explain the hidden scsi_wait_scan Kconfig variable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
CommitLineData
1da177e4
LT
1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
4e57b681
TS
40
41#include <linux/slab.h>
8c65b4a6 42#include <asm/param.h> /* for timeouts in units of HZ */
4e57b681 43
1da177e4
LT
44#include "sym_glue.h"
45#include "sym_nvram.h"
46
47#if 0
48#define SYM_DEBUG_GENERIC_SUPPORT
49#endif
50
51/*
52 * Needed function prototypes.
53 */
54static void sym_int_ma (struct sym_hcb *np);
3fb364e0 55static void sym_int_sir(struct sym_hcb *);
1da177e4
LT
56static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62
63/*
64 * Print a buffer in hexadecimal format with a ".\n" at end.
65 */
66static void sym_printl_hex(u_char *p, int n)
67{
68 while (n-- > 0)
69 printf (" %x", *p++);
70 printf (".\n");
71}
72
1da177e4
LT
73static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74{
92d578b9
MW
75 if (label)
76 sym_print_addr(cp->cmd, "%s: ", label);
77 else
78 sym_print_addr(cp->cmd, "");
1da177e4 79
1abfd370 80 spi_print_msg(msg);
33333bac 81 printf("\n");
1da177e4
LT
82}
83
84static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
85{
86 struct sym_tcb *tp = &np->target[target];
53222b90 87 dev_info(&tp->starget->dev, "%s: ", label);
1da177e4 88
1abfd370 89 spi_print_msg(msg);
33333bac 90 printf("\n");
1da177e4
LT
91}
92
93/*
94 * Print something that tells about extended errors.
95 */
96void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
97{
98 if (x_status & XE_PARITY_ERR) {
99 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
100 }
101 if (x_status & XE_EXTRA_DATA) {
102 sym_print_addr(cmd, "extraneous data discarded.\n");
103 }
104 if (x_status & XE_BAD_PHASE) {
105 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
106 }
107 if (x_status & XE_SODL_UNRUN) {
108 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
109 }
110 if (x_status & XE_SWIDE_OVRUN) {
111 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
112 }
113}
114
115/*
116 * Return a string for SCSI BUS mode.
117 */
118static char *sym_scsi_bus_mode(int mode)
119{
120 switch(mode) {
121 case SMODE_HVD: return "HVD";
122 case SMODE_SE: return "SE";
123 case SMODE_LVD: return "LVD";
124 }
125 return "??";
126}
127
128/*
129 * Soft reset the chip.
130 *
131 * Raising SRST when the chip is running may cause
132 * problems on dual function chips (see below).
133 * On the other hand, LVD devices need some delay
134 * to settle and report actual BUS mode in STEST4.
135 */
136static void sym_chip_reset (struct sym_hcb *np)
137{
138 OUTB(np, nc_istat, SRST);
53222b90 139 INB(np, nc_mbox1);
1da177e4
LT
140 udelay(10);
141 OUTB(np, nc_istat, 0);
53222b90 142 INB(np, nc_mbox1);
1da177e4
LT
143 udelay(2000); /* For BUS MODE to settle */
144}
145
146/*
147 * Really soft reset the chip.:)
148 *
149 * Some 896 and 876 chip revisions may hang-up if we set
150 * the SRST (soft reset) bit at the wrong time when SCRIPTS
151 * are running.
152 * So, we need to abort the current operation prior to
153 * soft resetting the chip.
154 */
155static void sym_soft_reset (struct sym_hcb *np)
156{
157 u_char istat = 0;
158 int i;
159
160 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 goto do_chip_reset;
162
163 OUTB(np, nc_istat, CABRT);
164 for (i = 100000 ; i ; --i) {
165 istat = INB(np, nc_istat);
166 if (istat & SIP) {
167 INW(np, nc_sist);
168 }
169 else if (istat & DIP) {
170 if (INB(np, nc_dstat) & ABRT)
171 break;
172 }
173 udelay(5);
174 }
175 OUTB(np, nc_istat, 0);
176 if (!i)
177 printf("%s: unable to abort current chip operation, "
178 "ISTAT=0x%02x.\n", sym_name(np), istat);
179do_chip_reset:
180 sym_chip_reset(np);
181}
182
183/*
184 * Start reset process.
185 *
186 * The interrupt handler will reinitialize the chip.
187 */
188static void sym_start_reset(struct sym_hcb *np)
189{
190 sym_reset_scsi_bus(np, 1);
191}
192
193int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
194{
195 u32 term;
196 int retv = 0;
197
198 sym_soft_reset(np); /* Soft reset the chip */
199 if (enab_int)
200 OUTW(np, nc_sien, RST);
201 /*
202 * Enable Tolerant, reset IRQD if present and
203 * properly set IRQ mode, prior to resetting the bus.
204 */
205 OUTB(np, nc_stest3, TE);
206 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 OUTB(np, nc_scntl1, CRST);
53222b90 208 INB(np, nc_mbox1);
1da177e4
LT
209 udelay(200);
210
211 if (!SYM_SETUP_SCSI_BUS_CHECK)
212 goto out;
213 /*
214 * Check for no terminators or SCSI bus shorts to ground.
215 * Read SCSI data bus, data parity bits and control signals.
216 * We are expecting RESET to be TRUE and other signals to be
217 * FALSE.
218 */
219 term = INB(np, nc_sstat0);
220 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
221 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
222 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
223 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
224 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
225
226 if (!np->maxwide)
227 term &= 0x3ffff;
228
229 if (term != (2<<7)) {
230 printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 sym_name(np));
232 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 "0x%lx, expecting 0x%lx\n",
234 sym_name(np),
235 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 (u_long)term, (u_long)(2<<7));
237 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 retv = 1;
239 }
240out:
241 OUTB(np, nc_scntl1, 0);
242 return retv;
243}
244
245/*
246 * Select SCSI clock frequency
247 */
248static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
249{
250 /*
251 * If multiplier not present or not selected, leave here.
252 */
253 if (np->multiplier <= 1) {
254 OUTB(np, nc_scntl3, scntl3);
255 return;
256 }
257
258 if (sym_verbose >= 2)
259 printf ("%s: enabling clock multiplier\n", sym_name(np));
260
261 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
262 /*
263 * Wait for the LCKFRQ bit to be set if supported by the chip.
264 * Otherwise wait 50 micro-seconds (at least).
265 */
266 if (np->features & FE_LCKFRQ) {
267 int i = 20;
268 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 udelay(20);
270 if (!i)
271 printf("%s: the chip cannot lock the frequency\n",
272 sym_name(np));
53222b90
MW
273 } else {
274 INB(np, nc_mbox1);
275 udelay(50+10);
276 }
1da177e4
LT
277 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
278 OUTB(np, nc_scntl3, scntl3);
279 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
280 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
281}
282
283
284/*
285 * Determine the chip's clock frequency.
286 *
287 * This is essential for the negotiation of the synchronous
288 * transfer rate.
289 *
290 * Note: we have to return the correct value.
291 * THERE IS NO SAFE DEFAULT VALUE.
292 *
293 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294 * 53C860 and 53C875 rev. 1 support fast20 transfers but
295 * do not have a clock doubler and so are provided with a
296 * 80 MHz clock. All other fast20 boards incorporate a doubler
297 * and so should be delivered with a 40 MHz clock.
298 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299 * clock and provide a clock quadrupler (160 Mhz).
300 */
301
302/*
303 * calculate SCSI clock frequency (in KHz)
304 */
305static unsigned getfreq (struct sym_hcb *np, int gen)
306{
307 unsigned int ms = 0;
308 unsigned int f;
309
310 /*
311 * Measure GEN timer delay in order
312 * to calculate SCSI clock frequency
313 *
314 * This code will never execute too
315 * many loop iterations (if DELAY is
316 * reasonably correct). It could get
317 * too low a delay (too high a freq.)
318 * if the CPU is slow executing the
319 * loop for some reason (an NMI, for
320 * example). For this reason we will
321 * if multiple measurements are to be
322 * performed trust the higher delay
323 * (lower frequency returned).
324 */
325 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
326 INW(np, nc_sist); /* clear pending scsi interrupt */
327 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
328 INW(np, nc_sist); /* another one, just to be sure :) */
329 /*
330 * The C1010-33 core does not report GEN in SIST,
331 * if this interrupt is masked in SIEN.
332 * I don't know yet if the C1010-66 behaves the same way.
333 */
334 if (np->features & FE_C10) {
335 OUTW(np, nc_sien, GEN);
336 OUTB(np, nc_istat1, SIRQD);
337 }
338 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
339 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
340 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
341 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 udelay(1000/4); /* count in 1/4 of ms */
343 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
344 /*
345 * Undo C1010-33 specific settings.
346 */
347 if (np->features & FE_C10) {
348 OUTW(np, nc_sien, 0);
349 OUTB(np, nc_istat1, 0);
350 }
351 /*
352 * set prescaler to divide by whatever 0 means
353 * 0 ought to choose divide by 2, but appears
354 * to set divide by 3.5 mode in my 53c810 ...
355 */
356 OUTB(np, nc_scntl3, 0);
357
358 /*
359 * adjust for prescaler, and convert into KHz
360 */
361 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
362
363 /*
364 * The C1010-33 result is biased by a factor
365 * of 2/3 compared to earlier chips.
366 */
367 if (np->features & FE_C10)
368 f = (f * 2) / 3;
369
370 if (sym_verbose >= 2)
371 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 sym_name(np), gen, ms/4, f);
373
374 return f;
375}
376
377static unsigned sym_getfreq (struct sym_hcb *np)
378{
379 u_int f1, f2;
380 int gen = 8;
381
382 getfreq (np, gen); /* throw away first result */
383 f1 = getfreq (np, gen);
384 f2 = getfreq (np, gen);
385 if (f1 > f2) f1 = f2; /* trust lower result */
386 return f1;
387}
388
389/*
390 * Get/probe chip SCSI clock frequency
391 */
392static void sym_getclock (struct sym_hcb *np, int mult)
393{
394 unsigned char scntl3 = np->sv_scntl3;
395 unsigned char stest1 = np->sv_stest1;
396 unsigned f1;
397
398 np->multiplier = 1;
399 f1 = 40000;
400 /*
401 * True with 875/895/896/895A with clock multiplier selected
402 */
403 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 if (sym_verbose >= 2)
405 printf ("%s: clock multiplier found\n", sym_name(np));
406 np->multiplier = mult;
407 }
408
409 /*
410 * If multiplier not found or scntl3 not 7,5,3,
411 * reset chip and get frequency from general purpose timer.
412 * Otherwise trust scntl3 BIOS setting.
413 */
414 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
416 f1 = sym_getfreq (np);
417
418 if (sym_verbose)
419 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
420
421 if (f1 < 45000) f1 = 40000;
422 else if (f1 < 55000) f1 = 50000;
423 else f1 = 80000;
424
425 if (f1 < 80000 && mult > 1) {
426 if (sym_verbose >= 2)
427 printf ("%s: clock multiplier assumed\n",
428 sym_name(np));
429 np->multiplier = mult;
430 }
431 } else {
432 if ((scntl3 & 7) == 3) f1 = 40000;
433 else if ((scntl3 & 7) == 5) f1 = 80000;
434 else f1 = 160000;
435
436 f1 /= np->multiplier;
437 }
438
439 /*
440 * Compute controller synchronous parameters.
441 */
442 f1 *= np->multiplier;
443 np->clock_khz = f1;
444}
445
446/*
447 * Get/probe PCI clock frequency
448 */
449static int sym_getpciclock (struct sym_hcb *np)
450{
451 int f = 0;
452
453 /*
454 * For now, we only need to know about the actual
455 * PCI BUS clock frequency for C1010-66 chips.
456 */
457#if 1
458 if (np->features & FE_66MHZ) {
459#else
460 if (1) {
461#endif
462 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 f = sym_getfreq(np);
464 OUTB(np, nc_stest1, 0);
465 }
466 np->pciclk_khz = f;
467
468 return f;
469}
470
471/*
472 * SYMBIOS chip clock divisor table.
473 *
474 * Divisors are multiplied by 10,000,000 in order to make
475 * calculations more simple.
476 */
477#define _5M 5000000
76789f01 478static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
1da177e4
LT
479
480/*
481 * Get clock factor and sync divisor for a given
482 * synchronous factor period.
483 */
484static int
485sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
486{
487 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
488 int div = np->clock_divn; /* Number of divisors supported */
489 u32 fak; /* Sync factor in sxfer */
490 u32 per; /* Period in tenths of ns */
491 u32 kpc; /* (per * clk) */
492 int ret;
493
494 /*
495 * Compute the synchronous period in tenths of nano-seconds
496 */
497 if (dt && sfac <= 9) per = 125;
498 else if (sfac <= 10) per = 250;
499 else if (sfac == 11) per = 303;
500 else if (sfac == 12) per = 500;
501 else per = 40 * sfac;
502 ret = per;
503
504 kpc = per * clk;
505 if (dt)
506 kpc <<= 1;
507
508 /*
509 * For earliest C10 revision 0, we cannot use extra
510 * clocks for the setting of the SCSI clocking.
511 * Note that this limits the lowest sync data transfer
512 * to 5 Mega-transfers per second and may result in
513 * using higher clock divisors.
514 */
515#if 1
516 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
517 /*
518 * Look for the lowest clock divisor that allows an
519 * output speed not faster than the period.
520 */
521 while (div > 0) {
522 --div;
523 if (kpc > (div_10M[div] << 2)) {
524 ++div;
525 break;
526 }
527 }
528 fak = 0; /* No extra clocks */
529 if (div == np->clock_divn) { /* Are we too fast ? */
530 ret = -1;
531 }
532 *divp = div;
533 *fakp = fak;
534 return ret;
535 }
536#endif
537
538 /*
539 * Look for the greatest clock divisor that allows an
540 * input speed faster than the period.
541 */
542 while (div-- > 0)
543 if (kpc >= (div_10M[div] << 2)) break;
544
545 /*
546 * Calculate the lowest clock factor that allows an output
547 * speed not faster than the period, and the max output speed.
548 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
550 */
551 if (dt) {
552 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 } else {
555 fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
557 }
558
559 /*
560 * Check against our hardware limits, or bugs :).
561 */
562 if (fak > 2) {
563 fak = 2;
564 ret = -1;
565 }
566
567 /*
568 * Compute and return sync parameters.
569 */
570 *divp = div;
571 *fakp = fak;
572
573 return ret;
574}
575
576/*
577 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578 * 128 transfers. All chips support at least 16 transfers
579 * bursts. The 825A, 875 and 895 chips support bursts of up
580 * to 128 transfers and the 895A and 896 support bursts of up
581 * to 64 transfers. All other chips support up to 16
582 * transfers bursts.
583 *
584 * For PCI 32 bit data transfers each transfer is a DWORD.
585 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
586 *
587 * We use log base 2 (burst length) as internal code, with
588 * value 0 meaning "burst disabled".
589 */
590
591/*
592 * Burst length from burst code.
593 */
594#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
595
596/*
597 * Burst code from io register bits.
598 */
599#define burst_code(dmode, ctest4, ctest5) \
600 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
601
602/*
603 * Set initial io register bits from burst code.
604 */
1beb6fa8 605static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
1da177e4
LT
606{
607 np->rv_ctest4 &= ~0x80;
608 np->rv_dmode &= ~(0x3 << 6);
609 np->rv_ctest5 &= ~0x4;
610
611 if (!bc) {
612 np->rv_ctest4 |= 0x80;
613 }
614 else {
615 --bc;
616 np->rv_dmode |= ((bc & 0x3) << 6);
617 np->rv_ctest5 |= (bc & 0x4);
618 }
619}
620
1da177e4
LT
621/*
622 * Save initial settings of some IO registers.
623 * Assumed to have been set by BIOS.
624 * We cannot reset the chip prior to reading the
625 * IO registers, since informations will be lost.
626 * Since the SCRIPTS processor may be running, this
627 * is not safe on paper, but it seems to work quite
628 * well. :)
629 */
630static void sym_save_initial_setting (struct sym_hcb *np)
631{
632 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
633 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
634 np->sv_dmode = INB(np, nc_dmode) & 0xce;
635 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
636 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
637 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
638 np->sv_gpcntl = INB(np, nc_gpcntl);
639 np->sv_stest1 = INB(np, nc_stest1);
640 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
641 np->sv_stest4 = INB(np, nc_stest4);
642 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
643 np->sv_scntl4 = INB(np, nc_scntl4);
644 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
645 }
646 else
647 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
648}
649
c2349df9
MW
650/*
651 * Set SCSI BUS mode.
652 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
653 * through the STEST4 IO register.
654 * - For previous generation chips (825/825A/875), the user has to tell us
655 * how to check against HVD, since a 100% safe algorithm is not possible.
656 */
657static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
658{
659 if (np->scsi_mode)
660 return;
661
662 np->scsi_mode = SMODE_SE;
663 if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 np->scsi_mode = (np->sv_stest4 & SMODE);
665 else if (np->features & FE_DIFF) {
666 if (SYM_SETUP_SCSI_DIFF == 1) {
667 if (np->sv_scntl3) {
668 if (np->sv_stest2 & 0x20)
669 np->scsi_mode = SMODE_HVD;
670 } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 if (!(INB(np, nc_gpreg) & 0x08))
672 np->scsi_mode = SMODE_HVD;
673 }
674 } else if (SYM_SETUP_SCSI_DIFF == 2)
675 np->scsi_mode = SMODE_HVD;
676 }
677 if (np->scsi_mode == SMODE_HVD)
678 np->rv_stest2 |= 0x20;
679}
680
1da177e4
LT
681/*
682 * Prepare io register values used by sym_start_up()
683 * according to selected and supported features.
684 */
685static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
686{
5111eefa
MW
687 struct sym_data *sym_data = shost_priv(shost);
688 struct pci_dev *pdev = sym_data->pdev;
1da177e4
LT
689 u_char burst_max;
690 u32 period;
691 int i;
692
c2349df9 693 np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
1da177e4
LT
694
695 /*
696 * Guess the frequency of the chip's clock.
697 */
698 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
699 np->clock_khz = 160000;
700 else if (np->features & FE_ULTRA)
701 np->clock_khz = 80000;
702 else
703 np->clock_khz = 40000;
704
705 /*
706 * Get the clock multiplier factor.
707 */
708 if (np->features & FE_QUAD)
709 np->multiplier = 4;
710 else if (np->features & FE_DBLR)
711 np->multiplier = 2;
712 else
713 np->multiplier = 1;
714
715 /*
716 * Measure SCSI clock frequency for chips
717 * it may vary from assumed one.
718 */
719 if (np->features & FE_VARCLK)
720 sym_getclock(np, np->multiplier);
721
722 /*
723 * Divisor to be used for async (timer pre-scaler).
724 */
725 i = np->clock_divn - 1;
726 while (--i >= 0) {
727 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
728 ++i;
729 break;
730 }
731 }
732 np->rv_scntl3 = i+1;
733
734 /*
735 * The C1010 uses hardwired divisors for async.
736 * So, we just throw away, the async. divisor.:-)
737 */
738 if (np->features & FE_C10)
739 np->rv_scntl3 = 0;
740
741 /*
742 * Minimum synchronous period factor supported by the chip.
743 * Btw, 'period' is in tenths of nanoseconds.
744 */
745 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
746
747 if (period <= 250) np->minsync = 10;
748 else if (period <= 303) np->minsync = 11;
749 else if (period <= 500) np->minsync = 12;
750 else np->minsync = (period + 40 - 1) / 40;
751
752 /*
753 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
754 */
755 if (np->minsync < 25 &&
756 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
757 np->minsync = 25;
758 else if (np->minsync < 12 &&
759 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
760 np->minsync = 12;
761
762 /*
763 * Maximum synchronous period factor supported by the chip.
764 */
765 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
766 np->maxsync = period > 2540 ? 254 : period / 10;
767
768 /*
769 * If chip is a C1010, guess the sync limits in DT mode.
770 */
771 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
772 if (np->clock_khz == 160000) {
773 np->minsync_dt = 9;
774 np->maxsync_dt = 50;
775 np->maxoffs_dt = nvram->type ? 62 : 31;
776 }
777 }
778
779 /*
780 * 64 bit addressing (895A/896/1010) ?
781 */
782 if (np->features & FE_DAC) {
4d85b471
MW
783 if (!use_dac(np))
784 np->rv_ccntl1 |= (DDAC);
785 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
786 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
787 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
788 np->rv_ccntl1 |= (0 | EXTIBMV);
1da177e4
LT
789 }
790
791 /*
792 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
793 */
794 if (np->features & FE_NOPM)
795 np->rv_ccntl0 |= (ENPMJ);
796
797 /*
798 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
799 * In dual channel mode, contention occurs if internal cycles
800 * are used. Disable internal cycles.
801 */
5111eefa
MW
802 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
803 pdev->revision < 0x1)
1da177e4
LT
804 np->rv_ccntl0 |= DILS;
805
806 /*
807 * Select burst length (dwords)
808 */
809 burst_max = SYM_SETUP_BURST_ORDER;
810 if (burst_max == 255)
811 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
812 np->sv_ctest5);
813 if (burst_max > 7)
814 burst_max = 7;
815 if (burst_max > np->maxburst)
816 burst_max = np->maxburst;
817
818 /*
819 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
820 * This chip and the 860 Rev 1 may wrongly use PCI cache line
821 * based transactions on LOAD/STORE instructions. So we have
822 * to prevent these chips from using such PCI transactions in
823 * this driver. The generic ncr driver that does not use
824 * LOAD/STORE instructions does not need this work-around.
825 */
5111eefa
MW
826 if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
827 pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
828 (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
829 pdev->revision <= 0x1))
1da177e4
LT
830 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
831
832 /*
833 * Select all supported special features.
834 * If we are using on-board RAM for scripts, prefetch (PFEN)
835 * does not help, but burst op fetch (BOF) does.
836 * Disabling PFEN makes sure BOF will be used.
837 */
838 if (np->features & FE_ERL)
839 np->rv_dmode |= ERL; /* Enable Read Line */
840 if (np->features & FE_BOF)
841 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
842 if (np->features & FE_ERMP)
843 np->rv_dmode |= ERMP; /* Enable Read Multiple */
844#if 1
845 if ((np->features & FE_PFEN) && !np->ram_ba)
846#else
847 if (np->features & FE_PFEN)
848#endif
849 np->rv_dcntl |= PFEN; /* Prefetch Enable */
850 if (np->features & FE_CLSE)
851 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
852 if (np->features & FE_WRIE)
853 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
854 if (np->features & FE_DFS)
855 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
856
857 /*
858 * Select some other
859 */
860 np->rv_ctest4 |= MPEE; /* Master parity checking */
861 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
862
863 /*
864 * Get parity checking, host ID and verbose mode from NVRAM
865 */
866 np->myaddr = 255;
c2349df9 867 np->scsi_mode = 0;
1da177e4
LT
868 sym_nvram_setup_host(shost, np, nvram);
869
870 /*
871 * Get SCSI addr of host adapter (set by bios?).
872 */
873 if (np->myaddr == 255) {
874 np->myaddr = INB(np, nc_scid) & 0x07;
875 if (!np->myaddr)
876 np->myaddr = SYM_SETUP_HOST_ID;
877 }
878
879 /*
880 * Prepare initial io register bits for burst length
881 */
882 sym_init_burst(np, burst_max);
883
c2349df9 884 sym_set_bus_mode(np, nvram);
1da177e4
LT
885
886 /*
887 * Set LED support from SCRIPTS.
888 * Ignore this feature for boards known to use a
889 * specific GPIO wiring and for the 895A, 896
890 * and 1010 that drive the LED directly.
891 */
892 if ((SYM_SETUP_SCSI_LED ||
893 (nvram->type == SYM_SYMBIOS_NVRAM ||
894 (nvram->type == SYM_TEKRAM_NVRAM &&
5111eefa 895 pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
1da177e4
LT
896 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
897 np->features |= FE_LED0;
898
899 /*
900 * Set irq mode.
901 */
902 switch(SYM_SETUP_IRQ_MODE & 3) {
903 case 2:
904 np->rv_dcntl |= IRQM;
905 break;
906 case 1:
907 np->rv_dcntl |= (np->sv_dcntl & IRQM);
908 break;
909 default:
910 break;
911 }
912
913 /*
914 * Configure targets according to driver setup.
915 * If NVRAM present get targets setup from NVRAM.
916 */
917 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
918 struct sym_tcb *tp = &np->target[i];
919
920 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
921 tp->usrtags = SYM_SETUP_MAX_TAG;
23ff51e9
MW
922 tp->usr_width = np->maxwide;
923 tp->usr_period = 9;
1da177e4 924
b37df489 925 sym_nvram_setup_target(tp, i, nvram);
1da177e4
LT
926
927 if (!tp->usrtags)
928 tp->usrflags &= ~SYM_TAGS_ENABLED;
929 }
930
931 /*
932 * Let user know about the settings.
933 */
934 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
935 sym_nvram_type(nvram), np->myaddr,
936 (np->features & FE_ULTRA3) ? 80 :
937 (np->features & FE_ULTRA2) ? 40 :
938 (np->features & FE_ULTRA) ? 20 : 10,
939 sym_scsi_bus_mode(np->scsi_mode),
940 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
941 /*
942 * Tell him more on demand.
943 */
944 if (sym_verbose) {
945 printf("%s: %s IRQ line driver%s\n",
946 sym_name(np),
947 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
948 np->ram_ba ? ", using on-chip SRAM" : "");
949 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
950 if (np->features & FE_NOPM)
951 printf("%s: handling phase mismatch from SCRIPTS.\n",
952 sym_name(np));
953 }
954 /*
955 * And still more.
956 */
957 if (sym_verbose >= 2) {
958 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
959 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
960 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
961 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
962
963 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
964 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
965 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
966 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
967 }
1da177e4
LT
968
969 return 0;
970}
971
972/*
973 * Test the pci bus snoop logic :-(
974 *
975 * Has to be called with interrupts disabled.
976 */
1f61d824
MW
977#ifdef CONFIG_SCSI_SYM53C8XX_MMIO
978static int sym_regtest(struct sym_hcb *np)
1da177e4
LT
979{
980 register volatile u32 data;
981 /*
982 * chip registers may NOT be cached.
983 * write 0xffffffff to a read only register area,
984 * and try to read it back.
985 */
986 data = 0xffffffff;
987 OUTL(np, nc_dstat, data);
988 data = INL(np, nc_dstat);
989#if 1
990 if (data == 0xffffffff) {
991#else
992 if ((data & 0xe2f0fffd) != 0x02000080) {
993#endif
994 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
995 (unsigned) data);
1f61d824 996 return 0x10;
1da177e4 997 }
1f61d824
MW
998 return 0;
999}
1000#else
1001static inline int sym_regtest(struct sym_hcb *np)
1002{
1003 return 0;
1da177e4
LT
1004}
1005#endif
1006
1f61d824 1007static int sym_snooptest(struct sym_hcb *np)
1da177e4 1008{
1f61d824
MW
1009 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1010 int i, err;
1011
1012 err = sym_regtest(np);
1013 if (err)
1014 return err;
1da177e4
LT
1015restart_test:
1016 /*
1017 * Enable Master Parity Checking as we intend
1018 * to enable it for normal operations.
1019 */
1020 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1021 /*
1022 * init
1023 */
1024 pc = SCRIPTZ_BA(np, snooptest);
1025 host_wr = 1;
1026 sym_wr = 2;
1027 /*
1028 * Set memory and register.
1029 */
1030 np->scratch = cpu_to_scr(host_wr);
1031 OUTL(np, nc_temp, sym_wr);
1032 /*
1033 * Start script (exchange values)
1034 */
1035 OUTL(np, nc_dsa, np->hcb_ba);
1036 OUTL_DSP(np, pc);
1037 /*
1038 * Wait 'til done (with timeout)
1039 */
1040 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1041 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1042 break;
1043 if (i>=SYM_SNOOP_TIMEOUT) {
1044 printf ("CACHE TEST FAILED: timeout.\n");
1045 return (0x20);
1046 }
1047 /*
1048 * Check for fatal DMA errors.
1049 */
1050 dstat = INB(np, nc_dstat);
1051#if 1 /* Band aiding for broken hardwares that fail PCI parity */
1052 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1053 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1054 "DISABLING MASTER DATA PARITY CHECKING.\n",
1055 sym_name(np));
1056 np->rv_ctest4 &= ~MPEE;
1057 goto restart_test;
1058 }
1059#endif
1060 if (dstat & (MDPE|BF|IID)) {
1061 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1062 return (0x80);
1063 }
1064 /*
1065 * Save termination position.
1066 */
1067 pc = INL(np, nc_dsp);
1068 /*
1069 * Read memory and register.
1070 */
1071 host_rd = scr_to_cpu(np->scratch);
1072 sym_rd = INL(np, nc_scratcha);
1073 sym_bk = INL(np, nc_temp);
1074 /*
1075 * Check termination position.
1076 */
1077 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1078 printf ("CACHE TEST FAILED: script execution failed.\n");
1079 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1080 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1081 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1082 return (0x40);
1083 }
1084 /*
1085 * Show results.
1086 */
1087 if (host_wr != sym_rd) {
1088 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1089 (int) host_wr, (int) sym_rd);
1090 err |= 1;
1091 }
1092 if (host_rd != sym_wr) {
1093 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1094 (int) sym_wr, (int) host_rd);
1095 err |= 2;
1096 }
1097 if (sym_bk != sym_wr) {
1098 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1099 (int) sym_wr, (int) sym_bk);
1100 err |= 4;
1101 }
1102
1f61d824 1103 return err;
1da177e4
LT
1104}
1105
1106/*
1107 * log message for real hard errors
1108 *
1109 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1110 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1111 *
1112 * exception register:
1113 * ds: dstat
1114 * si: sist
1115 *
1116 * SCSI bus lines:
1117 * so: control lines as driven by chip.
1118 * si: control lines as seen by chip.
1119 * sd: scsi data lines as seen by chip.
1120 *
1121 * wide/fastmode:
1122 * sx: sxfer (see the manual)
1123 * s3: scntl3 (see the manual)
1124 * s4: scntl4 (see the manual)
1125 *
1126 * current script command:
1127 * dsp: script address (relative to start of script).
1128 * dbc: first word of script command.
1129 *
1130 * First 24 register of the chip:
1131 * r0..rf
1132 */
5111eefa 1133static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1da177e4 1134{
5111eefa 1135 struct sym_hcb *np = sym_get_hcb(shost);
1da177e4
LT
1136 u32 dsp;
1137 int script_ofs;
1138 int script_size;
1139 char *script_name;
1140 u_char *script_base;
1141 int i;
1142
1143 dsp = INL(np, nc_dsp);
1144
1145 if (dsp > np->scripta_ba &&
1146 dsp <= np->scripta_ba + np->scripta_sz) {
1147 script_ofs = dsp - np->scripta_ba;
1148 script_size = np->scripta_sz;
1149 script_base = (u_char *) np->scripta0;
1150 script_name = "scripta";
1151 }
1152 else if (np->scriptb_ba < dsp &&
1153 dsp <= np->scriptb_ba + np->scriptb_sz) {
1154 script_ofs = dsp - np->scriptb_ba;
1155 script_size = np->scriptb_sz;
1156 script_base = (u_char *) np->scriptb0;
1157 script_name = "scriptb";
1158 } else {
1159 script_ofs = dsp;
1160 script_size = 0;
1161 script_base = NULL;
1162 script_name = "mem";
1163 }
1164
1165 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1166 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1167 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1168 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1169 (unsigned)INB(np, nc_scntl3),
1170 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1171 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1172
1173 if (((script_ofs & 3) == 0) &&
1174 (unsigned)script_ofs < script_size) {
1175 printf ("%s: script cmd = %08x\n", sym_name(np),
1176 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1177 }
1178
d68cd759
LV
1179 printf("%s: regdump:", sym_name(np));
1180 for (i = 0; i < 24; i++)
1181 printf(" %02x", (unsigned)INB_OFF(np, i));
1182 printf(".\n");
1da177e4
LT
1183
1184 /*
1185 * PCI BUS error.
1186 */
1187 if (dstat & (MDPE|BF))
5111eefa 1188 sym_log_bus_error(shost);
1da177e4
LT
1189}
1190
5111eefa 1191void sym_dump_registers(struct Scsi_Host *shost)
d68cd759 1192{
5111eefa 1193 struct sym_hcb *np = sym_get_hcb(shost);
d68cd759
LV
1194 u_short sist;
1195 u_char dstat;
1196
1197 sist = INW(np, nc_sist);
1198 dstat = INB(np, nc_dstat);
5111eefa 1199 sym_log_hard_error(shost, sist, dstat);
d68cd759
LV
1200}
1201
1da177e4
LT
1202static struct sym_chip sym_dev_table[] = {
1203 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1204 FE_ERL}
1205 ,
1206#ifdef SYM_DEBUG_GENERIC_SUPPORT
1207 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1208 FE_BOF}
1209 ,
1210#else
1211 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1212 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1213 ,
1214#endif
1215 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1216 FE_BOF|FE_ERL}
1217 ,
1218 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1219 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1220 ,
1221 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1222 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1223 ,
1224 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1225 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1226 ,
1227 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1228 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1229 FE_RAM|FE_DIFF|FE_VARCLK}
1230 ,
1231 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1232 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233 FE_RAM|FE_DIFF|FE_VARCLK}
1234 ,
1235 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1236 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237 FE_RAM|FE_DIFF|FE_VARCLK}
1238 ,
1239 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1240 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1241 FE_RAM|FE_DIFF|FE_VARCLK}
1242 ,
1243#ifdef SYM_DEBUG_GENERIC_SUPPORT
1244 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1245 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1246 FE_RAM|FE_LCKFRQ}
1247 ,
1248#else
1249 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1250 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1251 FE_RAM|FE_LCKFRQ}
1252 ,
1253#endif
1254 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1255 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1256 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1257 ,
1258 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1259 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1260 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1261 ,
1262 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1263 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1264 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1265 ,
1266 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1267 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1268 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1269 FE_C10}
1270 ,
1271 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1272 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1273 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1274 FE_C10|FE_U3EN}
1275 ,
1276 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1277 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1278 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1279 FE_C10|FE_U3EN}
1280 ,
1281 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1282 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1283 FE_RAM|FE_IO256|FE_LEDC}
1284};
1285
6391a113 1286#define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1da177e4
LT
1287
1288/*
1289 * Look up the chip table.
1290 *
1291 * Return a pointer to the chip entry if found,
1292 * zero otherwise.
1293 */
1294struct sym_chip *
1295sym_lookup_chip_table (u_short device_id, u_char revision)
1296{
1297 struct sym_chip *chip;
1298 int i;
1299
1300 for (i = 0; i < sym_num_devs; i++) {
1301 chip = &sym_dev_table[i];
1302 if (device_id != chip->device_id)
1303 continue;
1304 if (revision > chip->revision_id)
1305 continue;
1306 return chip;
1307 }
1308
1309 return NULL;
1310}
1311
1312#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1313/*
1314 * Lookup the 64 bit DMA segments map.
1315 * This is only used if the direct mapping
1316 * has been unsuccessful.
1317 */
1318int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1319{
1320 int i;
1321
4d85b471 1322 if (!use_dac(np))
1da177e4
LT
1323 goto weird;
1324
1325 /* Look up existing mappings */
1326 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1327 if (h == np->dmap_bah[i])
1328 return i;
1329 }
1330 /* If direct mapping is free, get it */
1331 if (!np->dmap_bah[s])
1332 goto new;
1333 /* Collision -> lookup free mappings */
1334 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1335 if (!np->dmap_bah[s])
1336 goto new;
1337 }
1338weird:
1339 panic("sym: ran out of 64 bit DMA segment registers");
1340 return -1;
1341new:
1342 np->dmap_bah[s] = h;
1343 np->dmap_dirty = 1;
1344 return s;
1345}
1346
1347/*
1348 * Update IO registers scratch C..R so they will be
1349 * in sync. with queued CCB expectations.
1350 */
1351static void sym_update_dmap_regs(struct sym_hcb *np)
1352{
1353 int o, i;
1354
1355 if (!np->dmap_dirty)
1356 return;
1357 o = offsetof(struct sym_reg, nc_scrx[0]);
1358 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1359 OUTL_OFF(np, o, np->dmap_bah[i]);
1360 o += 4;
1361 }
1362 np->dmap_dirty = 0;
1363}
1364#endif
1365
1366/* Enforce all the fiddly SPI rules and the chip limitations */
1367static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1368 struct sym_trans *goal)
1369{
1370 if (!spi_support_wide(starget))
1371 goal->width = 0;
1372
1373 if (!spi_support_sync(starget)) {
1374 goal->iu = 0;
1375 goal->dt = 0;
1376 goal->qas = 0;
1da177e4
LT
1377 goal->offset = 0;
1378 return;
1379 }
1380
1381 if (spi_support_dt(starget)) {
1382 if (spi_support_dt_only(starget))
1383 goal->dt = 1;
1384
1385 if (goal->offset == 0)
1386 goal->dt = 0;
1387 } else {
1388 goal->dt = 0;
1389 }
1390
1391 /* Some targets fail to properly negotiate DT in SE mode */
1392 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1393 goal->dt = 0;
1394
1395 if (goal->dt) {
1396 /* all DT transfers must be wide */
1397 goal->width = 1;
1398 if (goal->offset > np->maxoffs_dt)
1399 goal->offset = np->maxoffs_dt;
1400 if (goal->period < np->minsync_dt)
1401 goal->period = np->minsync_dt;
1402 if (goal->period > np->maxsync_dt)
1403 goal->period = np->maxsync_dt;
1404 } else {
1405 goal->iu = goal->qas = 0;
1406 if (goal->offset > np->maxoffs)
1407 goal->offset = np->maxoffs;
1408 if (goal->period < np->minsync)
1409 goal->period = np->minsync;
1410 if (goal->period > np->maxsync)
1411 goal->period = np->maxsync;
1412 }
1413}
1414
1415/*
1416 * Prepare the next negotiation message if needed.
1417 *
1418 * Fill in the part of message buffer that contains the
1419 * negotiation and the nego_status field of the CCB.
1420 * Returns the size of the message in bytes.
1421 */
1422static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1423{
1424 struct sym_tcb *tp = &np->target[cp->target];
53222b90 1425 struct scsi_target *starget = tp->starget;
1da177e4
LT
1426 struct sym_trans *goal = &tp->tgoal;
1427 int msglen = 0;
1428 int nego;
1429
1430 sym_check_goals(np, starget, goal);
1431
1432 /*
1433 * Many devices implement PPR in a buggy way, so only use it if we
1434 * really want to.
1435 */
49799fee
AK
1436 if (goal->renego == NS_PPR || (goal->offset &&
1437 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1da177e4 1438 nego = NS_PPR;
49799fee 1439 } else if (goal->renego == NS_WIDE || goal->width) {
1da177e4 1440 nego = NS_WIDE;
49799fee 1441 } else if (goal->renego == NS_SYNC || goal->offset) {
1da177e4
LT
1442 nego = NS_SYNC;
1443 } else {
1444 goal->check_nego = 0;
1445 nego = 0;
1446 }
1447
1448 switch (nego) {
1449 case NS_SYNC:
6ea3c0b2
MW
1450 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1451 goal->offset);
1da177e4
LT
1452 break;
1453 case NS_WIDE:
6ea3c0b2 1454 msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1da177e4
LT
1455 break;
1456 case NS_PPR:
6ea3c0b2
MW
1457 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1458 goal->offset, goal->width,
1459 (goal->iu ? PPR_OPT_IU : 0) |
1da177e4 1460 (goal->dt ? PPR_OPT_DT : 0) |
6ea3c0b2 1461 (goal->qas ? PPR_OPT_QAS : 0));
1da177e4
LT
1462 break;
1463 }
1464
1465 cp->nego_status = nego;
1466
1467 if (nego) {
1468 tp->nego_cp = cp; /* Keep track a nego will be performed */
1469 if (DEBUG_FLAGS & DEBUG_NEGO) {
1470 sym_print_nego_msg(np, cp->target,
1471 nego == NS_SYNC ? "sync msgout" :
1472 nego == NS_WIDE ? "wide msgout" :
1473 "ppr msgout", msgptr);
1474 }
1475 }
1476
1477 return msglen;
1478}
1479
1480/*
1481 * Insert a job into the start queue.
1482 */
3bea15a7 1483void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1da177e4
LT
1484{
1485 u_short qidx;
1486
1487#ifdef SYM_CONF_IARB_SUPPORT
1488 /*
1489 * If the previously queued CCB is not yet done,
1490 * set the IARB hint. The SCRIPTS will go with IARB
1491 * for this job when starting the previous one.
1492 * We leave devices a chance to win arbitration by
1493 * not using more than 'iarb_max' consecutive
1494 * immediate arbitrations.
1495 */
1496 if (np->last_cp && np->iarb_count < np->iarb_max) {
1497 np->last_cp->host_flags |= HF_HINT_IARB;
1498 ++np->iarb_count;
1499 }
1500 else
1501 np->iarb_count = 0;
1502 np->last_cp = cp;
1503#endif
1504
1505#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1506 /*
1507 * Make SCRIPTS aware of the 64 bit DMA
1508 * segment registers not being up-to-date.
1509 */
1510 if (np->dmap_dirty)
1511 cp->host_xflags |= HX_DMAP_DIRTY;
1512#endif
1513
1514 /*
1515 * Insert first the idle task and then our job.
1516 * The MBs should ensure proper ordering.
1517 */
1518 qidx = np->squeueput + 2;
1519 if (qidx >= MAX_QUEUE*2) qidx = 0;
1520
1521 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1522 MEMORY_WRITE_BARRIER();
1523 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1524
1525 np->squeueput = qidx;
1526
1527 if (DEBUG_FLAGS & DEBUG_QUEUE)
3fb364e0
MW
1528 scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1529 np->squeueput);
1da177e4
LT
1530
1531 /*
1532 * Script processor may be waiting for reselect.
1533 * Wake it up.
1534 */
1535 MEMORY_WRITE_BARRIER();
1536 OUTB(np, nc_istat, SIGP|np->istat_sem);
1537}
1538
1539#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1540/*
1541 * Start next ready-to-start CCBs.
1542 */
1543void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1544{
1545 SYM_QUEHEAD *qp;
1546 struct sym_ccb *cp;
1547
1548 /*
1549 * Paranoia, as usual. :-)
1550 */
1551 assert(!lp->started_tags || !lp->started_no_tag);
1552
1553 /*
1554 * Try to start as many commands as asked by caller.
1555 * Prevent from having both tagged and untagged
1556 * commands queued to the device at the same time.
1557 */
1558 while (maxn--) {
1559 qp = sym_remque_head(&lp->waiting_ccbq);
1560 if (!qp)
1561 break;
1562 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1563 if (cp->tag != NO_TAG) {
1564 if (lp->started_no_tag ||
1565 lp->started_tags >= lp->started_max) {
1566 sym_insque_head(qp, &lp->waiting_ccbq);
1567 break;
1568 }
1569 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1570 lp->head.resel_sa =
1571 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1572 ++lp->started_tags;
1573 } else {
1574 if (lp->started_no_tag || lp->started_tags) {
1575 sym_insque_head(qp, &lp->waiting_ccbq);
1576 break;
1577 }
1578 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1579 lp->head.resel_sa =
1580 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1581 ++lp->started_no_tag;
1582 }
1583 cp->started = 1;
1584 sym_insque_tail(qp, &lp->started_ccbq);
1585 sym_put_start_queue(np, cp);
1586 }
1587}
1588#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1589
1590/*
1591 * The chip may have completed jobs. Look at the DONE QUEUE.
1592 *
1593 * On paper, memory read barriers may be needed here to
1594 * prevent out of order LOADs by the CPU from having
1595 * prefetched stale data prior to DMA having occurred.
1596 */
1597static int sym_wakeup_done (struct sym_hcb *np)
1598{
1599 struct sym_ccb *cp;
1600 int i, n;
1601 u32 dsa;
1602
1603 n = 0;
1604 i = np->dqueueget;
1605
1606 /* MEMORY_READ_BARRIER(); */
1607 while (1) {
1608 dsa = scr_to_cpu(np->dqueue[i]);
1609 if (!dsa)
1610 break;
1611 np->dqueue[i] = 0;
1612 if ((i = i+2) >= MAX_QUEUE*2)
1613 i = 0;
1614
1615 cp = sym_ccb_from_dsa(np, dsa);
1616 if (cp) {
1617 MEMORY_READ_BARRIER();
1618 sym_complete_ok (np, cp);
1619 ++n;
1620 }
1621 else
1622 printf ("%s: bad DSA (%x) in done queue.\n",
1623 sym_name(np), (u_int) dsa);
1624 }
1625 np->dqueueget = i;
1626
1627 return n;
1628}
1629
1630/*
1631 * Complete all CCBs queued to the COMP queue.
1632 *
1633 * These CCBs are assumed:
1634 * - Not to be referenced either by devices or
1635 * SCRIPTS-related queues and datas.
1636 * - To have to be completed with an error condition
1637 * or requeued.
1638 *
1639 * The device queue freeze count is incremented
1640 * for each CCB that does not prevent this.
1641 * This function is called when all CCBs involved
1642 * in error handling/recovery have been reaped.
1643 */
1644static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1645{
1646 SYM_QUEHEAD *qp;
1647 struct sym_ccb *cp;
1648
172c122d 1649 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1da177e4
LT
1650 struct scsi_cmnd *cmd;
1651 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1652 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1653 /* Leave quiet CCBs waiting for resources */
1654 if (cp->host_status == HS_WAIT)
1655 continue;
1656 cmd = cp->cmd;
1657 if (cam_status)
1658 sym_set_cam_status(cmd, cam_status);
1659#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
53222b90 1660 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1da177e4
LT
1661 struct sym_tcb *tp = &np->target[cp->target];
1662 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1663 if (lp) {
1664 sym_remque(&cp->link2_ccbq);
1665 sym_insque_tail(&cp->link2_ccbq,
1666 &lp->waiting_ccbq);
1667 if (cp->started) {
1668 if (cp->tag != NO_TAG)
1669 --lp->started_tags;
1670 else
1671 --lp->started_no_tag;
1672 }
1673 }
1674 cp->started = 0;
1675 continue;
1676 }
1677#endif
1678 sym_free_ccb(np, cp);
1679 sym_xpt_done(np, cmd);
1680 }
1681}
1682
1683/*
1684 * Complete all active CCBs with error.
1685 * Used on CHIP/SCSI RESET.
1686 */
1687static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1688{
1689 /*
1690 * Move all active CCBs to the COMP queue
1691 * and flush this queue.
1692 */
1693 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1694 sym_que_init(&np->busy_ccbq);
1695 sym_flush_comp_queue(np, cam_status);
1696}
1697
1698/*
1699 * Start chip.
1700 *
1701 * 'reason' means:
1702 * 0: initialisation.
1703 * 1: SCSI BUS RESET delivered or received.
1704 * 2: SCSI BUS MODE changed.
1705 */
5111eefa 1706void sym_start_up(struct Scsi_Host *shost, int reason)
1da177e4 1707{
5111eefa
MW
1708 struct sym_data *sym_data = shost_priv(shost);
1709 struct pci_dev *pdev = sym_data->pdev;
1710 struct sym_hcb *np = sym_data->ncb;
1da177e4
LT
1711 int i;
1712 u32 phys;
1713
1714 /*
1715 * Reset chip if asked, otherwise just clear fifos.
1716 */
1717 if (reason == 1)
1718 sym_soft_reset(np);
1719 else {
1720 OUTB(np, nc_stest3, TE|CSF);
1721 OUTONB(np, nc_ctest3, CLF);
1722 }
1723
1724 /*
1725 * Clear Start Queue
1726 */
1727 phys = np->squeue_ba;
1728 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1729 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1730 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1731 }
1732 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1733
1734 /*
1735 * Start at first entry.
1736 */
1737 np->squeueput = 0;
1738
1739 /*
1740 * Clear Done Queue
1741 */
1742 phys = np->dqueue_ba;
1743 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1744 np->dqueue[i] = 0;
1745 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1746 }
1747 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1748
1749 /*
1750 * Start at first entry.
1751 */
1752 np->dqueueget = 0;
1753
1754 /*
1755 * Install patches in scripts.
1756 * This also let point to first position the start
1757 * and done queue pointers used from SCRIPTS.
1758 */
5111eefa 1759 np->fw_patch(shost);
1da177e4
LT
1760
1761 /*
1762 * Wakeup all pending jobs.
1763 */
53222b90 1764 sym_flush_busy_queue(np, DID_RESET);
1da177e4
LT
1765
1766 /*
1767 * Init chip.
1768 */
1769 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
53222b90 1770 INB(np, nc_mbox1);
1da177e4
LT
1771 udelay(2000); /* The 895 needs time for the bus mode to settle */
1772
1773 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1774 /* full arb., ena parity, par->ATN */
1775 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1776
1777 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1778
1779 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1780 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1781 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1782 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1783 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1784
1785 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1786 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1787 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1788
1789 /* Extended Sreq/Sack filtering not supported on the C10 */
1790 if (np->features & FE_C10)
1791 OUTB(np, nc_stest2, np->rv_stest2);
1792 else
1793 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1794
1795 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1796 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1797
1798 /*
1799 * For now, disable AIP generation on C1010-66.
1800 */
5111eefa 1801 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1da177e4
LT
1802 OUTB(np, nc_aipcntl1, DISAIP);
1803
1804 /*
1805 * C10101 rev. 0 errata.
1806 * Errant SGE's when in narrow. Write bits 4 & 5 of
1807 * STEST1 register to disable SGE. We probably should do
1808 * that from SCRIPTS for each selection/reselection, but
1809 * I just don't want. :)
1810 */
5111eefa
MW
1811 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1812 pdev->revision < 1)
1da177e4
LT
1813 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1814
1815 /*
1816 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1817 * Disable overlapped arbitration for some dual function devices,
1818 * regardless revision id (kind of post-chip-design feature. ;-))
1819 */
5111eefa 1820 if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1da177e4 1821 OUTB(np, nc_ctest0, (1<<5));
5111eefa 1822 else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1da177e4
LT
1823 np->rv_ccntl0 |= DPR;
1824
1825 /*
1826 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1827 * and/or hardware phase mismatch, since only such chips
1828 * seem to support those IO registers.
1829 */
1830 if (np->features & (FE_DAC|FE_NOPM)) {
1831 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1832 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1833 }
1834
1835#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1836 /*
1837 * Set up scratch C and DRS IO registers to map the 32 bit
1838 * DMA address range our data structures are located in.
1839 */
4d85b471 1840 if (use_dac(np)) {
1da177e4
LT
1841 np->dmap_bah[0] = 0; /* ??? */
1842 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1843 OUTL(np, nc_drs, np->dmap_bah[0]);
1844 }
1845#endif
1846
1847 /*
1848 * If phase mismatch handled by scripts (895A/896/1010),
1849 * set PM jump addresses.
1850 */
1851 if (np->features & FE_NOPM) {
1852 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1853 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1854 }
1855
1856 /*
1857 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1858 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1859 */
1860 if (np->features & FE_LED0)
1861 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1862 else if (np->features & FE_LEDC)
1863 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1864
1865 /*
1866 * enable ints
1867 */
1868 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1869 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1870
1871 /*
1872 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1873 * Try to eat the spurious SBMC interrupt that may occur when
1874 * we reset the chip but not the SCSI BUS (at initialization).
1875 */
1876 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1877 OUTONW(np, nc_sien, SBMC);
1878 if (reason == 0) {
53222b90 1879 INB(np, nc_mbox1);
1da177e4
LT
1880 mdelay(100);
1881 INW(np, nc_sist);
1882 }
1883 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1884 }
1885
1886 /*
1887 * Fill in target structure.
1888 * Reinitialize usrsync.
1889 * Reinitialize usrwide.
1890 * Prepare sync negotiation according to actual SCSI bus mode.
1891 */
1892 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1893 struct sym_tcb *tp = &np->target[i];
1894
1895 tp->to_reset = 0;
1896 tp->head.sval = 0;
1897 tp->head.wval = np->rv_scntl3;
1898 tp->head.uval = 0;
410604d2
AK
1899 if (tp->lun0p)
1900 tp->lun0p->to_clear = 0;
1901 if (tp->lunmp) {
1902 int ln;
1903
1904 for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1905 if (tp->lunmp[ln])
1906 tp->lunmp[ln]->to_clear = 0;
1907 }
1da177e4
LT
1908 }
1909
1910 /*
1911 * Download SCSI SCRIPTS to on-chip RAM if present,
1912 * and start script processor.
1913 * We do the download preferently from the CPU.
1914 * For platforms that may not support PCI memory mapping,
1915 * we use simple SCRIPTS that performs MEMORY MOVEs.
1916 */
1917 phys = SCRIPTA_BA(np, init);
1918 if (np->ram_ba) {
1919 if (sym_verbose >= 2)
1920 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1921 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
8637baa3 1922 if (np->features & FE_RAM8K) {
1da177e4
LT
1923 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1924 phys = scr_to_cpu(np->scr_ram_seg);
1925 OUTL(np, nc_mmws, phys);
1926 OUTL(np, nc_mmrs, phys);
1927 OUTL(np, nc_sfs, phys);
1928 phys = SCRIPTB_BA(np, start64);
1929 }
1930 }
1931
1932 np->istat_sem = 0;
1933
1934 OUTL(np, nc_dsa, np->hcb_ba);
1935 OUTL_DSP(np, phys);
1936
1937 /*
1938 * Notify the XPT about the RESET condition.
1939 */
1940 if (reason != 0)
1941 sym_xpt_async_bus_reset(np);
1942}
1943
1944/*
1945 * Switch trans mode for current job and its target.
1946 */
1947static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1948 u_char per, u_char wide, u_char div, u_char fak)
1949{
1950 SYM_QUEHEAD *qp;
1951 u_char sval, wval, uval;
1952 struct sym_tcb *tp = &np->target[target];
1953
1954 assert(target == (INB(np, nc_sdid) & 0x0f));
1955
1956 sval = tp->head.sval;
1957 wval = tp->head.wval;
1958 uval = tp->head.uval;
1959
1960#if 0
1961 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1962 sval, wval, uval, np->rv_scntl3);
1963#endif
1964 /*
1965 * Set the offset.
1966 */
1967 if (!(np->features & FE_C10))
1968 sval = (sval & ~0x1f) | ofs;
1969 else
1970 sval = (sval & ~0x3f) | ofs;
1971
1972 /*
1973 * Set the sync divisor and extra clock factor.
1974 */
1975 if (ofs != 0) {
1976 wval = (wval & ~0x70) | ((div+1) << 4);
1977 if (!(np->features & FE_C10))
1978 sval = (sval & ~0xe0) | (fak << 5);
1979 else {
1980 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1981 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1982 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1983 }
1984 }
1985
1986 /*
1987 * Set the bus width.
1988 */
1989 wval = wval & ~EWS;
1990 if (wide != 0)
1991 wval |= EWS;
1992
1993 /*
1994 * Set misc. ultra enable bits.
1995 */
1996 if (np->features & FE_C10) {
1997 uval = uval & ~(U3EN|AIPCKEN);
1998 if (opts) {
1999 assert(np->features & FE_U3EN);
2000 uval |= U3EN;
2001 }
2002 } else {
2003 wval = wval & ~ULTRA;
2004 if (per <= 12) wval |= ULTRA;
2005 }
2006
2007 /*
2008 * Stop there if sync parameters are unchanged.
2009 */
2010 if (tp->head.sval == sval &&
2011 tp->head.wval == wval &&
2012 tp->head.uval == uval)
2013 return;
2014 tp->head.sval = sval;
2015 tp->head.wval = wval;
2016 tp->head.uval = uval;
2017
2018 /*
2019 * Disable extended Sreq/Sack filtering if per < 50.
2020 * Not supported on the C1010.
2021 */
2022 if (per < 50 && !(np->features & FE_C10))
2023 OUTOFFB(np, nc_stest2, EXT);
2024
2025 /*
2026 * set actual value and sync_status
2027 */
2028 OUTB(np, nc_sxfer, tp->head.sval);
2029 OUTB(np, nc_scntl3, tp->head.wval);
2030
2031 if (np->features & FE_C10) {
2032 OUTB(np, nc_scntl4, tp->head.uval);
2033 }
2034
2035 /*
2036 * patch ALL busy ccbs of this target.
2037 */
2038 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2039 struct sym_ccb *cp;
2040 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2041 if (cp->target != target)
2042 continue;
2043 cp->phys.select.sel_scntl3 = tp->head.wval;
2044 cp->phys.select.sel_sxfer = tp->head.sval;
2045 if (np->features & FE_C10) {
2046 cp->phys.select.sel_scntl4 = tp->head.uval;
2047 }
2048 }
2049}
2050
058bb82c
TB
2051static void sym_announce_transfer_rate(struct sym_tcb *tp)
2052{
2053 struct scsi_target *starget = tp->starget;
2054
2055 if (tp->tprint.period != spi_period(starget) ||
2056 tp->tprint.offset != spi_offset(starget) ||
2057 tp->tprint.width != spi_width(starget) ||
2058 tp->tprint.iu != spi_iu(starget) ||
2059 tp->tprint.dt != spi_dt(starget) ||
2060 tp->tprint.qas != spi_qas(starget) ||
2061 !tp->tprint.check_nego) {
2062 tp->tprint.period = spi_period(starget);
2063 tp->tprint.offset = spi_offset(starget);
2064 tp->tprint.width = spi_width(starget);
2065 tp->tprint.iu = spi_iu(starget);
2066 tp->tprint.dt = spi_dt(starget);
2067 tp->tprint.qas = spi_qas(starget);
2068 tp->tprint.check_nego = 1;
2069
2070 spi_display_xfer_agreement(starget);
2071 }
2072}
2073
1da177e4
LT
2074/*
2075 * We received a WDTR.
2076 * Let everything be aware of the changes.
2077 */
2078static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2079{
2080 struct sym_tcb *tp = &np->target[target];
53222b90 2081 struct scsi_target *starget = tp->starget;
1da177e4 2082
1da177e4
LT
2083 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2084
49799fee
AK
2085 if (wide)
2086 tp->tgoal.renego = NS_WIDE;
2087 else
2088 tp->tgoal.renego = 0;
2089 tp->tgoal.check_nego = 0;
1da177e4
LT
2090 tp->tgoal.width = wide;
2091 spi_offset(starget) = 0;
2092 spi_period(starget) = 0;
2093 spi_width(starget) = wide;
2094 spi_iu(starget) = 0;
2095 spi_dt(starget) = 0;
2096 spi_qas(starget) = 0;
2097
2098 if (sym_verbose >= 3)
058bb82c 2099 sym_announce_transfer_rate(tp);
1da177e4
LT
2100}
2101
2102/*
2103 * We received a SDTR.
2104 * Let everything be aware of the changes.
2105 */
2106static void
2107sym_setsync(struct sym_hcb *np, int target,
2108 u_char ofs, u_char per, u_char div, u_char fak)
2109{
2110 struct sym_tcb *tp = &np->target[target];
53222b90 2111 struct scsi_target *starget = tp->starget;
1da177e4
LT
2112 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2113
2114 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2115
49799fee
AK
2116 if (wide)
2117 tp->tgoal.renego = NS_WIDE;
2118 else if (ofs)
2119 tp->tgoal.renego = NS_SYNC;
2120 else
2121 tp->tgoal.renego = 0;
1da177e4
LT
2122 spi_period(starget) = per;
2123 spi_offset(starget) = ofs;
2124 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2125
2126 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2127 tp->tgoal.period = per;
2128 tp->tgoal.offset = ofs;
2129 tp->tgoal.check_nego = 0;
2130 }
2131
058bb82c 2132 sym_announce_transfer_rate(tp);
1da177e4
LT
2133}
2134
2135/*
2136 * We received a PPR.
2137 * Let everything be aware of the changes.
2138 */
2139static void
2140sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2141 u_char per, u_char wide, u_char div, u_char fak)
2142{
2143 struct sym_tcb *tp = &np->target[target];
53222b90 2144 struct scsi_target *starget = tp->starget;
1da177e4
LT
2145
2146 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2147
49799fee
AK
2148 if (wide || ofs)
2149 tp->tgoal.renego = NS_PPR;
2150 else
2151 tp->tgoal.renego = 0;
1da177e4
LT
2152 spi_width(starget) = tp->tgoal.width = wide;
2153 spi_period(starget) = tp->tgoal.period = per;
2154 spi_offset(starget) = tp->tgoal.offset = ofs;
2155 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2156 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2157 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2158 tp->tgoal.check_nego = 0;
2159
058bb82c 2160 sym_announce_transfer_rate(tp);
1da177e4
LT
2161}
2162
2163/*
2164 * generic recovery from scsi interrupt
2165 *
2166 * The doc says that when the chip gets an SCSI interrupt,
2167 * it tries to stop in an orderly fashion, by completing
2168 * an instruction fetch that had started or by flushing
2169 * the DMA fifo for a write to memory that was executing.
2170 * Such a fashion is not enough to know if the instruction
2171 * that was just before the current DSP value has been
2172 * executed or not.
2173 *
2174 * There are some small SCRIPTS sections that deal with
2175 * the start queue and the done queue that may break any
2176 * assomption from the C code if we are interrupted
2177 * inside, so we reset if this happens. Btw, since these
2178 * SCRIPTS sections are executed while the SCRIPTS hasn't
2179 * started SCSI operations, it is very unlikely to happen.
2180 *
2181 * All the driver data structures are supposed to be
2182 * allocated from the same 4 GB memory window, so there
2183 * is a 1 to 1 relationship between DSA and driver data
2184 * structures. Since we are careful :) to invalidate the
2185 * DSA when we complete a command or when the SCRIPTS
2186 * pushes a DSA into a queue, we can trust it when it
2187 * points to a CCB.
2188 */
2189static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2190{
2191 u32 dsp = INL(np, nc_dsp);
2192 u32 dsa = INL(np, nc_dsa);
2193 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2194
2195 /*
2196 * If we haven't been interrupted inside the SCRIPTS
2197 * critical pathes, we can safely restart the SCRIPTS
2198 * and trust the DSA value if it matches a CCB.
2199 */
2200 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2201 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2202 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2203 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2204 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2205 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2206 (!(dsp > SCRIPTA_BA(np, done) &&
2207 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2208 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2209 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2210 /*
2211 * If we have a CCB, let the SCRIPTS call us back for
2212 * the handling of the error with SCRATCHA filled with
2213 * STARTPOS. This way, we will be able to freeze the
2214 * device queue and requeue awaiting IOs.
2215 */
2216 if (cp) {
2217 cp->host_status = hsts;
2218 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2219 }
2220 /*
2221 * Otherwise just restart the SCRIPTS.
2222 */
2223 else {
2224 OUTL(np, nc_dsa, 0xffffff);
2225 OUTL_DSP(np, SCRIPTA_BA(np, start));
2226 }
2227 }
2228 else
2229 goto reset_all;
2230
2231 return;
2232
2233reset_all:
2234 sym_start_reset(np);
2235}
2236
2237/*
2238 * chip exception handler for selection timeout
2239 */
2240static void sym_int_sto (struct sym_hcb *np)
2241{
2242 u32 dsp = INL(np, nc_dsp);
2243
2244 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2245
2246 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2247 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2248 else
2249 sym_start_reset(np);
2250}
2251
2252/*
2253 * chip exception handler for unexpected disconnect
2254 */
2255static void sym_int_udc (struct sym_hcb *np)
2256{
2257 printf ("%s: unexpected disconnect\n", sym_name(np));
2258 sym_recover_scsi_int(np, HS_UNEXPECTED);
2259}
2260
2261/*
2262 * chip exception handler for SCSI bus mode change
2263 *
2264 * spi2-r12 11.2.3 says a transceiver mode change must
2265 * generate a reset event and a device that detects a reset
2266 * event shall initiate a hard reset. It says also that a
2267 * device that detects a mode change shall set data transfer
2268 * mode to eight bit asynchronous, etc...
2269 * So, just reinitializing all except chip should be enough.
2270 */
5111eefa 2271static void sym_int_sbmc(struct Scsi_Host *shost)
1da177e4 2272{
5111eefa 2273 struct sym_hcb *np = sym_get_hcb(shost);
1da177e4
LT
2274 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2275
2276 /*
2277 * Notify user.
2278 */
2279 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2280 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2281
2282 /*
2283 * Should suspend command processing for a few seconds and
2284 * reinitialize all except the chip.
2285 */
5111eefa 2286 sym_start_up(shost, 2);
1da177e4
LT
2287}
2288
2289/*
2290 * chip exception handler for SCSI parity error.
2291 *
2292 * When the chip detects a SCSI parity error and is
2293 * currently executing a (CH)MOV instruction, it does
2294 * not interrupt immediately, but tries to finish the
2295 * transfer of the current scatter entry before
2296 * interrupting. The following situations may occur:
2297 *
2298 * - The complete scatter entry has been transferred
2299 * without the device having changed phase.
2300 * The chip will then interrupt with the DSP pointing
2301 * to the instruction that follows the MOV.
2302 *
2303 * - A phase mismatch occurs before the MOV finished
2304 * and phase errors are to be handled by the C code.
2305 * The chip will then interrupt with both PAR and MA
2306 * conditions set.
2307 *
2308 * - A phase mismatch occurs before the MOV finished and
2309 * phase errors are to be handled by SCRIPTS.
2310 * The chip will load the DSP with the phase mismatch
2311 * JUMP address and interrupt the host processor.
2312 */
2313static void sym_int_par (struct sym_hcb *np, u_short sist)
2314{
2315 u_char hsts = INB(np, HS_PRT);
2316 u32 dsp = INL(np, nc_dsp);
2317 u32 dbc = INL(np, nc_dbc);
2318 u32 dsa = INL(np, nc_dsa);
2319 u_char sbcl = INB(np, nc_sbcl);
2320 u_char cmd = dbc >> 24;
2321 int phase = cmd & 7;
2322 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2323
2324 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2325 sym_name(np), hsts, dbc, sbcl);
2326
2327 /*
2328 * Check that the chip is connected to the SCSI BUS.
2329 */
2330 if (!(INB(np, nc_scntl1) & ISCON)) {
2331 sym_recover_scsi_int(np, HS_UNEXPECTED);
2332 return;
2333 }
2334
2335 /*
2336 * If the nexus is not clearly identified, reset the bus.
2337 * We will try to do better later.
2338 */
2339 if (!cp)
2340 goto reset_all;
2341
2342 /*
2343 * Check instruction was a MOV, direction was INPUT and
2344 * ATN is asserted.
2345 */
2346 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2347 goto reset_all;
2348
2349 /*
2350 * Keep track of the parity error.
2351 */
2352 OUTONB(np, HF_PRT, HF_EXT_ERR);
2353 cp->xerr_status |= XE_PARITY_ERR;
2354
2355 /*
2356 * Prepare the message to send to the device.
2357 */
2358 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2359
2360 /*
2361 * If the old phase was DATA IN phase, we have to deal with
2362 * the 3 situations described above.
2363 * For other input phases (MSG IN and STATUS), the device
2364 * must resend the whole thing that failed parity checking
2365 * or signal error. So, jumping to dispatcher should be OK.
2366 */
2367 if (phase == 1 || phase == 5) {
2368 /* Phase mismatch handled by SCRIPTS */
2369 if (dsp == SCRIPTB_BA(np, pm_handle))
2370 OUTL_DSP(np, dsp);
2371 /* Phase mismatch handled by the C code */
2372 else if (sist & MA)
2373 sym_int_ma (np);
2374 /* No phase mismatch occurred */
2375 else {
2376 sym_set_script_dp (np, cp, dsp);
2377 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2378 }
2379 }
2380 else if (phase == 7) /* We definitely cannot handle parity errors */
2381#if 1 /* in message-in phase due to the relection */
2382 goto reset_all; /* path and various message anticipations. */
2383#else
2384 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2385#endif
2386 else
2387 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2388 return;
2389
2390reset_all:
2391 sym_start_reset(np);
2392 return;
2393}
2394
2395/*
2396 * chip exception handler for phase errors.
2397 *
2398 * We have to construct a new transfer descriptor,
2399 * to transfer the rest of the current block.
2400 */
2401static void sym_int_ma (struct sym_hcb *np)
2402{
2403 u32 dbc;
2404 u32 rest;
2405 u32 dsp;
2406 u32 dsa;
2407 u32 nxtdsp;
2408 u32 *vdsp;
2409 u32 oadr, olen;
2410 u32 *tblp;
2411 u32 newcmd;
2412 u_int delta;
2413 u_char cmd;
2414 u_char hflags, hflags0;
2415 struct sym_pmc *pm;
2416 struct sym_ccb *cp;
2417
2418 dsp = INL(np, nc_dsp);
2419 dbc = INL(np, nc_dbc);
2420 dsa = INL(np, nc_dsa);
2421
2422 cmd = dbc >> 24;
2423 rest = dbc & 0xffffff;
2424 delta = 0;
2425
2426 /*
2427 * locate matching cp if any.
2428 */
2429 cp = sym_ccb_from_dsa(np, dsa);
2430
2431 /*
2432 * Donnot take into account dma fifo and various buffers in
2433 * INPUT phase since the chip flushes everything before
2434 * raising the MA interrupt for interrupted INPUT phases.
2435 * For DATA IN phase, we will check for the SWIDE later.
2436 */
2437 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2438 u_char ss0, ss2;
2439
2440 if (np->features & FE_DFBC)
2441 delta = INW(np, nc_dfbc);
2442 else {
2443 u32 dfifo;
2444
2445 /*
2446 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2447 */
2448 dfifo = INL(np, nc_dfifo);
2449
2450 /*
2451 * Calculate remaining bytes in DMA fifo.
2452 * (CTEST5 = dfifo >> 16)
2453 */
2454 if (dfifo & (DFS << 16))
2455 delta = ((((dfifo >> 8) & 0x300) |
2456 (dfifo & 0xff)) - rest) & 0x3ff;
2457 else
2458 delta = ((dfifo & 0xff) - rest) & 0x7f;
2459 }
2460
2461 /*
2462 * The data in the dma fifo has not been transfered to
2463 * the target -> add the amount to the rest
2464 * and clear the data.
2465 * Check the sstat2 register in case of wide transfer.
2466 */
2467 rest += delta;
2468 ss0 = INB(np, nc_sstat0);
2469 if (ss0 & OLF) rest++;
2470 if (!(np->features & FE_C10))
2471 if (ss0 & ORF) rest++;
2472 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2473 ss2 = INB(np, nc_sstat2);
2474 if (ss2 & OLF1) rest++;
2475 if (!(np->features & FE_C10))
2476 if (ss2 & ORF1) rest++;
2477 }
2478
2479 /*
2480 * Clear fifos.
2481 */
2482 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2483 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2484 }
2485
2486 /*
2487 * log the information
2488 */
2489 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2490 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2491 (unsigned) rest, (unsigned) delta);
2492
2493 /*
2494 * try to find the interrupted script command,
2495 * and the address at which to continue.
2496 */
2497 vdsp = NULL;
2498 nxtdsp = 0;
2499 if (dsp > np->scripta_ba &&
2500 dsp <= np->scripta_ba + np->scripta_sz) {
2501 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2502 nxtdsp = dsp;
2503 }
2504 else if (dsp > np->scriptb_ba &&
2505 dsp <= np->scriptb_ba + np->scriptb_sz) {
2506 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2507 nxtdsp = dsp;
2508 }
2509
2510 /*
2511 * log the information
2512 */
2513 if (DEBUG_FLAGS & DEBUG_PHASE) {
2514 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2515 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2516 }
2517
2518 if (!vdsp) {
2519 printf ("%s: interrupted SCRIPT address not found.\n",
2520 sym_name (np));
2521 goto reset_all;
2522 }
2523
2524 if (!cp) {
2525 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2526 sym_name (np));
2527 goto reset_all;
2528 }
2529
2530 /*
2531 * get old startaddress and old length.
2532 */
2533 oadr = scr_to_cpu(vdsp[1]);
2534
2535 if (cmd & 0x10) { /* Table indirect */
2536 tblp = (u32 *) ((char*) &cp->phys + oadr);
2537 olen = scr_to_cpu(tblp[0]);
2538 oadr = scr_to_cpu(tblp[1]);
2539 } else {
2540 tblp = (u32 *) 0;
2541 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2542 }
2543
2544 if (DEBUG_FLAGS & DEBUG_PHASE) {
2545 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2546 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2547 tblp,
2548 (unsigned) olen,
2549 (unsigned) oadr);
2550 }
2551
2552 /*
2553 * check cmd against assumed interrupted script command.
2554 * If dt data phase, the MOVE instruction hasn't bit 4 of
2555 * the phase.
2556 */
2557 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2558 sym_print_addr(cp->cmd,
2559 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2560 cmd, scr_to_cpu(vdsp[0]) >> 24);
2561
2562 goto reset_all;
2563 }
2564
2565 /*
2566 * if old phase not dataphase, leave here.
2567 */
2568 if (cmd & 2) {
2569 sym_print_addr(cp->cmd,
2570 "phase change %x-%x %d@%08x resid=%d.\n",
2571 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2572 (unsigned)oadr, (unsigned)rest);
2573 goto unexpected_phase;
2574 }
2575
2576 /*
2577 * Choose the correct PM save area.
2578 *
2579 * Look at the PM_SAVE SCRIPT if you want to understand
2580 * this stuff. The equivalent code is implemented in
2581 * SCRIPTS for the 895A, 896 and 1010 that are able to
2582 * handle PM from the SCRIPTS processor.
2583 */
2584 hflags0 = INB(np, HF_PRT);
2585 hflags = hflags0;
2586
2587 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2588 if (hflags & HF_IN_PM0)
2589 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2590 else if (hflags & HF_IN_PM1)
2591 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2592
2593 if (hflags & HF_DP_SAVED)
2594 hflags ^= HF_ACT_PM;
2595 }
2596
2597 if (!(hflags & HF_ACT_PM)) {
2598 pm = &cp->phys.pm0;
2599 newcmd = SCRIPTA_BA(np, pm0_data);
2600 }
2601 else {
2602 pm = &cp->phys.pm1;
2603 newcmd = SCRIPTA_BA(np, pm1_data);
2604 }
2605
2606 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2607 if (hflags != hflags0)
2608 OUTB(np, HF_PRT, hflags);
2609
2610 /*
2611 * fillin the phase mismatch context
2612 */
2613 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2614 pm->sg.size = cpu_to_scr(rest);
2615 pm->ret = cpu_to_scr(nxtdsp);
2616
2617 /*
2618 * If we have a SWIDE,
2619 * - prepare the address to write the SWIDE from SCRIPTS,
2620 * - compute the SCRIPTS address to restart from,
2621 * - move current data pointer context by one byte.
2622 */
2623 nxtdsp = SCRIPTA_BA(np, dispatch);
2624 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2625 (INB(np, nc_scntl2) & WSR)) {
2626 u32 tmp;
2627
2628 /*
2629 * Set up the table indirect for the MOVE
2630 * of the residual byte and adjust the data
2631 * pointer context.
2632 */
2633 tmp = scr_to_cpu(pm->sg.addr);
2634 cp->phys.wresid.addr = cpu_to_scr(tmp);
2635 pm->sg.addr = cpu_to_scr(tmp + 1);
2636 tmp = scr_to_cpu(pm->sg.size);
2637 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2638 pm->sg.size = cpu_to_scr(tmp - 1);
2639
2640 /*
2641 * If only the residual byte is to be moved,
2642 * no PM context is needed.
2643 */
2644 if ((tmp&0xffffff) == 1)
2645 newcmd = pm->ret;
2646
2647 /*
2648 * Prepare the address of SCRIPTS that will
2649 * move the residual byte to memory.
2650 */
2651 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2652 }
2653
2654 if (DEBUG_FLAGS & DEBUG_PHASE) {
2655 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2656 hflags0, hflags, newcmd,
2657 (unsigned)scr_to_cpu(pm->sg.addr),
2658 (unsigned)scr_to_cpu(pm->sg.size),
2659 (unsigned)scr_to_cpu(pm->ret));
2660 }
2661
2662 /*
2663 * Restart the SCRIPTS processor.
2664 */
2665 sym_set_script_dp (np, cp, newcmd);
2666 OUTL_DSP(np, nxtdsp);
2667 return;
2668
2669 /*
2670 * Unexpected phase changes that occurs when the current phase
2671 * is not a DATA IN or DATA OUT phase are due to error conditions.
2672 * Such event may only happen when the SCRIPTS is using a
2673 * multibyte SCSI MOVE.
2674 *
2675 * Phase change Some possible cause
2676 *
2677 * COMMAND --> MSG IN SCSI parity error detected by target.
2678 * COMMAND --> STATUS Bad command or refused by target.
2679 * MSG OUT --> MSG IN Message rejected by target.
2680 * MSG OUT --> COMMAND Bogus target that discards extended
2681 * negotiation messages.
2682 *
2683 * The code below does not care of the new phase and so
2684 * trusts the target. Why to annoy it ?
2685 * If the interrupted phase is COMMAND phase, we restart at
2686 * dispatcher.
2687 * If a target does not get all the messages after selection,
2688 * the code assumes blindly that the target discards extended
2689 * messages and clears the negotiation status.
2690 * If the target does not want all our response to negotiation,
2691 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2692 * bloat for such a should_not_happen situation).
2693 * In all other situation, we reset the BUS.
2694 * Are these assumptions reasonnable ? (Wait and see ...)
2695 */
2696unexpected_phase:
2697 dsp -= 8;
2698 nxtdsp = 0;
2699
2700 switch (cmd & 7) {
2701 case 2: /* COMMAND phase */
2702 nxtdsp = SCRIPTA_BA(np, dispatch);
2703 break;
2704#if 0
2705 case 3: /* STATUS phase */
2706 nxtdsp = SCRIPTA_BA(np, dispatch);
2707 break;
2708#endif
2709 case 6: /* MSG OUT phase */
2710 /*
2711 * If the device may want to use untagged when we want
2712 * tagged, we prepare an IDENTIFY without disc. granted,
2713 * since we will not be able to handle reselect.
2714 * Otherwise, we just don't care.
2715 */
2716 if (dsp == SCRIPTA_BA(np, send_ident)) {
2717 if (cp->tag != NO_TAG && olen - rest <= 3) {
2718 cp->host_status = HS_BUSY;
2719 np->msgout[0] = IDENTIFY(0, cp->lun);
2720 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2721 }
2722 else
2723 nxtdsp = SCRIPTB_BA(np, ident_break);
2724 }
2725 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2726 dsp == SCRIPTB_BA(np, send_sdtr) ||
2727 dsp == SCRIPTB_BA(np, send_ppr)) {
2728 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2729 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2730 struct scsi_device *dev = cp->cmd->device;
2731 dev->ppr = 0;
2732 }
2733 }
2734 break;
2735#if 0
2736 case 7: /* MSG IN phase */
2737 nxtdsp = SCRIPTA_BA(np, clrack);
2738 break;
2739#endif
2740 }
2741
2742 if (nxtdsp) {
2743 OUTL_DSP(np, nxtdsp);
2744 return;
2745 }
2746
2747reset_all:
2748 sym_start_reset(np);
2749}
2750
2751/*
2752 * chip interrupt handler
2753 *
2754 * In normal situations, interrupt conditions occur one at
2755 * a time. But when something bad happens on the SCSI BUS,
2756 * the chip may raise several interrupt flags before
2757 * stopping and interrupting the CPU. The additionnal
2758 * interrupt flags are stacked in some extra registers
2759 * after the SIP and/or DIP flag has been raised in the
2760 * ISTAT. After the CPU has read the interrupt condition
2761 * flag from SIST or DSTAT, the chip unstacks the other
2762 * interrupt flags and sets the corresponding bits in
2763 * SIST or DSTAT. Since the chip starts stacking once the
2764 * SIP or DIP flag is set, there is a small window of time
2765 * where the stacking does not occur.
2766 *
2767 * Typically, multiple interrupt conditions may happen in
2768 * the following situations:
2769 *
2770 * - SCSI parity error + Phase mismatch (PAR|MA)
2771 * When an parity error is detected in input phase
2772 * and the device switches to msg-in phase inside a
2773 * block MOV.
2774 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2775 * When a stupid device does not want to handle the
2776 * recovery of an SCSI parity error.
2777 * - Some combinations of STO, PAR, UDC, ...
2778 * When using non compliant SCSI stuff, when user is
2779 * doing non compliant hot tampering on the BUS, when
2780 * something really bad happens to a device, etc ...
2781 *
2782 * The heuristic suggested by SYMBIOS to handle
2783 * multiple interrupts is to try unstacking all
2784 * interrupts conditions and to handle them on some
2785 * priority based on error severity.
2786 * This will work when the unstacking has been
2787 * successful, but we cannot be 100 % sure of that,
2788 * since the CPU may have been faster to unstack than
2789 * the chip is able to stack. Hmmm ... But it seems that
2790 * such a situation is very unlikely to happen.
2791 *
2792 * If this happen, for example STO caught by the CPU
2793 * then UDC happenning before the CPU have restarted
2794 * the SCRIPTS, the driver may wrongly complete the
2795 * same command on UDC, since the SCRIPTS didn't restart
2796 * and the DSA still points to the same command.
2797 * We avoid this situation by setting the DSA to an
2798 * invalid value when the CCB is completed and before
2799 * restarting the SCRIPTS.
2800 *
2801 * Another issue is that we need some section of our
2802 * recovery procedures to be somehow uninterruptible but
2803 * the SCRIPTS processor does not provides such a
2804 * feature. For this reason, we handle recovery preferently
2805 * from the C code and check against some SCRIPTS critical
2806 * sections from the C code.
2807 *
2808 * Hopefully, the interrupt handling of the driver is now
2809 * able to resist to weird BUS error conditions, but donnot
2810 * ask me for any guarantee that it will never fail. :-)
2811 * Use at your own decision and risk.
2812 */
2813
99c9e0a1 2814irqreturn_t sym_interrupt(struct Scsi_Host *shost)
1da177e4 2815{
5111eefa
MW
2816 struct sym_data *sym_data = shost_priv(shost);
2817 struct sym_hcb *np = sym_data->ncb;
2818 struct pci_dev *pdev = sym_data->pdev;
1da177e4
LT
2819 u_char istat, istatc;
2820 u_char dstat;
2821 u_short sist;
2822
2823 /*
2824 * interrupt on the fly ?
2825 * (SCRIPTS may still be running)
2826 *
2827 * A `dummy read' is needed to ensure that the
2828 * clear of the INTF flag reaches the device
2829 * and that posted writes are flushed to memory
2830 * before the scanning of the DONE queue.
2831 * Note that SCRIPTS also (dummy) read to memory
2832 * prior to deliver the INTF interrupt condition.
2833 */
2834 istat = INB(np, nc_istat);
2835 if (istat & INTF) {
2836 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
cedefa13 2837 istat |= INB(np, nc_istat); /* DUMMY READ */
1da177e4
LT
2838 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2839 sym_wakeup_done(np);
2840 }
2841
2842 if (!(istat & (SIP|DIP)))
99c9e0a1 2843 return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
1da177e4
LT
2844
2845#if 0 /* We should never get this one */
2846 if (istat & CABRT)
2847 OUTB(np, nc_istat, CABRT);
2848#endif
2849
2850 /*
2851 * PAR and MA interrupts may occur at the same time,
2852 * and we need to know of both in order to handle
2853 * this situation properly. We try to unstack SCSI
2854 * interrupts for that reason. BTW, I dislike a LOT
2855 * such a loop inside the interrupt routine.
2856 * Even if DMA interrupt stacking is very unlikely to
2857 * happen, we also try unstacking these ones, since
2858 * this has no performance impact.
2859 */
2860 sist = 0;
2861 dstat = 0;
2862 istatc = istat;
2863 do {
2864 if (istatc & SIP)
2865 sist |= INW(np, nc_sist);
2866 if (istatc & DIP)
2867 dstat |= INB(np, nc_dstat);
2868 istatc = INB(np, nc_istat);
2869 istat |= istatc;
d68cd759
LV
2870
2871 /* Prevent deadlock waiting on a condition that may
2872 * never clear. */
2873 if (unlikely(sist == 0xffff && dstat == 0xff)) {
5111eefa 2874 if (pci_channel_offline(pdev))
99c9e0a1 2875 return IRQ_NONE;
d68cd759 2876 }
1da177e4
LT
2877 } while (istatc & (SIP|DIP));
2878
2879 if (DEBUG_FLAGS & DEBUG_TINY)
2880 printf ("<%d|%x:%x|%x:%x>",
2881 (int)INB(np, nc_scr0),
2882 dstat,sist,
2883 (unsigned)INL(np, nc_dsp),
2884 (unsigned)INL(np, nc_dbc));
2885 /*
2886 * On paper, a memory read barrier may be needed here to
2887 * prevent out of order LOADs by the CPU from having
2888 * prefetched stale data prior to DMA having occurred.
2889 * And since we are paranoid ... :)
2890 */
2891 MEMORY_READ_BARRIER();
2892
2893 /*
2894 * First, interrupts we want to service cleanly.
2895 *
2896 * Phase mismatch (MA) is the most frequent interrupt
2897 * for chip earlier than the 896 and so we have to service
2898 * it as quickly as possible.
2899 * A SCSI parity error (PAR) may be combined with a phase
2900 * mismatch condition (MA).
2901 * Programmed interrupts (SIR) are used to call the C code
2902 * from SCRIPTS.
2903 * The single step interrupt (SSI) is not used in this
2904 * driver.
2905 */
2906 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2907 !(dstat & (MDPE|BF|ABRT|IID))) {
2908 if (sist & PAR) sym_int_par (np, sist);
2909 else if (sist & MA) sym_int_ma (np);
3fb364e0 2910 else if (dstat & SIR) sym_int_sir(np);
1da177e4
LT
2911 else if (dstat & SSI) OUTONB_STD();
2912 else goto unknown_int;
99c9e0a1 2913 return IRQ_HANDLED;
1da177e4
LT
2914 }
2915
2916 /*
2917 * Now, interrupts that donnot happen in normal
2918 * situations and that we may need to recover from.
2919 *
2920 * On SCSI RESET (RST), we reset everything.
2921 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2922 * active CCBs with RESET status, prepare all devices
2923 * for negotiating again and restart the SCRIPTS.
2924 * On STO and UDC, we complete the CCB with the corres-
2925 * ponding status and restart the SCRIPTS.
2926 */
2927 if (sist & RST) {
2928 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
5111eefa 2929 sym_start_up(shost, 1);
99c9e0a1 2930 return IRQ_HANDLED;
1da177e4
LT
2931 }
2932
2933 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2934 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2935
2936 if (!(sist & (GEN|HTH|SGE)) &&
2937 !(dstat & (MDPE|BF|ABRT|IID))) {
5111eefa 2938 if (sist & SBMC) sym_int_sbmc(shost);
1da177e4
LT
2939 else if (sist & STO) sym_int_sto (np);
2940 else if (sist & UDC) sym_int_udc (np);
2941 else goto unknown_int;
99c9e0a1 2942 return IRQ_HANDLED;
1da177e4
LT
2943 }
2944
2945 /*
2946 * Now, interrupts we are not able to recover cleanly.
2947 *
2948 * Log message for hard errors.
2949 * Reset everything.
2950 */
2951
5111eefa 2952 sym_log_hard_error(shost, sist, dstat);
1da177e4
LT
2953
2954 if ((sist & (GEN|HTH|SGE)) ||
2955 (dstat & (MDPE|BF|ABRT|IID))) {
2956 sym_start_reset(np);
99c9e0a1 2957 return IRQ_HANDLED;
1da177e4
LT
2958 }
2959
2960unknown_int:
2961 /*
2962 * We just miss the cause of the interrupt. :(
2963 * Print a message. The timeout will do the real work.
2964 */
2965 printf( "%s: unknown interrupt(s) ignored, "
2966 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2967 sym_name(np), istat, dstat, sist);
99c9e0a1 2968 return IRQ_NONE;
1da177e4
LT
2969}
2970
2971/*
2972 * Dequeue from the START queue all CCBs that match
2973 * a given target/lun/task condition (-1 means all),
2974 * and move them from the BUSY queue to the COMP queue
53222b90 2975 * with DID_SOFT_ERROR status condition.
1da177e4
LT
2976 * This function is used during error handling/recovery.
2977 * It is called with SCRIPTS not running.
2978 */
2979static int
2980sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2981{
2982 int j;
2983 struct sym_ccb *cp;
2984
2985 /*
2986 * Make sure the starting index is within range.
2987 */
2988 assert((i >= 0) && (i < 2*MAX_QUEUE));
2989
2990 /*
2991 * Walk until end of START queue and dequeue every job
2992 * that matches the target/lun/task condition.
2993 */
2994 j = i;
2995 while (i != np->squeueput) {
2996 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2997 assert(cp);
2998#ifdef SYM_CONF_IARB_SUPPORT
2999 /* Forget hints for IARB, they may be no longer relevant */
3000 cp->host_flags &= ~HF_HINT_IARB;
3001#endif
3002 if ((target == -1 || cp->target == target) &&
3003 (lun == -1 || cp->lun == lun) &&
3004 (task == -1 || cp->tag == task)) {
53222b90 3005 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
1da177e4
LT
3006 sym_remque(&cp->link_ccbq);
3007 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3008 }
3009 else {
3010 if (i != j)
3011 np->squeue[j] = np->squeue[i];
3012 if ((j += 2) >= MAX_QUEUE*2) j = 0;
3013 }
3014 if ((i += 2) >= MAX_QUEUE*2) i = 0;
3015 }
3016 if (i != j) /* Copy back the idle task if needed */
3017 np->squeue[j] = np->squeue[i];
3018 np->squeueput = j; /* Update our current start queue pointer */
3019
3020 return (i - j) / 2;
3021}
3022
3023/*
3024 * chip handler for bad SCSI status condition
3025 *
3026 * In case of bad SCSI status, we unqueue all the tasks
3027 * currently queued to the controller but not yet started
3028 * and then restart the SCRIPTS processor immediately.
3029 *
3030 * QUEUE FULL and BUSY conditions are handled the same way.
3031 * Basically all the not yet started tasks are requeued in
3032 * device queue and the queue is frozen until a completion.
3033 *
3034 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3035 * the CCB of the failed command to prepare a REQUEST SENSE
3036 * SCSI command and queue it to the controller queue.
3037 *
3038 * SCRATCHA is assumed to have been loaded with STARTPOS
3039 * before the SCRIPTS called the C code.
3040 */
3041static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3042{
3043 u32 startp;
3044 u_char s_status = cp->ssss_status;
3045 u_char h_flags = cp->host_flags;
3046 int msglen;
3047 int i;
3048
3049 /*
3050 * Compute the index of the next job to start from SCRIPTS.
3051 */
3052 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3053
3054 /*
3055 * The last CCB queued used for IARB hint may be
3056 * no longer relevant. Forget it.
3057 */
3058#ifdef SYM_CONF_IARB_SUPPORT
3059 if (np->last_cp)
3060 np->last_cp = 0;
3061#endif
3062
3063 /*
3064 * Now deal with the SCSI status.
3065 */
3066 switch(s_status) {
3067 case S_BUSY:
3068 case S_QUEUE_FULL:
3069 if (sym_verbose >= 2) {
3070 sym_print_addr(cp->cmd, "%s\n",
3071 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3072 }
3073 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3074 sym_complete_error (np, cp);
3075 break;
3076 case S_TERMINATED:
3077 case S_CHECK_COND:
3078 /*
3079 * If we get an SCSI error when requesting sense, give up.
3080 */
3081 if (h_flags & HF_SENSE) {
3082 sym_complete_error (np, cp);
3083 break;
3084 }
3085
3086 /*
3087 * Dequeue all queued CCBs for that device not yet started,
3088 * and restart the SCRIPTS processor immediately.
3089 */
3090 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3091 OUTL_DSP(np, SCRIPTA_BA(np, start));
3092
3093 /*
3094 * Save some info of the actual IO.
3095 * Compute the data residual.
3096 */
3097 cp->sv_scsi_status = cp->ssss_status;
3098 cp->sv_xerr_status = cp->xerr_status;
3099 cp->sv_resid = sym_compute_residual(np, cp);
3100
3101 /*
3102 * Prepare all needed data structures for
3103 * requesting sense data.
3104 */
3105
3106 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3107 msglen = 1;
3108
3109 /*
3110 * If we are currently using anything different from
3111 * async. 8 bit data transfers with that target,
3112 * start a negotiation, since the device may want
3113 * to report us a UNIT ATTENTION condition due to
3114 * a cause we currently ignore, and we donnot want
3115 * to be stuck with WIDE and/or SYNC data transfer.
3116 *
3117 * cp->nego_status is filled by sym_prepare_nego().
3118 */
3119 cp->nego_status = 0;
3120 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3121 /*
3122 * Message table indirect structure.
3123 */
53222b90 3124 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
1da177e4
LT
3125 cp->phys.smsg.size = cpu_to_scr(msglen);
3126
3127 /*
3128 * sense command
3129 */
53222b90 3130 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
1da177e4
LT
3131 cp->phys.cmd.size = cpu_to_scr(6);
3132
3133 /*
3134 * patch requested size into sense command
3135 */
3136 cp->sensecmd[0] = REQUEST_SENSE;
3137 cp->sensecmd[1] = 0;
3138 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3139 cp->sensecmd[1] = cp->lun << 5;
3140 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3141 cp->data_len = SYM_SNS_BBUF_LEN;
3142
3143 /*
3144 * sense data
3145 */
3146 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
53222b90 3147 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
1da177e4
LT
3148 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3149
3150 /*
3151 * requeue the command.
3152 */
3153 startp = SCRIPTB_BA(np, sdata_in);
3154
3155 cp->phys.head.savep = cpu_to_scr(startp);
3156 cp->phys.head.lastp = cpu_to_scr(startp);
3157 cp->startp = cpu_to_scr(startp);
3158 cp->goalp = cpu_to_scr(startp + 16);
3159
3160 cp->host_xflags = 0;
3161 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3162 cp->ssss_status = S_ILLEGAL;
3163 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3164 cp->xerr_status = 0;
3165 cp->extra_bytes = 0;
3166
3167 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3168
3169 /*
3170 * Requeue the command.
3171 */
3172 sym_put_start_queue(np, cp);
3173
3174 /*
3175 * Give back to upper layer everything we have dequeued.
3176 */
3177 sym_flush_comp_queue(np, 0);
3178 break;
3179 }
3180}
3181
3182/*
3183 * After a device has accepted some management message
3184 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3185 * a device signals a UNIT ATTENTION condition, some
3186 * tasks are thrown away by the device. We are required
3187 * to reflect that on our tasks list since the device
3188 * will never complete these tasks.
3189 *
3190 * This function move from the BUSY queue to the COMP
3191 * queue all disconnected CCBs for a given target that
3192 * match the following criteria:
3193 * - lun=-1 means any logical UNIT otherwise a given one.
3194 * - task=-1 means any task, otherwise a given one.
3195 */
3196int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3197{
3198 SYM_QUEHEAD qtmp, *qp;
3199 int i = 0;
3200 struct sym_ccb *cp;
3201
3202 /*
3203 * Move the entire BUSY queue to our temporary queue.
3204 */
3205 sym_que_init(&qtmp);
3206 sym_que_splice(&np->busy_ccbq, &qtmp);
3207 sym_que_init(&np->busy_ccbq);
3208
3209 /*
3210 * Put all CCBs that matches our criteria into
3211 * the COMP queue and put back other ones into
3212 * the BUSY queue.
3213 */
172c122d 3214 while ((qp = sym_remque_head(&qtmp)) != NULL) {
1da177e4
LT
3215 struct scsi_cmnd *cmd;
3216 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3217 cmd = cp->cmd;
3218 if (cp->host_status != HS_DISCONNECT ||
3219 cp->target != target ||
3220 (lun != -1 && cp->lun != lun) ||
3221 (task != -1 &&
3222 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3223 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3224 continue;
3225 }
3226 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3227
3228 /* Preserve the software timeout condition */
53222b90 3229 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
1da177e4
LT
3230 sym_set_cam_status(cmd, cam_status);
3231 ++i;
3232#if 0
3233printf("XXXX TASK @%p CLEARED\n", cp);
3234#endif
3235 }
3236 return i;
3237}
3238
3239/*
3240 * chip handler for TASKS recovery
3241 *
3242 * We cannot safely abort a command, while the SCRIPTS
3243 * processor is running, since we just would be in race
3244 * with it.
3245 *
3246 * As long as we have tasks to abort, we keep the SEM
3247 * bit set in the ISTAT. When this bit is set, the
3248 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3249 * each time it enters the scheduler.
3250 *
3251 * If we have to reset a target, clear tasks of a unit,
3252 * or to perform the abort of a disconnected job, we
3253 * restart the SCRIPTS for selecting the target. Once
3254 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3255 * If it loses arbitration, the SCRIPTS will interrupt again
3256 * the next time it will enter its scheduler, and so on ...
3257 *
3258 * On SIR_TARGET_SELECTED, we scan for the more
3259 * appropriate thing to do:
3260 *
3261 * - If nothing, we just sent a M_ABORT message to the
3262 * target to get rid of the useless SCSI bus ownership.
3263 * According to the specs, no tasks shall be affected.
3264 * - If the target is to be reset, we send it a M_RESET
3265 * message.
3266 * - If a logical UNIT is to be cleared , we send the
3267 * IDENTIFY(lun) + M_ABORT.
3268 * - If an untagged task is to be aborted, we send the
3269 * IDENTIFY(lun) + M_ABORT.
3270 * - If a tagged task is to be aborted, we send the
3271 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3272 *
3273 * Once our 'kiss of death' :) message has been accepted
3274 * by the target, the SCRIPTS interrupts again
3275 * (SIR_ABORT_SENT). On this interrupt, we complete
3276 * all the CCBs that should have been aborted by the
3277 * target according to our message.
3278 */
3279static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3280{
3281 SYM_QUEHEAD *qp;
3282 struct sym_ccb *cp;
3283 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3284 struct scsi_target *starget;
3285 int target=-1, lun=-1, task;
3286 int i, k;
3287
3288 switch(num) {
3289 /*
3290 * The SCRIPTS processor stopped before starting
3291 * the next command in order to allow us to perform
3292 * some task recovery.
3293 */
3294 case SIR_SCRIPT_STOPPED:
3295 /*
3296 * Do we have any target to reset or unit to clear ?
3297 */
3298 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3299 tp = &np->target[i];
3300 if (tp->to_reset ||
3301 (tp->lun0p && tp->lun0p->to_clear)) {
3302 target = i;
3303 break;
3304 }
3305 if (!tp->lunmp)
3306 continue;
3307 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3308 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3309 target = i;
3310 break;
3311 }
3312 }
3313 if (target != -1)
3314 break;
3315 }
3316
3317 /*
3318 * If not, walk the busy queue for any
3319 * disconnected CCB to be aborted.
3320 */
3321 if (target == -1) {
3322 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3323 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3324 if (cp->host_status != HS_DISCONNECT)
3325 continue;
3326 if (cp->to_abort) {
3327 target = cp->target;
3328 break;
3329 }
3330 }
3331 }
3332
3333 /*
3334 * If some target is to be selected,
3335 * prepare and start the selection.
3336 */
3337 if (target != -1) {
3338 tp = &np->target[target];
3339 np->abrt_sel.sel_id = target;
3340 np->abrt_sel.sel_scntl3 = tp->head.wval;
3341 np->abrt_sel.sel_sxfer = tp->head.sval;
3342 OUTL(np, nc_dsa, np->hcb_ba);
3343 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3344 return;
3345 }
3346
3347 /*
3348 * Now look for a CCB to abort that haven't started yet.
3349 * Btw, the SCRIPTS processor is still stopped, so
3350 * we are not in race.
3351 */
3352 i = 0;
3353 cp = NULL;
3354 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3355 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3356 if (cp->host_status != HS_BUSY &&
3357 cp->host_status != HS_NEGOTIATE)
3358 continue;
3359 if (!cp->to_abort)
3360 continue;
3361#ifdef SYM_CONF_IARB_SUPPORT
3362 /*
3363 * If we are using IMMEDIATE ARBITRATION, we donnot
3364 * want to cancel the last queued CCB, since the
3365 * SCRIPTS may have anticipated the selection.
3366 */
3367 if (cp == np->last_cp) {
3368 cp->to_abort = 0;
3369 continue;
3370 }
3371#endif
3372 i = 1; /* Means we have found some */
3373 break;
3374 }
3375 if (!i) {
3376 /*
3377 * We are done, so we donnot need
3378 * to synchronize with the SCRIPTS anylonger.
3379 * Remove the SEM flag from the ISTAT.
3380 */
3381 np->istat_sem = 0;
3382 OUTB(np, nc_istat, SIGP);
3383 break;
3384 }
3385 /*
3386 * Compute index of next position in the start
3387 * queue the SCRIPTS intends to start and dequeue
3388 * all CCBs for that device that haven't been started.
3389 */
3390 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3391 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3392
3393 /*
3394 * Make sure at least our IO to abort has been dequeued.
3395 */
3396#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
53222b90 3397 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
1da177e4
LT
3398#else
3399 sym_remque(&cp->link_ccbq);
3400 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3401#endif
3402 /*
3403 * Keep track in cam status of the reason of the abort.
3404 */
3405 if (cp->to_abort == 2)
53222b90 3406 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
1da177e4 3407 else
53222b90 3408 sym_set_cam_status(cp->cmd, DID_ABORT);
1da177e4
LT
3409
3410 /*
3411 * Complete with error everything that we have dequeued.
3412 */
3413 sym_flush_comp_queue(np, 0);
3414 break;
3415 /*
3416 * The SCRIPTS processor has selected a target
3417 * we may have some manual recovery to perform for.
3418 */
3419 case SIR_TARGET_SELECTED:
3420 target = INB(np, nc_sdid) & 0xf;
3421 tp = &np->target[target];
3422
3423 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3424
3425 /*
3426 * If the target is to be reset, prepare a
3427 * M_RESET message and clear the to_reset flag
3428 * since we donnot expect this operation to fail.
3429 */
3430 if (tp->to_reset) {
3431 np->abrt_msg[0] = M_RESET;
3432 np->abrt_tbl.size = 1;
3433 tp->to_reset = 0;
3434 break;
3435 }
3436
3437 /*
3438 * Otherwise, look for some logical unit to be cleared.
3439 */
3440 if (tp->lun0p && tp->lun0p->to_clear)
3441 lun = 0;
3442 else if (tp->lunmp) {
3443 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3444 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3445 lun = k;
3446 break;
3447 }
3448 }
3449 }
3450
3451 /*
3452 * If a logical unit is to be cleared, prepare
3453 * an IDENTIFY(lun) + ABORT MESSAGE.
3454 */
3455 if (lun != -1) {
3456 struct sym_lcb *lp = sym_lp(tp, lun);
3457 lp->to_clear = 0; /* We don't expect to fail here */
3458 np->abrt_msg[0] = IDENTIFY(0, lun);
3459 np->abrt_msg[1] = M_ABORT;
3460 np->abrt_tbl.size = 2;
3461 break;
3462 }
3463
3464 /*
3465 * Otherwise, look for some disconnected job to
3466 * abort for this target.
3467 */
3468 i = 0;
3469 cp = NULL;
3470 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3471 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3472 if (cp->host_status != HS_DISCONNECT)
3473 continue;
3474 if (cp->target != target)
3475 continue;
3476 if (!cp->to_abort)
3477 continue;
3478 i = 1; /* Means we have some */
3479 break;
3480 }
3481
3482 /*
3483 * If we have none, probably since the device has
3484 * completed the command before we won abitration,
3485 * send a M_ABORT message without IDENTIFY.
3486 * According to the specs, the device must just
3487 * disconnect the BUS and not abort any task.
3488 */
3489 if (!i) {
3490 np->abrt_msg[0] = M_ABORT;
3491 np->abrt_tbl.size = 1;
3492 break;
3493 }
3494
3495 /*
3496 * We have some task to abort.
3497 * Set the IDENTIFY(lun)
3498 */
3499 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3500
3501 /*
3502 * If we want to abort an untagged command, we
3503 * will send a IDENTIFY + M_ABORT.
3504 * Otherwise (tagged command), we will send
3505 * a IDENTITFY + task attributes + ABORT TAG.
3506 */
3507 if (cp->tag == NO_TAG) {
3508 np->abrt_msg[1] = M_ABORT;
3509 np->abrt_tbl.size = 2;
3510 } else {
3511 np->abrt_msg[1] = cp->scsi_smsg[1];
3512 np->abrt_msg[2] = cp->scsi_smsg[2];
3513 np->abrt_msg[3] = M_ABORT_TAG;
3514 np->abrt_tbl.size = 4;
3515 }
3516 /*
3517 * Keep track of software timeout condition, since the
3518 * peripheral driver may not count retries on abort
3519 * conditions not due to timeout.
3520 */
3521 if (cp->to_abort == 2)
53222b90 3522 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
1da177e4
LT
3523 cp->to_abort = 0; /* We donnot expect to fail here */
3524 break;
3525
3526 /*
3527 * The target has accepted our message and switched
3528 * to BUS FREE phase as we expected.
3529 */
3530 case SIR_ABORT_SENT:
3531 target = INB(np, nc_sdid) & 0xf;
3532 tp = &np->target[target];
53222b90 3533 starget = tp->starget;
1da177e4
LT
3534
3535 /*
3536 ** If we didn't abort anything, leave here.
3537 */
3538 if (np->abrt_msg[0] == M_ABORT)
3539 break;
3540
3541 /*
3542 * If we sent a M_RESET, then a hardware reset has
3543 * been performed by the target.
3544 * - Reset everything to async 8 bit
3545 * - Tell ourself to negotiate next time :-)
3546 * - Prepare to clear all disconnected CCBs for
3547 * this target from our task list (lun=task=-1)
3548 */
3549 lun = -1;
3550 task = -1;
3551 if (np->abrt_msg[0] == M_RESET) {
3552 tp->head.sval = 0;
3553 tp->head.wval = np->rv_scntl3;
3554 tp->head.uval = 0;
3555 spi_period(starget) = 0;
3556 spi_offset(starget) = 0;
3557 spi_width(starget) = 0;
3558 spi_iu(starget) = 0;
3559 spi_dt(starget) = 0;
3560 spi_qas(starget) = 0;
3561 tp->tgoal.check_nego = 1;
49799fee 3562 tp->tgoal.renego = 0;
1da177e4
LT
3563 }
3564
3565 /*
3566 * Otherwise, check for the LUN and TASK(s)
3567 * concerned by the cancelation.
3568 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3569 * or an ABORT message :-)
3570 */
3571 else {
3572 lun = np->abrt_msg[0] & 0x3f;
3573 if (np->abrt_msg[1] == M_ABORT_TAG)
3574 task = np->abrt_msg[2];
3575 }
3576
3577 /*
3578 * Complete all the CCBs the device should have
3579 * aborted due to our 'kiss of death' message.
3580 */
3581 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3582 sym_dequeue_from_squeue(np, i, target, lun, -1);
53222b90 3583 sym_clear_tasks(np, DID_ABORT, target, lun, task);
1da177e4
LT
3584 sym_flush_comp_queue(np, 0);
3585
3586 /*
3587 * If we sent a BDR, make upper layer aware of that.
3588 */
3589 if (np->abrt_msg[0] == M_RESET)
aac6a5a3
MW
3590 starget_printk(KERN_NOTICE, starget,
3591 "has been reset\n");
1da177e4
LT
3592 break;
3593 }
3594
3595 /*
3596 * Print to the log the message we intend to send.
3597 */
3598 if (num == SIR_TARGET_SELECTED) {
53222b90 3599 dev_info(&tp->starget->dev, "control msgout:");
1da177e4
LT
3600 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3601 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3602 }
3603
3604 /*
3605 * Let the SCRIPTS processor continue.
3606 */
3607 OUTONB_STD();
3608}
3609
3610/*
3611 * Gerard's alchemy:) that deals with with the data
3612 * pointer for both MDP and the residual calculation.
3613 *
3614 * I didn't want to bloat the code by more than 200
3615 * lines for the handling of both MDP and the residual.
3616 * This has been achieved by using a data pointer
3617 * representation consisting in an index in the data
3618 * array (dp_sg) and a negative offset (dp_ofs) that
3619 * have the following meaning:
3620 *
3621 * - dp_sg = SYM_CONF_MAX_SG
3622 * we are at the end of the data script.
3623 * - dp_sg < SYM_CONF_MAX_SG
3624 * dp_sg points to the next entry of the scatter array
3625 * we want to transfer.
3626 * - dp_ofs < 0
3627 * dp_ofs represents the residual of bytes of the
3628 * previous entry scatter entry we will send first.
3629 * - dp_ofs = 0
3630 * no residual to send first.
3631 *
3632 * The function sym_evaluate_dp() accepts an arbitray
3633 * offset (basically from the MDP message) and returns
3634 * the corresponding values of dp_sg and dp_ofs.
3635 */
3636
3637static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3638{
3639 u32 dp_scr;
3640 int dp_ofs, dp_sg, dp_sgmin;
3641 int tmp;
3642 struct sym_pmc *pm;
3643
3644 /*
3645 * Compute the resulted data pointer in term of a script
3646 * address within some DATA script and a signed byte offset.
3647 */
3648 dp_scr = scr;
3649 dp_ofs = *ofs;
3650 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3651 pm = &cp->phys.pm0;
3652 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3653 pm = &cp->phys.pm1;
3654 else
3655 pm = NULL;
3656
3657 if (pm) {
3658 dp_scr = scr_to_cpu(pm->ret);
e2230eac 3659 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
1da177e4
LT
3660 }
3661
3662 /*
3663 * If we are auto-sensing, then we are done.
3664 */
3665 if (cp->host_flags & HF_SENSE) {
3666 *ofs = dp_ofs;
3667 return 0;
3668 }
3669
3670 /*
3671 * Deduce the index of the sg entry.
3672 * Keep track of the index of the first valid entry.
3673 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3674 * end of the data.
3675 */
44f30b0f 3676 tmp = scr_to_cpu(cp->goalp);
1da177e4
LT
3677 dp_sg = SYM_CONF_MAX_SG;
3678 if (dp_scr != tmp)
3679 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3680 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3681
3682 /*
3683 * Move to the sg entry the data pointer belongs to.
3684 *
3685 * If we are inside the data area, we expect result to be:
3686 *
3687 * Either,
3688 * dp_ofs = 0 and dp_sg is the index of the sg entry
3689 * the data pointer belongs to (or the end of the data)
3690 * Or,
3691 * dp_ofs < 0 and dp_sg is the index of the sg entry
3692 * the data pointer belongs to + 1.
3693 */
3694 if (dp_ofs < 0) {
3695 int n;
3696 while (dp_sg > dp_sgmin) {
3697 --dp_sg;
3698 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3699 n = dp_ofs + (tmp & 0xffffff);
3700 if (n > 0) {
3701 ++dp_sg;
3702 break;
3703 }
3704 dp_ofs = n;
3705 }
3706 }
3707 else if (dp_ofs > 0) {
3708 while (dp_sg < SYM_CONF_MAX_SG) {
3709 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3710 dp_ofs -= (tmp & 0xffffff);
3711 ++dp_sg;
3712 if (dp_ofs <= 0)
3713 break;
3714 }
3715 }
3716
3717 /*
3718 * Make sure the data pointer is inside the data area.
3719 * If not, return some error.
3720 */
3721 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3722 goto out_err;
3723 else if (dp_sg > SYM_CONF_MAX_SG ||
3724 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3725 goto out_err;
3726
3727 /*
3728 * Save the extreme pointer if needed.
3729 */
3730 if (dp_sg > cp->ext_sg ||
3731 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3732 cp->ext_sg = dp_sg;
3733 cp->ext_ofs = dp_ofs;
3734 }
3735
3736 /*
3737 * Return data.
3738 */
3739 *ofs = dp_ofs;
3740 return dp_sg;
3741
3742out_err:
3743 return -1;
3744}
3745
3746/*
3747 * chip handler for MODIFY DATA POINTER MESSAGE
3748 *
3749 * We also call this function on IGNORE WIDE RESIDUE
3750 * messages that do not match a SWIDE full condition.
3751 * Btw, we assume in that situation that such a message
3752 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3753 */
3754
3755static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3756{
3757 int dp_ofs = ofs;
3758 u32 dp_scr = sym_get_script_dp (np, cp);
3759 u32 dp_ret;
3760 u32 tmp;
3761 u_char hflags;
3762 int dp_sg;
3763 struct sym_pmc *pm;
3764
3765 /*
3766 * Not supported for auto-sense.
3767 */
3768 if (cp->host_flags & HF_SENSE)
3769 goto out_reject;
3770
3771 /*
3772 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3773 * to the resulted data pointer.
3774 */
3775 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3776 if (dp_sg < 0)
3777 goto out_reject;
3778
3779 /*
3780 * And our alchemy:) allows to easily calculate the data
3781 * script address we want to return for the next data phase.
3782 */
44f30b0f 3783 dp_ret = cpu_to_scr(cp->goalp);
1da177e4
LT
3784 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3785
3786 /*
3787 * If offset / scatter entry is zero we donnot need
3788 * a context for the new current data pointer.
3789 */
3790 if (dp_ofs == 0) {
3791 dp_scr = dp_ret;
3792 goto out_ok;
3793 }
3794
3795 /*
3796 * Get a context for the new current data pointer.
3797 */
3798 hflags = INB(np, HF_PRT);
3799
3800 if (hflags & HF_DP_SAVED)
3801 hflags ^= HF_ACT_PM;
3802
3803 if (!(hflags & HF_ACT_PM)) {
3804 pm = &cp->phys.pm0;
3805 dp_scr = SCRIPTA_BA(np, pm0_data);
3806 }
3807 else {
3808 pm = &cp->phys.pm1;
3809 dp_scr = SCRIPTA_BA(np, pm1_data);
3810 }
3811
3812 hflags &= ~(HF_DP_SAVED);
3813
3814 OUTB(np, HF_PRT, hflags);
3815
3816 /*
3817 * Set up the new current data pointer.
3818 * ofs < 0 there, and for the next data phase, we
3819 * want to transfer part of the data of the sg entry
3820 * corresponding to index dp_sg-1 prior to returning
3821 * to the main data script.
3822 */
3823 pm->ret = cpu_to_scr(dp_ret);
3824 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3825 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3826 pm->sg.addr = cpu_to_scr(tmp);
3827 pm->sg.size = cpu_to_scr(-dp_ofs);
3828
3829out_ok:
3830 sym_set_script_dp (np, cp, dp_scr);
3831 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3832 return;
3833
3834out_reject:
3835 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3836}
3837
3838
3839/*
3840 * chip calculation of the data residual.
3841 *
3842 * As I used to say, the requirement of data residual
3843 * in SCSI is broken, useless and cannot be achieved
3844 * without huge complexity.
3845 * But most OSes and even the official CAM require it.
3846 * When stupidity happens to be so widely spread inside
3847 * a community, it gets hard to convince.
3848 *
3849 * Anyway, I don't care, since I am not going to use
3850 * any software that considers this data residual as
3851 * a relevant information. :)
3852 */
3853
3854int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3855{
3856 int dp_sg, dp_sgmin, resid = 0;
3857 int dp_ofs = 0;
3858
3859 /*
3860 * Check for some data lost or just thrown away.
3861 * We are not required to be quite accurate in this
3862 * situation. Btw, if we are odd for output and the
3863 * device claims some more data, it may well happen
3864 * than our residual be zero. :-)
3865 */
3866 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3867 if (cp->xerr_status & XE_EXTRA_DATA)
3868 resid -= cp->extra_bytes;
3869 if (cp->xerr_status & XE_SODL_UNRUN)
3870 ++resid;
3871 if (cp->xerr_status & XE_SWIDE_OVRUN)
3872 --resid;
3873 }
3874
3875 /*
3876 * If all data has been transferred,
3877 * there is no residual.
3878 */
44f30b0f 3879 if (cp->phys.head.lastp == cp->goalp)
1da177e4
LT
3880 return resid;
3881
3882 /*
3883 * If no data transfer occurs, or if the data
3884 * pointer is weird, return full residual.
3885 */
3886 if (cp->startp == cp->phys.head.lastp ||
3887 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3888 &dp_ofs) < 0) {
3dfcb701 3889 return cp->data_len - cp->odd_byte_adjustment;
1da177e4
LT
3890 }
3891
3892 /*
3893 * If we were auto-sensing, then we are done.
3894 */
3895 if (cp->host_flags & HF_SENSE) {
3896 return -dp_ofs;
3897 }
3898
3899 /*
3900 * We are now full comfortable in the computation
3901 * of the data residual (2's complement).
3902 */
3903 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3904 resid = -cp->ext_ofs;
3905 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3906 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3907 resid += (tmp & 0xffffff);
3908 }
3909
53222b90
MW
3910 resid -= cp->odd_byte_adjustment;
3911
1da177e4
LT
3912 /*
3913 * Hopefully, the result is not too wrong.
3914 */
3915 return resid;
3916}
3917
3918/*
3919 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3920 *
3921 * When we try to negotiate, we append the negotiation message
3922 * to the identify and (maybe) simple tag message.
3923 * The host status field is set to HS_NEGOTIATE to mark this
3924 * situation.
3925 *
3926 * If the target doesn't answer this message immediately
3927 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3928 * will be raised eventually.
3929 * The handler removes the HS_NEGOTIATE status, and sets the
3930 * negotiated value to the default (async / nowide).
3931 *
3932 * If we receive a matching answer immediately, we check it
3933 * for validity, and set the values.
3934 *
3935 * If we receive a Reject message immediately, we assume the
3936 * negotiation has failed, and fall back to standard values.
3937 *
3938 * If we receive a negotiation message while not in HS_NEGOTIATE
3939 * state, it's a target initiated negotiation. We prepare a
3940 * (hopefully) valid answer, set our parameters, and send back
3941 * this answer to the target.
3942 *
3943 * If the target doesn't fetch the answer (no message out phase),
3944 * we assume the negotiation has failed, and fall back to default
3945 * settings (SIR_NEGO_PROTO interrupt).
3946 *
3947 * When we set the values, we adjust them in all ccbs belonging
3948 * to this target, in the controller's register, and in the "phys"
3949 * field of the controller's struct sym_hcb.
3950 */
3951
3952/*
3953 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3954 */
3955static int
3956sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3957{
3958 int target = cp->target;
3959 u_char chg, ofs, per, fak, div;
3960
3961 if (DEBUG_FLAGS & DEBUG_NEGO) {
3962 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3963 }
3964
3965 /*
3966 * Get requested values.
3967 */
3968 chg = 0;
3969 per = np->msgin[3];
3970 ofs = np->msgin[4];
3971
3972 /*
3973 * Check values against our limits.
3974 */
3975 if (ofs) {
3976 if (ofs > np->maxoffs)
3977 {chg = 1; ofs = np->maxoffs;}
3978 }
3979
3980 if (ofs) {
3981 if (per < np->minsync)
3982 {chg = 1; per = np->minsync;}
3983 }
3984
3985 /*
3986 * Get new chip synchronous parameters value.
3987 */
3988 div = fak = 0;
3989 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3990 goto reject_it;
3991
3992 if (DEBUG_FLAGS & DEBUG_NEGO) {
3993 sym_print_addr(cp->cmd,
3994 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3995 ofs, per, div, fak, chg);
3996 }
3997
3998 /*
3999 * If it was an answer we want to change,
4000 * then it isn't acceptable. Reject it.
4001 */
4002 if (!req && chg)
4003 goto reject_it;
4004
4005 /*
4006 * Apply new values.
4007 */
4008 sym_setsync (np, target, ofs, per, div, fak);
4009
4010 /*
4011 * It was an answer. We are done.
4012 */
4013 if (!req)
4014 return 0;
4015
4016 /*
4017 * It was a request. Prepare an answer message.
4018 */
6ea3c0b2 4019 spi_populate_sync_msg(np->msgout, per, ofs);
1da177e4
LT
4020
4021 if (DEBUG_FLAGS & DEBUG_NEGO) {
4022 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4023 }
4024
4025 np->msgin [0] = M_NOOP;
4026
4027 return 0;
4028
4029reject_it:
4030 sym_setsync (np, target, 0, 0, 0, 0);
4031 return -1;
4032}
4033
4034static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4035{
4036 int req = 1;
4037 int result;
4038
4039 /*
4040 * Request or answer ?
4041 */
4042 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4043 OUTB(np, HS_PRT, HS_BUSY);
4044 if (cp->nego_status && cp->nego_status != NS_SYNC)
4045 goto reject_it;
4046 req = 0;
4047 }
4048
4049 /*
4050 * Check and apply new values.
4051 */
4052 result = sym_sync_nego_check(np, req, cp);
4053 if (result) /* Not acceptable, reject it */
4054 goto reject_it;
4055 if (req) { /* Was a request, send response. */
4056 cp->nego_status = NS_SYNC;
4057 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4058 }
4059 else /* Was a response, we are done. */
4060 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4061 return;
4062
4063reject_it:
4064 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4065}
4066
4067/*
4068 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4069 */
4070static int
4071sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4072{
4073 struct sym_tcb *tp = &np->target[target];
4074 unsigned char fak, div;
4075 int dt, chg = 0;
4076
4077 unsigned char per = np->msgin[3];
4078 unsigned char ofs = np->msgin[5];
4079 unsigned char wide = np->msgin[6];
4080 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4081
4082 if (DEBUG_FLAGS & DEBUG_NEGO) {
4083 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4084 }
4085
4086 /*
4087 * Check values against our limits.
4088 */
4089 if (wide > np->maxwide) {
4090 chg = 1;
4091 wide = np->maxwide;
4092 }
4093 if (!wide || !(np->features & FE_U3EN))
4094 opts = 0;
4095
4096 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4097 chg = 1;
4098
4099 dt = opts & PPR_OPT_DT;
4100
4101 if (ofs) {
4102 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4103 if (ofs > maxoffs) {
4104 chg = 1;
4105 ofs = maxoffs;
4106 }
4107 }
4108
4109 if (ofs) {
4110 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4111 if (per < minsync) {
4112 chg = 1;
4113 per = minsync;
4114 }
4115 }
4116
4117 /*
4118 * Get new chip synchronous parameters value.
4119 */
4120 div = fak = 0;
4121 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4122 goto reject_it;
4123
4124 /*
4125 * If it was an answer we want to change,
4126 * then it isn't acceptable. Reject it.
4127 */
4128 if (!req && chg)
4129 goto reject_it;
4130
4131 /*
4132 * Apply new values.
4133 */
4134 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4135
4136 /*
4137 * It was an answer. We are done.
4138 */
4139 if (!req)
4140 return 0;
4141
4142 /*
4143 * It was a request. Prepare an answer message.
4144 */
6ea3c0b2 4145 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
1da177e4
LT
4146
4147 if (DEBUG_FLAGS & DEBUG_NEGO) {
4148 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4149 }
4150
4151 np->msgin [0] = M_NOOP;
4152
4153 return 0;
4154
4155reject_it:
4156 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4157 /*
4158 * If it is a device response that should result in
4159 * ST, we may want to try a legacy negotiation later.
4160 */
4161 if (!req && !opts) {
4162 tp->tgoal.period = per;
4163 tp->tgoal.offset = ofs;
4164 tp->tgoal.width = wide;
4165 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4166 tp->tgoal.check_nego = 1;
4167 }
4168 return -1;
4169}
4170
4171static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4172{
4173 int req = 1;
4174 int result;
4175
4176 /*
4177 * Request or answer ?
4178 */
4179 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4180 OUTB(np, HS_PRT, HS_BUSY);
4181 if (cp->nego_status && cp->nego_status != NS_PPR)
4182 goto reject_it;
4183 req = 0;
4184 }
4185
4186 /*
4187 * Check and apply new values.
4188 */
4189 result = sym_ppr_nego_check(np, req, cp->target);
4190 if (result) /* Not acceptable, reject it */
4191 goto reject_it;
4192 if (req) { /* Was a request, send response. */
4193 cp->nego_status = NS_PPR;
4194 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4195 }
4196 else /* Was a response, we are done. */
4197 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4198 return;
4199
4200reject_it:
4201 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4202}
4203
4204/*
4205 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4206 */
4207static int
4208sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4209{
4210 int target = cp->target;
4211 u_char chg, wide;
4212
4213 if (DEBUG_FLAGS & DEBUG_NEGO) {
4214 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4215 }
4216
4217 /*
4218 * Get requested values.
4219 */
4220 chg = 0;
4221 wide = np->msgin[3];
4222
4223 /*
4224 * Check values against our limits.
4225 */
4226 if (wide > np->maxwide) {
4227 chg = 1;
4228 wide = np->maxwide;
4229 }
4230
4231 if (DEBUG_FLAGS & DEBUG_NEGO) {
4232 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4233 wide, chg);
4234 }
4235
4236 /*
4237 * If it was an answer we want to change,
4238 * then it isn't acceptable. Reject it.
4239 */
4240 if (!req && chg)
4241 goto reject_it;
4242
4243 /*
4244 * Apply new values.
4245 */
4246 sym_setwide (np, target, wide);
4247
4248 /*
4249 * It was an answer. We are done.
4250 */
4251 if (!req)
4252 return 0;
4253
4254 /*
4255 * It was a request. Prepare an answer message.
4256 */
6ea3c0b2 4257 spi_populate_width_msg(np->msgout, wide);
1da177e4
LT
4258
4259 np->msgin [0] = M_NOOP;
4260
4261 if (DEBUG_FLAGS & DEBUG_NEGO) {
4262 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4263 }
4264
4265 return 0;
4266
4267reject_it:
4268 return -1;
4269}
4270
4271static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4272{
4273 int req = 1;
4274 int result;
4275
4276 /*
4277 * Request or answer ?
4278 */
4279 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4280 OUTB(np, HS_PRT, HS_BUSY);
4281 if (cp->nego_status && cp->nego_status != NS_WIDE)
4282 goto reject_it;
4283 req = 0;
4284 }
4285
4286 /*
4287 * Check and apply new values.
4288 */
4289 result = sym_wide_nego_check(np, req, cp);
4290 if (result) /* Not acceptable, reject it */
4291 goto reject_it;
4292 if (req) { /* Was a request, send response. */
4293 cp->nego_status = NS_WIDE;
4294 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4295 } else { /* Was a response. */
4296 /*
4297 * Negotiate for SYNC immediately after WIDE response.
4298 * This allows to negotiate for both WIDE and SYNC on
4299 * a single SCSI command (Suggested by Justin Gibbs).
4300 */
4301 if (tp->tgoal.offset) {
6ea3c0b2
MW
4302 spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4303 tp->tgoal.offset);
1da177e4
LT
4304
4305 if (DEBUG_FLAGS & DEBUG_NEGO) {
4306 sym_print_nego_msg(np, cp->target,
4307 "sync msgout", np->msgout);
4308 }
4309
4310 cp->nego_status = NS_SYNC;
4311 OUTB(np, HS_PRT, HS_NEGOTIATE);
4312 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4313 return;
4314 } else
4315 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4316 }
4317
4318 return;
4319
4320reject_it:
4321 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4322}
4323
4324/*
4325 * Reset DT, SYNC or WIDE to default settings.
4326 *
4327 * Called when a negotiation does not succeed either
4328 * on rejection or on protocol error.
4329 *
4330 * A target that understands a PPR message should never
4331 * reject it, and messing with it is very unlikely.
4332 * So, if a PPR makes problems, we may just want to
4333 * try a legacy negotiation later.
4334 */
4335static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4336{
4337 switch (cp->nego_status) {
4338 case NS_PPR:
4339#if 0
4340 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4341#else
4342 if (tp->tgoal.period < np->minsync)
4343 tp->tgoal.period = np->minsync;
4344 if (tp->tgoal.offset > np->maxoffs)
4345 tp->tgoal.offset = np->maxoffs;
4346 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4347 tp->tgoal.check_nego = 1;
4348#endif
4349 break;
4350 case NS_SYNC:
4351 sym_setsync (np, cp->target, 0, 0, 0, 0);
4352 break;
4353 case NS_WIDE:
4354 sym_setwide (np, cp->target, 0);
4355 break;
4356 }
4357 np->msgin [0] = M_NOOP;
4358 np->msgout[0] = M_NOOP;
4359 cp->nego_status = 0;
4360}
4361
4362/*
4363 * chip handler for MESSAGE REJECT received in response to
4364 * PPR, WIDE or SYNCHRONOUS negotiation.
4365 */
4366static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4367{
4368 sym_nego_default(np, tp, cp);
4369 OUTB(np, HS_PRT, HS_BUSY);
4370}
4371
4372/*
4373 * chip exception handler for programmed interrupts.
4374 */
3fb364e0 4375static void sym_int_sir(struct sym_hcb *np)
1da177e4
LT
4376{
4377 u_char num = INB(np, nc_dsps);
4378 u32 dsa = INL(np, nc_dsa);
4379 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4380 u_char target = INB(np, nc_sdid) & 0x0f;
4381 struct sym_tcb *tp = &np->target[target];
4382 int tmp;
4383
4384 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4385
4386 switch (num) {
4387#if SYM_CONF_DMA_ADDRESSING_MODE == 2
4388 /*
4389 * SCRIPTS tell us that we may have to update
4390 * 64 bit DMA segment registers.
4391 */
4392 case SIR_DMAP_DIRTY:
4393 sym_update_dmap_regs(np);
4394 goto out;
4395#endif
4396 /*
4397 * Command has been completed with error condition
4398 * or has been auto-sensed.
4399 */
4400 case SIR_COMPLETE_ERROR:
4401 sym_complete_error(np, cp);
4402 return;
4403 /*
4404 * The C code is currently trying to recover from something.
4405 * Typically, user want to abort some command.
4406 */
4407 case SIR_SCRIPT_STOPPED:
4408 case SIR_TARGET_SELECTED:
4409 case SIR_ABORT_SENT:
4410 sym_sir_task_recovery(np, num);
4411 return;
4412 /*
4413 * The device didn't go to MSG OUT phase after having
3fb364e0 4414 * been selected with ATN. We do not want to handle that.
1da177e4
LT
4415 */
4416 case SIR_SEL_ATN_NO_MSG_OUT:
3fb364e0
MW
4417 scmd_printk(KERN_WARNING, cp->cmd,
4418 "No MSG OUT phase after selection with ATN\n");
1da177e4
LT
4419 goto out_stuck;
4420 /*
4421 * The device didn't switch to MSG IN phase after
3fb364e0 4422 * having reselected the initiator.
1da177e4
LT
4423 */
4424 case SIR_RESEL_NO_MSG_IN:
3fb364e0
MW
4425 scmd_printk(KERN_WARNING, cp->cmd,
4426 "No MSG IN phase after reselection\n");
1da177e4
LT
4427 goto out_stuck;
4428 /*
4429 * After reselection, the device sent a message that wasn't
4430 * an IDENTIFY.
4431 */
4432 case SIR_RESEL_NO_IDENTIFY:
3fb364e0
MW
4433 scmd_printk(KERN_WARNING, cp->cmd,
4434 "No IDENTIFY after reselection\n");
1da177e4
LT
4435 goto out_stuck;
4436 /*
3fb364e0 4437 * The device reselected a LUN we do not know about.
1da177e4
LT
4438 */
4439 case SIR_RESEL_BAD_LUN:
4440 np->msgout[0] = M_RESET;
4441 goto out;
4442 /*
4443 * The device reselected for an untagged nexus and we
4444 * haven't any.
4445 */
4446 case SIR_RESEL_BAD_I_T_L:
4447 np->msgout[0] = M_ABORT;
4448 goto out;
4449 /*
3fb364e0 4450 * The device reselected for a tagged nexus that we do not have.
1da177e4
LT
4451 */
4452 case SIR_RESEL_BAD_I_T_L_Q:
4453 np->msgout[0] = M_ABORT_TAG;
4454 goto out;
4455 /*
4456 * The SCRIPTS let us know that the device has grabbed
4457 * our message and will abort the job.
4458 */
4459 case SIR_RESEL_ABORTED:
4460 np->lastmsg = np->msgout[0];
4461 np->msgout[0] = M_NOOP;
3fb364e0
MW
4462 scmd_printk(KERN_WARNING, cp->cmd,
4463 "message %x sent on bad reselection\n", np->lastmsg);
1da177e4
LT
4464 goto out;
4465 /*
4466 * The SCRIPTS let us know that a message has been
4467 * successfully sent to the device.
4468 */
4469 case SIR_MSG_OUT_DONE:
4470 np->lastmsg = np->msgout[0];
4471 np->msgout[0] = M_NOOP;
4472 /* Should we really care of that */
4473 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4474 if (cp) {
4475 cp->xerr_status &= ~XE_PARITY_ERR;
4476 if (!cp->xerr_status)
4477 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4478 }
4479 }
4480 goto out;
4481 /*
4482 * The device didn't send a GOOD SCSI status.
4483 * We may have some work to do prior to allow
4484 * the SCRIPTS processor to continue.
4485 */
4486 case SIR_BAD_SCSI_STATUS:
4487 if (!cp)
4488 goto out;
4489 sym_sir_bad_scsi_status(np, num, cp);
4490 return;
4491 /*
4492 * We are asked by the SCRIPTS to prepare a
4493 * REJECT message.
4494 */
4495 case SIR_REJECT_TO_SEND:
4496 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4497 np->msgout[0] = M_REJECT;
4498 goto out;
4499 /*
4500 * We have been ODD at the end of a DATA IN
4501 * transfer and the device didn't send a
4502 * IGNORE WIDE RESIDUE message.
4503 * It is a data overrun condition.
4504 */
4505 case SIR_SWIDE_OVERRUN:
4506 if (cp) {
4507 OUTONB(np, HF_PRT, HF_EXT_ERR);
4508 cp->xerr_status |= XE_SWIDE_OVRUN;
4509 }
4510 goto out;
4511 /*
4512 * We have been ODD at the end of a DATA OUT
4513 * transfer.
4514 * It is a data underrun condition.
4515 */
4516 case SIR_SODL_UNDERRUN:
4517 if (cp) {
4518 OUTONB(np, HF_PRT, HF_EXT_ERR);
4519 cp->xerr_status |= XE_SODL_UNRUN;
4520 }
4521 goto out;
4522 /*
4523 * The device wants us to tranfer more data than
4524 * expected or in the wrong direction.
4525 * The number of extra bytes is in scratcha.
4526 * It is a data overrun condition.
4527 */
4528 case SIR_DATA_OVERRUN:
4529 if (cp) {
4530 OUTONB(np, HF_PRT, HF_EXT_ERR);
4531 cp->xerr_status |= XE_EXTRA_DATA;
4532 cp->extra_bytes += INL(np, nc_scratcha);
4533 }
4534 goto out;
4535 /*
4536 * The device switched to an illegal phase (4/5).
4537 */
4538 case SIR_BAD_PHASE:
4539 if (cp) {
4540 OUTONB(np, HF_PRT, HF_EXT_ERR);
4541 cp->xerr_status |= XE_BAD_PHASE;
4542 }
4543 goto out;
4544 /*
4545 * We received a message.
4546 */
4547 case SIR_MSG_RECEIVED:
4548 if (!cp)
4549 goto out_stuck;
4550 switch (np->msgin [0]) {
4551 /*
4552 * We received an extended message.
4553 * We handle MODIFY DATA POINTER, SDTR, WDTR
4554 * and reject all other extended messages.
4555 */
4556 case M_EXTENDED:
4557 switch (np->msgin [2]) {
4558 case M_X_MODIFY_DP:
4559 if (DEBUG_FLAGS & DEBUG_POINTER)
92d578b9 4560 sym_print_msg(cp, NULL, np->msgin);
1da177e4
LT
4561 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4562 (np->msgin[5]<<8) + (np->msgin[6]);
4563 sym_modify_dp(np, tp, cp, tmp);
4564 return;
4565 case M_X_SYNC_REQ:
4566 sym_sync_nego(np, tp, cp);
4567 return;
4568 case M_X_PPR_REQ:
4569 sym_ppr_nego(np, tp, cp);
4570 return;
4571 case M_X_WIDE_REQ:
4572 sym_wide_nego(np, tp, cp);
4573 return;
4574 default:
4575 goto out_reject;
4576 }
4577 break;
4578 /*
4579 * We received a 1/2 byte message not handled from SCRIPTS.
4580 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4581 * RESIDUE messages that haven't been anticipated by
4582 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4583 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4584 */
4585 case M_IGN_RESIDUE:
4586 if (DEBUG_FLAGS & DEBUG_POINTER)
92d578b9 4587 sym_print_msg(cp, NULL, np->msgin);
1da177e4
LT
4588 if (cp->host_flags & HF_SENSE)
4589 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4590 else
4591 sym_modify_dp(np, tp, cp, -1);
4592 return;
4593 case M_REJECT:
4594 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4595 sym_nego_rejected(np, tp, cp);
4596 else {
4597 sym_print_addr(cp->cmd,
4598 "M_REJECT received (%x:%x).\n",
4599 scr_to_cpu(np->lastmsg), np->msgout[0]);
4600 }
4601 goto out_clrack;
4602 break;
4603 default:
4604 goto out_reject;
4605 }
4606 break;
4607 /*
4608 * We received an unknown message.
4609 * Ignore all MSG IN phases and reject it.
4610 */
4611 case SIR_MSG_WEIRD:
4612 sym_print_msg(cp, "WEIRD message received", np->msgin);
4613 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4614 return;
4615 /*
4616 * Negotiation failed.
4617 * Target does not send us the reply.
4618 * Remove the HS_NEGOTIATE status.
4619 */
4620 case SIR_NEGO_FAILED:
4621 OUTB(np, HS_PRT, HS_BUSY);
4622 /*
4623 * Negotiation failed.
4624 * Target does not want answer message.
4625 */
4626 case SIR_NEGO_PROTO:
4627 sym_nego_default(np, tp, cp);
4628 goto out;
4629 }
4630
4631out:
4632 OUTONB_STD();
4633 return;
4634out_reject:
4635 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4636 return;
4637out_clrack:
4638 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4639 return;
4640out_stuck:
4641 return;
4642}
4643
4644/*
4645 * Acquire a control block
4646 */
4647struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4648{
4649 u_char tn = cmd->device->id;
4650 u_char ln = cmd->device->lun;
4651 struct sym_tcb *tp = &np->target[tn];
4652 struct sym_lcb *lp = sym_lp(tp, ln);
4653 u_short tag = NO_TAG;
4654 SYM_QUEHEAD *qp;
4655 struct sym_ccb *cp = NULL;
4656
4657 /*
4658 * Look for a free CCB
4659 */
4660 if (sym_que_empty(&np->free_ccbq))
4661 sym_alloc_ccb(np);
4662 qp = sym_remque_head(&np->free_ccbq);
4663 if (!qp)
4664 goto out;
4665 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4666
84e203a2 4667 {
1da177e4
LT
4668 /*
4669 * If we have been asked for a tagged command.
4670 */
4671 if (tag_order) {
4672 /*
4673 * Debugging purpose.
4674 */
4675#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3bea15a7
MW
4676 if (lp->busy_itl != 0)
4677 goto out_free;
1da177e4
LT
4678#endif
4679 /*
4680 * Allocate resources for tags if not yet.
4681 */
4682 if (!lp->cb_tags) {
4683 sym_alloc_lcb_tags(np, tn, ln);
4684 if (!lp->cb_tags)
4685 goto out_free;
4686 }
4687 /*
4688 * Get a tag for this SCSI IO and set up
4689 * the CCB bus address for reselection,
4690 * and count it for this LUN.
4691 * Toggle reselect path to tagged.
4692 */
4693 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4694 tag = lp->cb_tags[lp->ia_tag];
4695 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4696 lp->ia_tag = 0;
4697 ++lp->busy_itlq;
4698#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4699 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4700 lp->head.resel_sa =
4701 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4702#endif
4703#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4704 cp->tags_si = lp->tags_si;
4705 ++lp->tags_sum[cp->tags_si];
4706 ++lp->tags_since;
4707#endif
4708 }
4709 else
4710 goto out_free;
4711 }
4712 /*
4713 * This command will not be tagged.
4714 * If we already have either a tagged or untagged
4715 * one, refuse to overlap this untagged one.
4716 */
4717 else {
4718 /*
4719 * Debugging purpose.
4720 */
4721#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3bea15a7
MW
4722 if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4723 goto out_free;
1da177e4
LT
4724#endif
4725 /*
4726 * Count this nexus for this LUN.
4727 * Set up the CCB bus address for reselection.
4728 * Toggle reselect path to untagged.
4729 */
4730 ++lp->busy_itl;
4731#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4732 if (lp->busy_itl == 1) {
4733 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4734 lp->head.resel_sa =
4735 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4736 }
4737 else
4738 goto out_free;
4739#endif
4740 }
4741 }
4742 /*
4743 * Put the CCB into the busy queue.
4744 */
4745 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4746#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4747 if (lp) {
4748 sym_remque(&cp->link2_ccbq);
4749 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4750 }
4751
4752#endif
1da177e4 4753 cp->to_abort = 0;
53222b90 4754 cp->odd_byte_adjustment = 0;
1da177e4
LT
4755 cp->tag = tag;
4756 cp->order = tag_order;
4757 cp->target = tn;
4758 cp->lun = ln;
4759
4760 if (DEBUG_FLAGS & DEBUG_TAGS) {
4761 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4762 }
4763
4764out:
4765 return cp;
4766out_free:
4767 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4768 return NULL;
4769}
4770
4771/*
4772 * Release one control block
4773 */
4774void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4775{
4776 struct sym_tcb *tp = &np->target[cp->target];
4777 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4778
4779 if (DEBUG_FLAGS & DEBUG_TAGS) {
4780 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4781 cp, cp->tag);
4782 }
4783
4784 /*
4785 * If LCB available,
4786 */
4787 if (lp) {
4788 /*
4789 * If tagged, release the tag, set the relect path
4790 */
4791 if (cp->tag != NO_TAG) {
4792#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4793 --lp->tags_sum[cp->tags_si];
4794#endif
4795 /*
4796 * Free the tag value.
4797 */
4798 lp->cb_tags[lp->if_tag] = cp->tag;
4799 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4800 lp->if_tag = 0;
4801 /*
4802 * Make the reselect path invalid,
4803 * and uncount this CCB.
4804 */
4805 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4806 --lp->busy_itlq;
4807 } else { /* Untagged */
4808 /*
4809 * Make the reselect path invalid,
4810 * and uncount this CCB.
4811 */
4812 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4813 --lp->busy_itl;
4814 }
4815 /*
4816 * If no JOB active, make the LUN reselect path invalid.
4817 */
4818 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4819 lp->head.resel_sa =
4820 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4821 }
1da177e4
LT
4822
4823 /*
4824 * We donnot queue more than 1 ccb per target
4825 * with negotiation at any time. If this ccb was
4826 * used for negotiation, clear this info in the tcb.
4827 */
4828 if (cp == tp->nego_cp)
4829 tp->nego_cp = NULL;
4830
4831#ifdef SYM_CONF_IARB_SUPPORT
4832 /*
4833 * If we just complete the last queued CCB,
4834 * clear this info that is no longer relevant.
4835 */
4836 if (cp == np->last_cp)
4837 np->last_cp = 0;
4838#endif
4839
4840 /*
4841 * Make this CCB available.
4842 */
4843 cp->cmd = NULL;
4844 cp->host_status = HS_IDLE;
4845 sym_remque(&cp->link_ccbq);
4846 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4847
4848#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4849 if (lp) {
4850 sym_remque(&cp->link2_ccbq);
4851 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4852 if (cp->started) {
4853 if (cp->tag != NO_TAG)
4854 --lp->started_tags;
4855 else
4856 --lp->started_no_tag;
4857 }
4858 }
4859 cp->started = 0;
4860#endif
4861}
4862
4863/*
4864 * Allocate a CCB from memory and initialize its fixed part.
4865 */
4866static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4867{
4868 struct sym_ccb *cp = NULL;
4869 int hcode;
4870
4871 /*
4872 * Prevent from allocating more CCBs than we can
4873 * queue to the controller.
4874 */
4875 if (np->actccbs >= SYM_CONF_MAX_START)
4876 return NULL;
4877
4878 /*
4879 * Allocate memory for this CCB.
4880 */
4881 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4882 if (!cp)
4883 goto out_free;
4884
4885 /*
4886 * Count it.
4887 */
4888 np->actccbs++;
4889
4890 /*
4891 * Compute the bus address of this ccb.
4892 */
4893 cp->ccb_ba = vtobus(cp);
4894
4895 /*
4896 * Insert this ccb into the hashed list.
4897 */
4898 hcode = CCB_HASH_CODE(cp->ccb_ba);
4899 cp->link_ccbh = np->ccbh[hcode];
4900 np->ccbh[hcode] = cp;
4901
4902 /*
4903 * Initialyze the start and restart actions.
4904 */
4905 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4906 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4907
4908 /*
4909 * Initilialyze some other fields.
4910 */
4911 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4912
4913 /*
4914 * Chain into free ccb queue.
4915 */
4916 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4917
4918 /*
4919 * Chain into optionnal lists.
4920 */
4921#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4922 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4923#endif
4924 return cp;
4925out_free:
4926 if (cp)
4927 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4928 return NULL;
4929}
4930
4931/*
4932 * Look up a CCB from a DSA value.
4933 */
4934static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4935{
4936 int hcode;
4937 struct sym_ccb *cp;
4938
4939 hcode = CCB_HASH_CODE(dsa);
4940 cp = np->ccbh[hcode];
4941 while (cp) {
4942 if (cp->ccb_ba == dsa)
4943 break;
4944 cp = cp->link_ccbh;
4945 }
4946
4947 return cp;
4948}
4949
4950/*
4951 * Target control block initialisation.
4952 * Nothing important to do at the moment.
4953 */
4954static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4955{
4956#if 0 /* Hmmm... this checking looks paranoid. */
4957 /*
4958 * Check some alignments required by the chip.
4959 */
4960 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4961 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4962 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4963 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4964#endif
4965}
4966
4967/*
4968 * Lun control block allocation and initialization.
4969 */
4970struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4971{
4972 struct sym_tcb *tp = &np->target[tn];
84e203a2 4973 struct sym_lcb *lp = NULL;
1da177e4
LT
4974
4975 /*
4976 * Initialize the target control block if not yet.
4977 */
4978 sym_init_tcb (np, tn);
4979
4980 /*
4981 * Allocate the LCB bus address array.
4982 * Compute the bus address of this table.
4983 */
4984 if (ln && !tp->luntbl) {
4985 int i;
4986
4987 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4988 if (!tp->luntbl)
4989 goto fail;
4990 for (i = 0 ; i < 64 ; i++)
4991 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4992 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4993 }
4994
4995 /*
4996 * Allocate the table of pointers for LUN(s) > 0, if needed.
4997 */
4998 if (ln && !tp->lunmp) {
4999 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
fa858456 5000 GFP_ATOMIC);
1da177e4
LT
5001 if (!tp->lunmp)
5002 goto fail;
5003 }
5004
5005 /*
5006 * Allocate the lcb.
5007 * Make it available to the chip.
5008 */
5009 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5010 if (!lp)
5011 goto fail;
5012 if (ln) {
5013 tp->lunmp[ln] = lp;
5014 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5015 }
5016 else {
5017 tp->lun0p = lp;
5018 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5019 }
fa858456 5020 tp->nlcb++;
1da177e4
LT
5021
5022 /*
5023 * Let the itl task point to error handling.
5024 */
5025 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5026
5027 /*
5028 * Set the reselect pattern to our default. :)
5029 */
5030 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5031
5032 /*
5033 * Set user capabilities.
5034 */
5035 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5036
5037#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5038 /*
5039 * Initialize device queueing.
5040 */
5041 sym_que_init(&lp->waiting_ccbq);
5042 sym_que_init(&lp->started_ccbq);
5043 lp->started_max = SYM_CONF_MAX_TASK;
5044 lp->started_limit = SYM_CONF_MAX_TASK;
5045#endif
84e203a2 5046
1da177e4
LT
5047fail:
5048 return lp;
5049}
5050
5051/*
5052 * Allocate LCB resources for tagged command queuing.
5053 */
5054static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5055{
5056 struct sym_tcb *tp = &np->target[tn];
5057 struct sym_lcb *lp = sym_lp(tp, ln);
5058 int i;
5059
1da177e4
LT
5060 /*
5061 * Allocate the task table and and the tag allocation
5062 * circular buffer. We want both or none.
5063 */
5064 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5065 if (!lp->itlq_tbl)
5066 goto fail;
53222b90 5067 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
1da177e4
LT
5068 if (!lp->cb_tags) {
5069 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5070 lp->itlq_tbl = NULL;
5071 goto fail;
5072 }
5073
5074 /*
5075 * Initialize the task table with invalid entries.
5076 */
5077 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5078 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5079
5080 /*
5081 * Fill up the tag buffer with tag numbers.
5082 */
5083 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5084 lp->cb_tags[i] = i;
5085
5086 /*
5087 * Make the task table available to SCRIPTS,
5088 * And accept tagged commands now.
5089 */
5090 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5091
5092 return;
5093fail:
5094 return;
5095}
5096
fa858456
AK
5097/*
5098 * Lun control block deallocation. Returns the number of valid remaing LCBs
5099 * for the target.
5100 */
5101int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5102{
5103 struct sym_tcb *tp = &np->target[tn];
5104 struct sym_lcb *lp = sym_lp(tp, ln);
5105
5106 tp->nlcb--;
5107
5108 if (ln) {
5109 if (!tp->nlcb) {
5110 kfree(tp->lunmp);
5111 sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5112 tp->lunmp = NULL;
5113 tp->luntbl = NULL;
5114 tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5115 } else {
5116 tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5117 tp->lunmp[ln] = NULL;
5118 }
5119 } else {
5120 tp->lun0p = NULL;
5121 tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5122 }
5123
5124 if (lp->itlq_tbl) {
5125 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5126 kfree(lp->cb_tags);
5127 }
5128
5129 sym_mfree_dma(lp, sizeof(*lp), "LCB");
5130
5131 return tp->nlcb;
5132}
5133
1da177e4
LT
5134/*
5135 * Queue a SCSI IO to the controller.
5136 */
5137int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5138{
5139 struct scsi_device *sdev = cmd->device;
5140 struct sym_tcb *tp;
5141 struct sym_lcb *lp;
5142 u_char *msgptr;
5143 u_int msglen;
5144 int can_disconnect;
5145
5146 /*
5147 * Keep track of the IO in our CCB.
5148 */
5149 cp->cmd = cmd;
5150
5151 /*
5152 * Retrieve the target descriptor.
5153 */
5154 tp = &np->target[cp->target];
5155
5156 /*
5157 * Retrieve the lun descriptor.
5158 */
5159 lp = sym_lp(tp, sdev->lun);
5160
5161 can_disconnect = (cp->tag != NO_TAG) ||
5162 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5163
5164 msgptr = cp->scsi_smsg;
5165 msglen = 0;
5166 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5167
5168 /*
5169 * Build the tag message if present.
5170 */
5171 if (cp->tag != NO_TAG) {
5172 u_char order = cp->order;
5173
5174 switch(order) {
5175 case M_ORDERED_TAG:
5176 break;
5177 case M_HEAD_TAG:
5178 break;
5179 default:
5180 order = M_SIMPLE_TAG;
5181 }
5182#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5183 /*
5184 * Avoid too much reordering of SCSI commands.
5185 * The algorithm tries to prevent completion of any
5186 * tagged command from being delayed against more
5187 * than 3 times the max number of queued commands.
5188 */
5189 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5190 lp->tags_si = !(lp->tags_si);
5191 if (lp->tags_sum[lp->tags_si]) {
5192 order = M_ORDERED_TAG;
5193 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5194 sym_print_addr(cmd,
5195 "ordered tag forced.\n");
5196 }
5197 }
5198 lp->tags_since = 0;
5199 }
5200#endif
5201 msgptr[msglen++] = order;
5202
5203 /*
5204 * For less than 128 tags, actual tags are numbered
5205 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5206 * with devices that have problems with #TAG 0 or too
5207 * great #TAG numbers. For more tags (up to 256),
5208 * we use directly our tag number.
5209 */
5210#if SYM_CONF_MAX_TASK > (512/4)
5211 msgptr[msglen++] = cp->tag;
5212#else
5213 msgptr[msglen++] = (cp->tag << 1) + 1;
5214#endif
5215 }
5216
5217 /*
5218 * Build a negotiation message if needed.
5219 * (nego_status is filled by sym_prepare_nego())
49799fee
AK
5220 *
5221 * Always negotiate on INQUIRY and REQUEST SENSE.
5222 *
1da177e4
LT
5223 */
5224 cp->nego_status = 0;
49799fee
AK
5225 if ((tp->tgoal.check_nego ||
5226 cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5227 !tp->nego_cp && lp) {
1da177e4
LT
5228 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5229 }
5230
5231 /*
5232 * Startqueue
5233 */
5234 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5235 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5236
5237 /*
5238 * select
5239 */
5240 cp->phys.select.sel_id = cp->target;
5241 cp->phys.select.sel_scntl3 = tp->head.wval;
5242 cp->phys.select.sel_sxfer = tp->head.sval;
5243 cp->phys.select.sel_scntl4 = tp->head.uval;
5244
5245 /*
5246 * message
5247 */
53222b90 5248 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
1da177e4
LT
5249 cp->phys.smsg.size = cpu_to_scr(msglen);
5250
5251 /*
5252 * status
5253 */
5254 cp->host_xflags = 0;
5255 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5256 cp->ssss_status = S_ILLEGAL;
5257 cp->xerr_status = 0;
5258 cp->host_flags = 0;
5259 cp->extra_bytes = 0;
5260
5261 /*
5262 * extreme data pointer.
5263 * shall be positive, so -1 is lower than lowest.:)
5264 */
5265 cp->ext_sg = -1;
5266 cp->ext_ofs = 0;
5267
5268 /*
5269 * Build the CDB and DATA descriptor block
5270 * and start the IO.
5271 */
5272 return sym_setup_data_and_start(np, cmd, cp);
5273}
5274
5275/*
5276 * Reset a SCSI target (all LUNs of this target).
5277 */
5278int sym_reset_scsi_target(struct sym_hcb *np, int target)
5279{
5280 struct sym_tcb *tp;
5281
5282 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5283 return -1;
5284
5285 tp = &np->target[target];
5286 tp->to_reset = 1;
5287
5288 np->istat_sem = SEM;
5289 OUTB(np, nc_istat, SIGP|SEM);
5290
5291 return 0;
5292}
5293
5294/*
5295 * Abort a SCSI IO.
5296 */
5297static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5298{
5299 /*
5300 * Check that the IO is active.
5301 */
5302 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5303 return -1;
5304
5305 /*
5306 * If a previous abort didn't succeed in time,
5307 * perform a BUS reset.
5308 */
5309 if (cp->to_abort) {
5310 sym_reset_scsi_bus(np, 1);
5311 return 0;
5312 }
5313
5314 /*
5315 * Mark the CCB for abort and allow time for.
5316 */
5317 cp->to_abort = timed_out ? 2 : 1;
5318
5319 /*
5320 * Tell the SCRIPTS processor to stop and synchronize with us.
5321 */
5322 np->istat_sem = SEM;
5323 OUTB(np, nc_istat, SIGP|SEM);
5324 return 0;
5325}
5326
5327int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5328{
5329 struct sym_ccb *cp;
5330 SYM_QUEHEAD *qp;
5331
5332 /*
5333 * Look up our CCB control block.
5334 */
5335 cp = NULL;
5336 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5337 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5338 if (cp2->cmd == cmd) {
5339 cp = cp2;
5340 break;
5341 }
5342 }
5343
5344 return sym_abort_ccb(np, cp, timed_out);
5345}
5346
5347/*
53222b90 5348 * Complete execution of a SCSI command with extended
1da177e4
LT
5349 * error, SCSI status error, or having been auto-sensed.
5350 *
5351 * The SCRIPTS processor is not running there, so we
5352 * can safely access IO registers and remove JOBs from
5353 * the START queue.
5354 * SCRATCHA is assumed to have been loaded with STARTPOS
5355 * before the SCRIPTS called the C code.
5356 */
5357void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5358{
5359 struct scsi_device *sdev;
5360 struct scsi_cmnd *cmd;
5361 struct sym_tcb *tp;
5362 struct sym_lcb *lp;
5363 int resid;
5364 int i;
5365
5366 /*
5367 * Paranoid check. :)
5368 */
5369 if (!cp || !cp->cmd)
5370 return;
5371
5372 cmd = cp->cmd;
5373 sdev = cmd->device;
5374 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5375 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5376 cp->host_status, cp->ssss_status, cp->host_flags);
5377 }
5378
5379 /*
5380 * Get target and lun pointers.
5381 */
5382 tp = &np->target[cp->target];
5383 lp = sym_lp(tp, sdev->lun);
5384
5385 /*
5386 * Check for extended errors.
5387 */
5388 if (cp->xerr_status) {
5389 if (sym_verbose)
5390 sym_print_xerr(cmd, cp->xerr_status);
5391 if (cp->host_status == HS_COMPLETE)
5392 cp->host_status = HS_COMP_ERR;
5393 }
5394
5395 /*
5396 * Calculate the residual.
5397 */
5398 resid = sym_compute_residual(np, cp);
5399
5400 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5401 resid = 0; /* throw them away. :) */
5402 cp->sv_resid = 0;
5403 }
5404#ifdef DEBUG_2_0_X
5405if (resid)
5406 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5407#endif
5408
5409 /*
5410 * Dequeue all queued CCBs for that device
5411 * not yet started by SCRIPTS.
5412 */
5413 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5414 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5415
5416 /*
5417 * Restart the SCRIPTS processor.
5418 */
5419 OUTL_DSP(np, SCRIPTA_BA(np, start));
5420
5421#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5422 if (cp->host_status == HS_COMPLETE &&
5423 cp->ssss_status == S_QUEUE_FULL) {
5424 if (!lp || lp->started_tags - i < 2)
5425 goto weirdness;
5426 /*
5427 * Decrease queue depth as needed.
5428 */
5429 lp->started_max = lp->started_tags - i - 1;
5430 lp->num_sgood = 0;
5431
5432 if (sym_verbose >= 2) {
5433 sym_print_addr(cmd, " queue depth is now %d\n",
5434 lp->started_max);
5435 }
5436
5437 /*
5438 * Repair the CCB.
5439 */
5440 cp->host_status = HS_BUSY;
5441 cp->ssss_status = S_ILLEGAL;
5442
5443 /*
5444 * Let's requeue it to device.
5445 */
53222b90 5446 sym_set_cam_status(cmd, DID_SOFT_ERROR);
1da177e4
LT
5447 goto finish;
5448 }
5449weirdness:
5450#endif
5451 /*
5452 * Build result in CAM ccb.
5453 */
5454 sym_set_cam_result_error(np, cp, resid);
5455
5456#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5457finish:
5458#endif
5459 /*
5460 * Add this one to the COMP queue.
5461 */
5462 sym_remque(&cp->link_ccbq);
5463 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5464
5465 /*
5466 * Complete all those commands with either error
5467 * or requeue condition.
5468 */
5469 sym_flush_comp_queue(np, 0);
5470
5471#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5472 /*
5473 * Donnot start more than 1 command after an error.
5474 */
84e203a2 5475 sym_start_next_ccbs(np, lp, 1);
1da177e4
LT
5476#endif
5477}
5478
5479/*
5480 * Complete execution of a successful SCSI command.
5481 *
5482 * Only successful commands go to the DONE queue,
5483 * since we need to have the SCRIPTS processor
5484 * stopped on any error condition.
5485 * The SCRIPTS processor is running while we are
5486 * completing successful commands.
5487 */
5488void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5489{
5490 struct sym_tcb *tp;
5491 struct sym_lcb *lp;
5492 struct scsi_cmnd *cmd;
5493 int resid;
5494
5495 /*
5496 * Paranoid check. :)
5497 */
5498 if (!cp || !cp->cmd)
5499 return;
5500 assert (cp->host_status == HS_COMPLETE);
5501
5502 /*
5503 * Get user command.
5504 */
5505 cmd = cp->cmd;
5506
5507 /*
5508 * Get target and lun pointers.
5509 */
5510 tp = &np->target[cp->target];
5511 lp = sym_lp(tp, cp->lun);
5512
1da177e4
LT
5513 /*
5514 * If all data have been transferred, given than no
5515 * extended error did occur, there is no residual.
5516 */
5517 resid = 0;
44f30b0f 5518 if (cp->phys.head.lastp != cp->goalp)
1da177e4
LT
5519 resid = sym_compute_residual(np, cp);
5520
5521 /*
5522 * Wrong transfer residuals may be worse than just always
5523 * returning zero. User can disable this feature in
5524 * sym53c8xx.h. Residual support is enabled by default.
5525 */
5526 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5527 resid = 0;
5528#ifdef DEBUG_2_0_X
5529if (resid)
5530 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5531#endif
5532
5533 /*
5534 * Build result in CAM ccb.
5535 */
5536 sym_set_cam_result_ok(cp, cmd, resid);
5537
1da177e4
LT
5538#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5539 /*
5540 * If max number of started ccbs had been reduced,
5541 * increase it if 200 good status received.
5542 */
5543 if (lp && lp->started_max < lp->started_limit) {
5544 ++lp->num_sgood;
5545 if (lp->num_sgood >= 200) {
5546 lp->num_sgood = 0;
5547 ++lp->started_max;
5548 if (sym_verbose >= 2) {
5549 sym_print_addr(cmd, " queue depth is now %d\n",
5550 lp->started_max);
5551 }
5552 }
5553 }
5554#endif
5555
5556 /*
5557 * Free our CCB.
5558 */
5559 sym_free_ccb (np, cp);
5560
5561#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5562 /*
5563 * Requeue a couple of awaiting scsi commands.
5564 */
84e203a2 5565 if (!sym_que_empty(&lp->waiting_ccbq))
1da177e4
LT
5566 sym_start_next_ccbs(np, lp, 2);
5567#endif
5568 /*
5569 * Complete the command.
5570 */
5571 sym_xpt_done(np, cmd);
5572}
5573
5574/*
5575 * Soft-attach the controller.
5576 */
5577int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5578{
5579 struct sym_hcb *np = sym_get_hcb(shost);
5580 int i;
5581
5582 /*
5583 * Get some info about the firmware.
5584 */
5585 np->scripta_sz = fw->a_size;
5586 np->scriptb_sz = fw->b_size;
5587 np->scriptz_sz = fw->z_size;
5588 np->fw_setup = fw->setup;
5589 np->fw_patch = fw->patch;
5590 np->fw_name = fw->name;
5591
5592 /*
5593 * Save setting of some IO registers, so we will
5594 * be able to probe specific implementations.
5595 */
5596 sym_save_initial_setting (np);
5597
5598 /*
5599 * Reset the chip now, since it has been reported
5600 * that SCSI clock calibration may not work properly
5601 * if the chip is currently active.
5602 */
5603 sym_chip_reset(np);
5604
5605 /*
5606 * Prepare controller and devices settings, according
5607 * to chip features, user set-up and driver set-up.
5608 */
5609 sym_prepare_setting(shost, np, nvram);
5610
5611 /*
5612 * Check the PCI clock frequency.
5613 * Must be performed after prepare_setting since it destroys
5614 * STEST1 that is used to probe for the clock doubler.
5615 */
5616 i = sym_getpciclock(np);
5617 if (i > 37000 && !(np->features & FE_66MHZ))
5618 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5619 sym_name(np), i);
5620
5621 /*
5622 * Allocate the start queue.
5623 */
5624 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5625 if (!np->squeue)
5626 goto attach_failed;
5627 np->squeue_ba = vtobus(np->squeue);
5628
5629 /*
5630 * Allocate the done queue.
5631 */
5632 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5633 if (!np->dqueue)
5634 goto attach_failed;
5635 np->dqueue_ba = vtobus(np->dqueue);
5636
5637 /*
5638 * Allocate the target bus address array.
5639 */
5640 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5641 if (!np->targtbl)
5642 goto attach_failed;
5643 np->targtbl_ba = vtobus(np->targtbl);
5644
5645 /*
5646 * Allocate SCRIPTS areas.
5647 */
5648 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5649 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5650 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5651 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5652 goto attach_failed;
5653
5654 /*
5655 * Allocate the array of lists of CCBs hashed by DSA.
5656 */
cd861280 5657 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
1da177e4
LT
5658 if (!np->ccbh)
5659 goto attach_failed;
5660
5661 /*
5662 * Initialyze the CCB free and busy queues.
5663 */
5664 sym_que_init(&np->free_ccbq);
5665 sym_que_init(&np->busy_ccbq);
5666 sym_que_init(&np->comp_ccbq);
5667
5668 /*
5669 * Initialization for optional handling
5670 * of device queueing.
5671 */
5672#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5673 sym_que_init(&np->dummy_ccbq);
5674#endif
5675 /*
5676 * Allocate some CCB. We need at least ONE.
5677 */
5678 if (!sym_alloc_ccb(np))
5679 goto attach_failed;
5680
5681 /*
5682 * Calculate BUS addresses where we are going
5683 * to load the SCRIPTS.
5684 */
5685 np->scripta_ba = vtobus(np->scripta0);
5686 np->scriptb_ba = vtobus(np->scriptb0);
5687 np->scriptz_ba = vtobus(np->scriptz0);
5688
5689 if (np->ram_ba) {
8637baa3 5690 np->scripta_ba = np->ram_ba;
1da177e4 5691 if (np->features & FE_RAM8K) {
1da177e4
LT
5692 np->scriptb_ba = np->scripta_ba + 4096;
5693#if 0 /* May get useful for 64 BIT PCI addressing */
5694 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5695#endif
5696 }
1da177e4
LT
5697 }
5698
5699 /*
5700 * Copy scripts to controller instance.
5701 */
5702 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5703 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5704 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5705
5706 /*
5707 * Setup variable parts in scripts and compute
5708 * scripts bus addresses used from the C code.
5709 */
5710 np->fw_setup(np, fw);
5711
5712 /*
5713 * Bind SCRIPTS with physical addresses usable by the
5714 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5715 */
5716 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5717 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5718 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5719
5720#ifdef SYM_CONF_IARB_SUPPORT
5721 /*
5722 * If user wants IARB to be set when we win arbitration
5723 * and have other jobs, compute the max number of consecutive
5724 * settings of IARB hints before we leave devices a chance to
5725 * arbitrate for reselection.
5726 */
5727#ifdef SYM_SETUP_IARB_MAX
5728 np->iarb_max = SYM_SETUP_IARB_MAX;
5729#else
5730 np->iarb_max = 4;
5731#endif
5732#endif
5733
5734 /*
5735 * Prepare the idle and invalid task actions.
5736 */
5737 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5738 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5739 np->idletask_ba = vtobus(&np->idletask);
5740
5741 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5742 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5743 np->notask_ba = vtobus(&np->notask);
5744
5745 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5746 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5747 np->bad_itl_ba = vtobus(&np->bad_itl);
5748
5749 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5750 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5751 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5752
5753 /*
5754 * Allocate and prepare the lun JUMP table that is used
5755 * for a target prior the probing of devices (bad lun table).
5756 * A private table will be allocated for the target on the
5757 * first INQUIRY response received.
5758 */
5759 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5760 if (!np->badluntbl)
5761 goto attach_failed;
5762
5763 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5764 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5765 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5766
5767 /*
5768 * Prepare the bus address array that contains the bus
5769 * address of each target control block.
5770 * For now, assume all logical units are wrong. :)
5771 */
5772 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5773 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5774 np->target[i].head.luntbl_sa =
5775 cpu_to_scr(vtobus(np->badluntbl));
5776 np->target[i].head.lun0_sa =
5777 cpu_to_scr(vtobus(&np->badlun_sa));
5778 }
5779
5780 /*
5781 * Now check the cache handling of the pci chipset.
5782 */
5783 if (sym_snooptest (np)) {
5784 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5785 goto attach_failed;
5786 }
5787
5788 /*
5789 * Sigh! we are done.
5790 */
5791 return 0;
5792
5793attach_failed:
5794 return -ENXIO;
5795}
5796
5797/*
5798 * Free everything that has been allocated for this device.
5799 */
5800void sym_hcb_free(struct sym_hcb *np)
5801{
5802 SYM_QUEHEAD *qp;
5803 struct sym_ccb *cp;
5804 struct sym_tcb *tp;
84e203a2 5805 int target;
1da177e4
LT
5806
5807 if (np->scriptz0)
5808 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5809 if (np->scriptb0)
5810 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5811 if (np->scripta0)
5812 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5813 if (np->squeue)
5814 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5815 if (np->dqueue)
5816 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5817
5818 if (np->actccbs) {
172c122d 5819 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
1da177e4
LT
5820 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5821 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5822 }
5823 }
5824 kfree(np->ccbh);
5825
5826 if (np->badluntbl)
5827 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5828
5829 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5830 tp = &np->target[target];
e41443ec
MA
5831 if (tp->luntbl)
5832 sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
1da177e4
LT
5833#if SYM_CONF_MAX_LUN > 1
5834 kfree(tp->lunmp);
5835#endif
5836 }
5837 if (np->targtbl)
5838 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5839}