Linux 3.0-rc1
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff
PM
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
64db4cff 53
9f77da9f
PM
54#include "rcutree.h"
55
64db4cff
PM
56/* Data structures. */
57
b668c9cf 58static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 59
4300aa64
PM
60#define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
64db4cff
PM
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
cf244dc0
PM
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 68 }, \
83f5b01f 69 .signaled = RCU_GP_IDLE, \
64db4cff
PM
70 .gpnum = -300, \
71 .completed = -300, \
4300aa64 72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
4300aa64 73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
64db4cff
PM
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
4300aa64 76 .name = #structname, \
64db4cff
PM
77}
78
d6714c22
PM
79struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 81
6258c4fb
IM
82struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 84
27f4d280
PM
85static struct rcu_state *rcu_state;
86
bbad9379
PM
87int rcu_scheduler_active __read_mostly;
88EXPORT_SYMBOL_GPL(rcu_scheduler_active);
89
a26ac245
PM
90/*
91 * Control variables for per-CPU and per-rcu_node kthreads. These
92 * handle all flavors of RCU.
93 */
94static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 95DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 96DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 97DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 98DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245
PM
99static char rcu_kthreads_spawnable;
100
0f962a5e 101static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
27f4d280 102static void invoke_rcu_cpu_kthread(void);
a26ac245
PM
103
104#define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
105
4a298656
PM
106/*
107 * Track the rcutorture test sequence number and the update version
108 * number within a given test. The rcutorture_testseq is incremented
109 * on every rcutorture module load and unload, so has an odd value
110 * when a test is running. The rcutorture_vernum is set to zero
111 * when rcutorture starts and is incremented on each rcutorture update.
112 * These variables enable correlating rcutorture output with the
113 * RCU tracing information.
114 */
115unsigned long rcutorture_testseq;
116unsigned long rcutorture_vernum;
117
fc2219d4
PM
118/*
119 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
120 * permit this function to be invoked without holding the root rcu_node
121 * structure's ->lock, but of course results can be subject to change.
122 */
123static int rcu_gp_in_progress(struct rcu_state *rsp)
124{
125 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
126}
127
b1f77b05 128/*
d6714c22 129 * Note a quiescent state. Because we do not need to know
b1f77b05 130 * how many quiescent states passed, just if there was at least
d6714c22 131 * one since the start of the grace period, this just sets a flag.
b1f77b05 132 */
d6714c22 133void rcu_sched_qs(int cpu)
b1f77b05 134{
25502a6c 135 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 136
c64ac3ce 137 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
138 barrier();
139 rdp->passed_quiesc = 1;
b1f77b05
IM
140}
141
d6714c22 142void rcu_bh_qs(int cpu)
b1f77b05 143{
25502a6c 144 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 145
c64ac3ce 146 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
147 barrier();
148 rdp->passed_quiesc = 1;
b1f77b05 149}
64db4cff 150
25502a6c
PM
151/*
152 * Note a context switch. This is a quiescent state for RCU-sched,
153 * and requires special handling for preemptible RCU.
154 */
155void rcu_note_context_switch(int cpu)
156{
157 rcu_sched_qs(cpu);
158 rcu_preempt_note_context_switch(cpu);
159}
29ce8310 160EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 161
64db4cff 162#ifdef CONFIG_NO_HZ
90a4d2c0
PM
163DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
164 .dynticks_nesting = 1,
23b5c8fa 165 .dynticks = ATOMIC_INIT(1),
90a4d2c0 166};
64db4cff
PM
167#endif /* #ifdef CONFIG_NO_HZ */
168
169static int blimit = 10; /* Maximum callbacks per softirq. */
170static int qhimark = 10000; /* If this many pending, ignore blimit. */
171static int qlowmark = 100; /* Once only this many pending, use blimit. */
172
3d76c082
PM
173module_param(blimit, int, 0);
174module_param(qhimark, int, 0);
175module_param(qlowmark, int, 0);
176
a00e0d71 177int rcu_cpu_stall_suppress __read_mostly;
f2e0dd70 178module_param(rcu_cpu_stall_suppress, int, 0644);
742734ee 179
64db4cff 180static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 181static int rcu_pending(int cpu);
64db4cff
PM
182
183/*
d6714c22 184 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 185 */
d6714c22 186long rcu_batches_completed_sched(void)
64db4cff 187{
d6714c22 188 return rcu_sched_state.completed;
64db4cff 189}
d6714c22 190EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
191
192/*
193 * Return the number of RCU BH batches processed thus far for debug & stats.
194 */
195long rcu_batches_completed_bh(void)
196{
197 return rcu_bh_state.completed;
198}
199EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
200
bf66f18e
PM
201/*
202 * Force a quiescent state for RCU BH.
203 */
204void rcu_bh_force_quiescent_state(void)
205{
206 force_quiescent_state(&rcu_bh_state, 0);
207}
208EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
209
4a298656
PM
210/*
211 * Record the number of times rcutorture tests have been initiated and
212 * terminated. This information allows the debugfs tracing stats to be
213 * correlated to the rcutorture messages, even when the rcutorture module
214 * is being repeatedly loaded and unloaded. In other words, we cannot
215 * store this state in rcutorture itself.
216 */
217void rcutorture_record_test_transition(void)
218{
219 rcutorture_testseq++;
220 rcutorture_vernum = 0;
221}
222EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
223
224/*
225 * Record the number of writer passes through the current rcutorture test.
226 * This is also used to correlate debugfs tracing stats with the rcutorture
227 * messages.
228 */
229void rcutorture_record_progress(unsigned long vernum)
230{
231 rcutorture_vernum++;
232}
233EXPORT_SYMBOL_GPL(rcutorture_record_progress);
234
bf66f18e
PM
235/*
236 * Force a quiescent state for RCU-sched.
237 */
238void rcu_sched_force_quiescent_state(void)
239{
240 force_quiescent_state(&rcu_sched_state, 0);
241}
242EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
243
64db4cff
PM
244/*
245 * Does the CPU have callbacks ready to be invoked?
246 */
247static int
248cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
249{
250 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
251}
252
253/*
254 * Does the current CPU require a yet-as-unscheduled grace period?
255 */
256static int
257cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
258{
fc2219d4 259 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
260}
261
262/*
263 * Return the root node of the specified rcu_state structure.
264 */
265static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
266{
267 return &rsp->node[0];
268}
269
270#ifdef CONFIG_SMP
271
272/*
273 * If the specified CPU is offline, tell the caller that it is in
274 * a quiescent state. Otherwise, whack it with a reschedule IPI.
275 * Grace periods can end up waiting on an offline CPU when that
276 * CPU is in the process of coming online -- it will be added to the
277 * rcu_node bitmasks before it actually makes it online. The same thing
278 * can happen while a CPU is in the process of coming online. Because this
279 * race is quite rare, we check for it after detecting that the grace
280 * period has been delayed rather than checking each and every CPU
281 * each and every time we start a new grace period.
282 */
283static int rcu_implicit_offline_qs(struct rcu_data *rdp)
284{
285 /*
286 * If the CPU is offline, it is in a quiescent state. We can
287 * trust its state not to change because interrupts are disabled.
288 */
289 if (cpu_is_offline(rdp->cpu)) {
290 rdp->offline_fqs++;
291 return 1;
292 }
293
6cc68793
PM
294 /* If preemptible RCU, no point in sending reschedule IPI. */
295 if (rdp->preemptible)
f41d911f
PM
296 return 0;
297
64db4cff
PM
298 /* The CPU is online, so send it a reschedule IPI. */
299 if (rdp->cpu != smp_processor_id())
300 smp_send_reschedule(rdp->cpu);
301 else
302 set_need_resched();
303 rdp->resched_ipi++;
304 return 0;
305}
306
307#endif /* #ifdef CONFIG_SMP */
308
309#ifdef CONFIG_NO_HZ
64db4cff
PM
310
311/**
312 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
313 *
314 * Enter nohz mode, in other words, -leave- the mode in which RCU
315 * read-side critical sections can occur. (Though RCU read-side
316 * critical sections can occur in irq handlers in nohz mode, a possibility
317 * handled by rcu_irq_enter() and rcu_irq_exit()).
318 */
319void rcu_enter_nohz(void)
320{
321 unsigned long flags;
322 struct rcu_dynticks *rdtp;
323
64db4cff
PM
324 local_irq_save(flags);
325 rdtp = &__get_cpu_var(rcu_dynticks);
23b5c8fa
PM
326 if (--rdtp->dynticks_nesting) {
327 local_irq_restore(flags);
328 return;
329 }
330 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
331 smp_mb__before_atomic_inc(); /* See above. */
332 atomic_inc(&rdtp->dynticks);
333 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
334 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff 335 local_irq_restore(flags);
23b5c8fa
PM
336
337 /* If the interrupt queued a callback, get out of dyntick mode. */
338 if (in_irq() &&
339 (__get_cpu_var(rcu_sched_data).nxtlist ||
340 __get_cpu_var(rcu_bh_data).nxtlist ||
341 rcu_preempt_needs_cpu(smp_processor_id())))
342 set_need_resched();
64db4cff
PM
343}
344
345/*
346 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
347 *
348 * Exit nohz mode, in other words, -enter- the mode in which RCU
349 * read-side critical sections normally occur.
350 */
351void rcu_exit_nohz(void)
352{
353 unsigned long flags;
354 struct rcu_dynticks *rdtp;
355
356 local_irq_save(flags);
357 rdtp = &__get_cpu_var(rcu_dynticks);
23b5c8fa
PM
358 if (rdtp->dynticks_nesting++) {
359 local_irq_restore(flags);
360 return;
361 }
362 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
363 atomic_inc(&rdtp->dynticks);
364 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
365 smp_mb__after_atomic_inc(); /* See above. */
366 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff 367 local_irq_restore(flags);
64db4cff
PM
368}
369
370/**
371 * rcu_nmi_enter - inform RCU of entry to NMI context
372 *
373 * If the CPU was idle with dynamic ticks active, and there is no
374 * irq handler running, this updates rdtp->dynticks_nmi to let the
375 * RCU grace-period handling know that the CPU is active.
376 */
377void rcu_nmi_enter(void)
378{
379 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
380
23b5c8fa
PM
381 if (rdtp->dynticks_nmi_nesting == 0 &&
382 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 383 return;
23b5c8fa
PM
384 rdtp->dynticks_nmi_nesting++;
385 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
386 atomic_inc(&rdtp->dynticks);
387 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
388 smp_mb__after_atomic_inc(); /* See above. */
389 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
390}
391
392/**
393 * rcu_nmi_exit - inform RCU of exit from NMI context
394 *
395 * If the CPU was idle with dynamic ticks active, and there is no
396 * irq handler running, this updates rdtp->dynticks_nmi to let the
397 * RCU grace-period handling know that the CPU is no longer active.
398 */
399void rcu_nmi_exit(void)
400{
401 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
402
23b5c8fa
PM
403 if (rdtp->dynticks_nmi_nesting == 0 ||
404 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 405 return;
23b5c8fa
PM
406 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
407 smp_mb__before_atomic_inc(); /* See above. */
408 atomic_inc(&rdtp->dynticks);
409 smp_mb__after_atomic_inc(); /* Force delay to next write. */
410 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
411}
412
413/**
414 * rcu_irq_enter - inform RCU of entry to hard irq context
415 *
416 * If the CPU was idle with dynamic ticks active, this updates the
417 * rdtp->dynticks to let the RCU handling know that the CPU is active.
418 */
419void rcu_irq_enter(void)
420{
23b5c8fa 421 rcu_exit_nohz();
64db4cff
PM
422}
423
424/**
425 * rcu_irq_exit - inform RCU of exit from hard irq context
426 *
427 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
428 * to put let the RCU handling be aware that the CPU is going back to idle
429 * with no ticks.
430 */
431void rcu_irq_exit(void)
432{
23b5c8fa 433 rcu_enter_nohz();
64db4cff
PM
434}
435
64db4cff
PM
436#ifdef CONFIG_SMP
437
64db4cff
PM
438/*
439 * Snapshot the specified CPU's dynticks counter so that we can later
440 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 441 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
442 */
443static int dyntick_save_progress_counter(struct rcu_data *rdp)
444{
23b5c8fa
PM
445 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
446 return 0;
64db4cff
PM
447}
448
449/*
450 * Return true if the specified CPU has passed through a quiescent
451 * state by virtue of being in or having passed through an dynticks
452 * idle state since the last call to dyntick_save_progress_counter()
453 * for this same CPU.
454 */
455static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
456{
23b5c8fa
PM
457 unsigned long curr;
458 unsigned long snap;
64db4cff 459
23b5c8fa
PM
460 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
461 snap = (unsigned long)rdp->dynticks_snap;
64db4cff
PM
462
463 /*
464 * If the CPU passed through or entered a dynticks idle phase with
465 * no active irq/NMI handlers, then we can safely pretend that the CPU
466 * already acknowledged the request to pass through a quiescent
467 * state. Either way, that CPU cannot possibly be in an RCU
468 * read-side critical section that started before the beginning
469 * of the current RCU grace period.
470 */
23b5c8fa 471 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
64db4cff
PM
472 rdp->dynticks_fqs++;
473 return 1;
474 }
475
476 /* Go check for the CPU being offline. */
477 return rcu_implicit_offline_qs(rdp);
478}
479
480#endif /* #ifdef CONFIG_SMP */
481
482#else /* #ifdef CONFIG_NO_HZ */
483
64db4cff
PM
484#ifdef CONFIG_SMP
485
64db4cff
PM
486static int dyntick_save_progress_counter(struct rcu_data *rdp)
487{
488 return 0;
489}
490
491static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
492{
493 return rcu_implicit_offline_qs(rdp);
494}
495
496#endif /* #ifdef CONFIG_SMP */
497
498#endif /* #else #ifdef CONFIG_NO_HZ */
499
742734ee 500int rcu_cpu_stall_suppress __read_mostly;
c68de209 501
64db4cff
PM
502static void record_gp_stall_check_time(struct rcu_state *rsp)
503{
504 rsp->gp_start = jiffies;
505 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
506}
507
508static void print_other_cpu_stall(struct rcu_state *rsp)
509{
510 int cpu;
511 long delta;
512 unsigned long flags;
513 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
514
515 /* Only let one CPU complain about others per time interval. */
516
1304afb2 517 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 518 delta = jiffies - rsp->jiffies_stall;
fc2219d4 519 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 520 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
521 return;
522 }
523 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
524
525 /*
526 * Now rat on any tasks that got kicked up to the root rcu_node
527 * due to CPU offlining.
528 */
529 rcu_print_task_stall(rnp);
1304afb2 530 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 531
8cdd32a9
PM
532 /*
533 * OK, time to rat on our buddy...
534 * See Documentation/RCU/stallwarn.txt for info on how to debug
535 * RCU CPU stall warnings.
536 */
4300aa64
PM
537 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
538 rsp->name);
a0b6c9a7 539 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 540 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 541 rcu_print_task_stall(rnp);
3acd9eb3 542 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 543 if (rnp->qsmask == 0)
64db4cff 544 continue;
a0b6c9a7
PM
545 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
546 if (rnp->qsmask & (1UL << cpu))
547 printk(" %d", rnp->grplo + cpu);
64db4cff 548 }
4300aa64 549 printk("} (detected by %d, t=%ld jiffies)\n",
64db4cff 550 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
551 trigger_all_cpu_backtrace();
552
1ed509a2
PM
553 /* If so configured, complain about tasks blocking the grace period. */
554
555 rcu_print_detail_task_stall(rsp);
556
64db4cff
PM
557 force_quiescent_state(rsp, 0); /* Kick them all. */
558}
559
560static void print_cpu_stall(struct rcu_state *rsp)
561{
562 unsigned long flags;
563 struct rcu_node *rnp = rcu_get_root(rsp);
564
8cdd32a9
PM
565 /*
566 * OK, time to rat on ourselves...
567 * See Documentation/RCU/stallwarn.txt for info on how to debug
568 * RCU CPU stall warnings.
569 */
4300aa64
PM
570 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
571 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
572 trigger_all_cpu_backtrace();
573
1304afb2 574 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 575 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
576 rsp->jiffies_stall =
577 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 578 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 579
64db4cff
PM
580 set_need_resched(); /* kick ourselves to get things going. */
581}
582
583static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
584{
bad6e139
PM
585 unsigned long j;
586 unsigned long js;
64db4cff
PM
587 struct rcu_node *rnp;
588
742734ee 589 if (rcu_cpu_stall_suppress)
c68de209 590 return;
bad6e139
PM
591 j = ACCESS_ONCE(jiffies);
592 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 593 rnp = rdp->mynode;
bad6e139 594 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
595
596 /* We haven't checked in, so go dump stack. */
597 print_cpu_stall(rsp);
598
bad6e139
PM
599 } else if (rcu_gp_in_progress(rsp) &&
600 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 601
bad6e139 602 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
603 print_other_cpu_stall(rsp);
604 }
605}
606
c68de209
PM
607static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
608{
742734ee 609 rcu_cpu_stall_suppress = 1;
c68de209
PM
610 return NOTIFY_DONE;
611}
612
53d84e00
PM
613/**
614 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
615 *
616 * Set the stall-warning timeout way off into the future, thus preventing
617 * any RCU CPU stall-warning messages from appearing in the current set of
618 * RCU grace periods.
619 *
620 * The caller must disable hard irqs.
621 */
622void rcu_cpu_stall_reset(void)
623{
624 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
625 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
626 rcu_preempt_stall_reset();
627}
628
c68de209
PM
629static struct notifier_block rcu_panic_block = {
630 .notifier_call = rcu_panic,
631};
632
633static void __init check_cpu_stall_init(void)
634{
635 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
636}
637
64db4cff
PM
638/*
639 * Update CPU-local rcu_data state to record the newly noticed grace period.
640 * This is used both when we started the grace period and when we notice
9160306e
PM
641 * that someone else started the grace period. The caller must hold the
642 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
643 * and must have irqs disabled.
64db4cff 644 */
9160306e
PM
645static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
646{
647 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
648 /*
649 * If the current grace period is waiting for this CPU,
650 * set up to detect a quiescent state, otherwise don't
651 * go looking for one.
652 */
9160306e 653 rdp->gpnum = rnp->gpnum;
121dfc4b
PM
654 if (rnp->qsmask & rdp->grpmask) {
655 rdp->qs_pending = 1;
656 rdp->passed_quiesc = 0;
657 } else
658 rdp->qs_pending = 0;
9160306e
PM
659 }
660}
661
64db4cff
PM
662static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
663{
9160306e
PM
664 unsigned long flags;
665 struct rcu_node *rnp;
666
667 local_irq_save(flags);
668 rnp = rdp->mynode;
669 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 670 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
671 local_irq_restore(flags);
672 return;
673 }
674 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 675 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
676}
677
678/*
679 * Did someone else start a new RCU grace period start since we last
680 * checked? Update local state appropriately if so. Must be called
681 * on the CPU corresponding to rdp.
682 */
683static int
684check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
685{
686 unsigned long flags;
687 int ret = 0;
688
689 local_irq_save(flags);
690 if (rdp->gpnum != rsp->gpnum) {
691 note_new_gpnum(rsp, rdp);
692 ret = 1;
693 }
694 local_irq_restore(flags);
695 return ret;
696}
697
d09b62df
PM
698/*
699 * Advance this CPU's callbacks, but only if the current grace period
700 * has ended. This may be called only from the CPU to whom the rdp
701 * belongs. In addition, the corresponding leaf rcu_node structure's
702 * ->lock must be held by the caller, with irqs disabled.
703 */
704static void
705__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
706{
707 /* Did another grace period end? */
708 if (rdp->completed != rnp->completed) {
709
710 /* Advance callbacks. No harm if list empty. */
711 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
712 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
713 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
714
715 /* Remember that we saw this grace-period completion. */
716 rdp->completed = rnp->completed;
20377f32 717
5ff8e6f0
FW
718 /*
719 * If we were in an extended quiescent state, we may have
121dfc4b 720 * missed some grace periods that others CPUs handled on
5ff8e6f0 721 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
722 * spurious new grace periods. If another grace period
723 * has started, then rnp->gpnum will have advanced, so
724 * we will detect this later on.
5ff8e6f0 725 */
121dfc4b 726 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
727 rdp->gpnum = rdp->completed;
728
20377f32 729 /*
121dfc4b
PM
730 * If RCU does not need a quiescent state from this CPU,
731 * then make sure that this CPU doesn't go looking for one.
20377f32 732 */
121dfc4b 733 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 734 rdp->qs_pending = 0;
d09b62df
PM
735 }
736}
737
738/*
739 * Advance this CPU's callbacks, but only if the current grace period
740 * has ended. This may be called only from the CPU to whom the rdp
741 * belongs.
742 */
743static void
744rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
745{
746 unsigned long flags;
747 struct rcu_node *rnp;
748
749 local_irq_save(flags);
750 rnp = rdp->mynode;
751 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 752 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
753 local_irq_restore(flags);
754 return;
755 }
756 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 757 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
758}
759
760/*
761 * Do per-CPU grace-period initialization for running CPU. The caller
762 * must hold the lock of the leaf rcu_node structure corresponding to
763 * this CPU.
764 */
765static void
766rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
767{
768 /* Prior grace period ended, so advance callbacks for current CPU. */
769 __rcu_process_gp_end(rsp, rnp, rdp);
770
771 /*
772 * Because this CPU just now started the new grace period, we know
773 * that all of its callbacks will be covered by this upcoming grace
774 * period, even the ones that were registered arbitrarily recently.
775 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
776 *
777 * Other CPUs cannot be sure exactly when the grace period started.
778 * Therefore, their recently registered callbacks must pass through
779 * an additional RCU_NEXT_READY stage, so that they will be handled
780 * by the next RCU grace period.
781 */
782 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
783 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
784
785 /* Set state so that this CPU will detect the next quiescent state. */
786 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
787}
788
64db4cff
PM
789/*
790 * Start a new RCU grace period if warranted, re-initializing the hierarchy
791 * in preparation for detecting the next grace period. The caller must hold
792 * the root node's ->lock, which is released before return. Hard irqs must
793 * be disabled.
794 */
795static void
796rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
797 __releases(rcu_get_root(rsp)->lock)
798{
394f99a9 799 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 800 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 801
07079d53 802 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
46a1e34e
PM
803 if (cpu_needs_another_gp(rsp, rdp))
804 rsp->fqs_need_gp = 1;
b32e9eb6 805 if (rnp->completed == rsp->completed) {
1304afb2 806 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b32e9eb6
PM
807 return;
808 }
1304afb2 809 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
810
811 /*
812 * Propagate new ->completed value to rcu_node structures
813 * so that other CPUs don't have to wait until the start
814 * of the next grace period to process their callbacks.
815 */
816 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 817 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b32e9eb6 818 rnp->completed = rsp->completed;
1304afb2 819 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
820 }
821 local_irq_restore(flags);
64db4cff
PM
822 return;
823 }
824
825 /* Advance to a new grace period and initialize state. */
826 rsp->gpnum++;
c3422bea 827 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
828 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
829 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 830 record_gp_stall_check_time(rsp);
64db4cff 831
64db4cff
PM
832 /* Special-case the common single-level case. */
833 if (NUM_RCU_NODES == 1) {
b0e165c0 834 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 835 rnp->qsmask = rnp->qsmaskinit;
de078d87 836 rnp->gpnum = rsp->gpnum;
d09b62df 837 rnp->completed = rsp->completed;
c12172c0 838 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 839 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 840 rcu_preempt_boost_start_gp(rnp);
1304afb2 841 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
842 return;
843 }
844
1304afb2 845 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff
PM
846
847
848 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 849 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
850
851 /*
b835db1f
PM
852 * Set the quiescent-state-needed bits in all the rcu_node
853 * structures for all currently online CPUs in breadth-first
854 * order, starting from the root rcu_node structure. This
855 * operation relies on the layout of the hierarchy within the
856 * rsp->node[] array. Note that other CPUs will access only
857 * the leaves of the hierarchy, which still indicate that no
858 * grace period is in progress, at least until the corresponding
859 * leaf node has been initialized. In addition, we have excluded
860 * CPU-hotplug operations.
64db4cff
PM
861 *
862 * Note that the grace period cannot complete until we finish
863 * the initialization process, as there will be at least one
864 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
865 * one corresponding to this CPU, due to the fact that we have
866 * irqs disabled.
64db4cff 867 */
a0b6c9a7 868 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 869 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 870 rcu_preempt_check_blocked_tasks(rnp);
49e29126 871 rnp->qsmask = rnp->qsmaskinit;
de078d87 872 rnp->gpnum = rsp->gpnum;
d09b62df
PM
873 rnp->completed = rsp->completed;
874 if (rnp == rdp->mynode)
875 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 876 rcu_preempt_boost_start_gp(rnp);
1304afb2 877 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
878 }
879
83f5b01f 880 rnp = rcu_get_root(rsp);
1304afb2 881 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 882 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
883 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
884 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
885}
886
f41d911f 887/*
d3f6bad3
PM
888 * Report a full set of quiescent states to the specified rcu_state
889 * data structure. This involves cleaning up after the prior grace
890 * period and letting rcu_start_gp() start up the next grace period
891 * if one is needed. Note that the caller must hold rnp->lock, as
892 * required by rcu_start_gp(), which will release it.
f41d911f 893 */
d3f6bad3 894static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 895 __releases(rcu_get_root(rsp)->lock)
f41d911f 896{
15ba0ba8
PM
897 unsigned long gp_duration;
898
fc2219d4 899 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
900
901 /*
902 * Ensure that all grace-period and pre-grace-period activity
903 * is seen before the assignment to rsp->completed.
904 */
905 smp_mb(); /* See above block comment. */
15ba0ba8
PM
906 gp_duration = jiffies - rsp->gp_start;
907 if (gp_duration > rsp->gp_max)
908 rsp->gp_max = gp_duration;
f41d911f 909 rsp->completed = rsp->gpnum;
83f5b01f 910 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
911 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
912}
913
64db4cff 914/*
d3f6bad3
PM
915 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
916 * Allows quiescent states for a group of CPUs to be reported at one go
917 * to the specified rcu_node structure, though all the CPUs in the group
918 * must be represented by the same rcu_node structure (which need not be
919 * a leaf rcu_node structure, though it often will be). That structure's
920 * lock must be held upon entry, and it is released before return.
64db4cff
PM
921 */
922static void
d3f6bad3
PM
923rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
924 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
925 __releases(rnp->lock)
926{
28ecd580
PM
927 struct rcu_node *rnp_c;
928
64db4cff
PM
929 /* Walk up the rcu_node hierarchy. */
930 for (;;) {
931 if (!(rnp->qsmask & mask)) {
932
933 /* Our bit has already been cleared, so done. */
1304afb2 934 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
935 return;
936 }
937 rnp->qsmask &= ~mask;
27f4d280 938 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
939
940 /* Other bits still set at this level, so done. */
1304afb2 941 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
942 return;
943 }
944 mask = rnp->grpmask;
945 if (rnp->parent == NULL) {
946
947 /* No more levels. Exit loop holding root lock. */
948
949 break;
950 }
1304afb2 951 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 952 rnp_c = rnp;
64db4cff 953 rnp = rnp->parent;
1304afb2 954 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 955 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
956 }
957
958 /*
959 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 960 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 961 * to clean up and start the next grace period if one is needed.
64db4cff 962 */
d3f6bad3 963 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
964}
965
966/*
d3f6bad3
PM
967 * Record a quiescent state for the specified CPU to that CPU's rcu_data
968 * structure. This must be either called from the specified CPU, or
969 * called when the specified CPU is known to be offline (and when it is
970 * also known that no other CPU is concurrently trying to help the offline
971 * CPU). The lastcomp argument is used to make sure we are still in the
972 * grace period of interest. We don't want to end the current grace period
973 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
974 */
975static void
d3f6bad3 976rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
64db4cff
PM
977{
978 unsigned long flags;
979 unsigned long mask;
980 struct rcu_node *rnp;
981
982 rnp = rdp->mynode;
1304afb2 983 raw_spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 984 if (lastcomp != rnp->completed) {
64db4cff
PM
985
986 /*
987 * Someone beat us to it for this grace period, so leave.
988 * The race with GP start is resolved by the fact that we
989 * hold the leaf rcu_node lock, so that the per-CPU bits
990 * cannot yet be initialized -- so we would simply find our
d3f6bad3
PM
991 * CPU's bit already cleared in rcu_report_qs_rnp() if this
992 * race occurred.
64db4cff
PM
993 */
994 rdp->passed_quiesc = 0; /* try again later! */
1304afb2 995 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
996 return;
997 }
998 mask = rdp->grpmask;
999 if ((rnp->qsmask & mask) == 0) {
1304afb2 1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1001 } else {
1002 rdp->qs_pending = 0;
1003
1004 /*
1005 * This GP can't end until cpu checks in, so all of our
1006 * callbacks can be processed during the next GP.
1007 */
64db4cff
PM
1008 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1009
d3f6bad3 1010 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1011 }
1012}
1013
1014/*
1015 * Check to see if there is a new grace period of which this CPU
1016 * is not yet aware, and if so, set up local rcu_data state for it.
1017 * Otherwise, see if this CPU has just passed through its first
1018 * quiescent state for this grace period, and record that fact if so.
1019 */
1020static void
1021rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1022{
1023 /* If there is now a new grace period, record and return. */
1024 if (check_for_new_grace_period(rsp, rdp))
1025 return;
1026
1027 /*
1028 * Does this CPU still need to do its part for current grace period?
1029 * If no, return and let the other CPUs do their part as well.
1030 */
1031 if (!rdp->qs_pending)
1032 return;
1033
1034 /*
1035 * Was there a quiescent state since the beginning of the grace
1036 * period? If no, then exit and wait for the next call.
1037 */
1038 if (!rdp->passed_quiesc)
1039 return;
1040
d3f6bad3
PM
1041 /*
1042 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1043 * judge of that).
1044 */
1045 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
64db4cff
PM
1046}
1047
1048#ifdef CONFIG_HOTPLUG_CPU
1049
e74f4c45 1050/*
29494be7
LJ
1051 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1052 * Synchronization is not required because this function executes
1053 * in stop_machine() context.
e74f4c45 1054 */
29494be7 1055static void rcu_send_cbs_to_online(struct rcu_state *rsp)
e74f4c45
PM
1056{
1057 int i;
29494be7
LJ
1058 /* current DYING CPU is cleared in the cpu_online_mask */
1059 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1060 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1061 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
e74f4c45
PM
1062
1063 if (rdp->nxtlist == NULL)
1064 return; /* irqs disabled, so comparison is stable. */
29494be7
LJ
1065
1066 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1067 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1068 receive_rdp->qlen += rdp->qlen;
1069 receive_rdp->n_cbs_adopted += rdp->qlen;
1070 rdp->n_cbs_orphaned += rdp->qlen;
1071
e74f4c45
PM
1072 rdp->nxtlist = NULL;
1073 for (i = 0; i < RCU_NEXT_SIZE; i++)
1074 rdp->nxttail[i] = &rdp->nxtlist;
e74f4c45 1075 rdp->qlen = 0;
e74f4c45
PM
1076}
1077
64db4cff
PM
1078/*
1079 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1080 * and move all callbacks from the outgoing CPU to the current one.
a26ac245
PM
1081 * There can only be one CPU hotplug operation at a time, so no other
1082 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff
PM
1083 */
1084static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1085{
64db4cff 1086 unsigned long flags;
64db4cff 1087 unsigned long mask;
d9a3da06 1088 int need_report = 0;
394f99a9 1089 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff 1090 struct rcu_node *rnp;
a26ac245
PM
1091 struct task_struct *t;
1092
1093 /* Stop the CPU's kthread. */
1094 t = per_cpu(rcu_cpu_kthread_task, cpu);
1095 if (t != NULL) {
1096 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1097 kthread_stop(t);
1098 }
64db4cff
PM
1099
1100 /* Exclude any attempts to start a new grace period. */
1304afb2 1101 raw_spin_lock_irqsave(&rsp->onofflock, flags);
64db4cff
PM
1102
1103 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 1104 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
1105 mask = rdp->grpmask; /* rnp->grplo is constant. */
1106 do {
1304afb2 1107 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1108 rnp->qsmaskinit &= ~mask;
1109 if (rnp->qsmaskinit != 0) {
b668c9cf 1110 if (rnp != rdp->mynode)
1304afb2 1111 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1112 break;
1113 }
b668c9cf 1114 if (rnp == rdp->mynode)
d9a3da06 1115 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
b668c9cf 1116 else
1304afb2 1117 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 1118 mask = rnp->grpmask;
64db4cff
PM
1119 rnp = rnp->parent;
1120 } while (rnp != NULL);
64db4cff 1121
b668c9cf
PM
1122 /*
1123 * We still hold the leaf rcu_node structure lock here, and
1124 * irqs are still disabled. The reason for this subterfuge is
d3f6bad3
PM
1125 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1126 * held leads to deadlock.
b668c9cf 1127 */
1304afb2 1128 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
b668c9cf 1129 rnp = rdp->mynode;
d9a3da06 1130 if (need_report & RCU_OFL_TASKS_NORM_GP)
d3f6bad3 1131 rcu_report_unblock_qs_rnp(rnp, flags);
b668c9cf 1132 else
1304afb2 1133 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
1134 if (need_report & RCU_OFL_TASKS_EXP_GP)
1135 rcu_report_exp_rnp(rsp, rnp);
1217ed1b 1136 rcu_node_kthread_setaffinity(rnp, -1);
64db4cff
PM
1137}
1138
1139/*
1140 * Remove the specified CPU from the RCU hierarchy and move any pending
1141 * callbacks that it might have to the current CPU. This code assumes
1142 * that at least one CPU in the system will remain running at all times.
1143 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1144 */
1145static void rcu_offline_cpu(int cpu)
1146{
d6714c22 1147 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 1148 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 1149 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
1150}
1151
1152#else /* #ifdef CONFIG_HOTPLUG_CPU */
1153
29494be7 1154static void rcu_send_cbs_to_online(struct rcu_state *rsp)
e74f4c45
PM
1155{
1156}
1157
64db4cff
PM
1158static void rcu_offline_cpu(int cpu)
1159{
1160}
1161
1162#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1163
1164/*
1165 * Invoke any RCU callbacks that have made it to the end of their grace
1166 * period. Thottle as specified by rdp->blimit.
1167 */
37c72e56 1168static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1169{
1170 unsigned long flags;
1171 struct rcu_head *next, *list, **tail;
1172 int count;
1173
1174 /* If no callbacks are ready, just return.*/
1175 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1176 return;
1177
1178 /*
1179 * Extract the list of ready callbacks, disabling to prevent
1180 * races with call_rcu() from interrupt handlers.
1181 */
1182 local_irq_save(flags);
1183 list = rdp->nxtlist;
1184 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1185 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1186 tail = rdp->nxttail[RCU_DONE_TAIL];
1187 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1188 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1189 rdp->nxttail[count] = &rdp->nxtlist;
1190 local_irq_restore(flags);
1191
1192 /* Invoke callbacks. */
1193 count = 0;
1194 while (list) {
1195 next = list->next;
1196 prefetch(next);
551d55a9 1197 debug_rcu_head_unqueue(list);
9ab1544e 1198 __rcu_reclaim(list);
64db4cff
PM
1199 list = next;
1200 if (++count >= rdp->blimit)
1201 break;
1202 }
1203
1204 local_irq_save(flags);
1205
1206 /* Update count, and requeue any remaining callbacks. */
1207 rdp->qlen -= count;
269dcc1c 1208 rdp->n_cbs_invoked += count;
64db4cff
PM
1209 if (list != NULL) {
1210 *tail = rdp->nxtlist;
1211 rdp->nxtlist = list;
1212 for (count = 0; count < RCU_NEXT_SIZE; count++)
1213 if (&rdp->nxtlist == rdp->nxttail[count])
1214 rdp->nxttail[count] = tail;
1215 else
1216 break;
1217 }
1218
1219 /* Reinstate batch limit if we have worked down the excess. */
1220 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1221 rdp->blimit = blimit;
1222
37c72e56
PM
1223 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1224 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1225 rdp->qlen_last_fqs_check = 0;
1226 rdp->n_force_qs_snap = rsp->n_force_qs;
1227 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1228 rdp->qlen_last_fqs_check = rdp->qlen;
1229
64db4cff
PM
1230 local_irq_restore(flags);
1231
1232 /* Re-raise the RCU softirq if there are callbacks remaining. */
1233 if (cpu_has_callbacks_ready_to_invoke(rdp))
27f4d280 1234 invoke_rcu_cpu_kthread();
64db4cff
PM
1235}
1236
1237/*
1238 * Check to see if this CPU is in a non-context-switch quiescent state
1239 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1240 * Also schedule the RCU softirq handler.
1241 *
1242 * This function must be called with hardirqs disabled. It is normally
1243 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1244 * false, there is no point in invoking rcu_check_callbacks().
1245 */
1246void rcu_check_callbacks(int cpu, int user)
1247{
1248 if (user ||
a6826048
PM
1249 (idle_cpu(cpu) && rcu_scheduler_active &&
1250 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1251
1252 /*
1253 * Get here if this CPU took its interrupt from user
1254 * mode or from the idle loop, and if this is not a
1255 * nested interrupt. In this case, the CPU is in
d6714c22 1256 * a quiescent state, so note it.
64db4cff
PM
1257 *
1258 * No memory barrier is required here because both
d6714c22
PM
1259 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1260 * variables that other CPUs neither access nor modify,
1261 * at least not while the corresponding CPU is online.
64db4cff
PM
1262 */
1263
d6714c22
PM
1264 rcu_sched_qs(cpu);
1265 rcu_bh_qs(cpu);
64db4cff
PM
1266
1267 } else if (!in_softirq()) {
1268
1269 /*
1270 * Get here if this CPU did not take its interrupt from
1271 * softirq, in other words, if it is not interrupting
1272 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1273 * critical section, so note it.
64db4cff
PM
1274 */
1275
d6714c22 1276 rcu_bh_qs(cpu);
64db4cff 1277 }
f41d911f 1278 rcu_preempt_check_callbacks(cpu);
d21670ac 1279 if (rcu_pending(cpu))
27f4d280 1280 invoke_rcu_cpu_kthread();
64db4cff
PM
1281}
1282
1283#ifdef CONFIG_SMP
1284
1285/*
1286 * Scan the leaf rcu_node structures, processing dyntick state for any that
1287 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1288 * Also initiate boosting for any threads blocked on the root rcu_node.
1289 *
ee47eb9f 1290 * The caller must have suppressed start of new grace periods.
64db4cff 1291 */
45f014c5 1292static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1293{
1294 unsigned long bit;
1295 int cpu;
1296 unsigned long flags;
1297 unsigned long mask;
a0b6c9a7 1298 struct rcu_node *rnp;
64db4cff 1299
a0b6c9a7 1300 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1301 mask = 0;
1304afb2 1302 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1303 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1304 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1305 return;
64db4cff 1306 }
a0b6c9a7 1307 if (rnp->qsmask == 0) {
1217ed1b 1308 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1309 continue;
1310 }
a0b6c9a7 1311 cpu = rnp->grplo;
64db4cff 1312 bit = 1;
a0b6c9a7 1313 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1314 if ((rnp->qsmask & bit) != 0 &&
1315 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1316 mask |= bit;
1317 }
45f014c5 1318 if (mask != 0) {
64db4cff 1319
d3f6bad3
PM
1320 /* rcu_report_qs_rnp() releases rnp->lock. */
1321 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1322 continue;
1323 }
1304afb2 1324 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1325 }
27f4d280 1326 rnp = rcu_get_root(rsp);
1217ed1b
PM
1327 if (rnp->qsmask == 0) {
1328 raw_spin_lock_irqsave(&rnp->lock, flags);
1329 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1330 }
64db4cff
PM
1331}
1332
1333/*
1334 * Force quiescent states on reluctant CPUs, and also detect which
1335 * CPUs are in dyntick-idle mode.
1336 */
1337static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1338{
1339 unsigned long flags;
64db4cff 1340 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1341
fc2219d4 1342 if (!rcu_gp_in_progress(rsp))
64db4cff 1343 return; /* No grace period in progress, nothing to force. */
1304afb2 1344 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff
PM
1345 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1346 return; /* Someone else is already on the job. */
1347 }
20133cfc 1348 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1349 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1350 rsp->n_force_qs++;
1304afb2 1351 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1352 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1353 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1354 rsp->n_force_qs_ngp++;
1304afb2 1355 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1356 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1357 }
07079d53 1358 rsp->fqs_active = 1;
f3a8b5c6 1359 switch (rsp->signaled) {
83f5b01f 1360 case RCU_GP_IDLE:
64db4cff
PM
1361 case RCU_GP_INIT:
1362
83f5b01f 1363 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1364
1365 case RCU_SAVE_DYNTICK:
64db4cff
PM
1366 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1367 break; /* So gcc recognizes the dead code. */
1368
f261414f
LJ
1369 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1370
64db4cff 1371 /* Record dyntick-idle state. */
45f014c5 1372 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1373 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1374 if (rcu_gp_in_progress(rsp))
64db4cff 1375 rsp->signaled = RCU_FORCE_QS;
ee47eb9f 1376 break;
64db4cff
PM
1377
1378 case RCU_FORCE_QS:
1379
1380 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1381 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1382 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1383
1384 /* Leave state in case more forcing is required. */
1385
1304afb2 1386 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1387 break;
64db4cff 1388 }
07079d53 1389 rsp->fqs_active = 0;
46a1e34e 1390 if (rsp->fqs_need_gp) {
1304afb2 1391 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1392 rsp->fqs_need_gp = 0;
1393 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1394 return;
1395 }
1304afb2 1396 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1397unlock_fqs_ret:
1304afb2 1398 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
64db4cff
PM
1399}
1400
1401#else /* #ifdef CONFIG_SMP */
1402
1403static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1404{
1405 set_need_resched();
1406}
1407
1408#endif /* #else #ifdef CONFIG_SMP */
1409
1410/*
1411 * This does the RCU processing work from softirq context for the
1412 * specified rcu_state and rcu_data structures. This may be called
1413 * only from the CPU to whom the rdp belongs.
1414 */
1415static void
1416__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1417{
1418 unsigned long flags;
1419
2e597558
PM
1420 WARN_ON_ONCE(rdp->beenonline == 0);
1421
64db4cff
PM
1422 /*
1423 * If an RCU GP has gone long enough, go check for dyntick
1424 * idle CPUs and, if needed, send resched IPIs.
1425 */
20133cfc 1426 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1427 force_quiescent_state(rsp, 1);
1428
1429 /*
1430 * Advance callbacks in response to end of earlier grace
1431 * period that some other CPU ended.
1432 */
1433 rcu_process_gp_end(rsp, rdp);
1434
1435 /* Update RCU state based on any recent quiescent states. */
1436 rcu_check_quiescent_state(rsp, rdp);
1437
1438 /* Does this CPU require a not-yet-started grace period? */
1439 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1440 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1441 rcu_start_gp(rsp, flags); /* releases above lock */
1442 }
1443
1444 /* If there are callbacks ready, invoke them. */
37c72e56 1445 rcu_do_batch(rsp, rdp);
64db4cff
PM
1446}
1447
1448/*
1449 * Do softirq processing for the current CPU.
1450 */
a26ac245 1451static void rcu_process_callbacks(void)
64db4cff 1452{
d6714c22
PM
1453 __rcu_process_callbacks(&rcu_sched_state,
1454 &__get_cpu_var(rcu_sched_data));
64db4cff 1455 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1456 rcu_preempt_process_callbacks();
a47cd880
PM
1457
1458 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1459 rcu_needs_cpu_flush();
64db4cff
PM
1460}
1461
a26ac245
PM
1462/*
1463 * Wake up the current CPU's kthread. This replaces raise_softirq()
1464 * in earlier versions of RCU. Note that because we are running on
1465 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1466 * cannot disappear out from under us.
1467 */
27f4d280 1468static void invoke_rcu_cpu_kthread(void)
a26ac245
PM
1469{
1470 unsigned long flags;
a26ac245
PM
1471
1472 local_irq_save(flags);
f0a07aea
PM
1473 __this_cpu_write(rcu_cpu_has_work, 1);
1474 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
a26ac245
PM
1475 local_irq_restore(flags);
1476 return;
1477 }
08bca60a 1478 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
a26ac245
PM
1479 local_irq_restore(flags);
1480}
1481
27f4d280
PM
1482/*
1483 * Wake up the specified per-rcu_node-structure kthread.
1217ed1b
PM
1484 * Because the per-rcu_node kthreads are immortal, we don't need
1485 * to do anything to keep them alive.
27f4d280
PM
1486 */
1487static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1488{
1489 struct task_struct *t;
1490
1491 t = rnp->node_kthread_task;
1492 if (t != NULL)
1493 wake_up_process(t);
1494}
1495
e3995a25
PM
1496/*
1497 * Set the specified CPU's kthread to run RT or not, as specified by
1498 * the to_rt argument. The CPU-hotplug locks are held, so the task
1499 * is not going away.
1500 */
1501static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1502{
1503 int policy;
1504 struct sched_param sp;
1505 struct task_struct *t;
1506
1507 t = per_cpu(rcu_cpu_kthread_task, cpu);
1508 if (t == NULL)
1509 return;
1510 if (to_rt) {
1511 policy = SCHED_FIFO;
1512 sp.sched_priority = RCU_KTHREAD_PRIO;
1513 } else {
1514 policy = SCHED_NORMAL;
1515 sp.sched_priority = 0;
1516 }
1517 sched_setscheduler_nocheck(t, policy, &sp);
1518}
1519
a26ac245
PM
1520/*
1521 * Timer handler to initiate the waking up of per-CPU kthreads that
1522 * have yielded the CPU due to excess numbers of RCU callbacks.
27f4d280
PM
1523 * We wake up the per-rcu_node kthread, which in turn will wake up
1524 * the booster kthread.
a26ac245
PM
1525 */
1526static void rcu_cpu_kthread_timer(unsigned long arg)
1527{
27f4d280 1528 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
a26ac245 1529 struct rcu_node *rnp = rdp->mynode;
a26ac245 1530
8826f3b0 1531 atomic_or(rdp->grpmask, &rnp->wakemask);
1217ed1b 1532 invoke_rcu_node_kthread(rnp);
a26ac245
PM
1533}
1534
1535/*
1536 * Drop to non-real-time priority and yield, but only after posting a
1537 * timer that will cause us to regain our real-time priority if we
1538 * remain preempted. Either way, we restore our real-time priority
1539 * before returning.
1540 */
27f4d280 1541static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
a26ac245 1542{
a26ac245
PM
1543 struct sched_param sp;
1544 struct timer_list yield_timer;
1545
27f4d280 1546 setup_timer_on_stack(&yield_timer, f, arg);
a26ac245
PM
1547 mod_timer(&yield_timer, jiffies + 2);
1548 sp.sched_priority = 0;
1549 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
baa1ae0c 1550 set_user_nice(current, 19);
a26ac245
PM
1551 schedule();
1552 sp.sched_priority = RCU_KTHREAD_PRIO;
1553 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1554 del_timer(&yield_timer);
1555}
1556
1557/*
1558 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1559 * This can happen while the corresponding CPU is either coming online
1560 * or going offline. We cannot wait until the CPU is fully online
1561 * before starting the kthread, because the various notifier functions
1562 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1563 * the corresponding CPU is online.
1564 *
1565 * Return 1 if the kthread needs to stop, 0 otherwise.
1566 *
1567 * Caller must disable bh. This function can momentarily enable it.
1568 */
1569static int rcu_cpu_kthread_should_stop(int cpu)
1570{
1571 while (cpu_is_offline(cpu) ||
1572 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1573 smp_processor_id() != cpu) {
1574 if (kthread_should_stop())
1575 return 1;
15ba0ba8
PM
1576 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1577 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
a26ac245
PM
1578 local_bh_enable();
1579 schedule_timeout_uninterruptible(1);
1580 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1581 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1582 local_bh_disable();
1583 }
15ba0ba8 1584 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
a26ac245
PM
1585 return 0;
1586}
1587
1588/*
1589 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1590 * earlier RCU softirq.
1591 */
1592static int rcu_cpu_kthread(void *arg)
1593{
1594 int cpu = (int)(long)arg;
1595 unsigned long flags;
1596 int spincnt = 0;
d71df90e 1597 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
a26ac245
PM
1598 char work;
1599 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1600
1601 for (;;) {
d71df90e 1602 *statusp = RCU_KTHREAD_WAITING;
08bca60a 1603 rcu_wait(*workp != 0 || kthread_should_stop());
a26ac245
PM
1604 local_bh_disable();
1605 if (rcu_cpu_kthread_should_stop(cpu)) {
1606 local_bh_enable();
1607 break;
1608 }
d71df90e 1609 *statusp = RCU_KTHREAD_RUNNING;
5ece5bab 1610 per_cpu(rcu_cpu_kthread_loops, cpu)++;
a26ac245
PM
1611 local_irq_save(flags);
1612 work = *workp;
1613 *workp = 0;
1614 local_irq_restore(flags);
1615 if (work)
1616 rcu_process_callbacks();
1617 local_bh_enable();
1618 if (*workp != 0)
1619 spincnt++;
1620 else
1621 spincnt = 0;
1622 if (spincnt > 10) {
d71df90e 1623 *statusp = RCU_KTHREAD_YIELDING;
27f4d280 1624 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
a26ac245
PM
1625 spincnt = 0;
1626 }
1627 }
d71df90e 1628 *statusp = RCU_KTHREAD_STOPPED;
a26ac245
PM
1629 return 0;
1630}
1631
1632/*
1633 * Spawn a per-CPU kthread, setting up affinity and priority.
1634 * Because the CPU hotplug lock is held, no other CPU will be attempting
1635 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1636 * attempting to access it during boot, but the locking in kthread_bind()
1637 * will enforce sufficient ordering.
1638 */
1639static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1640{
1641 struct sched_param sp;
1642 struct task_struct *t;
1643
1644 if (!rcu_kthreads_spawnable ||
1645 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1646 return 0;
1647 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1648 if (IS_ERR(t))
1649 return PTR_ERR(t);
1650 kthread_bind(t, cpu);
cc3ce517 1651 set_task_state(t, TASK_INTERRUPTIBLE);
15ba0ba8 1652 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
a26ac245
PM
1653 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1654 per_cpu(rcu_cpu_kthread_task, cpu) = t;
a26ac245
PM
1655 sp.sched_priority = RCU_KTHREAD_PRIO;
1656 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1657 return 0;
1658}
1659
1660/*
1661 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1662 * kthreads when needed. We ignore requests to wake up kthreads
1663 * for offline CPUs, which is OK because force_quiescent_state()
1664 * takes care of this case.
1665 */
1666static int rcu_node_kthread(void *arg)
1667{
1668 int cpu;
1669 unsigned long flags;
1670 unsigned long mask;
1671 struct rcu_node *rnp = (struct rcu_node *)arg;
1672 struct sched_param sp;
1673 struct task_struct *t;
1674
1675 for (;;) {
d71df90e 1676 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
08bca60a 1677 rcu_wait(atomic_read(&rnp->wakemask) != 0);
d71df90e 1678 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
a26ac245 1679 raw_spin_lock_irqsave(&rnp->lock, flags);
8826f3b0 1680 mask = atomic_xchg(&rnp->wakemask, 0);
1217ed1b 1681 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
a26ac245
PM
1682 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1683 if ((mask & 0x1) == 0)
1684 continue;
1685 preempt_disable();
1686 t = per_cpu(rcu_cpu_kthread_task, cpu);
1687 if (!cpu_online(cpu) || t == NULL) {
1688 preempt_enable();
1689 continue;
1690 }
1691 per_cpu(rcu_cpu_has_work, cpu) = 1;
1692 sp.sched_priority = RCU_KTHREAD_PRIO;
1693 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1694 preempt_enable();
1695 }
1696 }
1217ed1b 1697 /* NOTREACHED */
d71df90e 1698 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
a26ac245
PM
1699 return 0;
1700}
1701
1702/*
1703 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
27f4d280
PM
1704 * served by the rcu_node in question. The CPU hotplug lock is still
1705 * held, so the value of rnp->qsmaskinit will be stable.
0f962a5e
PM
1706 *
1707 * We don't include outgoingcpu in the affinity set, use -1 if there is
1708 * no outgoing CPU. If there are no CPUs left in the affinity set,
1709 * this function allows the kthread to execute on any CPU.
a26ac245 1710 */
0f962a5e 1711static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
a26ac245
PM
1712{
1713 cpumask_var_t cm;
1714 int cpu;
1715 unsigned long mask = rnp->qsmaskinit;
1716
1217ed1b 1717 if (rnp->node_kthread_task == NULL)
a26ac245
PM
1718 return;
1719 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1720 return;
1721 cpumask_clear(cm);
1722 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
0f962a5e 1723 if ((mask & 0x1) && cpu != outgoingcpu)
a26ac245 1724 cpumask_set_cpu(cpu, cm);
0f962a5e
PM
1725 if (cpumask_weight(cm) == 0) {
1726 cpumask_setall(cm);
1727 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1728 cpumask_clear_cpu(cpu, cm);
1729 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1730 }
a26ac245 1731 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
27f4d280 1732 rcu_boost_kthread_setaffinity(rnp, cm);
a26ac245
PM
1733 free_cpumask_var(cm);
1734}
1735
1736/*
1737 * Spawn a per-rcu_node kthread, setting priority and affinity.
27f4d280
PM
1738 * Called during boot before online/offline can happen, or, if
1739 * during runtime, with the main CPU-hotplug locks held. So only
1740 * one of these can be executing at a time.
a26ac245
PM
1741 */
1742static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1743 struct rcu_node *rnp)
1744{
27f4d280 1745 unsigned long flags;
a26ac245
PM
1746 int rnp_index = rnp - &rsp->node[0];
1747 struct sched_param sp;
1748 struct task_struct *t;
1749
1750 if (!rcu_kthreads_spawnable ||
27f4d280 1751 rnp->qsmaskinit == 0)
a26ac245 1752 return 0;
27f4d280
PM
1753 if (rnp->node_kthread_task == NULL) {
1754 t = kthread_create(rcu_node_kthread, (void *)rnp,
1755 "rcun%d", rnp_index);
1756 if (IS_ERR(t))
1757 return PTR_ERR(t);
1758 raw_spin_lock_irqsave(&rnp->lock, flags);
cc3ce517 1759 set_task_state(t, TASK_INTERRUPTIBLE);
27f4d280
PM
1760 rnp->node_kthread_task = t;
1761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1762 sp.sched_priority = 99;
1763 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1764 }
1765 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
a26ac245
PM
1766}
1767
1768/*
1769 * Spawn all kthreads -- called as soon as the scheduler is running.
1770 */
1771static int __init rcu_spawn_kthreads(void)
1772{
1773 int cpu;
1774 struct rcu_node *rnp;
1775
1776 rcu_kthreads_spawnable = 1;
1777 for_each_possible_cpu(cpu) {
a26ac245
PM
1778 per_cpu(rcu_cpu_has_work, cpu) = 0;
1779 if (cpu_online(cpu))
1780 (void)rcu_spawn_one_cpu_kthread(cpu);
1781 }
27f4d280 1782 rnp = rcu_get_root(rcu_state);
27f4d280 1783 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
08bca60a
PZ
1784 if (NUM_RCU_NODES > 1) {
1785 rcu_for_each_leaf_node(rcu_state, rnp)
27f4d280 1786 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
08bca60a 1787 }
a26ac245
PM
1788 return 0;
1789}
1790early_initcall(rcu_spawn_kthreads);
1791
64db4cff
PM
1792static void
1793__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1794 struct rcu_state *rsp)
1795{
1796 unsigned long flags;
1797 struct rcu_data *rdp;
1798
551d55a9 1799 debug_rcu_head_queue(head);
64db4cff
PM
1800 head->func = func;
1801 head->next = NULL;
1802
1803 smp_mb(); /* Ensure RCU update seen before callback registry. */
1804
1805 /*
1806 * Opportunistically note grace-period endings and beginnings.
1807 * Note that we might see a beginning right after we see an
1808 * end, but never vice versa, since this CPU has to pass through
1809 * a quiescent state betweentimes.
1810 */
1811 local_irq_save(flags);
394f99a9 1812 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1813
1814 /* Add the callback to our list. */
1815 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1816 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e
PM
1817 rdp->qlen++;
1818
1819 /* If interrupts were disabled, don't dive into RCU core. */
1820 if (irqs_disabled_flags(flags)) {
1821 local_irq_restore(flags);
1822 return;
1823 }
64db4cff 1824
37c72e56
PM
1825 /*
1826 * Force the grace period if too many callbacks or too long waiting.
1827 * Enforce hysteresis, and don't invoke force_quiescent_state()
1828 * if some other CPU has recently done so. Also, don't bother
1829 * invoking force_quiescent_state() if the newly enqueued callback
1830 * is the only one waiting for a grace period to complete.
1831 */
2655d57e 1832 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1833
1834 /* Are we ignoring a completed grace period? */
1835 rcu_process_gp_end(rsp, rdp);
1836 check_for_new_grace_period(rsp, rdp);
1837
1838 /* Start a new grace period if one not already started. */
1839 if (!rcu_gp_in_progress(rsp)) {
1840 unsigned long nestflag;
1841 struct rcu_node *rnp_root = rcu_get_root(rsp);
1842
1843 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1844 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1845 } else {
1846 /* Give the grace period a kick. */
1847 rdp->blimit = LONG_MAX;
1848 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1849 *rdp->nxttail[RCU_DONE_TAIL] != head)
1850 force_quiescent_state(rsp, 0);
1851 rdp->n_force_qs_snap = rsp->n_force_qs;
1852 rdp->qlen_last_fqs_check = rdp->qlen;
1853 }
20133cfc 1854 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1855 force_quiescent_state(rsp, 1);
1856 local_irq_restore(flags);
1857}
1858
1859/*
d6714c22 1860 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1861 */
d6714c22 1862void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1863{
d6714c22 1864 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1865}
d6714c22 1866EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1867
1868/*
1869 * Queue an RCU for invocation after a quicker grace period.
1870 */
1871void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1872{
1873 __call_rcu(head, func, &rcu_bh_state);
1874}
1875EXPORT_SYMBOL_GPL(call_rcu_bh);
1876
6ebb237b
PM
1877/**
1878 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1879 *
1880 * Control will return to the caller some time after a full rcu-sched
1881 * grace period has elapsed, in other words after all currently executing
1882 * rcu-sched read-side critical sections have completed. These read-side
1883 * critical sections are delimited by rcu_read_lock_sched() and
1884 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1885 * local_irq_disable(), and so on may be used in place of
1886 * rcu_read_lock_sched().
1887 *
1888 * This means that all preempt_disable code sequences, including NMI and
1889 * hardware-interrupt handlers, in progress on entry will have completed
1890 * before this primitive returns. However, this does not guarantee that
1891 * softirq handlers will have completed, since in some kernels, these
1892 * handlers can run in process context, and can block.
1893 *
1894 * This primitive provides the guarantees made by the (now removed)
1895 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1896 * guarantees that rcu_read_lock() sections will have completed.
1897 * In "classic RCU", these two guarantees happen to be one and
1898 * the same, but can differ in realtime RCU implementations.
1899 */
1900void synchronize_sched(void)
1901{
1902 struct rcu_synchronize rcu;
1903
1904 if (rcu_blocking_is_gp())
1905 return;
1906
72d5a9f7 1907 init_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1908 init_completion(&rcu.completion);
1909 /* Will wake me after RCU finished. */
1910 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1911 /* Wait for it. */
1912 wait_for_completion(&rcu.completion);
72d5a9f7 1913 destroy_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1914}
1915EXPORT_SYMBOL_GPL(synchronize_sched);
1916
1917/**
1918 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1919 *
1920 * Control will return to the caller some time after a full rcu_bh grace
1921 * period has elapsed, in other words after all currently executing rcu_bh
1922 * read-side critical sections have completed. RCU read-side critical
1923 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1924 * and may be nested.
1925 */
1926void synchronize_rcu_bh(void)
1927{
1928 struct rcu_synchronize rcu;
1929
1930 if (rcu_blocking_is_gp())
1931 return;
1932
72d5a9f7 1933 init_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1934 init_completion(&rcu.completion);
1935 /* Will wake me after RCU finished. */
1936 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1937 /* Wait for it. */
1938 wait_for_completion(&rcu.completion);
72d5a9f7 1939 destroy_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1940}
1941EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1942
64db4cff
PM
1943/*
1944 * Check to see if there is any immediate RCU-related work to be done
1945 * by the current CPU, for the specified type of RCU, returning 1 if so.
1946 * The checks are in order of increasing expense: checks that can be
1947 * carried out against CPU-local state are performed first. However,
1948 * we must check for CPU stalls first, else we might not get a chance.
1949 */
1950static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1951{
2f51f988
PM
1952 struct rcu_node *rnp = rdp->mynode;
1953
64db4cff
PM
1954 rdp->n_rcu_pending++;
1955
1956 /* Check for CPU stalls, if enabled. */
1957 check_cpu_stall(rsp, rdp);
1958
1959 /* Is the RCU core waiting for a quiescent state from this CPU? */
d21670ac 1960 if (rdp->qs_pending && !rdp->passed_quiesc) {
d25eb944
PM
1961
1962 /*
1963 * If force_quiescent_state() coming soon and this CPU
1964 * needs a quiescent state, and this is either RCU-sched
1965 * or RCU-bh, force a local reschedule.
1966 */
d21670ac 1967 rdp->n_rp_qs_pending++;
6cc68793 1968 if (!rdp->preemptible &&
d25eb944
PM
1969 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1970 jiffies))
1971 set_need_resched();
d21670ac
PM
1972 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1973 rdp->n_rp_report_qs++;
64db4cff 1974 return 1;
7ba5c840 1975 }
64db4cff
PM
1976
1977 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1978 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1979 rdp->n_rp_cb_ready++;
64db4cff 1980 return 1;
7ba5c840 1981 }
64db4cff
PM
1982
1983 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1984 if (cpu_needs_another_gp(rsp, rdp)) {
1985 rdp->n_rp_cpu_needs_gp++;
64db4cff 1986 return 1;
7ba5c840 1987 }
64db4cff
PM
1988
1989 /* Has another RCU grace period completed? */
2f51f988 1990 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1991 rdp->n_rp_gp_completed++;
64db4cff 1992 return 1;
7ba5c840 1993 }
64db4cff
PM
1994
1995 /* Has a new RCU grace period started? */
2f51f988 1996 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1997 rdp->n_rp_gp_started++;
64db4cff 1998 return 1;
7ba5c840 1999 }
64db4cff
PM
2000
2001 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2002 if (rcu_gp_in_progress(rsp) &&
20133cfc 2003 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2004 rdp->n_rp_need_fqs++;
64db4cff 2005 return 1;
7ba5c840 2006 }
64db4cff
PM
2007
2008 /* nothing to do */
7ba5c840 2009 rdp->n_rp_need_nothing++;
64db4cff
PM
2010 return 0;
2011}
2012
2013/*
2014 * Check to see if there is any immediate RCU-related work to be done
2015 * by the current CPU, returning 1 if so. This function is part of the
2016 * RCU implementation; it is -not- an exported member of the RCU API.
2017 */
a157229c 2018static int rcu_pending(int cpu)
64db4cff 2019{
d6714c22 2020 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2021 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2022 rcu_preempt_pending(cpu);
64db4cff
PM
2023}
2024
2025/*
2026 * Check to see if any future RCU-related work will need to be done
2027 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2028 * 1 if so.
64db4cff 2029 */
8bd93a2c 2030static int rcu_needs_cpu_quick_check(int cpu)
64db4cff
PM
2031{
2032 /* RCU callbacks either ready or pending? */
d6714c22 2033 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
2034 per_cpu(rcu_bh_data, cpu).nxtlist ||
2035 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
2036}
2037
d0ec774c
PM
2038static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2039static atomic_t rcu_barrier_cpu_count;
2040static DEFINE_MUTEX(rcu_barrier_mutex);
2041static struct completion rcu_barrier_completion;
d0ec774c
PM
2042
2043static void rcu_barrier_callback(struct rcu_head *notused)
2044{
2045 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2046 complete(&rcu_barrier_completion);
2047}
2048
2049/*
2050 * Called with preemption disabled, and from cross-cpu IRQ context.
2051 */
2052static void rcu_barrier_func(void *type)
2053{
2054 int cpu = smp_processor_id();
2055 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2056 void (*call_rcu_func)(struct rcu_head *head,
2057 void (*func)(struct rcu_head *head));
2058
2059 atomic_inc(&rcu_barrier_cpu_count);
2060 call_rcu_func = type;
2061 call_rcu_func(head, rcu_barrier_callback);
2062}
2063
d0ec774c
PM
2064/*
2065 * Orchestrate the specified type of RCU barrier, waiting for all
2066 * RCU callbacks of the specified type to complete.
2067 */
e74f4c45
PM
2068static void _rcu_barrier(struct rcu_state *rsp,
2069 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
2070 void (*func)(struct rcu_head *head)))
2071{
2072 BUG_ON(in_interrupt());
e74f4c45 2073 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
2074 mutex_lock(&rcu_barrier_mutex);
2075 init_completion(&rcu_barrier_completion);
2076 /*
2077 * Initialize rcu_barrier_cpu_count to 1, then invoke
2078 * rcu_barrier_func() on each CPU, so that each CPU also has
2079 * incremented rcu_barrier_cpu_count. Only then is it safe to
2080 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2081 * might complete its grace period before all of the other CPUs
2082 * did their increment, causing this function to return too
2d999e03
PM
2083 * early. Note that on_each_cpu() disables irqs, which prevents
2084 * any CPUs from coming online or going offline until each online
2085 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
2086 */
2087 atomic_set(&rcu_barrier_cpu_count, 1);
2088 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2089 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2090 complete(&rcu_barrier_completion);
2091 wait_for_completion(&rcu_barrier_completion);
2092 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 2093}
d0ec774c
PM
2094
2095/**
2096 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2097 */
2098void rcu_barrier_bh(void)
2099{
e74f4c45 2100 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2101}
2102EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2103
2104/**
2105 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2106 */
2107void rcu_barrier_sched(void)
2108{
e74f4c45 2109 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2110}
2111EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2112
64db4cff 2113/*
27569620 2114 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2115 */
27569620
PM
2116static void __init
2117rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2118{
2119 unsigned long flags;
2120 int i;
394f99a9 2121 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2122 struct rcu_node *rnp = rcu_get_root(rsp);
2123
2124 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2125 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2126 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2127 rdp->nxtlist = NULL;
2128 for (i = 0; i < RCU_NEXT_SIZE; i++)
2129 rdp->nxttail[i] = &rdp->nxtlist;
2130 rdp->qlen = 0;
2131#ifdef CONFIG_NO_HZ
2132 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2133#endif /* #ifdef CONFIG_NO_HZ */
2134 rdp->cpu = cpu;
1304afb2 2135 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2136}
2137
2138/*
2139 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2140 * offline event can be happening at a given time. Note also that we
2141 * can accept some slop in the rsp->completed access due to the fact
2142 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2143 */
e4fa4c97 2144static void __cpuinit
6cc68793 2145rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2146{
2147 unsigned long flags;
64db4cff 2148 unsigned long mask;
394f99a9 2149 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2150 struct rcu_node *rnp = rcu_get_root(rsp);
2151
2152 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2153 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
2154 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2155 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2156 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2157 rdp->preemptible = preemptible;
37c72e56
PM
2158 rdp->qlen_last_fqs_check = 0;
2159 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2160 rdp->blimit = blimit;
1304afb2 2161 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2162
2163 /*
2164 * A new grace period might start here. If so, we won't be part
2165 * of it, but that is OK, as we are currently in a quiescent state.
2166 */
2167
2168 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2169 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2170
2171 /* Add CPU to rcu_node bitmasks. */
2172 rnp = rdp->mynode;
2173 mask = rdp->grpmask;
2174 do {
2175 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2176 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2177 rnp->qsmaskinit |= mask;
2178 mask = rnp->grpmask;
d09b62df
PM
2179 if (rnp == rdp->mynode) {
2180 rdp->gpnum = rnp->completed; /* if GP in progress... */
2181 rdp->completed = rnp->completed;
2182 rdp->passed_quiesc_completed = rnp->completed - 1;
2183 }
1304afb2 2184 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2185 rnp = rnp->parent;
2186 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2187
1304afb2 2188 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2189}
2190
2191static void __cpuinit rcu_online_cpu(int cpu)
2192{
f41d911f
PM
2193 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2194 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2195 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2196}
2197
a26ac245
PM
2198static void __cpuinit rcu_online_kthreads(int cpu)
2199{
27f4d280 2200 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245
PM
2201 struct rcu_node *rnp = rdp->mynode;
2202
2203 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2204 if (rcu_kthreads_spawnable) {
2205 (void)rcu_spawn_one_cpu_kthread(cpu);
2206 if (rnp->node_kthread_task == NULL)
27f4d280 2207 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
a26ac245
PM
2208 }
2209}
2210
64db4cff 2211/*
f41d911f 2212 * Handle CPU online/offline notification events.
64db4cff 2213 */
9f680ab4
PM
2214static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2215 unsigned long action, void *hcpu)
64db4cff
PM
2216{
2217 long cpu = (long)hcpu;
27f4d280 2218 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2219 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
2220
2221 switch (action) {
2222 case CPU_UP_PREPARE:
2223 case CPU_UP_PREPARE_FROZEN:
2224 rcu_online_cpu(cpu);
a26ac245
PM
2225 rcu_online_kthreads(cpu);
2226 break;
2227 case CPU_ONLINE:
0f962a5e
PM
2228 case CPU_DOWN_FAILED:
2229 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2230 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2231 break;
2232 case CPU_DOWN_PREPARE:
2233 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2234 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2235 break;
d0ec774c
PM
2236 case CPU_DYING:
2237 case CPU_DYING_FROZEN:
2238 /*
2d999e03
PM
2239 * The whole machine is "stopped" except this CPU, so we can
2240 * touch any data without introducing corruption. We send the
2241 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2242 */
29494be7
LJ
2243 rcu_send_cbs_to_online(&rcu_bh_state);
2244 rcu_send_cbs_to_online(&rcu_sched_state);
2245 rcu_preempt_send_cbs_to_online();
d0ec774c 2246 break;
64db4cff
PM
2247 case CPU_DEAD:
2248 case CPU_DEAD_FROZEN:
2249 case CPU_UP_CANCELED:
2250 case CPU_UP_CANCELED_FROZEN:
2251 rcu_offline_cpu(cpu);
2252 break;
2253 default:
2254 break;
2255 }
2256 return NOTIFY_OK;
2257}
2258
bbad9379
PM
2259/*
2260 * This function is invoked towards the end of the scheduler's initialization
2261 * process. Before this is called, the idle task might contain
2262 * RCU read-side critical sections (during which time, this idle
2263 * task is booting the system). After this function is called, the
2264 * idle tasks are prohibited from containing RCU read-side critical
2265 * sections. This function also enables RCU lockdep checking.
2266 */
2267void rcu_scheduler_starting(void)
2268{
2269 WARN_ON(num_online_cpus() != 1);
2270 WARN_ON(nr_context_switches() > 0);
2271 rcu_scheduler_active = 1;
2272}
2273
64db4cff
PM
2274/*
2275 * Compute the per-level fanout, either using the exact fanout specified
2276 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2277 */
2278#ifdef CONFIG_RCU_FANOUT_EXACT
2279static void __init rcu_init_levelspread(struct rcu_state *rsp)
2280{
2281 int i;
2282
0209f649 2283 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2284 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 2285 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
2286}
2287#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2288static void __init rcu_init_levelspread(struct rcu_state *rsp)
2289{
2290 int ccur;
2291 int cprv;
2292 int i;
2293
2294 cprv = NR_CPUS;
2295 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2296 ccur = rsp->levelcnt[i];
2297 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2298 cprv = ccur;
2299 }
2300}
2301#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2302
2303/*
2304 * Helper function for rcu_init() that initializes one rcu_state structure.
2305 */
394f99a9
LJ
2306static void __init rcu_init_one(struct rcu_state *rsp,
2307 struct rcu_data __percpu *rda)
64db4cff 2308{
b6407e86
PM
2309 static char *buf[] = { "rcu_node_level_0",
2310 "rcu_node_level_1",
2311 "rcu_node_level_2",
2312 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2313 int cpustride = 1;
2314 int i;
2315 int j;
2316 struct rcu_node *rnp;
2317
b6407e86
PM
2318 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2319
64db4cff
PM
2320 /* Initialize the level-tracking arrays. */
2321
2322 for (i = 1; i < NUM_RCU_LVLS; i++)
2323 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2324 rcu_init_levelspread(rsp);
2325
2326 /* Initialize the elements themselves, starting from the leaves. */
2327
2328 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2329 cpustride *= rsp->levelspread[i];
2330 rnp = rsp->level[i];
2331 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2332 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2333 lockdep_set_class_and_name(&rnp->lock,
2334 &rcu_node_class[i], buf[i]);
f41d911f 2335 rnp->gpnum = 0;
64db4cff
PM
2336 rnp->qsmask = 0;
2337 rnp->qsmaskinit = 0;
2338 rnp->grplo = j * cpustride;
2339 rnp->grphi = (j + 1) * cpustride - 1;
2340 if (rnp->grphi >= NR_CPUS)
2341 rnp->grphi = NR_CPUS - 1;
2342 if (i == 0) {
2343 rnp->grpnum = 0;
2344 rnp->grpmask = 0;
2345 rnp->parent = NULL;
2346 } else {
2347 rnp->grpnum = j % rsp->levelspread[i - 1];
2348 rnp->grpmask = 1UL << rnp->grpnum;
2349 rnp->parent = rsp->level[i - 1] +
2350 j / rsp->levelspread[i - 1];
2351 }
2352 rnp->level = i;
12f5f524 2353 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2354 }
2355 }
0c34029a 2356
394f99a9 2357 rsp->rda = rda;
0c34029a
LJ
2358 rnp = rsp->level[NUM_RCU_LVLS - 1];
2359 for_each_possible_cpu(i) {
4a90a068 2360 while (i > rnp->grphi)
0c34029a 2361 rnp++;
394f99a9 2362 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2363 rcu_boot_init_percpu_data(i, rsp);
2364 }
64db4cff
PM
2365}
2366
9f680ab4 2367void __init rcu_init(void)
64db4cff 2368{
017c4261 2369 int cpu;
9f680ab4 2370
f41d911f 2371 rcu_bootup_announce();
394f99a9
LJ
2372 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2373 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2374 __rcu_init_preempt();
9f680ab4
PM
2375
2376 /*
2377 * We don't need protection against CPU-hotplug here because
2378 * this is called early in boot, before either interrupts
2379 * or the scheduler are operational.
2380 */
2381 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2382 for_each_online_cpu(cpu)
2383 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2384 check_cpu_stall_init();
64db4cff
PM
2385}
2386
1eba8f84 2387#include "rcutree_plugin.h"