[SCSI] Delete duplicate driver template.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
CommitLineData
1da177e4
LT
1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
4e57b681
TS
40
41#include <linux/slab.h>
8c65b4a6 42#include <asm/param.h> /* for timeouts in units of HZ */
33333bac 43#include <scsi/scsi_dbg.h>
4e57b681 44
1da177e4
LT
45#include "sym_glue.h"
46#include "sym_nvram.h"
47
48#if 0
49#define SYM_DEBUG_GENERIC_SUPPORT
50#endif
51
52/*
53 * Needed function prototypes.
54 */
55static void sym_int_ma (struct sym_hcb *np);
56static void sym_int_sir (struct sym_hcb *np);
57static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
58static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
59static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
60static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
61static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
62static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
63
64/*
65 * Print a buffer in hexadecimal format with a ".\n" at end.
66 */
67static void sym_printl_hex(u_char *p, int n)
68{
69 while (n-- > 0)
70 printf (" %x", *p++);
71 printf (".\n");
72}
73
1da177e4
LT
74static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
75{
76 sym_print_addr(cp->cmd, "%s: ", label);
77
1abfd370 78 spi_print_msg(msg);
33333bac 79 printf("\n");
1da177e4
LT
80}
81
82static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
83{
84 struct sym_tcb *tp = &np->target[target];
53222b90 85 dev_info(&tp->starget->dev, "%s: ", label);
1da177e4 86
1abfd370 87 spi_print_msg(msg);
33333bac 88 printf("\n");
1da177e4
LT
89}
90
91/*
92 * Print something that tells about extended errors.
93 */
94void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
95{
96 if (x_status & XE_PARITY_ERR) {
97 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
98 }
99 if (x_status & XE_EXTRA_DATA) {
100 sym_print_addr(cmd, "extraneous data discarded.\n");
101 }
102 if (x_status & XE_BAD_PHASE) {
103 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
104 }
105 if (x_status & XE_SODL_UNRUN) {
106 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
107 }
108 if (x_status & XE_SWIDE_OVRUN) {
109 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
110 }
111}
112
113/*
114 * Return a string for SCSI BUS mode.
115 */
116static char *sym_scsi_bus_mode(int mode)
117{
118 switch(mode) {
119 case SMODE_HVD: return "HVD";
120 case SMODE_SE: return "SE";
121 case SMODE_LVD: return "LVD";
122 }
123 return "??";
124}
125
126/*
127 * Soft reset the chip.
128 *
129 * Raising SRST when the chip is running may cause
130 * problems on dual function chips (see below).
131 * On the other hand, LVD devices need some delay
132 * to settle and report actual BUS mode in STEST4.
133 */
134static void sym_chip_reset (struct sym_hcb *np)
135{
136 OUTB(np, nc_istat, SRST);
53222b90 137 INB(np, nc_mbox1);
1da177e4
LT
138 udelay(10);
139 OUTB(np, nc_istat, 0);
53222b90 140 INB(np, nc_mbox1);
1da177e4
LT
141 udelay(2000); /* For BUS MODE to settle */
142}
143
144/*
145 * Really soft reset the chip.:)
146 *
147 * Some 896 and 876 chip revisions may hang-up if we set
148 * the SRST (soft reset) bit at the wrong time when SCRIPTS
149 * are running.
150 * So, we need to abort the current operation prior to
151 * soft resetting the chip.
152 */
153static void sym_soft_reset (struct sym_hcb *np)
154{
155 u_char istat = 0;
156 int i;
157
158 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
159 goto do_chip_reset;
160
161 OUTB(np, nc_istat, CABRT);
162 for (i = 100000 ; i ; --i) {
163 istat = INB(np, nc_istat);
164 if (istat & SIP) {
165 INW(np, nc_sist);
166 }
167 else if (istat & DIP) {
168 if (INB(np, nc_dstat) & ABRT)
169 break;
170 }
171 udelay(5);
172 }
173 OUTB(np, nc_istat, 0);
174 if (!i)
175 printf("%s: unable to abort current chip operation, "
176 "ISTAT=0x%02x.\n", sym_name(np), istat);
177do_chip_reset:
178 sym_chip_reset(np);
179}
180
181/*
182 * Start reset process.
183 *
184 * The interrupt handler will reinitialize the chip.
185 */
186static void sym_start_reset(struct sym_hcb *np)
187{
188 sym_reset_scsi_bus(np, 1);
189}
190
191int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
192{
193 u32 term;
194 int retv = 0;
195
196 sym_soft_reset(np); /* Soft reset the chip */
197 if (enab_int)
198 OUTW(np, nc_sien, RST);
199 /*
200 * Enable Tolerant, reset IRQD if present and
201 * properly set IRQ mode, prior to resetting the bus.
202 */
203 OUTB(np, nc_stest3, TE);
204 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
205 OUTB(np, nc_scntl1, CRST);
53222b90 206 INB(np, nc_mbox1);
1da177e4
LT
207 udelay(200);
208
209 if (!SYM_SETUP_SCSI_BUS_CHECK)
210 goto out;
211 /*
212 * Check for no terminators or SCSI bus shorts to ground.
213 * Read SCSI data bus, data parity bits and control signals.
214 * We are expecting RESET to be TRUE and other signals to be
215 * FALSE.
216 */
217 term = INB(np, nc_sstat0);
218 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
219 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
220 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
221 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
222 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
223
224 if (!np->maxwide)
225 term &= 0x3ffff;
226
227 if (term != (2<<7)) {
228 printf("%s: suspicious SCSI data while resetting the BUS.\n",
229 sym_name(np));
230 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
231 "0x%lx, expecting 0x%lx\n",
232 sym_name(np),
233 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
234 (u_long)term, (u_long)(2<<7));
235 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
236 retv = 1;
237 }
238out:
239 OUTB(np, nc_scntl1, 0);
240 return retv;
241}
242
243/*
244 * Select SCSI clock frequency
245 */
246static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
247{
248 /*
249 * If multiplier not present or not selected, leave here.
250 */
251 if (np->multiplier <= 1) {
252 OUTB(np, nc_scntl3, scntl3);
253 return;
254 }
255
256 if (sym_verbose >= 2)
257 printf ("%s: enabling clock multiplier\n", sym_name(np));
258
259 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
260 /*
261 * Wait for the LCKFRQ bit to be set if supported by the chip.
262 * Otherwise wait 50 micro-seconds (at least).
263 */
264 if (np->features & FE_LCKFRQ) {
265 int i = 20;
266 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
267 udelay(20);
268 if (!i)
269 printf("%s: the chip cannot lock the frequency\n",
270 sym_name(np));
53222b90
MW
271 } else {
272 INB(np, nc_mbox1);
273 udelay(50+10);
274 }
1da177e4
LT
275 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
276 OUTB(np, nc_scntl3, scntl3);
277 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
278 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
279}
280
281
282/*
283 * Determine the chip's clock frequency.
284 *
285 * This is essential for the negotiation of the synchronous
286 * transfer rate.
287 *
288 * Note: we have to return the correct value.
289 * THERE IS NO SAFE DEFAULT VALUE.
290 *
291 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
292 * 53C860 and 53C875 rev. 1 support fast20 transfers but
293 * do not have a clock doubler and so are provided with a
294 * 80 MHz clock. All other fast20 boards incorporate a doubler
295 * and so should be delivered with a 40 MHz clock.
296 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
297 * clock and provide a clock quadrupler (160 Mhz).
298 */
299
300/*
301 * calculate SCSI clock frequency (in KHz)
302 */
303static unsigned getfreq (struct sym_hcb *np, int gen)
304{
305 unsigned int ms = 0;
306 unsigned int f;
307
308 /*
309 * Measure GEN timer delay in order
310 * to calculate SCSI clock frequency
311 *
312 * This code will never execute too
313 * many loop iterations (if DELAY is
314 * reasonably correct). It could get
315 * too low a delay (too high a freq.)
316 * if the CPU is slow executing the
317 * loop for some reason (an NMI, for
318 * example). For this reason we will
319 * if multiple measurements are to be
320 * performed trust the higher delay
321 * (lower frequency returned).
322 */
323 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
324 INW(np, nc_sist); /* clear pending scsi interrupt */
325 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
326 INW(np, nc_sist); /* another one, just to be sure :) */
327 /*
328 * The C1010-33 core does not report GEN in SIST,
329 * if this interrupt is masked in SIEN.
330 * I don't know yet if the C1010-66 behaves the same way.
331 */
332 if (np->features & FE_C10) {
333 OUTW(np, nc_sien, GEN);
334 OUTB(np, nc_istat1, SIRQD);
335 }
336 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
337 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
338 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
339 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
340 udelay(1000/4); /* count in 1/4 of ms */
341 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
342 /*
343 * Undo C1010-33 specific settings.
344 */
345 if (np->features & FE_C10) {
346 OUTW(np, nc_sien, 0);
347 OUTB(np, nc_istat1, 0);
348 }
349 /*
350 * set prescaler to divide by whatever 0 means
351 * 0 ought to choose divide by 2, but appears
352 * to set divide by 3.5 mode in my 53c810 ...
353 */
354 OUTB(np, nc_scntl3, 0);
355
356 /*
357 * adjust for prescaler, and convert into KHz
358 */
359 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
360
361 /*
362 * The C1010-33 result is biased by a factor
363 * of 2/3 compared to earlier chips.
364 */
365 if (np->features & FE_C10)
366 f = (f * 2) / 3;
367
368 if (sym_verbose >= 2)
369 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
370 sym_name(np), gen, ms/4, f);
371
372 return f;
373}
374
375static unsigned sym_getfreq (struct sym_hcb *np)
376{
377 u_int f1, f2;
378 int gen = 8;
379
380 getfreq (np, gen); /* throw away first result */
381 f1 = getfreq (np, gen);
382 f2 = getfreq (np, gen);
383 if (f1 > f2) f1 = f2; /* trust lower result */
384 return f1;
385}
386
387/*
388 * Get/probe chip SCSI clock frequency
389 */
390static void sym_getclock (struct sym_hcb *np, int mult)
391{
392 unsigned char scntl3 = np->sv_scntl3;
393 unsigned char stest1 = np->sv_stest1;
394 unsigned f1;
395
396 np->multiplier = 1;
397 f1 = 40000;
398 /*
399 * True with 875/895/896/895A with clock multiplier selected
400 */
401 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
402 if (sym_verbose >= 2)
403 printf ("%s: clock multiplier found\n", sym_name(np));
404 np->multiplier = mult;
405 }
406
407 /*
408 * If multiplier not found or scntl3 not 7,5,3,
409 * reset chip and get frequency from general purpose timer.
410 * Otherwise trust scntl3 BIOS setting.
411 */
412 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
413 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
414 f1 = sym_getfreq (np);
415
416 if (sym_verbose)
417 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
418
419 if (f1 < 45000) f1 = 40000;
420 else if (f1 < 55000) f1 = 50000;
421 else f1 = 80000;
422
423 if (f1 < 80000 && mult > 1) {
424 if (sym_verbose >= 2)
425 printf ("%s: clock multiplier assumed\n",
426 sym_name(np));
427 np->multiplier = mult;
428 }
429 } else {
430 if ((scntl3 & 7) == 3) f1 = 40000;
431 else if ((scntl3 & 7) == 5) f1 = 80000;
432 else f1 = 160000;
433
434 f1 /= np->multiplier;
435 }
436
437 /*
438 * Compute controller synchronous parameters.
439 */
440 f1 *= np->multiplier;
441 np->clock_khz = f1;
442}
443
444/*
445 * Get/probe PCI clock frequency
446 */
447static int sym_getpciclock (struct sym_hcb *np)
448{
449 int f = 0;
450
451 /*
452 * For now, we only need to know about the actual
453 * PCI BUS clock frequency for C1010-66 chips.
454 */
455#if 1
456 if (np->features & FE_66MHZ) {
457#else
458 if (1) {
459#endif
460 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
461 f = sym_getfreq(np);
462 OUTB(np, nc_stest1, 0);
463 }
464 np->pciclk_khz = f;
465
466 return f;
467}
468
469/*
470 * SYMBIOS chip clock divisor table.
471 *
472 * Divisors are multiplied by 10,000,000 in order to make
473 * calculations more simple.
474 */
475#define _5M 5000000
476static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
477
478/*
479 * Get clock factor and sync divisor for a given
480 * synchronous factor period.
481 */
482static int
483sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
484{
485 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
486 int div = np->clock_divn; /* Number of divisors supported */
487 u32 fak; /* Sync factor in sxfer */
488 u32 per; /* Period in tenths of ns */
489 u32 kpc; /* (per * clk) */
490 int ret;
491
492 /*
493 * Compute the synchronous period in tenths of nano-seconds
494 */
495 if (dt && sfac <= 9) per = 125;
496 else if (sfac <= 10) per = 250;
497 else if (sfac == 11) per = 303;
498 else if (sfac == 12) per = 500;
499 else per = 40 * sfac;
500 ret = per;
501
502 kpc = per * clk;
503 if (dt)
504 kpc <<= 1;
505
506 /*
507 * For earliest C10 revision 0, we cannot use extra
508 * clocks for the setting of the SCSI clocking.
509 * Note that this limits the lowest sync data transfer
510 * to 5 Mega-transfers per second and may result in
511 * using higher clock divisors.
512 */
513#if 1
514 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
515 /*
516 * Look for the lowest clock divisor that allows an
517 * output speed not faster than the period.
518 */
519 while (div > 0) {
520 --div;
521 if (kpc > (div_10M[div] << 2)) {
522 ++div;
523 break;
524 }
525 }
526 fak = 0; /* No extra clocks */
527 if (div == np->clock_divn) { /* Are we too fast ? */
528 ret = -1;
529 }
530 *divp = div;
531 *fakp = fak;
532 return ret;
533 }
534#endif
535
536 /*
537 * Look for the greatest clock divisor that allows an
538 * input speed faster than the period.
539 */
540 while (div-- > 0)
541 if (kpc >= (div_10M[div] << 2)) break;
542
543 /*
544 * Calculate the lowest clock factor that allows an output
545 * speed not faster than the period, and the max output speed.
546 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
547 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
548 */
549 if (dt) {
550 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
551 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
552 } else {
553 fak = (kpc - 1) / div_10M[div] + 1 - 4;
554 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
555 }
556
557 /*
558 * Check against our hardware limits, or bugs :).
559 */
560 if (fak > 2) {
561 fak = 2;
562 ret = -1;
563 }
564
565 /*
566 * Compute and return sync parameters.
567 */
568 *divp = div;
569 *fakp = fak;
570
571 return ret;
572}
573
574/*
575 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
576 * 128 transfers. All chips support at least 16 transfers
577 * bursts. The 825A, 875 and 895 chips support bursts of up
578 * to 128 transfers and the 895A and 896 support bursts of up
579 * to 64 transfers. All other chips support up to 16
580 * transfers bursts.
581 *
582 * For PCI 32 bit data transfers each transfer is a DWORD.
583 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
584 *
585 * We use log base 2 (burst length) as internal code, with
586 * value 0 meaning "burst disabled".
587 */
588
589/*
590 * Burst length from burst code.
591 */
592#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
593
594/*
595 * Burst code from io register bits.
596 */
597#define burst_code(dmode, ctest4, ctest5) \
598 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
599
600/*
601 * Set initial io register bits from burst code.
602 */
603static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
604{
605 np->rv_ctest4 &= ~0x80;
606 np->rv_dmode &= ~(0x3 << 6);
607 np->rv_ctest5 &= ~0x4;
608
609 if (!bc) {
610 np->rv_ctest4 |= 0x80;
611 }
612 else {
613 --bc;
614 np->rv_dmode |= ((bc & 0x3) << 6);
615 np->rv_ctest5 |= (bc & 0x4);
616 }
617}
618
1da177e4
LT
619/*
620 * Save initial settings of some IO registers.
621 * Assumed to have been set by BIOS.
622 * We cannot reset the chip prior to reading the
623 * IO registers, since informations will be lost.
624 * Since the SCRIPTS processor may be running, this
625 * is not safe on paper, but it seems to work quite
626 * well. :)
627 */
628static void sym_save_initial_setting (struct sym_hcb *np)
629{
630 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
631 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
632 np->sv_dmode = INB(np, nc_dmode) & 0xce;
633 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
634 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
635 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
636 np->sv_gpcntl = INB(np, nc_gpcntl);
637 np->sv_stest1 = INB(np, nc_stest1);
638 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
639 np->sv_stest4 = INB(np, nc_stest4);
640 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
641 np->sv_scntl4 = INB(np, nc_scntl4);
642 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
643 }
644 else
645 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
646}
647
648/*
649 * Prepare io register values used by sym_start_up()
650 * according to selected and supported features.
651 */
652static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
653{
654 u_char burst_max;
655 u32 period;
656 int i;
657
658 /*
659 * Wide ?
660 */
661 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
662
663 /*
664 * Guess the frequency of the chip's clock.
665 */
666 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
667 np->clock_khz = 160000;
668 else if (np->features & FE_ULTRA)
669 np->clock_khz = 80000;
670 else
671 np->clock_khz = 40000;
672
673 /*
674 * Get the clock multiplier factor.
675 */
676 if (np->features & FE_QUAD)
677 np->multiplier = 4;
678 else if (np->features & FE_DBLR)
679 np->multiplier = 2;
680 else
681 np->multiplier = 1;
682
683 /*
684 * Measure SCSI clock frequency for chips
685 * it may vary from assumed one.
686 */
687 if (np->features & FE_VARCLK)
688 sym_getclock(np, np->multiplier);
689
690 /*
691 * Divisor to be used for async (timer pre-scaler).
692 */
693 i = np->clock_divn - 1;
694 while (--i >= 0) {
695 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
696 ++i;
697 break;
698 }
699 }
700 np->rv_scntl3 = i+1;
701
702 /*
703 * The C1010 uses hardwired divisors for async.
704 * So, we just throw away, the async. divisor.:-)
705 */
706 if (np->features & FE_C10)
707 np->rv_scntl3 = 0;
708
709 /*
710 * Minimum synchronous period factor supported by the chip.
711 * Btw, 'period' is in tenths of nanoseconds.
712 */
713 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
714
715 if (period <= 250) np->minsync = 10;
716 else if (period <= 303) np->minsync = 11;
717 else if (period <= 500) np->minsync = 12;
718 else np->minsync = (period + 40 - 1) / 40;
719
720 /*
721 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
722 */
723 if (np->minsync < 25 &&
724 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
725 np->minsync = 25;
726 else if (np->minsync < 12 &&
727 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
728 np->minsync = 12;
729
730 /*
731 * Maximum synchronous period factor supported by the chip.
732 */
733 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
734 np->maxsync = period > 2540 ? 254 : period / 10;
735
736 /*
737 * If chip is a C1010, guess the sync limits in DT mode.
738 */
739 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
740 if (np->clock_khz == 160000) {
741 np->minsync_dt = 9;
742 np->maxsync_dt = 50;
743 np->maxoffs_dt = nvram->type ? 62 : 31;
744 }
745 }
746
747 /*
748 * 64 bit addressing (895A/896/1010) ?
749 */
750 if (np->features & FE_DAC) {
751#if SYM_CONF_DMA_ADDRESSING_MODE == 0
752 np->rv_ccntl1 |= (DDAC);
753#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
754 if (!np->use_dac)
755 np->rv_ccntl1 |= (DDAC);
756 else
757 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
758#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
759 if (!np->use_dac)
760 np->rv_ccntl1 |= (DDAC);
761 else
762 np->rv_ccntl1 |= (0 | EXTIBMV);
763#endif
764 }
765
766 /*
767 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
768 */
769 if (np->features & FE_NOPM)
770 np->rv_ccntl0 |= (ENPMJ);
771
772 /*
773 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
774 * In dual channel mode, contention occurs if internal cycles
775 * are used. Disable internal cycles.
776 */
777 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
778 np->revision_id < 0x1)
779 np->rv_ccntl0 |= DILS;
780
781 /*
782 * Select burst length (dwords)
783 */
784 burst_max = SYM_SETUP_BURST_ORDER;
785 if (burst_max == 255)
786 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
787 np->sv_ctest5);
788 if (burst_max > 7)
789 burst_max = 7;
790 if (burst_max > np->maxburst)
791 burst_max = np->maxburst;
792
793 /*
794 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
795 * This chip and the 860 Rev 1 may wrongly use PCI cache line
796 * based transactions on LOAD/STORE instructions. So we have
797 * to prevent these chips from using such PCI transactions in
798 * this driver. The generic ncr driver that does not use
799 * LOAD/STORE instructions does not need this work-around.
800 */
801 if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
802 np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
803 (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
804 np->revision_id <= 0x1))
805 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
806
807 /*
808 * Select all supported special features.
809 * If we are using on-board RAM for scripts, prefetch (PFEN)
810 * does not help, but burst op fetch (BOF) does.
811 * Disabling PFEN makes sure BOF will be used.
812 */
813 if (np->features & FE_ERL)
814 np->rv_dmode |= ERL; /* Enable Read Line */
815 if (np->features & FE_BOF)
816 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
817 if (np->features & FE_ERMP)
818 np->rv_dmode |= ERMP; /* Enable Read Multiple */
819#if 1
820 if ((np->features & FE_PFEN) && !np->ram_ba)
821#else
822 if (np->features & FE_PFEN)
823#endif
824 np->rv_dcntl |= PFEN; /* Prefetch Enable */
825 if (np->features & FE_CLSE)
826 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
827 if (np->features & FE_WRIE)
828 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
829 if (np->features & FE_DFS)
830 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
831
832 /*
833 * Select some other
834 */
835 np->rv_ctest4 |= MPEE; /* Master parity checking */
836 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
837
838 /*
839 * Get parity checking, host ID and verbose mode from NVRAM
840 */
841 np->myaddr = 255;
842 sym_nvram_setup_host(shost, np, nvram);
843
844 /*
845 * Get SCSI addr of host adapter (set by bios?).
846 */
847 if (np->myaddr == 255) {
848 np->myaddr = INB(np, nc_scid) & 0x07;
849 if (!np->myaddr)
850 np->myaddr = SYM_SETUP_HOST_ID;
851 }
852
853 /*
854 * Prepare initial io register bits for burst length
855 */
856 sym_init_burst(np, burst_max);
857
858 /*
859 * Set SCSI BUS mode.
860 * - LVD capable chips (895/895A/896/1010) report the
861 * current BUS mode through the STEST4 IO register.
862 * - For previous generation chips (825/825A/875),
863 * user has to tell us how to check against HVD,
864 * since a 100% safe algorithm is not possible.
865 */
866 np->scsi_mode = SMODE_SE;
867 if (np->features & (FE_ULTRA2|FE_ULTRA3))
868 np->scsi_mode = (np->sv_stest4 & SMODE);
869 else if (np->features & FE_DIFF) {
870 if (SYM_SETUP_SCSI_DIFF == 1) {
871 if (np->sv_scntl3) {
872 if (np->sv_stest2 & 0x20)
873 np->scsi_mode = SMODE_HVD;
874 }
875 else if (nvram->type == SYM_SYMBIOS_NVRAM) {
876 if (!(INB(np, nc_gpreg) & 0x08))
877 np->scsi_mode = SMODE_HVD;
878 }
879 }
880 else if (SYM_SETUP_SCSI_DIFF == 2)
881 np->scsi_mode = SMODE_HVD;
882 }
883 if (np->scsi_mode == SMODE_HVD)
884 np->rv_stest2 |= 0x20;
885
886 /*
887 * Set LED support from SCRIPTS.
888 * Ignore this feature for boards known to use a
889 * specific GPIO wiring and for the 895A, 896
890 * and 1010 that drive the LED directly.
891 */
892 if ((SYM_SETUP_SCSI_LED ||
893 (nvram->type == SYM_SYMBIOS_NVRAM ||
894 (nvram->type == SYM_TEKRAM_NVRAM &&
895 np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
896 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
897 np->features |= FE_LED0;
898
899 /*
900 * Set irq mode.
901 */
902 switch(SYM_SETUP_IRQ_MODE & 3) {
903 case 2:
904 np->rv_dcntl |= IRQM;
905 break;
906 case 1:
907 np->rv_dcntl |= (np->sv_dcntl & IRQM);
908 break;
909 default:
910 break;
911 }
912
913 /*
914 * Configure targets according to driver setup.
915 * If NVRAM present get targets setup from NVRAM.
916 */
917 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
918 struct sym_tcb *tp = &np->target[i];
919
920 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
921 tp->usrtags = SYM_SETUP_MAX_TAG;
922
b37df489 923 sym_nvram_setup_target(tp, i, nvram);
1da177e4
LT
924
925 if (!tp->usrtags)
926 tp->usrflags &= ~SYM_TAGS_ENABLED;
927 }
928
929 /*
930 * Let user know about the settings.
931 */
932 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
933 sym_nvram_type(nvram), np->myaddr,
934 (np->features & FE_ULTRA3) ? 80 :
935 (np->features & FE_ULTRA2) ? 40 :
936 (np->features & FE_ULTRA) ? 20 : 10,
937 sym_scsi_bus_mode(np->scsi_mode),
938 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
939 /*
940 * Tell him more on demand.
941 */
942 if (sym_verbose) {
943 printf("%s: %s IRQ line driver%s\n",
944 sym_name(np),
945 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
946 np->ram_ba ? ", using on-chip SRAM" : "");
947 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
948 if (np->features & FE_NOPM)
949 printf("%s: handling phase mismatch from SCRIPTS.\n",
950 sym_name(np));
951 }
952 /*
953 * And still more.
954 */
955 if (sym_verbose >= 2) {
956 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
957 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
958 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
959 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
960
961 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
962 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
963 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
964 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
965 }
1da177e4
LT
966
967 return 0;
968}
969
970/*
971 * Test the pci bus snoop logic :-(
972 *
973 * Has to be called with interrupts disabled.
974 */
975#ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
976static int sym_regtest (struct sym_hcb *np)
977{
978 register volatile u32 data;
979 /*
980 * chip registers may NOT be cached.
981 * write 0xffffffff to a read only register area,
982 * and try to read it back.
983 */
984 data = 0xffffffff;
985 OUTL(np, nc_dstat, data);
986 data = INL(np, nc_dstat);
987#if 1
988 if (data == 0xffffffff) {
989#else
990 if ((data & 0xe2f0fffd) != 0x02000080) {
991#endif
992 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
993 (unsigned) data);
994 return (0x10);
995 }
996 return (0);
997}
998#endif
999
1000static int sym_snooptest (struct sym_hcb *np)
1001{
1002 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1003 int i, err=0;
1004#ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1005 err |= sym_regtest (np);
1006 if (err) return (err);
1007#endif
1008restart_test:
1009 /*
1010 * Enable Master Parity Checking as we intend
1011 * to enable it for normal operations.
1012 */
1013 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1014 /*
1015 * init
1016 */
1017 pc = SCRIPTZ_BA(np, snooptest);
1018 host_wr = 1;
1019 sym_wr = 2;
1020 /*
1021 * Set memory and register.
1022 */
1023 np->scratch = cpu_to_scr(host_wr);
1024 OUTL(np, nc_temp, sym_wr);
1025 /*
1026 * Start script (exchange values)
1027 */
1028 OUTL(np, nc_dsa, np->hcb_ba);
1029 OUTL_DSP(np, pc);
1030 /*
1031 * Wait 'til done (with timeout)
1032 */
1033 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1034 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1035 break;
1036 if (i>=SYM_SNOOP_TIMEOUT) {
1037 printf ("CACHE TEST FAILED: timeout.\n");
1038 return (0x20);
1039 }
1040 /*
1041 * Check for fatal DMA errors.
1042 */
1043 dstat = INB(np, nc_dstat);
1044#if 1 /* Band aiding for broken hardwares that fail PCI parity */
1045 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1046 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1047 "DISABLING MASTER DATA PARITY CHECKING.\n",
1048 sym_name(np));
1049 np->rv_ctest4 &= ~MPEE;
1050 goto restart_test;
1051 }
1052#endif
1053 if (dstat & (MDPE|BF|IID)) {
1054 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1055 return (0x80);
1056 }
1057 /*
1058 * Save termination position.
1059 */
1060 pc = INL(np, nc_dsp);
1061 /*
1062 * Read memory and register.
1063 */
1064 host_rd = scr_to_cpu(np->scratch);
1065 sym_rd = INL(np, nc_scratcha);
1066 sym_bk = INL(np, nc_temp);
1067 /*
1068 * Check termination position.
1069 */
1070 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1071 printf ("CACHE TEST FAILED: script execution failed.\n");
1072 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1073 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1074 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1075 return (0x40);
1076 }
1077 /*
1078 * Show results.
1079 */
1080 if (host_wr != sym_rd) {
1081 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1082 (int) host_wr, (int) sym_rd);
1083 err |= 1;
1084 }
1085 if (host_rd != sym_wr) {
1086 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1087 (int) sym_wr, (int) host_rd);
1088 err |= 2;
1089 }
1090 if (sym_bk != sym_wr) {
1091 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1092 (int) sym_wr, (int) sym_bk);
1093 err |= 4;
1094 }
1095
1096 return (err);
1097}
1098
1099/*
1100 * log message for real hard errors
1101 *
1102 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1103 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1104 *
1105 * exception register:
1106 * ds: dstat
1107 * si: sist
1108 *
1109 * SCSI bus lines:
1110 * so: control lines as driven by chip.
1111 * si: control lines as seen by chip.
1112 * sd: scsi data lines as seen by chip.
1113 *
1114 * wide/fastmode:
1115 * sx: sxfer (see the manual)
1116 * s3: scntl3 (see the manual)
1117 * s4: scntl4 (see the manual)
1118 *
1119 * current script command:
1120 * dsp: script address (relative to start of script).
1121 * dbc: first word of script command.
1122 *
1123 * First 24 register of the chip:
1124 * r0..rf
1125 */
1126static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1127{
1128 u32 dsp;
1129 int script_ofs;
1130 int script_size;
1131 char *script_name;
1132 u_char *script_base;
1133 int i;
1134
1135 dsp = INL(np, nc_dsp);
1136
1137 if (dsp > np->scripta_ba &&
1138 dsp <= np->scripta_ba + np->scripta_sz) {
1139 script_ofs = dsp - np->scripta_ba;
1140 script_size = np->scripta_sz;
1141 script_base = (u_char *) np->scripta0;
1142 script_name = "scripta";
1143 }
1144 else if (np->scriptb_ba < dsp &&
1145 dsp <= np->scriptb_ba + np->scriptb_sz) {
1146 script_ofs = dsp - np->scriptb_ba;
1147 script_size = np->scriptb_sz;
1148 script_base = (u_char *) np->scriptb0;
1149 script_name = "scriptb";
1150 } else {
1151 script_ofs = dsp;
1152 script_size = 0;
1153 script_base = NULL;
1154 script_name = "mem";
1155 }
1156
1157 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1158 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1159 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1160 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1161 (unsigned)INB(np, nc_scntl3),
1162 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1163 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1164
1165 if (((script_ofs & 3) == 0) &&
1166 (unsigned)script_ofs < script_size) {
1167 printf ("%s: script cmd = %08x\n", sym_name(np),
1168 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1169 }
1170
1171 printf ("%s: regdump:", sym_name(np));
1172 for (i=0; i<24;i++)
1173 printf (" %02x", (unsigned)INB_OFF(np, i));
1174 printf (".\n");
1175
1176 /*
1177 * PCI BUS error.
1178 */
1179 if (dstat & (MDPE|BF))
1180 sym_log_bus_error(np);
1181}
1182
1183static struct sym_chip sym_dev_table[] = {
1184 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1185 FE_ERL}
1186 ,
1187#ifdef SYM_DEBUG_GENERIC_SUPPORT
1188 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1189 FE_BOF}
1190 ,
1191#else
1192 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1193 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1194 ,
1195#endif
1196 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1197 FE_BOF|FE_ERL}
1198 ,
1199 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1200 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1201 ,
1202 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1203 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1204 ,
1205 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1206 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1207 ,
1208 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1209 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1210 FE_RAM|FE_DIFF|FE_VARCLK}
1211 ,
1212 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1213 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1214 FE_RAM|FE_DIFF|FE_VARCLK}
1215 ,
1216 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1217 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1218 FE_RAM|FE_DIFF|FE_VARCLK}
1219 ,
1220 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1221 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1222 FE_RAM|FE_DIFF|FE_VARCLK}
1223 ,
1224#ifdef SYM_DEBUG_GENERIC_SUPPORT
1225 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1226 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1227 FE_RAM|FE_LCKFRQ}
1228 ,
1229#else
1230 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1231 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1232 FE_RAM|FE_LCKFRQ}
1233 ,
1234#endif
1235 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1236 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1238 ,
1239 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1240 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1241 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1242 ,
1243 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1244 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1245 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1246 ,
1247 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1248 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1249 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1250 FE_C10}
1251 ,
1252 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1253 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1254 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1255 FE_C10|FE_U3EN}
1256 ,
1257 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1258 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1259 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1260 FE_C10|FE_U3EN}
1261 ,
1262 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1263 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1264 FE_RAM|FE_IO256|FE_LEDC}
1265};
1266
1267#define sym_num_devs \
1268 (sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
1269
1270/*
1271 * Look up the chip table.
1272 *
1273 * Return a pointer to the chip entry if found,
1274 * zero otherwise.
1275 */
1276struct sym_chip *
1277sym_lookup_chip_table (u_short device_id, u_char revision)
1278{
1279 struct sym_chip *chip;
1280 int i;
1281
1282 for (i = 0; i < sym_num_devs; i++) {
1283 chip = &sym_dev_table[i];
1284 if (device_id != chip->device_id)
1285 continue;
1286 if (revision > chip->revision_id)
1287 continue;
1288 return chip;
1289 }
1290
1291 return NULL;
1292}
1293
1294#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1295/*
1296 * Lookup the 64 bit DMA segments map.
1297 * This is only used if the direct mapping
1298 * has been unsuccessful.
1299 */
1300int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1301{
1302 int i;
1303
1304 if (!np->use_dac)
1305 goto weird;
1306
1307 /* Look up existing mappings */
1308 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1309 if (h == np->dmap_bah[i])
1310 return i;
1311 }
1312 /* If direct mapping is free, get it */
1313 if (!np->dmap_bah[s])
1314 goto new;
1315 /* Collision -> lookup free mappings */
1316 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1317 if (!np->dmap_bah[s])
1318 goto new;
1319 }
1320weird:
1321 panic("sym: ran out of 64 bit DMA segment registers");
1322 return -1;
1323new:
1324 np->dmap_bah[s] = h;
1325 np->dmap_dirty = 1;
1326 return s;
1327}
1328
1329/*
1330 * Update IO registers scratch C..R so they will be
1331 * in sync. with queued CCB expectations.
1332 */
1333static void sym_update_dmap_regs(struct sym_hcb *np)
1334{
1335 int o, i;
1336
1337 if (!np->dmap_dirty)
1338 return;
1339 o = offsetof(struct sym_reg, nc_scrx[0]);
1340 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1341 OUTL_OFF(np, o, np->dmap_bah[i]);
1342 o += 4;
1343 }
1344 np->dmap_dirty = 0;
1345}
1346#endif
1347
1348/* Enforce all the fiddly SPI rules and the chip limitations */
1349static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1350 struct sym_trans *goal)
1351{
1352 if (!spi_support_wide(starget))
1353 goal->width = 0;
1354
1355 if (!spi_support_sync(starget)) {
1356 goal->iu = 0;
1357 goal->dt = 0;
1358 goal->qas = 0;
1da177e4
LT
1359 goal->offset = 0;
1360 return;
1361 }
1362
1363 if (spi_support_dt(starget)) {
1364 if (spi_support_dt_only(starget))
1365 goal->dt = 1;
1366
1367 if (goal->offset == 0)
1368 goal->dt = 0;
1369 } else {
1370 goal->dt = 0;
1371 }
1372
1373 /* Some targets fail to properly negotiate DT in SE mode */
1374 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1375 goal->dt = 0;
1376
1377 if (goal->dt) {
1378 /* all DT transfers must be wide */
1379 goal->width = 1;
1380 if (goal->offset > np->maxoffs_dt)
1381 goal->offset = np->maxoffs_dt;
1382 if (goal->period < np->minsync_dt)
1383 goal->period = np->minsync_dt;
1384 if (goal->period > np->maxsync_dt)
1385 goal->period = np->maxsync_dt;
1386 } else {
1387 goal->iu = goal->qas = 0;
1388 if (goal->offset > np->maxoffs)
1389 goal->offset = np->maxoffs;
1390 if (goal->period < np->minsync)
1391 goal->period = np->minsync;
1392 if (goal->period > np->maxsync)
1393 goal->period = np->maxsync;
1394 }
1395}
1396
1397/*
1398 * Prepare the next negotiation message if needed.
1399 *
1400 * Fill in the part of message buffer that contains the
1401 * negotiation and the nego_status field of the CCB.
1402 * Returns the size of the message in bytes.
1403 */
1404static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1405{
1406 struct sym_tcb *tp = &np->target[cp->target];
53222b90 1407 struct scsi_target *starget = tp->starget;
1da177e4
LT
1408 struct sym_trans *goal = &tp->tgoal;
1409 int msglen = 0;
1410 int nego;
1411
1412 sym_check_goals(np, starget, goal);
1413
1414 /*
1415 * Many devices implement PPR in a buggy way, so only use it if we
1416 * really want to.
1417 */
322e079f
MW
1418 if (goal->offset &&
1419 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
1da177e4
LT
1420 nego = NS_PPR;
1421 } else if (spi_width(starget) != goal->width) {
1422 nego = NS_WIDE;
1423 } else if (spi_period(starget) != goal->period ||
1424 spi_offset(starget) != goal->offset) {
1425 nego = NS_SYNC;
1426 } else {
1427 goal->check_nego = 0;
1428 nego = 0;
1429 }
1430
1431 switch (nego) {
1432 case NS_SYNC:
1433 msgptr[msglen++] = M_EXTENDED;
1434 msgptr[msglen++] = 3;
1435 msgptr[msglen++] = M_X_SYNC_REQ;
1436 msgptr[msglen++] = goal->period;
1437 msgptr[msglen++] = goal->offset;
1438 break;
1439 case NS_WIDE:
1440 msgptr[msglen++] = M_EXTENDED;
1441 msgptr[msglen++] = 2;
1442 msgptr[msglen++] = M_X_WIDE_REQ;
1443 msgptr[msglen++] = goal->width;
1444 break;
1445 case NS_PPR:
1446 msgptr[msglen++] = M_EXTENDED;
1447 msgptr[msglen++] = 6;
1448 msgptr[msglen++] = M_X_PPR_REQ;
1449 msgptr[msglen++] = goal->period;
1450 msgptr[msglen++] = 0;
1451 msgptr[msglen++] = goal->offset;
1452 msgptr[msglen++] = goal->width;
1453 msgptr[msglen++] = (goal->iu ? PPR_OPT_IU : 0) |
1454 (goal->dt ? PPR_OPT_DT : 0) |
1455 (goal->qas ? PPR_OPT_QAS : 0);
1456 break;
1457 }
1458
1459 cp->nego_status = nego;
1460
1461 if (nego) {
1462 tp->nego_cp = cp; /* Keep track a nego will be performed */
1463 if (DEBUG_FLAGS & DEBUG_NEGO) {
1464 sym_print_nego_msg(np, cp->target,
1465 nego == NS_SYNC ? "sync msgout" :
1466 nego == NS_WIDE ? "wide msgout" :
1467 "ppr msgout", msgptr);
1468 }
1469 }
1470
1471 return msglen;
1472}
1473
1474/*
1475 * Insert a job into the start queue.
1476 */
84e203a2 1477static void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1da177e4
LT
1478{
1479 u_short qidx;
1480
1481#ifdef SYM_CONF_IARB_SUPPORT
1482 /*
1483 * If the previously queued CCB is not yet done,
1484 * set the IARB hint. The SCRIPTS will go with IARB
1485 * for this job when starting the previous one.
1486 * We leave devices a chance to win arbitration by
1487 * not using more than 'iarb_max' consecutive
1488 * immediate arbitrations.
1489 */
1490 if (np->last_cp && np->iarb_count < np->iarb_max) {
1491 np->last_cp->host_flags |= HF_HINT_IARB;
1492 ++np->iarb_count;
1493 }
1494 else
1495 np->iarb_count = 0;
1496 np->last_cp = cp;
1497#endif
1498
1499#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1500 /*
1501 * Make SCRIPTS aware of the 64 bit DMA
1502 * segment registers not being up-to-date.
1503 */
1504 if (np->dmap_dirty)
1505 cp->host_xflags |= HX_DMAP_DIRTY;
1506#endif
1507
1508 /*
1509 * Insert first the idle task and then our job.
1510 * The MBs should ensure proper ordering.
1511 */
1512 qidx = np->squeueput + 2;
1513 if (qidx >= MAX_QUEUE*2) qidx = 0;
1514
1515 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1516 MEMORY_WRITE_BARRIER();
1517 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1518
1519 np->squeueput = qidx;
1520
1521 if (DEBUG_FLAGS & DEBUG_QUEUE)
1522 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1523
1524 /*
1525 * Script processor may be waiting for reselect.
1526 * Wake it up.
1527 */
1528 MEMORY_WRITE_BARRIER();
1529 OUTB(np, nc_istat, SIGP|np->istat_sem);
1530}
1531
1532#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1533/*
1534 * Start next ready-to-start CCBs.
1535 */
1536void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1537{
1538 SYM_QUEHEAD *qp;
1539 struct sym_ccb *cp;
1540
1541 /*
1542 * Paranoia, as usual. :-)
1543 */
1544 assert(!lp->started_tags || !lp->started_no_tag);
1545
1546 /*
1547 * Try to start as many commands as asked by caller.
1548 * Prevent from having both tagged and untagged
1549 * commands queued to the device at the same time.
1550 */
1551 while (maxn--) {
1552 qp = sym_remque_head(&lp->waiting_ccbq);
1553 if (!qp)
1554 break;
1555 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1556 if (cp->tag != NO_TAG) {
1557 if (lp->started_no_tag ||
1558 lp->started_tags >= lp->started_max) {
1559 sym_insque_head(qp, &lp->waiting_ccbq);
1560 break;
1561 }
1562 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1563 lp->head.resel_sa =
1564 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1565 ++lp->started_tags;
1566 } else {
1567 if (lp->started_no_tag || lp->started_tags) {
1568 sym_insque_head(qp, &lp->waiting_ccbq);
1569 break;
1570 }
1571 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1572 lp->head.resel_sa =
1573 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1574 ++lp->started_no_tag;
1575 }
1576 cp->started = 1;
1577 sym_insque_tail(qp, &lp->started_ccbq);
1578 sym_put_start_queue(np, cp);
1579 }
1580}
1581#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1582
1583/*
1584 * The chip may have completed jobs. Look at the DONE QUEUE.
1585 *
1586 * On paper, memory read barriers may be needed here to
1587 * prevent out of order LOADs by the CPU from having
1588 * prefetched stale data prior to DMA having occurred.
1589 */
1590static int sym_wakeup_done (struct sym_hcb *np)
1591{
1592 struct sym_ccb *cp;
1593 int i, n;
1594 u32 dsa;
1595
1596 n = 0;
1597 i = np->dqueueget;
1598
1599 /* MEMORY_READ_BARRIER(); */
1600 while (1) {
1601 dsa = scr_to_cpu(np->dqueue[i]);
1602 if (!dsa)
1603 break;
1604 np->dqueue[i] = 0;
1605 if ((i = i+2) >= MAX_QUEUE*2)
1606 i = 0;
1607
1608 cp = sym_ccb_from_dsa(np, dsa);
1609 if (cp) {
1610 MEMORY_READ_BARRIER();
1611 sym_complete_ok (np, cp);
1612 ++n;
1613 }
1614 else
1615 printf ("%s: bad DSA (%x) in done queue.\n",
1616 sym_name(np), (u_int) dsa);
1617 }
1618 np->dqueueget = i;
1619
1620 return n;
1621}
1622
1623/*
1624 * Complete all CCBs queued to the COMP queue.
1625 *
1626 * These CCBs are assumed:
1627 * - Not to be referenced either by devices or
1628 * SCRIPTS-related queues and datas.
1629 * - To have to be completed with an error condition
1630 * or requeued.
1631 *
1632 * The device queue freeze count is incremented
1633 * for each CCB that does not prevent this.
1634 * This function is called when all CCBs involved
1635 * in error handling/recovery have been reaped.
1636 */
1637static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1638{
1639 SYM_QUEHEAD *qp;
1640 struct sym_ccb *cp;
1641
1642 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1643 struct scsi_cmnd *cmd;
1644 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1645 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1646 /* Leave quiet CCBs waiting for resources */
1647 if (cp->host_status == HS_WAIT)
1648 continue;
1649 cmd = cp->cmd;
1650 if (cam_status)
1651 sym_set_cam_status(cmd, cam_status);
1652#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
53222b90 1653 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1da177e4
LT
1654 struct sym_tcb *tp = &np->target[cp->target];
1655 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1656 if (lp) {
1657 sym_remque(&cp->link2_ccbq);
1658 sym_insque_tail(&cp->link2_ccbq,
1659 &lp->waiting_ccbq);
1660 if (cp->started) {
1661 if (cp->tag != NO_TAG)
1662 --lp->started_tags;
1663 else
1664 --lp->started_no_tag;
1665 }
1666 }
1667 cp->started = 0;
1668 continue;
1669 }
1670#endif
1671 sym_free_ccb(np, cp);
1672 sym_xpt_done(np, cmd);
1673 }
1674}
1675
1676/*
1677 * Complete all active CCBs with error.
1678 * Used on CHIP/SCSI RESET.
1679 */
1680static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1681{
1682 /*
1683 * Move all active CCBs to the COMP queue
1684 * and flush this queue.
1685 */
1686 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1687 sym_que_init(&np->busy_ccbq);
1688 sym_flush_comp_queue(np, cam_status);
1689}
1690
1691/*
1692 * Start chip.
1693 *
1694 * 'reason' means:
1695 * 0: initialisation.
1696 * 1: SCSI BUS RESET delivered or received.
1697 * 2: SCSI BUS MODE changed.
1698 */
1699void sym_start_up (struct sym_hcb *np, int reason)
1700{
1701 int i;
1702 u32 phys;
1703
1704 /*
1705 * Reset chip if asked, otherwise just clear fifos.
1706 */
1707 if (reason == 1)
1708 sym_soft_reset(np);
1709 else {
1710 OUTB(np, nc_stest3, TE|CSF);
1711 OUTONB(np, nc_ctest3, CLF);
1712 }
1713
1714 /*
1715 * Clear Start Queue
1716 */
1717 phys = np->squeue_ba;
1718 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1719 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1720 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1721 }
1722 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1723
1724 /*
1725 * Start at first entry.
1726 */
1727 np->squeueput = 0;
1728
1729 /*
1730 * Clear Done Queue
1731 */
1732 phys = np->dqueue_ba;
1733 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1734 np->dqueue[i] = 0;
1735 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1736 }
1737 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1738
1739 /*
1740 * Start at first entry.
1741 */
1742 np->dqueueget = 0;
1743
1744 /*
1745 * Install patches in scripts.
1746 * This also let point to first position the start
1747 * and done queue pointers used from SCRIPTS.
1748 */
1749 np->fw_patch(np);
1750
1751 /*
1752 * Wakeup all pending jobs.
1753 */
53222b90 1754 sym_flush_busy_queue(np, DID_RESET);
1da177e4
LT
1755
1756 /*
1757 * Init chip.
1758 */
1759 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
53222b90 1760 INB(np, nc_mbox1);
1da177e4
LT
1761 udelay(2000); /* The 895 needs time for the bus mode to settle */
1762
1763 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1764 /* full arb., ena parity, par->ATN */
1765 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1766
1767 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1768
1769 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1770 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1771 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1772 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1773 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1774
1775 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1776 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1777 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1778
1779 /* Extended Sreq/Sack filtering not supported on the C10 */
1780 if (np->features & FE_C10)
1781 OUTB(np, nc_stest2, np->rv_stest2);
1782 else
1783 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1784
1785 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1786 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1787
1788 /*
1789 * For now, disable AIP generation on C1010-66.
1790 */
1791 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1792 OUTB(np, nc_aipcntl1, DISAIP);
1793
1794 /*
1795 * C10101 rev. 0 errata.
1796 * Errant SGE's when in narrow. Write bits 4 & 5 of
1797 * STEST1 register to disable SGE. We probably should do
1798 * that from SCRIPTS for each selection/reselection, but
1799 * I just don't want. :)
1800 */
1801 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1802 np->revision_id < 1)
1803 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1804
1805 /*
1806 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1807 * Disable overlapped arbitration for some dual function devices,
1808 * regardless revision id (kind of post-chip-design feature. ;-))
1809 */
1810 if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1811 OUTB(np, nc_ctest0, (1<<5));
1812 else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1813 np->rv_ccntl0 |= DPR;
1814
1815 /*
1816 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1817 * and/or hardware phase mismatch, since only such chips
1818 * seem to support those IO registers.
1819 */
1820 if (np->features & (FE_DAC|FE_NOPM)) {
1821 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1822 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1823 }
1824
1825#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1826 /*
1827 * Set up scratch C and DRS IO registers to map the 32 bit
1828 * DMA address range our data structures are located in.
1829 */
1830 if (np->use_dac) {
1831 np->dmap_bah[0] = 0; /* ??? */
1832 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1833 OUTL(np, nc_drs, np->dmap_bah[0]);
1834 }
1835#endif
1836
1837 /*
1838 * If phase mismatch handled by scripts (895A/896/1010),
1839 * set PM jump addresses.
1840 */
1841 if (np->features & FE_NOPM) {
1842 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1843 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1844 }
1845
1846 /*
1847 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1848 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1849 */
1850 if (np->features & FE_LED0)
1851 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1852 else if (np->features & FE_LEDC)
1853 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1854
1855 /*
1856 * enable ints
1857 */
1858 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1859 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1860
1861 /*
1862 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1863 * Try to eat the spurious SBMC interrupt that may occur when
1864 * we reset the chip but not the SCSI BUS (at initialization).
1865 */
1866 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1867 OUTONW(np, nc_sien, SBMC);
1868 if (reason == 0) {
53222b90 1869 INB(np, nc_mbox1);
1da177e4
LT
1870 mdelay(100);
1871 INW(np, nc_sist);
1872 }
1873 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1874 }
1875
1876 /*
1877 * Fill in target structure.
1878 * Reinitialize usrsync.
1879 * Reinitialize usrwide.
1880 * Prepare sync negotiation according to actual SCSI bus mode.
1881 */
1882 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1883 struct sym_tcb *tp = &np->target[i];
1884
1885 tp->to_reset = 0;
1886 tp->head.sval = 0;
1887 tp->head.wval = np->rv_scntl3;
1888 tp->head.uval = 0;
1889 }
1890
1891 /*
1892 * Download SCSI SCRIPTS to on-chip RAM if present,
1893 * and start script processor.
1894 * We do the download preferently from the CPU.
1895 * For platforms that may not support PCI memory mapping,
1896 * we use simple SCRIPTS that performs MEMORY MOVEs.
1897 */
1898 phys = SCRIPTA_BA(np, init);
1899 if (np->ram_ba) {
1900 if (sym_verbose >= 2)
1901 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1902 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1903 if (np->ram_ws == 8192) {
1904 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1905 phys = scr_to_cpu(np->scr_ram_seg);
1906 OUTL(np, nc_mmws, phys);
1907 OUTL(np, nc_mmrs, phys);
1908 OUTL(np, nc_sfs, phys);
1909 phys = SCRIPTB_BA(np, start64);
1910 }
1911 }
1912
1913 np->istat_sem = 0;
1914
1915 OUTL(np, nc_dsa, np->hcb_ba);
1916 OUTL_DSP(np, phys);
1917
1918 /*
1919 * Notify the XPT about the RESET condition.
1920 */
1921 if (reason != 0)
1922 sym_xpt_async_bus_reset(np);
1923}
1924
1925/*
1926 * Switch trans mode for current job and its target.
1927 */
1928static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1929 u_char per, u_char wide, u_char div, u_char fak)
1930{
1931 SYM_QUEHEAD *qp;
1932 u_char sval, wval, uval;
1933 struct sym_tcb *tp = &np->target[target];
1934
1935 assert(target == (INB(np, nc_sdid) & 0x0f));
1936
1937 sval = tp->head.sval;
1938 wval = tp->head.wval;
1939 uval = tp->head.uval;
1940
1941#if 0
1942 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1943 sval, wval, uval, np->rv_scntl3);
1944#endif
1945 /*
1946 * Set the offset.
1947 */
1948 if (!(np->features & FE_C10))
1949 sval = (sval & ~0x1f) | ofs;
1950 else
1951 sval = (sval & ~0x3f) | ofs;
1952
1953 /*
1954 * Set the sync divisor and extra clock factor.
1955 */
1956 if (ofs != 0) {
1957 wval = (wval & ~0x70) | ((div+1) << 4);
1958 if (!(np->features & FE_C10))
1959 sval = (sval & ~0xe0) | (fak << 5);
1960 else {
1961 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1962 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1963 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1964 }
1965 }
1966
1967 /*
1968 * Set the bus width.
1969 */
1970 wval = wval & ~EWS;
1971 if (wide != 0)
1972 wval |= EWS;
1973
1974 /*
1975 * Set misc. ultra enable bits.
1976 */
1977 if (np->features & FE_C10) {
1978 uval = uval & ~(U3EN|AIPCKEN);
1979 if (opts) {
1980 assert(np->features & FE_U3EN);
1981 uval |= U3EN;
1982 }
1983 } else {
1984 wval = wval & ~ULTRA;
1985 if (per <= 12) wval |= ULTRA;
1986 }
1987
1988 /*
1989 * Stop there if sync parameters are unchanged.
1990 */
1991 if (tp->head.sval == sval &&
1992 tp->head.wval == wval &&
1993 tp->head.uval == uval)
1994 return;
1995 tp->head.sval = sval;
1996 tp->head.wval = wval;
1997 tp->head.uval = uval;
1998
1999 /*
2000 * Disable extended Sreq/Sack filtering if per < 50.
2001 * Not supported on the C1010.
2002 */
2003 if (per < 50 && !(np->features & FE_C10))
2004 OUTOFFB(np, nc_stest2, EXT);
2005
2006 /*
2007 * set actual value and sync_status
2008 */
2009 OUTB(np, nc_sxfer, tp->head.sval);
2010 OUTB(np, nc_scntl3, tp->head.wval);
2011
2012 if (np->features & FE_C10) {
2013 OUTB(np, nc_scntl4, tp->head.uval);
2014 }
2015
2016 /*
2017 * patch ALL busy ccbs of this target.
2018 */
2019 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2020 struct sym_ccb *cp;
2021 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2022 if (cp->target != target)
2023 continue;
2024 cp->phys.select.sel_scntl3 = tp->head.wval;
2025 cp->phys.select.sel_sxfer = tp->head.sval;
2026 if (np->features & FE_C10) {
2027 cp->phys.select.sel_scntl4 = tp->head.uval;
2028 }
2029 }
2030}
2031
2032/*
2033 * We received a WDTR.
2034 * Let everything be aware of the changes.
2035 */
2036static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2037{
2038 struct sym_tcb *tp = &np->target[target];
53222b90 2039 struct scsi_target *starget = tp->starget;
1da177e4
LT
2040
2041 if (spi_width(starget) == wide)
2042 return;
2043
2044 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2045
2046 tp->tgoal.width = wide;
2047 spi_offset(starget) = 0;
2048 spi_period(starget) = 0;
2049 spi_width(starget) = wide;
2050 spi_iu(starget) = 0;
2051 spi_dt(starget) = 0;
2052 spi_qas(starget) = 0;
2053
2054 if (sym_verbose >= 3)
2055 spi_display_xfer_agreement(starget);
2056}
2057
2058/*
2059 * We received a SDTR.
2060 * Let everything be aware of the changes.
2061 */
2062static void
2063sym_setsync(struct sym_hcb *np, int target,
2064 u_char ofs, u_char per, u_char div, u_char fak)
2065{
2066 struct sym_tcb *tp = &np->target[target];
53222b90 2067 struct scsi_target *starget = tp->starget;
1da177e4
LT
2068 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2069
2070 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2071
2072 spi_period(starget) = per;
2073 spi_offset(starget) = ofs;
2074 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2075
2076 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2077 tp->tgoal.period = per;
2078 tp->tgoal.offset = ofs;
2079 tp->tgoal.check_nego = 0;
2080 }
2081
2082 spi_display_xfer_agreement(starget);
2083}
2084
2085/*
2086 * We received a PPR.
2087 * Let everything be aware of the changes.
2088 */
2089static void
2090sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2091 u_char per, u_char wide, u_char div, u_char fak)
2092{
2093 struct sym_tcb *tp = &np->target[target];
53222b90 2094 struct scsi_target *starget = tp->starget;
1da177e4
LT
2095
2096 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2097
2098 spi_width(starget) = tp->tgoal.width = wide;
2099 spi_period(starget) = tp->tgoal.period = per;
2100 spi_offset(starget) = tp->tgoal.offset = ofs;
2101 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2102 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2103 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2104 tp->tgoal.check_nego = 0;
2105
2106 spi_display_xfer_agreement(starget);
2107}
2108
2109/*
2110 * generic recovery from scsi interrupt
2111 *
2112 * The doc says that when the chip gets an SCSI interrupt,
2113 * it tries to stop in an orderly fashion, by completing
2114 * an instruction fetch that had started or by flushing
2115 * the DMA fifo for a write to memory that was executing.
2116 * Such a fashion is not enough to know if the instruction
2117 * that was just before the current DSP value has been
2118 * executed or not.
2119 *
2120 * There are some small SCRIPTS sections that deal with
2121 * the start queue and the done queue that may break any
2122 * assomption from the C code if we are interrupted
2123 * inside, so we reset if this happens. Btw, since these
2124 * SCRIPTS sections are executed while the SCRIPTS hasn't
2125 * started SCSI operations, it is very unlikely to happen.
2126 *
2127 * All the driver data structures are supposed to be
2128 * allocated from the same 4 GB memory window, so there
2129 * is a 1 to 1 relationship between DSA and driver data
2130 * structures. Since we are careful :) to invalidate the
2131 * DSA when we complete a command or when the SCRIPTS
2132 * pushes a DSA into a queue, we can trust it when it
2133 * points to a CCB.
2134 */
2135static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2136{
2137 u32 dsp = INL(np, nc_dsp);
2138 u32 dsa = INL(np, nc_dsa);
2139 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2140
2141 /*
2142 * If we haven't been interrupted inside the SCRIPTS
2143 * critical pathes, we can safely restart the SCRIPTS
2144 * and trust the DSA value if it matches a CCB.
2145 */
2146 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2147 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2148 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2149 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2150 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2151 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2152 (!(dsp > SCRIPTA_BA(np, done) &&
2153 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2154 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2155 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2156 /*
2157 * If we have a CCB, let the SCRIPTS call us back for
2158 * the handling of the error with SCRATCHA filled with
2159 * STARTPOS. This way, we will be able to freeze the
2160 * device queue and requeue awaiting IOs.
2161 */
2162 if (cp) {
2163 cp->host_status = hsts;
2164 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2165 }
2166 /*
2167 * Otherwise just restart the SCRIPTS.
2168 */
2169 else {
2170 OUTL(np, nc_dsa, 0xffffff);
2171 OUTL_DSP(np, SCRIPTA_BA(np, start));
2172 }
2173 }
2174 else
2175 goto reset_all;
2176
2177 return;
2178
2179reset_all:
2180 sym_start_reset(np);
2181}
2182
2183/*
2184 * chip exception handler for selection timeout
2185 */
2186static void sym_int_sto (struct sym_hcb *np)
2187{
2188 u32 dsp = INL(np, nc_dsp);
2189
2190 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2191
2192 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2193 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2194 else
2195 sym_start_reset(np);
2196}
2197
2198/*
2199 * chip exception handler for unexpected disconnect
2200 */
2201static void sym_int_udc (struct sym_hcb *np)
2202{
2203 printf ("%s: unexpected disconnect\n", sym_name(np));
2204 sym_recover_scsi_int(np, HS_UNEXPECTED);
2205}
2206
2207/*
2208 * chip exception handler for SCSI bus mode change
2209 *
2210 * spi2-r12 11.2.3 says a transceiver mode change must
2211 * generate a reset event and a device that detects a reset
2212 * event shall initiate a hard reset. It says also that a
2213 * device that detects a mode change shall set data transfer
2214 * mode to eight bit asynchronous, etc...
2215 * So, just reinitializing all except chip should be enough.
2216 */
2217static void sym_int_sbmc (struct sym_hcb *np)
2218{
2219 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2220
2221 /*
2222 * Notify user.
2223 */
2224 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2225 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2226
2227 /*
2228 * Should suspend command processing for a few seconds and
2229 * reinitialize all except the chip.
2230 */
2231 sym_start_up (np, 2);
2232}
2233
2234/*
2235 * chip exception handler for SCSI parity error.
2236 *
2237 * When the chip detects a SCSI parity error and is
2238 * currently executing a (CH)MOV instruction, it does
2239 * not interrupt immediately, but tries to finish the
2240 * transfer of the current scatter entry before
2241 * interrupting. The following situations may occur:
2242 *
2243 * - The complete scatter entry has been transferred
2244 * without the device having changed phase.
2245 * The chip will then interrupt with the DSP pointing
2246 * to the instruction that follows the MOV.
2247 *
2248 * - A phase mismatch occurs before the MOV finished
2249 * and phase errors are to be handled by the C code.
2250 * The chip will then interrupt with both PAR and MA
2251 * conditions set.
2252 *
2253 * - A phase mismatch occurs before the MOV finished and
2254 * phase errors are to be handled by SCRIPTS.
2255 * The chip will load the DSP with the phase mismatch
2256 * JUMP address and interrupt the host processor.
2257 */
2258static void sym_int_par (struct sym_hcb *np, u_short sist)
2259{
2260 u_char hsts = INB(np, HS_PRT);
2261 u32 dsp = INL(np, nc_dsp);
2262 u32 dbc = INL(np, nc_dbc);
2263 u32 dsa = INL(np, nc_dsa);
2264 u_char sbcl = INB(np, nc_sbcl);
2265 u_char cmd = dbc >> 24;
2266 int phase = cmd & 7;
2267 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2268
2269 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2270 sym_name(np), hsts, dbc, sbcl);
2271
2272 /*
2273 * Check that the chip is connected to the SCSI BUS.
2274 */
2275 if (!(INB(np, nc_scntl1) & ISCON)) {
2276 sym_recover_scsi_int(np, HS_UNEXPECTED);
2277 return;
2278 }
2279
2280 /*
2281 * If the nexus is not clearly identified, reset the bus.
2282 * We will try to do better later.
2283 */
2284 if (!cp)
2285 goto reset_all;
2286
2287 /*
2288 * Check instruction was a MOV, direction was INPUT and
2289 * ATN is asserted.
2290 */
2291 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2292 goto reset_all;
2293
2294 /*
2295 * Keep track of the parity error.
2296 */
2297 OUTONB(np, HF_PRT, HF_EXT_ERR);
2298 cp->xerr_status |= XE_PARITY_ERR;
2299
2300 /*
2301 * Prepare the message to send to the device.
2302 */
2303 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2304
2305 /*
2306 * If the old phase was DATA IN phase, we have to deal with
2307 * the 3 situations described above.
2308 * For other input phases (MSG IN and STATUS), the device
2309 * must resend the whole thing that failed parity checking
2310 * or signal error. So, jumping to dispatcher should be OK.
2311 */
2312 if (phase == 1 || phase == 5) {
2313 /* Phase mismatch handled by SCRIPTS */
2314 if (dsp == SCRIPTB_BA(np, pm_handle))
2315 OUTL_DSP(np, dsp);
2316 /* Phase mismatch handled by the C code */
2317 else if (sist & MA)
2318 sym_int_ma (np);
2319 /* No phase mismatch occurred */
2320 else {
2321 sym_set_script_dp (np, cp, dsp);
2322 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2323 }
2324 }
2325 else if (phase == 7) /* We definitely cannot handle parity errors */
2326#if 1 /* in message-in phase due to the relection */
2327 goto reset_all; /* path and various message anticipations. */
2328#else
2329 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2330#endif
2331 else
2332 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2333 return;
2334
2335reset_all:
2336 sym_start_reset(np);
2337 return;
2338}
2339
2340/*
2341 * chip exception handler for phase errors.
2342 *
2343 * We have to construct a new transfer descriptor,
2344 * to transfer the rest of the current block.
2345 */
2346static void sym_int_ma (struct sym_hcb *np)
2347{
2348 u32 dbc;
2349 u32 rest;
2350 u32 dsp;
2351 u32 dsa;
2352 u32 nxtdsp;
2353 u32 *vdsp;
2354 u32 oadr, olen;
2355 u32 *tblp;
2356 u32 newcmd;
2357 u_int delta;
2358 u_char cmd;
2359 u_char hflags, hflags0;
2360 struct sym_pmc *pm;
2361 struct sym_ccb *cp;
2362
2363 dsp = INL(np, nc_dsp);
2364 dbc = INL(np, nc_dbc);
2365 dsa = INL(np, nc_dsa);
2366
2367 cmd = dbc >> 24;
2368 rest = dbc & 0xffffff;
2369 delta = 0;
2370
2371 /*
2372 * locate matching cp if any.
2373 */
2374 cp = sym_ccb_from_dsa(np, dsa);
2375
2376 /*
2377 * Donnot take into account dma fifo and various buffers in
2378 * INPUT phase since the chip flushes everything before
2379 * raising the MA interrupt for interrupted INPUT phases.
2380 * For DATA IN phase, we will check for the SWIDE later.
2381 */
2382 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2383 u_char ss0, ss2;
2384
2385 if (np->features & FE_DFBC)
2386 delta = INW(np, nc_dfbc);
2387 else {
2388 u32 dfifo;
2389
2390 /*
2391 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2392 */
2393 dfifo = INL(np, nc_dfifo);
2394
2395 /*
2396 * Calculate remaining bytes in DMA fifo.
2397 * (CTEST5 = dfifo >> 16)
2398 */
2399 if (dfifo & (DFS << 16))
2400 delta = ((((dfifo >> 8) & 0x300) |
2401 (dfifo & 0xff)) - rest) & 0x3ff;
2402 else
2403 delta = ((dfifo & 0xff) - rest) & 0x7f;
2404 }
2405
2406 /*
2407 * The data in the dma fifo has not been transfered to
2408 * the target -> add the amount to the rest
2409 * and clear the data.
2410 * Check the sstat2 register in case of wide transfer.
2411 */
2412 rest += delta;
2413 ss0 = INB(np, nc_sstat0);
2414 if (ss0 & OLF) rest++;
2415 if (!(np->features & FE_C10))
2416 if (ss0 & ORF) rest++;
2417 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2418 ss2 = INB(np, nc_sstat2);
2419 if (ss2 & OLF1) rest++;
2420 if (!(np->features & FE_C10))
2421 if (ss2 & ORF1) rest++;
2422 }
2423
2424 /*
2425 * Clear fifos.
2426 */
2427 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2428 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2429 }
2430
2431 /*
2432 * log the information
2433 */
2434 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2435 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2436 (unsigned) rest, (unsigned) delta);
2437
2438 /*
2439 * try to find the interrupted script command,
2440 * and the address at which to continue.
2441 */
2442 vdsp = NULL;
2443 nxtdsp = 0;
2444 if (dsp > np->scripta_ba &&
2445 dsp <= np->scripta_ba + np->scripta_sz) {
2446 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2447 nxtdsp = dsp;
2448 }
2449 else if (dsp > np->scriptb_ba &&
2450 dsp <= np->scriptb_ba + np->scriptb_sz) {
2451 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2452 nxtdsp = dsp;
2453 }
2454
2455 /*
2456 * log the information
2457 */
2458 if (DEBUG_FLAGS & DEBUG_PHASE) {
2459 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2460 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2461 }
2462
2463 if (!vdsp) {
2464 printf ("%s: interrupted SCRIPT address not found.\n",
2465 sym_name (np));
2466 goto reset_all;
2467 }
2468
2469 if (!cp) {
2470 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2471 sym_name (np));
2472 goto reset_all;
2473 }
2474
2475 /*
2476 * get old startaddress and old length.
2477 */
2478 oadr = scr_to_cpu(vdsp[1]);
2479
2480 if (cmd & 0x10) { /* Table indirect */
2481 tblp = (u32 *) ((char*) &cp->phys + oadr);
2482 olen = scr_to_cpu(tblp[0]);
2483 oadr = scr_to_cpu(tblp[1]);
2484 } else {
2485 tblp = (u32 *) 0;
2486 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2487 }
2488
2489 if (DEBUG_FLAGS & DEBUG_PHASE) {
2490 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2491 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2492 tblp,
2493 (unsigned) olen,
2494 (unsigned) oadr);
2495 }
2496
2497 /*
2498 * check cmd against assumed interrupted script command.
2499 * If dt data phase, the MOVE instruction hasn't bit 4 of
2500 * the phase.
2501 */
2502 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2503 sym_print_addr(cp->cmd,
2504 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2505 cmd, scr_to_cpu(vdsp[0]) >> 24);
2506
2507 goto reset_all;
2508 }
2509
2510 /*
2511 * if old phase not dataphase, leave here.
2512 */
2513 if (cmd & 2) {
2514 sym_print_addr(cp->cmd,
2515 "phase change %x-%x %d@%08x resid=%d.\n",
2516 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2517 (unsigned)oadr, (unsigned)rest);
2518 goto unexpected_phase;
2519 }
2520
2521 /*
2522 * Choose the correct PM save area.
2523 *
2524 * Look at the PM_SAVE SCRIPT if you want to understand
2525 * this stuff. The equivalent code is implemented in
2526 * SCRIPTS for the 895A, 896 and 1010 that are able to
2527 * handle PM from the SCRIPTS processor.
2528 */
2529 hflags0 = INB(np, HF_PRT);
2530 hflags = hflags0;
2531
2532 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2533 if (hflags & HF_IN_PM0)
2534 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2535 else if (hflags & HF_IN_PM1)
2536 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2537
2538 if (hflags & HF_DP_SAVED)
2539 hflags ^= HF_ACT_PM;
2540 }
2541
2542 if (!(hflags & HF_ACT_PM)) {
2543 pm = &cp->phys.pm0;
2544 newcmd = SCRIPTA_BA(np, pm0_data);
2545 }
2546 else {
2547 pm = &cp->phys.pm1;
2548 newcmd = SCRIPTA_BA(np, pm1_data);
2549 }
2550
2551 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2552 if (hflags != hflags0)
2553 OUTB(np, HF_PRT, hflags);
2554
2555 /*
2556 * fillin the phase mismatch context
2557 */
2558 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2559 pm->sg.size = cpu_to_scr(rest);
2560 pm->ret = cpu_to_scr(nxtdsp);
2561
2562 /*
2563 * If we have a SWIDE,
2564 * - prepare the address to write the SWIDE from SCRIPTS,
2565 * - compute the SCRIPTS address to restart from,
2566 * - move current data pointer context by one byte.
2567 */
2568 nxtdsp = SCRIPTA_BA(np, dispatch);
2569 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2570 (INB(np, nc_scntl2) & WSR)) {
2571 u32 tmp;
2572
2573 /*
2574 * Set up the table indirect for the MOVE
2575 * of the residual byte and adjust the data
2576 * pointer context.
2577 */
2578 tmp = scr_to_cpu(pm->sg.addr);
2579 cp->phys.wresid.addr = cpu_to_scr(tmp);
2580 pm->sg.addr = cpu_to_scr(tmp + 1);
2581 tmp = scr_to_cpu(pm->sg.size);
2582 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2583 pm->sg.size = cpu_to_scr(tmp - 1);
2584
2585 /*
2586 * If only the residual byte is to be moved,
2587 * no PM context is needed.
2588 */
2589 if ((tmp&0xffffff) == 1)
2590 newcmd = pm->ret;
2591
2592 /*
2593 * Prepare the address of SCRIPTS that will
2594 * move the residual byte to memory.
2595 */
2596 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2597 }
2598
2599 if (DEBUG_FLAGS & DEBUG_PHASE) {
2600 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2601 hflags0, hflags, newcmd,
2602 (unsigned)scr_to_cpu(pm->sg.addr),
2603 (unsigned)scr_to_cpu(pm->sg.size),
2604 (unsigned)scr_to_cpu(pm->ret));
2605 }
2606
2607 /*
2608 * Restart the SCRIPTS processor.
2609 */
2610 sym_set_script_dp (np, cp, newcmd);
2611 OUTL_DSP(np, nxtdsp);
2612 return;
2613
2614 /*
2615 * Unexpected phase changes that occurs when the current phase
2616 * is not a DATA IN or DATA OUT phase are due to error conditions.
2617 * Such event may only happen when the SCRIPTS is using a
2618 * multibyte SCSI MOVE.
2619 *
2620 * Phase change Some possible cause
2621 *
2622 * COMMAND --> MSG IN SCSI parity error detected by target.
2623 * COMMAND --> STATUS Bad command or refused by target.
2624 * MSG OUT --> MSG IN Message rejected by target.
2625 * MSG OUT --> COMMAND Bogus target that discards extended
2626 * negotiation messages.
2627 *
2628 * The code below does not care of the new phase and so
2629 * trusts the target. Why to annoy it ?
2630 * If the interrupted phase is COMMAND phase, we restart at
2631 * dispatcher.
2632 * If a target does not get all the messages after selection,
2633 * the code assumes blindly that the target discards extended
2634 * messages and clears the negotiation status.
2635 * If the target does not want all our response to negotiation,
2636 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2637 * bloat for such a should_not_happen situation).
2638 * In all other situation, we reset the BUS.
2639 * Are these assumptions reasonnable ? (Wait and see ...)
2640 */
2641unexpected_phase:
2642 dsp -= 8;
2643 nxtdsp = 0;
2644
2645 switch (cmd & 7) {
2646 case 2: /* COMMAND phase */
2647 nxtdsp = SCRIPTA_BA(np, dispatch);
2648 break;
2649#if 0
2650 case 3: /* STATUS phase */
2651 nxtdsp = SCRIPTA_BA(np, dispatch);
2652 break;
2653#endif
2654 case 6: /* MSG OUT phase */
2655 /*
2656 * If the device may want to use untagged when we want
2657 * tagged, we prepare an IDENTIFY without disc. granted,
2658 * since we will not be able to handle reselect.
2659 * Otherwise, we just don't care.
2660 */
2661 if (dsp == SCRIPTA_BA(np, send_ident)) {
2662 if (cp->tag != NO_TAG && olen - rest <= 3) {
2663 cp->host_status = HS_BUSY;
2664 np->msgout[0] = IDENTIFY(0, cp->lun);
2665 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2666 }
2667 else
2668 nxtdsp = SCRIPTB_BA(np, ident_break);
2669 }
2670 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2671 dsp == SCRIPTB_BA(np, send_sdtr) ||
2672 dsp == SCRIPTB_BA(np, send_ppr)) {
2673 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2674 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2675 struct scsi_device *dev = cp->cmd->device;
2676 dev->ppr = 0;
2677 }
2678 }
2679 break;
2680#if 0
2681 case 7: /* MSG IN phase */
2682 nxtdsp = SCRIPTA_BA(np, clrack);
2683 break;
2684#endif
2685 }
2686
2687 if (nxtdsp) {
2688 OUTL_DSP(np, nxtdsp);
2689 return;
2690 }
2691
2692reset_all:
2693 sym_start_reset(np);
2694}
2695
2696/*
2697 * chip interrupt handler
2698 *
2699 * In normal situations, interrupt conditions occur one at
2700 * a time. But when something bad happens on the SCSI BUS,
2701 * the chip may raise several interrupt flags before
2702 * stopping and interrupting the CPU. The additionnal
2703 * interrupt flags are stacked in some extra registers
2704 * after the SIP and/or DIP flag has been raised in the
2705 * ISTAT. After the CPU has read the interrupt condition
2706 * flag from SIST or DSTAT, the chip unstacks the other
2707 * interrupt flags and sets the corresponding bits in
2708 * SIST or DSTAT. Since the chip starts stacking once the
2709 * SIP or DIP flag is set, there is a small window of time
2710 * where the stacking does not occur.
2711 *
2712 * Typically, multiple interrupt conditions may happen in
2713 * the following situations:
2714 *
2715 * - SCSI parity error + Phase mismatch (PAR|MA)
2716 * When an parity error is detected in input phase
2717 * and the device switches to msg-in phase inside a
2718 * block MOV.
2719 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2720 * When a stupid device does not want to handle the
2721 * recovery of an SCSI parity error.
2722 * - Some combinations of STO, PAR, UDC, ...
2723 * When using non compliant SCSI stuff, when user is
2724 * doing non compliant hot tampering on the BUS, when
2725 * something really bad happens to a device, etc ...
2726 *
2727 * The heuristic suggested by SYMBIOS to handle
2728 * multiple interrupts is to try unstacking all
2729 * interrupts conditions and to handle them on some
2730 * priority based on error severity.
2731 * This will work when the unstacking has been
2732 * successful, but we cannot be 100 % sure of that,
2733 * since the CPU may have been faster to unstack than
2734 * the chip is able to stack. Hmmm ... But it seems that
2735 * such a situation is very unlikely to happen.
2736 *
2737 * If this happen, for example STO caught by the CPU
2738 * then UDC happenning before the CPU have restarted
2739 * the SCRIPTS, the driver may wrongly complete the
2740 * same command on UDC, since the SCRIPTS didn't restart
2741 * and the DSA still points to the same command.
2742 * We avoid this situation by setting the DSA to an
2743 * invalid value when the CCB is completed and before
2744 * restarting the SCRIPTS.
2745 *
2746 * Another issue is that we need some section of our
2747 * recovery procedures to be somehow uninterruptible but
2748 * the SCRIPTS processor does not provides such a
2749 * feature. For this reason, we handle recovery preferently
2750 * from the C code and check against some SCRIPTS critical
2751 * sections from the C code.
2752 *
2753 * Hopefully, the interrupt handling of the driver is now
2754 * able to resist to weird BUS error conditions, but donnot
2755 * ask me for any guarantee that it will never fail. :-)
2756 * Use at your own decision and risk.
2757 */
2758
2759void sym_interrupt (struct sym_hcb *np)
2760{
2761 u_char istat, istatc;
2762 u_char dstat;
2763 u_short sist;
2764
2765 /*
2766 * interrupt on the fly ?
2767 * (SCRIPTS may still be running)
2768 *
2769 * A `dummy read' is needed to ensure that the
2770 * clear of the INTF flag reaches the device
2771 * and that posted writes are flushed to memory
2772 * before the scanning of the DONE queue.
2773 * Note that SCRIPTS also (dummy) read to memory
2774 * prior to deliver the INTF interrupt condition.
2775 */
2776 istat = INB(np, nc_istat);
2777 if (istat & INTF) {
2778 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2779 istat = INB(np, nc_istat); /* DUMMY READ */
2780 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2781 sym_wakeup_done(np);
2782 }
2783
2784 if (!(istat & (SIP|DIP)))
2785 return;
2786
2787#if 0 /* We should never get this one */
2788 if (istat & CABRT)
2789 OUTB(np, nc_istat, CABRT);
2790#endif
2791
2792 /*
2793 * PAR and MA interrupts may occur at the same time,
2794 * and we need to know of both in order to handle
2795 * this situation properly. We try to unstack SCSI
2796 * interrupts for that reason. BTW, I dislike a LOT
2797 * such a loop inside the interrupt routine.
2798 * Even if DMA interrupt stacking is very unlikely to
2799 * happen, we also try unstacking these ones, since
2800 * this has no performance impact.
2801 */
2802 sist = 0;
2803 dstat = 0;
2804 istatc = istat;
2805 do {
2806 if (istatc & SIP)
2807 sist |= INW(np, nc_sist);
2808 if (istatc & DIP)
2809 dstat |= INB(np, nc_dstat);
2810 istatc = INB(np, nc_istat);
2811 istat |= istatc;
2812 } while (istatc & (SIP|DIP));
2813
2814 if (DEBUG_FLAGS & DEBUG_TINY)
2815 printf ("<%d|%x:%x|%x:%x>",
2816 (int)INB(np, nc_scr0),
2817 dstat,sist,
2818 (unsigned)INL(np, nc_dsp),
2819 (unsigned)INL(np, nc_dbc));
2820 /*
2821 * On paper, a memory read barrier may be needed here to
2822 * prevent out of order LOADs by the CPU from having
2823 * prefetched stale data prior to DMA having occurred.
2824 * And since we are paranoid ... :)
2825 */
2826 MEMORY_READ_BARRIER();
2827
2828 /*
2829 * First, interrupts we want to service cleanly.
2830 *
2831 * Phase mismatch (MA) is the most frequent interrupt
2832 * for chip earlier than the 896 and so we have to service
2833 * it as quickly as possible.
2834 * A SCSI parity error (PAR) may be combined with a phase
2835 * mismatch condition (MA).
2836 * Programmed interrupts (SIR) are used to call the C code
2837 * from SCRIPTS.
2838 * The single step interrupt (SSI) is not used in this
2839 * driver.
2840 */
2841 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2842 !(dstat & (MDPE|BF|ABRT|IID))) {
2843 if (sist & PAR) sym_int_par (np, sist);
2844 else if (sist & MA) sym_int_ma (np);
2845 else if (dstat & SIR) sym_int_sir (np);
2846 else if (dstat & SSI) OUTONB_STD();
2847 else goto unknown_int;
2848 return;
2849 }
2850
2851 /*
2852 * Now, interrupts that donnot happen in normal
2853 * situations and that we may need to recover from.
2854 *
2855 * On SCSI RESET (RST), we reset everything.
2856 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2857 * active CCBs with RESET status, prepare all devices
2858 * for negotiating again and restart the SCRIPTS.
2859 * On STO and UDC, we complete the CCB with the corres-
2860 * ponding status and restart the SCRIPTS.
2861 */
2862 if (sist & RST) {
2863 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2864 sym_start_up (np, 1);
2865 return;
2866 }
2867
2868 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2869 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2870
2871 if (!(sist & (GEN|HTH|SGE)) &&
2872 !(dstat & (MDPE|BF|ABRT|IID))) {
2873 if (sist & SBMC) sym_int_sbmc (np);
2874 else if (sist & STO) sym_int_sto (np);
2875 else if (sist & UDC) sym_int_udc (np);
2876 else goto unknown_int;
2877 return;
2878 }
2879
2880 /*
2881 * Now, interrupts we are not able to recover cleanly.
2882 *
2883 * Log message for hard errors.
2884 * Reset everything.
2885 */
2886
2887 sym_log_hard_error(np, sist, dstat);
2888
2889 if ((sist & (GEN|HTH|SGE)) ||
2890 (dstat & (MDPE|BF|ABRT|IID))) {
2891 sym_start_reset(np);
2892 return;
2893 }
2894
2895unknown_int:
2896 /*
2897 * We just miss the cause of the interrupt. :(
2898 * Print a message. The timeout will do the real work.
2899 */
2900 printf( "%s: unknown interrupt(s) ignored, "
2901 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2902 sym_name(np), istat, dstat, sist);
2903}
2904
2905/*
2906 * Dequeue from the START queue all CCBs that match
2907 * a given target/lun/task condition (-1 means all),
2908 * and move them from the BUSY queue to the COMP queue
53222b90 2909 * with DID_SOFT_ERROR status condition.
1da177e4
LT
2910 * This function is used during error handling/recovery.
2911 * It is called with SCRIPTS not running.
2912 */
2913static int
2914sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2915{
2916 int j;
2917 struct sym_ccb *cp;
2918
2919 /*
2920 * Make sure the starting index is within range.
2921 */
2922 assert((i >= 0) && (i < 2*MAX_QUEUE));
2923
2924 /*
2925 * Walk until end of START queue and dequeue every job
2926 * that matches the target/lun/task condition.
2927 */
2928 j = i;
2929 while (i != np->squeueput) {
2930 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2931 assert(cp);
2932#ifdef SYM_CONF_IARB_SUPPORT
2933 /* Forget hints for IARB, they may be no longer relevant */
2934 cp->host_flags &= ~HF_HINT_IARB;
2935#endif
2936 if ((target == -1 || cp->target == target) &&
2937 (lun == -1 || cp->lun == lun) &&
2938 (task == -1 || cp->tag == task)) {
53222b90 2939 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
1da177e4
LT
2940 sym_remque(&cp->link_ccbq);
2941 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2942 }
2943 else {
2944 if (i != j)
2945 np->squeue[j] = np->squeue[i];
2946 if ((j += 2) >= MAX_QUEUE*2) j = 0;
2947 }
2948 if ((i += 2) >= MAX_QUEUE*2) i = 0;
2949 }
2950 if (i != j) /* Copy back the idle task if needed */
2951 np->squeue[j] = np->squeue[i];
2952 np->squeueput = j; /* Update our current start queue pointer */
2953
2954 return (i - j) / 2;
2955}
2956
2957/*
2958 * chip handler for bad SCSI status condition
2959 *
2960 * In case of bad SCSI status, we unqueue all the tasks
2961 * currently queued to the controller but not yet started
2962 * and then restart the SCRIPTS processor immediately.
2963 *
2964 * QUEUE FULL and BUSY conditions are handled the same way.
2965 * Basically all the not yet started tasks are requeued in
2966 * device queue and the queue is frozen until a completion.
2967 *
2968 * For CHECK CONDITION and COMMAND TERMINATED status, we use
2969 * the CCB of the failed command to prepare a REQUEST SENSE
2970 * SCSI command and queue it to the controller queue.
2971 *
2972 * SCRATCHA is assumed to have been loaded with STARTPOS
2973 * before the SCRIPTS called the C code.
2974 */
2975static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
2976{
2977 u32 startp;
2978 u_char s_status = cp->ssss_status;
2979 u_char h_flags = cp->host_flags;
2980 int msglen;
2981 int i;
2982
2983 /*
2984 * Compute the index of the next job to start from SCRIPTS.
2985 */
2986 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
2987
2988 /*
2989 * The last CCB queued used for IARB hint may be
2990 * no longer relevant. Forget it.
2991 */
2992#ifdef SYM_CONF_IARB_SUPPORT
2993 if (np->last_cp)
2994 np->last_cp = 0;
2995#endif
2996
2997 /*
2998 * Now deal with the SCSI status.
2999 */
3000 switch(s_status) {
3001 case S_BUSY:
3002 case S_QUEUE_FULL:
3003 if (sym_verbose >= 2) {
3004 sym_print_addr(cp->cmd, "%s\n",
3005 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3006 }
3007 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3008 sym_complete_error (np, cp);
3009 break;
3010 case S_TERMINATED:
3011 case S_CHECK_COND:
3012 /*
3013 * If we get an SCSI error when requesting sense, give up.
3014 */
3015 if (h_flags & HF_SENSE) {
3016 sym_complete_error (np, cp);
3017 break;
3018 }
3019
3020 /*
3021 * Dequeue all queued CCBs for that device not yet started,
3022 * and restart the SCRIPTS processor immediately.
3023 */
3024 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3025 OUTL_DSP(np, SCRIPTA_BA(np, start));
3026
3027 /*
3028 * Save some info of the actual IO.
3029 * Compute the data residual.
3030 */
3031 cp->sv_scsi_status = cp->ssss_status;
3032 cp->sv_xerr_status = cp->xerr_status;
3033 cp->sv_resid = sym_compute_residual(np, cp);
3034
3035 /*
3036 * Prepare all needed data structures for
3037 * requesting sense data.
3038 */
3039
3040 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3041 msglen = 1;
3042
3043 /*
3044 * If we are currently using anything different from
3045 * async. 8 bit data transfers with that target,
3046 * start a negotiation, since the device may want
3047 * to report us a UNIT ATTENTION condition due to
3048 * a cause we currently ignore, and we donnot want
3049 * to be stuck with WIDE and/or SYNC data transfer.
3050 *
3051 * cp->nego_status is filled by sym_prepare_nego().
3052 */
3053 cp->nego_status = 0;
3054 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3055 /*
3056 * Message table indirect structure.
3057 */
53222b90 3058 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
1da177e4
LT
3059 cp->phys.smsg.size = cpu_to_scr(msglen);
3060
3061 /*
3062 * sense command
3063 */
53222b90 3064 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
1da177e4
LT
3065 cp->phys.cmd.size = cpu_to_scr(6);
3066
3067 /*
3068 * patch requested size into sense command
3069 */
3070 cp->sensecmd[0] = REQUEST_SENSE;
3071 cp->sensecmd[1] = 0;
3072 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3073 cp->sensecmd[1] = cp->lun << 5;
3074 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3075 cp->data_len = SYM_SNS_BBUF_LEN;
3076
3077 /*
3078 * sense data
3079 */
3080 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
53222b90 3081 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
1da177e4
LT
3082 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3083
3084 /*
3085 * requeue the command.
3086 */
3087 startp = SCRIPTB_BA(np, sdata_in);
3088
3089 cp->phys.head.savep = cpu_to_scr(startp);
3090 cp->phys.head.lastp = cpu_to_scr(startp);
3091 cp->startp = cpu_to_scr(startp);
3092 cp->goalp = cpu_to_scr(startp + 16);
3093
3094 cp->host_xflags = 0;
3095 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3096 cp->ssss_status = S_ILLEGAL;
3097 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3098 cp->xerr_status = 0;
3099 cp->extra_bytes = 0;
3100
3101 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3102
3103 /*
3104 * Requeue the command.
3105 */
3106 sym_put_start_queue(np, cp);
3107
3108 /*
3109 * Give back to upper layer everything we have dequeued.
3110 */
3111 sym_flush_comp_queue(np, 0);
3112 break;
3113 }
3114}
3115
3116/*
3117 * After a device has accepted some management message
3118 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3119 * a device signals a UNIT ATTENTION condition, some
3120 * tasks are thrown away by the device. We are required
3121 * to reflect that on our tasks list since the device
3122 * will never complete these tasks.
3123 *
3124 * This function move from the BUSY queue to the COMP
3125 * queue all disconnected CCBs for a given target that
3126 * match the following criteria:
3127 * - lun=-1 means any logical UNIT otherwise a given one.
3128 * - task=-1 means any task, otherwise a given one.
3129 */
3130int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3131{
3132 SYM_QUEHEAD qtmp, *qp;
3133 int i = 0;
3134 struct sym_ccb *cp;
3135
3136 /*
3137 * Move the entire BUSY queue to our temporary queue.
3138 */
3139 sym_que_init(&qtmp);
3140 sym_que_splice(&np->busy_ccbq, &qtmp);
3141 sym_que_init(&np->busy_ccbq);
3142
3143 /*
3144 * Put all CCBs that matches our criteria into
3145 * the COMP queue and put back other ones into
3146 * the BUSY queue.
3147 */
3148 while ((qp = sym_remque_head(&qtmp)) != 0) {
3149 struct scsi_cmnd *cmd;
3150 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3151 cmd = cp->cmd;
3152 if (cp->host_status != HS_DISCONNECT ||
3153 cp->target != target ||
3154 (lun != -1 && cp->lun != lun) ||
3155 (task != -1 &&
3156 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3157 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3158 continue;
3159 }
3160 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3161
3162 /* Preserve the software timeout condition */
53222b90 3163 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
1da177e4
LT
3164 sym_set_cam_status(cmd, cam_status);
3165 ++i;
3166#if 0
3167printf("XXXX TASK @%p CLEARED\n", cp);
3168#endif
3169 }
3170 return i;
3171}
3172
3173/*
3174 * chip handler for TASKS recovery
3175 *
3176 * We cannot safely abort a command, while the SCRIPTS
3177 * processor is running, since we just would be in race
3178 * with it.
3179 *
3180 * As long as we have tasks to abort, we keep the SEM
3181 * bit set in the ISTAT. When this bit is set, the
3182 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3183 * each time it enters the scheduler.
3184 *
3185 * If we have to reset a target, clear tasks of a unit,
3186 * or to perform the abort of a disconnected job, we
3187 * restart the SCRIPTS for selecting the target. Once
3188 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3189 * If it loses arbitration, the SCRIPTS will interrupt again
3190 * the next time it will enter its scheduler, and so on ...
3191 *
3192 * On SIR_TARGET_SELECTED, we scan for the more
3193 * appropriate thing to do:
3194 *
3195 * - If nothing, we just sent a M_ABORT message to the
3196 * target to get rid of the useless SCSI bus ownership.
3197 * According to the specs, no tasks shall be affected.
3198 * - If the target is to be reset, we send it a M_RESET
3199 * message.
3200 * - If a logical UNIT is to be cleared , we send the
3201 * IDENTIFY(lun) + M_ABORT.
3202 * - If an untagged task is to be aborted, we send the
3203 * IDENTIFY(lun) + M_ABORT.
3204 * - If a tagged task is to be aborted, we send the
3205 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3206 *
3207 * Once our 'kiss of death' :) message has been accepted
3208 * by the target, the SCRIPTS interrupts again
3209 * (SIR_ABORT_SENT). On this interrupt, we complete
3210 * all the CCBs that should have been aborted by the
3211 * target according to our message.
3212 */
3213static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3214{
3215 SYM_QUEHEAD *qp;
3216 struct sym_ccb *cp;
3217 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3218 struct scsi_target *starget;
3219 int target=-1, lun=-1, task;
3220 int i, k;
3221
3222 switch(num) {
3223 /*
3224 * The SCRIPTS processor stopped before starting
3225 * the next command in order to allow us to perform
3226 * some task recovery.
3227 */
3228 case SIR_SCRIPT_STOPPED:
3229 /*
3230 * Do we have any target to reset or unit to clear ?
3231 */
3232 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3233 tp = &np->target[i];
3234 if (tp->to_reset ||
3235 (tp->lun0p && tp->lun0p->to_clear)) {
3236 target = i;
3237 break;
3238 }
3239 if (!tp->lunmp)
3240 continue;
3241 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3242 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3243 target = i;
3244 break;
3245 }
3246 }
3247 if (target != -1)
3248 break;
3249 }
3250
3251 /*
3252 * If not, walk the busy queue for any
3253 * disconnected CCB to be aborted.
3254 */
3255 if (target == -1) {
3256 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3257 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3258 if (cp->host_status != HS_DISCONNECT)
3259 continue;
3260 if (cp->to_abort) {
3261 target = cp->target;
3262 break;
3263 }
3264 }
3265 }
3266
3267 /*
3268 * If some target is to be selected,
3269 * prepare and start the selection.
3270 */
3271 if (target != -1) {
3272 tp = &np->target[target];
3273 np->abrt_sel.sel_id = target;
3274 np->abrt_sel.sel_scntl3 = tp->head.wval;
3275 np->abrt_sel.sel_sxfer = tp->head.sval;
3276 OUTL(np, nc_dsa, np->hcb_ba);
3277 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3278 return;
3279 }
3280
3281 /*
3282 * Now look for a CCB to abort that haven't started yet.
3283 * Btw, the SCRIPTS processor is still stopped, so
3284 * we are not in race.
3285 */
3286 i = 0;
3287 cp = NULL;
3288 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3289 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3290 if (cp->host_status != HS_BUSY &&
3291 cp->host_status != HS_NEGOTIATE)
3292 continue;
3293 if (!cp->to_abort)
3294 continue;
3295#ifdef SYM_CONF_IARB_SUPPORT
3296 /*
3297 * If we are using IMMEDIATE ARBITRATION, we donnot
3298 * want to cancel the last queued CCB, since the
3299 * SCRIPTS may have anticipated the selection.
3300 */
3301 if (cp == np->last_cp) {
3302 cp->to_abort = 0;
3303 continue;
3304 }
3305#endif
3306 i = 1; /* Means we have found some */
3307 break;
3308 }
3309 if (!i) {
3310 /*
3311 * We are done, so we donnot need
3312 * to synchronize with the SCRIPTS anylonger.
3313 * Remove the SEM flag from the ISTAT.
3314 */
3315 np->istat_sem = 0;
3316 OUTB(np, nc_istat, SIGP);
3317 break;
3318 }
3319 /*
3320 * Compute index of next position in the start
3321 * queue the SCRIPTS intends to start and dequeue
3322 * all CCBs for that device that haven't been started.
3323 */
3324 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3325 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3326
3327 /*
3328 * Make sure at least our IO to abort has been dequeued.
3329 */
3330#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
53222b90 3331 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
1da177e4
LT
3332#else
3333 sym_remque(&cp->link_ccbq);
3334 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3335#endif
3336 /*
3337 * Keep track in cam status of the reason of the abort.
3338 */
3339 if (cp->to_abort == 2)
53222b90 3340 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
1da177e4 3341 else
53222b90 3342 sym_set_cam_status(cp->cmd, DID_ABORT);
1da177e4
LT
3343
3344 /*
3345 * Complete with error everything that we have dequeued.
3346 */
3347 sym_flush_comp_queue(np, 0);
3348 break;
3349 /*
3350 * The SCRIPTS processor has selected a target
3351 * we may have some manual recovery to perform for.
3352 */
3353 case SIR_TARGET_SELECTED:
3354 target = INB(np, nc_sdid) & 0xf;
3355 tp = &np->target[target];
3356
3357 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3358
3359 /*
3360 * If the target is to be reset, prepare a
3361 * M_RESET message and clear the to_reset flag
3362 * since we donnot expect this operation to fail.
3363 */
3364 if (tp->to_reset) {
3365 np->abrt_msg[0] = M_RESET;
3366 np->abrt_tbl.size = 1;
3367 tp->to_reset = 0;
3368 break;
3369 }
3370
3371 /*
3372 * Otherwise, look for some logical unit to be cleared.
3373 */
3374 if (tp->lun0p && tp->lun0p->to_clear)
3375 lun = 0;
3376 else if (tp->lunmp) {
3377 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3378 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3379 lun = k;
3380 break;
3381 }
3382 }
3383 }
3384
3385 /*
3386 * If a logical unit is to be cleared, prepare
3387 * an IDENTIFY(lun) + ABORT MESSAGE.
3388 */
3389 if (lun != -1) {
3390 struct sym_lcb *lp = sym_lp(tp, lun);
3391 lp->to_clear = 0; /* We don't expect to fail here */
3392 np->abrt_msg[0] = IDENTIFY(0, lun);
3393 np->abrt_msg[1] = M_ABORT;
3394 np->abrt_tbl.size = 2;
3395 break;
3396 }
3397
3398 /*
3399 * Otherwise, look for some disconnected job to
3400 * abort for this target.
3401 */
3402 i = 0;
3403 cp = NULL;
3404 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3405 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3406 if (cp->host_status != HS_DISCONNECT)
3407 continue;
3408 if (cp->target != target)
3409 continue;
3410 if (!cp->to_abort)
3411 continue;
3412 i = 1; /* Means we have some */
3413 break;
3414 }
3415
3416 /*
3417 * If we have none, probably since the device has
3418 * completed the command before we won abitration,
3419 * send a M_ABORT message without IDENTIFY.
3420 * According to the specs, the device must just
3421 * disconnect the BUS and not abort any task.
3422 */
3423 if (!i) {
3424 np->abrt_msg[0] = M_ABORT;
3425 np->abrt_tbl.size = 1;
3426 break;
3427 }
3428
3429 /*
3430 * We have some task to abort.
3431 * Set the IDENTIFY(lun)
3432 */
3433 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3434
3435 /*
3436 * If we want to abort an untagged command, we
3437 * will send a IDENTIFY + M_ABORT.
3438 * Otherwise (tagged command), we will send
3439 * a IDENTITFY + task attributes + ABORT TAG.
3440 */
3441 if (cp->tag == NO_TAG) {
3442 np->abrt_msg[1] = M_ABORT;
3443 np->abrt_tbl.size = 2;
3444 } else {
3445 np->abrt_msg[1] = cp->scsi_smsg[1];
3446 np->abrt_msg[2] = cp->scsi_smsg[2];
3447 np->abrt_msg[3] = M_ABORT_TAG;
3448 np->abrt_tbl.size = 4;
3449 }
3450 /*
3451 * Keep track of software timeout condition, since the
3452 * peripheral driver may not count retries on abort
3453 * conditions not due to timeout.
3454 */
3455 if (cp->to_abort == 2)
53222b90 3456 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
1da177e4
LT
3457 cp->to_abort = 0; /* We donnot expect to fail here */
3458 break;
3459
3460 /*
3461 * The target has accepted our message and switched
3462 * to BUS FREE phase as we expected.
3463 */
3464 case SIR_ABORT_SENT:
3465 target = INB(np, nc_sdid) & 0xf;
3466 tp = &np->target[target];
53222b90 3467 starget = tp->starget;
1da177e4
LT
3468
3469 /*
3470 ** If we didn't abort anything, leave here.
3471 */
3472 if (np->abrt_msg[0] == M_ABORT)
3473 break;
3474
3475 /*
3476 * If we sent a M_RESET, then a hardware reset has
3477 * been performed by the target.
3478 * - Reset everything to async 8 bit
3479 * - Tell ourself to negotiate next time :-)
3480 * - Prepare to clear all disconnected CCBs for
3481 * this target from our task list (lun=task=-1)
3482 */
3483 lun = -1;
3484 task = -1;
3485 if (np->abrt_msg[0] == M_RESET) {
3486 tp->head.sval = 0;
3487 tp->head.wval = np->rv_scntl3;
3488 tp->head.uval = 0;
3489 spi_period(starget) = 0;
3490 spi_offset(starget) = 0;
3491 spi_width(starget) = 0;
3492 spi_iu(starget) = 0;
3493 spi_dt(starget) = 0;
3494 spi_qas(starget) = 0;
3495 tp->tgoal.check_nego = 1;
3496 }
3497
3498 /*
3499 * Otherwise, check for the LUN and TASK(s)
3500 * concerned by the cancelation.
3501 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3502 * or an ABORT message :-)
3503 */
3504 else {
3505 lun = np->abrt_msg[0] & 0x3f;
3506 if (np->abrt_msg[1] == M_ABORT_TAG)
3507 task = np->abrt_msg[2];
3508 }
3509
3510 /*
3511 * Complete all the CCBs the device should have
3512 * aborted due to our 'kiss of death' message.
3513 */
3514 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3515 sym_dequeue_from_squeue(np, i, target, lun, -1);
53222b90 3516 sym_clear_tasks(np, DID_ABORT, target, lun, task);
1da177e4
LT
3517 sym_flush_comp_queue(np, 0);
3518
3519 /*
3520 * If we sent a BDR, make upper layer aware of that.
3521 */
3522 if (np->abrt_msg[0] == M_RESET)
3523 sym_xpt_async_sent_bdr(np, target);
3524 break;
3525 }
3526
3527 /*
3528 * Print to the log the message we intend to send.
3529 */
3530 if (num == SIR_TARGET_SELECTED) {
53222b90 3531 dev_info(&tp->starget->dev, "control msgout:");
1da177e4
LT
3532 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3533 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3534 }
3535
3536 /*
3537 * Let the SCRIPTS processor continue.
3538 */
3539 OUTONB_STD();
3540}
3541
3542/*
3543 * Gerard's alchemy:) that deals with with the data
3544 * pointer for both MDP and the residual calculation.
3545 *
3546 * I didn't want to bloat the code by more than 200
3547 * lines for the handling of both MDP and the residual.
3548 * This has been achieved by using a data pointer
3549 * representation consisting in an index in the data
3550 * array (dp_sg) and a negative offset (dp_ofs) that
3551 * have the following meaning:
3552 *
3553 * - dp_sg = SYM_CONF_MAX_SG
3554 * we are at the end of the data script.
3555 * - dp_sg < SYM_CONF_MAX_SG
3556 * dp_sg points to the next entry of the scatter array
3557 * we want to transfer.
3558 * - dp_ofs < 0
3559 * dp_ofs represents the residual of bytes of the
3560 * previous entry scatter entry we will send first.
3561 * - dp_ofs = 0
3562 * no residual to send first.
3563 *
3564 * The function sym_evaluate_dp() accepts an arbitray
3565 * offset (basically from the MDP message) and returns
3566 * the corresponding values of dp_sg and dp_ofs.
3567 */
3568
3569static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3570{
3571 u32 dp_scr;
3572 int dp_ofs, dp_sg, dp_sgmin;
3573 int tmp;
3574 struct sym_pmc *pm;
3575
3576 /*
3577 * Compute the resulted data pointer in term of a script
3578 * address within some DATA script and a signed byte offset.
3579 */
3580 dp_scr = scr;
3581 dp_ofs = *ofs;
3582 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3583 pm = &cp->phys.pm0;
3584 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3585 pm = &cp->phys.pm1;
3586 else
3587 pm = NULL;
3588
3589 if (pm) {
3590 dp_scr = scr_to_cpu(pm->ret);
e2230eac 3591 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
1da177e4
LT
3592 }
3593
3594 /*
3595 * If we are auto-sensing, then we are done.
3596 */
3597 if (cp->host_flags & HF_SENSE) {
3598 *ofs = dp_ofs;
3599 return 0;
3600 }
3601
3602 /*
3603 * Deduce the index of the sg entry.
3604 * Keep track of the index of the first valid entry.
3605 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3606 * end of the data.
3607 */
44f30b0f 3608 tmp = scr_to_cpu(cp->goalp);
1da177e4
LT
3609 dp_sg = SYM_CONF_MAX_SG;
3610 if (dp_scr != tmp)
3611 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3612 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3613
3614 /*
3615 * Move to the sg entry the data pointer belongs to.
3616 *
3617 * If we are inside the data area, we expect result to be:
3618 *
3619 * Either,
3620 * dp_ofs = 0 and dp_sg is the index of the sg entry
3621 * the data pointer belongs to (or the end of the data)
3622 * Or,
3623 * dp_ofs < 0 and dp_sg is the index of the sg entry
3624 * the data pointer belongs to + 1.
3625 */
3626 if (dp_ofs < 0) {
3627 int n;
3628 while (dp_sg > dp_sgmin) {
3629 --dp_sg;
3630 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3631 n = dp_ofs + (tmp & 0xffffff);
3632 if (n > 0) {
3633 ++dp_sg;
3634 break;
3635 }
3636 dp_ofs = n;
3637 }
3638 }
3639 else if (dp_ofs > 0) {
3640 while (dp_sg < SYM_CONF_MAX_SG) {
3641 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3642 dp_ofs -= (tmp & 0xffffff);
3643 ++dp_sg;
3644 if (dp_ofs <= 0)
3645 break;
3646 }
3647 }
3648
3649 /*
3650 * Make sure the data pointer is inside the data area.
3651 * If not, return some error.
3652 */
3653 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3654 goto out_err;
3655 else if (dp_sg > SYM_CONF_MAX_SG ||
3656 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3657 goto out_err;
3658
3659 /*
3660 * Save the extreme pointer if needed.
3661 */
3662 if (dp_sg > cp->ext_sg ||
3663 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3664 cp->ext_sg = dp_sg;
3665 cp->ext_ofs = dp_ofs;
3666 }
3667
3668 /*
3669 * Return data.
3670 */
3671 *ofs = dp_ofs;
3672 return dp_sg;
3673
3674out_err:
3675 return -1;
3676}
3677
3678/*
3679 * chip handler for MODIFY DATA POINTER MESSAGE
3680 *
3681 * We also call this function on IGNORE WIDE RESIDUE
3682 * messages that do not match a SWIDE full condition.
3683 * Btw, we assume in that situation that such a message
3684 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3685 */
3686
3687static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3688{
3689 int dp_ofs = ofs;
3690 u32 dp_scr = sym_get_script_dp (np, cp);
3691 u32 dp_ret;
3692 u32 tmp;
3693 u_char hflags;
3694 int dp_sg;
3695 struct sym_pmc *pm;
3696
3697 /*
3698 * Not supported for auto-sense.
3699 */
3700 if (cp->host_flags & HF_SENSE)
3701 goto out_reject;
3702
3703 /*
3704 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3705 * to the resulted data pointer.
3706 */
3707 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3708 if (dp_sg < 0)
3709 goto out_reject;
3710
3711 /*
3712 * And our alchemy:) allows to easily calculate the data
3713 * script address we want to return for the next data phase.
3714 */
44f30b0f 3715 dp_ret = cpu_to_scr(cp->goalp);
1da177e4
LT
3716 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3717
3718 /*
3719 * If offset / scatter entry is zero we donnot need
3720 * a context for the new current data pointer.
3721 */
3722 if (dp_ofs == 0) {
3723 dp_scr = dp_ret;
3724 goto out_ok;
3725 }
3726
3727 /*
3728 * Get a context for the new current data pointer.
3729 */
3730 hflags = INB(np, HF_PRT);
3731
3732 if (hflags & HF_DP_SAVED)
3733 hflags ^= HF_ACT_PM;
3734
3735 if (!(hflags & HF_ACT_PM)) {
3736 pm = &cp->phys.pm0;
3737 dp_scr = SCRIPTA_BA(np, pm0_data);
3738 }
3739 else {
3740 pm = &cp->phys.pm1;
3741 dp_scr = SCRIPTA_BA(np, pm1_data);
3742 }
3743
3744 hflags &= ~(HF_DP_SAVED);
3745
3746 OUTB(np, HF_PRT, hflags);
3747
3748 /*
3749 * Set up the new current data pointer.
3750 * ofs < 0 there, and for the next data phase, we
3751 * want to transfer part of the data of the sg entry
3752 * corresponding to index dp_sg-1 prior to returning
3753 * to the main data script.
3754 */
3755 pm->ret = cpu_to_scr(dp_ret);
3756 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3757 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3758 pm->sg.addr = cpu_to_scr(tmp);
3759 pm->sg.size = cpu_to_scr(-dp_ofs);
3760
3761out_ok:
3762 sym_set_script_dp (np, cp, dp_scr);
3763 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3764 return;
3765
3766out_reject:
3767 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3768}
3769
3770
3771/*
3772 * chip calculation of the data residual.
3773 *
3774 * As I used to say, the requirement of data residual
3775 * in SCSI is broken, useless and cannot be achieved
3776 * without huge complexity.
3777 * But most OSes and even the official CAM require it.
3778 * When stupidity happens to be so widely spread inside
3779 * a community, it gets hard to convince.
3780 *
3781 * Anyway, I don't care, since I am not going to use
3782 * any software that considers this data residual as
3783 * a relevant information. :)
3784 */
3785
3786int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3787{
3788 int dp_sg, dp_sgmin, resid = 0;
3789 int dp_ofs = 0;
3790
3791 /*
3792 * Check for some data lost or just thrown away.
3793 * We are not required to be quite accurate in this
3794 * situation. Btw, if we are odd for output and the
3795 * device claims some more data, it may well happen
3796 * than our residual be zero. :-)
3797 */
3798 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3799 if (cp->xerr_status & XE_EXTRA_DATA)
3800 resid -= cp->extra_bytes;
3801 if (cp->xerr_status & XE_SODL_UNRUN)
3802 ++resid;
3803 if (cp->xerr_status & XE_SWIDE_OVRUN)
3804 --resid;
3805 }
3806
3807 /*
3808 * If all data has been transferred,
3809 * there is no residual.
3810 */
44f30b0f 3811 if (cp->phys.head.lastp == cp->goalp)
1da177e4
LT
3812 return resid;
3813
3814 /*
3815 * If no data transfer occurs, or if the data
3816 * pointer is weird, return full residual.
3817 */
3818 if (cp->startp == cp->phys.head.lastp ||
3819 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3820 &dp_ofs) < 0) {
3821 return cp->data_len;
3822 }
3823
3824 /*
3825 * If we were auto-sensing, then we are done.
3826 */
3827 if (cp->host_flags & HF_SENSE) {
3828 return -dp_ofs;
3829 }
3830
3831 /*
3832 * We are now full comfortable in the computation
3833 * of the data residual (2's complement).
3834 */
3835 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3836 resid = -cp->ext_ofs;
3837 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3838 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3839 resid += (tmp & 0xffffff);
3840 }
3841
53222b90
MW
3842 resid -= cp->odd_byte_adjustment;
3843
1da177e4
LT
3844 /*
3845 * Hopefully, the result is not too wrong.
3846 */
3847 return resid;
3848}
3849
3850/*
3851 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3852 *
3853 * When we try to negotiate, we append the negotiation message
3854 * to the identify and (maybe) simple tag message.
3855 * The host status field is set to HS_NEGOTIATE to mark this
3856 * situation.
3857 *
3858 * If the target doesn't answer this message immediately
3859 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3860 * will be raised eventually.
3861 * The handler removes the HS_NEGOTIATE status, and sets the
3862 * negotiated value to the default (async / nowide).
3863 *
3864 * If we receive a matching answer immediately, we check it
3865 * for validity, and set the values.
3866 *
3867 * If we receive a Reject message immediately, we assume the
3868 * negotiation has failed, and fall back to standard values.
3869 *
3870 * If we receive a negotiation message while not in HS_NEGOTIATE
3871 * state, it's a target initiated negotiation. We prepare a
3872 * (hopefully) valid answer, set our parameters, and send back
3873 * this answer to the target.
3874 *
3875 * If the target doesn't fetch the answer (no message out phase),
3876 * we assume the negotiation has failed, and fall back to default
3877 * settings (SIR_NEGO_PROTO interrupt).
3878 *
3879 * When we set the values, we adjust them in all ccbs belonging
3880 * to this target, in the controller's register, and in the "phys"
3881 * field of the controller's struct sym_hcb.
3882 */
3883
3884/*
3885 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3886 */
3887static int
3888sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3889{
3890 int target = cp->target;
3891 u_char chg, ofs, per, fak, div;
3892
3893 if (DEBUG_FLAGS & DEBUG_NEGO) {
3894 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3895 }
3896
3897 /*
3898 * Get requested values.
3899 */
3900 chg = 0;
3901 per = np->msgin[3];
3902 ofs = np->msgin[4];
3903
3904 /*
3905 * Check values against our limits.
3906 */
3907 if (ofs) {
3908 if (ofs > np->maxoffs)
3909 {chg = 1; ofs = np->maxoffs;}
3910 }
3911
3912 if (ofs) {
3913 if (per < np->minsync)
3914 {chg = 1; per = np->minsync;}
3915 }
3916
3917 /*
3918 * Get new chip synchronous parameters value.
3919 */
3920 div = fak = 0;
3921 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3922 goto reject_it;
3923
3924 if (DEBUG_FLAGS & DEBUG_NEGO) {
3925 sym_print_addr(cp->cmd,
3926 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3927 ofs, per, div, fak, chg);
3928 }
3929
3930 /*
3931 * If it was an answer we want to change,
3932 * then it isn't acceptable. Reject it.
3933 */
3934 if (!req && chg)
3935 goto reject_it;
3936
3937 /*
3938 * Apply new values.
3939 */
3940 sym_setsync (np, target, ofs, per, div, fak);
3941
3942 /*
3943 * It was an answer. We are done.
3944 */
3945 if (!req)
3946 return 0;
3947
3948 /*
3949 * It was a request. Prepare an answer message.
3950 */
3951 np->msgout[0] = M_EXTENDED;
3952 np->msgout[1] = 3;
3953 np->msgout[2] = M_X_SYNC_REQ;
3954 np->msgout[3] = per;
3955 np->msgout[4] = ofs;
3956
3957 if (DEBUG_FLAGS & DEBUG_NEGO) {
3958 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3959 }
3960
3961 np->msgin [0] = M_NOOP;
3962
3963 return 0;
3964
3965reject_it:
3966 sym_setsync (np, target, 0, 0, 0, 0);
3967 return -1;
3968}
3969
3970static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
3971{
3972 int req = 1;
3973 int result;
3974
3975 /*
3976 * Request or answer ?
3977 */
3978 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
3979 OUTB(np, HS_PRT, HS_BUSY);
3980 if (cp->nego_status && cp->nego_status != NS_SYNC)
3981 goto reject_it;
3982 req = 0;
3983 }
3984
3985 /*
3986 * Check and apply new values.
3987 */
3988 result = sym_sync_nego_check(np, req, cp);
3989 if (result) /* Not acceptable, reject it */
3990 goto reject_it;
3991 if (req) { /* Was a request, send response. */
3992 cp->nego_status = NS_SYNC;
3993 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
3994 }
3995 else /* Was a response, we are done. */
3996 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3997 return;
3998
3999reject_it:
4000 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4001}
4002
4003/*
4004 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4005 */
4006static int
4007sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4008{
4009 struct sym_tcb *tp = &np->target[target];
4010 unsigned char fak, div;
4011 int dt, chg = 0;
4012
4013 unsigned char per = np->msgin[3];
4014 unsigned char ofs = np->msgin[5];
4015 unsigned char wide = np->msgin[6];
4016 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4017
4018 if (DEBUG_FLAGS & DEBUG_NEGO) {
4019 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4020 }
4021
4022 /*
4023 * Check values against our limits.
4024 */
4025 if (wide > np->maxwide) {
4026 chg = 1;
4027 wide = np->maxwide;
4028 }
4029 if (!wide || !(np->features & FE_U3EN))
4030 opts = 0;
4031
4032 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4033 chg = 1;
4034
4035 dt = opts & PPR_OPT_DT;
4036
4037 if (ofs) {
4038 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4039 if (ofs > maxoffs) {
4040 chg = 1;
4041 ofs = maxoffs;
4042 }
4043 }
4044
4045 if (ofs) {
4046 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4047 if (per < minsync) {
4048 chg = 1;
4049 per = minsync;
4050 }
4051 }
4052
4053 /*
4054 * Get new chip synchronous parameters value.
4055 */
4056 div = fak = 0;
4057 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4058 goto reject_it;
4059
4060 /*
4061 * If it was an answer we want to change,
4062 * then it isn't acceptable. Reject it.
4063 */
4064 if (!req && chg)
4065 goto reject_it;
4066
4067 /*
4068 * Apply new values.
4069 */
4070 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4071
4072 /*
4073 * It was an answer. We are done.
4074 */
4075 if (!req)
4076 return 0;
4077
4078 /*
4079 * It was a request. Prepare an answer message.
4080 */
4081 np->msgout[0] = M_EXTENDED;
4082 np->msgout[1] = 6;
4083 np->msgout[2] = M_X_PPR_REQ;
4084 np->msgout[3] = per;
4085 np->msgout[4] = 0;
4086 np->msgout[5] = ofs;
4087 np->msgout[6] = wide;
4088 np->msgout[7] = opts;
4089
4090 if (DEBUG_FLAGS & DEBUG_NEGO) {
4091 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4092 }
4093
4094 np->msgin [0] = M_NOOP;
4095
4096 return 0;
4097
4098reject_it:
4099 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4100 /*
4101 * If it is a device response that should result in
4102 * ST, we may want to try a legacy negotiation later.
4103 */
4104 if (!req && !opts) {
4105 tp->tgoal.period = per;
4106 tp->tgoal.offset = ofs;
4107 tp->tgoal.width = wide;
4108 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4109 tp->tgoal.check_nego = 1;
4110 }
4111 return -1;
4112}
4113
4114static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4115{
4116 int req = 1;
4117 int result;
4118
4119 /*
4120 * Request or answer ?
4121 */
4122 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4123 OUTB(np, HS_PRT, HS_BUSY);
4124 if (cp->nego_status && cp->nego_status != NS_PPR)
4125 goto reject_it;
4126 req = 0;
4127 }
4128
4129 /*
4130 * Check and apply new values.
4131 */
4132 result = sym_ppr_nego_check(np, req, cp->target);
4133 if (result) /* Not acceptable, reject it */
4134 goto reject_it;
4135 if (req) { /* Was a request, send response. */
4136 cp->nego_status = NS_PPR;
4137 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4138 }
4139 else /* Was a response, we are done. */
4140 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4141 return;
4142
4143reject_it:
4144 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4145}
4146
4147/*
4148 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4149 */
4150static int
4151sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4152{
4153 int target = cp->target;
4154 u_char chg, wide;
4155
4156 if (DEBUG_FLAGS & DEBUG_NEGO) {
4157 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4158 }
4159
4160 /*
4161 * Get requested values.
4162 */
4163 chg = 0;
4164 wide = np->msgin[3];
4165
4166 /*
4167 * Check values against our limits.
4168 */
4169 if (wide > np->maxwide) {
4170 chg = 1;
4171 wide = np->maxwide;
4172 }
4173
4174 if (DEBUG_FLAGS & DEBUG_NEGO) {
4175 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4176 wide, chg);
4177 }
4178
4179 /*
4180 * If it was an answer we want to change,
4181 * then it isn't acceptable. Reject it.
4182 */
4183 if (!req && chg)
4184 goto reject_it;
4185
4186 /*
4187 * Apply new values.
4188 */
4189 sym_setwide (np, target, wide);
4190
4191 /*
4192 * It was an answer. We are done.
4193 */
4194 if (!req)
4195 return 0;
4196
4197 /*
4198 * It was a request. Prepare an answer message.
4199 */
4200 np->msgout[0] = M_EXTENDED;
4201 np->msgout[1] = 2;
4202 np->msgout[2] = M_X_WIDE_REQ;
4203 np->msgout[3] = wide;
4204
4205 np->msgin [0] = M_NOOP;
4206
4207 if (DEBUG_FLAGS & DEBUG_NEGO) {
4208 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4209 }
4210
4211 return 0;
4212
4213reject_it:
4214 return -1;
4215}
4216
4217static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4218{
4219 int req = 1;
4220 int result;
4221
4222 /*
4223 * Request or answer ?
4224 */
4225 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4226 OUTB(np, HS_PRT, HS_BUSY);
4227 if (cp->nego_status && cp->nego_status != NS_WIDE)
4228 goto reject_it;
4229 req = 0;
4230 }
4231
4232 /*
4233 * Check and apply new values.
4234 */
4235 result = sym_wide_nego_check(np, req, cp);
4236 if (result) /* Not acceptable, reject it */
4237 goto reject_it;
4238 if (req) { /* Was a request, send response. */
4239 cp->nego_status = NS_WIDE;
4240 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4241 } else { /* Was a response. */
4242 /*
4243 * Negotiate for SYNC immediately after WIDE response.
4244 * This allows to negotiate for both WIDE and SYNC on
4245 * a single SCSI command (Suggested by Justin Gibbs).
4246 */
4247 if (tp->tgoal.offset) {
4248 np->msgout[0] = M_EXTENDED;
4249 np->msgout[1] = 3;
4250 np->msgout[2] = M_X_SYNC_REQ;
4251 np->msgout[3] = tp->tgoal.period;
4252 np->msgout[4] = tp->tgoal.offset;
4253
4254 if (DEBUG_FLAGS & DEBUG_NEGO) {
4255 sym_print_nego_msg(np, cp->target,
4256 "sync msgout", np->msgout);
4257 }
4258
4259 cp->nego_status = NS_SYNC;
4260 OUTB(np, HS_PRT, HS_NEGOTIATE);
4261 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4262 return;
4263 } else
4264 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4265 }
4266
4267 return;
4268
4269reject_it:
4270 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4271}
4272
4273/*
4274 * Reset DT, SYNC or WIDE to default settings.
4275 *
4276 * Called when a negotiation does not succeed either
4277 * on rejection or on protocol error.
4278 *
4279 * A target that understands a PPR message should never
4280 * reject it, and messing with it is very unlikely.
4281 * So, if a PPR makes problems, we may just want to
4282 * try a legacy negotiation later.
4283 */
4284static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4285{
4286 switch (cp->nego_status) {
4287 case NS_PPR:
4288#if 0
4289 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4290#else
4291 if (tp->tgoal.period < np->minsync)
4292 tp->tgoal.period = np->minsync;
4293 if (tp->tgoal.offset > np->maxoffs)
4294 tp->tgoal.offset = np->maxoffs;
4295 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4296 tp->tgoal.check_nego = 1;
4297#endif
4298 break;
4299 case NS_SYNC:
4300 sym_setsync (np, cp->target, 0, 0, 0, 0);
4301 break;
4302 case NS_WIDE:
4303 sym_setwide (np, cp->target, 0);
4304 break;
4305 }
4306 np->msgin [0] = M_NOOP;
4307 np->msgout[0] = M_NOOP;
4308 cp->nego_status = 0;
4309}
4310
4311/*
4312 * chip handler for MESSAGE REJECT received in response to
4313 * PPR, WIDE or SYNCHRONOUS negotiation.
4314 */
4315static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4316{
4317 sym_nego_default(np, tp, cp);
4318 OUTB(np, HS_PRT, HS_BUSY);
4319}
4320
4321/*
4322 * chip exception handler for programmed interrupts.
4323 */
4324static void sym_int_sir (struct sym_hcb *np)
4325{
4326 u_char num = INB(np, nc_dsps);
4327 u32 dsa = INL(np, nc_dsa);
4328 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4329 u_char target = INB(np, nc_sdid) & 0x0f;
4330 struct sym_tcb *tp = &np->target[target];
4331 int tmp;
4332
4333 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4334
4335 switch (num) {
4336#if SYM_CONF_DMA_ADDRESSING_MODE == 2
4337 /*
4338 * SCRIPTS tell us that we may have to update
4339 * 64 bit DMA segment registers.
4340 */
4341 case SIR_DMAP_DIRTY:
4342 sym_update_dmap_regs(np);
4343 goto out;
4344#endif
4345 /*
4346 * Command has been completed with error condition
4347 * or has been auto-sensed.
4348 */
4349 case SIR_COMPLETE_ERROR:
4350 sym_complete_error(np, cp);
4351 return;
4352 /*
4353 * The C code is currently trying to recover from something.
4354 * Typically, user want to abort some command.
4355 */
4356 case SIR_SCRIPT_STOPPED:
4357 case SIR_TARGET_SELECTED:
4358 case SIR_ABORT_SENT:
4359 sym_sir_task_recovery(np, num);
4360 return;
4361 /*
4362 * The device didn't go to MSG OUT phase after having
4363 * been selected with ATN. We donnot want to handle
4364 * that.
4365 */
4366 case SIR_SEL_ATN_NO_MSG_OUT:
4367 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4368 sym_name (np), target);
4369 goto out_stuck;
4370 /*
4371 * The device didn't switch to MSG IN phase after
4372 * having reseleted the initiator.
4373 */
4374 case SIR_RESEL_NO_MSG_IN:
4375 printf ("%s:%d: No MSG IN phase after reselection.\n",
4376 sym_name (np), target);
4377 goto out_stuck;
4378 /*
4379 * After reselection, the device sent a message that wasn't
4380 * an IDENTIFY.
4381 */
4382 case SIR_RESEL_NO_IDENTIFY:
4383 printf ("%s:%d: No IDENTIFY after reselection.\n",
4384 sym_name (np), target);
4385 goto out_stuck;
4386 /*
4387 * The device reselected a LUN we donnot know about.
4388 */
4389 case SIR_RESEL_BAD_LUN:
4390 np->msgout[0] = M_RESET;
4391 goto out;
4392 /*
4393 * The device reselected for an untagged nexus and we
4394 * haven't any.
4395 */
4396 case SIR_RESEL_BAD_I_T_L:
4397 np->msgout[0] = M_ABORT;
4398 goto out;
4399 /*
4400 * The device reselected for a tagged nexus that we donnot
4401 * have.
4402 */
4403 case SIR_RESEL_BAD_I_T_L_Q:
4404 np->msgout[0] = M_ABORT_TAG;
4405 goto out;
4406 /*
4407 * The SCRIPTS let us know that the device has grabbed
4408 * our message and will abort the job.
4409 */
4410 case SIR_RESEL_ABORTED:
4411 np->lastmsg = np->msgout[0];
4412 np->msgout[0] = M_NOOP;
4413 printf ("%s:%d: message %x sent on bad reselection.\n",
4414 sym_name (np), target, np->lastmsg);
4415 goto out;
4416 /*
4417 * The SCRIPTS let us know that a message has been
4418 * successfully sent to the device.
4419 */
4420 case SIR_MSG_OUT_DONE:
4421 np->lastmsg = np->msgout[0];
4422 np->msgout[0] = M_NOOP;
4423 /* Should we really care of that */
4424 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4425 if (cp) {
4426 cp->xerr_status &= ~XE_PARITY_ERR;
4427 if (!cp->xerr_status)
4428 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4429 }
4430 }
4431 goto out;
4432 /*
4433 * The device didn't send a GOOD SCSI status.
4434 * We may have some work to do prior to allow
4435 * the SCRIPTS processor to continue.
4436 */
4437 case SIR_BAD_SCSI_STATUS:
4438 if (!cp)
4439 goto out;
4440 sym_sir_bad_scsi_status(np, num, cp);
4441 return;
4442 /*
4443 * We are asked by the SCRIPTS to prepare a
4444 * REJECT message.
4445 */
4446 case SIR_REJECT_TO_SEND:
4447 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4448 np->msgout[0] = M_REJECT;
4449 goto out;
4450 /*
4451 * We have been ODD at the end of a DATA IN
4452 * transfer and the device didn't send a
4453 * IGNORE WIDE RESIDUE message.
4454 * It is a data overrun condition.
4455 */
4456 case SIR_SWIDE_OVERRUN:
4457 if (cp) {
4458 OUTONB(np, HF_PRT, HF_EXT_ERR);
4459 cp->xerr_status |= XE_SWIDE_OVRUN;
4460 }
4461 goto out;
4462 /*
4463 * We have been ODD at the end of a DATA OUT
4464 * transfer.
4465 * It is a data underrun condition.
4466 */
4467 case SIR_SODL_UNDERRUN:
4468 if (cp) {
4469 OUTONB(np, HF_PRT, HF_EXT_ERR);
4470 cp->xerr_status |= XE_SODL_UNRUN;
4471 }
4472 goto out;
4473 /*
4474 * The device wants us to tranfer more data than
4475 * expected or in the wrong direction.
4476 * The number of extra bytes is in scratcha.
4477 * It is a data overrun condition.
4478 */
4479 case SIR_DATA_OVERRUN:
4480 if (cp) {
4481 OUTONB(np, HF_PRT, HF_EXT_ERR);
4482 cp->xerr_status |= XE_EXTRA_DATA;
4483 cp->extra_bytes += INL(np, nc_scratcha);
4484 }
4485 goto out;
4486 /*
4487 * The device switched to an illegal phase (4/5).
4488 */
4489 case SIR_BAD_PHASE:
4490 if (cp) {
4491 OUTONB(np, HF_PRT, HF_EXT_ERR);
4492 cp->xerr_status |= XE_BAD_PHASE;
4493 }
4494 goto out;
4495 /*
4496 * We received a message.
4497 */
4498 case SIR_MSG_RECEIVED:
4499 if (!cp)
4500 goto out_stuck;
4501 switch (np->msgin [0]) {
4502 /*
4503 * We received an extended message.
4504 * We handle MODIFY DATA POINTER, SDTR, WDTR
4505 * and reject all other extended messages.
4506 */
4507 case M_EXTENDED:
4508 switch (np->msgin [2]) {
4509 case M_X_MODIFY_DP:
4510 if (DEBUG_FLAGS & DEBUG_POINTER)
4511 sym_print_msg(cp,"modify DP",np->msgin);
4512 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4513 (np->msgin[5]<<8) + (np->msgin[6]);
4514 sym_modify_dp(np, tp, cp, tmp);
4515 return;
4516 case M_X_SYNC_REQ:
4517 sym_sync_nego(np, tp, cp);
4518 return;
4519 case M_X_PPR_REQ:
4520 sym_ppr_nego(np, tp, cp);
4521 return;
4522 case M_X_WIDE_REQ:
4523 sym_wide_nego(np, tp, cp);
4524 return;
4525 default:
4526 goto out_reject;
4527 }
4528 break;
4529 /*
4530 * We received a 1/2 byte message not handled from SCRIPTS.
4531 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4532 * RESIDUE messages that haven't been anticipated by
4533 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4534 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4535 */
4536 case M_IGN_RESIDUE:
4537 if (DEBUG_FLAGS & DEBUG_POINTER)
4538 sym_print_msg(cp,"ign wide residue", np->msgin);
4539 if (cp->host_flags & HF_SENSE)
4540 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4541 else
4542 sym_modify_dp(np, tp, cp, -1);
4543 return;
4544 case M_REJECT:
4545 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4546 sym_nego_rejected(np, tp, cp);
4547 else {
4548 sym_print_addr(cp->cmd,
4549 "M_REJECT received (%x:%x).\n",
4550 scr_to_cpu(np->lastmsg), np->msgout[0]);
4551 }
4552 goto out_clrack;
4553 break;
4554 default:
4555 goto out_reject;
4556 }
4557 break;
4558 /*
4559 * We received an unknown message.
4560 * Ignore all MSG IN phases and reject it.
4561 */
4562 case SIR_MSG_WEIRD:
4563 sym_print_msg(cp, "WEIRD message received", np->msgin);
4564 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4565 return;
4566 /*
4567 * Negotiation failed.
4568 * Target does not send us the reply.
4569 * Remove the HS_NEGOTIATE status.
4570 */
4571 case SIR_NEGO_FAILED:
4572 OUTB(np, HS_PRT, HS_BUSY);
4573 /*
4574 * Negotiation failed.
4575 * Target does not want answer message.
4576 */
4577 case SIR_NEGO_PROTO:
4578 sym_nego_default(np, tp, cp);
4579 goto out;
4580 }
4581
4582out:
4583 OUTONB_STD();
4584 return;
4585out_reject:
4586 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4587 return;
4588out_clrack:
4589 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4590 return;
4591out_stuck:
4592 return;
4593}
4594
4595/*
4596 * Acquire a control block
4597 */
4598struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4599{
4600 u_char tn = cmd->device->id;
4601 u_char ln = cmd->device->lun;
4602 struct sym_tcb *tp = &np->target[tn];
4603 struct sym_lcb *lp = sym_lp(tp, ln);
4604 u_short tag = NO_TAG;
4605 SYM_QUEHEAD *qp;
4606 struct sym_ccb *cp = NULL;
4607
4608 /*
4609 * Look for a free CCB
4610 */
4611 if (sym_que_empty(&np->free_ccbq))
4612 sym_alloc_ccb(np);
4613 qp = sym_remque_head(&np->free_ccbq);
4614 if (!qp)
4615 goto out;
4616 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4617
84e203a2 4618 {
1da177e4
LT
4619 /*
4620 * If we have been asked for a tagged command.
4621 */
4622 if (tag_order) {
4623 /*
4624 * Debugging purpose.
4625 */
4626#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4627 assert(lp->busy_itl == 0);
4628#endif
4629 /*
4630 * Allocate resources for tags if not yet.
4631 */
4632 if (!lp->cb_tags) {
4633 sym_alloc_lcb_tags(np, tn, ln);
4634 if (!lp->cb_tags)
4635 goto out_free;
4636 }
4637 /*
4638 * Get a tag for this SCSI IO and set up
4639 * the CCB bus address for reselection,
4640 * and count it for this LUN.
4641 * Toggle reselect path to tagged.
4642 */
4643 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4644 tag = lp->cb_tags[lp->ia_tag];
4645 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4646 lp->ia_tag = 0;
4647 ++lp->busy_itlq;
4648#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4649 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4650 lp->head.resel_sa =
4651 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4652#endif
4653#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4654 cp->tags_si = lp->tags_si;
4655 ++lp->tags_sum[cp->tags_si];
4656 ++lp->tags_since;
4657#endif
4658 }
4659 else
4660 goto out_free;
4661 }
4662 /*
4663 * This command will not be tagged.
4664 * If we already have either a tagged or untagged
4665 * one, refuse to overlap this untagged one.
4666 */
4667 else {
4668 /*
4669 * Debugging purpose.
4670 */
4671#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4672 assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4673#endif
4674 /*
4675 * Count this nexus for this LUN.
4676 * Set up the CCB bus address for reselection.
4677 * Toggle reselect path to untagged.
4678 */
4679 ++lp->busy_itl;
4680#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4681 if (lp->busy_itl == 1) {
4682 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4683 lp->head.resel_sa =
4684 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4685 }
4686 else
4687 goto out_free;
4688#endif
4689 }
4690 }
4691 /*
4692 * Put the CCB into the busy queue.
4693 */
4694 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4695#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4696 if (lp) {
4697 sym_remque(&cp->link2_ccbq);
4698 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4699 }
4700
4701#endif
1da177e4 4702 cp->to_abort = 0;
53222b90 4703 cp->odd_byte_adjustment = 0;
1da177e4
LT
4704 cp->tag = tag;
4705 cp->order = tag_order;
4706 cp->target = tn;
4707 cp->lun = ln;
4708
4709 if (DEBUG_FLAGS & DEBUG_TAGS) {
4710 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4711 }
4712
4713out:
4714 return cp;
4715out_free:
4716 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4717 return NULL;
4718}
4719
4720/*
4721 * Release one control block
4722 */
4723void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4724{
4725 struct sym_tcb *tp = &np->target[cp->target];
4726 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4727
4728 if (DEBUG_FLAGS & DEBUG_TAGS) {
4729 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4730 cp, cp->tag);
4731 }
4732
4733 /*
4734 * If LCB available,
4735 */
4736 if (lp) {
4737 /*
4738 * If tagged, release the tag, set the relect path
4739 */
4740 if (cp->tag != NO_TAG) {
4741#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4742 --lp->tags_sum[cp->tags_si];
4743#endif
4744 /*
4745 * Free the tag value.
4746 */
4747 lp->cb_tags[lp->if_tag] = cp->tag;
4748 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4749 lp->if_tag = 0;
4750 /*
4751 * Make the reselect path invalid,
4752 * and uncount this CCB.
4753 */
4754 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4755 --lp->busy_itlq;
4756 } else { /* Untagged */
4757 /*
4758 * Make the reselect path invalid,
4759 * and uncount this CCB.
4760 */
4761 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4762 --lp->busy_itl;
4763 }
4764 /*
4765 * If no JOB active, make the LUN reselect path invalid.
4766 */
4767 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4768 lp->head.resel_sa =
4769 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4770 }
1da177e4
LT
4771
4772 /*
4773 * We donnot queue more than 1 ccb per target
4774 * with negotiation at any time. If this ccb was
4775 * used for negotiation, clear this info in the tcb.
4776 */
4777 if (cp == tp->nego_cp)
4778 tp->nego_cp = NULL;
4779
4780#ifdef SYM_CONF_IARB_SUPPORT
4781 /*
4782 * If we just complete the last queued CCB,
4783 * clear this info that is no longer relevant.
4784 */
4785 if (cp == np->last_cp)
4786 np->last_cp = 0;
4787#endif
4788
4789 /*
4790 * Make this CCB available.
4791 */
4792 cp->cmd = NULL;
4793 cp->host_status = HS_IDLE;
4794 sym_remque(&cp->link_ccbq);
4795 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4796
4797#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4798 if (lp) {
4799 sym_remque(&cp->link2_ccbq);
4800 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4801 if (cp->started) {
4802 if (cp->tag != NO_TAG)
4803 --lp->started_tags;
4804 else
4805 --lp->started_no_tag;
4806 }
4807 }
4808 cp->started = 0;
4809#endif
4810}
4811
4812/*
4813 * Allocate a CCB from memory and initialize its fixed part.
4814 */
4815static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4816{
4817 struct sym_ccb *cp = NULL;
4818 int hcode;
4819
4820 /*
4821 * Prevent from allocating more CCBs than we can
4822 * queue to the controller.
4823 */
4824 if (np->actccbs >= SYM_CONF_MAX_START)
4825 return NULL;
4826
4827 /*
4828 * Allocate memory for this CCB.
4829 */
4830 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4831 if (!cp)
4832 goto out_free;
4833
4834 /*
4835 * Count it.
4836 */
4837 np->actccbs++;
4838
4839 /*
4840 * Compute the bus address of this ccb.
4841 */
4842 cp->ccb_ba = vtobus(cp);
4843
4844 /*
4845 * Insert this ccb into the hashed list.
4846 */
4847 hcode = CCB_HASH_CODE(cp->ccb_ba);
4848 cp->link_ccbh = np->ccbh[hcode];
4849 np->ccbh[hcode] = cp;
4850
4851 /*
4852 * Initialyze the start and restart actions.
4853 */
4854 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4855 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4856
4857 /*
4858 * Initilialyze some other fields.
4859 */
4860 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4861
4862 /*
4863 * Chain into free ccb queue.
4864 */
4865 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4866
4867 /*
4868 * Chain into optionnal lists.
4869 */
4870#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4871 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4872#endif
4873 return cp;
4874out_free:
4875 if (cp)
4876 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4877 return NULL;
4878}
4879
4880/*
4881 * Look up a CCB from a DSA value.
4882 */
4883static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4884{
4885 int hcode;
4886 struct sym_ccb *cp;
4887
4888 hcode = CCB_HASH_CODE(dsa);
4889 cp = np->ccbh[hcode];
4890 while (cp) {
4891 if (cp->ccb_ba == dsa)
4892 break;
4893 cp = cp->link_ccbh;
4894 }
4895
4896 return cp;
4897}
4898
4899/*
4900 * Target control block initialisation.
4901 * Nothing important to do at the moment.
4902 */
4903static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4904{
4905#if 0 /* Hmmm... this checking looks paranoid. */
4906 /*
4907 * Check some alignments required by the chip.
4908 */
4909 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4910 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4911 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4912 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4913#endif
4914}
4915
4916/*
4917 * Lun control block allocation and initialization.
4918 */
4919struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4920{
4921 struct sym_tcb *tp = &np->target[tn];
84e203a2 4922 struct sym_lcb *lp = NULL;
1da177e4
LT
4923
4924 /*
4925 * Initialize the target control block if not yet.
4926 */
4927 sym_init_tcb (np, tn);
4928
4929 /*
4930 * Allocate the LCB bus address array.
4931 * Compute the bus address of this table.
4932 */
4933 if (ln && !tp->luntbl) {
4934 int i;
4935
4936 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4937 if (!tp->luntbl)
4938 goto fail;
4939 for (i = 0 ; i < 64 ; i++)
4940 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4941 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4942 }
4943
4944 /*
4945 * Allocate the table of pointers for LUN(s) > 0, if needed.
4946 */
4947 if (ln && !tp->lunmp) {
4948 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4949 GFP_KERNEL);
4950 if (!tp->lunmp)
4951 goto fail;
4952 }
4953
4954 /*
4955 * Allocate the lcb.
4956 * Make it available to the chip.
4957 */
4958 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
4959 if (!lp)
4960 goto fail;
4961 if (ln) {
4962 tp->lunmp[ln] = lp;
4963 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
4964 }
4965 else {
4966 tp->lun0p = lp;
4967 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
4968 }
4969
4970 /*
4971 * Let the itl task point to error handling.
4972 */
4973 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4974
4975 /*
4976 * Set the reselect pattern to our default. :)
4977 */
4978 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4979
4980 /*
4981 * Set user capabilities.
4982 */
4983 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4984
4985#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4986 /*
4987 * Initialize device queueing.
4988 */
4989 sym_que_init(&lp->waiting_ccbq);
4990 sym_que_init(&lp->started_ccbq);
4991 lp->started_max = SYM_CONF_MAX_TASK;
4992 lp->started_limit = SYM_CONF_MAX_TASK;
4993#endif
84e203a2 4994
1da177e4
LT
4995fail:
4996 return lp;
4997}
4998
4999/*
5000 * Allocate LCB resources for tagged command queuing.
5001 */
5002static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5003{
5004 struct sym_tcb *tp = &np->target[tn];
5005 struct sym_lcb *lp = sym_lp(tp, ln);
5006 int i;
5007
1da177e4
LT
5008 /*
5009 * Allocate the task table and and the tag allocation
5010 * circular buffer. We want both or none.
5011 */
5012 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5013 if (!lp->itlq_tbl)
5014 goto fail;
53222b90 5015 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
1da177e4
LT
5016 if (!lp->cb_tags) {
5017 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5018 lp->itlq_tbl = NULL;
5019 goto fail;
5020 }
5021
5022 /*
5023 * Initialize the task table with invalid entries.
5024 */
5025 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5026 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5027
5028 /*
5029 * Fill up the tag buffer with tag numbers.
5030 */
5031 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5032 lp->cb_tags[i] = i;
5033
5034 /*
5035 * Make the task table available to SCRIPTS,
5036 * And accept tagged commands now.
5037 */
5038 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5039
5040 return;
5041fail:
5042 return;
5043}
5044
5045/*
5046 * Queue a SCSI IO to the controller.
5047 */
5048int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5049{
5050 struct scsi_device *sdev = cmd->device;
5051 struct sym_tcb *tp;
5052 struct sym_lcb *lp;
5053 u_char *msgptr;
5054 u_int msglen;
5055 int can_disconnect;
5056
5057 /*
5058 * Keep track of the IO in our CCB.
5059 */
5060 cp->cmd = cmd;
5061
5062 /*
5063 * Retrieve the target descriptor.
5064 */
5065 tp = &np->target[cp->target];
5066
5067 /*
5068 * Retrieve the lun descriptor.
5069 */
5070 lp = sym_lp(tp, sdev->lun);
5071
5072 can_disconnect = (cp->tag != NO_TAG) ||
5073 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5074
5075 msgptr = cp->scsi_smsg;
5076 msglen = 0;
5077 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5078
5079 /*
5080 * Build the tag message if present.
5081 */
5082 if (cp->tag != NO_TAG) {
5083 u_char order = cp->order;
5084
5085 switch(order) {
5086 case M_ORDERED_TAG:
5087 break;
5088 case M_HEAD_TAG:
5089 break;
5090 default:
5091 order = M_SIMPLE_TAG;
5092 }
5093#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5094 /*
5095 * Avoid too much reordering of SCSI commands.
5096 * The algorithm tries to prevent completion of any
5097 * tagged command from being delayed against more
5098 * than 3 times the max number of queued commands.
5099 */
5100 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5101 lp->tags_si = !(lp->tags_si);
5102 if (lp->tags_sum[lp->tags_si]) {
5103 order = M_ORDERED_TAG;
5104 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5105 sym_print_addr(cmd,
5106 "ordered tag forced.\n");
5107 }
5108 }
5109 lp->tags_since = 0;
5110 }
5111#endif
5112 msgptr[msglen++] = order;
5113
5114 /*
5115 * For less than 128 tags, actual tags are numbered
5116 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5117 * with devices that have problems with #TAG 0 or too
5118 * great #TAG numbers. For more tags (up to 256),
5119 * we use directly our tag number.
5120 */
5121#if SYM_CONF_MAX_TASK > (512/4)
5122 msgptr[msglen++] = cp->tag;
5123#else
5124 msgptr[msglen++] = (cp->tag << 1) + 1;
5125#endif
5126 }
5127
5128 /*
5129 * Build a negotiation message if needed.
5130 * (nego_status is filled by sym_prepare_nego())
5131 */
5132 cp->nego_status = 0;
5133 if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5134 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5135 }
5136
5137 /*
5138 * Startqueue
5139 */
5140 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5141 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5142
5143 /*
5144 * select
5145 */
5146 cp->phys.select.sel_id = cp->target;
5147 cp->phys.select.sel_scntl3 = tp->head.wval;
5148 cp->phys.select.sel_sxfer = tp->head.sval;
5149 cp->phys.select.sel_scntl4 = tp->head.uval;
5150
5151 /*
5152 * message
5153 */
53222b90 5154 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
1da177e4
LT
5155 cp->phys.smsg.size = cpu_to_scr(msglen);
5156
5157 /*
5158 * status
5159 */
5160 cp->host_xflags = 0;
5161 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5162 cp->ssss_status = S_ILLEGAL;
5163 cp->xerr_status = 0;
5164 cp->host_flags = 0;
5165 cp->extra_bytes = 0;
5166
5167 /*
5168 * extreme data pointer.
5169 * shall be positive, so -1 is lower than lowest.:)
5170 */
5171 cp->ext_sg = -1;
5172 cp->ext_ofs = 0;
5173
5174 /*
5175 * Build the CDB and DATA descriptor block
5176 * and start the IO.
5177 */
5178 return sym_setup_data_and_start(np, cmd, cp);
5179}
5180
5181/*
5182 * Reset a SCSI target (all LUNs of this target).
5183 */
5184int sym_reset_scsi_target(struct sym_hcb *np, int target)
5185{
5186 struct sym_tcb *tp;
5187
5188 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5189 return -1;
5190
5191 tp = &np->target[target];
5192 tp->to_reset = 1;
5193
5194 np->istat_sem = SEM;
5195 OUTB(np, nc_istat, SIGP|SEM);
5196
5197 return 0;
5198}
5199
5200/*
5201 * Abort a SCSI IO.
5202 */
5203static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5204{
5205 /*
5206 * Check that the IO is active.
5207 */
5208 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5209 return -1;
5210
5211 /*
5212 * If a previous abort didn't succeed in time,
5213 * perform a BUS reset.
5214 */
5215 if (cp->to_abort) {
5216 sym_reset_scsi_bus(np, 1);
5217 return 0;
5218 }
5219
5220 /*
5221 * Mark the CCB for abort and allow time for.
5222 */
5223 cp->to_abort = timed_out ? 2 : 1;
5224
5225 /*
5226 * Tell the SCRIPTS processor to stop and synchronize with us.
5227 */
5228 np->istat_sem = SEM;
5229 OUTB(np, nc_istat, SIGP|SEM);
5230 return 0;
5231}
5232
5233int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5234{
5235 struct sym_ccb *cp;
5236 SYM_QUEHEAD *qp;
5237
5238 /*
5239 * Look up our CCB control block.
5240 */
5241 cp = NULL;
5242 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5243 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5244 if (cp2->cmd == cmd) {
5245 cp = cp2;
5246 break;
5247 }
5248 }
5249
5250 return sym_abort_ccb(np, cp, timed_out);
5251}
5252
5253/*
53222b90 5254 * Complete execution of a SCSI command with extended
1da177e4
LT
5255 * error, SCSI status error, or having been auto-sensed.
5256 *
5257 * The SCRIPTS processor is not running there, so we
5258 * can safely access IO registers and remove JOBs from
5259 * the START queue.
5260 * SCRATCHA is assumed to have been loaded with STARTPOS
5261 * before the SCRIPTS called the C code.
5262 */
5263void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5264{
5265 struct scsi_device *sdev;
5266 struct scsi_cmnd *cmd;
5267 struct sym_tcb *tp;
5268 struct sym_lcb *lp;
5269 int resid;
5270 int i;
5271
5272 /*
5273 * Paranoid check. :)
5274 */
5275 if (!cp || !cp->cmd)
5276 return;
5277
5278 cmd = cp->cmd;
5279 sdev = cmd->device;
5280 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5281 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5282 cp->host_status, cp->ssss_status, cp->host_flags);
5283 }
5284
5285 /*
5286 * Get target and lun pointers.
5287 */
5288 tp = &np->target[cp->target];
5289 lp = sym_lp(tp, sdev->lun);
5290
5291 /*
5292 * Check for extended errors.
5293 */
5294 if (cp->xerr_status) {
5295 if (sym_verbose)
5296 sym_print_xerr(cmd, cp->xerr_status);
5297 if (cp->host_status == HS_COMPLETE)
5298 cp->host_status = HS_COMP_ERR;
5299 }
5300
5301 /*
5302 * Calculate the residual.
5303 */
5304 resid = sym_compute_residual(np, cp);
5305
5306 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5307 resid = 0; /* throw them away. :) */
5308 cp->sv_resid = 0;
5309 }
5310#ifdef DEBUG_2_0_X
5311if (resid)
5312 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5313#endif
5314
5315 /*
5316 * Dequeue all queued CCBs for that device
5317 * not yet started by SCRIPTS.
5318 */
5319 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5320 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5321
5322 /*
5323 * Restart the SCRIPTS processor.
5324 */
5325 OUTL_DSP(np, SCRIPTA_BA(np, start));
5326
5327#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5328 if (cp->host_status == HS_COMPLETE &&
5329 cp->ssss_status == S_QUEUE_FULL) {
5330 if (!lp || lp->started_tags - i < 2)
5331 goto weirdness;
5332 /*
5333 * Decrease queue depth as needed.
5334 */
5335 lp->started_max = lp->started_tags - i - 1;
5336 lp->num_sgood = 0;
5337
5338 if (sym_verbose >= 2) {
5339 sym_print_addr(cmd, " queue depth is now %d\n",
5340 lp->started_max);
5341 }
5342
5343 /*
5344 * Repair the CCB.
5345 */
5346 cp->host_status = HS_BUSY;
5347 cp->ssss_status = S_ILLEGAL;
5348
5349 /*
5350 * Let's requeue it to device.
5351 */
53222b90 5352 sym_set_cam_status(cmd, DID_SOFT_ERROR);
1da177e4
LT
5353 goto finish;
5354 }
5355weirdness:
5356#endif
5357 /*
5358 * Build result in CAM ccb.
5359 */
5360 sym_set_cam_result_error(np, cp, resid);
5361
5362#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5363finish:
5364#endif
5365 /*
5366 * Add this one to the COMP queue.
5367 */
5368 sym_remque(&cp->link_ccbq);
5369 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5370
5371 /*
5372 * Complete all those commands with either error
5373 * or requeue condition.
5374 */
5375 sym_flush_comp_queue(np, 0);
5376
5377#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5378 /*
5379 * Donnot start more than 1 command after an error.
5380 */
84e203a2 5381 sym_start_next_ccbs(np, lp, 1);
1da177e4
LT
5382#endif
5383}
5384
5385/*
5386 * Complete execution of a successful SCSI command.
5387 *
5388 * Only successful commands go to the DONE queue,
5389 * since we need to have the SCRIPTS processor
5390 * stopped on any error condition.
5391 * The SCRIPTS processor is running while we are
5392 * completing successful commands.
5393 */
5394void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5395{
5396 struct sym_tcb *tp;
5397 struct sym_lcb *lp;
5398 struct scsi_cmnd *cmd;
5399 int resid;
5400
5401 /*
5402 * Paranoid check. :)
5403 */
5404 if (!cp || !cp->cmd)
5405 return;
5406 assert (cp->host_status == HS_COMPLETE);
5407
5408 /*
5409 * Get user command.
5410 */
5411 cmd = cp->cmd;
5412
5413 /*
5414 * Get target and lun pointers.
5415 */
5416 tp = &np->target[cp->target];
5417 lp = sym_lp(tp, cp->lun);
5418
1da177e4
LT
5419 /*
5420 * If all data have been transferred, given than no
5421 * extended error did occur, there is no residual.
5422 */
5423 resid = 0;
44f30b0f 5424 if (cp->phys.head.lastp != cp->goalp)
1da177e4
LT
5425 resid = sym_compute_residual(np, cp);
5426
5427 /*
5428 * Wrong transfer residuals may be worse than just always
5429 * returning zero. User can disable this feature in
5430 * sym53c8xx.h. Residual support is enabled by default.
5431 */
5432 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5433 resid = 0;
5434#ifdef DEBUG_2_0_X
5435if (resid)
5436 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5437#endif
5438
5439 /*
5440 * Build result in CAM ccb.
5441 */
5442 sym_set_cam_result_ok(cp, cmd, resid);
5443
1da177e4
LT
5444#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5445 /*
5446 * If max number of started ccbs had been reduced,
5447 * increase it if 200 good status received.
5448 */
5449 if (lp && lp->started_max < lp->started_limit) {
5450 ++lp->num_sgood;
5451 if (lp->num_sgood >= 200) {
5452 lp->num_sgood = 0;
5453 ++lp->started_max;
5454 if (sym_verbose >= 2) {
5455 sym_print_addr(cmd, " queue depth is now %d\n",
5456 lp->started_max);
5457 }
5458 }
5459 }
5460#endif
5461
5462 /*
5463 * Free our CCB.
5464 */
5465 sym_free_ccb (np, cp);
5466
5467#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5468 /*
5469 * Requeue a couple of awaiting scsi commands.
5470 */
84e203a2 5471 if (!sym_que_empty(&lp->waiting_ccbq))
1da177e4
LT
5472 sym_start_next_ccbs(np, lp, 2);
5473#endif
5474 /*
5475 * Complete the command.
5476 */
5477 sym_xpt_done(np, cmd);
5478}
5479
5480/*
5481 * Soft-attach the controller.
5482 */
5483int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5484{
5485 struct sym_hcb *np = sym_get_hcb(shost);
5486 int i;
5487
5488 /*
5489 * Get some info about the firmware.
5490 */
5491 np->scripta_sz = fw->a_size;
5492 np->scriptb_sz = fw->b_size;
5493 np->scriptz_sz = fw->z_size;
5494 np->fw_setup = fw->setup;
5495 np->fw_patch = fw->patch;
5496 np->fw_name = fw->name;
5497
5498 /*
5499 * Save setting of some IO registers, so we will
5500 * be able to probe specific implementations.
5501 */
5502 sym_save_initial_setting (np);
5503
5504 /*
5505 * Reset the chip now, since it has been reported
5506 * that SCSI clock calibration may not work properly
5507 * if the chip is currently active.
5508 */
5509 sym_chip_reset(np);
5510
5511 /*
5512 * Prepare controller and devices settings, according
5513 * to chip features, user set-up and driver set-up.
5514 */
5515 sym_prepare_setting(shost, np, nvram);
5516
5517 /*
5518 * Check the PCI clock frequency.
5519 * Must be performed after prepare_setting since it destroys
5520 * STEST1 that is used to probe for the clock doubler.
5521 */
5522 i = sym_getpciclock(np);
5523 if (i > 37000 && !(np->features & FE_66MHZ))
5524 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5525 sym_name(np), i);
5526
5527 /*
5528 * Allocate the start queue.
5529 */
5530 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5531 if (!np->squeue)
5532 goto attach_failed;
5533 np->squeue_ba = vtobus(np->squeue);
5534
5535 /*
5536 * Allocate the done queue.
5537 */
5538 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5539 if (!np->dqueue)
5540 goto attach_failed;
5541 np->dqueue_ba = vtobus(np->dqueue);
5542
5543 /*
5544 * Allocate the target bus address array.
5545 */
5546 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5547 if (!np->targtbl)
5548 goto attach_failed;
5549 np->targtbl_ba = vtobus(np->targtbl);
5550
5551 /*
5552 * Allocate SCRIPTS areas.
5553 */
5554 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5555 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5556 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5557 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5558 goto attach_failed;
5559
5560 /*
5561 * Allocate the array of lists of CCBs hashed by DSA.
5562 */
5563 np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
5564 if (!np->ccbh)
5565 goto attach_failed;
5566
5567 /*
5568 * Initialyze the CCB free and busy queues.
5569 */
5570 sym_que_init(&np->free_ccbq);
5571 sym_que_init(&np->busy_ccbq);
5572 sym_que_init(&np->comp_ccbq);
5573
5574 /*
5575 * Initialization for optional handling
5576 * of device queueing.
5577 */
5578#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5579 sym_que_init(&np->dummy_ccbq);
5580#endif
5581 /*
5582 * Allocate some CCB. We need at least ONE.
5583 */
5584 if (!sym_alloc_ccb(np))
5585 goto attach_failed;
5586
5587 /*
5588 * Calculate BUS addresses where we are going
5589 * to load the SCRIPTS.
5590 */
5591 np->scripta_ba = vtobus(np->scripta0);
5592 np->scriptb_ba = vtobus(np->scriptb0);
5593 np->scriptz_ba = vtobus(np->scriptz0);
5594
5595 if (np->ram_ba) {
5596 np->scripta_ba = np->ram_ba;
5597 if (np->features & FE_RAM8K) {
5598 np->ram_ws = 8192;
5599 np->scriptb_ba = np->scripta_ba + 4096;
5600#if 0 /* May get useful for 64 BIT PCI addressing */
5601 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5602#endif
5603 }
5604 else
5605 np->ram_ws = 4096;
5606 }
5607
5608 /*
5609 * Copy scripts to controller instance.
5610 */
5611 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5612 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5613 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5614
5615 /*
5616 * Setup variable parts in scripts and compute
5617 * scripts bus addresses used from the C code.
5618 */
5619 np->fw_setup(np, fw);
5620
5621 /*
5622 * Bind SCRIPTS with physical addresses usable by the
5623 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5624 */
5625 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5626 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5627 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5628
5629#ifdef SYM_CONF_IARB_SUPPORT
5630 /*
5631 * If user wants IARB to be set when we win arbitration
5632 * and have other jobs, compute the max number of consecutive
5633 * settings of IARB hints before we leave devices a chance to
5634 * arbitrate for reselection.
5635 */
5636#ifdef SYM_SETUP_IARB_MAX
5637 np->iarb_max = SYM_SETUP_IARB_MAX;
5638#else
5639 np->iarb_max = 4;
5640#endif
5641#endif
5642
5643 /*
5644 * Prepare the idle and invalid task actions.
5645 */
5646 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5647 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5648 np->idletask_ba = vtobus(&np->idletask);
5649
5650 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5651 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5652 np->notask_ba = vtobus(&np->notask);
5653
5654 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5655 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5656 np->bad_itl_ba = vtobus(&np->bad_itl);
5657
5658 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5659 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5660 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5661
5662 /*
5663 * Allocate and prepare the lun JUMP table that is used
5664 * for a target prior the probing of devices (bad lun table).
5665 * A private table will be allocated for the target on the
5666 * first INQUIRY response received.
5667 */
5668 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5669 if (!np->badluntbl)
5670 goto attach_failed;
5671
5672 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5673 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5674 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5675
5676 /*
5677 * Prepare the bus address array that contains the bus
5678 * address of each target control block.
5679 * For now, assume all logical units are wrong. :)
5680 */
5681 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5682 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5683 np->target[i].head.luntbl_sa =
5684 cpu_to_scr(vtobus(np->badluntbl));
5685 np->target[i].head.lun0_sa =
5686 cpu_to_scr(vtobus(&np->badlun_sa));
5687 }
5688
5689 /*
5690 * Now check the cache handling of the pci chipset.
5691 */
5692 if (sym_snooptest (np)) {
5693 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5694 goto attach_failed;
5695 }
5696
5697 /*
5698 * Sigh! we are done.
5699 */
5700 return 0;
5701
5702attach_failed:
5703 return -ENXIO;
5704}
5705
5706/*
5707 * Free everything that has been allocated for this device.
5708 */
5709void sym_hcb_free(struct sym_hcb *np)
5710{
5711 SYM_QUEHEAD *qp;
5712 struct sym_ccb *cp;
5713 struct sym_tcb *tp;
84e203a2 5714 int target;
1da177e4
LT
5715
5716 if (np->scriptz0)
5717 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5718 if (np->scriptb0)
5719 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5720 if (np->scripta0)
5721 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5722 if (np->squeue)
5723 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5724 if (np->dqueue)
5725 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5726
5727 if (np->actccbs) {
5728 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5729 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5730 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5731 }
5732 }
5733 kfree(np->ccbh);
5734
5735 if (np->badluntbl)
5736 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5737
5738 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5739 tp = &np->target[target];
1da177e4
LT
5740#if SYM_CONF_MAX_LUN > 1
5741 kfree(tp->lunmp);
5742#endif
5743 }
5744 if (np->targtbl)
5745 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5746}