Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
bff61975 24#include <linux/seq_file.h>
43b2e5d8 25#include "md.h"
ef740c37 26#include "raid10.h"
dab8b292 27#include "raid0.h"
ef740c37 28#include "bitmap.h"
1da177e4
LT
29
30/*
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
33 * chunk_size
34 * raid_disks
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
c93983bf 37 * far_offset (stored in bit 16 of layout )
1da177e4
LT
38 *
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
c93983bf 45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
46 * drive.
47 * near_copies and far_copies must be at least one, and their product is at most
48 * raid_disks.
c93983bf
N
49 *
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
1da177e4
LT
53 */
54
55/*
56 * Number of guaranteed r10bios in case of extreme VM load:
57 */
58#define NR_RAID10_BIOS 256
59
60static void unplug_slaves(mddev_t *mddev);
61
0a27ec96
N
62static void allow_barrier(conf_t *conf);
63static void lower_barrier(conf_t *conf);
64
dd0fc66f 65static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
66{
67 conf_t *conf = data;
68 r10bio_t *r10_bio;
69 int size = offsetof(struct r10bio_s, devs[conf->copies]);
70
71 /* allocate a r10bio with room for raid_disks entries in the bios array */
9ffae0cf 72 r10_bio = kzalloc(size, gfp_flags);
ed9bfdf1 73 if (!r10_bio && conf->mddev)
1da177e4
LT
74 unplug_slaves(conf->mddev);
75
76 return r10_bio;
77}
78
79static void r10bio_pool_free(void *r10_bio, void *data)
80{
81 kfree(r10_bio);
82}
83
0310fa21 84/* Maximum size of each resync request */
1da177e4 85#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 86#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
87/* amount of memory to reserve for resync requests */
88#define RESYNC_WINDOW (1024*1024)
89/* maximum number of concurrent requests, memory permitting */
90#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
91
92/*
93 * When performing a resync, we need to read and compare, so
94 * we need as many pages are there are copies.
95 * When performing a recovery, we need 2 bios, one for read,
96 * one for write (we recover only one drive per r10buf)
97 *
98 */
dd0fc66f 99static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
100{
101 conf_t *conf = data;
102 struct page *page;
103 r10bio_t *r10_bio;
104 struct bio *bio;
105 int i, j;
106 int nalloc;
107
108 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109 if (!r10_bio) {
110 unplug_slaves(conf->mddev);
111 return NULL;
112 }
113
114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 nalloc = conf->copies; /* resync */
116 else
117 nalloc = 2; /* recovery */
118
119 /*
120 * Allocate bios.
121 */
122 for (j = nalloc ; j-- ; ) {
6746557f 123 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
124 if (!bio)
125 goto out_free_bio;
126 r10_bio->devs[j].bio = bio;
127 }
128 /*
129 * Allocate RESYNC_PAGES data pages and attach them
130 * where needed.
131 */
132 for (j = 0 ; j < nalloc; j++) {
133 bio = r10_bio->devs[j].bio;
134 for (i = 0; i < RESYNC_PAGES; i++) {
135 page = alloc_page(gfp_flags);
136 if (unlikely(!page))
137 goto out_free_pages;
138
139 bio->bi_io_vec[i].bv_page = page;
140 }
141 }
142
143 return r10_bio;
144
145out_free_pages:
146 for ( ; i > 0 ; i--)
1345b1d8 147 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
148 while (j--)
149 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 150 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
151 j = -1;
152out_free_bio:
153 while ( ++j < nalloc )
154 bio_put(r10_bio->devs[j].bio);
155 r10bio_pool_free(r10_bio, conf);
156 return NULL;
157}
158
159static void r10buf_pool_free(void *__r10_bio, void *data)
160{
161 int i;
162 conf_t *conf = data;
163 r10bio_t *r10bio = __r10_bio;
164 int j;
165
166 for (j=0; j < conf->copies; j++) {
167 struct bio *bio = r10bio->devs[j].bio;
168 if (bio) {
169 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 170 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
171 bio->bi_io_vec[i].bv_page = NULL;
172 }
173 bio_put(bio);
174 }
175 }
176 r10bio_pool_free(r10bio, conf);
177}
178
179static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180{
181 int i;
182
183 for (i = 0; i < conf->copies; i++) {
184 struct bio **bio = & r10_bio->devs[i].bio;
0eb3ff12 185 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
858119e1 191static void free_r10bio(r10bio_t *r10_bio)
1da177e4 192{
070ec55d 193 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
194
195 /*
196 * Wake up any possible resync thread that waits for the device
197 * to go idle.
198 */
0a27ec96 199 allow_barrier(conf);
1da177e4
LT
200
201 put_all_bios(conf, r10_bio);
202 mempool_free(r10_bio, conf->r10bio_pool);
203}
204
858119e1 205static void put_buf(r10bio_t *r10_bio)
1da177e4 206{
070ec55d 207 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
208
209 mempool_free(r10_bio, conf->r10buf_pool);
210
0a27ec96 211 lower_barrier(conf);
1da177e4
LT
212}
213
214static void reschedule_retry(r10bio_t *r10_bio)
215{
216 unsigned long flags;
217 mddev_t *mddev = r10_bio->mddev;
070ec55d 218 conf_t *conf = mddev->private;
1da177e4
LT
219
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 222 conf->nr_queued ++;
1da177e4
LT
223 spin_unlock_irqrestore(&conf->device_lock, flags);
224
388667be
AJ
225 /* wake up frozen array... */
226 wake_up(&conf->wait_barrier);
227
1da177e4
LT
228 md_wakeup_thread(mddev->thread);
229}
230
231/*
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
234 * cache layer.
235 */
236static void raid_end_bio_io(r10bio_t *r10_bio)
237{
238 struct bio *bio = r10_bio->master_bio;
239
6712ecf8 240 bio_endio(bio,
1da177e4
LT
241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 free_r10bio(r10_bio);
243}
244
245/*
246 * Update disk head position estimator based on IRQ completion info.
247 */
248static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249{
070ec55d 250 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
251
252 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 r10_bio->devs[slot].addr + (r10_bio->sectors);
254}
255
6712ecf8 256static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
257{
258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 259 r10bio_t *r10_bio = bio->bi_private;
1da177e4 260 int slot, dev;
070ec55d 261 conf_t *conf = r10_bio->mddev->private;
1da177e4 262
1da177e4
LT
263
264 slot = r10_bio->read_slot;
265 dev = r10_bio->devs[slot].devnum;
266 /*
267 * this branch is our 'one mirror IO has finished' event handler:
268 */
4443ae10
N
269 update_head_pos(slot, r10_bio);
270
271 if (uptodate) {
1da177e4
LT
272 /*
273 * Set R10BIO_Uptodate in our master bio, so that
274 * we will return a good error code to the higher
275 * levels even if IO on some other mirrored buffer fails.
276 *
277 * The 'master' represents the composite IO operation to
278 * user-side. So if something waits for IO, then it will
279 * wait for the 'master' bio.
280 */
281 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 282 raid_end_bio_io(r10_bio);
4443ae10 283 } else {
1da177e4
LT
284 /*
285 * oops, read error:
286 */
287 char b[BDEVNAME_SIZE];
288 if (printk_ratelimit())
128595ed
N
289 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
290 mdname(conf->mddev),
1da177e4
LT
291 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
292 reschedule_retry(r10_bio);
293 }
294
295 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
296}
297
6712ecf8 298static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
299{
300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 301 r10bio_t *r10_bio = bio->bi_private;
1da177e4 302 int slot, dev;
070ec55d 303 conf_t *conf = r10_bio->mddev->private;
1da177e4 304
1da177e4
LT
305 for (slot = 0; slot < conf->copies; slot++)
306 if (r10_bio->devs[slot].bio == bio)
307 break;
308 dev = r10_bio->devs[slot].devnum;
309
310 /*
311 * this branch is our 'one mirror IO has finished' event handler:
312 */
6cce3b23 313 if (!uptodate) {
1da177e4 314 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
6cce3b23
N
315 /* an I/O failed, we can't clear the bitmap */
316 set_bit(R10BIO_Degraded, &r10_bio->state);
317 } else
1da177e4
LT
318 /*
319 * Set R10BIO_Uptodate in our master bio, so that
320 * we will return a good error code for to the higher
321 * levels even if IO on some other mirrored buffer fails.
322 *
323 * The 'master' represents the composite IO operation to
324 * user-side. So if something waits for IO, then it will
325 * wait for the 'master' bio.
326 */
327 set_bit(R10BIO_Uptodate, &r10_bio->state);
328
329 update_head_pos(slot, r10_bio);
330
331 /*
332 *
333 * Let's see if all mirrored write operations have finished
334 * already.
335 */
336 if (atomic_dec_and_test(&r10_bio->remaining)) {
6cce3b23
N
337 /* clear the bitmap if all writes complete successfully */
338 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
339 r10_bio->sectors,
340 !test_bit(R10BIO_Degraded, &r10_bio->state),
341 0);
1da177e4
LT
342 md_write_end(r10_bio->mddev);
343 raid_end_bio_io(r10_bio);
344 }
345
346 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
347}
348
349
350/*
351 * RAID10 layout manager
352 * Aswell as the chunksize and raid_disks count, there are two
353 * parameters: near_copies and far_copies.
354 * near_copies * far_copies must be <= raid_disks.
355 * Normally one of these will be 1.
356 * If both are 1, we get raid0.
357 * If near_copies == raid_disks, we get raid1.
358 *
359 * Chunks are layed out in raid0 style with near_copies copies of the
360 * first chunk, followed by near_copies copies of the next chunk and
361 * so on.
362 * If far_copies > 1, then after 1/far_copies of the array has been assigned
363 * as described above, we start again with a device offset of near_copies.
364 * So we effectively have another copy of the whole array further down all
365 * the drives, but with blocks on different drives.
366 * With this layout, and block is never stored twice on the one device.
367 *
368 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 369 * on each device that it is on.
1da177e4
LT
370 *
371 * raid10_find_virt does the reverse mapping, from a device and a
372 * sector offset to a virtual address
373 */
374
375static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
376{
377 int n,f;
378 sector_t sector;
379 sector_t chunk;
380 sector_t stripe;
381 int dev;
382
383 int slot = 0;
384
385 /* now calculate first sector/dev */
386 chunk = r10bio->sector >> conf->chunk_shift;
387 sector = r10bio->sector & conf->chunk_mask;
388
389 chunk *= conf->near_copies;
390 stripe = chunk;
391 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
392 if (conf->far_offset)
393 stripe *= conf->far_copies;
1da177e4
LT
394
395 sector += stripe << conf->chunk_shift;
396
397 /* and calculate all the others */
398 for (n=0; n < conf->near_copies; n++) {
399 int d = dev;
400 sector_t s = sector;
401 r10bio->devs[slot].addr = sector;
402 r10bio->devs[slot].devnum = d;
403 slot++;
404
405 for (f = 1; f < conf->far_copies; f++) {
406 d += conf->near_copies;
407 if (d >= conf->raid_disks)
408 d -= conf->raid_disks;
409 s += conf->stride;
410 r10bio->devs[slot].devnum = d;
411 r10bio->devs[slot].addr = s;
412 slot++;
413 }
414 dev++;
415 if (dev >= conf->raid_disks) {
416 dev = 0;
417 sector += (conf->chunk_mask + 1);
418 }
419 }
420 BUG_ON(slot != conf->copies);
421}
422
423static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
424{
425 sector_t offset, chunk, vchunk;
426
1da177e4 427 offset = sector & conf->chunk_mask;
c93983bf
N
428 if (conf->far_offset) {
429 int fc;
430 chunk = sector >> conf->chunk_shift;
431 fc = sector_div(chunk, conf->far_copies);
432 dev -= fc * conf->near_copies;
433 if (dev < 0)
434 dev += conf->raid_disks;
435 } else {
64a742bc 436 while (sector >= conf->stride) {
c93983bf
N
437 sector -= conf->stride;
438 if (dev < conf->near_copies)
439 dev += conf->raid_disks - conf->near_copies;
440 else
441 dev -= conf->near_copies;
442 }
443 chunk = sector >> conf->chunk_shift;
444 }
1da177e4
LT
445 vchunk = chunk * conf->raid_disks + dev;
446 sector_div(vchunk, conf->near_copies);
447 return (vchunk << conf->chunk_shift) + offset;
448}
449
450/**
451 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
452 * @q: request queue
cc371e66 453 * @bvm: properties of new bio
1da177e4
LT
454 * @biovec: the request that could be merged to it.
455 *
456 * Return amount of bytes we can accept at this offset
457 * If near_copies == raid_disk, there are no striping issues,
458 * but in that case, the function isn't called at all.
459 */
cc371e66
AK
460static int raid10_mergeable_bvec(struct request_queue *q,
461 struct bvec_merge_data *bvm,
462 struct bio_vec *biovec)
1da177e4
LT
463{
464 mddev_t *mddev = q->queuedata;
cc371e66 465 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 466 int max;
9d8f0363 467 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 468 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
469
470 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
471 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
472 if (max <= biovec->bv_len && bio_sectors == 0)
473 return biovec->bv_len;
1da177e4
LT
474 else
475 return max;
476}
477
478/*
479 * This routine returns the disk from which the requested read should
480 * be done. There is a per-array 'next expected sequential IO' sector
481 * number - if this matches on the next IO then we use the last disk.
482 * There is also a per-disk 'last know head position' sector that is
483 * maintained from IRQ contexts, both the normal and the resync IO
484 * completion handlers update this position correctly. If there is no
485 * perfect sequential match then we pick the disk whose head is closest.
486 *
487 * If there are 2 mirrors in the same 2 devices, performance degrades
488 * because position is mirror, not device based.
489 *
490 * The rdev for the device selected will have nr_pending incremented.
491 */
492
493/*
494 * FIXME: possibly should rethink readbalancing and do it differently
495 * depending on near_copies / far_copies geometry.
496 */
497static int read_balance(conf_t *conf, r10bio_t *r10_bio)
498{
af3a2cd6 499 const sector_t this_sector = r10_bio->sector;
1da177e4
LT
500 int disk, slot, nslot;
501 const int sectors = r10_bio->sectors;
502 sector_t new_distance, current_distance;
d6065f7b 503 mdk_rdev_t *rdev;
1da177e4
LT
504
505 raid10_find_phys(conf, r10_bio);
506 rcu_read_lock();
507 /*
508 * Check if we can balance. We can balance on the whole
6cce3b23
N
509 * device if no resync is going on (recovery is ok), or below
510 * the resync window. We take the first readable disk when
511 * above the resync window.
1da177e4
LT
512 */
513 if (conf->mddev->recovery_cp < MaxSector
514 && (this_sector + sectors >= conf->next_resync)) {
515 /* make sure that disk is operational */
516 slot = 0;
517 disk = r10_bio->devs[slot].devnum;
518
d6065f7b 519 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 520 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 521 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
522 slot++;
523 if (slot == conf->copies) {
524 slot = 0;
525 disk = -1;
526 break;
527 }
528 disk = r10_bio->devs[slot].devnum;
529 }
530 goto rb_out;
531 }
532
533
534 /* make sure the disk is operational */
535 slot = 0;
536 disk = r10_bio->devs[slot].devnum;
d6065f7b 537 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 538 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 539 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
540 slot ++;
541 if (slot == conf->copies) {
542 disk = -1;
543 goto rb_out;
544 }
545 disk = r10_bio->devs[slot].devnum;
546 }
547
548
3ec67ac1
N
549 current_distance = abs(r10_bio->devs[slot].addr -
550 conf->mirrors[disk].head_position);
1da177e4 551
8ed3a195
KS
552 /* Find the disk whose head is closest,
553 * or - for far > 1 - find the closest to partition beginning */
1da177e4
LT
554
555 for (nslot = slot; nslot < conf->copies; nslot++) {
556 int ndisk = r10_bio->devs[nslot].devnum;
557
558
d6065f7b 559 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
0eb3ff12 560 r10_bio->devs[nslot].bio == IO_BLOCKED ||
b2d444d7 561 !test_bit(In_sync, &rdev->flags))
1da177e4
LT
562 continue;
563
22dfdf52
N
564 /* This optimisation is debatable, and completely destroys
565 * sequential read speed for 'far copies' arrays. So only
566 * keep it for 'near' arrays, and review those later.
567 */
568 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
1da177e4
LT
569 disk = ndisk;
570 slot = nslot;
571 break;
572 }
8ed3a195
KS
573
574 /* for far > 1 always use the lowest address */
575 if (conf->far_copies > 1)
576 new_distance = r10_bio->devs[nslot].addr;
577 else
578 new_distance = abs(r10_bio->devs[nslot].addr -
579 conf->mirrors[ndisk].head_position);
1da177e4
LT
580 if (new_distance < current_distance) {
581 current_distance = new_distance;
582 disk = ndisk;
583 slot = nslot;
584 }
585 }
586
587rb_out:
588 r10_bio->read_slot = slot;
589/* conf->next_seq_sect = this_sector + sectors;*/
590
d6065f7b 591 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
1da177e4 592 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
29fc7e3e
N
593 else
594 disk = -1;
1da177e4
LT
595 rcu_read_unlock();
596
597 return disk;
598}
599
600static void unplug_slaves(mddev_t *mddev)
601{
070ec55d 602 conf_t *conf = mddev->private;
1da177e4
LT
603 int i;
604
605 rcu_read_lock();
84707f38 606 for (i=0; i < conf->raid_disks; i++) {
d6065f7b 607 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 608 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 609 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
610
611 atomic_inc(&rdev->nr_pending);
612 rcu_read_unlock();
613
2ad8b1ef 614 blk_unplug(r_queue);
1da177e4
LT
615
616 rdev_dec_pending(rdev, mddev);
617 rcu_read_lock();
618 }
619 }
620 rcu_read_unlock();
621}
622
165125e1 623static void raid10_unplug(struct request_queue *q)
1da177e4 624{
6cce3b23
N
625 mddev_t *mddev = q->queuedata;
626
1da177e4 627 unplug_slaves(q->queuedata);
6cce3b23 628 md_wakeup_thread(mddev->thread);
1da177e4
LT
629}
630
0d129228
N
631static int raid10_congested(void *data, int bits)
632{
633 mddev_t *mddev = data;
070ec55d 634 conf_t *conf = mddev->private;
0d129228
N
635 int i, ret = 0;
636
3fa841d7
N
637 if (mddev_congested(mddev, bits))
638 return 1;
0d129228 639 rcu_read_lock();
84707f38 640 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
0d129228
N
641 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
642 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 643 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
644
645 ret |= bdi_congested(&q->backing_dev_info, bits);
646 }
647 }
648 rcu_read_unlock();
649 return ret;
650}
651
a35e63ef
N
652static int flush_pending_writes(conf_t *conf)
653{
654 /* Any writes that have been queued but are awaiting
655 * bitmap updates get flushed here.
656 * We return 1 if any requests were actually submitted.
657 */
658 int rv = 0;
659
660 spin_lock_irq(&conf->device_lock);
661
662 if (conf->pending_bio_list.head) {
663 struct bio *bio;
664 bio = bio_list_get(&conf->pending_bio_list);
da9cf505
N
665 /* Spinlock only taken to quiet a warning */
666 spin_lock(conf->mddev->queue->queue_lock);
a35e63ef 667 blk_remove_plug(conf->mddev->queue);
da9cf505 668 spin_unlock(conf->mddev->queue->queue_lock);
a35e63ef
N
669 spin_unlock_irq(&conf->device_lock);
670 /* flush any pending bitmap writes to disk
671 * before proceeding w/ I/O */
672 bitmap_unplug(conf->mddev->bitmap);
673
674 while (bio) { /* submit pending writes */
675 struct bio *next = bio->bi_next;
676 bio->bi_next = NULL;
677 generic_make_request(bio);
678 bio = next;
679 }
680 rv = 1;
681 } else
682 spin_unlock_irq(&conf->device_lock);
683 return rv;
684}
0a27ec96
N
685/* Barriers....
686 * Sometimes we need to suspend IO while we do something else,
687 * either some resync/recovery, or reconfigure the array.
688 * To do this we raise a 'barrier'.
689 * The 'barrier' is a counter that can be raised multiple times
690 * to count how many activities are happening which preclude
691 * normal IO.
692 * We can only raise the barrier if there is no pending IO.
693 * i.e. if nr_pending == 0.
694 * We choose only to raise the barrier if no-one is waiting for the
695 * barrier to go down. This means that as soon as an IO request
696 * is ready, no other operations which require a barrier will start
697 * until the IO request has had a chance.
698 *
699 * So: regular IO calls 'wait_barrier'. When that returns there
700 * is no backgroup IO happening, It must arrange to call
701 * allow_barrier when it has finished its IO.
702 * backgroup IO calls must call raise_barrier. Once that returns
703 * there is no normal IO happeing. It must arrange to call
704 * lower_barrier when the particular background IO completes.
1da177e4 705 */
1da177e4 706
6cce3b23 707static void raise_barrier(conf_t *conf, int force)
1da177e4 708{
6cce3b23 709 BUG_ON(force && !conf->barrier);
1da177e4 710 spin_lock_irq(&conf->resync_lock);
0a27ec96 711
6cce3b23
N
712 /* Wait until no block IO is waiting (unless 'force') */
713 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
0a27ec96
N
714 conf->resync_lock,
715 raid10_unplug(conf->mddev->queue));
716
717 /* block any new IO from starting */
718 conf->barrier++;
719
720 /* No wait for all pending IO to complete */
721 wait_event_lock_irq(conf->wait_barrier,
722 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
723 conf->resync_lock,
724 raid10_unplug(conf->mddev->queue));
725
726 spin_unlock_irq(&conf->resync_lock);
727}
728
729static void lower_barrier(conf_t *conf)
730{
731 unsigned long flags;
732 spin_lock_irqsave(&conf->resync_lock, flags);
733 conf->barrier--;
734 spin_unlock_irqrestore(&conf->resync_lock, flags);
735 wake_up(&conf->wait_barrier);
736}
737
738static void wait_barrier(conf_t *conf)
739{
740 spin_lock_irq(&conf->resync_lock);
741 if (conf->barrier) {
742 conf->nr_waiting++;
743 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
744 conf->resync_lock,
745 raid10_unplug(conf->mddev->queue));
746 conf->nr_waiting--;
1da177e4 747 }
0a27ec96 748 conf->nr_pending++;
1da177e4
LT
749 spin_unlock_irq(&conf->resync_lock);
750}
751
0a27ec96
N
752static void allow_barrier(conf_t *conf)
753{
754 unsigned long flags;
755 spin_lock_irqsave(&conf->resync_lock, flags);
756 conf->nr_pending--;
757 spin_unlock_irqrestore(&conf->resync_lock, flags);
758 wake_up(&conf->wait_barrier);
759}
760
4443ae10
N
761static void freeze_array(conf_t *conf)
762{
763 /* stop syncio and normal IO and wait for everything to
f188593e 764 * go quiet.
4443ae10 765 * We increment barrier and nr_waiting, and then
1c830532
N
766 * wait until nr_pending match nr_queued+1
767 * This is called in the context of one normal IO request
768 * that has failed. Thus any sync request that might be pending
769 * will be blocked by nr_pending, and we need to wait for
770 * pending IO requests to complete or be queued for re-try.
771 * Thus the number queued (nr_queued) plus this request (1)
772 * must match the number of pending IOs (nr_pending) before
773 * we continue.
4443ae10
N
774 */
775 spin_lock_irq(&conf->resync_lock);
776 conf->barrier++;
777 conf->nr_waiting++;
778 wait_event_lock_irq(conf->wait_barrier,
1c830532 779 conf->nr_pending == conf->nr_queued+1,
4443ae10 780 conf->resync_lock,
a35e63ef
N
781 ({ flush_pending_writes(conf);
782 raid10_unplug(conf->mddev->queue); }));
4443ae10
N
783 spin_unlock_irq(&conf->resync_lock);
784}
785
786static void unfreeze_array(conf_t *conf)
787{
788 /* reverse the effect of the freeze */
789 spin_lock_irq(&conf->resync_lock);
790 conf->barrier--;
791 conf->nr_waiting--;
792 wake_up(&conf->wait_barrier);
793 spin_unlock_irq(&conf->resync_lock);
794}
795
21a52c6d 796static int make_request(mddev_t *mddev, struct bio * bio)
1da177e4 797{
070ec55d 798 conf_t *conf = mddev->private;
1da177e4
LT
799 mirror_info_t *mirror;
800 r10bio_t *r10_bio;
801 struct bio *read_bio;
802 int i;
803 int chunk_sects = conf->chunk_mask + 1;
a362357b 804 const int rw = bio_data_dir(bio);
2c7d46ec 805 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 806 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 807 unsigned long flags;
6bfe0b49 808 mdk_rdev_t *blocked_rdev;
1da177e4 809
e9c7469b
TH
810 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
811 md_flush_request(mddev, bio);
e5dcdd80
N
812 return 0;
813 }
814
1da177e4
LT
815 /* If this request crosses a chunk boundary, we need to
816 * split it. This will only happen for 1 PAGE (or less) requests.
817 */
818 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
819 > chunk_sects &&
820 conf->near_copies < conf->raid_disks)) {
821 struct bio_pair *bp;
822 /* Sanity check -- queue functions should prevent this happening */
823 if (bio->bi_vcnt != 1 ||
824 bio->bi_idx != 0)
825 goto bad_map;
826 /* This is a one page bio that upper layers
827 * refuse to split for us, so we need to split it.
828 */
6feef531 829 bp = bio_split(bio,
1da177e4 830 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
831
832 /* Each of these 'make_request' calls will call 'wait_barrier'.
833 * If the first succeeds but the second blocks due to the resync
834 * thread raising the barrier, we will deadlock because the
835 * IO to the underlying device will be queued in generic_make_request
836 * and will never complete, so will never reduce nr_pending.
837 * So increment nr_waiting here so no new raise_barriers will
838 * succeed, and so the second wait_barrier cannot block.
839 */
840 spin_lock_irq(&conf->resync_lock);
841 conf->nr_waiting++;
842 spin_unlock_irq(&conf->resync_lock);
843
21a52c6d 844 if (make_request(mddev, &bp->bio1))
1da177e4 845 generic_make_request(&bp->bio1);
21a52c6d 846 if (make_request(mddev, &bp->bio2))
1da177e4
LT
847 generic_make_request(&bp->bio2);
848
51e9ac77
N
849 spin_lock_irq(&conf->resync_lock);
850 conf->nr_waiting--;
851 wake_up(&conf->wait_barrier);
852 spin_unlock_irq(&conf->resync_lock);
853
1da177e4
LT
854 bio_pair_release(bp);
855 return 0;
856 bad_map:
128595ed
N
857 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
858 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
859 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
860
6712ecf8 861 bio_io_error(bio);
1da177e4
LT
862 return 0;
863 }
864
3d310eb7 865 md_write_start(mddev, bio);
06d91a5f 866
1da177e4
LT
867 /*
868 * Register the new request and wait if the reconstruction
869 * thread has put up a bar for new requests.
870 * Continue immediately if no resync is active currently.
871 */
0a27ec96 872 wait_barrier(conf);
1da177e4 873
1da177e4
LT
874 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
875
876 r10_bio->master_bio = bio;
877 r10_bio->sectors = bio->bi_size >> 9;
878
879 r10_bio->mddev = mddev;
880 r10_bio->sector = bio->bi_sector;
6cce3b23 881 r10_bio->state = 0;
1da177e4 882
a362357b 883 if (rw == READ) {
1da177e4
LT
884 /*
885 * read balancing logic:
886 */
887 int disk = read_balance(conf, r10_bio);
888 int slot = r10_bio->read_slot;
889 if (disk < 0) {
890 raid_end_bio_io(r10_bio);
891 return 0;
892 }
893 mirror = conf->mirrors + disk;
894
a167f663 895 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1da177e4
LT
896
897 r10_bio->devs[slot].bio = read_bio;
898
899 read_bio->bi_sector = r10_bio->devs[slot].addr +
900 mirror->rdev->data_offset;
901 read_bio->bi_bdev = mirror->rdev->bdev;
902 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 903 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
904 read_bio->bi_private = r10_bio;
905
906 generic_make_request(read_bio);
907 return 0;
908 }
909
910 /*
911 * WRITE:
912 */
6bfe0b49 913 /* first select target devices under rcu_lock and
1da177e4
LT
914 * inc refcount on their rdev. Record them by setting
915 * bios[x] to bio
916 */
917 raid10_find_phys(conf, r10_bio);
6bfe0b49 918 retry_write:
cb6969e8 919 blocked_rdev = NULL;
1da177e4
LT
920 rcu_read_lock();
921 for (i = 0; i < conf->copies; i++) {
922 int d = r10_bio->devs[i].devnum;
d6065f7b 923 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
6bfe0b49
DW
924 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
925 atomic_inc(&rdev->nr_pending);
926 blocked_rdev = rdev;
927 break;
928 }
929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
d6065f7b 930 atomic_inc(&rdev->nr_pending);
1da177e4 931 r10_bio->devs[i].bio = bio;
6cce3b23 932 } else {
1da177e4 933 r10_bio->devs[i].bio = NULL;
6cce3b23
N
934 set_bit(R10BIO_Degraded, &r10_bio->state);
935 }
1da177e4
LT
936 }
937 rcu_read_unlock();
938
6bfe0b49
DW
939 if (unlikely(blocked_rdev)) {
940 /* Have to wait for this device to get unblocked, then retry */
941 int j;
942 int d;
943
944 for (j = 0; j < i; j++)
945 if (r10_bio->devs[j].bio) {
946 d = r10_bio->devs[j].devnum;
947 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
948 }
949 allow_barrier(conf);
950 md_wait_for_blocked_rdev(blocked_rdev, mddev);
951 wait_barrier(conf);
952 goto retry_write;
953 }
954
4e78064f
N
955 atomic_set(&r10_bio->remaining, 1);
956 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
06d91a5f 957
1da177e4
LT
958 for (i = 0; i < conf->copies; i++) {
959 struct bio *mbio;
960 int d = r10_bio->devs[i].devnum;
961 if (!r10_bio->devs[i].bio)
962 continue;
963
a167f663 964 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1da177e4
LT
965 r10_bio->devs[i].bio = mbio;
966
967 mbio->bi_sector = r10_bio->devs[i].addr+
968 conf->mirrors[d].rdev->data_offset;
969 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
970 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 971 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
972 mbio->bi_private = r10_bio;
973
974 atomic_inc(&r10_bio->remaining);
4e78064f
N
975 spin_lock_irqsave(&conf->device_lock, flags);
976 bio_list_add(&conf->pending_bio_list, mbio);
da9cf505 977 blk_plug_device_unlocked(mddev->queue);
4e78064f 978 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
979 }
980
4e78064f
N
981 if (atomic_dec_and_test(&r10_bio->remaining)) {
982 /* This matches the end of raid10_end_write_request() */
983 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
984 r10_bio->sectors,
985 !test_bit(R10BIO_Degraded, &r10_bio->state),
986 0);
f6f953aa
AR
987 md_write_end(mddev);
988 raid_end_bio_io(r10_bio);
f6f953aa
AR
989 }
990
a35e63ef
N
991 /* In case raid10d snuck in to freeze_array */
992 wake_up(&conf->wait_barrier);
993
e3881a68
LE
994 if (do_sync)
995 md_wakeup_thread(mddev->thread);
996
1da177e4
LT
997 return 0;
998}
999
1000static void status(struct seq_file *seq, mddev_t *mddev)
1001{
070ec55d 1002 conf_t *conf = mddev->private;
1da177e4
LT
1003 int i;
1004
1005 if (conf->near_copies < conf->raid_disks)
9d8f0363 1006 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1da177e4
LT
1007 if (conf->near_copies > 1)
1008 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
1009 if (conf->far_copies > 1) {
1010 if (conf->far_offset)
1011 seq_printf(seq, " %d offset-copies", conf->far_copies);
1012 else
1013 seq_printf(seq, " %d far-copies", conf->far_copies);
1014 }
1da177e4 1015 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 1016 conf->raid_disks - mddev->degraded);
1da177e4
LT
1017 for (i = 0; i < conf->raid_disks; i++)
1018 seq_printf(seq, "%s",
1019 conf->mirrors[i].rdev &&
b2d444d7 1020 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1021 seq_printf(seq, "]");
1022}
1023
1024static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1025{
1026 char b[BDEVNAME_SIZE];
070ec55d 1027 conf_t *conf = mddev->private;
1da177e4
LT
1028
1029 /*
1030 * If it is not operational, then we have already marked it as dead
1031 * else if it is the last working disks, ignore the error, let the
1032 * next level up know.
1033 * else mark the drive as failed
1034 */
b2d444d7 1035 if (test_bit(In_sync, &rdev->flags)
76186dd8 1036 && conf->raid_disks-mddev->degraded == 1)
1da177e4
LT
1037 /*
1038 * Don't fail the drive, just return an IO error.
1039 * The test should really be more sophisticated than
1040 * "working_disks == 1", but it isn't critical, and
1041 * can wait until we do more sophisticated "is the drive
1042 * really dead" tests...
1043 */
1044 return;
c04be0aa
N
1045 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1046 unsigned long flags;
1047 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1048 mddev->degraded++;
c04be0aa 1049 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1050 /*
1051 * if recovery is running, make sure it aborts.
1052 */
dfc70645 1053 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1054 }
b2d444d7 1055 set_bit(Faulty, &rdev->flags);
850b2b42 1056 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1057 printk(KERN_ALERT
1058 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1059 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed
N
1060 mdname(mddev), bdevname(rdev->bdev, b),
1061 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1062}
1063
1064static void print_conf(conf_t *conf)
1065{
1066 int i;
1067 mirror_info_t *tmp;
1068
128595ed 1069 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1070 if (!conf) {
128595ed 1071 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1072 return;
1073 }
128595ed 1074 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1075 conf->raid_disks);
1076
1077 for (i = 0; i < conf->raid_disks; i++) {
1078 char b[BDEVNAME_SIZE];
1079 tmp = conf->mirrors + i;
1080 if (tmp->rdev)
128595ed 1081 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1082 i, !test_bit(In_sync, &tmp->rdev->flags),
1083 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1084 bdevname(tmp->rdev->bdev,b));
1085 }
1086}
1087
1088static void close_sync(conf_t *conf)
1089{
0a27ec96
N
1090 wait_barrier(conf);
1091 allow_barrier(conf);
1da177e4
LT
1092
1093 mempool_destroy(conf->r10buf_pool);
1094 conf->r10buf_pool = NULL;
1095}
1096
6d508242
N
1097/* check if there are enough drives for
1098 * every block to appear on atleast one
1099 */
1100static int enough(conf_t *conf)
1101{
1102 int first = 0;
1103
1104 do {
1105 int n = conf->copies;
1106 int cnt = 0;
1107 while (n--) {
1108 if (conf->mirrors[first].rdev)
1109 cnt++;
1110 first = (first+1) % conf->raid_disks;
1111 }
1112 if (cnt == 0)
1113 return 0;
1114 } while (first != 0);
1115 return 1;
1116}
1117
1da177e4
LT
1118static int raid10_spare_active(mddev_t *mddev)
1119{
1120 int i;
1121 conf_t *conf = mddev->private;
1122 mirror_info_t *tmp;
6b965620
N
1123 int count = 0;
1124 unsigned long flags;
1da177e4
LT
1125
1126 /*
1127 * Find all non-in_sync disks within the RAID10 configuration
1128 * and mark them in_sync
1129 */
1130 for (i = 0; i < conf->raid_disks; i++) {
1131 tmp = conf->mirrors + i;
1132 if (tmp->rdev
b2d444d7 1133 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 1134 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1135 count++;
e6ffbcb6 1136 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1137 }
1138 }
6b965620
N
1139 spin_lock_irqsave(&conf->device_lock, flags);
1140 mddev->degraded -= count;
1141 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1142
1143 print_conf(conf);
6b965620 1144 return count;
1da177e4
LT
1145}
1146
1147
1148static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1149{
1150 conf_t *conf = mddev->private;
199050ea 1151 int err = -EEXIST;
1da177e4
LT
1152 int mirror;
1153 mirror_info_t *p;
6c2fce2e 1154 int first = 0;
84707f38 1155 int last = conf->raid_disks - 1;
1da177e4
LT
1156
1157 if (mddev->recovery_cp < MaxSector)
1158 /* only hot-add to in-sync arrays, as recovery is
1159 * very different from resync
1160 */
199050ea 1161 return -EBUSY;
6d508242 1162 if (!enough(conf))
199050ea 1163 return -EINVAL;
1da177e4 1164
a53a6c85 1165 if (rdev->raid_disk >= 0)
6c2fce2e 1166 first = last = rdev->raid_disk;
1da177e4 1167
6cce3b23 1168 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 1169 rdev->saved_raid_disk >= first &&
6cce3b23
N
1170 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1171 mirror = rdev->saved_raid_disk;
1172 else
6c2fce2e
NB
1173 mirror = first;
1174 for ( ; mirror <= last ; mirror++)
1da177e4
LT
1175 if ( !(p=conf->mirrors+mirror)->rdev) {
1176
8f6c2e4b
MP
1177 disk_stack_limits(mddev->gendisk, rdev->bdev,
1178 rdev->data_offset << 9);
627a2d3c
N
1179 /* as we don't honour merge_bvec_fn, we must
1180 * never risk violating it, so limit
1181 * ->max_segments to one lying with a single
1182 * page, as a one page request is never in
1183 * violation.
1da177e4 1184 */
627a2d3c
N
1185 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1186 blk_queue_max_segments(mddev->queue, 1);
1187 blk_queue_segment_boundary(mddev->queue,
1188 PAGE_CACHE_SIZE - 1);
1189 }
1da177e4
LT
1190
1191 p->head_position = 0;
1192 rdev->raid_disk = mirror;
199050ea 1193 err = 0;
6cce3b23
N
1194 if (rdev->saved_raid_disk != mirror)
1195 conf->fullsync = 1;
d6065f7b 1196 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1197 break;
1198 }
1199
ac5e7113 1200 md_integrity_add_rdev(rdev, mddev);
1da177e4 1201 print_conf(conf);
199050ea 1202 return err;
1da177e4
LT
1203}
1204
1205static int raid10_remove_disk(mddev_t *mddev, int number)
1206{
1207 conf_t *conf = mddev->private;
1208 int err = 0;
1209 mdk_rdev_t *rdev;
1210 mirror_info_t *p = conf->mirrors+ number;
1211
1212 print_conf(conf);
1213 rdev = p->rdev;
1214 if (rdev) {
b2d444d7 1215 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1216 atomic_read(&rdev->nr_pending)) {
1217 err = -EBUSY;
1218 goto abort;
1219 }
dfc70645
N
1220 /* Only remove faulty devices in recovery
1221 * is not possible.
1222 */
1223 if (!test_bit(Faulty, &rdev->flags) &&
1224 enough(conf)) {
1225 err = -EBUSY;
1226 goto abort;
1227 }
1da177e4 1228 p->rdev = NULL;
fbd568a3 1229 synchronize_rcu();
1da177e4
LT
1230 if (atomic_read(&rdev->nr_pending)) {
1231 /* lost the race, try later */
1232 err = -EBUSY;
1233 p->rdev = rdev;
ac5e7113 1234 goto abort;
1da177e4 1235 }
ac5e7113 1236 md_integrity_register(mddev);
1da177e4
LT
1237 }
1238abort:
1239
1240 print_conf(conf);
1241 return err;
1242}
1243
1244
6712ecf8 1245static void end_sync_read(struct bio *bio, int error)
1da177e4 1246{
7b92813c 1247 r10bio_t *r10_bio = bio->bi_private;
070ec55d 1248 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
1249 int i,d;
1250
1da177e4
LT
1251 for (i=0; i<conf->copies; i++)
1252 if (r10_bio->devs[i].bio == bio)
1253 break;
b6385483 1254 BUG_ON(i == conf->copies);
1da177e4
LT
1255 update_head_pos(i, r10_bio);
1256 d = r10_bio->devs[i].devnum;
0eb3ff12
N
1257
1258 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1259 set_bit(R10BIO_Uptodate, &r10_bio->state);
4dbcdc75
N
1260 else {
1261 atomic_add(r10_bio->sectors,
1262 &conf->mirrors[d].rdev->corrected_errors);
1263 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1264 md_error(r10_bio->mddev,
1265 conf->mirrors[d].rdev);
1266 }
1da177e4
LT
1267
1268 /* for reconstruct, we always reschedule after a read.
1269 * for resync, only after all reads
1270 */
73d5c38a 1271 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1272 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1273 atomic_dec_and_test(&r10_bio->remaining)) {
1274 /* we have read all the blocks,
1275 * do the comparison in process context in raid10d
1276 */
1277 reschedule_retry(r10_bio);
1278 }
1da177e4
LT
1279}
1280
6712ecf8 1281static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1282{
1283 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 1284 r10bio_t *r10_bio = bio->bi_private;
1da177e4 1285 mddev_t *mddev = r10_bio->mddev;
070ec55d 1286 conf_t *conf = mddev->private;
1da177e4
LT
1287 int i,d;
1288
1da177e4
LT
1289 for (i = 0; i < conf->copies; i++)
1290 if (r10_bio->devs[i].bio == bio)
1291 break;
1292 d = r10_bio->devs[i].devnum;
1293
1294 if (!uptodate)
1295 md_error(mddev, conf->mirrors[d].rdev);
dfc70645 1296
1da177e4
LT
1297 update_head_pos(i, r10_bio);
1298
73d5c38a 1299 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1da177e4
LT
1300 while (atomic_dec_and_test(&r10_bio->remaining)) {
1301 if (r10_bio->master_bio == NULL) {
1302 /* the primary of several recovery bios */
73d5c38a 1303 sector_t s = r10_bio->sectors;
1da177e4 1304 put_buf(r10_bio);
73d5c38a 1305 md_done_sync(mddev, s, 1);
1da177e4
LT
1306 break;
1307 } else {
1308 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1309 put_buf(r10_bio);
1310 r10_bio = r10_bio2;
1311 }
1312 }
1da177e4
LT
1313}
1314
1315/*
1316 * Note: sync and recover and handled very differently for raid10
1317 * This code is for resync.
1318 * For resync, we read through virtual addresses and read all blocks.
1319 * If there is any error, we schedule a write. The lowest numbered
1320 * drive is authoritative.
1321 * However requests come for physical address, so we need to map.
1322 * For every physical address there are raid_disks/copies virtual addresses,
1323 * which is always are least one, but is not necessarly an integer.
1324 * This means that a physical address can span multiple chunks, so we may
1325 * have to submit multiple io requests for a single sync request.
1326 */
1327/*
1328 * We check if all blocks are in-sync and only write to blocks that
1329 * aren't in sync
1330 */
1331static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1332{
070ec55d 1333 conf_t *conf = mddev->private;
1da177e4
LT
1334 int i, first;
1335 struct bio *tbio, *fbio;
1336
1337 atomic_set(&r10_bio->remaining, 1);
1338
1339 /* find the first device with a block */
1340 for (i=0; i<conf->copies; i++)
1341 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1342 break;
1343
1344 if (i == conf->copies)
1345 goto done;
1346
1347 first = i;
1348 fbio = r10_bio->devs[i].bio;
1349
1350 /* now find blocks with errors */
0eb3ff12
N
1351 for (i=0 ; i < conf->copies ; i++) {
1352 int j, d;
1353 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1354
1da177e4 1355 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1356
1357 if (tbio->bi_end_io != end_sync_read)
1358 continue;
1359 if (i == first)
1da177e4 1360 continue;
0eb3ff12
N
1361 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1362 /* We know that the bi_io_vec layout is the same for
1363 * both 'first' and 'i', so we just compare them.
1364 * All vec entries are PAGE_SIZE;
1365 */
1366 for (j = 0; j < vcnt; j++)
1367 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1368 page_address(tbio->bi_io_vec[j].bv_page),
1369 PAGE_SIZE))
1370 break;
1371 if (j == vcnt)
1372 continue;
1373 mddev->resync_mismatches += r10_bio->sectors;
1374 }
18f08819
N
1375 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1376 /* Don't fix anything. */
1377 continue;
1da177e4
LT
1378 /* Ok, we need to write this bio
1379 * First we need to fixup bv_offset, bv_len and
1380 * bi_vecs, as the read request might have corrupted these
1381 */
1382 tbio->bi_vcnt = vcnt;
1383 tbio->bi_size = r10_bio->sectors << 9;
1384 tbio->bi_idx = 0;
1385 tbio->bi_phys_segments = 0;
1da177e4
LT
1386 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1387 tbio->bi_flags |= 1 << BIO_UPTODATE;
1388 tbio->bi_next = NULL;
1389 tbio->bi_rw = WRITE;
1390 tbio->bi_private = r10_bio;
1391 tbio->bi_sector = r10_bio->devs[i].addr;
1392
1393 for (j=0; j < vcnt ; j++) {
1394 tbio->bi_io_vec[j].bv_offset = 0;
1395 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1396
1397 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1398 page_address(fbio->bi_io_vec[j].bv_page),
1399 PAGE_SIZE);
1400 }
1401 tbio->bi_end_io = end_sync_write;
1402
1403 d = r10_bio->devs[i].devnum;
1404 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1405 atomic_inc(&r10_bio->remaining);
1406 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1407
1408 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1409 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1410 generic_make_request(tbio);
1411 }
1412
1413done:
1414 if (atomic_dec_and_test(&r10_bio->remaining)) {
1415 md_done_sync(mddev, r10_bio->sectors, 1);
1416 put_buf(r10_bio);
1417 }
1418}
1419
1420/*
1421 * Now for the recovery code.
1422 * Recovery happens across physical sectors.
1423 * We recover all non-is_sync drives by finding the virtual address of
1424 * each, and then choose a working drive that also has that virt address.
1425 * There is a separate r10_bio for each non-in_sync drive.
1426 * Only the first two slots are in use. The first for reading,
1427 * The second for writing.
1428 *
1429 */
1430
1431static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1432{
070ec55d 1433 conf_t *conf = mddev->private;
1da177e4
LT
1434 int i, d;
1435 struct bio *bio, *wbio;
1436
1437
1438 /* move the pages across to the second bio
1439 * and submit the write request
1440 */
1441 bio = r10_bio->devs[0].bio;
1442 wbio = r10_bio->devs[1].bio;
1443 for (i=0; i < wbio->bi_vcnt; i++) {
1444 struct page *p = bio->bi_io_vec[i].bv_page;
1445 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1446 wbio->bi_io_vec[i].bv_page = p;
1447 }
1448 d = r10_bio->devs[1].devnum;
1449
1450 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1451 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
0eb3ff12
N
1452 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1453 generic_make_request(wbio);
1454 else
6712ecf8 1455 bio_endio(wbio, -EIO);
1da177e4
LT
1456}
1457
1458
1e50915f
RB
1459/*
1460 * Used by fix_read_error() to decay the per rdev read_errors.
1461 * We halve the read error count for every hour that has elapsed
1462 * since the last recorded read error.
1463 *
1464 */
1465static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1466{
1467 struct timespec cur_time_mon;
1468 unsigned long hours_since_last;
1469 unsigned int read_errors = atomic_read(&rdev->read_errors);
1470
1471 ktime_get_ts(&cur_time_mon);
1472
1473 if (rdev->last_read_error.tv_sec == 0 &&
1474 rdev->last_read_error.tv_nsec == 0) {
1475 /* first time we've seen a read error */
1476 rdev->last_read_error = cur_time_mon;
1477 return;
1478 }
1479
1480 hours_since_last = (cur_time_mon.tv_sec -
1481 rdev->last_read_error.tv_sec) / 3600;
1482
1483 rdev->last_read_error = cur_time_mon;
1484
1485 /*
1486 * if hours_since_last is > the number of bits in read_errors
1487 * just set read errors to 0. We do this to avoid
1488 * overflowing the shift of read_errors by hours_since_last.
1489 */
1490 if (hours_since_last >= 8 * sizeof(read_errors))
1491 atomic_set(&rdev->read_errors, 0);
1492 else
1493 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1494}
1495
1da177e4
LT
1496/*
1497 * This is a kernel thread which:
1498 *
1499 * 1. Retries failed read operations on working mirrors.
1500 * 2. Updates the raid superblock when problems encounter.
6814d536 1501 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1502 */
1503
6814d536
N
1504static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1505{
1506 int sect = 0; /* Offset from r10_bio->sector */
1507 int sectors = r10_bio->sectors;
1508 mdk_rdev_t*rdev;
1e50915f 1509 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 1510 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f
RB
1511
1512 rcu_read_lock();
0544a21d
PP
1513 rdev = rcu_dereference(conf->mirrors[d].rdev);
1514 if (rdev) { /* If rdev is not NULL */
1e50915f
RB
1515 char b[BDEVNAME_SIZE];
1516 int cur_read_error_count = 0;
1517
1e50915f
RB
1518 bdevname(rdev->bdev, b);
1519
1520 if (test_bit(Faulty, &rdev->flags)) {
1521 rcu_read_unlock();
1522 /* drive has already been failed, just ignore any
1523 more fix_read_error() attempts */
1524 return;
1525 }
1526
1527 check_decay_read_errors(mddev, rdev);
1528 atomic_inc(&rdev->read_errors);
1529 cur_read_error_count = atomic_read(&rdev->read_errors);
1530 if (cur_read_error_count > max_read_errors) {
1531 rcu_read_unlock();
1532 printk(KERN_NOTICE
128595ed 1533 "md/raid10:%s: %s: Raid device exceeded "
1e50915f
RB
1534 "read_error threshold "
1535 "[cur %d:max %d]\n",
128595ed 1536 mdname(mddev),
1e50915f
RB
1537 b, cur_read_error_count, max_read_errors);
1538 printk(KERN_NOTICE
128595ed
N
1539 "md/raid10:%s: %s: Failing raid "
1540 "device\n", mdname(mddev), b);
1e50915f
RB
1541 md_error(mddev, conf->mirrors[d].rdev);
1542 return;
1543 }
1544 }
1545 rcu_read_unlock();
1546
6814d536
N
1547 while(sectors) {
1548 int s = sectors;
1549 int sl = r10_bio->read_slot;
1550 int success = 0;
1551 int start;
1552
1553 if (s > (PAGE_SIZE>>9))
1554 s = PAGE_SIZE >> 9;
1555
1556 rcu_read_lock();
1557 do {
0544a21d 1558 d = r10_bio->devs[sl].devnum;
6814d536
N
1559 rdev = rcu_dereference(conf->mirrors[d].rdev);
1560 if (rdev &&
1561 test_bit(In_sync, &rdev->flags)) {
1562 atomic_inc(&rdev->nr_pending);
1563 rcu_read_unlock();
2b193363 1564 success = sync_page_io(rdev,
6814d536 1565 r10_bio->devs[sl].addr +
ccebd4c4 1566 sect,
6814d536 1567 s<<9,
ccebd4c4 1568 conf->tmppage, READ, false);
6814d536
N
1569 rdev_dec_pending(rdev, mddev);
1570 rcu_read_lock();
1571 if (success)
1572 break;
1573 }
1574 sl++;
1575 if (sl == conf->copies)
1576 sl = 0;
1577 } while (!success && sl != r10_bio->read_slot);
1578 rcu_read_unlock();
1579
1580 if (!success) {
1581 /* Cannot read from anywhere -- bye bye array */
1582 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1583 md_error(mddev, conf->mirrors[dn].rdev);
1584 break;
1585 }
1586
1587 start = sl;
1588 /* write it back and re-read */
1589 rcu_read_lock();
1590 while (sl != r10_bio->read_slot) {
67b8dc4b 1591 char b[BDEVNAME_SIZE];
0544a21d 1592
6814d536
N
1593 if (sl==0)
1594 sl = conf->copies;
1595 sl--;
1596 d = r10_bio->devs[sl].devnum;
1597 rdev = rcu_dereference(conf->mirrors[d].rdev);
1598 if (rdev &&
1599 test_bit(In_sync, &rdev->flags)) {
1600 atomic_inc(&rdev->nr_pending);
1601 rcu_read_unlock();
1602 atomic_add(s, &rdev->corrected_errors);
2b193363 1603 if (sync_page_io(rdev,
6814d536 1604 r10_bio->devs[sl].addr +
ccebd4c4
JB
1605 sect,
1606 s<<9, conf->tmppage, WRITE, false)
67b8dc4b 1607 == 0) {
6814d536 1608 /* Well, this device is dead */
67b8dc4b 1609 printk(KERN_NOTICE
128595ed 1610 "md/raid10:%s: read correction "
67b8dc4b
RB
1611 "write failed"
1612 " (%d sectors at %llu on %s)\n",
1613 mdname(mddev), s,
1614 (unsigned long long)(sect+
1615 rdev->data_offset),
1616 bdevname(rdev->bdev, b));
128595ed 1617 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
67b8dc4b 1618 "drive\n",
128595ed 1619 mdname(mddev),
67b8dc4b 1620 bdevname(rdev->bdev, b));
6814d536 1621 md_error(mddev, rdev);
67b8dc4b 1622 }
6814d536
N
1623 rdev_dec_pending(rdev, mddev);
1624 rcu_read_lock();
1625 }
1626 }
1627 sl = start;
1628 while (sl != r10_bio->read_slot) {
0544a21d 1629
6814d536
N
1630 if (sl==0)
1631 sl = conf->copies;
1632 sl--;
1633 d = r10_bio->devs[sl].devnum;
1634 rdev = rcu_dereference(conf->mirrors[d].rdev);
1635 if (rdev &&
1636 test_bit(In_sync, &rdev->flags)) {
1637 char b[BDEVNAME_SIZE];
1638 atomic_inc(&rdev->nr_pending);
1639 rcu_read_unlock();
2b193363 1640 if (sync_page_io(rdev,
6814d536 1641 r10_bio->devs[sl].addr +
ccebd4c4 1642 sect,
67b8dc4b 1643 s<<9, conf->tmppage,
ccebd4c4 1644 READ, false) == 0) {
6814d536 1645 /* Well, this device is dead */
67b8dc4b 1646 printk(KERN_NOTICE
128595ed 1647 "md/raid10:%s: unable to read back "
67b8dc4b
RB
1648 "corrected sectors"
1649 " (%d sectors at %llu on %s)\n",
1650 mdname(mddev), s,
1651 (unsigned long long)(sect+
1652 rdev->data_offset),
1653 bdevname(rdev->bdev, b));
128595ed
N
1654 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1655 mdname(mddev),
67b8dc4b
RB
1656 bdevname(rdev->bdev, b));
1657
6814d536 1658 md_error(mddev, rdev);
67b8dc4b 1659 } else {
6814d536 1660 printk(KERN_INFO
128595ed 1661 "md/raid10:%s: read error corrected"
6814d536
N
1662 " (%d sectors at %llu on %s)\n",
1663 mdname(mddev), s,
969b755a
RD
1664 (unsigned long long)(sect+
1665 rdev->data_offset),
6814d536 1666 bdevname(rdev->bdev, b));
67b8dc4b 1667 }
6814d536
N
1668
1669 rdev_dec_pending(rdev, mddev);
1670 rcu_read_lock();
1671 }
1672 }
1673 rcu_read_unlock();
1674
1675 sectors -= s;
1676 sect += s;
1677 }
1678}
1679
1da177e4
LT
1680static void raid10d(mddev_t *mddev)
1681{
1682 r10bio_t *r10_bio;
1683 struct bio *bio;
1684 unsigned long flags;
070ec55d 1685 conf_t *conf = mddev->private;
1da177e4
LT
1686 struct list_head *head = &conf->retry_list;
1687 int unplug=0;
1688 mdk_rdev_t *rdev;
1689
1690 md_check_recovery(mddev);
1da177e4
LT
1691
1692 for (;;) {
1693 char b[BDEVNAME_SIZE];
6cce3b23 1694
a35e63ef 1695 unplug += flush_pending_writes(conf);
6cce3b23 1696
a35e63ef
N
1697 spin_lock_irqsave(&conf->device_lock, flags);
1698 if (list_empty(head)) {
1699 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1700 break;
a35e63ef 1701 }
1da177e4
LT
1702 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1703 list_del(head->prev);
4443ae10 1704 conf->nr_queued--;
1da177e4
LT
1705 spin_unlock_irqrestore(&conf->device_lock, flags);
1706
1707 mddev = r10_bio->mddev;
070ec55d 1708 conf = mddev->private;
1da177e4
LT
1709 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1710 sync_request_write(mddev, r10_bio);
1711 unplug = 1;
1712 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1713 recovery_request_write(mddev, r10_bio);
1714 unplug = 1;
1715 } else {
1716 int mirror;
4443ae10
N
1717 /* we got a read error. Maybe the drive is bad. Maybe just
1718 * the block and we can fix it.
1719 * We freeze all other IO, and try reading the block from
1720 * other devices. When we find one, we re-write
1721 * and check it that fixes the read error.
1722 * This is all done synchronously while the array is
1723 * frozen.
1724 */
6814d536
N
1725 if (mddev->ro == 0) {
1726 freeze_array(conf);
1727 fix_read_error(conf, mddev, r10_bio);
1728 unfreeze_array(conf);
4443ae10
N
1729 }
1730
1da177e4 1731 bio = r10_bio->devs[r10_bio->read_slot].bio;
0eb3ff12
N
1732 r10_bio->devs[r10_bio->read_slot].bio =
1733 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1734 mirror = read_balance(conf, r10_bio);
1735 if (mirror == -1) {
128595ed 1736 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1da177e4 1737 " read error for block %llu\n",
128595ed 1738 mdname(mddev),
1da177e4
LT
1739 bdevname(bio->bi_bdev,b),
1740 (unsigned long long)r10_bio->sector);
1741 raid_end_bio_io(r10_bio);
14e71344 1742 bio_put(bio);
1da177e4 1743 } else {
2c7d46ec 1744 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
14e71344 1745 bio_put(bio);
1da177e4
LT
1746 rdev = conf->mirrors[mirror].rdev;
1747 if (printk_ratelimit())
128595ed 1748 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1da177e4 1749 " another mirror\n",
128595ed 1750 mdname(mddev),
1da177e4
LT
1751 bdevname(rdev->bdev,b),
1752 (unsigned long long)r10_bio->sector);
a167f663
N
1753 bio = bio_clone_mddev(r10_bio->master_bio,
1754 GFP_NOIO, mddev);
1da177e4
LT
1755 r10_bio->devs[r10_bio->read_slot].bio = bio;
1756 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1757 + rdev->data_offset;
1758 bio->bi_bdev = rdev->bdev;
7b6d91da 1759 bio->bi_rw = READ | do_sync;
1da177e4
LT
1760 bio->bi_private = r10_bio;
1761 bio->bi_end_io = raid10_end_read_request;
1762 unplug = 1;
1763 generic_make_request(bio);
1764 }
1765 }
1d9d5241 1766 cond_resched();
1da177e4 1767 }
1da177e4
LT
1768 if (unplug)
1769 unplug_slaves(mddev);
1770}
1771
1772
1773static int init_resync(conf_t *conf)
1774{
1775 int buffs;
1776
1777 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 1778 BUG_ON(conf->r10buf_pool);
1da177e4
LT
1779 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1780 if (!conf->r10buf_pool)
1781 return -ENOMEM;
1782 conf->next_resync = 0;
1783 return 0;
1784}
1785
1786/*
1787 * perform a "sync" on one "block"
1788 *
1789 * We need to make sure that no normal I/O request - particularly write
1790 * requests - conflict with active sync requests.
1791 *
1792 * This is achieved by tracking pending requests and a 'barrier' concept
1793 * that can be installed to exclude normal IO requests.
1794 *
1795 * Resync and recovery are handled very differently.
1796 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1797 *
1798 * For resync, we iterate over virtual addresses, read all copies,
1799 * and update if there are differences. If only one copy is live,
1800 * skip it.
1801 * For recovery, we iterate over physical addresses, read a good
1802 * value for each non-in_sync drive, and over-write.
1803 *
1804 * So, for recovery we may have several outstanding complex requests for a
1805 * given address, one for each out-of-sync device. We model this by allocating
1806 * a number of r10_bio structures, one for each out-of-sync device.
1807 * As we setup these structures, we collect all bio's together into a list
1808 * which we then process collectively to add pages, and then process again
1809 * to pass to generic_make_request.
1810 *
1811 * The r10_bio structures are linked using a borrowed master_bio pointer.
1812 * This link is counted in ->remaining. When the r10_bio that points to NULL
1813 * has its remaining count decremented to 0, the whole complex operation
1814 * is complete.
1815 *
1816 */
1817
57afd89f 1818static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 1819{
070ec55d 1820 conf_t *conf = mddev->private;
1da177e4
LT
1821 r10bio_t *r10_bio;
1822 struct bio *biolist = NULL, *bio;
1823 sector_t max_sector, nr_sectors;
1824 int disk;
1825 int i;
6cce3b23 1826 int max_sync;
57dab0bd 1827 sector_t sync_blocks;
1da177e4
LT
1828
1829 sector_t sectors_skipped = 0;
1830 int chunks_skipped = 0;
1831
1832 if (!conf->r10buf_pool)
1833 if (init_resync(conf))
57afd89f 1834 return 0;
1da177e4
LT
1835
1836 skipped:
58c0fed4 1837 max_sector = mddev->dev_sectors;
1da177e4
LT
1838 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1839 max_sector = mddev->resync_max_sectors;
1840 if (sector_nr >= max_sector) {
6cce3b23
N
1841 /* If we aborted, we need to abort the
1842 * sync on the 'current' bitmap chucks (there can
1843 * be several when recovering multiple devices).
1844 * as we may have started syncing it but not finished.
1845 * We can find the current address in
1846 * mddev->curr_resync, but for recovery,
1847 * we need to convert that to several
1848 * virtual addresses.
1849 */
1850 if (mddev->curr_resync < max_sector) { /* aborted */
1851 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1852 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1853 &sync_blocks, 1);
1854 else for (i=0; i<conf->raid_disks; i++) {
1855 sector_t sect =
1856 raid10_find_virt(conf, mddev->curr_resync, i);
1857 bitmap_end_sync(mddev->bitmap, sect,
1858 &sync_blocks, 1);
1859 }
1860 } else /* completed sync */
1861 conf->fullsync = 0;
1862
1863 bitmap_close_sync(mddev->bitmap);
1da177e4 1864 close_sync(conf);
57afd89f 1865 *skipped = 1;
1da177e4
LT
1866 return sectors_skipped;
1867 }
1868 if (chunks_skipped >= conf->raid_disks) {
1869 /* if there has been nothing to do on any drive,
1870 * then there is nothing to do at all..
1871 */
57afd89f
N
1872 *skipped = 1;
1873 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1874 }
1875
c6207277
N
1876 if (max_sector > mddev->resync_max)
1877 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1878
1da177e4
LT
1879 /* make sure whole request will fit in a chunk - if chunks
1880 * are meaningful
1881 */
1882 if (conf->near_copies < conf->raid_disks &&
1883 max_sector > (sector_nr | conf->chunk_mask))
1884 max_sector = (sector_nr | conf->chunk_mask) + 1;
1885 /*
1886 * If there is non-resync activity waiting for us then
1887 * put in a delay to throttle resync.
1888 */
0a27ec96 1889 if (!go_faster && conf->nr_waiting)
1da177e4 1890 msleep_interruptible(1000);
1da177e4
LT
1891
1892 /* Again, very different code for resync and recovery.
1893 * Both must result in an r10bio with a list of bios that
1894 * have bi_end_io, bi_sector, bi_bdev set,
1895 * and bi_private set to the r10bio.
1896 * For recovery, we may actually create several r10bios
1897 * with 2 bios in each, that correspond to the bios in the main one.
1898 * In this case, the subordinate r10bios link back through a
1899 * borrowed master_bio pointer, and the counter in the master
1900 * includes a ref from each subordinate.
1901 */
1902 /* First, we decide what to do and set ->bi_end_io
1903 * To end_sync_read if we want to read, and
1904 * end_sync_write if we will want to write.
1905 */
1906
6cce3b23 1907 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
1908 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1909 /* recovery... the complicated one */
a9f326eb 1910 int j, k;
1da177e4
LT
1911 r10_bio = NULL;
1912
1913 for (i=0 ; i<conf->raid_disks; i++)
1914 if (conf->mirrors[i].rdev &&
b2d444d7 1915 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
6cce3b23 1916 int still_degraded = 0;
1da177e4
LT
1917 /* want to reconstruct this device */
1918 r10bio_t *rb2 = r10_bio;
6cce3b23
N
1919 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1920 int must_sync;
1921 /* Unless we are doing a full sync, we only need
1922 * to recover the block if it is set in the bitmap
1923 */
1924 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1925 &sync_blocks, 1);
1926 if (sync_blocks < max_sync)
1927 max_sync = sync_blocks;
1928 if (!must_sync &&
1929 !conf->fullsync) {
1930 /* yep, skip the sync_blocks here, but don't assume
1931 * that there will never be anything to do here
1932 */
1933 chunks_skipped = -1;
1934 continue;
1935 }
1da177e4
LT
1936
1937 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
6cce3b23 1938 raise_barrier(conf, rb2 != NULL);
1da177e4
LT
1939 atomic_set(&r10_bio->remaining, 0);
1940
1941 r10_bio->master_bio = (struct bio*)rb2;
1942 if (rb2)
1943 atomic_inc(&rb2->remaining);
1944 r10_bio->mddev = mddev;
1945 set_bit(R10BIO_IsRecover, &r10_bio->state);
6cce3b23
N
1946 r10_bio->sector = sect;
1947
1da177e4 1948 raid10_find_phys(conf, r10_bio);
18055569
N
1949
1950 /* Need to check if the array will still be
6cce3b23
N
1951 * degraded
1952 */
18055569
N
1953 for (j=0; j<conf->raid_disks; j++)
1954 if (conf->mirrors[j].rdev == NULL ||
1955 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
6cce3b23 1956 still_degraded = 1;
a24a8dd8
N
1957 break;
1958 }
18055569 1959
6cce3b23
N
1960 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1961 &sync_blocks, still_degraded);
1962
1da177e4
LT
1963 for (j=0; j<conf->copies;j++) {
1964 int d = r10_bio->devs[j].devnum;
1965 if (conf->mirrors[d].rdev &&
b2d444d7 1966 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1da177e4
LT
1967 /* This is where we read from */
1968 bio = r10_bio->devs[0].bio;
1969 bio->bi_next = biolist;
1970 biolist = bio;
1971 bio->bi_private = r10_bio;
1972 bio->bi_end_io = end_sync_read;
802ba064 1973 bio->bi_rw = READ;
1da177e4
LT
1974 bio->bi_sector = r10_bio->devs[j].addr +
1975 conf->mirrors[d].rdev->data_offset;
1976 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1977 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1978 atomic_inc(&r10_bio->remaining);
1979 /* and we write to 'i' */
1980
1981 for (k=0; k<conf->copies; k++)
1982 if (r10_bio->devs[k].devnum == i)
1983 break;
64a742bc 1984 BUG_ON(k == conf->copies);
1da177e4
LT
1985 bio = r10_bio->devs[1].bio;
1986 bio->bi_next = biolist;
1987 biolist = bio;
1988 bio->bi_private = r10_bio;
1989 bio->bi_end_io = end_sync_write;
802ba064 1990 bio->bi_rw = WRITE;
1da177e4
LT
1991 bio->bi_sector = r10_bio->devs[k].addr +
1992 conf->mirrors[i].rdev->data_offset;
1993 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1994
1995 r10_bio->devs[0].devnum = d;
1996 r10_bio->devs[1].devnum = i;
1997
1998 break;
1999 }
2000 }
2001 if (j == conf->copies) {
87fc767b
N
2002 /* Cannot recover, so abort the recovery */
2003 put_buf(r10_bio);
a07e6ab4
T
2004 if (rb2)
2005 atomic_dec(&rb2->remaining);
87fc767b 2006 r10_bio = rb2;
dfc70645
N
2007 if (!test_and_set_bit(MD_RECOVERY_INTR,
2008 &mddev->recovery))
128595ed
N
2009 printk(KERN_INFO "md/raid10:%s: insufficient "
2010 "working devices for recovery.\n",
87fc767b
N
2011 mdname(mddev));
2012 break;
1da177e4
LT
2013 }
2014 }
2015 if (biolist == NULL) {
2016 while (r10_bio) {
2017 r10bio_t *rb2 = r10_bio;
2018 r10_bio = (r10bio_t*) rb2->master_bio;
2019 rb2->master_bio = NULL;
2020 put_buf(rb2);
2021 }
2022 goto giveup;
2023 }
2024 } else {
2025 /* resync. Schedule a read for every block at this virt offset */
2026 int count = 0;
6cce3b23 2027
78200d45
N
2028 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2029
6cce3b23
N
2030 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2031 &sync_blocks, mddev->degraded) &&
2032 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2033 /* We can skip this block */
2034 *skipped = 1;
2035 return sync_blocks + sectors_skipped;
2036 }
2037 if (sync_blocks < max_sync)
2038 max_sync = sync_blocks;
1da177e4
LT
2039 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2040
1da177e4
LT
2041 r10_bio->mddev = mddev;
2042 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
2043 raise_barrier(conf, 0);
2044 conf->next_resync = sector_nr;
1da177e4
LT
2045
2046 r10_bio->master_bio = NULL;
2047 r10_bio->sector = sector_nr;
2048 set_bit(R10BIO_IsSync, &r10_bio->state);
2049 raid10_find_phys(conf, r10_bio);
2050 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2051
2052 for (i=0; i<conf->copies; i++) {
2053 int d = r10_bio->devs[i].devnum;
2054 bio = r10_bio->devs[i].bio;
2055 bio->bi_end_io = NULL;
af03b8e4 2056 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 2057 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 2058 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4
LT
2059 continue;
2060 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2061 atomic_inc(&r10_bio->remaining);
2062 bio->bi_next = biolist;
2063 biolist = bio;
2064 bio->bi_private = r10_bio;
2065 bio->bi_end_io = end_sync_read;
802ba064 2066 bio->bi_rw = READ;
1da177e4
LT
2067 bio->bi_sector = r10_bio->devs[i].addr +
2068 conf->mirrors[d].rdev->data_offset;
2069 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2070 count++;
2071 }
2072
2073 if (count < 2) {
2074 for (i=0; i<conf->copies; i++) {
2075 int d = r10_bio->devs[i].devnum;
2076 if (r10_bio->devs[i].bio->bi_end_io)
2077 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2078 }
2079 put_buf(r10_bio);
2080 biolist = NULL;
2081 goto giveup;
2082 }
2083 }
2084
2085 for (bio = biolist; bio ; bio=bio->bi_next) {
2086
2087 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2088 if (bio->bi_end_io)
2089 bio->bi_flags |= 1 << BIO_UPTODATE;
2090 bio->bi_vcnt = 0;
2091 bio->bi_idx = 0;
2092 bio->bi_phys_segments = 0;
1da177e4
LT
2093 bio->bi_size = 0;
2094 }
2095
2096 nr_sectors = 0;
6cce3b23
N
2097 if (sector_nr + max_sync < max_sector)
2098 max_sector = sector_nr + max_sync;
1da177e4
LT
2099 do {
2100 struct page *page;
2101 int len = PAGE_SIZE;
2102 disk = 0;
2103 if (sector_nr + (len>>9) > max_sector)
2104 len = (max_sector - sector_nr) << 9;
2105 if (len == 0)
2106 break;
2107 for (bio= biolist ; bio ; bio=bio->bi_next) {
2108 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2109 if (bio_add_page(bio, page, len, 0) == 0) {
2110 /* stop here */
2111 struct bio *bio2;
2112 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2113 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2114 /* remove last page from this bio */
2115 bio2->bi_vcnt--;
2116 bio2->bi_size -= len;
2117 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2118 }
2119 goto bio_full;
2120 }
2121 disk = i;
2122 }
2123 nr_sectors += len>>9;
2124 sector_nr += len>>9;
2125 } while (biolist->bi_vcnt < RESYNC_PAGES);
2126 bio_full:
2127 r10_bio->sectors = nr_sectors;
2128
2129 while (biolist) {
2130 bio = biolist;
2131 biolist = biolist->bi_next;
2132
2133 bio->bi_next = NULL;
2134 r10_bio = bio->bi_private;
2135 r10_bio->sectors = nr_sectors;
2136
2137 if (bio->bi_end_io == end_sync_read) {
2138 md_sync_acct(bio->bi_bdev, nr_sectors);
2139 generic_make_request(bio);
2140 }
2141 }
2142
57afd89f
N
2143 if (sectors_skipped)
2144 /* pretend they weren't skipped, it makes
2145 * no important difference in this case
2146 */
2147 md_done_sync(mddev, sectors_skipped, 1);
2148
1da177e4
LT
2149 return sectors_skipped + nr_sectors;
2150 giveup:
2151 /* There is nowhere to write, so all non-sync
2152 * drives must be failed, so try the next chunk...
2153 */
09b4068a
N
2154 if (sector_nr + max_sync < max_sector)
2155 max_sector = sector_nr + max_sync;
2156
2157 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
2158 chunks_skipped ++;
2159 sector_nr = max_sector;
1da177e4 2160 goto skipped;
1da177e4
LT
2161}
2162
80c3a6ce
DW
2163static sector_t
2164raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2165{
2166 sector_t size;
070ec55d 2167 conf_t *conf = mddev->private;
80c3a6ce
DW
2168
2169 if (!raid_disks)
84707f38 2170 raid_disks = conf->raid_disks;
80c3a6ce 2171 if (!sectors)
dab8b292 2172 sectors = conf->dev_sectors;
80c3a6ce
DW
2173
2174 size = sectors >> conf->chunk_shift;
2175 sector_div(size, conf->far_copies);
2176 size = size * raid_disks;
2177 sector_div(size, conf->near_copies);
2178
2179 return size << conf->chunk_shift;
2180}
2181
dab8b292
TM
2182
2183static conf_t *setup_conf(mddev_t *mddev)
1da177e4 2184{
dab8b292 2185 conf_t *conf = NULL;
c93983bf 2186 int nc, fc, fo;
1da177e4 2187 sector_t stride, size;
dab8b292 2188 int err = -EINVAL;
1da177e4 2189
f73ea873
MT
2190 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2191 !is_power_of_2(mddev->new_chunk_sectors)) {
128595ed
N
2192 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2193 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2194 mdname(mddev), PAGE_SIZE);
dab8b292 2195 goto out;
1da177e4 2196 }
2604b703 2197
f73ea873
MT
2198 nc = mddev->new_layout & 255;
2199 fc = (mddev->new_layout >> 8) & 255;
2200 fo = mddev->new_layout & (1<<16);
dab8b292 2201
1da177e4 2202 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
f73ea873 2203 (mddev->new_layout >> 17)) {
128595ed 2204 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 2205 mdname(mddev), mddev->new_layout);
1da177e4
LT
2206 goto out;
2207 }
dab8b292
TM
2208
2209 err = -ENOMEM;
4443ae10 2210 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
dab8b292 2211 if (!conf)
1da177e4 2212 goto out;
dab8b292 2213
4443ae10 2214 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
2215 GFP_KERNEL);
2216 if (!conf->mirrors)
2217 goto out;
4443ae10
N
2218
2219 conf->tmppage = alloc_page(GFP_KERNEL);
2220 if (!conf->tmppage)
dab8b292
TM
2221 goto out;
2222
1da177e4 2223
64a742bc 2224 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2225 conf->near_copies = nc;
2226 conf->far_copies = fc;
2227 conf->copies = nc*fc;
c93983bf 2228 conf->far_offset = fo;
dab8b292
TM
2229 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2230 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2231
2232 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2233 r10bio_pool_free, conf);
2234 if (!conf->r10bio_pool)
2235 goto out;
2236
58c0fed4 2237 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
2238 sector_div(size, fc);
2239 size = size * conf->raid_disks;
2240 sector_div(size, nc);
2241 /* 'size' is now the number of chunks in the array */
2242 /* calculate "used chunks per device" in 'stride' */
2243 stride = size * conf->copies;
af03b8e4
N
2244
2245 /* We need to round up when dividing by raid_disks to
2246 * get the stride size.
2247 */
2248 stride += conf->raid_disks - 1;
64a742bc 2249 sector_div(stride, conf->raid_disks);
dab8b292
TM
2250
2251 conf->dev_sectors = stride << conf->chunk_shift;
64a742bc 2252
c93983bf 2253 if (fo)
64a742bc
N
2254 stride = 1;
2255 else
c93983bf 2256 sector_div(stride, fc);
64a742bc
N
2257 conf->stride = stride << conf->chunk_shift;
2258
1da177e4 2259
e7e72bf6 2260 spin_lock_init(&conf->device_lock);
dab8b292
TM
2261 INIT_LIST_HEAD(&conf->retry_list);
2262
2263 spin_lock_init(&conf->resync_lock);
2264 init_waitqueue_head(&conf->wait_barrier);
2265
2266 conf->thread = md_register_thread(raid10d, mddev, NULL);
2267 if (!conf->thread)
2268 goto out;
2269
dab8b292
TM
2270 conf->mddev = mddev;
2271 return conf;
2272
2273 out:
128595ed 2274 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
2275 mdname(mddev));
2276 if (conf) {
2277 if (conf->r10bio_pool)
2278 mempool_destroy(conf->r10bio_pool);
2279 kfree(conf->mirrors);
2280 safe_put_page(conf->tmppage);
2281 kfree(conf);
2282 }
2283 return ERR_PTR(err);
2284}
2285
2286static int run(mddev_t *mddev)
2287{
2288 conf_t *conf;
2289 int i, disk_idx, chunk_size;
2290 mirror_info_t *disk;
2291 mdk_rdev_t *rdev;
2292 sector_t size;
2293
2294 /*
2295 * copy the already verified devices into our private RAID10
2296 * bookkeeping area. [whatever we allocate in run(),
2297 * should be freed in stop()]
2298 */
2299
2300 if (mddev->private == NULL) {
2301 conf = setup_conf(mddev);
2302 if (IS_ERR(conf))
2303 return PTR_ERR(conf);
2304 mddev->private = conf;
2305 }
2306 conf = mddev->private;
2307 if (!conf)
2308 goto out;
2309
dab8b292
TM
2310 mddev->thread = conf->thread;
2311 conf->thread = NULL;
2312
8f6c2e4b
MP
2313 chunk_size = mddev->chunk_sectors << 9;
2314 blk_queue_io_min(mddev->queue, chunk_size);
2315 if (conf->raid_disks % conf->near_copies)
2316 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2317 else
2318 blk_queue_io_opt(mddev->queue, chunk_size *
2319 (conf->raid_disks / conf->near_copies));
2320
159ec1fc 2321 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 2322 disk_idx = rdev->raid_disk;
84707f38 2323 if (disk_idx >= conf->raid_disks
1da177e4
LT
2324 || disk_idx < 0)
2325 continue;
2326 disk = conf->mirrors + disk_idx;
2327
2328 disk->rdev = rdev;
8f6c2e4b
MP
2329 disk_stack_limits(mddev->gendisk, rdev->bdev,
2330 rdev->data_offset << 9);
1da177e4 2331 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2332 * violating it, so limit max_segments to 1 lying
2333 * within a single page.
1da177e4 2334 */
627a2d3c
N
2335 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2336 blk_queue_max_segments(mddev->queue, 1);
2337 blk_queue_segment_boundary(mddev->queue,
2338 PAGE_CACHE_SIZE - 1);
2339 }
1da177e4
LT
2340
2341 disk->head_position = 0;
1da177e4 2342 }
6d508242
N
2343 /* need to check that every block has at least one working mirror */
2344 if (!enough(conf)) {
128595ed 2345 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 2346 mdname(mddev));
1da177e4
LT
2347 goto out_free_conf;
2348 }
2349
2350 mddev->degraded = 0;
2351 for (i = 0; i < conf->raid_disks; i++) {
2352
2353 disk = conf->mirrors + i;
2354
5fd6c1dc 2355 if (!disk->rdev ||
2e333e89 2356 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2357 disk->head_position = 0;
2358 mddev->degraded++;
8c2e870a
NB
2359 if (disk->rdev)
2360 conf->fullsync = 1;
1da177e4
LT
2361 }
2362 }
2363
8c6ac868 2364 if (mddev->recovery_cp != MaxSector)
128595ed 2365 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
2366 " -- starting background reconstruction\n",
2367 mdname(mddev));
1da177e4 2368 printk(KERN_INFO
128595ed 2369 "md/raid10:%s: active with %d out of %d devices\n",
84707f38
N
2370 mdname(mddev), conf->raid_disks - mddev->degraded,
2371 conf->raid_disks);
1da177e4
LT
2372 /*
2373 * Ok, everything is just fine now
2374 */
dab8b292
TM
2375 mddev->dev_sectors = conf->dev_sectors;
2376 size = raid10_size(mddev, 0, 0);
2377 md_set_array_sectors(mddev, size);
2378 mddev->resync_max_sectors = size;
1da177e4 2379
7a5febe9 2380 mddev->queue->unplug_fn = raid10_unplug;
0d129228
N
2381 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2382 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2383
1da177e4
LT
2384 /* Calculate max read-ahead size.
2385 * We need to readahead at least twice a whole stripe....
2386 * maybe...
2387 */
2388 {
9d8f0363
AN
2389 int stripe = conf->raid_disks *
2390 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
2391 stripe /= conf->near_copies;
2392 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2393 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2394 }
2395
84707f38 2396 if (conf->near_copies < conf->raid_disks)
1da177e4 2397 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
ac5e7113 2398 md_integrity_register(mddev);
1da177e4
LT
2399 return 0;
2400
2401out_free_conf:
589a594b 2402 md_unregister_thread(mddev->thread);
1da177e4
LT
2403 if (conf->r10bio_pool)
2404 mempool_destroy(conf->r10bio_pool);
1345b1d8 2405 safe_put_page(conf->tmppage);
990a8baf 2406 kfree(conf->mirrors);
1da177e4
LT
2407 kfree(conf);
2408 mddev->private = NULL;
2409out:
2410 return -EIO;
2411}
2412
2413static int stop(mddev_t *mddev)
2414{
070ec55d 2415 conf_t *conf = mddev->private;
1da177e4 2416
409c57f3
N
2417 raise_barrier(conf, 0);
2418 lower_barrier(conf);
2419
1da177e4
LT
2420 md_unregister_thread(mddev->thread);
2421 mddev->thread = NULL;
2422 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2423 if (conf->r10bio_pool)
2424 mempool_destroy(conf->r10bio_pool);
990a8baf 2425 kfree(conf->mirrors);
1da177e4
LT
2426 kfree(conf);
2427 mddev->private = NULL;
2428 return 0;
2429}
2430
6cce3b23
N
2431static void raid10_quiesce(mddev_t *mddev, int state)
2432{
070ec55d 2433 conf_t *conf = mddev->private;
6cce3b23
N
2434
2435 switch(state) {
2436 case 1:
2437 raise_barrier(conf, 0);
2438 break;
2439 case 0:
2440 lower_barrier(conf);
2441 break;
2442 }
6cce3b23 2443}
1da177e4 2444
dab8b292
TM
2445static void *raid10_takeover_raid0(mddev_t *mddev)
2446{
2447 mdk_rdev_t *rdev;
2448 conf_t *conf;
2449
2450 if (mddev->degraded > 0) {
128595ed
N
2451 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2452 mdname(mddev));
dab8b292
TM
2453 return ERR_PTR(-EINVAL);
2454 }
2455
dab8b292
TM
2456 /* Set new parameters */
2457 mddev->new_level = 10;
2458 /* new layout: far_copies = 1, near_copies = 2 */
2459 mddev->new_layout = (1<<8) + 2;
2460 mddev->new_chunk_sectors = mddev->chunk_sectors;
2461 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
2462 mddev->raid_disks *= 2;
2463 /* make sure it will be not marked as dirty */
2464 mddev->recovery_cp = MaxSector;
2465
2466 conf = setup_conf(mddev);
02214dc5 2467 if (!IS_ERR(conf)) {
e93f68a1
N
2468 list_for_each_entry(rdev, &mddev->disks, same_set)
2469 if (rdev->raid_disk >= 0)
2470 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
2471 conf->barrier = 1;
2472 }
2473
dab8b292
TM
2474 return conf;
2475}
2476
2477static void *raid10_takeover(mddev_t *mddev)
2478{
2479 struct raid0_private_data *raid0_priv;
2480
2481 /* raid10 can take over:
2482 * raid0 - providing it has only two drives
2483 */
2484 if (mddev->level == 0) {
2485 /* for raid0 takeover only one zone is supported */
2486 raid0_priv = mddev->private;
2487 if (raid0_priv->nr_strip_zones > 1) {
128595ed
N
2488 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2489 " with more than one zone.\n",
2490 mdname(mddev));
dab8b292
TM
2491 return ERR_PTR(-EINVAL);
2492 }
2493 return raid10_takeover_raid0(mddev);
2494 }
2495 return ERR_PTR(-EINVAL);
2496}
2497
2604b703 2498static struct mdk_personality raid10_personality =
1da177e4
LT
2499{
2500 .name = "raid10",
2604b703 2501 .level = 10,
1da177e4
LT
2502 .owner = THIS_MODULE,
2503 .make_request = make_request,
2504 .run = run,
2505 .stop = stop,
2506 .status = status,
2507 .error_handler = error,
2508 .hot_add_disk = raid10_add_disk,
2509 .hot_remove_disk= raid10_remove_disk,
2510 .spare_active = raid10_spare_active,
2511 .sync_request = sync_request,
6cce3b23 2512 .quiesce = raid10_quiesce,
80c3a6ce 2513 .size = raid10_size,
dab8b292 2514 .takeover = raid10_takeover,
1da177e4
LT
2515};
2516
2517static int __init raid_init(void)
2518{
2604b703 2519 return register_md_personality(&raid10_personality);
1da177e4
LT
2520}
2521
2522static void raid_exit(void)
2523{
2604b703 2524 unregister_md_personality(&raid10_personality);
1da177e4
LT
2525}
2526
2527module_init(raid_init);
2528module_exit(raid_exit);
2529MODULE_LICENSE("GPL");
0efb9e61 2530MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 2531MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 2532MODULE_ALIAS("md-raid10");
2604b703 2533MODULE_ALIAS("md-level-10");