new RCU grace period start since we last
589 * checked? Update local state appropriately if so. Must be called
590 * on the CPU corresponding to rdp.
591 */
592static int
593check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
594{
595 unsigned long flags;
596 int ret = 0;
597
598 local_irq_save(flags);
599 if (rdp->gpnum != rsp->gpnum) {
600 note_new_gpnum(rsp, rdp);
601 ret = 1;
602 }
603 local_irq_restore(flags);
604 return ret;
605}
606
d09b62df
PM
607/*
608 * Advance this CPU's callbacks, but only if the current grace period
609 * has ended. This may be called only from the CPU to whom the rdp
610 * belongs. In addition, the corresponding leaf rcu_node structure's
611 * ->lock must be held by the caller, with irqs disabled.
612 */
613static void
614__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
615{
616 /* Did another grace period end? */
617 if (rdp->completed != rnp->completed) {
618
619 /* Advance callbacks. No harm if list empty. */
620 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
621 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
622 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
623
624 /* Remember that we saw this grace-period completion. */
625 rdp->completed = rnp->completed;
626 }
627}
628
629/*
630 * Advance this CPU's callbacks, but only if the current grace period
631 * has ended. This may be called only from the CPU to whom the rdp
632 * belongs.
633 */
634static void
635rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
636{
637 unsigned long flags;
638 struct rcu_node *rnp;
639
640 local_irq_save(flags);
641 rnp = rdp->mynode;
642 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 643 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
644 local_irq_restore(flags);
645 return;
646 }
647 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 648 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
649}
650
651/*
652 * Do per-CPU grace-period initialization for running CPU. The caller
653 * must hold the lock of the leaf rcu_node structure corresponding to
654 * this CPU.
655 */
656static void
657rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
658{
659 /* Prior grace period ended, so advance callbacks for current CPU. */
660 __rcu_process_gp_end(rsp, rnp, rdp);
661
662 /*
663 * Because this CPU just now started the new grace period, we know
664 * that all of its callbacks will be covered by this upcoming grace
665 * period, even the ones that were registered arbitrarily recently.
666 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
667 *
668 * Other CPUs cannot be sure exactly when the grace period started.
669 * Therefore, their recently registered callbacks must pass through
670 * an additional RCU_NEXT_READY stage, so that they will be handled
671 * by the next RCU grace period.
672 */
673 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
674 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
675
676 /* Set state so that this CPU will detect the next quiescent state. */
677 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
678}
679
64db4cff
PM
680/*
681 * Start a new RCU grace period if warranted, re-initializing the hierarchy
682 * in preparation for detecting the next grace period. The caller must hold
683 * the root node's ->lock, which is released before return. Hard irqs must
684 * be disabled.
685 */
686static void
687rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
688 __releases(rcu_get_root(rsp)->lock)
689{
690 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
691 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 692
07079d53 693 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
46a1e34e
PM
694 if (cpu_needs_another_gp(rsp, rdp))
695 rsp->fqs_need_gp = 1;
b32e9eb6 696 if (rnp->completed == rsp->completed) {
1304afb2 697 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b32e9eb6
PM
698 return;
699 }
1304afb2 700 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
701
702 /*
703 * Propagate new ->completed value to rcu_node structures
704 * so that other CPUs don't have to wait until the start
705 * of the next grace period to process their callbacks.
706 */
707 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 708 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b32e9eb6 709 rnp->completed = rsp->completed;
1304afb2 710 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
711 }
712 local_irq_restore(flags);
64db4cff
PM
713 return;
714 }
715
716 /* Advance to a new grace period and initialize state. */
717 rsp->gpnum++;
c3422bea 718 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
719 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
720 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 721 record_gp_stall_check_time(rsp);
64db4cff 722
64db4cff
PM
723 /* Special-case the common single-level case. */
724 if (NUM_RCU_NODES == 1) {
b0e165c0 725 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 726 rnp->qsmask = rnp->qsmaskinit;
de078d87 727 rnp->gpnum = rsp->gpnum;
d09b62df 728 rnp->completed = rsp->completed;
c12172c0 729 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 730 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
732 return;
733 }
734
1304afb2 735 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff
PM
736
737
738 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 739 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
740
741 /*
b835db1f
PM
742 * Set the quiescent-state-needed bits in all the rcu_node
743 * structures for all currently online CPUs in breadth-first
744 * order, starting from the root rcu_node structure. This
745 * operation relies on the layout of the hierarchy within the
746 * rsp->node[] array. Note that other CPUs will access only
747 * the leaves of the hierarchy, which still indicate that no
748 * grace period is in progress, at least until the corresponding
749 * leaf node has been initialized. In addition, we have excluded
750 * CPU-hotplug operations.
64db4cff
PM
751 *
752 * Note that the grace period cannot complete until we finish
753 * the initialization process, as there will be at least one
754 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
755 * one corresponding to this CPU, due to the fact that we have
756 * irqs disabled.
64db4cff 757 */
a0b6c9a7 758 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 759 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 760 rcu_preempt_check_blocked_tasks(rnp);
49e29126 761 rnp->qsmask = rnp->qsmaskinit;
de078d87 762 rnp->gpnum = rsp->gpnum;
d09b62df
PM
763 rnp->completed = rsp->completed;
764 if (rnp == rdp->mynode)
765 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 766 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
767 }
768
83f5b01f 769 rnp = rcu_get_root(rsp);
1304afb2 770 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 771 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
772 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
773 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
774}
775
f41d911f 776/*
d3f6bad3
PM
777 * Report a full set of quiescent states to the specified rcu_state
778 * data structure. This involves cleaning up after the prior grace
779 * period and letting rcu_start_gp() start up the next grace period
780 * if one is needed. Note that the caller must hold rnp->lock, as
781 * required by rcu_start_gp(), which will release it.
f41d911f 782 */
d3f6bad3 783static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 784 __releases(rcu_get_root(rsp)->lock)
f41d911f 785{
fc2219d4 786 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f 787 rsp->completed = rsp->gpnum;
83f5b01f 788 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
789 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
790}
791
64db4cff 792/*
d3f6bad3
PM
793 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
794 * Allows quiescent states for a group of CPUs to be reported at one go
795 * to the specified rcu_node structure, though all the CPUs in the group
796 * must be represented by the same rcu_node structure (which need not be
797 * a leaf rcu_node structure, though it often will be). That structure's
798 * lock must be held upon entry, and it is released before return.
64db4cff
PM
799 */
800static void
d3f6bad3
PM
801rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
802 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
803 __releases(rnp->lock)
804{
28ecd580
PM
805 struct rcu_node *rnp_c;
806
64db4cff
PM
807 /* Walk up the rcu_node hierarchy. */
808 for (;;) {
809 if (!(rnp->qsmask & mask)) {
810
811 /* Our bit has already been cleared, so done. */
1304afb2 812 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
813 return;
814 }
815 rnp->qsmask &= ~mask;
f41d911f 816 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
817
818 /* Other bits still set at this level, so done. */
1304afb2 819 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
820 return;
821 }
822 mask = rnp->grpmask;
823 if (rnp->parent == NULL) {
824
825 /* No more levels. Exit loop holding root lock. */
826
827 break;
828 }
1304afb2 829 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 830 rnp_c = rnp;
64db4cff 831 rnp = rnp->parent;
1304afb2 832 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 833 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
834 }
835
836 /*
837 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 838 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 839 * to clean up and start the next grace period if one is needed.
64db4cff 840 */
d3f6bad3 841 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
842}
843
844/*
d3f6bad3
PM
845 * Record a quiescent state for the specified CPU to that CPU's rcu_data
846 * structure. This must be either called from the specified CPU, or
847 * called when the specified CPU is known to be offline (and when it is
848 * also known that no other CPU is concurrently trying to help the offline
849 * CPU). The lastcomp argument is used to make sure we are still in the
850 * grace period of interest. We don't want to end the current grace period
851 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
852 */
853static void
d3f6bad3 854rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
64db4cff
PM
855{
856 unsigned long flags;
857 unsigned long mask;
858 struct rcu_node *rnp;
859
860 rnp = rdp->mynode;
1304afb2 861 raw_spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 862 if (lastcomp != rnp->completed) {
64db4cff
PM
863
864 /*
865 * Someone beat us to it for this grace period, so leave.
866 * The race with GP start is resolved by the fact that we
867 * hold the leaf rcu_node lock, so that the per-CPU bits
868 * cannot yet be initialized -- so we would simply find our
d3f6bad3
PM
869 * CPU's bit already cleared in rcu_report_qs_rnp() if this
870 * race occurred.
64db4cff
PM
871 */
872 rdp->passed_quiesc = 0; /* try again later! */
1304afb2 873 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
874 return;
875 }
876 mask = rdp->grpmask;
877 if ((rnp->qsmask & mask) == 0) {
1304afb2 878 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
879 } else {
880 rdp->qs_pending = 0;
881
882 /*
883 * This GP can't end until cpu checks in, so all of our
884 * callbacks can be processed during the next GP.
885 */
64db4cff
PM
886 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
887
d3f6bad3 888 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
889 }
890}
891
892/*
893 * Check to see if there is a new grace period of which this CPU
894 * is not yet aware, and if so, set up local rcu_data state for it.
895 * Otherwise, see if this CPU has just passed through its first
896 * quiescent state for this grace period, and record that fact if so.
897 */
898static void
899rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
900{
901 /* If there is now a new grace period, record and return. */
902 if (check_for_new_grace_period(rsp, rdp))
903 return;
904
905 /*
906 * Does this CPU still need to do its part for current grace period?
907 * If no, return and let the other CPUs do their part as well.
908 */
909 if (!rdp->qs_pending)
910 return;
911
912 /*
913 * Was there a quiescent state since the beginning of the grace
914 * period? If no, then exit and wait for the next call.
915 */
916 if (!rdp->passed_quiesc)
917 return;
918
d3f6bad3
PM
919 /*
920 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
921 * judge of that).
922 */
923 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
64db4cff
PM
924}
925
926#ifdef CONFIG_HOTPLUG_CPU
927
e74f4c45
PM
928/*
929 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
930 * specified flavor of RCU. The callbacks will be adopted by the next
931 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
932 * comes first. Because this is invoked from the CPU_DYING notifier,
933 * irqs are already disabled.
934 */
935static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
936{
937 int i;
938 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
939
940 if (rdp->nxtlist == NULL)
941 return; /* irqs disabled, so comparison is stable. */
1304afb2 942 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
e74f4c45
PM
943 *rsp->orphan_cbs_tail = rdp->nxtlist;
944 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
945 rdp->nxtlist = NULL;
946 for (i = 0; i < RCU_NEXT_SIZE; i++)
947 rdp->nxttail[i] = &rdp->nxtlist;
948 rsp->orphan_qlen += rdp->qlen;
949 rdp->qlen = 0;
1304afb2 950 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
e74f4c45
PM
951}
952
953/*
954 * Adopt previously orphaned RCU callbacks.
955 */
956static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
957{
958 unsigned long flags;
959 struct rcu_data *rdp;
960
1304afb2 961 raw_spin_lock_irqsave(&rsp->onofflock, flags);
e74f4c45
PM
962 rdp = rsp->rda[smp_processor_id()];
963 if (rsp->orphan_cbs_list == NULL) {
1304afb2 964 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
e74f4c45
PM
965 return;
966 }
967 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
968 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
969 rdp->qlen += rsp->orphan_qlen;
970 rsp->orphan_cbs_list = NULL;
971 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
972 rsp->orphan_qlen = 0;
1304afb2 973 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
e74f4c45
PM
974}
975
64db4cff
PM
976/*
977 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
978 * and move all callbacks from the outgoing CPU to the current one.
979 */
980static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
981{
64db4cff 982 unsigned long flags;
64db4cff 983 unsigned long mask;
d9a3da06 984 int need_report = 0;
64db4cff 985 struct rcu_data *rdp = rsp->rda[cpu];
64db4cff
PM
986 struct rcu_node *rnp;
987
988 /* Exclude any attempts to start a new grace period. */
1304afb2 989 raw_spin_lock_irqsave(&rsp->onofflock, flags);
64db4cff
PM
990
991 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 992 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
993 mask = rdp->grpmask; /* rnp->grplo is constant. */
994 do {
1304afb2 995 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
996 rnp->qsmaskinit &= ~mask;
997 if (rnp->qsmaskinit != 0) {
b668c9cf 998 if (rnp != rdp->mynode)
1304afb2 999 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1000 break;
1001 }
b668c9cf 1002 if (rnp == rdp->mynode)
d9a3da06 1003 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
b668c9cf 1004 else
1304afb2 1005 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 1006 mask = rnp->grpmask;
64db4cff
PM
1007 rnp = rnp->parent;
1008 } while (rnp != NULL);
64db4cff 1009
b668c9cf
PM
1010 /*
1011 * We still hold the leaf rcu_node structure lock here, and
1012 * irqs are still disabled. The reason for this subterfuge is
d3f6bad3
PM
1013 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1014 * held leads to deadlock.
b668c9cf 1015 */
1304afb2 1016 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
b668c9cf 1017 rnp = rdp->mynode;
d9a3da06 1018 if (need_report & RCU_OFL_TASKS_NORM_GP)
d3f6bad3 1019 rcu_report_unblock_qs_rnp(rnp, flags);
b668c9cf 1020 else
1304afb2 1021 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
1022 if (need_report & RCU_OFL_TASKS_EXP_GP)
1023 rcu_report_exp_rnp(rsp, rnp);
64db4cff 1024
e74f4c45 1025 rcu_adopt_orphan_cbs(rsp);
64db4cff
PM
1026}
1027
1028/*
1029 * Remove the specified CPU from the RCU hierarchy and move any pending
1030 * callbacks that it might have to the current CPU. This code assumes
1031 * that at least one CPU in the system will remain running at all times.
1032 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1033 */
1034static void rcu_offline_cpu(int cpu)
1035{
d6714c22 1036 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 1037 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 1038 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
1039}
1040
1041#else /* #ifdef CONFIG_HOTPLUG_CPU */
1042
e74f4c45
PM
1043static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1044{
1045}
1046
1047static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1048{
1049}
1050
64db4cff
PM
1051static void rcu_offline_cpu(int cpu)
1052{
1053}
1054
1055#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1056
1057/*
1058 * Invoke any RCU callbacks that have made it to the end of their grace
1059 * period. Thottle as specified by rdp->blimit.
1060 */
37c72e56 1061static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1062{
1063 unsigned long flags;
1064 struct rcu_head *next, *list, **tail;
1065 int count;
1066
1067 /* If no callbacks are ready, just return.*/
1068 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1069 return;
1070
1071 /*
1072 * Extract the list of ready callbacks, disabling to prevent
1073 * races with call_rcu() from interrupt handlers.
1074 */
1075 local_irq_save(flags);
1076 list = rdp->nxtlist;
1077 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1078 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1079 tail = rdp->nxttail[RCU_DONE_TAIL];
1080 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1081 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1082 rdp->nxttail[count] = &rdp->nxtlist;
1083 local_irq_restore(flags);
1084
1085 /* Invoke callbacks. */
1086 count = 0;
1087 while (list) {
1088 next = list->next;
1089 prefetch(next);
1090 list->func(list);
1091 list = next;
1092 if (++count >= rdp->blimit)
1093 break;
1094 }
1095
1096 local_irq_save(flags);
1097
1098 /* Update count, and requeue any remaining callbacks. */
1099 rdp->qlen -= count;
1100 if (list != NULL) {
1101 *tail = rdp->nxtlist;
1102 rdp->nxtlist = list;
1103 for (count = 0; count < RCU_NEXT_SIZE; count++)
1104 if (&rdp->nxtlist == rdp->nxttail[count])
1105 rdp->nxttail[count] = tail;
1106 else
1107 break;
1108 }
1109
1110 /* Reinstate batch limit if we have worked down the excess. */
1111 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1112 rdp->blimit = blimit;
1113
37c72e56
PM
1114 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1115 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1116 rdp->qlen_last_fqs_check = 0;
1117 rdp->n_force_qs_snap = rsp->n_force_qs;
1118 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1119 rdp->qlen_last_fqs_check = rdp->qlen;
1120
64db4cff
PM
1121 local_irq_restore(flags);
1122
1123 /* Re-raise the RCU softirq if there are callbacks remaining. */
1124 if (cpu_has_callbacks_ready_to_invoke(rdp))
1125 raise_softirq(RCU_SOFTIRQ);
1126}
1127
1128/*
1129 * Check to see if this CPU is in a non-context-switch quiescent state
1130 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1131 * Also schedule the RCU softirq handler.
1132 *
1133 * This function must be called with hardirqs disabled. It is normally
1134 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1135 * false, there is no point in invoking rcu_check_callbacks().
1136 */
1137void rcu_check_callbacks(int cpu, int user)
1138{
a157229c
PM
1139 if (!rcu_pending(cpu))
1140 return; /* if nothing for RCU to do. */
64db4cff 1141 if (user ||
a6826048
PM
1142 (idle_cpu(cpu) && rcu_scheduler_active &&
1143 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1144
1145 /*
1146 * Get here if this CPU took its interrupt from user
1147 * mode or from the idle loop, and if this is not a
1148 * nested interrupt. In this case, the CPU is in
d6714c22 1149 * a quiescent state, so note it.
64db4cff
PM
1150 *
1151 * No memory barrier is required here because both
d6714c22
PM
1152 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1153 * variables that other CPUs neither access nor modify,
1154 * at least not while the corresponding CPU is online.
64db4cff
PM
1155 */
1156
d6714c22
PM
1157 rcu_sched_qs(cpu);
1158 rcu_bh_qs(cpu);
64db4cff
PM
1159
1160 } else if (!in_softirq()) {
1161
1162 /*
1163 * Get here if this CPU did not take its interrupt from
1164 * softirq, in other words, if it is not interrupting
1165 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1166 * critical section, so note it.
64db4cff
PM
1167 */
1168
d6714c22 1169 rcu_bh_qs(cpu);
64db4cff 1170 }
f41d911f 1171 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1172 raise_softirq(RCU_SOFTIRQ);
1173}
1174
1175#ifdef CONFIG_SMP
1176
1177/*
1178 * Scan the leaf rcu_node structures, processing dyntick state for any that
1179 * have not yet encountered a quiescent state, using the function specified.
ee47eb9f 1180 * The caller must have suppressed start of new grace periods.
64db4cff 1181 */
45f014c5 1182static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1183{
1184 unsigned long bit;
1185 int cpu;
1186 unsigned long flags;
1187 unsigned long mask;
a0b6c9a7 1188 struct rcu_node *rnp;
64db4cff 1189
a0b6c9a7 1190 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1191 mask = 0;
1304afb2 1192 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1193 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1194 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1195 return;
64db4cff 1196 }
a0b6c9a7 1197 if (rnp->qsmask == 0) {
1304afb2 1198 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1199 continue;
1200 }
a0b6c9a7 1201 cpu = rnp->grplo;
64db4cff 1202 bit = 1;
a0b6c9a7
PM
1203 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1204 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
64db4cff
PM
1205 mask |= bit;
1206 }
45f014c5 1207 if (mask != 0) {
64db4cff 1208
d3f6bad3
PM
1209 /* rcu_report_qs_rnp() releases rnp->lock. */
1210 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1211 continue;
1212 }
1304afb2 1213 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1214 }
64db4cff
PM
1215}
1216
1217/*
1218 * Force quiescent states on reluctant CPUs, and also detect which
1219 * CPUs are in dyntick-idle mode.
1220 */
1221static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1222{
1223 unsigned long flags;
64db4cff 1224 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1225
fc2219d4 1226 if (!rcu_gp_in_progress(rsp))
64db4cff 1227 return; /* No grace period in progress, nothing to force. */
1304afb2 1228 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff
PM
1229 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1230 return; /* Someone else is already on the job. */
1231 }
20133cfc 1232 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1233 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1234 rsp->n_force_qs++;
1304afb2 1235 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1236 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1237 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1238 rsp->n_force_qs_ngp++;
1304afb2 1239 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1240 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1241 }
07079d53 1242 rsp->fqs_active = 1;
f3a8b5c6 1243 switch (rsp->signaled) {
83f5b01f 1244 case RCU_GP_IDLE:
64db4cff
PM
1245 case RCU_GP_INIT:
1246
83f5b01f 1247 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1248
1249 case RCU_SAVE_DYNTICK:
64db4cff
PM
1250 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1251 break; /* So gcc recognizes the dead code. */
1252
f261414f
LJ
1253 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1254
64db4cff 1255 /* Record dyntick-idle state. */
45f014c5 1256 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1257 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1258 if (rcu_gp_in_progress(rsp))
64db4cff 1259 rsp->signaled = RCU_FORCE_QS;
ee47eb9f 1260 break;
64db4cff
PM
1261
1262 case RCU_FORCE_QS:
1263
1264 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1265 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1266 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1267
1268 /* Leave state in case more forcing is required. */
1269
1304afb2 1270 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1271 break;
64db4cff 1272 }
07079d53 1273 rsp->fqs_active = 0;
46a1e34e 1274 if (rsp->fqs_need_gp) {
1304afb2 1275 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1276 rsp->fqs_need_gp = 0;
1277 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1278 return;
1279 }
1304afb2 1280 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1281unlock_fqs_ret:
1304afb2 1282 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
64db4cff
PM
1283}
1284
1285#else /* #ifdef CONFIG_SMP */
1286
1287static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1288{
1289 set_need_resched();
1290}
1291
1292#endif /* #else #ifdef CONFIG_SMP */
1293
1294/*
1295 * This does the RCU processing work from softirq context for the
1296 * specified rcu_state and rcu_data structures. This may be called
1297 * only from the CPU to whom the rdp belongs.
1298 */
1299static void
1300__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1301{
1302 unsigned long flags;
1303
2e597558
PM
1304 WARN_ON_ONCE(rdp->beenonline == 0);
1305
64db4cff
PM
1306 /*
1307 * If an RCU GP has gone long enough, go check for dyntick
1308 * idle CPUs and, if needed, send resched IPIs.
1309 */
20133cfc 1310 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1311 force_quiescent_state(rsp, 1);
1312
1313 /*
1314 * Advance callbacks in response to end of earlier grace
1315 * period that some other CPU ended.
1316 */
1317 rcu_process_gp_end(rsp, rdp);
1318
1319 /* Update RCU state based on any recent quiescent states. */
1320 rcu_check_quiescent_state(rsp, rdp);
1321
1322 /* Does this CPU require a not-yet-started grace period? */
1323 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1324 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1325 rcu_start_gp(rsp, flags); /* releases above lock */
1326 }
1327
1328 /* If there are callbacks ready, invoke them. */
37c72e56 1329 rcu_do_batch(rsp, rdp);
64db4cff
PM
1330}
1331
1332/*
1333 * Do softirq processing for the current CPU.
1334 */
1335static void rcu_process_callbacks(struct softirq_action *unused)
1336{
1337 /*
1338 * Memory references from any prior RCU read-side critical sections
1339 * executed by the interrupted code must be seen before any RCU
1340 * grace-period manipulations below.
1341 */
1342 smp_mb(); /* See above block comment. */
1343
d6714c22
PM
1344 __rcu_process_callbacks(&rcu_sched_state,
1345 &__get_cpu_var(rcu_sched_data));
64db4cff 1346 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1347 rcu_preempt_process_callbacks();
64db4cff
PM
1348
1349 /*
1350 * Memory references from any later RCU read-side critical sections
1351 * executed by the interrupted code must be seen after any RCU
1352 * grace-period manipulations above.
1353 */
1354 smp_mb(); /* See above block comment. */
a47cd880
PM
1355
1356 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1357 rcu_needs_cpu_flush();
64db4cff
PM
1358}
1359
1360static void
1361__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1362 struct rcu_state *rsp)
1363{
1364 unsigned long flags;
1365 struct rcu_data *rdp;
1366
1367 head->func = func;
1368 head->next = NULL;
1369
1370 smp_mb(); /* Ensure RCU update seen before callback registry. */
1371
1372 /*
1373 * Opportunistically note grace-period endings and beginnings.
1374 * Note that we might see a beginning right after we see an
1375 * end, but never vice versa, since this CPU has to pass through
1376 * a quiescent state betweentimes.
1377 */
1378 local_irq_save(flags);
1379 rdp = rsp->rda[smp_processor_id()];
1380 rcu_process_gp_end(rsp, rdp);
1381 check_for_new_grace_period(rsp, rdp);
1382
1383 /* Add the callback to our list. */
1384 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1385 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1386
1387 /* Start a new grace period if one not already started. */
fc2219d4 1388 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1389 unsigned long nestflag;
1390 struct rcu_node *rnp_root = rcu_get_root(rsp);
1391
1304afb2 1392 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
64db4cff
PM
1393 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1394 }
1395
37c72e56
PM
1396 /*
1397 * Force the grace period if too many callbacks or too long waiting.
1398 * Enforce hysteresis, and don't invoke force_quiescent_state()
1399 * if some other CPU has recently done so. Also, don't bother
1400 * invoking force_quiescent_state() if the newly enqueued callback
1401 * is the only one waiting for a grace period to complete.
1402 */
1403 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
64db4cff 1404 rdp->blimit = LONG_MAX;
37c72e56
PM
1405 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1406 *rdp->nxttail[RCU_DONE_TAIL] != head)
1407 force_quiescent_state(rsp, 0);
1408 rdp->n_force_qs_snap = rsp->n_force_qs;
1409 rdp->qlen_last_fqs_check = rdp->qlen;
20133cfc 1410 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1411 force_quiescent_state(rsp, 1);
1412 local_irq_restore(flags);
1413}
1414
1415/*
d6714c22 1416 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1417 */
d6714c22 1418void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1419{
d6714c22 1420 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1421}
d6714c22 1422EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1423
1424/*
1425 * Queue an RCU for invocation after a quicker grace period.
1426 */
1427void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1428{
1429 __call_rcu(head, func, &rcu_bh_state);
1430}
1431EXPORT_SYMBOL_GPL(call_rcu_bh);
1432
6ebb237b
PM
1433/**
1434 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1435 *
1436 * Control will return to the caller some time after a full rcu-sched
1437 * grace period has elapsed, in other words after all currently executing
1438 * rcu-sched read-side critical sections have completed. These read-side
1439 * critical sections are delimited by rcu_read_lock_sched() and
1440 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1441 * local_irq_disable(), and so on may be used in place of
1442 * rcu_read_lock_sched().
1443 *
1444 * This means that all preempt_disable code sequences, including NMI and
1445 * hardware-interrupt handlers, in progress on entry will have completed
1446 * before this primitive returns. However, this does not guarantee that
1447 * softirq handlers will have completed, since in some kernels, these
1448 * handlers can run in process context, and can block.
1449 *
1450 * This primitive provides the guarantees made by the (now removed)
1451 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1452 * guarantees that rcu_read_lock() sections will have completed.
1453 * In "classic RCU", these two guarantees happen to be one and
1454 * the same, but can differ in realtime RCU implementations.
1455 */
1456void synchronize_sched(void)
1457{
1458 struct rcu_synchronize rcu;
1459
1460 if (rcu_blocking_is_gp())
1461 return;
1462
1463 init_completion(&rcu.completion);
1464 /* Will wake me after RCU finished. */
1465 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1466 /* Wait for it. */
1467 wait_for_completion(&rcu.completion);
1468}
1469EXPORT_SYMBOL_GPL(synchronize_sched);
1470
1471/**
1472 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1473 *
1474 * Control will return to the caller some time after a full rcu_bh grace
1475 * period has elapsed, in other words after all currently executing rcu_bh
1476 * read-side critical sections have completed. RCU read-side critical
1477 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1478 * and may be nested.
1479 */
1480void synchronize_rcu_bh(void)
1481{
1482 struct rcu_synchronize rcu;
1483
1484 if (rcu_blocking_is_gp())
1485 return;
1486
1487 init_completion(&rcu.completion);
1488 /* Will wake me after RCU finished. */
1489 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1490 /* Wait for it. */
1491 wait_for_completion(&rcu.completion);
1492}
1493EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1494
64db4cff
PM
1495/*
1496 * Check to see if there is any immediate RCU-related work to be done
1497 * by the current CPU, for the specified type of RCU, returning 1 if so.
1498 * The checks are in order of increasing expense: checks that can be
1499 * carried out against CPU-local state are performed first. However,
1500 * we must check for CPU stalls first, else we might not get a chance.
1501 */
1502static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1503{
2f51f988
PM
1504 struct rcu_node *rnp = rdp->mynode;
1505
64db4cff
PM
1506 rdp->n_rcu_pending++;
1507
1508 /* Check for CPU stalls, if enabled. */
1509 check_cpu_stall(rsp, rdp);
1510
1511 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840 1512 if (rdp->qs_pending) {
d25eb944
PM
1513
1514 /*
1515 * If force_quiescent_state() coming soon and this CPU
1516 * needs a quiescent state, and this is either RCU-sched
1517 * or RCU-bh, force a local reschedule.
1518 */
1519 if (!rdp->preemptable &&
1520 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1521 jiffies))
1522 set_need_resched();
7ba5c840 1523 rdp->n_rp_qs_pending++;
64db4cff 1524 return 1;
7ba5c840 1525 }
64db4cff
PM
1526
1527 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1528 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1529 rdp->n_rp_cb_ready++;
64db4cff 1530 return 1;
7ba5c840 1531 }
64db4cff
PM
1532
1533 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1534 if (cpu_needs_another_gp(rsp, rdp)) {
1535 rdp->n_rp_cpu_needs_gp++;
64db4cff 1536 return 1;
7ba5c840 1537 }
64db4cff
PM
1538
1539 /* Has another RCU grace period completed? */
2f51f988 1540 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1541 rdp->n_rp_gp_completed++;
64db4cff 1542 return 1;
7ba5c840 1543 }
64db4cff
PM
1544
1545 /* Has a new RCU grace period started? */
2f51f988 1546 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1547 rdp->n_rp_gp_started++;
64db4cff 1548 return 1;
7ba5c840 1549 }
64db4cff
PM
1550
1551 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1552 if (rcu_gp_in_progress(rsp) &&
20133cfc 1553 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1554 rdp->n_rp_need_fqs++;
64db4cff 1555 return 1;
7ba5c840 1556 }
64db4cff
PM
1557
1558 /* nothing to do */
7ba5c840 1559 rdp->n_rp_need_nothing++;
64db4cff
PM
1560 return 0;
1561}
1562
1563/*
1564 * Check to see if there is any immediate RCU-related work to be done
1565 * by the current CPU, returning 1 if so. This function is part of the
1566 * RCU implementation; it is -not- an exported member of the RCU API.
1567 */
a157229c 1568static int rcu_pending(int cpu)
64db4cff 1569{
d6714c22 1570 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1571 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1572 rcu_preempt_pending(cpu);
64db4cff
PM
1573}
1574
1575/*
1576 * Check to see if any future RCU-related work will need to be done
1577 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1578 * 1 if so.
64db4cff 1579 */
8bd93a2c 1580static int rcu_needs_cpu_quick_check(int cpu)
64db4cff
PM
1581{
1582 /* RCU callbacks either ready or pending? */
d6714c22 1583 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1584 per_cpu(rcu_bh_data, cpu).nxtlist ||
1585 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1586}
1587
d0ec774c
PM
1588static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1589static atomic_t rcu_barrier_cpu_count;
1590static DEFINE_MUTEX(rcu_barrier_mutex);
1591static struct completion rcu_barrier_completion;
d0ec774c
PM
1592
1593static void rcu_barrier_callback(struct rcu_head *notused)
1594{
1595 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1596 complete(&rcu_barrier_completion);
1597}
1598
1599/*
1600 * Called with preemption disabled, and from cross-cpu IRQ context.
1601 */
1602static void rcu_barrier_func(void *type)
1603{
1604 int cpu = smp_processor_id();
1605 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1606 void (*call_rcu_func)(struct rcu_head *head,
1607 void (*func)(struct rcu_head *head));
1608
1609 atomic_inc(&rcu_barrier_cpu_count);
1610 call_rcu_func = type;
1611 call_rcu_func(head, rcu_barrier_callback);
1612}
1613
d0ec774c
PM
1614/*
1615 * Orchestrate the specified type of RCU barrier, waiting for all
1616 * RCU callbacks of the specified type to complete.
1617 */
e74f4c45
PM
1618static void _rcu_barrier(struct rcu_state *rsp,
1619 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1620 void (*func)(struct rcu_head *head)))
1621{
1622 BUG_ON(in_interrupt());
e74f4c45 1623 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1624 mutex_lock(&rcu_barrier_mutex);
1625 init_completion(&rcu_barrier_completion);
1626 /*
1627 * Initialize rcu_barrier_cpu_count to 1, then invoke
1628 * rcu_barrier_func() on each CPU, so that each CPU also has
1629 * incremented rcu_barrier_cpu_count. Only then is it safe to
1630 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1631 * might complete its grace period before all of the other CPUs
1632 * did their increment, causing this function to return too
1633 * early.
1634 */
1635 atomic_set(&rcu_barrier_cpu_count, 1);
e74f4c45
PM
1636 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1637 rcu_adopt_orphan_cbs(rsp);
d0ec774c 1638 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
e74f4c45 1639 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
d0ec774c
PM
1640 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1641 complete(&rcu_barrier_completion);
1642 wait_for_completion(&rcu_barrier_completion);
1643 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1644}
d0ec774c
PM
1645
1646/**
1647 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1648 */
1649void rcu_barrier_bh(void)
1650{
e74f4c45 1651 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1652}
1653EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1654
1655/**
1656 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1657 */
1658void rcu_barrier_sched(void)
1659{
e74f4c45 1660 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
1661}
1662EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1663
64db4cff 1664/*
27569620 1665 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1666 */
27569620
PM
1667static void __init
1668rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1669{
1670 unsigned long flags;
1671 int i;
27569620
PM
1672 struct rcu_data *rdp = rsp->rda[cpu];
1673 struct rcu_node *rnp = rcu_get_root(rsp);
1674
1675 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1676 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
1677 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1678 rdp->nxtlist = NULL;
1679 for (i = 0; i < RCU_NEXT_SIZE; i++)
1680 rdp->nxttail[i] = &rdp->nxtlist;
1681 rdp->qlen = 0;
1682#ifdef CONFIG_NO_HZ
1683 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1684#endif /* #ifdef CONFIG_NO_HZ */
1685 rdp->cpu = cpu;
1304afb2 1686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
1687}
1688
1689/*
1690 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1691 * offline event can be happening at a given time. Note also that we
1692 * can accept some slop in the rsp->completed access due to the fact
1693 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1694 */
e4fa4c97 1695static void __cpuinit
f41d911f 1696rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1697{
1698 unsigned long flags;
64db4cff
PM
1699 unsigned long mask;
1700 struct rcu_data *rdp = rsp->rda[cpu];
1701 struct rcu_node *rnp = rcu_get_root(rsp);
1702
1703 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1704 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1705 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1706 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1707 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1708 rdp->preemptable = preemptable;
37c72e56
PM
1709 rdp->qlen_last_fqs_check = 0;
1710 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 1711 rdp->blimit = blimit;
1304afb2 1712 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1713
1714 /*
1715 * A new grace period might start here. If so, we won't be part
1716 * of it, but that is OK, as we are currently in a quiescent state.
1717 */
1718
1719 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 1720 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1721
1722 /* Add CPU to rcu_node bitmasks. */
1723 rnp = rdp->mynode;
1724 mask = rdp->grpmask;
1725 do {
1726 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 1727 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1728 rnp->qsmaskinit |= mask;
1729 mask = rnp->grpmask;
d09b62df
PM
1730 if (rnp == rdp->mynode) {
1731 rdp->gpnum = rnp->completed; /* if GP in progress... */
1732 rdp->completed = rnp->completed;
1733 rdp->passed_quiesc_completed = rnp->completed - 1;
1734 }
1304afb2 1735 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1736 rnp = rnp->parent;
1737 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1738
1304afb2 1739 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1740}
1741
1742static void __cpuinit rcu_online_cpu(int cpu)
1743{
f41d911f
PM
1744 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1745 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1746 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1747}
1748
1749/*
f41d911f 1750 * Handle CPU online/offline notification events.
64db4cff 1751 */
9f680ab4
PM
1752static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1753 unsigned long action, void *hcpu)
64db4cff
PM
1754{
1755 long cpu = (long)hcpu;
1756
1757 switch (action) {
1758 case CPU_UP_PREPARE:
1759 case CPU_UP_PREPARE_FROZEN:
1760 rcu_online_cpu(cpu);
1761 break;
d0ec774c
PM
1762 case CPU_DYING:
1763 case CPU_DYING_FROZEN:
1764 /*
e74f4c45 1765 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
d0ec774c 1766 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
e74f4c45
PM
1767 * returns, all online cpus have queued rcu_barrier_func().
1768 * The dying CPU clears its cpu_online_mask bit and
1769 * moves all of its RCU callbacks to ->orphan_cbs_list
1770 * in the context of stop_machine(), so subsequent calls
1771 * to _rcu_barrier() will adopt these callbacks and only
1772 * then queue rcu_barrier_func() on all remaining CPUs.
d0ec774c 1773 */
e74f4c45
PM
1774 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1775 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1776 rcu_preempt_send_cbs_to_orphanage();
d0ec774c 1777 break;
64db4cff
PM
1778 case CPU_DEAD:
1779 case CPU_DEAD_FROZEN:
1780 case CPU_UP_CANCELED:
1781 case CPU_UP_CANCELED_FROZEN:
1782 rcu_offline_cpu(cpu);
1783 break;
1784 default:
1785 break;
1786 }
1787 return NOTIFY_OK;
1788}
1789
bbad9379
PM
1790/*
1791 * This function is invoked towards the end of the scheduler's initialization
1792 * process. Before this is called, the idle task might contain
1793 * RCU read-side critical sections (during which time, this idle
1794 * task is booting the system). After this function is called, the
1795 * idle tasks are prohibited from containing RCU read-side critical
1796 * sections. This function also enables RCU lockdep checking.
1797 */
1798void rcu_scheduler_starting(void)
1799{
1800 WARN_ON(num_online_cpus() != 1);
1801 WARN_ON(nr_context_switches() > 0);
1802 rcu_scheduler_active = 1;
1803}
1804
64db4cff
PM
1805/*
1806 * Compute the per-level fanout, either using the exact fanout specified
1807 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1808 */
1809#ifdef CONFIG_RCU_FANOUT_EXACT
1810static void __init rcu_init_levelspread(struct rcu_state *rsp)
1811{
1812 int i;
1813
1814 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1815 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1816}
1817#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1818static void __init rcu_init_levelspread(struct rcu_state *rsp)
1819{
1820 int ccur;
1821 int cprv;
1822 int i;
1823
1824 cprv = NR_CPUS;
1825 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1826 ccur = rsp->levelcnt[i];
1827 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1828 cprv = ccur;
1829 }
1830}
1831#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1832
1833/*
1834 * Helper function for rcu_init() that initializes one rcu_state structure.
1835 */
1836static void __init rcu_init_one(struct rcu_state *rsp)
1837{
b6407e86
PM
1838 static char *buf[] = { "rcu_node_level_0",
1839 "rcu_node_level_1",
1840 "rcu_node_level_2",
1841 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
1842 int cpustride = 1;
1843 int i;
1844 int j;
1845 struct rcu_node *rnp;
1846
b6407e86
PM
1847 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1848
64db4cff
PM
1849 /* Initialize the level-tracking arrays. */
1850
1851 for (i = 1; i < NUM_RCU_LVLS; i++)
1852 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1853 rcu_init_levelspread(rsp);
1854
1855 /* Initialize the elements themselves, starting from the leaves. */
1856
1857 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1858 cpustride *= rsp->levelspread[i];
1859 rnp = rsp->level[i];
1860 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 1861 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
1862 lockdep_set_class_and_name(&rnp->lock,
1863 &rcu_node_class[i], buf[i]);
f41d911f 1864 rnp->gpnum = 0;
64db4cff
PM
1865 rnp->qsmask = 0;
1866 rnp->qsmaskinit = 0;
1867 rnp->grplo = j * cpustride;
1868 rnp->grphi = (j + 1) * cpustride - 1;
1869 if (rnp->grphi >= NR_CPUS)
1870 rnp->grphi = NR_CPUS - 1;
1871 if (i == 0) {
1872 rnp->grpnum = 0;
1873 rnp->grpmask = 0;
1874 rnp->parent = NULL;
1875 } else {
1876 rnp->grpnum = j % rsp->levelspread[i - 1];
1877 rnp->grpmask = 1UL << rnp->grpnum;
1878 rnp->parent = rsp->level[i - 1] +
1879 j / rsp->levelspread[i - 1];
1880 }
1881 rnp->level = i;
f41d911f
PM
1882 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1883 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
d9a3da06
PM
1884 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1885 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
64db4cff
PM
1886 }
1887 }
0c34029a
LJ
1888
1889 rnp = rsp->level[NUM_RCU_LVLS - 1];
1890 for_each_possible_cpu(i) {
1891 if (i > rnp->grphi)
1892 rnp++;
1893 rsp->rda[i]->mynode = rnp;
1894 rcu_boot_init_percpu_data(i, rsp);
1895 }
64db4cff
PM
1896}
1897
1898/*
f41d911f
PM
1899 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1900 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1901 * structure.
64db4cff 1902 */
65cf8f86 1903#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1904do { \
a0b6c9a7 1905 int i; \
a0b6c9a7 1906 \
64db4cff 1907 for_each_possible_cpu(i) { \
64db4cff
PM
1908 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1909 } \
0c34029a 1910 rcu_init_one(rsp); \
64db4cff
PM
1911} while (0)
1912
9f680ab4 1913void __init rcu_init(void)
64db4cff 1914{
017c4261 1915 int cpu;
9f680ab4 1916
f41d911f 1917 rcu_bootup_announce();
64db4cff
PM
1918#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1919 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1920#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
cf244dc0
PM
1921#if NUM_RCU_LVL_4 != 0
1922 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1923#endif /* #if NUM_RCU_LVL_4 != 0 */
65cf8f86
PM
1924 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1925 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1926 __rcu_init_preempt();
2e597558 1927 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
1928
1929 /*
1930 * We don't need protection against CPU-hotplug here because
1931 * this is called early in boot, before either interrupts
1932 * or the scheduler are operational.
1933 */
1934 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
1935 for_each_online_cpu(cpu)
1936 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
1937}
1938
1eba8f84 1939#include "rcutree_plugin.h"