rcu: limit rcu_node leaf-level fanout
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
64db4cff 50
9f77da9f
PM
51#include "rcutree.h"
52
64db4cff
PM
53/* Data structures. */
54
b668c9cf 55static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 56
4300aa64
PM
57#define RCU_STATE_INITIALIZER(structname) { \
58 .level = { &structname.node[0] }, \
64db4cff
PM
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
cf244dc0
PM
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 65 }, \
83f5b01f 66 .signaled = RCU_GP_IDLE, \
64db4cff
PM
67 .gpnum = -300, \
68 .completed = -300, \
4300aa64 69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
4300aa64 70 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
64db4cff
PM
71 .n_force_qs = 0, \
72 .n_force_qs_ngp = 0, \
4300aa64 73 .name = #structname, \
64db4cff
PM
74}
75
d6714c22
PM
76struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
77DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 78
6258c4fb
IM
79struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
80DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 81
bbad9379
PM
82int rcu_scheduler_active __read_mostly;
83EXPORT_SYMBOL_GPL(rcu_scheduler_active);
84
fc2219d4
PM
85/*
86 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
87 * permit this function to be invoked without holding the root rcu_node
88 * structure's ->lock, but of course results can be subject to change.
89 */
90static int rcu_gp_in_progress(struct rcu_state *rsp)
91{
92 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
93}
94
b1f77b05 95/*
d6714c22 96 * Note a quiescent state. Because we do not need to know
b1f77b05 97 * how many quiescent states passed, just if there was at least
d6714c22 98 * one since the start of the grace period, this just sets a flag.
b1f77b05 99 */
d6714c22 100void rcu_sched_qs(int cpu)
b1f77b05 101{
25502a6c 102 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 103
c64ac3ce 104 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
105 barrier();
106 rdp->passed_quiesc = 1;
b1f77b05
IM
107}
108
d6714c22 109void rcu_bh_qs(int cpu)
b1f77b05 110{
25502a6c 111 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 112
c64ac3ce 113 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
114 barrier();
115 rdp->passed_quiesc = 1;
b1f77b05 116}
64db4cff 117
25502a6c
PM
118/*
119 * Note a context switch. This is a quiescent state for RCU-sched,
120 * and requires special handling for preemptible RCU.
121 */
122void rcu_note_context_switch(int cpu)
123{
124 rcu_sched_qs(cpu);
125 rcu_preempt_note_context_switch(cpu);
126}
127
64db4cff 128#ifdef CONFIG_NO_HZ
90a4d2c0
PM
129DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
130 .dynticks_nesting = 1,
131 .dynticks = 1,
132};
64db4cff
PM
133#endif /* #ifdef CONFIG_NO_HZ */
134
135static int blimit = 10; /* Maximum callbacks per softirq. */
136static int qhimark = 10000; /* If this many pending, ignore blimit. */
137static int qlowmark = 100; /* Once only this many pending, use blimit. */
138
3d76c082
PM
139module_param(blimit, int, 0);
140module_param(qhimark, int, 0);
141module_param(qlowmark, int, 0);
142
742734ee 143#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
910b1b7e 144int rcu_cpu_stall_suppress __read_mostly = RCU_CPU_STALL_SUPPRESS_INIT;
f2e0dd70 145module_param(rcu_cpu_stall_suppress, int, 0644);
742734ee
PM
146#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
147
64db4cff 148static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 149static int rcu_pending(int cpu);
64db4cff
PM
150
151/*
d6714c22 152 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 153 */
d6714c22 154long rcu_batches_completed_sched(void)
64db4cff 155{
d6714c22 156 return rcu_sched_state.completed;
64db4cff 157}
d6714c22 158EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
159
160/*
161 * Return the number of RCU BH batches processed thus far for debug & stats.
162 */
163long rcu_batches_completed_bh(void)
164{
165 return rcu_bh_state.completed;
166}
167EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
168
bf66f18e
PM
169/*
170 * Force a quiescent state for RCU BH.
171 */
172void rcu_bh_force_quiescent_state(void)
173{
174 force_quiescent_state(&rcu_bh_state, 0);
175}
176EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
177
178/*
179 * Force a quiescent state for RCU-sched.
180 */
181void rcu_sched_force_quiescent_state(void)
182{
183 force_quiescent_state(&rcu_sched_state, 0);
184}
185EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
186
64db4cff
PM
187/*
188 * Does the CPU have callbacks ready to be invoked?
189 */
190static int
191cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
192{
193 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
194}
195
196/*
197 * Does the current CPU require a yet-as-unscheduled grace period?
198 */
199static int
200cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
201{
fc2219d4 202 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
203}
204
205/*
206 * Return the root node of the specified rcu_state structure.
207 */
208static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
209{
210 return &rsp->node[0];
211}
212
213#ifdef CONFIG_SMP
214
215/*
216 * If the specified CPU is offline, tell the caller that it is in
217 * a quiescent state. Otherwise, whack it with a reschedule IPI.
218 * Grace periods can end up waiting on an offline CPU when that
219 * CPU is in the process of coming online -- it will be added to the
220 * rcu_node bitmasks before it actually makes it online. The same thing
221 * can happen while a CPU is in the process of coming online. Because this
222 * race is quite rare, we check for it after detecting that the grace
223 * period has been delayed rather than checking each and every CPU
224 * each and every time we start a new grace period.
225 */
226static int rcu_implicit_offline_qs(struct rcu_data *rdp)
227{
228 /*
229 * If the CPU is offline, it is in a quiescent state. We can
230 * trust its state not to change because interrupts are disabled.
231 */
232 if (cpu_is_offline(rdp->cpu)) {
233 rdp->offline_fqs++;
234 return 1;
235 }
236
f41d911f
PM
237 /* If preemptable RCU, no point in sending reschedule IPI. */
238 if (rdp->preemptable)
239 return 0;
240
64db4cff
PM
241 /* The CPU is online, so send it a reschedule IPI. */
242 if (rdp->cpu != smp_processor_id())
243 smp_send_reschedule(rdp->cpu);
244 else
245 set_need_resched();
246 rdp->resched_ipi++;
247 return 0;
248}
249
250#endif /* #ifdef CONFIG_SMP */
251
252#ifdef CONFIG_NO_HZ
64db4cff
PM
253
254/**
255 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
256 *
257 * Enter nohz mode, in other words, -leave- the mode in which RCU
258 * read-side critical sections can occur. (Though RCU read-side
259 * critical sections can occur in irq handlers in nohz mode, a possibility
260 * handled by rcu_irq_enter() and rcu_irq_exit()).
261 */
262void rcu_enter_nohz(void)
263{
264 unsigned long flags;
265 struct rcu_dynticks *rdtp;
266
267 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
268 local_irq_save(flags);
269 rdtp = &__get_cpu_var(rcu_dynticks);
270 rdtp->dynticks++;
271 rdtp->dynticks_nesting--;
86848966 272 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
273 local_irq_restore(flags);
274}
275
276/*
277 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
278 *
279 * Exit nohz mode, in other words, -enter- the mode in which RCU
280 * read-side critical sections normally occur.
281 */
282void rcu_exit_nohz(void)
283{
284 unsigned long flags;
285 struct rcu_dynticks *rdtp;
286
287 local_irq_save(flags);
288 rdtp = &__get_cpu_var(rcu_dynticks);
289 rdtp->dynticks++;
290 rdtp->dynticks_nesting++;
86848966 291 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
292 local_irq_restore(flags);
293 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
294}
295
296/**
297 * rcu_nmi_enter - inform RCU of entry to NMI context
298 *
299 * If the CPU was idle with dynamic ticks active, and there is no
300 * irq handler running, this updates rdtp->dynticks_nmi to let the
301 * RCU grace-period handling know that the CPU is active.
302 */
303void rcu_nmi_enter(void)
304{
305 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
306
307 if (rdtp->dynticks & 0x1)
308 return;
309 rdtp->dynticks_nmi++;
86848966 310 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
311 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
312}
313
314/**
315 * rcu_nmi_exit - inform RCU of exit from NMI context
316 *
317 * If the CPU was idle with dynamic ticks active, and there is no
318 * irq handler running, this updates rdtp->dynticks_nmi to let the
319 * RCU grace-period handling know that the CPU is no longer active.
320 */
321void rcu_nmi_exit(void)
322{
323 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
324
325 if (rdtp->dynticks & 0x1)
326 return;
327 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
328 rdtp->dynticks_nmi++;
86848966 329 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
330}
331
332/**
333 * rcu_irq_enter - inform RCU of entry to hard irq context
334 *
335 * If the CPU was idle with dynamic ticks active, this updates the
336 * rdtp->dynticks to let the RCU handling know that the CPU is active.
337 */
338void rcu_irq_enter(void)
339{
340 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
341
342 if (rdtp->dynticks_nesting++)
343 return;
344 rdtp->dynticks++;
86848966 345 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
346 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
347}
348
349/**
350 * rcu_irq_exit - inform RCU of exit from hard irq context
351 *
352 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
353 * to put let the RCU handling be aware that the CPU is going back to idle
354 * with no ticks.
355 */
356void rcu_irq_exit(void)
357{
358 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
359
360 if (--rdtp->dynticks_nesting)
361 return;
362 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
363 rdtp->dynticks++;
86848966 364 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
365
366 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 367 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
368 __get_cpu_var(rcu_bh_data).nxtlist)
369 set_need_resched();
370}
371
64db4cff
PM
372#ifdef CONFIG_SMP
373
64db4cff
PM
374/*
375 * Snapshot the specified CPU's dynticks counter so that we can later
376 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 377 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
378 */
379static int dyntick_save_progress_counter(struct rcu_data *rdp)
380{
381 int ret;
382 int snap;
383 int snap_nmi;
384
385 snap = rdp->dynticks->dynticks;
386 snap_nmi = rdp->dynticks->dynticks_nmi;
387 smp_mb(); /* Order sampling of snap with end of grace period. */
388 rdp->dynticks_snap = snap;
389 rdp->dynticks_nmi_snap = snap_nmi;
390 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
391 if (ret)
392 rdp->dynticks_fqs++;
393 return ret;
394}
395
396/*
397 * Return true if the specified CPU has passed through a quiescent
398 * state by virtue of being in or having passed through an dynticks
399 * idle state since the last call to dyntick_save_progress_counter()
400 * for this same CPU.
401 */
402static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
403{
404 long curr;
405 long curr_nmi;
406 long snap;
407 long snap_nmi;
408
409 curr = rdp->dynticks->dynticks;
410 snap = rdp->dynticks_snap;
411 curr_nmi = rdp->dynticks->dynticks_nmi;
412 snap_nmi = rdp->dynticks_nmi_snap;
413 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
414
415 /*
416 * If the CPU passed through or entered a dynticks idle phase with
417 * no active irq/NMI handlers, then we can safely pretend that the CPU
418 * already acknowledged the request to pass through a quiescent
419 * state. Either way, that CPU cannot possibly be in an RCU
420 * read-side critical section that started before the beginning
421 * of the current RCU grace period.
422 */
423 if ((curr != snap || (curr & 0x1) == 0) &&
424 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
425 rdp->dynticks_fqs++;
426 return 1;
427 }
428
429 /* Go check for the CPU being offline. */
430 return rcu_implicit_offline_qs(rdp);
431}
432
433#endif /* #ifdef CONFIG_SMP */
434
435#else /* #ifdef CONFIG_NO_HZ */
436
64db4cff
PM
437#ifdef CONFIG_SMP
438
64db4cff
PM
439static int dyntick_save_progress_counter(struct rcu_data *rdp)
440{
441 return 0;
442}
443
444static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
445{
446 return rcu_implicit_offline_qs(rdp);
447}
448
449#endif /* #ifdef CONFIG_SMP */
450
451#endif /* #else #ifdef CONFIG_NO_HZ */
452
453#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
454
742734ee 455int rcu_cpu_stall_suppress __read_mostly;
c68de209 456
64db4cff
PM
457static void record_gp_stall_check_time(struct rcu_state *rsp)
458{
459 rsp->gp_start = jiffies;
460 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
461}
462
463static void print_other_cpu_stall(struct rcu_state *rsp)
464{
465 int cpu;
466 long delta;
467 unsigned long flags;
468 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
469
470 /* Only let one CPU complain about others per time interval. */
471
1304afb2 472 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 473 delta = jiffies - rsp->jiffies_stall;
fc2219d4 474 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 475 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
476 return;
477 }
478 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
479
480 /*
481 * Now rat on any tasks that got kicked up to the root rcu_node
482 * due to CPU offlining.
483 */
484 rcu_print_task_stall(rnp);
1304afb2 485 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 486
8cdd32a9
PM
487 /*
488 * OK, time to rat on our buddy...
489 * See Documentation/RCU/stallwarn.txt for info on how to debug
490 * RCU CPU stall warnings.
491 */
4300aa64
PM
492 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
493 rsp->name);
a0b6c9a7 494 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 495 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 496 rcu_print_task_stall(rnp);
3acd9eb3 497 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 498 if (rnp->qsmask == 0)
64db4cff 499 continue;
a0b6c9a7
PM
500 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
501 if (rnp->qsmask & (1UL << cpu))
502 printk(" %d", rnp->grplo + cpu);
64db4cff 503 }
4300aa64 504 printk("} (detected by %d, t=%ld jiffies)\n",
64db4cff 505 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
506 trigger_all_cpu_backtrace();
507
1ed509a2
PM
508 /* If so configured, complain about tasks blocking the grace period. */
509
510 rcu_print_detail_task_stall(rsp);
511
64db4cff
PM
512 force_quiescent_state(rsp, 0); /* Kick them all. */
513}
514
515static void print_cpu_stall(struct rcu_state *rsp)
516{
517 unsigned long flags;
518 struct rcu_node *rnp = rcu_get_root(rsp);
519
8cdd32a9
PM
520 /*
521 * OK, time to rat on ourselves...
522 * See Documentation/RCU/stallwarn.txt for info on how to debug
523 * RCU CPU stall warnings.
524 */
4300aa64
PM
525 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
526 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
527 trigger_all_cpu_backtrace();
528
1304afb2 529 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 530 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
531 rsp->jiffies_stall =
532 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 533 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 534
64db4cff
PM
535 set_need_resched(); /* kick ourselves to get things going. */
536}
537
538static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
539{
540 long delta;
541 struct rcu_node *rnp;
542
742734ee 543 if (rcu_cpu_stall_suppress)
c68de209 544 return;
4ee0a603 545 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 546 rnp = rdp->mynode;
4ee0a603 547 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
64db4cff
PM
548
549 /* We haven't checked in, so go dump stack. */
550 print_cpu_stall(rsp);
551
fc2219d4 552 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
553
554 /* They had two time units to dump stack, so complain. */
555 print_other_cpu_stall(rsp);
556 }
557}
558
c68de209
PM
559static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
560{
742734ee 561 rcu_cpu_stall_suppress = 1;
c68de209
PM
562 return NOTIFY_DONE;
563}
564
53d84e00
PM
565/**
566 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
567 *
568 * Set the stall-warning timeout way off into the future, thus preventing
569 * any RCU CPU stall-warning messages from appearing in the current set of
570 * RCU grace periods.
571 *
572 * The caller must disable hard irqs.
573 */
574void rcu_cpu_stall_reset(void)
575{
576 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
577 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
578 rcu_preempt_stall_reset();
579}
580
c68de209
PM
581static struct notifier_block rcu_panic_block = {
582 .notifier_call = rcu_panic,
583};
584
585static void __init check_cpu_stall_init(void)
586{
587 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
588}
589
64db4cff
PM
590#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
591
592static void record_gp_stall_check_time(struct rcu_state *rsp)
593{
594}
595
596static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
597{
598}
599
53d84e00
PM
600void rcu_cpu_stall_reset(void)
601{
602}
603
c68de209
PM
604static void __init check_cpu_stall_init(void)
605{
606}
607
64db4cff
PM
608#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
609
610/*
611 * Update CPU-local rcu_data state to record the newly noticed grace period.
612 * This is used both when we started the grace period and when we notice
9160306e
PM
613 * that someone else started the grace period. The caller must hold the
614 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
615 * and must have irqs disabled.
64db4cff 616 */
9160306e
PM
617static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
618{
619 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
620 /*
621 * If the current grace period is waiting for this CPU,
622 * set up to detect a quiescent state, otherwise don't
623 * go looking for one.
624 */
9160306e 625 rdp->gpnum = rnp->gpnum;
121dfc4b
PM
626 if (rnp->qsmask & rdp->grpmask) {
627 rdp->qs_pending = 1;
628 rdp->passed_quiesc = 0;
629 } else
630 rdp->qs_pending = 0;
9160306e
PM
631 }
632}
633
64db4cff
PM
634static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
635{
9160306e
PM
636 unsigned long flags;
637 struct rcu_node *rnp;
638
639 local_irq_save(flags);
640 rnp = rdp->mynode;
641 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 642 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
643 local_irq_restore(flags);
644 return;
645 }
646 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 647 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
648}
649
650/*
651 * Did someone else start a new RCU grace period start since we last
652 * checked? Update local state appropriately if so. Must be called
653 * on the CPU corresponding to rdp.
654 */
655static int
656check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
657{
658 unsigned long flags;
659 int ret = 0;
660
661 local_irq_save(flags);
662 if (rdp->gpnum != rsp->gpnum) {
663 note_new_gpnum(rsp, rdp);
664 ret = 1;
665 }
666 local_irq_restore(flags);
667 return ret;
668}
669
d09b62df
PM
670/*
671 * Advance this CPU's callbacks, but only if the current grace period
672 * has ended. This may be called only from the CPU to whom the rdp
673 * belongs. In addition, the corresponding leaf rcu_node structure's
674 * ->lock must be held by the caller, with irqs disabled.
675 */
676static void
677__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
678{
679 /* Did another grace period end? */
680 if (rdp->completed != rnp->completed) {
681
682 /* Advance callbacks. No harm if list empty. */
683 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
684 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
685 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
686
687 /* Remember that we saw this grace-period completion. */
688 rdp->completed = rnp->completed;
20377f32 689
5ff8e6f0
FW
690 /*
691 * If we were in an extended quiescent state, we may have
121dfc4b 692 * missed some grace periods that others CPUs handled on
5ff8e6f0 693 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
694 * spurious new grace periods. If another grace period
695 * has started, then rnp->gpnum will have advanced, so
696 * we will detect this later on.
5ff8e6f0 697 */
121dfc4b 698 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
699 rdp->gpnum = rdp->completed;
700
20377f32 701 /*
121dfc4b
PM
702 * If RCU does not need a quiescent state from this CPU,
703 * then make sure that this CPU doesn't go looking for one.
20377f32 704 */
121dfc4b 705 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 706 rdp->qs_pending = 0;
d09b62df
PM
707 }
708}
709
710/*
711 * Advance this CPU's callbacks, but only if the current grace period
712 * has ended. This may be called only from the CPU to whom the rdp
713 * belongs.
714 */
715static void
716rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
717{
718 unsigned long flags;
719 struct rcu_node *rnp;
720
721 local_irq_save(flags);
722 rnp = rdp->mynode;
723 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 724 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
725 local_irq_restore(flags);
726 return;
727 }
728 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 729 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
730}
731
732/*
733 * Do per-CPU grace-period initialization for running CPU. The caller
734 * must hold the lock of the leaf rcu_node structure corresponding to
735 * this CPU.
736 */
737static void
738rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
739{
740 /* Prior grace period ended, so advance callbacks for current CPU. */
741 __rcu_process_gp_end(rsp, rnp, rdp);
742
743 /*
744 * Because this CPU just now started the new grace period, we know
745 * that all of its callbacks will be covered by this upcoming grace
746 * period, even the ones that were registered arbitrarily recently.
747 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
748 *
749 * Other CPUs cannot be sure exactly when the grace period started.
750 * Therefore, their recently registered callbacks must pass through
751 * an additional RCU_NEXT_READY stage, so that they will be handled
752 * by the next RCU grace period.
753 */
754 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
755 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
756
757 /* Set state so that this CPU will detect the next quiescent state. */
758 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
759}
760
64db4cff
PM
761/*
762 * Start a new RCU grace period if warranted, re-initializing the hierarchy
763 * in preparation for detecting the next grace period. The caller must hold
764 * the root node's ->lock, which is released before return. Hard irqs must
765 * be disabled.
766 */
767static void
768rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
769 __releases(rcu_get_root(rsp)->lock)
770{
394f99a9 771 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 772 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 773
07079d53 774 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
46a1e34e
PM
775 if (cpu_needs_another_gp(rsp, rdp))
776 rsp->fqs_need_gp = 1;
b32e9eb6 777 if (rnp->completed == rsp->completed) {
1304afb2 778 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b32e9eb6
PM
779 return;
780 }
1304afb2 781 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
782
783 /*
784 * Propagate new ->completed value to rcu_node structures
785 * so that other CPUs don't have to wait until the start
786 * of the next grace period to process their callbacks.
787 */
788 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 789 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b32e9eb6 790 rnp->completed = rsp->completed;
1304afb2 791 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
792 }
793 local_irq_restore(flags);
64db4cff
PM
794 return;
795 }
796
797 /* Advance to a new grace period and initialize state. */
798 rsp->gpnum++;
c3422bea 799 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
800 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
801 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 802 record_gp_stall_check_time(rsp);
64db4cff 803
64db4cff
PM
804 /* Special-case the common single-level case. */
805 if (NUM_RCU_NODES == 1) {
b0e165c0 806 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 807 rnp->qsmask = rnp->qsmaskinit;
de078d87 808 rnp->gpnum = rsp->gpnum;
d09b62df 809 rnp->completed = rsp->completed;
c12172c0 810 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 811 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 812 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
813 return;
814 }
815
1304afb2 816 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff
PM
817
818
819 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 820 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
821
822 /*
b835db1f
PM
823 * Set the quiescent-state-needed bits in all the rcu_node
824 * structures for all currently online CPUs in breadth-first
825 * order, starting from the root rcu_node structure. This
826 * operation relies on the layout of the hierarchy within the
827 * rsp->node[] array. Note that other CPUs will access only
828 * the leaves of the hierarchy, which still indicate that no
829 * grace period is in progress, at least until the corresponding
830 * leaf node has been initialized. In addition, we have excluded
831 * CPU-hotplug operations.
64db4cff
PM
832 *
833 * Note that the grace period cannot complete until we finish
834 * the initialization process, as there will be at least one
835 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
836 * one corresponding to this CPU, due to the fact that we have
837 * irqs disabled.
64db4cff 838 */
a0b6c9a7 839 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 840 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 841 rcu_preempt_check_blocked_tasks(rnp);
49e29126 842 rnp->qsmask = rnp->qsmaskinit;
de078d87 843 rnp->gpnum = rsp->gpnum;
d09b62df
PM
844 rnp->completed = rsp->completed;
845 if (rnp == rdp->mynode)
846 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 847 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
848 }
849
83f5b01f 850 rnp = rcu_get_root(rsp);
1304afb2 851 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 852 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
853 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
854 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
855}
856
f41d911f 857/*
d3f6bad3
PM
858 * Report a full set of quiescent states to the specified rcu_state
859 * data structure. This involves cleaning up after the prior grace
860 * period and letting rcu_start_gp() start up the next grace period
861 * if one is needed. Note that the caller must hold rnp->lock, as
862 * required by rcu_start_gp(), which will release it.
f41d911f 863 */
d3f6bad3 864static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 865 __releases(rcu_get_root(rsp)->lock)
f41d911f 866{
fc2219d4 867 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f 868 rsp->completed = rsp->gpnum;
83f5b01f 869 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
870 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
871}
872
64db4cff 873/*
d3f6bad3
PM
874 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
875 * Allows quiescent states for a group of CPUs to be reported at one go
876 * to the specified rcu_node structure, though all the CPUs in the group
877 * must be represented by the same rcu_node structure (which need not be
878 * a leaf rcu_node structure, though it often will be). That structure's
879 * lock must be held upon entry, and it is released before return.
64db4cff
PM
880 */
881static void
d3f6bad3
PM
882rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
883 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
884 __releases(rnp->lock)
885{
28ecd580
PM
886 struct rcu_node *rnp_c;
887
64db4cff
PM
888 /* Walk up the rcu_node hierarchy. */
889 for (;;) {
890 if (!(rnp->qsmask & mask)) {
891
892 /* Our bit has already been cleared, so done. */
1304afb2 893 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
894 return;
895 }
896 rnp->qsmask &= ~mask;
f41d911f 897 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
898
899 /* Other bits still set at this level, so done. */
1304afb2 900 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
901 return;
902 }
903 mask = rnp->grpmask;
904 if (rnp->parent == NULL) {
905
906 /* No more levels. Exit loop holding root lock. */
907
908 break;
909 }
1304afb2 910 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 911 rnp_c = rnp;
64db4cff 912 rnp = rnp->parent;
1304afb2 913 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 914 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
915 }
916
917 /*
918 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 919 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 920 * to clean up and start the next grace period if one is needed.
64db4cff 921 */
d3f6bad3 922 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
923}
924
925/*
d3f6bad3
PM
926 * Record a quiescent state for the specified CPU to that CPU's rcu_data
927 * structure. This must be either called from the specified CPU, or
928 * called when the specified CPU is known to be offline (and when it is
929 * also known that no other CPU is concurrently trying to help the offline
930 * CPU). The lastcomp argument is used to make sure we are still in the
931 * grace period of interest. We don't want to end the current grace period
932 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
933 */
934static void
d3f6bad3 935rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
64db4cff
PM
936{
937 unsigned long flags;
938 unsigned long mask;
939 struct rcu_node *rnp;
940
941 rnp = rdp->mynode;
1304afb2 942 raw_spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 943 if (lastcomp != rnp->completed) {
64db4cff
PM
944
945 /*
946 * Someone beat us to it for this grace period, so leave.
947 * The race with GP start is resolved by the fact that we
948 * hold the leaf rcu_node lock, so that the per-CPU bits
949 * cannot yet be initialized -- so we would simply find our
d3f6bad3
PM
950 * CPU's bit already cleared in rcu_report_qs_rnp() if this
951 * race occurred.
64db4cff
PM
952 */
953 rdp->passed_quiesc = 0; /* try again later! */
1304afb2 954 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
955 return;
956 }
957 mask = rdp->grpmask;
958 if ((rnp->qsmask & mask) == 0) {
1304afb2 959 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
960 } else {
961 rdp->qs_pending = 0;
962
963 /*
964 * This GP can't end until cpu checks in, so all of our
965 * callbacks can be processed during the next GP.
966 */
64db4cff
PM
967 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
968
d3f6bad3 969 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
970 }
971}
972
973/*
974 * Check to see if there is a new grace period of which this CPU
975 * is not yet aware, and if so, set up local rcu_data state for it.
976 * Otherwise, see if this CPU has just passed through its first
977 * quiescent state for this grace period, and record that fact if so.
978 */
979static void
980rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
981{
982 /* If there is now a new grace period, record and return. */
983 if (check_for_new_grace_period(rsp, rdp))
984 return;
985
986 /*
987 * Does this CPU still need to do its part for current grace period?
988 * If no, return and let the other CPUs do their part as well.
989 */
990 if (!rdp->qs_pending)
991 return;
992
993 /*
994 * Was there a quiescent state since the beginning of the grace
995 * period? If no, then exit and wait for the next call.
996 */
997 if (!rdp->passed_quiesc)
998 return;
999
d3f6bad3
PM
1000 /*
1001 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1002 * judge of that).
1003 */
1004 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
64db4cff
PM
1005}
1006
1007#ifdef CONFIG_HOTPLUG_CPU
1008
e74f4c45 1009/*
29494be7
LJ
1010 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1011 * Synchronization is not required because this function executes
1012 * in stop_machine() context.
e74f4c45 1013 */
29494be7 1014static void rcu_send_cbs_to_online(struct rcu_state *rsp)
e74f4c45
PM
1015{
1016 int i;
29494be7
LJ
1017 /* current DYING CPU is cleared in the cpu_online_mask */
1018 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1019 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1020 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
e74f4c45
PM
1021
1022 if (rdp->nxtlist == NULL)
1023 return; /* irqs disabled, so comparison is stable. */
29494be7
LJ
1024
1025 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1026 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1027 receive_rdp->qlen += rdp->qlen;
1028 receive_rdp->n_cbs_adopted += rdp->qlen;
1029 rdp->n_cbs_orphaned += rdp->qlen;
1030
e74f4c45
PM
1031 rdp->nxtlist = NULL;
1032 for (i = 0; i < RCU_NEXT_SIZE; i++)
1033 rdp->nxttail[i] = &rdp->nxtlist;
e74f4c45 1034 rdp->qlen = 0;
e74f4c45
PM
1035}
1036
64db4cff
PM
1037/*
1038 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1039 * and move all callbacks from the outgoing CPU to the current one.
1040 */
1041static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1042{
64db4cff 1043 unsigned long flags;
64db4cff 1044 unsigned long mask;
d9a3da06 1045 int need_report = 0;
394f99a9 1046 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
1047 struct rcu_node *rnp;
1048
1049 /* Exclude any attempts to start a new grace period. */
1304afb2 1050 raw_spin_lock_irqsave(&rsp->onofflock, flags);
64db4cff
PM
1051
1052 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 1053 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
1054 mask = rdp->grpmask; /* rnp->grplo is constant. */
1055 do {
1304afb2 1056 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1057 rnp->qsmaskinit &= ~mask;
1058 if (rnp->qsmaskinit != 0) {
b668c9cf 1059 if (rnp != rdp->mynode)
1304afb2 1060 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1061 break;
1062 }
b668c9cf 1063 if (rnp == rdp->mynode)
d9a3da06 1064 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
b668c9cf 1065 else
1304afb2 1066 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 1067 mask = rnp->grpmask;
64db4cff
PM
1068 rnp = rnp->parent;
1069 } while (rnp != NULL);
64db4cff 1070
b668c9cf
PM
1071 /*
1072 * We still hold the leaf rcu_node structure lock here, and
1073 * irqs are still disabled. The reason for this subterfuge is
d3f6bad3
PM
1074 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1075 * held leads to deadlock.
b668c9cf 1076 */
1304afb2 1077 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
b668c9cf 1078 rnp = rdp->mynode;
d9a3da06 1079 if (need_report & RCU_OFL_TASKS_NORM_GP)
d3f6bad3 1080 rcu_report_unblock_qs_rnp(rnp, flags);
b668c9cf 1081 else
1304afb2 1082 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
1083 if (need_report & RCU_OFL_TASKS_EXP_GP)
1084 rcu_report_exp_rnp(rsp, rnp);
64db4cff
PM
1085}
1086
1087/*
1088 * Remove the specified CPU from the RCU hierarchy and move any pending
1089 * callbacks that it might have to the current CPU. This code assumes
1090 * that at least one CPU in the system will remain running at all times.
1091 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1092 */
1093static void rcu_offline_cpu(int cpu)
1094{
d6714c22 1095 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 1096 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 1097 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
1098}
1099
1100#else /* #ifdef CONFIG_HOTPLUG_CPU */
1101
29494be7 1102static void rcu_send_cbs_to_online(struct rcu_state *rsp)
e74f4c45
PM
1103{
1104}
1105
64db4cff
PM
1106static void rcu_offline_cpu(int cpu)
1107{
1108}
1109
1110#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1111
1112/*
1113 * Invoke any RCU callbacks that have made it to the end of their grace
1114 * period. Thottle as specified by rdp->blimit.
1115 */
37c72e56 1116static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1117{
1118 unsigned long flags;
1119 struct rcu_head *next, *list, **tail;
1120 int count;
1121
1122 /* If no callbacks are ready, just return.*/
1123 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1124 return;
1125
1126 /*
1127 * Extract the list of ready callbacks, disabling to prevent
1128 * races with call_rcu() from interrupt handlers.
1129 */
1130 local_irq_save(flags);
1131 list = rdp->nxtlist;
1132 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1133 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1134 tail = rdp->nxttail[RCU_DONE_TAIL];
1135 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1136 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1137 rdp->nxttail[count] = &rdp->nxtlist;
1138 local_irq_restore(flags);
1139
1140 /* Invoke callbacks. */
1141 count = 0;
1142 while (list) {
1143 next = list->next;
1144 prefetch(next);
551d55a9 1145 debug_rcu_head_unqueue(list);
64db4cff
PM
1146 list->func(list);
1147 list = next;
1148 if (++count >= rdp->blimit)
1149 break;
1150 }
1151
1152 local_irq_save(flags);
1153
1154 /* Update count, and requeue any remaining callbacks. */
1155 rdp->qlen -= count;
269dcc1c 1156 rdp->n_cbs_invoked += count;
64db4cff
PM
1157 if (list != NULL) {
1158 *tail = rdp->nxtlist;
1159 rdp->nxtlist = list;
1160 for (count = 0; count < RCU_NEXT_SIZE; count++)
1161 if (&rdp->nxtlist == rdp->nxttail[count])
1162 rdp->nxttail[count] = tail;
1163 else
1164 break;
1165 }
1166
1167 /* Reinstate batch limit if we have worked down the excess. */
1168 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1169 rdp->blimit = blimit;
1170
37c72e56
PM
1171 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1172 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1173 rdp->qlen_last_fqs_check = 0;
1174 rdp->n_force_qs_snap = rsp->n_force_qs;
1175 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1176 rdp->qlen_last_fqs_check = rdp->qlen;
1177
64db4cff
PM
1178 local_irq_restore(flags);
1179
1180 /* Re-raise the RCU softirq if there are callbacks remaining. */
1181 if (cpu_has_callbacks_ready_to_invoke(rdp))
1182 raise_softirq(RCU_SOFTIRQ);
1183}
1184
1185/*
1186 * Check to see if this CPU is in a non-context-switch quiescent state
1187 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1188 * Also schedule the RCU softirq handler.
1189 *
1190 * This function must be called with hardirqs disabled. It is normally
1191 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1192 * false, there is no point in invoking rcu_check_callbacks().
1193 */
1194void rcu_check_callbacks(int cpu, int user)
1195{
1196 if (user ||
a6826048
PM
1197 (idle_cpu(cpu) && rcu_scheduler_active &&
1198 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1199
1200 /*
1201 * Get here if this CPU took its interrupt from user
1202 * mode or from the idle loop, and if this is not a
1203 * nested interrupt. In this case, the CPU is in
d6714c22 1204 * a quiescent state, so note it.
64db4cff
PM
1205 *
1206 * No memory barrier is required here because both
d6714c22
PM
1207 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1208 * variables that other CPUs neither access nor modify,
1209 * at least not while the corresponding CPU is online.
64db4cff
PM
1210 */
1211
d6714c22
PM
1212 rcu_sched_qs(cpu);
1213 rcu_bh_qs(cpu);
64db4cff
PM
1214
1215 } else if (!in_softirq()) {
1216
1217 /*
1218 * Get here if this CPU did not take its interrupt from
1219 * softirq, in other words, if it is not interrupting
1220 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1221 * critical section, so note it.
64db4cff
PM
1222 */
1223
d6714c22 1224 rcu_bh_qs(cpu);
64db4cff 1225 }
f41d911f 1226 rcu_preempt_check_callbacks(cpu);
d21670ac
PM
1227 if (rcu_pending(cpu))
1228 raise_softirq(RCU_SOFTIRQ);
64db4cff
PM
1229}
1230
1231#ifdef CONFIG_SMP
1232
1233/*
1234 * Scan the leaf rcu_node structures, processing dyntick state for any that
1235 * have not yet encountered a quiescent state, using the function specified.
ee47eb9f 1236 * The caller must have suppressed start of new grace periods.
64db4cff 1237 */
45f014c5 1238static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1239{
1240 unsigned long bit;
1241 int cpu;
1242 unsigned long flags;
1243 unsigned long mask;
a0b6c9a7 1244 struct rcu_node *rnp;
64db4cff 1245
a0b6c9a7 1246 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1247 mask = 0;
1304afb2 1248 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1249 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1250 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1251 return;
64db4cff 1252 }
a0b6c9a7 1253 if (rnp->qsmask == 0) {
1304afb2 1254 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1255 continue;
1256 }
a0b6c9a7 1257 cpu = rnp->grplo;
64db4cff 1258 bit = 1;
a0b6c9a7 1259 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1260 if ((rnp->qsmask & bit) != 0 &&
1261 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1262 mask |= bit;
1263 }
45f014c5 1264 if (mask != 0) {
64db4cff 1265
d3f6bad3
PM
1266 /* rcu_report_qs_rnp() releases rnp->lock. */
1267 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1268 continue;
1269 }
1304afb2 1270 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1271 }
64db4cff
PM
1272}
1273
1274/*
1275 * Force quiescent states on reluctant CPUs, and also detect which
1276 * CPUs are in dyntick-idle mode.
1277 */
1278static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1279{
1280 unsigned long flags;
64db4cff 1281 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1282
fc2219d4 1283 if (!rcu_gp_in_progress(rsp))
64db4cff 1284 return; /* No grace period in progress, nothing to force. */
1304afb2 1285 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff
PM
1286 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1287 return; /* Someone else is already on the job. */
1288 }
20133cfc 1289 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1290 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1291 rsp->n_force_qs++;
1304afb2 1292 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1293 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1294 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1295 rsp->n_force_qs_ngp++;
1304afb2 1296 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1297 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1298 }
07079d53 1299 rsp->fqs_active = 1;
f3a8b5c6 1300 switch (rsp->signaled) {
83f5b01f 1301 case RCU_GP_IDLE:
64db4cff
PM
1302 case RCU_GP_INIT:
1303
83f5b01f 1304 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1305
1306 case RCU_SAVE_DYNTICK:
64db4cff
PM
1307 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1308 break; /* So gcc recognizes the dead code. */
1309
f261414f
LJ
1310 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1311
64db4cff 1312 /* Record dyntick-idle state. */
45f014c5 1313 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1314 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1315 if (rcu_gp_in_progress(rsp))
64db4cff 1316 rsp->signaled = RCU_FORCE_QS;
ee47eb9f 1317 break;
64db4cff
PM
1318
1319 case RCU_FORCE_QS:
1320
1321 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1322 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1323 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1324
1325 /* Leave state in case more forcing is required. */
1326
1304afb2 1327 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1328 break;
64db4cff 1329 }
07079d53 1330 rsp->fqs_active = 0;
46a1e34e 1331 if (rsp->fqs_need_gp) {
1304afb2 1332 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1333 rsp->fqs_need_gp = 0;
1334 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1335 return;
1336 }
1304afb2 1337 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1338unlock_fqs_ret:
1304afb2 1339 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
64db4cff
PM
1340}
1341
1342#else /* #ifdef CONFIG_SMP */
1343
1344static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1345{
1346 set_need_resched();
1347}
1348
1349#endif /* #else #ifdef CONFIG_SMP */
1350
1351/*
1352 * This does the RCU processing work from softirq context for the
1353 * specified rcu_state and rcu_data structures. This may be called
1354 * only from the CPU to whom the rdp belongs.
1355 */
1356static void
1357__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1358{
1359 unsigned long flags;
1360
2e597558
PM
1361 WARN_ON_ONCE(rdp->beenonline == 0);
1362
64db4cff
PM
1363 /*
1364 * If an RCU GP has gone long enough, go check for dyntick
1365 * idle CPUs and, if needed, send resched IPIs.
1366 */
20133cfc 1367 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1368 force_quiescent_state(rsp, 1);
1369
1370 /*
1371 * Advance callbacks in response to end of earlier grace
1372 * period that some other CPU ended.
1373 */
1374 rcu_process_gp_end(rsp, rdp);
1375
1376 /* Update RCU state based on any recent quiescent states. */
1377 rcu_check_quiescent_state(rsp, rdp);
1378
1379 /* Does this CPU require a not-yet-started grace period? */
1380 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1381 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1382 rcu_start_gp(rsp, flags); /* releases above lock */
1383 }
1384
1385 /* If there are callbacks ready, invoke them. */
37c72e56 1386 rcu_do_batch(rsp, rdp);
64db4cff
PM
1387}
1388
1389/*
1390 * Do softirq processing for the current CPU.
1391 */
1392static void rcu_process_callbacks(struct softirq_action *unused)
1393{
1394 /*
1395 * Memory references from any prior RCU read-side critical sections
1396 * executed by the interrupted code must be seen before any RCU
1397 * grace-period manipulations below.
1398 */
1399 smp_mb(); /* See above block comment. */
1400
d6714c22
PM
1401 __rcu_process_callbacks(&rcu_sched_state,
1402 &__get_cpu_var(rcu_sched_data));
64db4cff 1403 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1404 rcu_preempt_process_callbacks();
64db4cff
PM
1405
1406 /*
1407 * Memory references from any later RCU read-side critical sections
1408 * executed by the interrupted code must be seen after any RCU
1409 * grace-period manipulations above.
1410 */
1411 smp_mb(); /* See above block comment. */
a47cd880
PM
1412
1413 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1414 rcu_needs_cpu_flush();
64db4cff
PM
1415}
1416
1417static void
1418__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1419 struct rcu_state *rsp)
1420{
1421 unsigned long flags;
1422 struct rcu_data *rdp;
1423
551d55a9 1424 debug_rcu_head_queue(head);
64db4cff
PM
1425 head->func = func;
1426 head->next = NULL;
1427
1428 smp_mb(); /* Ensure RCU update seen before callback registry. */
1429
1430 /*
1431 * Opportunistically note grace-period endings and beginnings.
1432 * Note that we might see a beginning right after we see an
1433 * end, but never vice versa, since this CPU has to pass through
1434 * a quiescent state betweentimes.
1435 */
1436 local_irq_save(flags);
394f99a9 1437 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1438 rcu_process_gp_end(rsp, rdp);
1439 check_for_new_grace_period(rsp, rdp);
1440
1441 /* Add the callback to our list. */
1442 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1443 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1444
1445 /* Start a new grace period if one not already started. */
fc2219d4 1446 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1447 unsigned long nestflag;
1448 struct rcu_node *rnp_root = rcu_get_root(rsp);
1449
1304afb2 1450 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
64db4cff
PM
1451 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1452 }
1453
37c72e56
PM
1454 /*
1455 * Force the grace period if too many callbacks or too long waiting.
1456 * Enforce hysteresis, and don't invoke force_quiescent_state()
1457 * if some other CPU has recently done so. Also, don't bother
1458 * invoking force_quiescent_state() if the newly enqueued callback
1459 * is the only one waiting for a grace period to complete.
1460 */
1461 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
64db4cff 1462 rdp->blimit = LONG_MAX;
37c72e56
PM
1463 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1464 *rdp->nxttail[RCU_DONE_TAIL] != head)
1465 force_quiescent_state(rsp, 0);
1466 rdp->n_force_qs_snap = rsp->n_force_qs;
1467 rdp->qlen_last_fqs_check = rdp->qlen;
20133cfc 1468 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1469 force_quiescent_state(rsp, 1);
1470 local_irq_restore(flags);
1471}
1472
1473/*
d6714c22 1474 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1475 */
d6714c22 1476void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1477{
d6714c22 1478 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1479}
d6714c22 1480EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1481
1482/*
1483 * Queue an RCU for invocation after a quicker grace period.
1484 */
1485void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1486{
1487 __call_rcu(head, func, &rcu_bh_state);
1488}
1489EXPORT_SYMBOL_GPL(call_rcu_bh);
1490
6ebb237b
PM
1491/**
1492 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1493 *
1494 * Control will return to the caller some time after a full rcu-sched
1495 * grace period has elapsed, in other words after all currently executing
1496 * rcu-sched read-side critical sections have completed. These read-side
1497 * critical sections are delimited by rcu_read_lock_sched() and
1498 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1499 * local_irq_disable(), and so on may be used in place of
1500 * rcu_read_lock_sched().
1501 *
1502 * This means that all preempt_disable code sequences, including NMI and
1503 * hardware-interrupt handlers, in progress on entry will have completed
1504 * before this primitive returns. However, this does not guarantee that
1505 * softirq handlers will have completed, since in some kernels, these
1506 * handlers can run in process context, and can block.
1507 *
1508 * This primitive provides the guarantees made by the (now removed)
1509 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1510 * guarantees that rcu_read_lock() sections will have completed.
1511 * In "classic RCU", these two guarantees happen to be one and
1512 * the same, but can differ in realtime RCU implementations.
1513 */
1514void synchronize_sched(void)
1515{
1516 struct rcu_synchronize rcu;
1517
1518 if (rcu_blocking_is_gp())
1519 return;
1520
72d5a9f7 1521 init_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1522 init_completion(&rcu.completion);
1523 /* Will wake me after RCU finished. */
1524 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1525 /* Wait for it. */
1526 wait_for_completion(&rcu.completion);
72d5a9f7 1527 destroy_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1528}
1529EXPORT_SYMBOL_GPL(synchronize_sched);
1530
1531/**
1532 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1533 *
1534 * Control will return to the caller some time after a full rcu_bh grace
1535 * period has elapsed, in other words after all currently executing rcu_bh
1536 * read-side critical sections have completed. RCU read-side critical
1537 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1538 * and may be nested.
1539 */
1540void synchronize_rcu_bh(void)
1541{
1542 struct rcu_synchronize rcu;
1543
1544 if (rcu_blocking_is_gp())
1545 return;
1546
72d5a9f7 1547 init_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1548 init_completion(&rcu.completion);
1549 /* Will wake me after RCU finished. */
1550 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1551 /* Wait for it. */
1552 wait_for_completion(&rcu.completion);
72d5a9f7 1553 destroy_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1554}
1555EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1556
64db4cff
PM
1557/*
1558 * Check to see if there is any immediate RCU-related work to be done
1559 * by the current CPU, for the specified type of RCU, returning 1 if so.
1560 * The checks are in order of increasing expense: checks that can be
1561 * carried out against CPU-local state are performed first. However,
1562 * we must check for CPU stalls first, else we might not get a chance.
1563 */
1564static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1565{
2f51f988
PM
1566 struct rcu_node *rnp = rdp->mynode;
1567
64db4cff
PM
1568 rdp->n_rcu_pending++;
1569
1570 /* Check for CPU stalls, if enabled. */
1571 check_cpu_stall(rsp, rdp);
1572
1573 /* Is the RCU core waiting for a quiescent state from this CPU? */
d21670ac 1574 if (rdp->qs_pending && !rdp->passed_quiesc) {
d25eb944
PM
1575
1576 /*
1577 * If force_quiescent_state() coming soon and this CPU
1578 * needs a quiescent state, and this is either RCU-sched
1579 * or RCU-bh, force a local reschedule.
1580 */
d21670ac 1581 rdp->n_rp_qs_pending++;
d25eb944
PM
1582 if (!rdp->preemptable &&
1583 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1584 jiffies))
1585 set_need_resched();
d21670ac
PM
1586 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1587 rdp->n_rp_report_qs++;
64db4cff 1588 return 1;
7ba5c840 1589 }
64db4cff
PM
1590
1591 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1592 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1593 rdp->n_rp_cb_ready++;
64db4cff 1594 return 1;
7ba5c840 1595 }
64db4cff
PM
1596
1597 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1598 if (cpu_needs_another_gp(rsp, rdp)) {
1599 rdp->n_rp_cpu_needs_gp++;
64db4cff 1600 return 1;
7ba5c840 1601 }
64db4cff
PM
1602
1603 /* Has another RCU grace period completed? */
2f51f988 1604 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1605 rdp->n_rp_gp_completed++;
64db4cff 1606 return 1;
7ba5c840 1607 }
64db4cff
PM
1608
1609 /* Has a new RCU grace period started? */
2f51f988 1610 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1611 rdp->n_rp_gp_started++;
64db4cff 1612 return 1;
7ba5c840 1613 }
64db4cff
PM
1614
1615 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1616 if (rcu_gp_in_progress(rsp) &&
20133cfc 1617 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1618 rdp->n_rp_need_fqs++;
64db4cff 1619 return 1;
7ba5c840 1620 }
64db4cff
PM
1621
1622 /* nothing to do */
7ba5c840 1623 rdp->n_rp_need_nothing++;
64db4cff
PM
1624 return 0;
1625}
1626
1627/*
1628 * Check to see if there is any immediate RCU-related work to be done
1629 * by the current CPU, returning 1 if so. This function is part of the
1630 * RCU implementation; it is -not- an exported member of the RCU API.
1631 */
a157229c 1632static int rcu_pending(int cpu)
64db4cff 1633{
d6714c22 1634 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1635 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1636 rcu_preempt_pending(cpu);
64db4cff
PM
1637}
1638
1639/*
1640 * Check to see if any future RCU-related work will need to be done
1641 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1642 * 1 if so.
64db4cff 1643 */
8bd93a2c 1644static int rcu_needs_cpu_quick_check(int cpu)
64db4cff
PM
1645{
1646 /* RCU callbacks either ready or pending? */
d6714c22 1647 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1648 per_cpu(rcu_bh_data, cpu).nxtlist ||
1649 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1650}
1651
d0ec774c
PM
1652static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1653static atomic_t rcu_barrier_cpu_count;
1654static DEFINE_MUTEX(rcu_barrier_mutex);
1655static struct completion rcu_barrier_completion;
d0ec774c
PM
1656
1657static void rcu_barrier_callback(struct rcu_head *notused)
1658{
1659 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1660 complete(&rcu_barrier_completion);
1661}
1662
1663/*
1664 * Called with preemption disabled, and from cross-cpu IRQ context.
1665 */
1666static void rcu_barrier_func(void *type)
1667{
1668 int cpu = smp_processor_id();
1669 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1670 void (*call_rcu_func)(struct rcu_head *head,
1671 void (*func)(struct rcu_head *head));
1672
1673 atomic_inc(&rcu_barrier_cpu_count);
1674 call_rcu_func = type;
1675 call_rcu_func(head, rcu_barrier_callback);
1676}
1677
d0ec774c
PM
1678/*
1679 * Orchestrate the specified type of RCU barrier, waiting for all
1680 * RCU callbacks of the specified type to complete.
1681 */
e74f4c45
PM
1682static void _rcu_barrier(struct rcu_state *rsp,
1683 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1684 void (*func)(struct rcu_head *head)))
1685{
1686 BUG_ON(in_interrupt());
e74f4c45 1687 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1688 mutex_lock(&rcu_barrier_mutex);
1689 init_completion(&rcu_barrier_completion);
1690 /*
1691 * Initialize rcu_barrier_cpu_count to 1, then invoke
1692 * rcu_barrier_func() on each CPU, so that each CPU also has
1693 * incremented rcu_barrier_cpu_count. Only then is it safe to
1694 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1695 * might complete its grace period before all of the other CPUs
1696 * did their increment, causing this function to return too
2d999e03
PM
1697 * early. Note that on_each_cpu() disables irqs, which prevents
1698 * any CPUs from coming online or going offline until each online
1699 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
1700 */
1701 atomic_set(&rcu_barrier_cpu_count, 1);
1702 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1703 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1704 complete(&rcu_barrier_completion);
1705 wait_for_completion(&rcu_barrier_completion);
1706 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1707}
d0ec774c
PM
1708
1709/**
1710 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1711 */
1712void rcu_barrier_bh(void)
1713{
e74f4c45 1714 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1715}
1716EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1717
1718/**
1719 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1720 */
1721void rcu_barrier_sched(void)
1722{
e74f4c45 1723 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
1724}
1725EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1726
64db4cff 1727/*
27569620 1728 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1729 */
27569620
PM
1730static void __init
1731rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1732{
1733 unsigned long flags;
1734 int i;
394f99a9 1735 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
1736 struct rcu_node *rnp = rcu_get_root(rsp);
1737
1738 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1739 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
1740 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1741 rdp->nxtlist = NULL;
1742 for (i = 0; i < RCU_NEXT_SIZE; i++)
1743 rdp->nxttail[i] = &rdp->nxtlist;
1744 rdp->qlen = 0;
1745#ifdef CONFIG_NO_HZ
1746 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1747#endif /* #ifdef CONFIG_NO_HZ */
1748 rdp->cpu = cpu;
1304afb2 1749 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
1750}
1751
1752/*
1753 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1754 * offline event can be happening at a given time. Note also that we
1755 * can accept some slop in the rsp->completed access due to the fact
1756 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1757 */
e4fa4c97 1758static void __cpuinit
f41d911f 1759rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1760{
1761 unsigned long flags;
64db4cff 1762 unsigned long mask;
394f99a9 1763 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
1764 struct rcu_node *rnp = rcu_get_root(rsp);
1765
1766 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1767 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1768 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1769 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1770 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1771 rdp->preemptable = preemptable;
37c72e56
PM
1772 rdp->qlen_last_fqs_check = 0;
1773 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 1774 rdp->blimit = blimit;
1304afb2 1775 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1776
1777 /*
1778 * A new grace period might start here. If so, we won't be part
1779 * of it, but that is OK, as we are currently in a quiescent state.
1780 */
1781
1782 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 1783 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1784
1785 /* Add CPU to rcu_node bitmasks. */
1786 rnp = rdp->mynode;
1787 mask = rdp->grpmask;
1788 do {
1789 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 1790 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1791 rnp->qsmaskinit |= mask;
1792 mask = rnp->grpmask;
d09b62df
PM
1793 if (rnp == rdp->mynode) {
1794 rdp->gpnum = rnp->completed; /* if GP in progress... */
1795 rdp->completed = rnp->completed;
1796 rdp->passed_quiesc_completed = rnp->completed - 1;
1797 }
1304afb2 1798 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1799 rnp = rnp->parent;
1800 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1801
1304afb2 1802 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1803}
1804
1805static void __cpuinit rcu_online_cpu(int cpu)
1806{
f41d911f
PM
1807 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1808 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1809 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1810}
1811
1812/*
f41d911f 1813 * Handle CPU online/offline notification events.
64db4cff 1814 */
9f680ab4
PM
1815static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1816 unsigned long action, void *hcpu)
64db4cff
PM
1817{
1818 long cpu = (long)hcpu;
1819
1820 switch (action) {
1821 case CPU_UP_PREPARE:
1822 case CPU_UP_PREPARE_FROZEN:
1823 rcu_online_cpu(cpu);
1824 break;
d0ec774c
PM
1825 case CPU_DYING:
1826 case CPU_DYING_FROZEN:
1827 /*
2d999e03
PM
1828 * The whole machine is "stopped" except this CPU, so we can
1829 * touch any data without introducing corruption. We send the
1830 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 1831 */
29494be7
LJ
1832 rcu_send_cbs_to_online(&rcu_bh_state);
1833 rcu_send_cbs_to_online(&rcu_sched_state);
1834 rcu_preempt_send_cbs_to_online();
d0ec774c 1835 break;
64db4cff
PM
1836 case CPU_DEAD:
1837 case CPU_DEAD_FROZEN:
1838 case CPU_UP_CANCELED:
1839 case CPU_UP_CANCELED_FROZEN:
1840 rcu_offline_cpu(cpu);
1841 break;
1842 default:
1843 break;
1844 }
1845 return NOTIFY_OK;
1846}
1847
bbad9379
PM
1848/*
1849 * This function is invoked towards the end of the scheduler's initialization
1850 * process. Before this is called, the idle task might contain
1851 * RCU read-side critical sections (during which time, this idle
1852 * task is booting the system). After this function is called, the
1853 * idle tasks are prohibited from containing RCU read-side critical
1854 * sections. This function also enables RCU lockdep checking.
1855 */
1856void rcu_scheduler_starting(void)
1857{
1858 WARN_ON(num_online_cpus() != 1);
1859 WARN_ON(nr_context_switches() > 0);
1860 rcu_scheduler_active = 1;
1861}
1862
64db4cff
PM
1863/*
1864 * Compute the per-level fanout, either using the exact fanout specified
1865 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1866 */
1867#ifdef CONFIG_RCU_FANOUT_EXACT
1868static void __init rcu_init_levelspread(struct rcu_state *rsp)
1869{
1870 int i;
1871
0209f649 1872 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 1873 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 1874 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
1875}
1876#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1877static void __init rcu_init_levelspread(struct rcu_state *rsp)
1878{
1879 int ccur;
1880 int cprv;
1881 int i;
1882
1883 cprv = NR_CPUS;
1884 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1885 ccur = rsp->levelcnt[i];
1886 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1887 cprv = ccur;
1888 }
1889}
1890#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1891
1892/*
1893 * Helper function for rcu_init() that initializes one rcu_state structure.
1894 */
394f99a9
LJ
1895static void __init rcu_init_one(struct rcu_state *rsp,
1896 struct rcu_data __percpu *rda)
64db4cff 1897{
b6407e86
PM
1898 static char *buf[] = { "rcu_node_level_0",
1899 "rcu_node_level_1",
1900 "rcu_node_level_2",
1901 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
1902 int cpustride = 1;
1903 int i;
1904 int j;
1905 struct rcu_node *rnp;
1906
b6407e86
PM
1907 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1908
64db4cff
PM
1909 /* Initialize the level-tracking arrays. */
1910
1911 for (i = 1; i < NUM_RCU_LVLS; i++)
1912 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1913 rcu_init_levelspread(rsp);
1914
1915 /* Initialize the elements themselves, starting from the leaves. */
1916
1917 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1918 cpustride *= rsp->levelspread[i];
1919 rnp = rsp->level[i];
1920 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 1921 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
1922 lockdep_set_class_and_name(&rnp->lock,
1923 &rcu_node_class[i], buf[i]);
f41d911f 1924 rnp->gpnum = 0;
64db4cff
PM
1925 rnp->qsmask = 0;
1926 rnp->qsmaskinit = 0;
1927 rnp->grplo = j * cpustride;
1928 rnp->grphi = (j + 1) * cpustride - 1;
1929 if (rnp->grphi >= NR_CPUS)
1930 rnp->grphi = NR_CPUS - 1;
1931 if (i == 0) {
1932 rnp->grpnum = 0;
1933 rnp->grpmask = 0;
1934 rnp->parent = NULL;
1935 } else {
1936 rnp->grpnum = j % rsp->levelspread[i - 1];
1937 rnp->grpmask = 1UL << rnp->grpnum;
1938 rnp->parent = rsp->level[i - 1] +
1939 j / rsp->levelspread[i - 1];
1940 }
1941 rnp->level = i;
f41d911f
PM
1942 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1943 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
d9a3da06
PM
1944 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1945 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
64db4cff
PM
1946 }
1947 }
0c34029a 1948
394f99a9 1949 rsp->rda = rda;
0c34029a
LJ
1950 rnp = rsp->level[NUM_RCU_LVLS - 1];
1951 for_each_possible_cpu(i) {
4a90a068 1952 while (i > rnp->grphi)
0c34029a 1953 rnp++;
394f99a9 1954 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
1955 rcu_boot_init_percpu_data(i, rsp);
1956 }
64db4cff
PM
1957}
1958
9f680ab4 1959void __init rcu_init(void)
64db4cff 1960{
017c4261 1961 int cpu;
9f680ab4 1962
f41d911f 1963 rcu_bootup_announce();
394f99a9
LJ
1964 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
1965 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 1966 __rcu_init_preempt();
2e597558 1967 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
1968
1969 /*
1970 * We don't need protection against CPU-hotplug here because
1971 * this is called early in boot, before either interrupts
1972 * or the scheduler are operational.
1973 */
1974 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
1975 for_each_online_cpu(cpu)
1976 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 1977 check_cpu_stall_init();
64db4cff
PM
1978}
1979
1eba8f84 1980#include "rcutree_plugin.h"