ext4: Use separate super_operations structure for no_journal filesystems
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
fe2c8191 374static int __ext4_check_blockref(const char *function, struct inode *inode,
f73953c0 375 __le32 *p, unsigned int max) {
fe2c8191
TN
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
f73953c0 378 __le32 *bref = p;
fe2c8191 379 while (bref < p+max) {
f73953c0 380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
fe2c8191
TN
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
f73953c0 384 le32_to_cpu(*bref), maxblocks,
fe2c8191
TN
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391}
392
393
394#define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398#define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
ac27a0ec 402/**
617ba13b 403 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
ac27a0ec
DK
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
428 *
429 * Need to be called with
0e855ac8 430 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 431 */
725d26d3
AK
432static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
ac27a0ec
DK
434 Indirect chain[4], int *err)
435{
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
af5bc92d 442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
fe2c8191
TN
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
ac27a0ec 448 goto failure;
fe2c8191
TN
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
af5bc92d 462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
ac27a0ec
DK
469failure:
470 *err = -EIO;
471no_block:
472 return p;
473}
474
475/**
617ba13b 476 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
1cc8dcf5 480 * This function returns the preferred place for block allocation.
ac27a0ec
DK
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
617ba13b 495static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 496{
617ba13b 497 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 499 __le32 *p;
617ba13b 500 ext4_fsblk_t bg_start;
74d3487f 501 ext4_fsblk_t last_block;
617ba13b 502 ext4_grpblk_t colour;
a4912123
TT
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
a4912123
TT
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
a4912123
TT
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
74d3487f
VC
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
617ba13b 538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
541 return bg_start + colour;
542}
543
544/**
1cc8dcf5 545 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
546 * @inode: owner
547 * @block: block we want
ac27a0ec 548 * @partial: pointer to the last triple within a chain
ac27a0ec 549 *
1cc8dcf5 550 * Normally this function find the preferred place for block allocation,
fb01bfda 551 * returns it.
ac27a0ec 552 */
725d26d3 553static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 554 Indirect *partial)
ac27a0ec 555{
ac27a0ec 556 /*
c2ea3fde 557 * XXX need to get goal block from mballoc's data structures
ac27a0ec 558 */
ac27a0ec 559
617ba13b 560 return ext4_find_near(inode, partial);
ac27a0ec
DK
561}
562
563/**
617ba13b 564 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
498e5f24 575static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
576 int blocks_to_boundary)
577{
498e5f24 578 unsigned int count = 0;
ac27a0ec
DK
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599}
600
601/**
617ba13b 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
617ba13b 611static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 615{
815a1130 616 struct ext4_allocation_request ar;
ac27a0ec 617 int target, i;
7061eba7 618 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 619 int index = 0;
617ba13b 620 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
7061eba7
AK
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
ac27a0ec
DK
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
ac27a0ec
DK
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
7061eba7
AK
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
ac27a0ec 656 break;
7061eba7 657 }
ac27a0ec
DK
658 }
659
7061eba7
AK
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
815a1130
TT
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
7061eba7
AK
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
815a1130 691 blk_allocated += ar.len;
7061eba7
AK
692 }
693allocated:
ac27a0ec 694 /* total number of blocks allocated for direct blocks */
7061eba7 695 ret = blk_allocated;
ac27a0ec
DK
696 *err = 0;
697 return ret;
698failed_out:
af5bc92d 699 for (i = 0; i < index; i++)
c9de560d 700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
701 return ret;
702}
703
704/**
617ba13b 705 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
617ba13b 716 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 719 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
617ba13b 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
727 * as described above and return 0.
728 */
617ba13b 729static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
733{
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
617ba13b
MC
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
ac27a0ec 741
7061eba7 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 761 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
af5bc92d 772 if (n == indirect_blks) {
ac27a0ec
DK
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
0390131b
FM
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
dab291af 796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 797 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 798 }
af5bc92d 799 for (i = 0; i < indirect_blks; i++)
c9de560d 800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 801
c9de560d 802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
803
804 return err;
805}
806
807/**
617ba13b 808 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 812 * ext4_alloc_branch)
ac27a0ec
DK
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
617ba13b 821static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 822 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
823{
824 int i;
825 int err = 0;
617ba13b 826 ext4_fsblk_t current_block;
ac27a0ec 827
ac27a0ec
DK
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 835 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
af5bc92d 850 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
851 }
852
ac27a0ec
DK
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
ef7f3835 855 inode->i_ctime = ext4_current_time(inode);
617ba13b 856 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
617ba13b 866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
867 */
868 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882err_out:
883 for (i = 1; i <= num; i++) {
dab291af 884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 885 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 888 }
c9de560d 889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
890
891 return err;
892}
893
894/*
895 * Allocation strategy is simple: if we have to allocate something, we will
896 * have to go the whole way to leaf. So let's do it before attaching anything
897 * to tree, set linkage between the newborn blocks, write them if sync is
898 * required, recheck the path, free and repeat if check fails, otherwise
899 * set the last missing link (that will protect us from any truncate-generated
900 * removals - all blocks on the path are immune now) and possibly force the
901 * write on the parent block.
902 * That has a nice additional property: no special recovery from the failed
903 * allocations is needed - we simply release blocks and do not touch anything
904 * reachable from inode.
905 *
906 * `handle' can be NULL if create == 0.
907 *
ac27a0ec
DK
908 * return > 0, # of blocks mapped or allocated.
909 * return = 0, if plain lookup failed.
910 * return < 0, error case.
c278bfec
AK
911 *
912 *
913 * Need to be called with
0e855ac8
AK
914 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 916 */
498e5f24
TT
917static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918 ext4_lblk_t iblock, unsigned int maxblocks,
919 struct buffer_head *bh_result,
920 int create, int extend_disksize)
ac27a0ec
DK
921{
922 int err = -EIO;
725d26d3 923 ext4_lblk_t offsets[4];
ac27a0ec
DK
924 Indirect chain[4];
925 Indirect *partial;
617ba13b 926 ext4_fsblk_t goal;
ac27a0ec
DK
927 int indirect_blks;
928 int blocks_to_boundary = 0;
929 int depth;
617ba13b 930 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 931 int count = 0;
617ba13b 932 ext4_fsblk_t first_block = 0;
61628a3f 933 loff_t disksize;
ac27a0ec
DK
934
935
a86c6181 936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 937 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
938 depth = ext4_block_to_path(inode, iblock, offsets,
939 &blocks_to_boundary);
ac27a0ec
DK
940
941 if (depth == 0)
942 goto out;
943
617ba13b 944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
945
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 953 ext4_fsblk_t blk;
ac27a0ec 954
ac27a0ec
DK
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
961 }
c278bfec 962 goto got_it;
ac27a0ec
DK
963 }
964
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if (!create || err == -EIO)
967 goto cleanup;
968
ac27a0ec 969 /*
c2ea3fde 970 * Okay, we need to do block allocation.
ac27a0ec 971 */
fb01bfda 972 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
973
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
976
977 /*
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
980 */
617ba13b 981 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
982 maxblocks, blocks_to_boundary);
983 /*
617ba13b 984 * Block out ext4_truncate while we alter the tree
ac27a0ec 985 */
7061eba7
AK
986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 &count, goal,
988 offsets + (partial - chain), partial);
ac27a0ec
DK
989
990 /*
617ba13b 991 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
996 */
997 if (!err)
617ba13b 998 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
999 partial, indirect_blks, count);
1000 /*
0e855ac8 1001 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 1002 * protect it if you're about to implement concurrent
617ba13b 1003 * ext4_get_block() -bzzz
ac27a0ec 1004 */
61628a3f
MC
1005 if (!err && extend_disksize) {
1006 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007 if (disksize > i_size_read(inode))
1008 disksize = i_size_read(inode);
1009 if (disksize > ei->i_disksize)
1010 ei->i_disksize = disksize;
1011 }
ac27a0ec
DK
1012 if (err)
1013 goto cleanup;
1014
1015 set_buffer_new(bh_result);
1016got_it:
1017 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018 if (count > blocks_to_boundary)
1019 set_buffer_boundary(bh_result);
1020 err = count;
1021 /* Clean up and exit */
1022 partial = chain + depth - 1; /* the whole chain */
1023cleanup:
1024 while (partial > chain) {
1025 BUFFER_TRACE(partial->bh, "call brelse");
1026 brelse(partial->bh);
1027 partial--;
1028 }
1029 BUFFER_TRACE(bh_result, "returned");
1030out:
1031 return err;
1032}
1033
60e58e0f
MC
1034qsize_t ext4_get_reserved_space(struct inode *inode)
1035{
1036 unsigned long long total;
1037
1038 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039 total = EXT4_I(inode)->i_reserved_data_blocks +
1040 EXT4_I(inode)->i_reserved_meta_blocks;
1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043 return total;
1044}
12219aea
AK
1045/*
1046 * Calculate the number of metadata blocks need to reserve
1047 * to allocate @blocks for non extent file based file
1048 */
1049static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050{
1051 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052 int ind_blks, dind_blks, tind_blks;
1053
1054 /* number of new indirect blocks needed */
1055 ind_blks = (blocks + icap - 1) / icap;
1056
1057 dind_blks = (ind_blks + icap - 1) / icap;
1058
1059 tind_blks = 1;
1060
1061 return ind_blks + dind_blks + tind_blks;
1062}
1063
1064/*
1065 * Calculate the number of metadata blocks need to reserve
1066 * to allocate given number of blocks
1067 */
1068static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069{
cd213226
MC
1070 if (!blocks)
1071 return 0;
1072
12219aea
AK
1073 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076 return ext4_indirect_calc_metadata_amount(inode, blocks);
1077}
1078
1079static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080{
1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082 int total, mdb, mdb_free;
1083
1084 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085 /* recalculate the number of metablocks still need to be reserved */
1086 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087 mdb = ext4_calc_metadata_amount(inode, total);
1088
1089 /* figure out how many metablocks to release */
1090 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
6bc6e63f
AK
1093 if (mdb_free) {
1094 /* Account for allocated meta_blocks */
1095 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097 /* update fs dirty blocks counter */
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101 }
12219aea
AK
1102
1103 /* update per-inode reservations */
1104 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1105 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1106 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1107
1108 /*
1109 * free those over-booking quota for metadata blocks
1110 */
60e58e0f
MC
1111 if (mdb_free)
1112 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1113
1114 /*
1115 * If we have done all the pending block allocations and if
1116 * there aren't any writers on the inode, we can discard the
1117 * inode's preallocations.
1118 */
1119 if (!total && (atomic_read(&inode->i_writecount) == 0))
1120 ext4_discard_preallocations(inode);
12219aea
AK
1121}
1122
f5ab0d1f 1123/*
2b2d6d01
TT
1124 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125 * and returns if the blocks are already mapped.
f5ab0d1f 1126 *
f5ab0d1f
MC
1127 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128 * and store the allocated blocks in the result buffer head and mark it
1129 * mapped.
1130 *
1131 * If file type is extents based, it will call ext4_ext_get_blocks(),
1132 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133 * based files
1134 *
1135 * On success, it returns the number of blocks being mapped or allocate.
1136 * if create==0 and the blocks are pre-allocated and uninitialized block,
1137 * the result buffer head is unmapped. If the create ==1, it will make sure
1138 * the buffer head is mapped.
1139 *
1140 * It returns 0 if plain look up failed (blocks have not been allocated), in
1141 * that casem, buffer head is unmapped
1142 *
1143 * It returns the error in case of allocation failure.
1144 */
0e855ac8 1145int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
498e5f24 1146 unsigned int max_blocks, struct buffer_head *bh,
d2a17637 1147 int create, int extend_disksize, int flag)
0e855ac8
AK
1148{
1149 int retval;
f5ab0d1f
MC
1150
1151 clear_buffer_mapped(bh);
2a8964d6 1152 clear_buffer_unwritten(bh);
f5ab0d1f 1153
4df3d265
AK
1154 /*
1155 * Try to see if we can get the block without requesting
1156 * for new file system block.
1157 */
1158 down_read((&EXT4_I(inode)->i_data_sem));
1159 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1160 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161 bh, 0, 0);
0e855ac8 1162 } else {
4df3d265
AK
1163 retval = ext4_get_blocks_handle(handle,
1164 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1165 }
4df3d265 1166 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1167
1168 /* If it is only a block(s) look up */
1169 if (!create)
1170 return retval;
1171
1172 /*
1173 * Returns if the blocks have already allocated
1174 *
1175 * Note that if blocks have been preallocated
1176 * ext4_ext_get_block() returns th create = 0
1177 * with buffer head unmapped.
1178 */
1179 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1180 return retval;
1181
2a8964d6
AK
1182 /*
1183 * When we call get_blocks without the create flag, the
1184 * BH_Unwritten flag could have gotten set if the blocks
1185 * requested were part of a uninitialized extent. We need to
1186 * clear this flag now that we are committed to convert all or
1187 * part of the uninitialized extent to be an initialized
1188 * extent. This is because we need to avoid the combination
1189 * of BH_Unwritten and BH_Mapped flags being simultaneously
1190 * set on the buffer_head.
1191 */
1192 clear_buffer_unwritten(bh);
1193
4df3d265 1194 /*
f5ab0d1f
MC
1195 * New blocks allocate and/or writing to uninitialized extent
1196 * will possibly result in updating i_data, so we take
1197 * the write lock of i_data_sem, and call get_blocks()
1198 * with create == 1 flag.
4df3d265
AK
1199 */
1200 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1201
1202 /*
1203 * if the caller is from delayed allocation writeout path
1204 * we have already reserved fs blocks for allocation
1205 * let the underlying get_block() function know to
1206 * avoid double accounting
1207 */
1208 if (flag)
1209 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1210 /*
1211 * We need to check for EXT4 here because migrate
1212 * could have changed the inode type in between
1213 */
0e855ac8
AK
1214 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1215 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216 bh, create, extend_disksize);
1217 } else {
1218 retval = ext4_get_blocks_handle(handle, inode, block,
1219 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1220
1221 if (retval > 0 && buffer_new(bh)) {
1222 /*
1223 * We allocated new blocks which will result in
1224 * i_data's format changing. Force the migrate
1225 * to fail by clearing migrate flags
1226 */
1227 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1228 ~EXT4_EXT_MIGRATE;
1229 }
0e855ac8 1230 }
d2a17637
MC
1231
1232 if (flag) {
1233 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1234 /*
1235 * Update reserved blocks/metadata blocks
1236 * after successful block allocation
1237 * which were deferred till now
1238 */
1239 if ((retval > 0) && buffer_delay(bh))
12219aea 1240 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1241 }
1242
4df3d265 1243 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1244 return retval;
1245}
1246
f3bd1f3f
MC
1247/* Maximum number of blocks we map for direct IO at once. */
1248#define DIO_MAX_BLOCKS 4096
1249
6873fa0d
ES
1250int ext4_get_block(struct inode *inode, sector_t iblock,
1251 struct buffer_head *bh_result, int create)
ac27a0ec 1252{
3e4fdaf8 1253 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1254 int ret = 0, started = 0;
ac27a0ec 1255 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1256 int dio_credits;
ac27a0ec 1257
7fb5409d
JK
1258 if (create && !handle) {
1259 /* Direct IO write... */
1260 if (max_blocks > DIO_MAX_BLOCKS)
1261 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1262 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1263 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1264 if (IS_ERR(handle)) {
ac27a0ec 1265 ret = PTR_ERR(handle);
7fb5409d 1266 goto out;
ac27a0ec 1267 }
7fb5409d 1268 started = 1;
ac27a0ec
DK
1269 }
1270
7fb5409d 1271 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1272 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1273 if (ret > 0) {
1274 bh_result->b_size = (ret << inode->i_blkbits);
1275 ret = 0;
ac27a0ec 1276 }
7fb5409d
JK
1277 if (started)
1278 ext4_journal_stop(handle);
1279out:
ac27a0ec
DK
1280 return ret;
1281}
1282
1283/*
1284 * `handle' can be NULL if create is zero
1285 */
617ba13b 1286struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1287 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1288{
1289 struct buffer_head dummy;
1290 int fatal = 0, err;
1291
1292 J_ASSERT(handle != NULL || create == 0);
1293
1294 dummy.b_state = 0;
1295 dummy.b_blocknr = -1000;
1296 buffer_trace_init(&dummy.b_history);
a86c6181 1297 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1298 &dummy, create, 1, 0);
ac27a0ec 1299 /*
617ba13b 1300 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1301 * mapped. 0 in case of a HOLE.
1302 */
1303 if (err > 0) {
1304 if (err > 1)
1305 WARN_ON(1);
1306 err = 0;
1307 }
1308 *errp = err;
1309 if (!err && buffer_mapped(&dummy)) {
1310 struct buffer_head *bh;
1311 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1312 if (!bh) {
1313 *errp = -EIO;
1314 goto err;
1315 }
1316 if (buffer_new(&dummy)) {
1317 J_ASSERT(create != 0);
ac39849d 1318 J_ASSERT(handle != NULL);
ac27a0ec
DK
1319
1320 /*
1321 * Now that we do not always journal data, we should
1322 * keep in mind whether this should always journal the
1323 * new buffer as metadata. For now, regular file
617ba13b 1324 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1325 * problem.
1326 */
1327 lock_buffer(bh);
1328 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1329 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1330 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1331 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1332 set_buffer_uptodate(bh);
1333 }
1334 unlock_buffer(bh);
0390131b
FM
1335 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1336 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1337 if (!fatal)
1338 fatal = err;
1339 } else {
1340 BUFFER_TRACE(bh, "not a new buffer");
1341 }
1342 if (fatal) {
1343 *errp = fatal;
1344 brelse(bh);
1345 bh = NULL;
1346 }
1347 return bh;
1348 }
1349err:
1350 return NULL;
1351}
1352
617ba13b 1353struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1354 ext4_lblk_t block, int create, int *err)
ac27a0ec 1355{
af5bc92d 1356 struct buffer_head *bh;
ac27a0ec 1357
617ba13b 1358 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1359 if (!bh)
1360 return bh;
1361 if (buffer_uptodate(bh))
1362 return bh;
1363 ll_rw_block(READ_META, 1, &bh);
1364 wait_on_buffer(bh);
1365 if (buffer_uptodate(bh))
1366 return bh;
1367 put_bh(bh);
1368 *err = -EIO;
1369 return NULL;
1370}
1371
af5bc92d
TT
1372static int walk_page_buffers(handle_t *handle,
1373 struct buffer_head *head,
1374 unsigned from,
1375 unsigned to,
1376 int *partial,
1377 int (*fn)(handle_t *handle,
1378 struct buffer_head *bh))
ac27a0ec
DK
1379{
1380 struct buffer_head *bh;
1381 unsigned block_start, block_end;
1382 unsigned blocksize = head->b_size;
1383 int err, ret = 0;
1384 struct buffer_head *next;
1385
af5bc92d
TT
1386 for (bh = head, block_start = 0;
1387 ret == 0 && (bh != head || !block_start);
1388 block_start = block_end, bh = next)
ac27a0ec
DK
1389 {
1390 next = bh->b_this_page;
1391 block_end = block_start + blocksize;
1392 if (block_end <= from || block_start >= to) {
1393 if (partial && !buffer_uptodate(bh))
1394 *partial = 1;
1395 continue;
1396 }
1397 err = (*fn)(handle, bh);
1398 if (!ret)
1399 ret = err;
1400 }
1401 return ret;
1402}
1403
1404/*
1405 * To preserve ordering, it is essential that the hole instantiation and
1406 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1407 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1408 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1409 * prepare_write() is the right place.
1410 *
617ba13b
MC
1411 * Also, this function can nest inside ext4_writepage() ->
1412 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1413 * has generated enough buffer credits to do the whole page. So we won't
1414 * block on the journal in that case, which is good, because the caller may
1415 * be PF_MEMALLOC.
1416 *
617ba13b 1417 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1418 * quota file writes. If we were to commit the transaction while thus
1419 * reentered, there can be a deadlock - we would be holding a quota
1420 * lock, and the commit would never complete if another thread had a
1421 * transaction open and was blocking on the quota lock - a ranking
1422 * violation.
1423 *
dab291af 1424 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1425 * will _not_ run commit under these circumstances because handle->h_ref
1426 * is elevated. We'll still have enough credits for the tiny quotafile
1427 * write.
1428 */
1429static int do_journal_get_write_access(handle_t *handle,
1430 struct buffer_head *bh)
1431{
1432 if (!buffer_mapped(bh) || buffer_freed(bh))
1433 return 0;
617ba13b 1434 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1435}
1436
bfc1af65
NP
1437static int ext4_write_begin(struct file *file, struct address_space *mapping,
1438 loff_t pos, unsigned len, unsigned flags,
1439 struct page **pagep, void **fsdata)
ac27a0ec 1440{
af5bc92d 1441 struct inode *inode = mapping->host;
7479d2b9 1442 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1443 handle_t *handle;
1444 int retries = 0;
af5bc92d 1445 struct page *page;
bfc1af65 1446 pgoff_t index;
af5bc92d 1447 unsigned from, to;
bfc1af65 1448
ba80b101
TT
1449 trace_mark(ext4_write_begin,
1450 "dev %s ino %lu pos %llu len %u flags %u",
1451 inode->i_sb->s_id, inode->i_ino,
1452 (unsigned long long) pos, len, flags);
bfc1af65 1453 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1454 from = pos & (PAGE_CACHE_SIZE - 1);
1455 to = from + len;
ac27a0ec
DK
1456
1457retry:
af5bc92d
TT
1458 handle = ext4_journal_start(inode, needed_blocks);
1459 if (IS_ERR(handle)) {
1460 ret = PTR_ERR(handle);
1461 goto out;
7479d2b9 1462 }
ac27a0ec 1463
ebd3610b
JK
1464 /* We cannot recurse into the filesystem as the transaction is already
1465 * started */
1466 flags |= AOP_FLAG_NOFS;
1467
54566b2c 1468 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1469 if (!page) {
1470 ext4_journal_stop(handle);
1471 ret = -ENOMEM;
1472 goto out;
1473 }
1474 *pagep = page;
1475
bfc1af65 1476 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1477 ext4_get_block);
bfc1af65
NP
1478
1479 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1480 ret = walk_page_buffers(handle, page_buffers(page),
1481 from, to, NULL, do_journal_get_write_access);
1482 }
bfc1af65
NP
1483
1484 if (ret) {
af5bc92d 1485 unlock_page(page);
cf108bca 1486 ext4_journal_stop(handle);
af5bc92d 1487 page_cache_release(page);
ae4d5372
AK
1488 /*
1489 * block_write_begin may have instantiated a few blocks
1490 * outside i_size. Trim these off again. Don't need
1491 * i_size_read because we hold i_mutex.
1492 */
1493 if (pos + len > inode->i_size)
1494 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1495 }
1496
617ba13b 1497 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1498 goto retry;
7479d2b9 1499out:
ac27a0ec
DK
1500 return ret;
1501}
1502
bfc1af65
NP
1503/* For write_end() in data=journal mode */
1504static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1505{
1506 if (!buffer_mapped(bh) || buffer_freed(bh))
1507 return 0;
1508 set_buffer_uptodate(bh);
0390131b 1509 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1510}
1511
1512/*
1513 * We need to pick up the new inode size which generic_commit_write gave us
1514 * `file' can be NULL - eg, when called from page_symlink().
1515 *
617ba13b 1516 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1517 * buffers are managed internally.
1518 */
bfc1af65
NP
1519static int ext4_ordered_write_end(struct file *file,
1520 struct address_space *mapping,
1521 loff_t pos, unsigned len, unsigned copied,
1522 struct page *page, void *fsdata)
ac27a0ec 1523{
617ba13b 1524 handle_t *handle = ext4_journal_current_handle();
cf108bca 1525 struct inode *inode = mapping->host;
ac27a0ec
DK
1526 int ret = 0, ret2;
1527
ba80b101
TT
1528 trace_mark(ext4_ordered_write_end,
1529 "dev %s ino %lu pos %llu len %u copied %u",
1530 inode->i_sb->s_id, inode->i_ino,
1531 (unsigned long long) pos, len, copied);
678aaf48 1532 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1533
1534 if (ret == 0) {
ac27a0ec
DK
1535 loff_t new_i_size;
1536
bfc1af65 1537 new_i_size = pos + copied;
cf17fea6
AK
1538 if (new_i_size > EXT4_I(inode)->i_disksize) {
1539 ext4_update_i_disksize(inode, new_i_size);
1540 /* We need to mark inode dirty even if
1541 * new_i_size is less that inode->i_size
1542 * bu greater than i_disksize.(hint delalloc)
1543 */
1544 ext4_mark_inode_dirty(handle, inode);
1545 }
1546
cf108bca 1547 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1548 page, fsdata);
f8a87d89
RK
1549 copied = ret2;
1550 if (ret2 < 0)
1551 ret = ret2;
ac27a0ec 1552 }
617ba13b 1553 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1554 if (!ret)
1555 ret = ret2;
bfc1af65
NP
1556
1557 return ret ? ret : copied;
ac27a0ec
DK
1558}
1559
bfc1af65
NP
1560static int ext4_writeback_write_end(struct file *file,
1561 struct address_space *mapping,
1562 loff_t pos, unsigned len, unsigned copied,
1563 struct page *page, void *fsdata)
ac27a0ec 1564{
617ba13b 1565 handle_t *handle = ext4_journal_current_handle();
cf108bca 1566 struct inode *inode = mapping->host;
ac27a0ec
DK
1567 int ret = 0, ret2;
1568 loff_t new_i_size;
1569
ba80b101
TT
1570 trace_mark(ext4_writeback_write_end,
1571 "dev %s ino %lu pos %llu len %u copied %u",
1572 inode->i_sb->s_id, inode->i_ino,
1573 (unsigned long long) pos, len, copied);
bfc1af65 1574 new_i_size = pos + copied;
cf17fea6
AK
1575 if (new_i_size > EXT4_I(inode)->i_disksize) {
1576 ext4_update_i_disksize(inode, new_i_size);
1577 /* We need to mark inode dirty even if
1578 * new_i_size is less that inode->i_size
1579 * bu greater than i_disksize.(hint delalloc)
1580 */
1581 ext4_mark_inode_dirty(handle, inode);
1582 }
ac27a0ec 1583
cf108bca 1584 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1585 page, fsdata);
f8a87d89
RK
1586 copied = ret2;
1587 if (ret2 < 0)
1588 ret = ret2;
ac27a0ec 1589
617ba13b 1590 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1591 if (!ret)
1592 ret = ret2;
bfc1af65
NP
1593
1594 return ret ? ret : copied;
ac27a0ec
DK
1595}
1596
bfc1af65
NP
1597static int ext4_journalled_write_end(struct file *file,
1598 struct address_space *mapping,
1599 loff_t pos, unsigned len, unsigned copied,
1600 struct page *page, void *fsdata)
ac27a0ec 1601{
617ba13b 1602 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1603 struct inode *inode = mapping->host;
ac27a0ec
DK
1604 int ret = 0, ret2;
1605 int partial = 0;
bfc1af65 1606 unsigned from, to;
cf17fea6 1607 loff_t new_i_size;
ac27a0ec 1608
ba80b101
TT
1609 trace_mark(ext4_journalled_write_end,
1610 "dev %s ino %lu pos %llu len %u copied %u",
1611 inode->i_sb->s_id, inode->i_ino,
1612 (unsigned long long) pos, len, copied);
bfc1af65
NP
1613 from = pos & (PAGE_CACHE_SIZE - 1);
1614 to = from + len;
1615
1616 if (copied < len) {
1617 if (!PageUptodate(page))
1618 copied = 0;
1619 page_zero_new_buffers(page, from+copied, to);
1620 }
ac27a0ec
DK
1621
1622 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1623 to, &partial, write_end_fn);
ac27a0ec
DK
1624 if (!partial)
1625 SetPageUptodate(page);
cf17fea6
AK
1626 new_i_size = pos + copied;
1627 if (new_i_size > inode->i_size)
bfc1af65 1628 i_size_write(inode, pos+copied);
617ba13b 1629 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1630 if (new_i_size > EXT4_I(inode)->i_disksize) {
1631 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1632 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1633 if (!ret)
1634 ret = ret2;
1635 }
bfc1af65 1636
cf108bca 1637 unlock_page(page);
617ba13b 1638 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1639 if (!ret)
1640 ret = ret2;
bfc1af65
NP
1641 page_cache_release(page);
1642
1643 return ret ? ret : copied;
ac27a0ec 1644}
d2a17637
MC
1645
1646static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1647{
030ba6bc 1648 int retries = 0;
60e58e0f
MC
1649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1651
1652 /*
1653 * recalculate the amount of metadata blocks to reserve
1654 * in order to allocate nrblocks
1655 * worse case is one extent per block
1656 */
030ba6bc 1657repeat:
d2a17637
MC
1658 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1659 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1660 mdblocks = ext4_calc_metadata_amount(inode, total);
1661 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1662
1663 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1664 total = md_needed + nrblocks;
1665
60e58e0f
MC
1666 /*
1667 * Make quota reservation here to prevent quota overflow
1668 * later. Real quota accounting is done at pages writeout
1669 * time.
1670 */
1671 if (vfs_dq_reserve_block(inode, total)) {
1672 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1673 return -EDQUOT;
1674 }
1675
a30d542a 1676 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1677 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1678 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1679 yield();
1680 goto repeat;
1681 }
60e58e0f 1682 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1683 return -ENOSPC;
1684 }
d2a17637
MC
1685 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1686 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1687
1688 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1689 return 0; /* success */
1690}
1691
12219aea 1692static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1693{
1694 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1695 int total, mdb, mdb_free, release;
1696
cd213226
MC
1697 if (!to_free)
1698 return; /* Nothing to release, exit */
1699
d2a17637 1700 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1701
1702 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1703 /*
1704 * if there is no reserved blocks, but we try to free some
1705 * then the counter is messed up somewhere.
1706 * but since this function is called from invalidate
1707 * page, it's harmless to return without any action
1708 */
1709 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1710 "blocks for inode %lu, but there is no reserved "
1711 "data blocks\n", to_free, inode->i_ino);
1712 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1713 return;
1714 }
1715
d2a17637 1716 /* recalculate the number of metablocks still need to be reserved */
12219aea 1717 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1718 mdb = ext4_calc_metadata_amount(inode, total);
1719
1720 /* figure out how many metablocks to release */
1721 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1722 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1723
d2a17637
MC
1724 release = to_free + mdb_free;
1725
6bc6e63f
AK
1726 /* update fs dirty blocks counter for truncate case */
1727 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1728
1729 /* update per-inode reservations */
12219aea
AK
1730 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1731 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1732
1733 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1734 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1735 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1736
1737 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1738}
1739
1740static void ext4_da_page_release_reservation(struct page *page,
1741 unsigned long offset)
1742{
1743 int to_release = 0;
1744 struct buffer_head *head, *bh;
1745 unsigned int curr_off = 0;
1746
1747 head = page_buffers(page);
1748 bh = head;
1749 do {
1750 unsigned int next_off = curr_off + bh->b_size;
1751
1752 if ((offset <= curr_off) && (buffer_delay(bh))) {
1753 to_release++;
1754 clear_buffer_delay(bh);
1755 }
1756 curr_off = next_off;
1757 } while ((bh = bh->b_this_page) != head);
12219aea 1758 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1759}
ac27a0ec 1760
64769240
AT
1761/*
1762 * Delayed allocation stuff
1763 */
1764
1765struct mpage_da_data {
1766 struct inode *inode;
8dc207c0
TT
1767 sector_t b_blocknr; /* start block number of extent */
1768 size_t b_size; /* size of extent */
1769 unsigned long b_state; /* state of the extent */
64769240 1770 unsigned long first_page, next_page; /* extent of pages */
64769240 1771 struct writeback_control *wbc;
a1d6cc56 1772 int io_done;
498e5f24 1773 int pages_written;
df22291f 1774 int retval;
64769240
AT
1775};
1776
1777/*
1778 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1779 * them with writepage() call back
64769240
AT
1780 *
1781 * @mpd->inode: inode
1782 * @mpd->first_page: first page of the extent
1783 * @mpd->next_page: page after the last page of the extent
64769240
AT
1784 *
1785 * By the time mpage_da_submit_io() is called we expect all blocks
1786 * to be allocated. this may be wrong if allocation failed.
1787 *
1788 * As pages are already locked by write_cache_pages(), we can't use it
1789 */
1790static int mpage_da_submit_io(struct mpage_da_data *mpd)
1791{
22208ded 1792 long pages_skipped;
791b7f08
AK
1793 struct pagevec pvec;
1794 unsigned long index, end;
1795 int ret = 0, err, nr_pages, i;
1796 struct inode *inode = mpd->inode;
1797 struct address_space *mapping = inode->i_mapping;
64769240
AT
1798
1799 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1800 /*
1801 * We need to start from the first_page to the next_page - 1
1802 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1803 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1804 * at the currently mapped buffer_heads.
1805 */
64769240
AT
1806 index = mpd->first_page;
1807 end = mpd->next_page - 1;
1808
791b7f08 1809 pagevec_init(&pvec, 0);
64769240 1810 while (index <= end) {
791b7f08 1811 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1812 if (nr_pages == 0)
1813 break;
1814 for (i = 0; i < nr_pages; i++) {
1815 struct page *page = pvec.pages[i];
1816
791b7f08
AK
1817 index = page->index;
1818 if (index > end)
1819 break;
1820 index++;
1821
1822 BUG_ON(!PageLocked(page));
1823 BUG_ON(PageWriteback(page));
1824
22208ded 1825 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1826 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1827 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1828 /*
1829 * have successfully written the page
1830 * without skipping the same
1831 */
a1d6cc56 1832 mpd->pages_written++;
64769240
AT
1833 /*
1834 * In error case, we have to continue because
1835 * remaining pages are still locked
1836 * XXX: unlock and re-dirty them?
1837 */
1838 if (ret == 0)
1839 ret = err;
1840 }
1841 pagevec_release(&pvec);
1842 }
64769240
AT
1843 return ret;
1844}
1845
1846/*
1847 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1848 *
1849 * @mpd->inode - inode to walk through
1850 * @exbh->b_blocknr - first block on a disk
1851 * @exbh->b_size - amount of space in bytes
1852 * @logical - first logical block to start assignment with
1853 *
1854 * the function goes through all passed space and put actual disk
29fa89d0 1855 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1856 */
1857static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1858 struct buffer_head *exbh)
1859{
1860 struct inode *inode = mpd->inode;
1861 struct address_space *mapping = inode->i_mapping;
1862 int blocks = exbh->b_size >> inode->i_blkbits;
1863 sector_t pblock = exbh->b_blocknr, cur_logical;
1864 struct buffer_head *head, *bh;
a1d6cc56 1865 pgoff_t index, end;
64769240
AT
1866 struct pagevec pvec;
1867 int nr_pages, i;
1868
1869 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1871 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1872
1873 pagevec_init(&pvec, 0);
1874
1875 while (index <= end) {
1876 /* XXX: optimize tail */
1877 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1878 if (nr_pages == 0)
1879 break;
1880 for (i = 0; i < nr_pages; i++) {
1881 struct page *page = pvec.pages[i];
1882
1883 index = page->index;
1884 if (index > end)
1885 break;
1886 index++;
1887
1888 BUG_ON(!PageLocked(page));
1889 BUG_ON(PageWriteback(page));
1890 BUG_ON(!page_has_buffers(page));
1891
1892 bh = page_buffers(page);
1893 head = bh;
1894
1895 /* skip blocks out of the range */
1896 do {
1897 if (cur_logical >= logical)
1898 break;
1899 cur_logical++;
1900 } while ((bh = bh->b_this_page) != head);
1901
1902 do {
1903 if (cur_logical >= logical + blocks)
1904 break;
29fa89d0
AK
1905
1906 if (buffer_delay(bh) ||
1907 buffer_unwritten(bh)) {
1908
1909 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1910
1911 if (buffer_delay(bh)) {
1912 clear_buffer_delay(bh);
1913 bh->b_blocknr = pblock;
1914 } else {
1915 /*
1916 * unwritten already should have
1917 * blocknr assigned. Verify that
1918 */
1919 clear_buffer_unwritten(bh);
1920 BUG_ON(bh->b_blocknr != pblock);
1921 }
1922
61628a3f 1923 } else if (buffer_mapped(bh))
64769240 1924 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1925
1926 cur_logical++;
1927 pblock++;
1928 } while ((bh = bh->b_this_page) != head);
1929 }
1930 pagevec_release(&pvec);
1931 }
1932}
1933
1934
1935/*
1936 * __unmap_underlying_blocks - just a helper function to unmap
1937 * set of blocks described by @bh
1938 */
1939static inline void __unmap_underlying_blocks(struct inode *inode,
1940 struct buffer_head *bh)
1941{
1942 struct block_device *bdev = inode->i_sb->s_bdev;
1943 int blocks, i;
1944
1945 blocks = bh->b_size >> inode->i_blkbits;
1946 for (i = 0; i < blocks; i++)
1947 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1948}
1949
c4a0c46e
AK
1950static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1951 sector_t logical, long blk_cnt)
1952{
1953 int nr_pages, i;
1954 pgoff_t index, end;
1955 struct pagevec pvec;
1956 struct inode *inode = mpd->inode;
1957 struct address_space *mapping = inode->i_mapping;
1958
1959 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1960 end = (logical + blk_cnt - 1) >>
1961 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1962 while (index <= end) {
1963 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1964 if (nr_pages == 0)
1965 break;
1966 for (i = 0; i < nr_pages; i++) {
1967 struct page *page = pvec.pages[i];
1968 index = page->index;
1969 if (index > end)
1970 break;
1971 index++;
1972
1973 BUG_ON(!PageLocked(page));
1974 BUG_ON(PageWriteback(page));
1975 block_invalidatepage(page, 0);
1976 ClearPageUptodate(page);
1977 unlock_page(page);
1978 }
1979 }
1980 return;
1981}
1982
df22291f
AK
1983static void ext4_print_free_blocks(struct inode *inode)
1984{
1985 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1986 printk(KERN_EMERG "Total free blocks count %lld\n",
1987 ext4_count_free_blocks(inode->i_sb));
1988 printk(KERN_EMERG "Free/Dirty block details\n");
1989 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1990 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1991 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1992 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 1993 printk(KERN_EMERG "Block reservation details\n");
498e5f24 1994 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 1995 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 1996 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
1997 EXT4_I(inode)->i_reserved_meta_blocks);
1998 return;
1999}
2000
ed5bde0b
TT
2001#define EXT4_DELALLOC_RSVED 1
2002static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2003 struct buffer_head *bh_result, int create)
2004{
2005 int ret;
2006 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2007 loff_t disksize = EXT4_I(inode)->i_disksize;
2008 handle_t *handle = NULL;
2009
2010 handle = ext4_journal_current_handle();
2011 BUG_ON(!handle);
2012 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2013 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2014 if (ret <= 0)
2015 return ret;
2016
2017 bh_result->b_size = (ret << inode->i_blkbits);
2018
2019 if (ext4_should_order_data(inode)) {
2020 int retval;
2021 retval = ext4_jbd2_file_inode(handle, inode);
2022 if (retval)
2023 /*
2024 * Failed to add inode for ordered mode. Don't
2025 * update file size
2026 */
2027 return retval;
2028 }
2029
2030 /*
2031 * Update on-disk size along with block allocation we don't
2032 * use 'extend_disksize' as size may change within already
2033 * allocated block -bzzz
2034 */
2035 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2036 if (disksize > i_size_read(inode))
2037 disksize = i_size_read(inode);
2038 if (disksize > EXT4_I(inode)->i_disksize) {
2039 ext4_update_i_disksize(inode, disksize);
2040 ret = ext4_mark_inode_dirty(handle, inode);
2041 return ret;
2042 }
2043 return 0;
2044}
2045
64769240
AT
2046/*
2047 * mpage_da_map_blocks - go through given space
2048 *
8dc207c0 2049 * @mpd - bh describing space
64769240
AT
2050 *
2051 * The function skips space we know is already mapped to disk blocks.
2052 *
64769240 2053 */
ed5bde0b 2054static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2055{
a1d6cc56 2056 int err = 0;
030ba6bc 2057 struct buffer_head new;
df22291f 2058 sector_t next;
64769240
AT
2059
2060 /*
2061 * We consider only non-mapped and non-allocated blocks
2062 */
8dc207c0 2063 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2064 !(mpd->b_state & (1 << BH_Delay)) &&
2065 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2066 return 0;
79ffab34
AK
2067 /*
2068 * We need to make sure the BH_Delay flag is passed down to
2069 * ext4_da_get_block_write(), since it calls
2070 * ext4_get_blocks_wrap() with the EXT4_DELALLOC_RSVED flag.
2071 * This flag causes ext4_get_blocks_wrap() to call
2072 * ext4_da_update_reserve_space() if the passed buffer head
2073 * has the BH_Delay flag set. In the future, once we clean up
2074 * the interfaces to ext4_get_blocks_wrap(), we should pass in
2075 * a separate flag which requests that the delayed allocation
2076 * statistics should be updated, instead of depending on the
2077 * state information getting passed down via the map_bh's
2078 * state bitmasks plus the magic EXT4_DELALLOC_RSVED flag.
2079 */
2080 new.b_state = mpd->b_state & (1 << BH_Delay);
a1d6cc56 2081 new.b_blocknr = 0;
8dc207c0
TT
2082 new.b_size = mpd->b_size;
2083 next = mpd->b_blocknr;
a1d6cc56
AK
2084 /*
2085 * If we didn't accumulate anything
2086 * to write simply return
2087 */
2088 if (!new.b_size)
c4a0c46e 2089 return 0;
c4a0c46e 2090
ed5bde0b
TT
2091 err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2092 if (err) {
2093 /*
2094 * If get block returns with error we simply
2095 * return. Later writepage will redirty the page and
2096 * writepages will find the dirty page again
c4a0c46e
AK
2097 */
2098 if (err == -EAGAIN)
2099 return 0;
df22291f
AK
2100
2101 if (err == -ENOSPC &&
ed5bde0b 2102 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2103 mpd->retval = err;
2104 return 0;
2105 }
2106
c4a0c46e 2107 /*
ed5bde0b
TT
2108 * get block failure will cause us to loop in
2109 * writepages, because a_ops->writepage won't be able
2110 * to make progress. The page will be redirtied by
2111 * writepage and writepages will again try to write
2112 * the same.
c4a0c46e
AK
2113 */
2114 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2115 "at logical offset %llu with max blocks "
2116 "%zd with error %d\n",
2117 __func__, mpd->inode->i_ino,
2118 (unsigned long long)next,
8dc207c0 2119 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2120 printk(KERN_EMERG "This should not happen.!! "
2121 "Data will be lost\n");
030ba6bc 2122 if (err == -ENOSPC) {
df22291f 2123 ext4_print_free_blocks(mpd->inode);
030ba6bc 2124 }
c4a0c46e
AK
2125 /* invlaidate all the pages */
2126 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2127 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2128 return err;
2129 }
a1d6cc56 2130 BUG_ON(new.b_size == 0);
64769240 2131
a1d6cc56
AK
2132 if (buffer_new(&new))
2133 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2134
a1d6cc56
AK
2135 /*
2136 * If blocks are delayed marked, we need to
2137 * put actual blocknr and drop delayed bit
2138 */
8dc207c0
TT
2139 if ((mpd->b_state & (1 << BH_Delay)) ||
2140 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2141 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2142
c4a0c46e 2143 return 0;
64769240
AT
2144}
2145
bf068ee2
AK
2146#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2147 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2148
2149/*
2150 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2151 *
2152 * @mpd->lbh - extent of blocks
2153 * @logical - logical number of the block in the file
2154 * @bh - bh of the block (used to access block's state)
2155 *
2156 * the function is used to collect contig. blocks in same state
2157 */
2158static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2159 sector_t logical, size_t b_size,
2160 unsigned long b_state)
64769240 2161{
64769240 2162 sector_t next;
8dc207c0 2163 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2164
525f4ed8
MC
2165 /* check if thereserved journal credits might overflow */
2166 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2167 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2168 /*
2169 * With non-extent format we are limited by the journal
2170 * credit available. Total credit needed to insert
2171 * nrblocks contiguous blocks is dependent on the
2172 * nrblocks. So limit nrblocks.
2173 */
2174 goto flush_it;
2175 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2176 EXT4_MAX_TRANS_DATA) {
2177 /*
2178 * Adding the new buffer_head would make it cross the
2179 * allowed limit for which we have journal credit
2180 * reserved. So limit the new bh->b_size
2181 */
2182 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2183 mpd->inode->i_blkbits;
2184 /* we will do mpage_da_submit_io in the next loop */
2185 }
2186 }
64769240
AT
2187 /*
2188 * First block in the extent
2189 */
8dc207c0
TT
2190 if (mpd->b_size == 0) {
2191 mpd->b_blocknr = logical;
2192 mpd->b_size = b_size;
2193 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2194 return;
2195 }
2196
8dc207c0 2197 next = mpd->b_blocknr + nrblocks;
64769240
AT
2198 /*
2199 * Can we merge the block to our big extent?
2200 */
8dc207c0
TT
2201 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2202 mpd->b_size += b_size;
64769240
AT
2203 return;
2204 }
2205
525f4ed8 2206flush_it:
64769240
AT
2207 /*
2208 * We couldn't merge the block to our extent, so we
2209 * need to flush current extent and start new one
2210 */
c4a0c46e
AK
2211 if (mpage_da_map_blocks(mpd) == 0)
2212 mpage_da_submit_io(mpd);
a1d6cc56
AK
2213 mpd->io_done = 1;
2214 return;
64769240
AT
2215}
2216
29fa89d0
AK
2217static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2218{
2219 /*
2220 * unmapped buffer is possible for holes.
2221 * delay buffer is possible with delayed allocation.
2222 * We also need to consider unwritten buffer as unmapped.
2223 */
2224 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2225 buffer_unwritten(bh)) && buffer_dirty(bh);
2226}
2227
64769240
AT
2228/*
2229 * __mpage_da_writepage - finds extent of pages and blocks
2230 *
2231 * @page: page to consider
2232 * @wbc: not used, we just follow rules
2233 * @data: context
2234 *
2235 * The function finds extents of pages and scan them for all blocks.
2236 */
2237static int __mpage_da_writepage(struct page *page,
2238 struct writeback_control *wbc, void *data)
2239{
2240 struct mpage_da_data *mpd = data;
2241 struct inode *inode = mpd->inode;
8dc207c0 2242 struct buffer_head *bh, *head;
64769240
AT
2243 sector_t logical;
2244
a1d6cc56
AK
2245 if (mpd->io_done) {
2246 /*
2247 * Rest of the page in the page_vec
2248 * redirty then and skip then. We will
2249 * try to to write them again after
2250 * starting a new transaction
2251 */
2252 redirty_page_for_writepage(wbc, page);
2253 unlock_page(page);
2254 return MPAGE_DA_EXTENT_TAIL;
2255 }
64769240
AT
2256 /*
2257 * Can we merge this page to current extent?
2258 */
2259 if (mpd->next_page != page->index) {
2260 /*
2261 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2262 * and start IO on them using writepage()
64769240
AT
2263 */
2264 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2265 if (mpage_da_map_blocks(mpd) == 0)
2266 mpage_da_submit_io(mpd);
a1d6cc56
AK
2267 /*
2268 * skip rest of the page in the page_vec
2269 */
2270 mpd->io_done = 1;
2271 redirty_page_for_writepage(wbc, page);
2272 unlock_page(page);
2273 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2274 }
2275
2276 /*
2277 * Start next extent of pages ...
2278 */
2279 mpd->first_page = page->index;
2280
2281 /*
2282 * ... and blocks
2283 */
8dc207c0
TT
2284 mpd->b_size = 0;
2285 mpd->b_state = 0;
2286 mpd->b_blocknr = 0;
64769240
AT
2287 }
2288
2289 mpd->next_page = page->index + 1;
2290 logical = (sector_t) page->index <<
2291 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2292
2293 if (!page_has_buffers(page)) {
8dc207c0
TT
2294 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2295 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2296 if (mpd->io_done)
2297 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2298 } else {
2299 /*
2300 * Page with regular buffer heads, just add all dirty ones
2301 */
2302 head = page_buffers(page);
2303 bh = head;
2304 do {
2305 BUG_ON(buffer_locked(bh));
791b7f08
AK
2306 /*
2307 * We need to try to allocate
2308 * unmapped blocks in the same page.
2309 * Otherwise we won't make progress
2310 * with the page in ext4_da_writepage
2311 */
29fa89d0 2312 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
8dc207c0
TT
2313 mpage_add_bh_to_extent(mpd, logical,
2314 bh->b_size,
2315 bh->b_state);
a1d6cc56
AK
2316 if (mpd->io_done)
2317 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2318 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2319 /*
2320 * mapped dirty buffer. We need to update
2321 * the b_state because we look at
2322 * b_state in mpage_da_map_blocks. We don't
2323 * update b_size because if we find an
2324 * unmapped buffer_head later we need to
2325 * use the b_state flag of that buffer_head.
2326 */
8dc207c0
TT
2327 if (mpd->b_size == 0)
2328 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2329 }
64769240
AT
2330 logical++;
2331 } while ((bh = bh->b_this_page) != head);
2332 }
2333
2334 return 0;
2335}
2336
64769240
AT
2337/*
2338 * this is a special callback for ->write_begin() only
2339 * it's intention is to return mapped block or reserve space
29fa89d0
AK
2340 *
2341 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2342 * We also have b_blocknr = -1 and b_bdev initialized properly
2343 *
2344 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2345 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2346 * initialized properly.
2347 *
64769240
AT
2348 */
2349static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2350 struct buffer_head *bh_result, int create)
2351{
2352 int ret = 0;
33b9817e
AK
2353 sector_t invalid_block = ~((sector_t) 0xffff);
2354
2355 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2356 invalid_block = ~0;
64769240
AT
2357
2358 BUG_ON(create == 0);
2359 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2360
2361 /*
2362 * first, we need to know whether the block is allocated already
2363 * preallocated blocks are unmapped but should treated
2364 * the same as allocated blocks.
2365 */
d2a17637
MC
2366 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2367 if ((ret == 0) && !buffer_delay(bh_result)) {
2368 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2369 /*
2370 * XXX: __block_prepare_write() unmaps passed block,
2371 * is it OK?
2372 */
d2a17637
MC
2373 ret = ext4_da_reserve_space(inode, 1);
2374 if (ret)
2375 /* not enough space to reserve */
2376 return ret;
2377
33b9817e 2378 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2379 set_buffer_new(bh_result);
2380 set_buffer_delay(bh_result);
2381 } else if (ret > 0) {
2382 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2383 if (buffer_unwritten(bh_result)) {
2384 /* A delayed write to unwritten bh should
2385 * be marked new and mapped. Mapped ensures
2386 * that we don't do get_block multiple times
2387 * when we write to the same offset and new
2388 * ensures that we do proper zero out for
2389 * partial write.
2390 */
9c1ee184 2391 set_buffer_new(bh_result);
29fa89d0
AK
2392 set_buffer_mapped(bh_result);
2393 }
64769240
AT
2394 ret = 0;
2395 }
2396
2397 return ret;
2398}
61628a3f 2399
f0e6c985
AK
2400static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2401 struct buffer_head *bh_result, int create)
2402{
2403 int ret = 0;
2404 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2405
2406 /*
2407 * we don't want to do block allocation in writepage
2408 * so call get_block_wrap with create = 0
2409 */
2410 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2411 bh_result, 0, 0, 0);
2412 if (ret > 0) {
2413 bh_result->b_size = (ret << inode->i_blkbits);
2414 ret = 0;
2415 }
2416 return ret;
61628a3f
MC
2417}
2418
61628a3f 2419/*
f0e6c985
AK
2420 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2421 * get called via journal_submit_inode_data_buffers (no journal handle)
2422 * get called via shrink_page_list via pdflush (no journal handle)
2423 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2424 */
64769240
AT
2425static int ext4_da_writepage(struct page *page,
2426 struct writeback_control *wbc)
2427{
64769240 2428 int ret = 0;
61628a3f 2429 loff_t size;
498e5f24 2430 unsigned int len;
61628a3f
MC
2431 struct buffer_head *page_bufs;
2432 struct inode *inode = page->mapping->host;
2433
ba80b101
TT
2434 trace_mark(ext4_da_writepage,
2435 "dev %s ino %lu page_index %lu",
2436 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2437 size = i_size_read(inode);
2438 if (page->index == size >> PAGE_CACHE_SHIFT)
2439 len = size & ~PAGE_CACHE_MASK;
2440 else
2441 len = PAGE_CACHE_SIZE;
64769240 2442
f0e6c985 2443 if (page_has_buffers(page)) {
61628a3f 2444 page_bufs = page_buffers(page);
f0e6c985
AK
2445 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2446 ext4_bh_unmapped_or_delay)) {
61628a3f 2447 /*
f0e6c985
AK
2448 * We don't want to do block allocation
2449 * So redirty the page and return
cd1aac32
AK
2450 * We may reach here when we do a journal commit
2451 * via journal_submit_inode_data_buffers.
2452 * If we don't have mapping block we just ignore
f0e6c985
AK
2453 * them. We can also reach here via shrink_page_list
2454 */
2455 redirty_page_for_writepage(wbc, page);
2456 unlock_page(page);
2457 return 0;
2458 }
2459 } else {
2460 /*
2461 * The test for page_has_buffers() is subtle:
2462 * We know the page is dirty but it lost buffers. That means
2463 * that at some moment in time after write_begin()/write_end()
2464 * has been called all buffers have been clean and thus they
2465 * must have been written at least once. So they are all
2466 * mapped and we can happily proceed with mapping them
2467 * and writing the page.
2468 *
2469 * Try to initialize the buffer_heads and check whether
2470 * all are mapped and non delay. We don't want to
2471 * do block allocation here.
2472 */
2473 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2474 ext4_normal_get_block_write);
2475 if (!ret) {
2476 page_bufs = page_buffers(page);
2477 /* check whether all are mapped and non delay */
2478 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2479 ext4_bh_unmapped_or_delay)) {
2480 redirty_page_for_writepage(wbc, page);
2481 unlock_page(page);
2482 return 0;
2483 }
2484 } else {
2485 /*
2486 * We can't do block allocation here
2487 * so just redity the page and unlock
2488 * and return
61628a3f 2489 */
61628a3f
MC
2490 redirty_page_for_writepage(wbc, page);
2491 unlock_page(page);
2492 return 0;
2493 }
ed9b3e33
AK
2494 /* now mark the buffer_heads as dirty and uptodate */
2495 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2496 }
2497
2498 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2499 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2500 else
f0e6c985
AK
2501 ret = block_write_full_page(page,
2502 ext4_normal_get_block_write,
2503 wbc);
64769240 2504
64769240
AT
2505 return ret;
2506}
2507
61628a3f 2508/*
525f4ed8
MC
2509 * This is called via ext4_da_writepages() to
2510 * calulate the total number of credits to reserve to fit
2511 * a single extent allocation into a single transaction,
2512 * ext4_da_writpeages() will loop calling this before
2513 * the block allocation.
61628a3f 2514 */
525f4ed8
MC
2515
2516static int ext4_da_writepages_trans_blocks(struct inode *inode)
2517{
2518 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2519
2520 /*
2521 * With non-extent format the journal credit needed to
2522 * insert nrblocks contiguous block is dependent on
2523 * number of contiguous block. So we will limit
2524 * number of contiguous block to a sane value
2525 */
2526 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2527 (max_blocks > EXT4_MAX_TRANS_DATA))
2528 max_blocks = EXT4_MAX_TRANS_DATA;
2529
2530 return ext4_chunk_trans_blocks(inode, max_blocks);
2531}
61628a3f 2532
64769240 2533static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2534 struct writeback_control *wbc)
64769240 2535{
22208ded
AK
2536 pgoff_t index;
2537 int range_whole = 0;
61628a3f 2538 handle_t *handle = NULL;
df22291f 2539 struct mpage_da_data mpd;
5e745b04 2540 struct inode *inode = mapping->host;
22208ded 2541 int no_nrwrite_index_update;
498e5f24
TT
2542 int pages_written = 0;
2543 long pages_skipped;
2acf2c26 2544 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2545 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2546 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2547
ba80b101
TT
2548 trace_mark(ext4_da_writepages,
2549 "dev %s ino %lu nr_t_write %ld "
2550 "pages_skipped %ld range_start %llu "
2551 "range_end %llu nonblocking %d "
2552 "for_kupdate %d for_reclaim %d "
2553 "for_writepages %d range_cyclic %d",
2554 inode->i_sb->s_id, inode->i_ino,
2555 wbc->nr_to_write, wbc->pages_skipped,
2556 (unsigned long long) wbc->range_start,
2557 (unsigned long long) wbc->range_end,
2558 wbc->nonblocking, wbc->for_kupdate,
2559 wbc->for_reclaim, wbc->for_writepages,
2560 wbc->range_cyclic);
2561
61628a3f
MC
2562 /*
2563 * No pages to write? This is mainly a kludge to avoid starting
2564 * a transaction for special inodes like journal inode on last iput()
2565 * because that could violate lock ordering on umount
2566 */
a1d6cc56 2567 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2568 return 0;
2a21e37e
TT
2569
2570 /*
2571 * If the filesystem has aborted, it is read-only, so return
2572 * right away instead of dumping stack traces later on that
2573 * will obscure the real source of the problem. We test
2574 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2575 * the latter could be true if the filesystem is mounted
2576 * read-only, and in that case, ext4_da_writepages should
2577 * *never* be called, so if that ever happens, we would want
2578 * the stack trace.
2579 */
2580 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2581 return -EROFS;
2582
5e745b04
AK
2583 /*
2584 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2585 * This make sure small files blocks are allocated in
2586 * single attempt. This ensure that small files
2587 * get less fragmented.
2588 */
2589 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2590 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2591 wbc->nr_to_write = sbi->s_mb_stream_request;
2592 }
22208ded
AK
2593 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2594 range_whole = 1;
61628a3f 2595
2acf2c26
AK
2596 range_cyclic = wbc->range_cyclic;
2597 if (wbc->range_cyclic) {
22208ded 2598 index = mapping->writeback_index;
2acf2c26
AK
2599 if (index)
2600 cycled = 0;
2601 wbc->range_start = index << PAGE_CACHE_SHIFT;
2602 wbc->range_end = LLONG_MAX;
2603 wbc->range_cyclic = 0;
2604 } else
22208ded 2605 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2606
df22291f
AK
2607 mpd.wbc = wbc;
2608 mpd.inode = mapping->host;
2609
22208ded
AK
2610 /*
2611 * we don't want write_cache_pages to update
2612 * nr_to_write and writeback_index
2613 */
2614 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2615 wbc->no_nrwrite_index_update = 1;
2616 pages_skipped = wbc->pages_skipped;
2617
2acf2c26 2618retry:
22208ded 2619 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2620
2621 /*
2622 * we insert one extent at a time. So we need
2623 * credit needed for single extent allocation.
2624 * journalled mode is currently not supported
2625 * by delalloc
2626 */
2627 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2628 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2629
61628a3f
MC
2630 /* start a new transaction*/
2631 handle = ext4_journal_start(inode, needed_blocks);
2632 if (IS_ERR(handle)) {
2633 ret = PTR_ERR(handle);
2a21e37e 2634 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2635 "%ld pages, ino %lu; err %d\n", __func__,
2636 wbc->nr_to_write, inode->i_ino, ret);
2637 dump_stack();
61628a3f
MC
2638 goto out_writepages;
2639 }
f63e6005
TT
2640
2641 /*
2642 * Now call __mpage_da_writepage to find the next
2643 * contiguous region of logical blocks that need
2644 * blocks to be allocated by ext4. We don't actually
2645 * submit the blocks for I/O here, even though
2646 * write_cache_pages thinks it will, and will set the
2647 * pages as clean for write before calling
2648 * __mpage_da_writepage().
2649 */
2650 mpd.b_size = 0;
2651 mpd.b_state = 0;
2652 mpd.b_blocknr = 0;
2653 mpd.first_page = 0;
2654 mpd.next_page = 0;
2655 mpd.io_done = 0;
2656 mpd.pages_written = 0;
2657 mpd.retval = 0;
2658 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2659 &mpd);
2660 /*
2661 * If we have a contigous extent of pages and we
2662 * haven't done the I/O yet, map the blocks and submit
2663 * them for I/O.
2664 */
2665 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2666 if (mpage_da_map_blocks(&mpd) == 0)
2667 mpage_da_submit_io(&mpd);
2668 mpd.io_done = 1;
2669 ret = MPAGE_DA_EXTENT_TAIL;
2670 }
2671 wbc->nr_to_write -= mpd.pages_written;
df22291f 2672
61628a3f 2673 ext4_journal_stop(handle);
df22291f 2674
8f64b32e 2675 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2676 /* commit the transaction which would
2677 * free blocks released in the transaction
2678 * and try again
2679 */
df22291f 2680 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2681 wbc->pages_skipped = pages_skipped;
2682 ret = 0;
2683 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2684 /*
2685 * got one extent now try with
2686 * rest of the pages
2687 */
22208ded
AK
2688 pages_written += mpd.pages_written;
2689 wbc->pages_skipped = pages_skipped;
a1d6cc56 2690 ret = 0;
2acf2c26 2691 io_done = 1;
22208ded 2692 } else if (wbc->nr_to_write)
61628a3f
MC
2693 /*
2694 * There is no more writeout needed
2695 * or we requested for a noblocking writeout
2696 * and we found the device congested
2697 */
61628a3f 2698 break;
a1d6cc56 2699 }
2acf2c26
AK
2700 if (!io_done && !cycled) {
2701 cycled = 1;
2702 index = 0;
2703 wbc->range_start = index << PAGE_CACHE_SHIFT;
2704 wbc->range_end = mapping->writeback_index - 1;
2705 goto retry;
2706 }
22208ded
AK
2707 if (pages_skipped != wbc->pages_skipped)
2708 printk(KERN_EMERG "This should not happen leaving %s "
2709 "with nr_to_write = %ld ret = %d\n",
2710 __func__, wbc->nr_to_write, ret);
2711
2712 /* Update index */
2713 index += pages_written;
2acf2c26 2714 wbc->range_cyclic = range_cyclic;
22208ded
AK
2715 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2716 /*
2717 * set the writeback_index so that range_cyclic
2718 * mode will write it back later
2719 */
2720 mapping->writeback_index = index;
a1d6cc56 2721
61628a3f 2722out_writepages:
22208ded
AK
2723 if (!no_nrwrite_index_update)
2724 wbc->no_nrwrite_index_update = 0;
2725 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2726 trace_mark(ext4_da_writepage_result,
2727 "dev %s ino %lu ret %d pages_written %d "
2728 "pages_skipped %ld congestion %d "
2729 "more_io %d no_nrwrite_index_update %d",
2730 inode->i_sb->s_id, inode->i_ino, ret,
2731 pages_written, wbc->pages_skipped,
2732 wbc->encountered_congestion, wbc->more_io,
2733 wbc->no_nrwrite_index_update);
61628a3f 2734 return ret;
64769240
AT
2735}
2736
79f0be8d
AK
2737#define FALL_BACK_TO_NONDELALLOC 1
2738static int ext4_nonda_switch(struct super_block *sb)
2739{
2740 s64 free_blocks, dirty_blocks;
2741 struct ext4_sb_info *sbi = EXT4_SB(sb);
2742
2743 /*
2744 * switch to non delalloc mode if we are running low
2745 * on free block. The free block accounting via percpu
179f7ebf 2746 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2747 * accumulated on each CPU without updating global counters
2748 * Delalloc need an accurate free block accounting. So switch
2749 * to non delalloc when we are near to error range.
2750 */
2751 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2752 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2753 if (2 * free_blocks < 3 * dirty_blocks ||
2754 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2755 /*
2756 * free block count is less that 150% of dirty blocks
2757 * or free blocks is less that watermark
2758 */
2759 return 1;
2760 }
2761 return 0;
2762}
2763
64769240
AT
2764static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2765 loff_t pos, unsigned len, unsigned flags,
2766 struct page **pagep, void **fsdata)
2767{
d2a17637 2768 int ret, retries = 0;
64769240
AT
2769 struct page *page;
2770 pgoff_t index;
2771 unsigned from, to;
2772 struct inode *inode = mapping->host;
2773 handle_t *handle;
2774
2775 index = pos >> PAGE_CACHE_SHIFT;
2776 from = pos & (PAGE_CACHE_SIZE - 1);
2777 to = from + len;
79f0be8d
AK
2778
2779 if (ext4_nonda_switch(inode->i_sb)) {
2780 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2781 return ext4_write_begin(file, mapping, pos,
2782 len, flags, pagep, fsdata);
2783 }
2784 *fsdata = (void *)0;
ba80b101
TT
2785
2786 trace_mark(ext4_da_write_begin,
2787 "dev %s ino %lu pos %llu len %u flags %u",
2788 inode->i_sb->s_id, inode->i_ino,
2789 (unsigned long long) pos, len, flags);
d2a17637 2790retry:
64769240
AT
2791 /*
2792 * With delayed allocation, we don't log the i_disksize update
2793 * if there is delayed block allocation. But we still need
2794 * to journalling the i_disksize update if writes to the end
2795 * of file which has an already mapped buffer.
2796 */
2797 handle = ext4_journal_start(inode, 1);
2798 if (IS_ERR(handle)) {
2799 ret = PTR_ERR(handle);
2800 goto out;
2801 }
ebd3610b
JK
2802 /* We cannot recurse into the filesystem as the transaction is already
2803 * started */
2804 flags |= AOP_FLAG_NOFS;
64769240 2805
54566b2c 2806 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2807 if (!page) {
2808 ext4_journal_stop(handle);
2809 ret = -ENOMEM;
2810 goto out;
2811 }
64769240
AT
2812 *pagep = page;
2813
2814 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2815 ext4_da_get_block_prep);
2816 if (ret < 0) {
2817 unlock_page(page);
2818 ext4_journal_stop(handle);
2819 page_cache_release(page);
ae4d5372
AK
2820 /*
2821 * block_write_begin may have instantiated a few blocks
2822 * outside i_size. Trim these off again. Don't need
2823 * i_size_read because we hold i_mutex.
2824 */
2825 if (pos + len > inode->i_size)
2826 vmtruncate(inode, inode->i_size);
64769240
AT
2827 }
2828
d2a17637
MC
2829 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2830 goto retry;
64769240
AT
2831out:
2832 return ret;
2833}
2834
632eaeab
MC
2835/*
2836 * Check if we should update i_disksize
2837 * when write to the end of file but not require block allocation
2838 */
2839static int ext4_da_should_update_i_disksize(struct page *page,
2840 unsigned long offset)
2841{
2842 struct buffer_head *bh;
2843 struct inode *inode = page->mapping->host;
2844 unsigned int idx;
2845 int i;
2846
2847 bh = page_buffers(page);
2848 idx = offset >> inode->i_blkbits;
2849
af5bc92d 2850 for (i = 0; i < idx; i++)
632eaeab
MC
2851 bh = bh->b_this_page;
2852
29fa89d0 2853 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2854 return 0;
2855 return 1;
2856}
2857
64769240
AT
2858static int ext4_da_write_end(struct file *file,
2859 struct address_space *mapping,
2860 loff_t pos, unsigned len, unsigned copied,
2861 struct page *page, void *fsdata)
2862{
2863 struct inode *inode = mapping->host;
2864 int ret = 0, ret2;
2865 handle_t *handle = ext4_journal_current_handle();
2866 loff_t new_i_size;
632eaeab 2867 unsigned long start, end;
79f0be8d
AK
2868 int write_mode = (int)(unsigned long)fsdata;
2869
2870 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2871 if (ext4_should_order_data(inode)) {
2872 return ext4_ordered_write_end(file, mapping, pos,
2873 len, copied, page, fsdata);
2874 } else if (ext4_should_writeback_data(inode)) {
2875 return ext4_writeback_write_end(file, mapping, pos,
2876 len, copied, page, fsdata);
2877 } else {
2878 BUG();
2879 }
2880 }
632eaeab 2881
ba80b101
TT
2882 trace_mark(ext4_da_write_end,
2883 "dev %s ino %lu pos %llu len %u copied %u",
2884 inode->i_sb->s_id, inode->i_ino,
2885 (unsigned long long) pos, len, copied);
632eaeab 2886 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2887 end = start + copied - 1;
64769240
AT
2888
2889 /*
2890 * generic_write_end() will run mark_inode_dirty() if i_size
2891 * changes. So let's piggyback the i_disksize mark_inode_dirty
2892 * into that.
2893 */
2894
2895 new_i_size = pos + copied;
632eaeab
MC
2896 if (new_i_size > EXT4_I(inode)->i_disksize) {
2897 if (ext4_da_should_update_i_disksize(page, end)) {
2898 down_write(&EXT4_I(inode)->i_data_sem);
2899 if (new_i_size > EXT4_I(inode)->i_disksize) {
2900 /*
2901 * Updating i_disksize when extending file
2902 * without needing block allocation
2903 */
2904 if (ext4_should_order_data(inode))
2905 ret = ext4_jbd2_file_inode(handle,
2906 inode);
64769240 2907
632eaeab
MC
2908 EXT4_I(inode)->i_disksize = new_i_size;
2909 }
2910 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2911 /* We need to mark inode dirty even if
2912 * new_i_size is less that inode->i_size
2913 * bu greater than i_disksize.(hint delalloc)
2914 */
2915 ext4_mark_inode_dirty(handle, inode);
64769240 2916 }
632eaeab 2917 }
64769240
AT
2918 ret2 = generic_write_end(file, mapping, pos, len, copied,
2919 page, fsdata);
2920 copied = ret2;
2921 if (ret2 < 0)
2922 ret = ret2;
2923 ret2 = ext4_journal_stop(handle);
2924 if (!ret)
2925 ret = ret2;
2926
2927 return ret ? ret : copied;
2928}
2929
2930static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2931{
64769240
AT
2932 /*
2933 * Drop reserved blocks
2934 */
2935 BUG_ON(!PageLocked(page));
2936 if (!page_has_buffers(page))
2937 goto out;
2938
d2a17637 2939 ext4_da_page_release_reservation(page, offset);
64769240
AT
2940
2941out:
2942 ext4_invalidatepage(page, offset);
2943
2944 return;
2945}
2946
ccd2506b
TT
2947/*
2948 * Force all delayed allocation blocks to be allocated for a given inode.
2949 */
2950int ext4_alloc_da_blocks(struct inode *inode)
2951{
2952 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2953 !EXT4_I(inode)->i_reserved_meta_blocks)
2954 return 0;
2955
2956 /*
2957 * We do something simple for now. The filemap_flush() will
2958 * also start triggering a write of the data blocks, which is
2959 * not strictly speaking necessary (and for users of
2960 * laptop_mode, not even desirable). However, to do otherwise
2961 * would require replicating code paths in:
2962 *
2963 * ext4_da_writepages() ->
2964 * write_cache_pages() ---> (via passed in callback function)
2965 * __mpage_da_writepage() -->
2966 * mpage_add_bh_to_extent()
2967 * mpage_da_map_blocks()
2968 *
2969 * The problem is that write_cache_pages(), located in
2970 * mm/page-writeback.c, marks pages clean in preparation for
2971 * doing I/O, which is not desirable if we're not planning on
2972 * doing I/O at all.
2973 *
2974 * We could call write_cache_pages(), and then redirty all of
2975 * the pages by calling redirty_page_for_writeback() but that
2976 * would be ugly in the extreme. So instead we would need to
2977 * replicate parts of the code in the above functions,
2978 * simplifying them becuase we wouldn't actually intend to
2979 * write out the pages, but rather only collect contiguous
2980 * logical block extents, call the multi-block allocator, and
2981 * then update the buffer heads with the block allocations.
2982 *
2983 * For now, though, we'll cheat by calling filemap_flush(),
2984 * which will map the blocks, and start the I/O, but not
2985 * actually wait for the I/O to complete.
2986 */
2987 return filemap_flush(inode->i_mapping);
2988}
64769240 2989
ac27a0ec
DK
2990/*
2991 * bmap() is special. It gets used by applications such as lilo and by
2992 * the swapper to find the on-disk block of a specific piece of data.
2993 *
2994 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2995 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2996 * filesystem and enables swap, then they may get a nasty shock when the
2997 * data getting swapped to that swapfile suddenly gets overwritten by
2998 * the original zero's written out previously to the journal and
2999 * awaiting writeback in the kernel's buffer cache.
3000 *
3001 * So, if we see any bmap calls here on a modified, data-journaled file,
3002 * take extra steps to flush any blocks which might be in the cache.
3003 */
617ba13b 3004static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3005{
3006 struct inode *inode = mapping->host;
3007 journal_t *journal;
3008 int err;
3009
64769240
AT
3010 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3011 test_opt(inode->i_sb, DELALLOC)) {
3012 /*
3013 * With delalloc we want to sync the file
3014 * so that we can make sure we allocate
3015 * blocks for file
3016 */
3017 filemap_write_and_wait(mapping);
3018 }
3019
0390131b 3020 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3021 /*
3022 * This is a REALLY heavyweight approach, but the use of
3023 * bmap on dirty files is expected to be extremely rare:
3024 * only if we run lilo or swapon on a freshly made file
3025 * do we expect this to happen.
3026 *
3027 * (bmap requires CAP_SYS_RAWIO so this does not
3028 * represent an unprivileged user DOS attack --- we'd be
3029 * in trouble if mortal users could trigger this path at
3030 * will.)
3031 *
617ba13b 3032 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3033 * regular files. If somebody wants to bmap a directory
3034 * or symlink and gets confused because the buffer
3035 * hasn't yet been flushed to disk, they deserve
3036 * everything they get.
3037 */
3038
617ba13b
MC
3039 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3040 journal = EXT4_JOURNAL(inode);
dab291af
MC
3041 jbd2_journal_lock_updates(journal);
3042 err = jbd2_journal_flush(journal);
3043 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3044
3045 if (err)
3046 return 0;
3047 }
3048
af5bc92d 3049 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3050}
3051
3052static int bget_one(handle_t *handle, struct buffer_head *bh)
3053{
3054 get_bh(bh);
3055 return 0;
3056}
3057
3058static int bput_one(handle_t *handle, struct buffer_head *bh)
3059{
3060 put_bh(bh);
3061 return 0;
3062}
3063
ac27a0ec 3064/*
678aaf48
JK
3065 * Note that we don't need to start a transaction unless we're journaling data
3066 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3067 * need to file the inode to the transaction's list in ordered mode because if
3068 * we are writing back data added by write(), the inode is already there and if
3069 * we are writing back data modified via mmap(), noone guarantees in which
3070 * transaction the data will hit the disk. In case we are journaling data, we
3071 * cannot start transaction directly because transaction start ranks above page
3072 * lock so we have to do some magic.
ac27a0ec 3073 *
678aaf48 3074 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3075 *
3076 * Problem:
3077 *
617ba13b
MC
3078 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3079 * ext4_writepage()
ac27a0ec
DK
3080 *
3081 * Similar for:
3082 *
617ba13b 3083 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3084 *
617ba13b 3085 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3086 * lock_journal and i_data_sem
ac27a0ec
DK
3087 *
3088 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3089 * allocations fail.
3090 *
3091 * 16May01: If we're reentered then journal_current_handle() will be
3092 * non-zero. We simply *return*.
3093 *
3094 * 1 July 2001: @@@ FIXME:
3095 * In journalled data mode, a data buffer may be metadata against the
3096 * current transaction. But the same file is part of a shared mapping
3097 * and someone does a writepage() on it.
3098 *
3099 * We will move the buffer onto the async_data list, but *after* it has
3100 * been dirtied. So there's a small window where we have dirty data on
3101 * BJ_Metadata.
3102 *
3103 * Note that this only applies to the last partial page in the file. The
3104 * bit which block_write_full_page() uses prepare/commit for. (That's
3105 * broken code anyway: it's wrong for msync()).
3106 *
3107 * It's a rare case: affects the final partial page, for journalled data
3108 * where the file is subject to bith write() and writepage() in the same
3109 * transction. To fix it we'll need a custom block_write_full_page().
3110 * We'll probably need that anyway for journalling writepage() output.
3111 *
3112 * We don't honour synchronous mounts for writepage(). That would be
3113 * disastrous. Any write() or metadata operation will sync the fs for
3114 * us.
3115 *
ac27a0ec 3116 */
678aaf48 3117static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
3118 struct writeback_control *wbc)
3119{
3120 struct inode *inode = page->mapping->host;
3121
3122 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
3123 return nobh_writepage(page,
3124 ext4_normal_get_block_write, wbc);
cf108bca 3125 else
f0e6c985
AK
3126 return block_write_full_page(page,
3127 ext4_normal_get_block_write,
3128 wbc);
cf108bca
JK
3129}
3130
678aaf48 3131static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3132 struct writeback_control *wbc)
3133{
3134 struct inode *inode = page->mapping->host;
cf108bca
JK
3135 loff_t size = i_size_read(inode);
3136 loff_t len;
3137
ba80b101
TT
3138 trace_mark(ext4_normal_writepage,
3139 "dev %s ino %lu page_index %lu",
3140 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3141 J_ASSERT(PageLocked(page));
cf108bca
JK
3142 if (page->index == size >> PAGE_CACHE_SHIFT)
3143 len = size & ~PAGE_CACHE_MASK;
3144 else
3145 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3146
3147 if (page_has_buffers(page)) {
3148 /* if page has buffers it should all be mapped
3149 * and allocated. If there are not buffers attached
3150 * to the page we know the page is dirty but it lost
3151 * buffers. That means that at some moment in time
3152 * after write_begin() / write_end() has been called
3153 * all buffers have been clean and thus they must have been
3154 * written at least once. So they are all mapped and we can
3155 * happily proceed with mapping them and writing the page.
3156 */
3157 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3158 ext4_bh_unmapped_or_delay));
3159 }
cf108bca
JK
3160
3161 if (!ext4_journal_current_handle())
678aaf48 3162 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3163
3164 redirty_page_for_writepage(wbc, page);
3165 unlock_page(page);
3166 return 0;
3167}
3168
3169static int __ext4_journalled_writepage(struct page *page,
3170 struct writeback_control *wbc)
3171{
3172 struct address_space *mapping = page->mapping;
3173 struct inode *inode = mapping->host;
3174 struct buffer_head *page_bufs;
ac27a0ec
DK
3175 handle_t *handle = NULL;
3176 int ret = 0;
3177 int err;
3178
f0e6c985
AK
3179 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3180 ext4_normal_get_block_write);
cf108bca
JK
3181 if (ret != 0)
3182 goto out_unlock;
3183
3184 page_bufs = page_buffers(page);
3185 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3186 bget_one);
3187 /* As soon as we unlock the page, it can go away, but we have
3188 * references to buffers so we are safe */
3189 unlock_page(page);
ac27a0ec 3190
617ba13b 3191 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3192 if (IS_ERR(handle)) {
3193 ret = PTR_ERR(handle);
cf108bca 3194 goto out;
ac27a0ec
DK
3195 }
3196
cf108bca
JK
3197 ret = walk_page_buffers(handle, page_bufs, 0,
3198 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3199
cf108bca
JK
3200 err = walk_page_buffers(handle, page_bufs, 0,
3201 PAGE_CACHE_SIZE, NULL, write_end_fn);
3202 if (ret == 0)
3203 ret = err;
617ba13b 3204 err = ext4_journal_stop(handle);
ac27a0ec
DK
3205 if (!ret)
3206 ret = err;
ac27a0ec 3207
cf108bca
JK
3208 walk_page_buffers(handle, page_bufs, 0,
3209 PAGE_CACHE_SIZE, NULL, bput_one);
3210 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3211 goto out;
3212
3213out_unlock:
ac27a0ec 3214 unlock_page(page);
cf108bca 3215out:
ac27a0ec
DK
3216 return ret;
3217}
3218
617ba13b 3219static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3220 struct writeback_control *wbc)
3221{
3222 struct inode *inode = page->mapping->host;
cf108bca
JK
3223 loff_t size = i_size_read(inode);
3224 loff_t len;
ac27a0ec 3225
ba80b101
TT
3226 trace_mark(ext4_journalled_writepage,
3227 "dev %s ino %lu page_index %lu",
3228 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3229 J_ASSERT(PageLocked(page));
cf108bca
JK
3230 if (page->index == size >> PAGE_CACHE_SHIFT)
3231 len = size & ~PAGE_CACHE_MASK;
3232 else
3233 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3234
3235 if (page_has_buffers(page)) {
3236 /* if page has buffers it should all be mapped
3237 * and allocated. If there are not buffers attached
3238 * to the page we know the page is dirty but it lost
3239 * buffers. That means that at some moment in time
3240 * after write_begin() / write_end() has been called
3241 * all buffers have been clean and thus they must have been
3242 * written at least once. So they are all mapped and we can
3243 * happily proceed with mapping them and writing the page.
3244 */
3245 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3246 ext4_bh_unmapped_or_delay));
3247 }
ac27a0ec 3248
cf108bca 3249 if (ext4_journal_current_handle())
ac27a0ec 3250 goto no_write;
ac27a0ec 3251
cf108bca 3252 if (PageChecked(page)) {
ac27a0ec
DK
3253 /*
3254 * It's mmapped pagecache. Add buffers and journal it. There
3255 * doesn't seem much point in redirtying the page here.
3256 */
3257 ClearPageChecked(page);
cf108bca 3258 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3259 } else {
3260 /*
3261 * It may be a page full of checkpoint-mode buffers. We don't
3262 * really know unless we go poke around in the buffer_heads.
3263 * But block_write_full_page will do the right thing.
3264 */
f0e6c985
AK
3265 return block_write_full_page(page,
3266 ext4_normal_get_block_write,
3267 wbc);
ac27a0ec 3268 }
ac27a0ec
DK
3269no_write:
3270 redirty_page_for_writepage(wbc, page);
ac27a0ec 3271 unlock_page(page);
cf108bca 3272 return 0;
ac27a0ec
DK
3273}
3274
617ba13b 3275static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3276{
617ba13b 3277 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3278}
3279
3280static int
617ba13b 3281ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3282 struct list_head *pages, unsigned nr_pages)
3283{
617ba13b 3284 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3285}
3286
617ba13b 3287static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3288{
617ba13b 3289 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3290
3291 /*
3292 * If it's a full truncate we just forget about the pending dirtying
3293 */
3294 if (offset == 0)
3295 ClearPageChecked(page);
3296
0390131b
FM
3297 if (journal)
3298 jbd2_journal_invalidatepage(journal, page, offset);
3299 else
3300 block_invalidatepage(page, offset);
ac27a0ec
DK
3301}
3302
617ba13b 3303static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3304{
617ba13b 3305 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3306
3307 WARN_ON(PageChecked(page));
3308 if (!page_has_buffers(page))
3309 return 0;
0390131b
FM
3310 if (journal)
3311 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3312 else
3313 return try_to_free_buffers(page);
ac27a0ec
DK
3314}
3315
3316/*
3317 * If the O_DIRECT write will extend the file then add this inode to the
3318 * orphan list. So recovery will truncate it back to the original size
3319 * if the machine crashes during the write.
3320 *
3321 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3322 * crashes then stale disk data _may_ be exposed inside the file. But current
3323 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3324 */
617ba13b 3325static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3326 const struct iovec *iov, loff_t offset,
3327 unsigned long nr_segs)
3328{
3329 struct file *file = iocb->ki_filp;
3330 struct inode *inode = file->f_mapping->host;
617ba13b 3331 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3332 handle_t *handle;
ac27a0ec
DK
3333 ssize_t ret;
3334 int orphan = 0;
3335 size_t count = iov_length(iov, nr_segs);
3336
3337 if (rw == WRITE) {
3338 loff_t final_size = offset + count;
3339
ac27a0ec 3340 if (final_size > inode->i_size) {
7fb5409d
JK
3341 /* Credits for sb + inode write */
3342 handle = ext4_journal_start(inode, 2);
3343 if (IS_ERR(handle)) {
3344 ret = PTR_ERR(handle);
3345 goto out;
3346 }
617ba13b 3347 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3348 if (ret) {
3349 ext4_journal_stop(handle);
3350 goto out;
3351 }
ac27a0ec
DK
3352 orphan = 1;
3353 ei->i_disksize = inode->i_size;
7fb5409d 3354 ext4_journal_stop(handle);
ac27a0ec
DK
3355 }
3356 }
3357
3358 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3359 offset, nr_segs,
617ba13b 3360 ext4_get_block, NULL);
ac27a0ec 3361
7fb5409d 3362 if (orphan) {
ac27a0ec
DK
3363 int err;
3364
7fb5409d
JK
3365 /* Credits for sb + inode write */
3366 handle = ext4_journal_start(inode, 2);
3367 if (IS_ERR(handle)) {
3368 /* This is really bad luck. We've written the data
3369 * but cannot extend i_size. Bail out and pretend
3370 * the write failed... */
3371 ret = PTR_ERR(handle);
3372 goto out;
3373 }
3374 if (inode->i_nlink)
617ba13b 3375 ext4_orphan_del(handle, inode);
7fb5409d 3376 if (ret > 0) {
ac27a0ec
DK
3377 loff_t end = offset + ret;
3378 if (end > inode->i_size) {
3379 ei->i_disksize = end;
3380 i_size_write(inode, end);
3381 /*
3382 * We're going to return a positive `ret'
3383 * here due to non-zero-length I/O, so there's
3384 * no way of reporting error returns from
617ba13b 3385 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3386 * ignore it.
3387 */
617ba13b 3388 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3389 }
3390 }
617ba13b 3391 err = ext4_journal_stop(handle);
ac27a0ec
DK
3392 if (ret == 0)
3393 ret = err;
3394 }
3395out:
3396 return ret;
3397}
3398
3399/*
617ba13b 3400 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3401 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3402 * much here because ->set_page_dirty is called under VFS locks. The page is
3403 * not necessarily locked.
3404 *
3405 * We cannot just dirty the page and leave attached buffers clean, because the
3406 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3407 * or jbddirty because all the journalling code will explode.
3408 *
3409 * So what we do is to mark the page "pending dirty" and next time writepage
3410 * is called, propagate that into the buffers appropriately.
3411 */
617ba13b 3412static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3413{
3414 SetPageChecked(page);
3415 return __set_page_dirty_nobuffers(page);
3416}
3417
617ba13b 3418static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3419 .readpage = ext4_readpage,
3420 .readpages = ext4_readpages,
3421 .writepage = ext4_normal_writepage,
3422 .sync_page = block_sync_page,
3423 .write_begin = ext4_write_begin,
3424 .write_end = ext4_ordered_write_end,
3425 .bmap = ext4_bmap,
3426 .invalidatepage = ext4_invalidatepage,
3427 .releasepage = ext4_releasepage,
3428 .direct_IO = ext4_direct_IO,
3429 .migratepage = buffer_migrate_page,
3430 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3431};
3432
617ba13b 3433static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3434 .readpage = ext4_readpage,
3435 .readpages = ext4_readpages,
3436 .writepage = ext4_normal_writepage,
3437 .sync_page = block_sync_page,
3438 .write_begin = ext4_write_begin,
3439 .write_end = ext4_writeback_write_end,
3440 .bmap = ext4_bmap,
3441 .invalidatepage = ext4_invalidatepage,
3442 .releasepage = ext4_releasepage,
3443 .direct_IO = ext4_direct_IO,
3444 .migratepage = buffer_migrate_page,
3445 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3446};
3447
617ba13b 3448static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3449 .readpage = ext4_readpage,
3450 .readpages = ext4_readpages,
3451 .writepage = ext4_journalled_writepage,
3452 .sync_page = block_sync_page,
3453 .write_begin = ext4_write_begin,
3454 .write_end = ext4_journalled_write_end,
3455 .set_page_dirty = ext4_journalled_set_page_dirty,
3456 .bmap = ext4_bmap,
3457 .invalidatepage = ext4_invalidatepage,
3458 .releasepage = ext4_releasepage,
3459 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3460};
3461
64769240 3462static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3463 .readpage = ext4_readpage,
3464 .readpages = ext4_readpages,
3465 .writepage = ext4_da_writepage,
3466 .writepages = ext4_da_writepages,
3467 .sync_page = block_sync_page,
3468 .write_begin = ext4_da_write_begin,
3469 .write_end = ext4_da_write_end,
3470 .bmap = ext4_bmap,
3471 .invalidatepage = ext4_da_invalidatepage,
3472 .releasepage = ext4_releasepage,
3473 .direct_IO = ext4_direct_IO,
3474 .migratepage = buffer_migrate_page,
3475 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3476};
3477
617ba13b 3478void ext4_set_aops(struct inode *inode)
ac27a0ec 3479{
cd1aac32
AK
3480 if (ext4_should_order_data(inode) &&
3481 test_opt(inode->i_sb, DELALLOC))
3482 inode->i_mapping->a_ops = &ext4_da_aops;
3483 else if (ext4_should_order_data(inode))
617ba13b 3484 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3485 else if (ext4_should_writeback_data(inode) &&
3486 test_opt(inode->i_sb, DELALLOC))
3487 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3488 else if (ext4_should_writeback_data(inode))
3489 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3490 else
617ba13b 3491 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3492}
3493
3494/*
617ba13b 3495 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3496 * up to the end of the block which corresponds to `from'.
3497 * This required during truncate. We need to physically zero the tail end
3498 * of that block so it doesn't yield old data if the file is later grown.
3499 */
cf108bca 3500int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3501 struct address_space *mapping, loff_t from)
3502{
617ba13b 3503 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3504 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3505 unsigned blocksize, length, pos;
3506 ext4_lblk_t iblock;
ac27a0ec
DK
3507 struct inode *inode = mapping->host;
3508 struct buffer_head *bh;
cf108bca 3509 struct page *page;
ac27a0ec 3510 int err = 0;
ac27a0ec 3511
cf108bca
JK
3512 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3513 if (!page)
3514 return -EINVAL;
3515
ac27a0ec
DK
3516 blocksize = inode->i_sb->s_blocksize;
3517 length = blocksize - (offset & (blocksize - 1));
3518 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3519
3520 /*
3521 * For "nobh" option, we can only work if we don't need to
3522 * read-in the page - otherwise we create buffers to do the IO.
3523 */
3524 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3525 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3526 zero_user(page, offset, length);
ac27a0ec
DK
3527 set_page_dirty(page);
3528 goto unlock;
3529 }
3530
3531 if (!page_has_buffers(page))
3532 create_empty_buffers(page, blocksize, 0);
3533
3534 /* Find the buffer that contains "offset" */
3535 bh = page_buffers(page);
3536 pos = blocksize;
3537 while (offset >= pos) {
3538 bh = bh->b_this_page;
3539 iblock++;
3540 pos += blocksize;
3541 }
3542
3543 err = 0;
3544 if (buffer_freed(bh)) {
3545 BUFFER_TRACE(bh, "freed: skip");
3546 goto unlock;
3547 }
3548
3549 if (!buffer_mapped(bh)) {
3550 BUFFER_TRACE(bh, "unmapped");
617ba13b 3551 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3552 /* unmapped? It's a hole - nothing to do */
3553 if (!buffer_mapped(bh)) {
3554 BUFFER_TRACE(bh, "still unmapped");
3555 goto unlock;
3556 }
3557 }
3558
3559 /* Ok, it's mapped. Make sure it's up-to-date */
3560 if (PageUptodate(page))
3561 set_buffer_uptodate(bh);
3562
3563 if (!buffer_uptodate(bh)) {
3564 err = -EIO;
3565 ll_rw_block(READ, 1, &bh);
3566 wait_on_buffer(bh);
3567 /* Uhhuh. Read error. Complain and punt. */
3568 if (!buffer_uptodate(bh))
3569 goto unlock;
3570 }
3571
617ba13b 3572 if (ext4_should_journal_data(inode)) {
ac27a0ec 3573 BUFFER_TRACE(bh, "get write access");
617ba13b 3574 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3575 if (err)
3576 goto unlock;
3577 }
3578
eebd2aa3 3579 zero_user(page, offset, length);
ac27a0ec
DK
3580
3581 BUFFER_TRACE(bh, "zeroed end of block");
3582
3583 err = 0;
617ba13b 3584 if (ext4_should_journal_data(inode)) {
0390131b 3585 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3586 } else {
617ba13b 3587 if (ext4_should_order_data(inode))
678aaf48 3588 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3589 mark_buffer_dirty(bh);
3590 }
3591
3592unlock:
3593 unlock_page(page);
3594 page_cache_release(page);
3595 return err;
3596}
3597
3598/*
3599 * Probably it should be a library function... search for first non-zero word
3600 * or memcmp with zero_page, whatever is better for particular architecture.
3601 * Linus?
3602 */
3603static inline int all_zeroes(__le32 *p, __le32 *q)
3604{
3605 while (p < q)
3606 if (*p++)
3607 return 0;
3608 return 1;
3609}
3610
3611/**
617ba13b 3612 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3613 * @inode: inode in question
3614 * @depth: depth of the affected branch
617ba13b 3615 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3616 * @chain: place to store the pointers to partial indirect blocks
3617 * @top: place to the (detached) top of branch
3618 *
617ba13b 3619 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3620 *
3621 * When we do truncate() we may have to clean the ends of several
3622 * indirect blocks but leave the blocks themselves alive. Block is
3623 * partially truncated if some data below the new i_size is refered
3624 * from it (and it is on the path to the first completely truncated
3625 * data block, indeed). We have to free the top of that path along
3626 * with everything to the right of the path. Since no allocation
617ba13b 3627 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3628 * finishes, we may safely do the latter, but top of branch may
3629 * require special attention - pageout below the truncation point
3630 * might try to populate it.
3631 *
3632 * We atomically detach the top of branch from the tree, store the
3633 * block number of its root in *@top, pointers to buffer_heads of
3634 * partially truncated blocks - in @chain[].bh and pointers to
3635 * their last elements that should not be removed - in
3636 * @chain[].p. Return value is the pointer to last filled element
3637 * of @chain.
3638 *
3639 * The work left to caller to do the actual freeing of subtrees:
3640 * a) free the subtree starting from *@top
3641 * b) free the subtrees whose roots are stored in
3642 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3643 * c) free the subtrees growing from the inode past the @chain[0].
3644 * (no partially truncated stuff there). */
3645
617ba13b 3646static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3647 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3648{
3649 Indirect *partial, *p;
3650 int k, err;
3651
3652 *top = 0;
3653 /* Make k index the deepest non-null offest + 1 */
3654 for (k = depth; k > 1 && !offsets[k-1]; k--)
3655 ;
617ba13b 3656 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3657 /* Writer: pointers */
3658 if (!partial)
3659 partial = chain + k-1;
3660 /*
3661 * If the branch acquired continuation since we've looked at it -
3662 * fine, it should all survive and (new) top doesn't belong to us.
3663 */
3664 if (!partial->key && *partial->p)
3665 /* Writer: end */
3666 goto no_top;
af5bc92d 3667 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3668 ;
3669 /*
3670 * OK, we've found the last block that must survive. The rest of our
3671 * branch should be detached before unlocking. However, if that rest
3672 * of branch is all ours and does not grow immediately from the inode
3673 * it's easier to cheat and just decrement partial->p.
3674 */
3675 if (p == chain + k - 1 && p > chain) {
3676 p->p--;
3677 } else {
3678 *top = *p->p;
617ba13b 3679 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3680#if 0
3681 *p->p = 0;
3682#endif
3683 }
3684 /* Writer: end */
3685
af5bc92d 3686 while (partial > p) {
ac27a0ec
DK
3687 brelse(partial->bh);
3688 partial--;
3689 }
3690no_top:
3691 return partial;
3692}
3693
3694/*
3695 * Zero a number of block pointers in either an inode or an indirect block.
3696 * If we restart the transaction we must again get write access to the
3697 * indirect block for further modification.
3698 *
3699 * We release `count' blocks on disk, but (last - first) may be greater
3700 * than `count' because there can be holes in there.
3701 */
617ba13b
MC
3702static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3703 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3704 unsigned long count, __le32 *first, __le32 *last)
3705{
3706 __le32 *p;
3707 if (try_to_extend_transaction(handle, inode)) {
3708 if (bh) {
0390131b
FM
3709 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3710 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3711 }
617ba13b
MC
3712 ext4_mark_inode_dirty(handle, inode);
3713 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3714 if (bh) {
3715 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3716 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3717 }
3718 }
3719
3720 /*
3721 * Any buffers which are on the journal will be in memory. We find
dab291af 3722 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3723 * on them. We've already detached each block from the file, so
dab291af 3724 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3725 *
dab291af 3726 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3727 */
3728 for (p = first; p < last; p++) {
3729 u32 nr = le32_to_cpu(*p);
3730 if (nr) {
1d03ec98 3731 struct buffer_head *tbh;
ac27a0ec
DK
3732
3733 *p = 0;
1d03ec98
AK
3734 tbh = sb_find_get_block(inode->i_sb, nr);
3735 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3736 }
3737 }
3738
c9de560d 3739 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3740}
3741
3742/**
617ba13b 3743 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3744 * @handle: handle for this transaction
3745 * @inode: inode we are dealing with
3746 * @this_bh: indirect buffer_head which contains *@first and *@last
3747 * @first: array of block numbers
3748 * @last: points immediately past the end of array
3749 *
3750 * We are freeing all blocks refered from that array (numbers are stored as
3751 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3752 *
3753 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3754 * blocks are contiguous then releasing them at one time will only affect one
3755 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3756 * actually use a lot of journal space.
3757 *
3758 * @this_bh will be %NULL if @first and @last point into the inode's direct
3759 * block pointers.
3760 */
617ba13b 3761static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3762 struct buffer_head *this_bh,
3763 __le32 *first, __le32 *last)
3764{
617ba13b 3765 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3766 unsigned long count = 0; /* Number of blocks in the run */
3767 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3768 corresponding to
3769 block_to_free */
617ba13b 3770 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3771 __le32 *p; /* Pointer into inode/ind
3772 for current block */
3773 int err;
3774
3775 if (this_bh) { /* For indirect block */
3776 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3777 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3778 /* Important: if we can't update the indirect pointers
3779 * to the blocks, we can't free them. */
3780 if (err)
3781 return;
3782 }
3783
3784 for (p = first; p < last; p++) {
3785 nr = le32_to_cpu(*p);
3786 if (nr) {
3787 /* accumulate blocks to free if they're contiguous */
3788 if (count == 0) {
3789 block_to_free = nr;
3790 block_to_free_p = p;
3791 count = 1;
3792 } else if (nr == block_to_free + count) {
3793 count++;
3794 } else {
617ba13b 3795 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3796 block_to_free,
3797 count, block_to_free_p, p);
3798 block_to_free = nr;
3799 block_to_free_p = p;
3800 count = 1;
3801 }
3802 }
3803 }
3804
3805 if (count > 0)
617ba13b 3806 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3807 count, block_to_free_p, p);
3808
3809 if (this_bh) {
0390131b 3810 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3811
3812 /*
3813 * The buffer head should have an attached journal head at this
3814 * point. However, if the data is corrupted and an indirect
3815 * block pointed to itself, it would have been detached when
3816 * the block was cleared. Check for this instead of OOPSing.
3817 */
e7f07968 3818 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3819 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3820 else
3821 ext4_error(inode->i_sb, __func__,
3822 "circular indirect block detected, "
3823 "inode=%lu, block=%llu",
3824 inode->i_ino,
3825 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3826 }
3827}
3828
3829/**
617ba13b 3830 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3831 * @handle: JBD handle for this transaction
3832 * @inode: inode we are dealing with
3833 * @parent_bh: the buffer_head which contains *@first and *@last
3834 * @first: array of block numbers
3835 * @last: pointer immediately past the end of array
3836 * @depth: depth of the branches to free
3837 *
3838 * We are freeing all blocks refered from these branches (numbers are
3839 * stored as little-endian 32-bit) and updating @inode->i_blocks
3840 * appropriately.
3841 */
617ba13b 3842static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3843 struct buffer_head *parent_bh,
3844 __le32 *first, __le32 *last, int depth)
3845{
617ba13b 3846 ext4_fsblk_t nr;
ac27a0ec
DK
3847 __le32 *p;
3848
0390131b 3849 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3850 return;
3851
3852 if (depth--) {
3853 struct buffer_head *bh;
617ba13b 3854 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3855 p = last;
3856 while (--p >= first) {
3857 nr = le32_to_cpu(*p);
3858 if (!nr)
3859 continue; /* A hole */
3860
3861 /* Go read the buffer for the next level down */
3862 bh = sb_bread(inode->i_sb, nr);
3863
3864 /*
3865 * A read failure? Report error and clear slot
3866 * (should be rare).
3867 */
3868 if (!bh) {
617ba13b 3869 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3870 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3871 inode->i_ino, nr);
3872 continue;
3873 }
3874
3875 /* This zaps the entire block. Bottom up. */
3876 BUFFER_TRACE(bh, "free child branches");
617ba13b 3877 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3878 (__le32 *) bh->b_data,
3879 (__le32 *) bh->b_data + addr_per_block,
3880 depth);
ac27a0ec
DK
3881
3882 /*
3883 * We've probably journalled the indirect block several
3884 * times during the truncate. But it's no longer
3885 * needed and we now drop it from the transaction via
dab291af 3886 * jbd2_journal_revoke().
ac27a0ec
DK
3887 *
3888 * That's easy if it's exclusively part of this
3889 * transaction. But if it's part of the committing
dab291af 3890 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3891 * brelse() it. That means that if the underlying
617ba13b 3892 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3893 * unmap_underlying_metadata() will find this block
3894 * and will try to get rid of it. damn, damn.
3895 *
3896 * If this block has already been committed to the
3897 * journal, a revoke record will be written. And
3898 * revoke records must be emitted *before* clearing
3899 * this block's bit in the bitmaps.
3900 */
617ba13b 3901 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3902
3903 /*
3904 * Everything below this this pointer has been
3905 * released. Now let this top-of-subtree go.
3906 *
3907 * We want the freeing of this indirect block to be
3908 * atomic in the journal with the updating of the
3909 * bitmap block which owns it. So make some room in
3910 * the journal.
3911 *
3912 * We zero the parent pointer *after* freeing its
3913 * pointee in the bitmaps, so if extend_transaction()
3914 * for some reason fails to put the bitmap changes and
3915 * the release into the same transaction, recovery
3916 * will merely complain about releasing a free block,
3917 * rather than leaking blocks.
3918 */
0390131b 3919 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3920 return;
3921 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3922 ext4_mark_inode_dirty(handle, inode);
3923 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3924 }
3925
c9de560d 3926 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3927
3928 if (parent_bh) {
3929 /*
3930 * The block which we have just freed is
3931 * pointed to by an indirect block: journal it
3932 */
3933 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3934 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3935 parent_bh)){
3936 *p = 0;
3937 BUFFER_TRACE(parent_bh,
0390131b
FM
3938 "call ext4_handle_dirty_metadata");
3939 ext4_handle_dirty_metadata(handle,
3940 inode,
3941 parent_bh);
ac27a0ec
DK
3942 }
3943 }
3944 }
3945 } else {
3946 /* We have reached the bottom of the tree. */
3947 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3948 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3949 }
3950}
3951
91ef4caf
DG
3952int ext4_can_truncate(struct inode *inode)
3953{
3954 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3955 return 0;
3956 if (S_ISREG(inode->i_mode))
3957 return 1;
3958 if (S_ISDIR(inode->i_mode))
3959 return 1;
3960 if (S_ISLNK(inode->i_mode))
3961 return !ext4_inode_is_fast_symlink(inode);
3962 return 0;
3963}
3964
ac27a0ec 3965/*
617ba13b 3966 * ext4_truncate()
ac27a0ec 3967 *
617ba13b
MC
3968 * We block out ext4_get_block() block instantiations across the entire
3969 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3970 * simultaneously on behalf of the same inode.
3971 *
3972 * As we work through the truncate and commmit bits of it to the journal there
3973 * is one core, guiding principle: the file's tree must always be consistent on
3974 * disk. We must be able to restart the truncate after a crash.
3975 *
3976 * The file's tree may be transiently inconsistent in memory (although it
3977 * probably isn't), but whenever we close off and commit a journal transaction,
3978 * the contents of (the filesystem + the journal) must be consistent and
3979 * restartable. It's pretty simple, really: bottom up, right to left (although
3980 * left-to-right works OK too).
3981 *
3982 * Note that at recovery time, journal replay occurs *before* the restart of
3983 * truncate against the orphan inode list.
3984 *
3985 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3986 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3987 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3988 * ext4_truncate() to have another go. So there will be instantiated blocks
3989 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3990 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3991 * ext4_truncate() run will find them and release them.
ac27a0ec 3992 */
617ba13b 3993void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3994{
3995 handle_t *handle;
617ba13b 3996 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3997 __le32 *i_data = ei->i_data;
617ba13b 3998 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3999 struct address_space *mapping = inode->i_mapping;
725d26d3 4000 ext4_lblk_t offsets[4];
ac27a0ec
DK
4001 Indirect chain[4];
4002 Indirect *partial;
4003 __le32 nr = 0;
4004 int n;
725d26d3 4005 ext4_lblk_t last_block;
ac27a0ec 4006 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4007
91ef4caf 4008 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4009 return;
4010
afd4672d 4011 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4012 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4013
1d03ec98 4014 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4015 ext4_ext_truncate(inode);
1d03ec98
AK
4016 return;
4017 }
a86c6181 4018
ac27a0ec 4019 handle = start_transaction(inode);
cf108bca 4020 if (IS_ERR(handle))
ac27a0ec 4021 return; /* AKPM: return what? */
ac27a0ec
DK
4022
4023 last_block = (inode->i_size + blocksize-1)
617ba13b 4024 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4025
cf108bca
JK
4026 if (inode->i_size & (blocksize - 1))
4027 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4028 goto out_stop;
ac27a0ec 4029
617ba13b 4030 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4031 if (n == 0)
4032 goto out_stop; /* error */
4033
4034 /*
4035 * OK. This truncate is going to happen. We add the inode to the
4036 * orphan list, so that if this truncate spans multiple transactions,
4037 * and we crash, we will resume the truncate when the filesystem
4038 * recovers. It also marks the inode dirty, to catch the new size.
4039 *
4040 * Implication: the file must always be in a sane, consistent
4041 * truncatable state while each transaction commits.
4042 */
617ba13b 4043 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4044 goto out_stop;
4045
632eaeab
MC
4046 /*
4047 * From here we block out all ext4_get_block() callers who want to
4048 * modify the block allocation tree.
4049 */
4050 down_write(&ei->i_data_sem);
b4df2030 4051
c2ea3fde 4052 ext4_discard_preallocations(inode);
b4df2030 4053
ac27a0ec
DK
4054 /*
4055 * The orphan list entry will now protect us from any crash which
4056 * occurs before the truncate completes, so it is now safe to propagate
4057 * the new, shorter inode size (held for now in i_size) into the
4058 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4059 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4060 */
4061 ei->i_disksize = inode->i_size;
4062
ac27a0ec 4063 if (n == 1) { /* direct blocks */
617ba13b
MC
4064 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4065 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4066 goto do_indirects;
4067 }
4068
617ba13b 4069 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4070 /* Kill the top of shared branch (not detached) */
4071 if (nr) {
4072 if (partial == chain) {
4073 /* Shared branch grows from the inode */
617ba13b 4074 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4075 &nr, &nr+1, (chain+n-1) - partial);
4076 *partial->p = 0;
4077 /*
4078 * We mark the inode dirty prior to restart,
4079 * and prior to stop. No need for it here.
4080 */
4081 } else {
4082 /* Shared branch grows from an indirect block */
4083 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4084 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4085 partial->p,
4086 partial->p+1, (chain+n-1) - partial);
4087 }
4088 }
4089 /* Clear the ends of indirect blocks on the shared branch */
4090 while (partial > chain) {
617ba13b 4091 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4092 (__le32*)partial->bh->b_data+addr_per_block,
4093 (chain+n-1) - partial);
4094 BUFFER_TRACE(partial->bh, "call brelse");
4095 brelse (partial->bh);
4096 partial--;
4097 }
4098do_indirects:
4099 /* Kill the remaining (whole) subtrees */
4100 switch (offsets[0]) {
4101 default:
617ba13b 4102 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4103 if (nr) {
617ba13b
MC
4104 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4105 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4106 }
617ba13b
MC
4107 case EXT4_IND_BLOCK:
4108 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4109 if (nr) {
617ba13b
MC
4110 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4111 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4112 }
617ba13b
MC
4113 case EXT4_DIND_BLOCK:
4114 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4115 if (nr) {
617ba13b
MC
4116 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4117 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4118 }
617ba13b 4119 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4120 ;
4121 }
4122
0e855ac8 4123 up_write(&ei->i_data_sem);
ef7f3835 4124 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4125 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4126
4127 /*
4128 * In a multi-transaction truncate, we only make the final transaction
4129 * synchronous
4130 */
4131 if (IS_SYNC(inode))
0390131b 4132 ext4_handle_sync(handle);
ac27a0ec
DK
4133out_stop:
4134 /*
4135 * If this was a simple ftruncate(), and the file will remain alive
4136 * then we need to clear up the orphan record which we created above.
4137 * However, if this was a real unlink then we were called by
617ba13b 4138 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4139 * orphan info for us.
4140 */
4141 if (inode->i_nlink)
617ba13b 4142 ext4_orphan_del(handle, inode);
ac27a0ec 4143
617ba13b 4144 ext4_journal_stop(handle);
ac27a0ec
DK
4145}
4146
ac27a0ec 4147/*
617ba13b 4148 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4149 * underlying buffer_head on success. If 'in_mem' is true, we have all
4150 * data in memory that is needed to recreate the on-disk version of this
4151 * inode.
4152 */
617ba13b
MC
4153static int __ext4_get_inode_loc(struct inode *inode,
4154 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4155{
240799cd
TT
4156 struct ext4_group_desc *gdp;
4157 struct buffer_head *bh;
4158 struct super_block *sb = inode->i_sb;
4159 ext4_fsblk_t block;
4160 int inodes_per_block, inode_offset;
4161
3a06d778 4162 iloc->bh = NULL;
240799cd
TT
4163 if (!ext4_valid_inum(sb, inode->i_ino))
4164 return -EIO;
ac27a0ec 4165
240799cd
TT
4166 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4167 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4168 if (!gdp)
ac27a0ec
DK
4169 return -EIO;
4170
240799cd
TT
4171 /*
4172 * Figure out the offset within the block group inode table
4173 */
4174 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4175 inode_offset = ((inode->i_ino - 1) %
4176 EXT4_INODES_PER_GROUP(sb));
4177 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4178 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4179
4180 bh = sb_getblk(sb, block);
ac27a0ec 4181 if (!bh) {
240799cd
TT
4182 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4183 "inode block - inode=%lu, block=%llu",
4184 inode->i_ino, block);
ac27a0ec
DK
4185 return -EIO;
4186 }
4187 if (!buffer_uptodate(bh)) {
4188 lock_buffer(bh);
9c83a923
HK
4189
4190 /*
4191 * If the buffer has the write error flag, we have failed
4192 * to write out another inode in the same block. In this
4193 * case, we don't have to read the block because we may
4194 * read the old inode data successfully.
4195 */
4196 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4197 set_buffer_uptodate(bh);
4198
ac27a0ec
DK
4199 if (buffer_uptodate(bh)) {
4200 /* someone brought it uptodate while we waited */
4201 unlock_buffer(bh);
4202 goto has_buffer;
4203 }
4204
4205 /*
4206 * If we have all information of the inode in memory and this
4207 * is the only valid inode in the block, we need not read the
4208 * block.
4209 */
4210 if (in_mem) {
4211 struct buffer_head *bitmap_bh;
240799cd 4212 int i, start;
ac27a0ec 4213
240799cd 4214 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4215
240799cd
TT
4216 /* Is the inode bitmap in cache? */
4217 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4218 if (!bitmap_bh)
4219 goto make_io;
4220
4221 /*
4222 * If the inode bitmap isn't in cache then the
4223 * optimisation may end up performing two reads instead
4224 * of one, so skip it.
4225 */
4226 if (!buffer_uptodate(bitmap_bh)) {
4227 brelse(bitmap_bh);
4228 goto make_io;
4229 }
240799cd 4230 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4231 if (i == inode_offset)
4232 continue;
617ba13b 4233 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4234 break;
4235 }
4236 brelse(bitmap_bh);
240799cd 4237 if (i == start + inodes_per_block) {
ac27a0ec
DK
4238 /* all other inodes are free, so skip I/O */
4239 memset(bh->b_data, 0, bh->b_size);
4240 set_buffer_uptodate(bh);
4241 unlock_buffer(bh);
4242 goto has_buffer;
4243 }
4244 }
4245
4246make_io:
240799cd
TT
4247 /*
4248 * If we need to do any I/O, try to pre-readahead extra
4249 * blocks from the inode table.
4250 */
4251 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4252 ext4_fsblk_t b, end, table;
4253 unsigned num;
4254
4255 table = ext4_inode_table(sb, gdp);
b713a5ec 4256 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4257 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4258 if (table > b)
4259 b = table;
4260 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4261 num = EXT4_INODES_PER_GROUP(sb);
4262 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4263 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4264 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4265 table += num / inodes_per_block;
4266 if (end > table)
4267 end = table;
4268 while (b <= end)
4269 sb_breadahead(sb, b++);
4270 }
4271
ac27a0ec
DK
4272 /*
4273 * There are other valid inodes in the buffer, this inode
4274 * has in-inode xattrs, or we don't have this inode in memory.
4275 * Read the block from disk.
4276 */
4277 get_bh(bh);
4278 bh->b_end_io = end_buffer_read_sync;
4279 submit_bh(READ_META, bh);
4280 wait_on_buffer(bh);
4281 if (!buffer_uptodate(bh)) {
240799cd
TT
4282 ext4_error(sb, __func__,
4283 "unable to read inode block - inode=%lu, "
4284 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4285 brelse(bh);
4286 return -EIO;
4287 }
4288 }
4289has_buffer:
4290 iloc->bh = bh;
4291 return 0;
4292}
4293
617ba13b 4294int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4295{
4296 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4297 return __ext4_get_inode_loc(inode, iloc,
4298 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4299}
4300
617ba13b 4301void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4302{
617ba13b 4303 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4304
4305 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4306 if (flags & EXT4_SYNC_FL)
ac27a0ec 4307 inode->i_flags |= S_SYNC;
617ba13b 4308 if (flags & EXT4_APPEND_FL)
ac27a0ec 4309 inode->i_flags |= S_APPEND;
617ba13b 4310 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4311 inode->i_flags |= S_IMMUTABLE;
617ba13b 4312 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4313 inode->i_flags |= S_NOATIME;
617ba13b 4314 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4315 inode->i_flags |= S_DIRSYNC;
4316}
4317
ff9ddf7e
JK
4318/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4319void ext4_get_inode_flags(struct ext4_inode_info *ei)
4320{
4321 unsigned int flags = ei->vfs_inode.i_flags;
4322
4323 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4324 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4325 if (flags & S_SYNC)
4326 ei->i_flags |= EXT4_SYNC_FL;
4327 if (flags & S_APPEND)
4328 ei->i_flags |= EXT4_APPEND_FL;
4329 if (flags & S_IMMUTABLE)
4330 ei->i_flags |= EXT4_IMMUTABLE_FL;
4331 if (flags & S_NOATIME)
4332 ei->i_flags |= EXT4_NOATIME_FL;
4333 if (flags & S_DIRSYNC)
4334 ei->i_flags |= EXT4_DIRSYNC_FL;
4335}
0fc1b451
AK
4336static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4337 struct ext4_inode_info *ei)
4338{
4339 blkcnt_t i_blocks ;
8180a562
AK
4340 struct inode *inode = &(ei->vfs_inode);
4341 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4342
4343 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4344 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4345 /* we are using combined 48 bit field */
4346 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4347 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4348 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4349 /* i_blocks represent file system block size */
4350 return i_blocks << (inode->i_blkbits - 9);
4351 } else {
4352 return i_blocks;
4353 }
0fc1b451
AK
4354 } else {
4355 return le32_to_cpu(raw_inode->i_blocks_lo);
4356 }
4357}
ff9ddf7e 4358
1d1fe1ee 4359struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4360{
617ba13b
MC
4361 struct ext4_iloc iloc;
4362 struct ext4_inode *raw_inode;
1d1fe1ee 4363 struct ext4_inode_info *ei;
ac27a0ec 4364 struct buffer_head *bh;
1d1fe1ee
DH
4365 struct inode *inode;
4366 long ret;
ac27a0ec
DK
4367 int block;
4368
1d1fe1ee
DH
4369 inode = iget_locked(sb, ino);
4370 if (!inode)
4371 return ERR_PTR(-ENOMEM);
4372 if (!(inode->i_state & I_NEW))
4373 return inode;
4374
4375 ei = EXT4_I(inode);
03010a33 4376#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4377 ei->i_acl = EXT4_ACL_NOT_CACHED;
4378 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4379#endif
ac27a0ec 4380
1d1fe1ee
DH
4381 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4382 if (ret < 0)
ac27a0ec
DK
4383 goto bad_inode;
4384 bh = iloc.bh;
617ba13b 4385 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4386 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4387 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4388 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4389 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4390 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4391 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4392 }
4393 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4394
4395 ei->i_state = 0;
4396 ei->i_dir_start_lookup = 0;
4397 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4398 /* We now have enough fields to check if the inode was active or not.
4399 * This is needed because nfsd might try to access dead inodes
4400 * the test is that same one that e2fsck uses
4401 * NeilBrown 1999oct15
4402 */
4403 if (inode->i_nlink == 0) {
4404 if (inode->i_mode == 0 ||
617ba13b 4405 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4406 /* this inode is deleted */
af5bc92d 4407 brelse(bh);
1d1fe1ee 4408 ret = -ESTALE;
ac27a0ec
DK
4409 goto bad_inode;
4410 }
4411 /* The only unlinked inodes we let through here have
4412 * valid i_mode and are being read by the orphan
4413 * recovery code: that's fine, we're about to complete
4414 * the process of deleting those. */
4415 }
ac27a0ec 4416 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4417 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4418 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4419 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4420 ei->i_file_acl |=
4421 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4422 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4423 ei->i_disksize = inode->i_size;
4424 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4425 ei->i_block_group = iloc.block_group;
a4912123 4426 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4427 /*
4428 * NOTE! The in-memory inode i_data array is in little-endian order
4429 * even on big-endian machines: we do NOT byteswap the block numbers!
4430 */
617ba13b 4431 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4432 ei->i_data[block] = raw_inode->i_block[block];
4433 INIT_LIST_HEAD(&ei->i_orphan);
4434
0040d987 4435 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4436 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4437 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4438 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4439 brelse(bh);
1d1fe1ee 4440 ret = -EIO;
ac27a0ec 4441 goto bad_inode;
e5d2861f 4442 }
ac27a0ec
DK
4443 if (ei->i_extra_isize == 0) {
4444 /* The extra space is currently unused. Use it. */
617ba13b
MC
4445 ei->i_extra_isize = sizeof(struct ext4_inode) -
4446 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4447 } else {
4448 __le32 *magic = (void *)raw_inode +
617ba13b 4449 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4450 ei->i_extra_isize;
617ba13b
MC
4451 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4452 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4453 }
4454 } else
4455 ei->i_extra_isize = 0;
4456
ef7f3835
KS
4457 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461
25ec56b5
JNC
4462 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4463 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4464 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4465 inode->i_version |=
4466 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4467 }
4468
c4b5a614 4469 ret = 0;
485c26ec
TT
4470 if (ei->i_file_acl &&
4471 ((ei->i_file_acl <
4472 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4473 EXT4_SB(sb)->s_gdb_count)) ||
4474 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4475 ext4_error(sb, __func__,
4476 "bad extended attribute block %llu in inode #%lu",
4477 ei->i_file_acl, inode->i_ino);
4478 ret = -EIO;
4479 goto bad_inode;
4480 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4481 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4482 (S_ISLNK(inode->i_mode) &&
4483 !ext4_inode_is_fast_symlink(inode)))
4484 /* Validate extent which is part of inode */
4485 ret = ext4_ext_check_inode(inode);
fe2c8191
TN
4486 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4487 (S_ISLNK(inode->i_mode) &&
4488 !ext4_inode_is_fast_symlink(inode))) {
4489 /* Validate block references which are part of inode */
4490 ret = ext4_check_inode_blockref(inode);
4491 }
4492 if (ret) {
4493 brelse(bh);
4494 goto bad_inode;
7a262f7c
AK
4495 }
4496
ac27a0ec 4497 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4498 inode->i_op = &ext4_file_inode_operations;
4499 inode->i_fop = &ext4_file_operations;
4500 ext4_set_aops(inode);
ac27a0ec 4501 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4502 inode->i_op = &ext4_dir_inode_operations;
4503 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4504 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4505 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4506 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4507 nd_terminate_link(ei->i_data, inode->i_size,
4508 sizeof(ei->i_data) - 1);
4509 } else {
617ba13b
MC
4510 inode->i_op = &ext4_symlink_inode_operations;
4511 ext4_set_aops(inode);
ac27a0ec 4512 }
563bdd61
TT
4513 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4514 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4515 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4516 if (raw_inode->i_block[0])
4517 init_special_inode(inode, inode->i_mode,
4518 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4519 else
4520 init_special_inode(inode, inode->i_mode,
4521 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4522 } else {
4523 brelse(bh);
4524 ret = -EIO;
4525 ext4_error(inode->i_sb, __func__,
4526 "bogus i_mode (%o) for inode=%lu",
4527 inode->i_mode, inode->i_ino);
4528 goto bad_inode;
ac27a0ec 4529 }
af5bc92d 4530 brelse(iloc.bh);
617ba13b 4531 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4532 unlock_new_inode(inode);
4533 return inode;
ac27a0ec
DK
4534
4535bad_inode:
1d1fe1ee
DH
4536 iget_failed(inode);
4537 return ERR_PTR(ret);
ac27a0ec
DK
4538}
4539
0fc1b451
AK
4540static int ext4_inode_blocks_set(handle_t *handle,
4541 struct ext4_inode *raw_inode,
4542 struct ext4_inode_info *ei)
4543{
4544 struct inode *inode = &(ei->vfs_inode);
4545 u64 i_blocks = inode->i_blocks;
4546 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4547
4548 if (i_blocks <= ~0U) {
4549 /*
4550 * i_blocks can be represnted in a 32 bit variable
4551 * as multiple of 512 bytes
4552 */
8180a562 4553 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4554 raw_inode->i_blocks_high = 0;
8180a562 4555 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4556 return 0;
4557 }
4558 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4559 return -EFBIG;
4560
4561 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4562 /*
4563 * i_blocks can be represented in a 48 bit variable
4564 * as multiple of 512 bytes
4565 */
8180a562 4566 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4567 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4568 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4569 } else {
8180a562
AK
4570 ei->i_flags |= EXT4_HUGE_FILE_FL;
4571 /* i_block is stored in file system block size */
4572 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4573 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4574 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4575 }
f287a1a5 4576 return 0;
0fc1b451
AK
4577}
4578
ac27a0ec
DK
4579/*
4580 * Post the struct inode info into an on-disk inode location in the
4581 * buffer-cache. This gobbles the caller's reference to the
4582 * buffer_head in the inode location struct.
4583 *
4584 * The caller must have write access to iloc->bh.
4585 */
617ba13b 4586static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4587 struct inode *inode,
617ba13b 4588 struct ext4_iloc *iloc)
ac27a0ec 4589{
617ba13b
MC
4590 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4591 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4592 struct buffer_head *bh = iloc->bh;
4593 int err = 0, rc, block;
4594
4595 /* For fields not not tracking in the in-memory inode,
4596 * initialise them to zero for new inodes. */
617ba13b
MC
4597 if (ei->i_state & EXT4_STATE_NEW)
4598 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4599
ff9ddf7e 4600 ext4_get_inode_flags(ei);
ac27a0ec 4601 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4602 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4603 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4604 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4605/*
4606 * Fix up interoperability with old kernels. Otherwise, old inodes get
4607 * re-used with the upper 16 bits of the uid/gid intact
4608 */
af5bc92d 4609 if (!ei->i_dtime) {
ac27a0ec
DK
4610 raw_inode->i_uid_high =
4611 cpu_to_le16(high_16_bits(inode->i_uid));
4612 raw_inode->i_gid_high =
4613 cpu_to_le16(high_16_bits(inode->i_gid));
4614 } else {
4615 raw_inode->i_uid_high = 0;
4616 raw_inode->i_gid_high = 0;
4617 }
4618 } else {
4619 raw_inode->i_uid_low =
4620 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4621 raw_inode->i_gid_low =
4622 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4623 raw_inode->i_uid_high = 0;
4624 raw_inode->i_gid_high = 0;
4625 }
4626 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4627
4628 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4629 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4630 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4631 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4632
0fc1b451
AK
4633 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4634 goto out_brelse;
ac27a0ec 4635 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4636 /* clear the migrate flag in the raw_inode */
4637 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4638 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4639 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4640 raw_inode->i_file_acl_high =
4641 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4642 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4643 ext4_isize_set(raw_inode, ei->i_disksize);
4644 if (ei->i_disksize > 0x7fffffffULL) {
4645 struct super_block *sb = inode->i_sb;
4646 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4647 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4648 EXT4_SB(sb)->s_es->s_rev_level ==
4649 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4650 /* If this is the first large file
4651 * created, add a flag to the superblock.
4652 */
4653 err = ext4_journal_get_write_access(handle,
4654 EXT4_SB(sb)->s_sbh);
4655 if (err)
4656 goto out_brelse;
4657 ext4_update_dynamic_rev(sb);
4658 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4659 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4660 sb->s_dirt = 1;
0390131b
FM
4661 ext4_handle_sync(handle);
4662 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4663 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4664 }
4665 }
4666 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4667 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4668 if (old_valid_dev(inode->i_rdev)) {
4669 raw_inode->i_block[0] =
4670 cpu_to_le32(old_encode_dev(inode->i_rdev));
4671 raw_inode->i_block[1] = 0;
4672 } else {
4673 raw_inode->i_block[0] = 0;
4674 raw_inode->i_block[1] =
4675 cpu_to_le32(new_encode_dev(inode->i_rdev));
4676 raw_inode->i_block[2] = 0;
4677 }
617ba13b 4678 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4679 raw_inode->i_block[block] = ei->i_data[block];
4680
25ec56b5
JNC
4681 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4682 if (ei->i_extra_isize) {
4683 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4684 raw_inode->i_version_hi =
4685 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4686 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4687 }
4688
0390131b
FM
4689 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4690 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4691 if (!err)
4692 err = rc;
617ba13b 4693 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4694
4695out_brelse:
af5bc92d 4696 brelse(bh);
617ba13b 4697 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4698 return err;
4699}
4700
4701/*
617ba13b 4702 * ext4_write_inode()
ac27a0ec
DK
4703 *
4704 * We are called from a few places:
4705 *
4706 * - Within generic_file_write() for O_SYNC files.
4707 * Here, there will be no transaction running. We wait for any running
4708 * trasnaction to commit.
4709 *
4710 * - Within sys_sync(), kupdate and such.
4711 * We wait on commit, if tol to.
4712 *
4713 * - Within prune_icache() (PF_MEMALLOC == true)
4714 * Here we simply return. We can't afford to block kswapd on the
4715 * journal commit.
4716 *
4717 * In all cases it is actually safe for us to return without doing anything,
4718 * because the inode has been copied into a raw inode buffer in
617ba13b 4719 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4720 * knfsd.
4721 *
4722 * Note that we are absolutely dependent upon all inode dirtiers doing the
4723 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4724 * which we are interested.
4725 *
4726 * It would be a bug for them to not do this. The code:
4727 *
4728 * mark_inode_dirty(inode)
4729 * stuff();
4730 * inode->i_size = expr;
4731 *
4732 * is in error because a kswapd-driven write_inode() could occur while
4733 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4734 * will no longer be on the superblock's dirty inode list.
4735 */
617ba13b 4736int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4737{
4738 if (current->flags & PF_MEMALLOC)
4739 return 0;
4740
617ba13b 4741 if (ext4_journal_current_handle()) {
b38bd33a 4742 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4743 dump_stack();
4744 return -EIO;
4745 }
4746
4747 if (!wait)
4748 return 0;
4749
617ba13b 4750 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4751}
4752
0390131b
FM
4753int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4754{
4755 int err = 0;
4756
4757 mark_buffer_dirty(bh);
4758 if (inode && inode_needs_sync(inode)) {
4759 sync_dirty_buffer(bh);
4760 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4761 ext4_error(inode->i_sb, __func__,
4762 "IO error syncing inode, "
4763 "inode=%lu, block=%llu",
4764 inode->i_ino,
4765 (unsigned long long)bh->b_blocknr);
4766 err = -EIO;
4767 }
4768 }
4769 return err;
4770}
4771
ac27a0ec 4772/*
617ba13b 4773 * ext4_setattr()
ac27a0ec
DK
4774 *
4775 * Called from notify_change.
4776 *
4777 * We want to trap VFS attempts to truncate the file as soon as
4778 * possible. In particular, we want to make sure that when the VFS
4779 * shrinks i_size, we put the inode on the orphan list and modify
4780 * i_disksize immediately, so that during the subsequent flushing of
4781 * dirty pages and freeing of disk blocks, we can guarantee that any
4782 * commit will leave the blocks being flushed in an unused state on
4783 * disk. (On recovery, the inode will get truncated and the blocks will
4784 * be freed, so we have a strong guarantee that no future commit will
4785 * leave these blocks visible to the user.)
4786 *
678aaf48
JK
4787 * Another thing we have to assure is that if we are in ordered mode
4788 * and inode is still attached to the committing transaction, we must
4789 * we start writeout of all the dirty pages which are being truncated.
4790 * This way we are sure that all the data written in the previous
4791 * transaction are already on disk (truncate waits for pages under
4792 * writeback).
4793 *
4794 * Called with inode->i_mutex down.
ac27a0ec 4795 */
617ba13b 4796int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4797{
4798 struct inode *inode = dentry->d_inode;
4799 int error, rc = 0;
4800 const unsigned int ia_valid = attr->ia_valid;
4801
4802 error = inode_change_ok(inode, attr);
4803 if (error)
4804 return error;
4805
4806 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4807 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4808 handle_t *handle;
4809
4810 /* (user+group)*(old+new) structure, inode write (sb,
4811 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4812 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4813 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4814 if (IS_ERR(handle)) {
4815 error = PTR_ERR(handle);
4816 goto err_out;
4817 }
a269eb18 4818 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4819 if (error) {
617ba13b 4820 ext4_journal_stop(handle);
ac27a0ec
DK
4821 return error;
4822 }
4823 /* Update corresponding info in inode so that everything is in
4824 * one transaction */
4825 if (attr->ia_valid & ATTR_UID)
4826 inode->i_uid = attr->ia_uid;
4827 if (attr->ia_valid & ATTR_GID)
4828 inode->i_gid = attr->ia_gid;
617ba13b
MC
4829 error = ext4_mark_inode_dirty(handle, inode);
4830 ext4_journal_stop(handle);
ac27a0ec
DK
4831 }
4832
e2b46574
ES
4833 if (attr->ia_valid & ATTR_SIZE) {
4834 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4835 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4836
4837 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4838 error = -EFBIG;
4839 goto err_out;
4840 }
4841 }
4842 }
4843
ac27a0ec
DK
4844 if (S_ISREG(inode->i_mode) &&
4845 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4846 handle_t *handle;
4847
617ba13b 4848 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4849 if (IS_ERR(handle)) {
4850 error = PTR_ERR(handle);
4851 goto err_out;
4852 }
4853
617ba13b
MC
4854 error = ext4_orphan_add(handle, inode);
4855 EXT4_I(inode)->i_disksize = attr->ia_size;
4856 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4857 if (!error)
4858 error = rc;
617ba13b 4859 ext4_journal_stop(handle);
678aaf48
JK
4860
4861 if (ext4_should_order_data(inode)) {
4862 error = ext4_begin_ordered_truncate(inode,
4863 attr->ia_size);
4864 if (error) {
4865 /* Do as much error cleanup as possible */
4866 handle = ext4_journal_start(inode, 3);
4867 if (IS_ERR(handle)) {
4868 ext4_orphan_del(NULL, inode);
4869 goto err_out;
4870 }
4871 ext4_orphan_del(handle, inode);
4872 ext4_journal_stop(handle);
4873 goto err_out;
4874 }
4875 }
ac27a0ec
DK
4876 }
4877
4878 rc = inode_setattr(inode, attr);
4879
617ba13b 4880 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4881 * transaction handle at all, we need to clean up the in-core
4882 * orphan list manually. */
4883 if (inode->i_nlink)
617ba13b 4884 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4885
4886 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4887 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4888
4889err_out:
617ba13b 4890 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4891 if (!error)
4892 error = rc;
4893 return error;
4894}
4895
3e3398a0
MC
4896int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4897 struct kstat *stat)
4898{
4899 struct inode *inode;
4900 unsigned long delalloc_blocks;
4901
4902 inode = dentry->d_inode;
4903 generic_fillattr(inode, stat);
4904
4905 /*
4906 * We can't update i_blocks if the block allocation is delayed
4907 * otherwise in the case of system crash before the real block
4908 * allocation is done, we will have i_blocks inconsistent with
4909 * on-disk file blocks.
4910 * We always keep i_blocks updated together with real
4911 * allocation. But to not confuse with user, stat
4912 * will return the blocks that include the delayed allocation
4913 * blocks for this file.
4914 */
4915 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4916 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4917 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4918
4919 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4920 return 0;
4921}
ac27a0ec 4922
a02908f1
MC
4923static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4924 int chunk)
4925{
4926 int indirects;
4927
4928 /* if nrblocks are contiguous */
4929 if (chunk) {
4930 /*
4931 * With N contiguous data blocks, it need at most
4932 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4933 * 2 dindirect blocks
4934 * 1 tindirect block
4935 */
4936 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4937 return indirects + 3;
4938 }
4939 /*
4940 * if nrblocks are not contiguous, worse case, each block touch
4941 * a indirect block, and each indirect block touch a double indirect
4942 * block, plus a triple indirect block
4943 */
4944 indirects = nrblocks * 2 + 1;
4945 return indirects;
4946}
4947
4948static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4949{
4950 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4951 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4952 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4953}
ac51d837 4954
ac27a0ec 4955/*
a02908f1
MC
4956 * Account for index blocks, block groups bitmaps and block group
4957 * descriptor blocks if modify datablocks and index blocks
4958 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4959 *
a02908f1
MC
4960 * If datablocks are discontiguous, they are possible to spread over
4961 * different block groups too. If they are contiugous, with flexbg,
4962 * they could still across block group boundary.
ac27a0ec 4963 *
a02908f1
MC
4964 * Also account for superblock, inode, quota and xattr blocks
4965 */
4966int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4967{
4968 int groups, gdpblocks;
4969 int idxblocks;
4970 int ret = 0;
4971
4972 /*
4973 * How many index blocks need to touch to modify nrblocks?
4974 * The "Chunk" flag indicating whether the nrblocks is
4975 * physically contiguous on disk
4976 *
4977 * For Direct IO and fallocate, they calls get_block to allocate
4978 * one single extent at a time, so they could set the "Chunk" flag
4979 */
4980 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4981
4982 ret = idxblocks;
4983
4984 /*
4985 * Now let's see how many group bitmaps and group descriptors need
4986 * to account
4987 */
4988 groups = idxblocks;
4989 if (chunk)
4990 groups += 1;
4991 else
4992 groups += nrblocks;
4993
4994 gdpblocks = groups;
4995 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4996 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4997 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4998 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4999
5000 /* bitmaps and block group descriptor blocks */
5001 ret += groups + gdpblocks;
5002
5003 /* Blocks for super block, inode, quota and xattr blocks */
5004 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5005
5006 return ret;
5007}
5008
5009/*
5010 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5011 * the modification of a single pages into a single transaction,
5012 * which may include multiple chunks of block allocations.
ac27a0ec 5013 *
525f4ed8 5014 * This could be called via ext4_write_begin()
ac27a0ec 5015 *
525f4ed8 5016 * We need to consider the worse case, when
a02908f1 5017 * one new block per extent.
ac27a0ec 5018 */
a86c6181 5019int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5020{
617ba13b 5021 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5022 int ret;
5023
a02908f1 5024 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5025
a02908f1 5026 /* Account for data blocks for journalled mode */
617ba13b 5027 if (ext4_should_journal_data(inode))
a02908f1 5028 ret += bpp;
ac27a0ec
DK
5029 return ret;
5030}
f3bd1f3f
MC
5031
5032/*
5033 * Calculate the journal credits for a chunk of data modification.
5034 *
5035 * This is called from DIO, fallocate or whoever calling
5036 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
5037 *
5038 * journal buffers for data blocks are not included here, as DIO
5039 * and fallocate do no need to journal data buffers.
5040 */
5041int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5042{
5043 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5044}
5045
ac27a0ec 5046/*
617ba13b 5047 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5048 * Give this, we know that the caller already has write access to iloc->bh.
5049 */
617ba13b
MC
5050int ext4_mark_iloc_dirty(handle_t *handle,
5051 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5052{
5053 int err = 0;
5054
25ec56b5
JNC
5055 if (test_opt(inode->i_sb, I_VERSION))
5056 inode_inc_iversion(inode);
5057
ac27a0ec
DK
5058 /* the do_update_inode consumes one bh->b_count */
5059 get_bh(iloc->bh);
5060
dab291af 5061 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5062 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5063 put_bh(iloc->bh);
5064 return err;
5065}
5066
5067/*
5068 * On success, We end up with an outstanding reference count against
5069 * iloc->bh. This _must_ be cleaned up later.
5070 */
5071
5072int
617ba13b
MC
5073ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5074 struct ext4_iloc *iloc)
ac27a0ec 5075{
0390131b
FM
5076 int err;
5077
5078 err = ext4_get_inode_loc(inode, iloc);
5079 if (!err) {
5080 BUFFER_TRACE(iloc->bh, "get_write_access");
5081 err = ext4_journal_get_write_access(handle, iloc->bh);
5082 if (err) {
5083 brelse(iloc->bh);
5084 iloc->bh = NULL;
ac27a0ec
DK
5085 }
5086 }
617ba13b 5087 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5088 return err;
5089}
5090
6dd4ee7c
KS
5091/*
5092 * Expand an inode by new_extra_isize bytes.
5093 * Returns 0 on success or negative error number on failure.
5094 */
1d03ec98
AK
5095static int ext4_expand_extra_isize(struct inode *inode,
5096 unsigned int new_extra_isize,
5097 struct ext4_iloc iloc,
5098 handle_t *handle)
6dd4ee7c
KS
5099{
5100 struct ext4_inode *raw_inode;
5101 struct ext4_xattr_ibody_header *header;
5102 struct ext4_xattr_entry *entry;
5103
5104 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5105 return 0;
5106
5107 raw_inode = ext4_raw_inode(&iloc);
5108
5109 header = IHDR(inode, raw_inode);
5110 entry = IFIRST(header);
5111
5112 /* No extended attributes present */
5113 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5114 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5115 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5116 new_extra_isize);
5117 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5118 return 0;
5119 }
5120
5121 /* try to expand with EAs present */
5122 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5123 raw_inode, handle);
5124}
5125
ac27a0ec
DK
5126/*
5127 * What we do here is to mark the in-core inode as clean with respect to inode
5128 * dirtiness (it may still be data-dirty).
5129 * This means that the in-core inode may be reaped by prune_icache
5130 * without having to perform any I/O. This is a very good thing,
5131 * because *any* task may call prune_icache - even ones which
5132 * have a transaction open against a different journal.
5133 *
5134 * Is this cheating? Not really. Sure, we haven't written the
5135 * inode out, but prune_icache isn't a user-visible syncing function.
5136 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5137 * we start and wait on commits.
5138 *
5139 * Is this efficient/effective? Well, we're being nice to the system
5140 * by cleaning up our inodes proactively so they can be reaped
5141 * without I/O. But we are potentially leaving up to five seconds'
5142 * worth of inodes floating about which prune_icache wants us to
5143 * write out. One way to fix that would be to get prune_icache()
5144 * to do a write_super() to free up some memory. It has the desired
5145 * effect.
5146 */
617ba13b 5147int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5148{
617ba13b 5149 struct ext4_iloc iloc;
6dd4ee7c
KS
5150 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5151 static unsigned int mnt_count;
5152 int err, ret;
ac27a0ec
DK
5153
5154 might_sleep();
617ba13b 5155 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5156 if (ext4_handle_valid(handle) &&
5157 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5158 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5159 /*
5160 * We need extra buffer credits since we may write into EA block
5161 * with this same handle. If journal_extend fails, then it will
5162 * only result in a minor loss of functionality for that inode.
5163 * If this is felt to be critical, then e2fsck should be run to
5164 * force a large enough s_min_extra_isize.
5165 */
5166 if ((jbd2_journal_extend(handle,
5167 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5168 ret = ext4_expand_extra_isize(inode,
5169 sbi->s_want_extra_isize,
5170 iloc, handle);
5171 if (ret) {
5172 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5173 if (mnt_count !=
5174 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5175 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5176 "Unable to expand inode %lu. Delete"
5177 " some EAs or run e2fsck.",
5178 inode->i_ino);
c1bddad9
AK
5179 mnt_count =
5180 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5181 }
5182 }
5183 }
5184 }
ac27a0ec 5185 if (!err)
617ba13b 5186 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5187 return err;
5188}
5189
5190/*
617ba13b 5191 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5192 *
5193 * We're really interested in the case where a file is being extended.
5194 * i_size has been changed by generic_commit_write() and we thus need
5195 * to include the updated inode in the current transaction.
5196 *
a269eb18 5197 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5198 * are allocated to the file.
5199 *
5200 * If the inode is marked synchronous, we don't honour that here - doing
5201 * so would cause a commit on atime updates, which we don't bother doing.
5202 * We handle synchronous inodes at the highest possible level.
5203 */
617ba13b 5204void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5205{
617ba13b 5206 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5207 handle_t *handle;
5208
0390131b
FM
5209 if (!ext4_handle_valid(current_handle)) {
5210 ext4_mark_inode_dirty(current_handle, inode);
5211 return;
5212 }
5213
617ba13b 5214 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5215 if (IS_ERR(handle))
5216 goto out;
5217 if (current_handle &&
5218 current_handle->h_transaction != handle->h_transaction) {
5219 /* This task has a transaction open against a different fs */
5220 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5221 __func__);
ac27a0ec
DK
5222 } else {
5223 jbd_debug(5, "marking dirty. outer handle=%p\n",
5224 current_handle);
617ba13b 5225 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5226 }
617ba13b 5227 ext4_journal_stop(handle);
ac27a0ec
DK
5228out:
5229 return;
5230}
5231
5232#if 0
5233/*
5234 * Bind an inode's backing buffer_head into this transaction, to prevent
5235 * it from being flushed to disk early. Unlike
617ba13b 5236 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5237 * returns no iloc structure, so the caller needs to repeat the iloc
5238 * lookup to mark the inode dirty later.
5239 */
617ba13b 5240static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5241{
617ba13b 5242 struct ext4_iloc iloc;
ac27a0ec
DK
5243
5244 int err = 0;
5245 if (handle) {
617ba13b 5246 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5247 if (!err) {
5248 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5249 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5250 if (!err)
0390131b
FM
5251 err = ext4_handle_dirty_metadata(handle,
5252 inode,
5253 iloc.bh);
ac27a0ec
DK
5254 brelse(iloc.bh);
5255 }
5256 }
617ba13b 5257 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5258 return err;
5259}
5260#endif
5261
617ba13b 5262int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5263{
5264 journal_t *journal;
5265 handle_t *handle;
5266 int err;
5267
5268 /*
5269 * We have to be very careful here: changing a data block's
5270 * journaling status dynamically is dangerous. If we write a
5271 * data block to the journal, change the status and then delete
5272 * that block, we risk forgetting to revoke the old log record
5273 * from the journal and so a subsequent replay can corrupt data.
5274 * So, first we make sure that the journal is empty and that
5275 * nobody is changing anything.
5276 */
5277
617ba13b 5278 journal = EXT4_JOURNAL(inode);
0390131b
FM
5279 if (!journal)
5280 return 0;
d699594d 5281 if (is_journal_aborted(journal))
ac27a0ec
DK
5282 return -EROFS;
5283
dab291af
MC
5284 jbd2_journal_lock_updates(journal);
5285 jbd2_journal_flush(journal);
ac27a0ec
DK
5286
5287 /*
5288 * OK, there are no updates running now, and all cached data is
5289 * synced to disk. We are now in a completely consistent state
5290 * which doesn't have anything in the journal, and we know that
5291 * no filesystem updates are running, so it is safe to modify
5292 * the inode's in-core data-journaling state flag now.
5293 */
5294
5295 if (val)
617ba13b 5296 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5297 else
617ba13b
MC
5298 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5299 ext4_set_aops(inode);
ac27a0ec 5300
dab291af 5301 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5302
5303 /* Finally we can mark the inode as dirty. */
5304
617ba13b 5305 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5306 if (IS_ERR(handle))
5307 return PTR_ERR(handle);
5308
617ba13b 5309 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5310 ext4_handle_sync(handle);
617ba13b
MC
5311 ext4_journal_stop(handle);
5312 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5313
5314 return err;
5315}
2e9ee850
AK
5316
5317static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5318{
5319 return !buffer_mapped(bh);
5320}
5321
c2ec175c 5322int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5323{
c2ec175c 5324 struct page *page = vmf->page;
2e9ee850
AK
5325 loff_t size;
5326 unsigned long len;
5327 int ret = -EINVAL;
79f0be8d 5328 void *fsdata;
2e9ee850
AK
5329 struct file *file = vma->vm_file;
5330 struct inode *inode = file->f_path.dentry->d_inode;
5331 struct address_space *mapping = inode->i_mapping;
5332
5333 /*
5334 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5335 * get i_mutex because we are already holding mmap_sem.
5336 */
5337 down_read(&inode->i_alloc_sem);
5338 size = i_size_read(inode);
5339 if (page->mapping != mapping || size <= page_offset(page)
5340 || !PageUptodate(page)) {
5341 /* page got truncated from under us? */
5342 goto out_unlock;
5343 }
5344 ret = 0;
5345 if (PageMappedToDisk(page))
5346 goto out_unlock;
5347
5348 if (page->index == size >> PAGE_CACHE_SHIFT)
5349 len = size & ~PAGE_CACHE_MASK;
5350 else
5351 len = PAGE_CACHE_SIZE;
5352
5353 if (page_has_buffers(page)) {
5354 /* return if we have all the buffers mapped */
5355 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5356 ext4_bh_unmapped))
5357 goto out_unlock;
5358 }
5359 /*
5360 * OK, we need to fill the hole... Do write_begin write_end
5361 * to do block allocation/reservation.We are not holding
5362 * inode.i__mutex here. That allow * parallel write_begin,
5363 * write_end call. lock_page prevent this from happening
5364 * on the same page though
5365 */
5366 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5367 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5368 if (ret < 0)
5369 goto out_unlock;
5370 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5371 len, len, page, fsdata);
2e9ee850
AK
5372 if (ret < 0)
5373 goto out_unlock;
5374 ret = 0;
5375out_unlock:
c2ec175c
NP
5376 if (ret)
5377 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5378 up_read(&inode->i_alloc_sem);
5379 return ret;
5380}